Effect of adding Ar gas on the pulse height distribution of BF3-filled neutron detectors
Indian Academy of Sciences (India)
M Padalakshmi; A M Shaikh
2008-11-01
Boron trifluoride (BF3) proportional counters are used as detectors for thermal neutrons. They are characterized by high neutron sensitivity and good gamma discriminating properties. Most practical BF3 counters are filled with pure boron trifluoride gas enriched up to 96% 10B. But BF3 is not an ideal proportional counter gas. Worsening of plateau characteristics is observed with increasing radius due to impurities in gas. To overcome this problem, counters are filled with BF3 with an admixture of a more suitable gas such as argon. The dilution of BF3 with argon causes a decrease in detection efficiency, but the pulse height spectrum shows sharper peaks and more stable plateau characteristics than counters filled with pure BF3. The present investigations are under-taken to study the pulse height distribution and other important factors in BF3+Ar filled signal counters for neutron beam applications. Tests are performed with detectors with cylindrical geometry filled with BF3 gas enriched in 10B to 90%, and high purity Ar in different proportions. By analysing pulse height spectra, a value of 6.1 ± 0.2 has been obtained for the branching ratio of the 10B(,) reaction.
Energy Proportionality for Disk Storage Using Replication
Energy Technology Data Exchange (ETDEWEB)
Kim, Jinoh; Rotem, Doron
2010-09-09
Energy saving has become a crucial concern in datacenters as several reports predict that the anticipated energy costs over a three year period will exceed hardware acquisition. In particular, saving energy for storage is of major importance as storage devices (and cooling them off) may contribute over 25 percent of the total energy consumed in a datacenter. Recent work introduced the concept of energy proportionality and argued that it is a more relevant metric than just energy saving as it takes into account the tradeoff between energy consumption and performance. In this paper, we present a novel approach, called FREP (Fractional Replication for Energy Proportionality), for energy management in large datacenters. FREP includes areplication strategy and basic functions to enable flexible energy management. Specifically, our method provides performance guarantees by adaptively controlling the power states of a group of disks based on observed and predicted workloads. Our experiments, using a set of real and synthetic traces, show that FREP dramatically reduces energy requirements with a minimal response time penalty.
Pulse height measurements and electron attachment in drift chambers operated with Xe,CO2 mixtures
Andronic, A
2003-01-01
We present pulse height measurements in drift chambers operated with Xe,CO2 gas mixtures. We investigate the attachment of primary electrons on oxygen and SF6 contaminants in the detection gas. The measurements are compared with simulations of properties of drifting electrons. We present two methods to check the gas quality: gas chromatography and Fe55 pulse height measurements using monitor detectors.
Pulse-height defect in single-crystal CVD diamond detectors
Energy Technology Data Exchange (ETDEWEB)
Beliuskina, O.; Imai, N. [The University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Strekalovsky, A.O.; Aleksandrov, A.A.; Aleksandrova, I.A.; Ilich, S.; Kamanin, D.V.; Knyazheva, G.N.; Kuznetsova, E.A.; Mishinsky, G.V.; Pyatkov, Yu.V.; Strekalovsky, O.V.; Zhuchko, V.E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Devaraja, H.M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Heinz, C. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Heinz, S. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Hofmann, S.; Kis, M.; Kozhuharov, C.; Maurer, J.; Traeger, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Pomorski, M. [CEA, LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif-sur-Yvette (France)
2017-02-15
The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of {sup 252} Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed. (orig.)
Assessment of pulse height selection methods for several spectrum shapes in radiation detection
Energy Technology Data Exchange (ETDEWEB)
Mainardi, Raul T. E-mail: mainardi@famaf.unc.edu.ar; Plivelic, Tomas S. E-mail: tomas@lnls.br; Derosa, Pedro A. E-mail: derosa@engr.sc.edu
2003-03-01
The minimum pulse height selection method developed more than forty years ago to process the information provided by detectors with an energy spectrum responding to a Landau distribution is extended in this work to consider other information processing criteria such as the maximum pulse height and the pulse height closest to the mode. The latter is a selection method whereby the mode is calculated for a distribution and then, a pulse closest to it is selected from a given set and stored. We analyze the combined resolution of a set of identical sampling detectors in terms of the number of detectors and the shape of the characteristic pulse height distribution from a single detector. To make this treatment as general as possible, five analytical forms are tested as symmetric and asymmetric pulse height distributions, applying to each of them the three selection methods mentioned above. We also compare these results with the average of the pulse heights in each case. For these evaluations, analytical calculations and Monte Carlo simulations were carried out. It was thus possible to select the most appropriate selection method based on the shape parameters of a distribution.
A study on the pulse height resolution of organic scintillator digitized pulses
Energy Technology Data Exchange (ETDEWEB)
Belli, Francesco, E-mail: Francesco.Belli@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, Frascati I-00044, Rome (Italy); Esposito, Basilio; Marocco, Daniele; Riva, Marco [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, Frascati I-00044, Rome (Italy)
2013-10-15
Highlights: ► The frequency analysis of pulses from a liquid scintillator detector is performed. ► The minimum sampling rate required to avoid PH degradation is determined. ► It is shown that interpolation methods increase the FoM for n/γ discrimination. -- Abstract: Organic scintillator detectors are widely used for neutron spectroscopy in fusion devices due to their good energy resolution and capability of neutron/gamma discrimination. Nowadays, scintillator pulses are commonly recorded by means of digital acquisition systems. These have several advantages, and in particular the possibility of off-line data reprocessing: however, the signal digitization can be a cause of degradation of the pulse height (PH) resolution (and therefore of the energy resolution obtained after pulse height spectra unfolding). In this work, the problem of how pulse digitization may influence the pulse height resolution is investigated. First, through downsampling of digitized scintillator pulses, we determine the minimum sampling rate required to avoid any degradation of the pulse height resolution. Secondly, we find that the application of interpolation methods to the digitized pulses does not affect the pulse height resolution, whereas it increases the figure of merit for neutron/gamma discrimination. These results are relevant to define the specifications for the digital acquisition systems of neutron detectors in present and future fusion devices such as JET and ITER.
Pulse height defect of energetic heavy ions in ion-implanted Si detectors
Pasquali, G.; Casini, G.; Bini, M.; Calamai, S.; Olmi, A.; Poggi, G.; Stefanini, A. A.; Saint-Laurent, F.; Steckmeyer, J. C.
1998-02-01
The pulse height defect in ion-implanted silicon detectors for elastically scattered 93Nb, 100Mo, 116Sn, 120Sn and 129Xe ions, at energies ranging from about 4 to 25 A MeV has been measured. The results are compared with two widely used parametrizations taken from the literature.
Pulse height defect of energetic heavy ions in ion-implanted Si detectors
Energy Technology Data Exchange (ETDEWEB)
Pasquali, G.; Casini, G.; Bini, M.; Calamai, S.; Olmi, A.; Poggi, G.; Stefanini, A.A. [Istituto Nazionale di Fisica Nucleare, Florence (Italy)]|[Univ. of Florence (Italy); Saint-Laurent, F. [DRFC/STEP, CEN Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Steckmeyer, J.C. [Laboratoire de Physique Corpuscolaire, ISMRA, 14050 Caen Cedex (France)
1998-03-01
The pulse height defect in ion-implanted silicon detectors for elastically scattered {sup 93}Nb, {sup 100}Mo, {sup 116}Sn, {sup 120}Sn and {sup 129}Xe ions, at energies ranging from about 4 to 25 A MeV has been measured. The results are compared with two widely used parametrizations taken from the literature. (orig.). 14 refs.
Energy Technology Data Exchange (ETDEWEB)
Kristo, M J
2006-12-12
This work explored the use of pulse height distributions (PHD) from multiplier-type detectors as a means of detecting and eliminating the effects of polyatomic interferences in secondary ion mass spectrometry (SIMS). We explored the behavior of PHD for {sup 235}U{sup +}, {sup 208}Pb{sup 27}Al{sup +} and {sup 207}Pb{sup 28}Si{sup +}, all with a nominal mass-to-charge ratio of 235. In every case, the distribution for the atomic ion ({sup 235}U{sup +}) was clearly shifted relative to the distributions for {sup 208}Pb{sup 27}Al{sup +} and {sup 207}Pb{sup 28}Si{sup +}. When the first surface of the detector is metallic in character, the polyatomic ions are shifted to larger pulse heights relative to the atomic ion. When the first surface of the detector is oxide in character, the atomic ion is shifted to larger pulse heights relative to the polyatomic ions. The relative positioning appear to be stable for a given detector over time at the same secondary ion impact energy. Consequently, it appears to be feasible to use PHD data to detect interfering polyatomic ions and eliminate their deleterious effects using peak deconvolution techniques. Consequently, the updated Ultrafast RAE detector will be designed to make the pulse height information available to the data acquisition system.
Development of MCNPX-ESUT computer code for simulation of neutron/gamma pulse height distribution
Abolfazl Hosseini, Seyed; Vosoughi, Naser; Zangian, Mehdi
2015-05-01
In this paper, the development of the MCNPX-ESUT (MCNPX-Energy Engineering of Sharif University of Technology) computer code for simulation of neutron/gamma pulse height distribution is reported. Since liquid organic scintillators like NE-213 are well suited and routinely used for spectrometry in mixed neutron/gamma fields, this type of detectors is selected for simulation in the present study. The proposed algorithm for simulation includes four main steps. The first step is the modeling of the neutron/gamma particle transport and their interactions with the materials in the environment and detector volume. In the second step, the number of scintillation photons due to charged particles such as electrons, alphas, protons and carbon nuclei in the scintillator material is calculated. In the third step, the transport of scintillation photons in the scintillator and lightguide is simulated. Finally, the resolution corresponding to the experiment is considered in the last step of the simulation. Unlike the similar computer codes like SCINFUL, NRESP7 and PHRESP, the developed computer code is applicable to both neutron and gamma sources. Hence, the discrimination of neutron and gamma in the mixed fields may be performed using the MCNPX-ESUT computer code. The main feature of MCNPX-ESUT computer code is that the neutron/gamma pulse height simulation may be performed without needing any sort of post processing. In the present study, the pulse height distributions due to a monoenergetic neutron/gamma source in NE-213 detector using MCNPX-ESUT computer code is simulated. The simulated neutron pulse height distributions are validated through comparing with experimental data (Gohil et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 664 (2012) 304-309.) and the results obtained from similar computer codes like SCINFUL, NRESP7 and Geant4. The simulated gamma pulse height distribution for a 137Cs
Optimal Linear Filters for Pulse Height Measurements in the Presence of Noise
Energy Technology Data Exchange (ETDEWEB)
Nygaard, K.
1966-07-15
For measurements of nuclear pulse height spectra a linear filter is used between the pulse amplifier and the pulse height recorder so as to improve the signal/noise ratio. The problem of finding the optimal filter is investigated with emphasis on technical realizability. The maximum available signal/noise ratio is theoretically calculated on the basis of all the information which can be found in the output of the pulse amplifier, and on an assumed a priori knowledge of the pulse time of arrival. It is then shown that the maximum available signal/noise ratio can be obtained with practical measurements without any a priori knowledge of pulse time of arrival, and a general description of the optimal linear filter is given. The solution is unique, technically realizable, and based solely on data (noise power spectrum and pulse shape) which can be measured at the output terminals of the pulse amplifier used.
Energy Proportionality and Performance in Data Parallel Computing Clusters
Energy Technology Data Exchange (ETDEWEB)
Kim, Jinoh; Chou, Jerry; Rotem, Doron
2011-02-14
Energy consumption in datacenters has recently become a major concern due to the rising operational costs andscalability issues. Recent solutions to this problem propose the principle of energy proportionality, i.e., the amount of energy consumedby the server nodes must be proportional to the amount of work performed. For data parallelism and fault tolerancepurposes, most common file systems used in MapReduce-type clusters maintain a set of replicas for each data block. A coveringset is a group of nodes that together contain at least one replica of the data blocks needed for performing computing tasks. In thiswork, we develop and analyze algorithms to maintain energy proportionality by discovering a covering set that minimizesenergy consumption while placing the remaining nodes in lowpower standby mode. Our algorithms can also discover coveringsets in heterogeneous computing environments. In order to allow more data parallelism, we generalize our algorithms so that itcan discover k-covering sets, i.e., a set of nodes that contain at least k replicas of the data blocks. Our experimental results showthat we can achieve substantial energy saving without significant performance loss in diverse cluster configurations and workingenvironments.
Holder, J. P.; Benedetti, L. R.; Bradley, D. K.
2016-11-01
Single hit pulse height analysis is applied to National Ignition Facility x-ray framing cameras to quantify gain and gain variation in a single micro-channel plate-based instrument. This method allows the separation of gain from detectability in these photon-detecting devices. While pulse heights measured by standard-DC calibration methods follow the expected exponential distribution at the limit of a compound-Poisson process, gain-gated pulse heights follow a more complex distribution that may be approximated as a weighted sum of a few exponentials. We can reproduce this behavior with a simple statistical-sampling model.
Improvement of the energy resolution of CdTe detectors by pulse height correction from waveform
Kikawa, T; Hiraki, T; Nakaya, T
2011-01-01
Semiconductor detectors made of CdTe crystal have high gamma-ray detection efficiency and are usable at room temperature. However, the energy resolution of CdTe detectors for MeV gamma-rays is rather poor because of the significant hole trapping effect. We have developed a method to improve the energy resolution by correcting the pulse height using the waveform of the signal and achieved 2.0% (FWHM) energy resolution for 662keV gamma-rays. Best energy resolution was achieved at temperatures between -10 degrees C and 0 degrees C.
High-speed nuclear quality pulse height analyzer for synchrotron-based applications
Energy Technology Data Exchange (ETDEWEB)
Beche, Jean-Francois; Bucher, Jerome J.; Fabris, Lorenzo; Riot, Vincent J.
2001-04-01
A high throughput Pulse Height Analyzer system for synchrotron-based applications requiring high resolution, high processing speed and low dead time has been developed. The system is comprised of a 120ns 12-bit nuclear quality Analog to Digital converter with a self-adaptive fast peak detector-stretcher and a custom-made fast histogramming memory module that records and processes the digitized data. The histogramming module is packaged in a VME or VXI compatible interface. Data is transferred through a fast optical link from the memory interface to a computer. A dedicated data acquisition program matches the hardware characteristics of the histogramming memory module. The data acquisition system allows for two data collection modes: ''standard'' data acquisition mode where the data is accumulated and read in synchronization with an external trigger and ''live'' data acquisition mode where the system operates as a standard Pulse Height Analyzer. The acquisition, standard or live, can be performed on several channels simultaneously. A two-channel prototype has been demonstrated at the Stanford Synchrotron Radiation Laboratory accelerator in conjunction with an X-ray Fluorescence Absorption Spectroscopy experiment. A detailed description of the entire system is given and experimental data is shown.
On the characterisation of SiPMs from pulse-height spectra
Chmill, V; Klanner, R; Nitschke, M; Schwandt, J
2016-01-01
Methods are developed, which use the pulse-height spectra of SiPMs measured in the dark and illuminated by pulsed light, to determine the pulse shape, the dark-count rate, the gain, the average number of photons initiating a Geiger discharge, the probabilities for prompt cross-talk and after-pulses, as well as the electronics noise and the gain fluctuations between and in pixels. The entire pulse-height spectra, including the background regions in-between the peaks corresponding to different number of Geiger discharges, are described by single functions. As a demonstration, the model is used to characterise a KETEK SiPM with 4382 pixels of 15 \\mu m x 15 \\mu m area for voltages between 2.5 and 8 V above the breakdown voltage at 20{\\deg}C. The results are compared to other methods of characterising SiPMs. Finally, examples are given, how the complete description of the pulse-eight spectra can be used to optimise the operating voltage of SiPMs, and a method for an in-situ calibration and monitoring of SiPMs, sui...
Calculation of photon pulse height distribution using deterministic and Monte Carlo methods
Akhavan, Azadeh; Vosoughi, Naser
2015-12-01
Radiation transport techniques which are used in radiation detection systems comprise one of two categories namely probabilistic and deterministic. However, probabilistic methods are typically used in pulse height distribution simulation by recreating the behavior of each individual particle, the deterministic approach, which approximates the macroscopic behavior of particles by solution of Boltzmann transport equation, is being developed because of its potential advantages in computational efficiency for complex radiation detection problems. In current work linear transport equation is solved using two methods including collided components of the scalar flux algorithm which is applied by iterating on the scattering source and ANISN deterministic computer code. This approach is presented in one dimension with anisotropic scattering orders up to P8 and angular quadrature orders up to S16. Also, multi-group gamma cross-section library required for this numerical transport simulation is generated in a discrete appropriate form. Finally, photon pulse height distributions are indirectly calculated by deterministic methods that approvingly compare with those from Monte Carlo based codes namely MCNPX and FLUKA.
A new soft x-ray pulse height analysis array in the HL-2A tokamak
Zhang, Y. P.; Liu, Yi; Yang, J. W.; Song, X. Y.; Liao, M.; Li, X.; Yuan, G. L.; Yang, Q. W.; Duan, X. R.; Pan, C. H.
2009-12-01
A new soft x-ray pulse height analysis (PHA) array including nine independent subsystems, on basis of a nonconventional software multichannel analysis system and a silicon drift detector (SDD) linear array consisting of nine high performance SDD detectors, has been developed in the HL-2A tokamak. The use of SDD has greatly improved the measurement accuracy and the spatiotemporal resolutions of the soft x-ray PHA system. Since the ratio of peak to background counts obtained from the SDD PHA system is very high, p /b≧3000, the soft x-ray spectra measured by the SDD PHA system can approximatively be regarded as electron velocity distribution. The electron velocity distribution can be well derived in the pure ohmic and auxiliary heating discharges. The performance of the new soft x-ray PHA array and the first experimental results with some discussions are presented.
The unfolding effects of transfer functions and processing of the pulse height distributions
Directory of Open Access Journals (Sweden)
Avdić Senada
2010-01-01
Full Text Available This paper deals with the improvements of the linear artificial neural network unfolding approach aimed at accurately determining the incident neutron spectrum. The effects of the transfer functions and pre-processing of the simulated pulse height distributions from liquid scintillation detectors on the artificial neural networks performance have been studied. A better energy resolution and higher reliability of the linear artificial neural network technique have been achieved after implementation of the results of this study. The optimized structure of the network was used to unfold both monoenergetic and continuous neutron energy spectra, such as the spectra of 252Cf and 241Am-Be sources, traditionally used in the nuclear safeguards experiments. We have demonstrated that the artificial neural network energy resolution of 0.1 MeV is comparable with the one obtained by the reference maximum likelihood expectation-maximization method which was implemented by using the one step late algorithm. Although the maximum likelihood algorithm provides the unfolded results of higher accuracy, especially for continuous neutron sources, the artificial neural network approach with the improved performances is more suitable for fast and robust determination of the neutron spectra with sufficient accuracy.
Laboratory tests of the Pulse Height Analysis system for Wendelstein 7-X
Kubkowska, M.; Czarnecka, A.; Figacz, W.; Jabłoński, S.; Kaczmarczyk, J.; Krawczyk, N.; Ryć, L.; Biedermann, C.; Koenig, R.; Thomsen, H.; Weller, A.; W7-X Team
2015-10-01
A pulse height analysis (PHA) system has been designed and manufactured for the Wendelstein 7-X stellarator, in such a way as to be already compatible with later quasi-continuous operation requirements. The diagnostic will provide X-ray spectra with energy resolution better than 180 eV . The system has three energy channels: 0.25-20 keV, 0.95-20 keV and 1.5-20 keV . For each channel a separate Silicon Drift Detector (SDD) equipped with a suitably selected beryllium foil is used. The range of the 3 energy channels can be further adapted to particular experiments by moving via a pneumatic actuator additional beryllium filters in front of the fixed ones. The PHA system is intended for measuring impurity species (e.g. C, Fe, Ni), electron temperature and for investigating possible suprathermal tails in the spectra. The system will be installed on the horizontal port AEK50 on W7-X. The SDD detectors, the replaceable filters and the adjustable piezo driven slits which allow to suitably adapt the X-ray signal intensity are mounted inside a vacuum chamber which is connected to the plasma vessel via a gate valve. The on-air diagnostic components are the preamplifiers, the Digital X-Ray Processor (XIA, U.S.A.), a computer, and an X-ray calibration source. For controlling the operation of the entire diagnostic system, as well as, for the data acquisition of the electrical pulses coming a special code was developed. The paper presents the construction of the PHA system for W7-X and the laboratory tests of its mechanical parts together with the information on the code developed to operate the diagnostic. The diagnostic was also tested and characterised by measuring Fe55 spectrum and fluorescence spectra of Ni, Fe, Cr and Cu induced by an X-ray mini-tube.
Institute of Scientific and Technical Information of China (English)
SHI Yue-Jiang; WAN Bao-Nian
2001-01-01
The soft x-ray pulse-height-analysis technique is a conventional tool to measure electron temperature on tokamaks.The soft x-ray spectra distortion due to the energy resolution of the detector will affect the temperature andimpurity concentration determination. To evaluate these effects, distorted spectra as functions of energy resolutionare derived by numerical modelling. The results show that the low-energy resolution detector can fit for the largesized tokamak soft x-ray spectra.
Array of virtual Frisch-grid CZT detectors with common cathode readout and pulse-height correction
Energy Technology Data Exchange (ETDEWEB)
Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Egarievwe, E.U.; Fochuk, P.M.; Fuerstnau, M.; Gul, R.; Hossain, A.; Jones, F.; Kim, K.; Kopach, O.V.; Taggart, R.; Yang, G.; Ye, Z.; Xu, L.; and James, R.B.
2010-08-01
We present our new results from testing 15-mm-long virtual Frisch-grid CdZnTe detectors with a common-cathode readout for correcting pulse-height distortions. The array employs parallelepiped-shaped CdZnTe (CZT) detectors of a large geometrical aspect ratio, with two planar contacts on the top and bottom surfaces (anode and cathode) and an additional shielding electrode on the crystal's sides to create the virtual Frisch-grid effect. We optimized the geometry of the device and improved its spectral response. We found that reducing to 5 mm the length of the shielding electrode placed next to the anode had no adverse effects on the device's performance. At the same time, this allowed corrections for electron loss by reading the cathode signals to obtain depth information.
Howansky, Adrian; Peng, Boyu; Lubinsky, Anthony R; Zhao, Wei
2017-03-01
Pulse height spectroscopy has been used by investigators to deduce the imaging properties of scintillators. Pulse height spectra (PHS) are used to compute the Swank factor, which describes the variation in scintillator light output per x-ray interaction. The spread in PHS measured below the K-edge is related to the optical component of the Swank factor, i.e., variations in light escape efficiency from different depths of x-ray interaction in the scintillator, denoted ε¯(z). Optimizing scintillators for medical imaging applications requires understanding of these optical properties, as they determine tradeoffs between parameters such as x-ray absorption, light yield, and spatial resolution. This work develops a model for PHS acquisition such that the effect of measurement uncertainty can be removed. This method allows ε¯(z) to be quantified on an absolute scale and permits more accurate estimation of the optical Swank factor of scintillators. The pulse height spectroscopy acquisition chain was modeled as a linear system of stochastic gain stages. Analytical expressions were derived for signal and noise propagation through the PHS chain, accounting for deterministic and stochastic aspects of x-ray absorption, scintillation, and light detection with a photomultiplier tube. The derived expressions were used to calculate PHS of thallium-doped cesium iodide (CsI) scintillators using parameters that were measured, calculated, or known from literature. PHS were measured at 25 and 32 keV of CsI samples designed with an optically reflective or absorptive backing, with or without a fiber-optic faceplate (FOP), and with thicknesses ranging from 150-1000 μm. Measured PHS were compared with calculated PHS, then light escape model parameters were varied until measured and modeled results reached agreement. Resulting estimates of ε¯(z) were used to calculate each scintillator's optical Swank factor. For scintillators of the same optical design, only minor differences in
Energy Technology Data Exchange (ETDEWEB)
Kim, Han Soo; Ha, Jang Ho; Jeong, Man Hee; Kim, Young Soo; Kim, Dong Jin; Cho, Woo Jin; Choi, Hyo Jeong [Korea Atomic Energy Research Institute, Seoul (Korea, Republic of); Cho, Seung Yeon [Environmental Health Center, Yonsei University, Seoul (Korea, Republic of)
2014-04-15
Scintillation crystal converts the energy deposited by an X-ray or gamma ray to light. Usually this scintillation light is collected, converted to electrons and amplified by an photomultiplier tube (PMT). The PMT has the drawbacks of being bulky and requiring a high voltage (HV) to operate it. This scinitllation light can also be collected in a solid state photo-detector, such as a silicon PIN photodiode and an avanlanche photodiode. PIN photodiode, which have 10 mm X 10 mm{sup 2} active area, were fabricated with anti-reflective coating and match with CsI(Tl) scintillator. In this study, radiation reasonabilities were compared with and without surface encapsulant epoxy. Silicon PIN Photodiodes were fabricated with AR coating. To match with CsI(Tl) scintillator, surface encapsulant was applied on the PIN photodiodes. Leakage currents for all the PIN photodiodes show several nA up to 100 V. The pulse height spectra and comparison of the CsI(Tl)PIN photodiode in case of surface encapsulation on PIN photodiode will be presented at the conference.
Energy Technology Data Exchange (ETDEWEB)
Milocco, A., E-mail: alberto.milocco@ijs.si [Jožef Stefan Institute, Reactor Physics Department, Jamova 39, 1000 Ljubljana (Slovenia); Pillon, M.; Angelone, M. [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi 45, 00044 Frascati (Rome) (Italy); Plompen, A.; Krása, A. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, B-2440 Geel (Belgium); Trkov, A. [Jožef Stefan Institute, Reactor Physics Department, Jamova 39, 1000 Ljubljana (Slovenia)
2013-08-21
This work was carried out in view of the possible use of diamond detectors as high resolution neutron spectrometers for the ITER project. An MCNP5(X) based computational tool has been developed to simulate the fast neutron response of diamond detectors. The source neutrons are generated by a source routine, developed earlier, that includes deuteron beam energy loss, angular straggling, and two-body relativistic kinematics. The diamond detector routine calculates a pulse height spectrum that is built up by elastic and inelastic scattering, (n,a), (n,p), and (n,d) reaction channels. A combination of nuclear data from ENDF/B-VII.0, TENDL-2010, and ENSDF is used. The simulated spectra are compared with measured spectra. It is shown that the simulation tool allows an interpretation of most of the characteristic features in the spectrum. This is an important step towards the use of diamond detectors for spectral analysis and fluence measurements. {sup ©} 2001 Elsevier Science. All rights reserved.
Cubukcu, Solen; Yücel, Haluk
2016-12-01
In this study, paraffin was selected as a base material and mixed with different amounts of CaSO4·2H2O and H3BO3 compounds in order to mimic breast tissue. Slab phantoms were produced with suitable mixture ratios of the additives in the melted paraffin. Subsequently, these were characterized in terms of first half-value layer (HVL) in the mammographic X-ray range using a pulse-height spectroscopic analysis with a CdTe detector. Irradiations were performed in the energy range of 23-35 kVp under broad beam conditions from Mo/Mo and Mo/Rh target/filter combinations. X-ray spectra were acquired with a CdTe detector without and with phantom material interposition in increments of 1 cm thickness and then evaluated to obtain the transmission data. The net integral areas of the spectra for the slabs were used to plot the transmission curves and these curves were fitted to the Archer model function. The results obtained for the slabs were compared with those of standard mammographic phantoms such as CIRS BR series phantoms and polymethylmethacrylate plates (PMMA). From the evaluated transmission curves, the mass attenuation coefficients and HVLs of some mixtures are close to those of the commercially available standard mammography phantoms. Results indicated that when a suitable proportion of H3BO3 and CaSO4·2H2O is added to the paraffin, the resulting material may be a good candidate for a breast tissue equivalent phantom.
Yamamoto, H; Norimura, T; Katase, A
2002-01-01
In measurement of beta-rays from sup 1 sup 4 C with a silicon semiconductor detector, pulse height spectra are observed to change by insertion of absorbers between the source and the detector. An obvious broad peak appears in the spectra by the insertion. An increase in the absorber thickness reduces the peak height, and shifts the peak position to the higher energy side in the spectra. On the other hand, the increase in the distance between the source and the absorber also reduces the peak height, but does not move the position of the peak. The absorption curve derived from these results shows its particular shape corresponding to the respective position of the absorber. Therefore, the distortion of the pulse height spectrum for low-energy beta-rays depends not only on the thickness of the absorber but also on its position between the source and the detector. (author)
Directory of Open Access Journals (Sweden)
Saima Zafar
2016-10-01
Full Text Available A data center is a facility with a group of networked servers used by an organization for storage, management and dissemination of its data. The increase in data center energy consumption over the past several years is staggering, therefore efforts are being initiated to achieve energy efficiency of various components of data centers. One of the main reasons data centers have high energy inefficiency is largely due to the fact that most organizations run their data centers at full capacity 24/7. This results into a number of servers and switches being underutilized or even unutilized, yet working and consuming electricity around the clock. In this paper, we present Adaptive TrimTree; a mechanism that employs a combination of resource consolidation, selective connectedness and energy proportional computing for optimizing energy consumption in a Data Center Network (DCN. Adaptive TrimTree adopts a simple traffic-and-topology-based heuristic to find a minimum power network subset called ‘active network subset’ that satisfies the existing network traffic conditions while switching off the residual unused network components. A ‘passive network subset’ is also identified for redundancy which consists of links and switches that can be required in future and this subset is toggled to sleep state. An energy proportional computing technique is applied to the active network subset for adapting link data rates to workload thus maximizing energy optimization. We have compared our proposed mechanism with fat-tree topology and ElasticTree; a scheme based on resource consolidation. Our simulation results show that our mechanism saves 50%–70% more energy as compared to fat-tree and 19.6% as compared to ElasticTree, with minimal impact on packet loss percentage and delay. Additionally, our mechanism copes better with traffic anomalies and surges due to passive network provision.
A frameless, cylindrically shaped, multiwire proportional chamber using charge division readout
Fainberg, A; Linscott, I; Moneti, G
1977-01-01
PWCs have been constructed in the shape of cylindrical quandrants, placed them around the bicone in an experiment at the CERN ISR, and operated them in a charge division mode to obtain two dimensional position information. A pair of PWCs share a cylindrical styrofoam shell as the basic support member, and contain approximately 0.008 radiation lengths of material. The observed charge division resolution is delta x/L approximately 0.5% in reasonable agreement with an expected resolution of approximately 0.3% due primarily to digitization noise. Reduction of digitization noise is limited by available dynamic range of the electronics and the width of the pulse height distributions. A method is described, using X-rays from /sup 55 /Fe strip sources for calibrating the electronics, which is sufficiently accurate to match the observed resolution. (13 refs).
Microfabricated cylindrical ion trap
Blain, Matthew G.
2005-03-22
A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.
Cylindrically Polarized Nondiffracting Optical Pulses
Ornigotti, Marco; Szameit, Alexander
2016-01-01
We extend the concept of radially and azimuthally polarized optical beams to the polychromatic domain by introducing cylindrically polarized nondiffracting optical pulses. In particular, we discuss in detail the case of cylindrically polarized X-waves, both in the paraxial and nonparaxial regime. The explicit expressions for the electric and magnetic fields of cylindrically polarized X-waves is also reported.
Cup Cylindrical Waveguide Antenna
Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.
2008-01-01
The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).
Cylindrical geometry hall thruster
Raitses, Yevgeny; Fisch, Nathaniel J.
2002-01-01
An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.
Cylindrically symmetric dust spacetime
Senovilla, J M M; Senovilla, Jose M. M.; Vera, Raul
2000-01-01
We present an explicit exact solution of Einstein's equations for an inhomogeneous dust universe with cylindrical symmetry. The spacetime is extremely simple but nonetheless it has new surprising features. The universe is ``closed'' in the sense that the dust expands from a big-bang singularity but recollapses to a big-crunch singularity. In fact, both singularities are connected so that the whole spacetime is ``enclosed'' within a single singularity of general character. The big-bang is not simultaneous for the dust, and in fact the age of the universe as measured by the dust particles depends on the spatial position, an effect due to the inhomogeneity, and their total lifetime has no non-zero lower limit. Part of the big-crunch singularity is naked. The metric depends on a parameter and contains flat spacetime as a non-singular particular case. For appropriate values of the parameter the spacetime is a small perturbation of Minkowski spacetime. This seems to indicate that flat spacetime may be unstable agai...
Cylindrically symmetric dust spacetime
Senovilla, José M. M.
2000-07-01
We present an explicit exact solution of Einstein's equations for an inhomogeneous dust universe with cylindrical symmetry. The spacetime is extremely simple but nonetheless it has surprising new features. The universe is `closed' in the sense that the dust expands from a big-bang singularity but recollapses to a big-crunch singularity. In fact, both singularities are connected so that the whole spacetime is `enclosed' within a single singularity of general character. The big-bang is not simultaneous for the dust, and in fact the age of the universe as measured by the dust particles depends on the spatial position, an effect due to the inhomogeneity, and their total lifetime has no non-zero lower limit. Part of the big-crunch singularity is naked. The metric depends on a parameter and contains flat spacetime as a non-singular particular case. For appropriate values of the parameter the spacetime is a small perturbation of Minkowski spacetime. This seems to indicate that flat spacetime may be unstable against some global non-vacuum perturbations.
Telescoping cylindrical piezoelectric fiber composite actuator assemblies
Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)
2010-01-01
A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.
Dismantling OPAL's cylindrical magnet core
Laurent Guiraud
2001-01-01
Lifting a handling device for dismounting the pressure bells, which are inside the cylindrical magnet coil on the central section of OPAL, on the right part of the photo. OPAL was a detector on the LEP accelerator, which ran from 1989 to 2000.
Optics Demonstrations Using Cylindrical Lenses
Ivanov, Dragia; Nikolov, Stefan
2015-01-01
In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…
Filling of charged cylindrical capillaries
Das, Siddhartha; Chanda, Sourayon; Eijkel, J.C.T.; Tas, N.R.; Chakraborty, Suman; Mitra, Sushanta K.
2014-01-01
We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because
Improved cylindrical mirror energy analyzer
Baranova, L. A.
2017-03-01
A study has been carried out of the electron-optical properties of improved design of the cylindrical mirror energy analyzer. Both external and internal electrodes of the analyzer are divided into three isolated parts, whereby the potentials on the individual parts can be regulated independently from each other. In symmetric operating mode at identical potentials on the side parts of the electrodes, a significant increase has been obtained in resolving power and light-gathering power of the analyzer compared to the standard design of the cylindrical mirror. In asymmetric operating mode, which is implemented in a linear potential distribution on the external electrode, the conditions have been found under which the linear dispersion of the analyzer increases several times.
Cylindrical solutions in mimetic gravity
Energy Technology Data Exchange (ETDEWEB)
Momeni, Davood; Myrzakulov, Kairat; Myrzakulov, Ratbay [Eurasian National University, Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Astana (Kazakhstan); Raza, Muhammad [COMSATS Institute of Information Technology, Department of Mathematics, Sahiwal (Pakistan)
2016-06-15
This paper is devoted to investigate cylindrical solutions in mimetic gravity. The explicit forms of the metric of this theory, namely mimetic-Kasner (say) have been obtained. In this study we have noticed that the Kasner's family of exact solutions needs to be reconsidered under this type of modified gravity. A no-go theorem is proposed for the exact solutions in the presence of a cosmological constant. (orig.)
Cylindrical Collapse and Gravitational Waves
Herrera, L
2005-01-01
We study the matching conditions for a collapsing anisotropic cylindrical perfect fluid, and we show that its radial pressure is non zero on the surface of the cylinder and proportional to the time dependent part of the field produced by the collapsing fluid. This result resembles the one that arises for the radiation - though non-gravitational - in the spherically symmetric collapsing dissipative fluid, in the diffusion approximation.
Cylindrical Piezoelectric Fiber Composite Actuators
Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.
2008-01-01
The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.
Buckling Characteristics of Cylindrical Pipes
Institute of Scientific and Technical Information of China (English)
Toshiaki Sakurai
2015-01-01
This paper describes the buckling pattern of the body frame by energy absorbed efficiency of crashworthiness related toresearch of the buckling characteristics of aluminum cylindrical pipes with various diameters formed mechanical tools. Experimentswere performed by the quasi-static test without lubrication between specimen and equipment. According to the change in the radiusversus thickness of the specimen, the buckling phenomena are transformed from folding to bellows and the rate of energy absorptionis understood. In crashworthiness, frames are characterized by the folding among three patterns from the absorbed energy efficiencypoint of view and weight reduction. With the development of new types of transport such as electric vehicles, innovated bodystructure should be designed.
Evaluation of transmitting performance of cylindrical polycapillary
Xiaoyan, Lin; Yude, Li; Guotai, Tan; Tianxi, Sun
2007-03-01
Based on a detailed ray-tracing code for capillary optics, a MATLAB program for the simulation of X-ray transmission in a cylindrical polycapillary is described. The simulated and experimental results for the spatial distributions and power density gain of the X-rays in the beam guided through a cylindrical polycapillary are in good agreement, and the results show that the spatial distribution of the X-rays in the beam guided through a cylindrical polycapillary is uneven.
Ingestion of cylindrical batteries and its management.
Tien, Tony; Tanwar, Sudeep
2017-01-17
In contrast to the ingestion of coin batteries, the ingestion of cylindrical batteries is an uncommon medical presentation. Owing to their larger size, cylindrical battery ingestion can lead to serious complications including intestinal haemorrhage, bowel obstruction, bowel perforation, peritonitis and even death. We discuss the case of a 17-year-old girl who presented after swallowing three cylindrical batteries. Her medical history included depression and previous battery ingestion that required surgical removal. During this presentation however, these ingested batteries were removed endoscopically at oesophagogastroduodenoscopy and ileocolonoscopy. The patient was subsequently discharged without complication. This paper discusses the complications and management of cylindrical battery ingestion. 2017 BMJ Publishing Group Ltd.
Turbulence in the cylindrical slab
Energy Technology Data Exchange (ETDEWEB)
Gentle, K. W.; Rowan, W. L.; Williams, C. B.; Brookman, M. W. [Institute of Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)
2014-09-15
The cylindrical slab was the first and simplest model of intrinsically unstable microturbulence. The Helimak is an experimental realization of this model. Although finite, it is sufficiently large to escape boundary effects, with dimensionless parameters similar to those of a tokamak edge or scrape off layer. The essential drive is interchange-like, a pressure gradient with unfavorable magnetic curvature, leading to a non-linearly saturated state of large-amplitude turbulence, Δn{sub rms}/n ∼ 0.5. The nonlinear processes governing this saturation are unique, unlike any of those posited for the much weaker turbulence typical of confined plasma, e.g., in a tokamak. Neither linear stability theory, quasi-linear theory, zonal flows, nor flow shear stabilization is consistent with the observations. The mechanisms determining the non-linearly saturated state constitute an important challenge to our understanding of strongly nonlinear systems.
The Casimir Torque on a Cylindrical Gear
Vaidya, Varun
2013-01-01
We utilize Effective Field Theory(EFT) techniques to calculate the casimir torque on a cylindrical gear in the presence of a polarizable but neutral object. We present results for the energy and torque as a function of angle for a gear with multiple cogs, as well as for the case of a concentric cylindrical gear.
Casimir torque on a cylindrical gear
Vaidya, Varun
2014-08-01
I utilize effective field theory(EFT) techniques to calculate the Casimir torque on a cylindrical gear in the presence of a polarizable but neutral object and present results for the energy and torque as a function of angle for a gear with multiple cogs, as well as for the case of a concentric cylindrical gear.
Synthesis of Phased Cylindrical Arc Antenna Arrays
Directory of Open Access Journals (Sweden)
Hussein Rammal
2009-01-01
Full Text Available This paper describes a new approach to synthesize cylindrical antenna arrays controlled by the phase excitation, to synthesize directive lobe and multilobe patterns with steered zero. The proposed method is based on iterative minimization of a function that incorporates constraints imposed in each direction. An 8-element cylindrical antenna has been simulated and tested for various types of beam configurations.
On cylindrical near-field scanning techniques
DEFF Research Database (Denmark)
Appel-Hansen, Jørgen
1980-01-01
The agreement between the coupling equations obtained in the literature by using the reciprocity theorem and the scattering matrix formulation is demonstrated. The field is expanded in cylindrical vector wave functions and the addition theorem for these functions is used. The communication may se...... serve as a tutorial introduction to the cylindrical scanning techniques....
A Potential Model for Cylindrical Pores
Institute of Scientific and Technical Information of China (English)
张现仁; 汪文川
2001-01-01
An analytical potential for cylindrical pores has been derived by introducing a variational method into the integration for the calculation of the interaction energy between the wall molecules and a test molecule, all of which are represented by Lennard-Jones potential. The model proposed gives good fit to the results from the cylindrical surface model and the pseudoatom model. To test the potential proposed rigorously, we have carried out grand canonical ensemble Monte Carlo(GCMC) simulation of nitrogen in the MCM-41 pore at 77 K, and compared the simulated adsorption isotherm with the experimental data reported in the literature. The simulated isotherm from our model is in almost qualitative agreement with experiment. Consequently, the model proposed provides an explicit and accurate description of cylindrical pores represented by the Lennard-Jones potential. Moreover, the model can be easily applied to a variety of cylindrical pores, ranging from cylindrical surface to finite thickness walls, in both theoretical studies and computer simulations.
Cylindrical air flow reversal barrier
Energy Technology Data Exchange (ETDEWEB)
Woznica, C.; Rodziewicz, M.
1988-06-01
Describes an innovative design introduced in the ZMP mine in Zory for quick reversal of ventilation air flow. Geologic mining conditions at the 705 m deep horizon, where the barrier was built, are described. According to the design used until now, a reversal system consisted of safety barriers, ventilation air locks, a ventilation bridge and stopping needed in case of a fire when air flow direction must be reversed. Nine air locks and an expensive concrete ventilation bridge were needed and the air locks had to be operated at 8 points of the region to effect reversal. The new design consists of a 2-storey cylindrical barrier which also fulfills the function of a ventilation bridge. It can be manually or remotely operated by a mechanical or pneumatic system. Tests showed that the new barrier permits immediate air flow reversal while retaining 60% of the original air, which is important in the case of fire and methane hazards. It permits improved seam panelling and splitting of pillars and brings an economy of about 40 million zlotys in construction cost. Design and operation of the barrier is illustrated and ventilation air circulation is explained. 7 figs.
On the incompressibility of cylindrical origami patterns
Bös, Friedrich; Gottesman, Omer; Wardetzky, Max
2015-01-01
We investigate the axial compressibility of origami cylinders, i.e., cylindrical structures folded from rectangular sheets of paper. We prove, using geometric arguments, that a general fold pattern only allows for a finite number of isometric cylindrical embeddings. Therefore, compressibility of such structures requires stretching the material or deforming the folds. Our result complements the celebrated "bellows theorem" and extends it to the setting of cylindrical origami whose top and bottom are not necessarily rigid, and severely restricts the space of constructions that must be searched when designing new types of origami-based rigid-foldable deployable structures and metamaterials.
Cylindrical-shaped nanotube field effect transistor
Hussain, Muhammad Mustafa
2015-12-29
A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.
Multimode interaction in axially excited cylindrical shells
2014-01-01
Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural fr...
View factors of cylindrical spiral surfaces
Lebedev, Vladimir A.; Solovjov, Vladimir P.
2016-03-01
Analytical expressions are presented for the view factors (radiative configuration factors) associated with the flat right cylindrical spiral surface. Such cylindrical spiral systems are widely applied as electrical resistance heating elements for lighting devices, electronic radio tubes, high-speed gas flow heaters, and other appliances used for scientific, industrial and domestic purposes. Derivation of the view factors is based on the invariant principles and the results presented in Lebedev (2000, 2003,1988) [1-3].
Cylindrical Helix Spline Approximation of Spatial Curves
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, we present a new method for approximating spatial curves with a G1 cylindrical helix spline within a prescribed tolerance. We deduce the general formulation of a cylindrical helix,which has 11 freedoms. This means that it needs 11 restrictions to determine a cylindrical helix. Given a spatial parametric curve segment, including the start point and the end point of this segment, the tangent and the principal normal of the start point, we can always find a cylindrical segment to interpolate the given direction and position vectors. In order to approximate the known parametric curve within the prescribed tolerance, we adopt the trial method step by step. First, we must ensure the helix segment to interpolate the given two end points and match the principal normal and tangent of the start point, and then, we can keep the deviation between the cylindrical helix segment and the known curve segment within the prescribed tolerance everywhere. After the first segment had been formed, we can construct the next segment. Circularly, we can construct the G1 cylindrical helix spline to approximate the whole spatial parametric curve within the prescribed tolerance. Several examples are also given to show the efficiency of this method.
Independence-friendly cylindric set algebras
Mann, Allen L
2007-01-01
Independence-friendly logic is a conservative extension of first-order logic that has the same expressive power as existential second-order logic. In her Ph.D. thesis, Dechesne introduces a variant of independence-friendly logic called IFG logic. We attempt to algebraize IFG logic in the same way that Boolean algebra is the algebra of propositional logic and cylindric algebra is the algebra of first-order logic. We define independence-friendly cylindric set algebras and prove two main results. First, every independence-friendly cylindric set algebra over a structure has an underlying Kleene algebra. Moreover, the class of such underlying Kleene algebras generates the variety of all Kleene algebras. Hence the equational theory of the class of Kleene algebras that underly an independence-friendly cylindric set algebra is finitely axiomatizable. Second, every one-dimensional independence-friendly cylindric set algebra over a structure has an underlying monadic Kleene algebra. However, the class of such underlyin...
Electronic Quantum Confinement in Cylindrical Potential Well
Baltenkov, A S
2016-01-01
The effects of quantum confinement on the momentum distribution of electrons confined within a cylindrical potential well have been analyzed. The motivation is to understand specific features of the momentum distribution of electrons when the electron behavior is completely controlled by the parameters of a non-isotropic potential cavity. It is shown that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the three-dimensional space within the framework of the same mathematical model. Some low-lying electronic states with different symmetries have been considered and the corresponding wave functions have been calculated; the behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well has been analyzed. Additionally, the momentum distributions of electrons in these states have been calculated. The limi...
Cylindrical electrochemical cells with a diaphragm seal
Energy Technology Data Exchange (ETDEWEB)
Georgopoulos, P.
1993-07-13
A cylindrical electrochemical cell is described comprising an anode, a cathode and electrolyte contained in a cylindrical container, the container having an open end and a closed end; wherein the open end of the container is sealed with a seal assembly comprising: (a) a disc-shaped seal member, made from an electrically insulative material, having an outer edge wall connected via a base to a centrally located cylindrical hub that defines an orifice; which base has a ventable diaphragm portion and a nonventable diaphragm portion that is thicker than the ventable diaphragm portion; and wherein the ventable diaphragm portion joins the hub at an interface and becomes gradually thicker in the direction away from the interface toward the outer edge wall so that the ventable diaphragm portion is thinnest at the interface; and (b) a current collector extending through the orifice defined by the hub into the cell's interior to contact one of the cell's electrodes.
Cylindrical polarization symmetry for nondestructive nanocharacterization
Zhan, Qiwen
2003-07-01
Recently there is an increasing interest in laser beams with radial symmetry in polarization. Due to the cylindrical symmetry in polarization, these beams have unique focusing properties, which may find wide applications in a variety of nanometer scale applications, including high-resolution metrology, high-density data storage, and multi-functional optical microtool. In this paper, simple method of generating cylindrically polarized beams is presented and their potential applications to nondestructive nano-characterization are discussed. A high resolution surface plasmon microscope and a surface plasmon enhanced apertureless near-field scanning optical microscope are proposed. An automatic scanning microellipsometer that uses the cylindrical symmetry to enhance the signal-to-noise-ratio in high-spatial-resolution ellipsometric measurement will also be presented.
Research on cylindrical shell vibration reduction systems
Institute of Scientific and Technical Information of China (English)
XING Xiao-liang; WANG Min-qing
2008-01-01
Longitudinal and horizontal vibration must both be reduced in an effective vibration isolation system. We present a cylindrical shell vibration isolator as a dynamic system composed of four springs and dampers. Vibration is directly produced by the motion of machinery, and more is subsequently generated by harmonic frequencies within their structure. To test the effectiveness of our isolator, we first determined equations for the transmission of vibration from the machine to its cylindrical shell. Damping effects produced by the vibration parameters of our system are then analyzed.
DISPERSION OF CYLINDRICAL PARTICLES IN TURBULENT FLOWS
Institute of Scientific and Technical Information of China (English)
GAO Zhen-yu; LIN Jian-zhong
2004-01-01
With consideration of the Stokes drag and virtual mass force, the equations for mean and fluctuating velocities in rotation and translation were given for rigid cylindrical particles moving in a turbulent flow. Then the rotational and translational dispersion coefficients of particle were derived. The relationships between the dispersion coefficients and flow length scale as well as particle characteristic parameters were analyzed. The resulting dispersion coefficients were proved to decrease as the particle length increases. The conclusions are helpful for the further research on the motion of cylindrical particles in turbulent flows.
Stability of generic cylindrical thin shell wormholes
Mazharimousavi, S Habib; Amirabi, Z
2014-01-01
We revisit the stability analysis of cylindrical thin shell wormholes which have been studied in literature so far. Our approach is more systematic and in parallel to the method which is used in spherically symmetric thin shell wormholes. The stability condition is summarized as the positivity of the second derivative of an effective potential at the equilibrium radius, i.e. $V^{\\prime \\prime}\\left(a_{0}\\right) >0$. This may serve as the master equation in all stability problems for the cylindrical thin-shell wormholes.
RESONANCE RADIATION OF SUBMERGED INFINITE CYLINDRICAL SHELL
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The resonance sound radiation from submerged infinite elastic cylindrical shell, excited by internal harmonic line force, is investigated. The shell radiation power is presented in terms of resonant modal radiation derived from resonance radiation theory (RRT). The resonance radiation formulae are derived from classical Rayleigh normal mode solution, which are useful for understanding the mechanism of sound radiation from submerged shells. As an example, numerical calculation of a thin steel cylindrical shell is done by using these two methods. It seems that the results of RRT solutions are in good agreement with that of Rayleigh normal mode solutions.
Static cylindrical symmetry and conformal flatness
Herrera, L; Marcilhacy, G; Santos, N O
2004-01-01
We present the whole set of equations with regularity and matching conditions required for the description of physically meaningful static cylindrically symmmetric distributions of matter, smoothly matched to Levi-Civita vacuum spacetime. It is shown that the conformally flat solution with equal principal stresses represents an incompressible fluid. It is also proved that any conformally flat cylindrically symmetric static source cannot be matched through Darmois conditions to the Levi-Civita spacetime. Further evidence is given that when the Newtonian mass per unit length reaches 1/2 the spacetime has plane symmetry.
POLARON IN CYLINDRICAL AND SPHERICAL QUANTUM DOTS
Directory of Open Access Journals (Sweden)
L.C.Fai
2004-01-01
Full Text Available Polaron states in cylindrical and spherical quantum dots with parabolic confinement potentials are investigated applying the Feynman variational principle. It is observed that for both kinds of quantum dots the polaron energy and mass increase with the increase of Frohlich electron-phonon coupling constant and confinement frequency. In the case of a spherical quantum dot, the polaron energy for the strong coupling is found to be greater than that of a cylindrical quantum dot. The energy and mass are found to be monotonically increasing functions of the coupling constant and the confinement frequency.
Micromagnetic simulations of cylindrical magnetic nanowires
Ivanov, Yurii P.
2015-05-27
This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain wall types, and state diagrams in cylindrical nanowires of different types and sizes. The results of the hysteresis process in individual nanowires and nanowire arrays also are presented. Modeling results are compared with experimental ones. The chapter also discusses future trends in nanowire applications in relation to simulations, such as current-driven dynamics, spintronics, and spincaloritronics. The main micromagnetic programs are presented and discussed, together with the corresponding links.
Metastable magnetic domain walls in cylindrical nanowires
Energy Technology Data Exchange (ETDEWEB)
Ferguson, C.A.; MacLaren, D.A.; McVitie, S., E-mail: Stephen.McVitie@glasgow.ac.uk
2015-05-01
The stability of the asymmetric domain wall (ATDW) in soft magnetic cylindrical nanowires and nanotubes is investigated using micromagnetic simulations. Our calculated phase diagram shows that for cylindrical permalloy nanowires, the transverse domain wall (TDW) is the ground state for radii below 20 nm whilst the Bloch point wall (BPW) is favoured in thicker wires. The ATDW stabilises only as a metastable state but with energy close to that of the BPW. Characterisation of the DW spin structures reveals that the ATDW has a vortex-like surface spin state, in contrast to the divergent surface spins of the TDW. This results in lowering of surface charge above the critical radius. For both cylindrical nanotubes and nanowires we find that ATDWs only appear to exist as metastable static states and are particularly suppressed in nanotubes due to an increase in magnetostatic energy. - Highlights: • We simulate the micromagnetic structures of domain walls in cylindrical nanowires. • A phase diagram identifies ground and metastable states. • Asymmetric transverse walls are metastable in nanowires but suppressed in tubes. • Unrolling surface magnetisation aids visualisation of asymmetry and chirality. • We predict experimental discrimination based on magnetic charge distribution.
Cylindrical vortex wake model: right cylinder
DEFF Research Database (Denmark)
Branlard, Emmanuel; Gaunaa, Mac
2015-01-01
to recall results from 1D momentum theory. It is shown that a superposition of concentric cylindrical systems predicts the independence of annuli, which is assumed in blade element theory and stream-tube analyses. A simple example of application for the estimation of the velocity deficit upstream of a wind...
Magnetic guns with cylindrical permanent magnets
DEFF Research Database (Denmark)
Vokoun, David; Beleggia, Marco; Heller, Luděk
2012-01-01
The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...
New photoelectric method for inside cylindricity measurement
Yu, Houyun; Zhao, Zhuanping; Zhao, Ye; Xu, Meijian
2007-12-01
Cylindricity is an important parameter in the evaluation for a cylindraceous workpiece. It has a direct effect on the precision of assembly and rotation. However it is difficult to carry out inside cylindricity measurement for a large workpiece (length: 2~3m, diameter >200mm), in which the spindle's straightness and measuring table's motion error deserve consideration. In this paper, a new error separation method is presented based on the application of precise photoelectric inspecting technique. And the two errors will be directly measured according to the deviation of facula. During the measurement, the workpiece is installed erectly on the base to minimize its distortion. Laser collimation initializes the measuring needle and gives real-time state of the measuring table. Two kinds of coordinates are used for error compensation, i.e. absolute and imaging coordinates. In the end, the least squares cylinder is used to calculate the cylindricity after all point data of each section are modified. Overall structure design and detailed measuring steps are also listed. Thus, the models of error compensation and cylindricity evaluation are obtained. Simulation results prove them correct with a satisfying precision.
Deformation of cylindrical shells under thermal shock
Energy Technology Data Exchange (ETDEWEB)
Aptukov, V.N. (Institut Mekhaniki Sploshnykh Sred, Perm (USSR))
1990-06-01
The deformation and fracture behavior of cylindrical shells under conditions of a nonsymmetric thermal shock is investigated numerically using a two-dimensional formulation. In particular, attention is given to the effect of the shell thickness on the deformation and fracture characteristics. Some computational difficulties associated with the solution of problems of this type are examined. 16 refs.
The double explosive layer cylindrical compaction method
Stuivinga, M.E.C.; Verbeek, H.J.; Carton, E.P.
1999-01-01
The standard cylindrical configuration for shock compaction is useful for the compaction of composite materials which have some plastic behavior. It can also be used to densify hard ceramics up to about 85% of the theoretical density (TMD), when low detonation velocity explosives (2-4 km s-1) are us
A large acceptance cylindrical drift chamber detector
Energy Technology Data Exchange (ETDEWEB)
Ambrose, D.A. [Texas Univ., Austin, TX (United States); Bachman, M.G. [Texas Univ., Austin, TX (United States); Coffey, W.P. [Texas Univ., Austin, TX (United States); Glass, G. [Texas Univ., Austin, TX (United States); McNaughton, K.H. [Texas Univ., Austin, TX (United States); Riley, P.J. [Texas Univ., Austin, TX (United States); Adams, D.L. [Rice University, Houston, TX 77251 (United States); Gaussiran, T.L. [Rice University, Houston, TX 77251 (United States); Hungerford, E.V. [University of Houston, Houston, TX 77204 (United States); Lan, K.A. [University of Houston, Houston, TX 77204 (United States); Johnston, K. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); McNaughton, M.W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Penttila, S.I. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Supek, I. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
1995-10-01
This paper describes a large acceptance cylindrical drift chamber detector designed and built for the study of the np{yields}pp{pi}{sup -} reaction at neutron beam energies in the range 500-800 MeV. Details of construction, electronics, testing, and detection efficiencies and resolutions are presented. (orig.).
Shear stresses around circular cylindrical openings
Hoogenboom, P.C.J.; Van Weelden, C.; Blom, C.M.B.
2010-01-01
In this paper stress concentrations are studied around circular cylindrical openings or voids in a linear elastic continuum. The loading is such that a uniform shear stress occurs in the continuum, which is disturbed by the opening. The shear stress is in the direction of the centre axis of the open
Antibubbles and fine cylindrical sheets of air
Beilharz, D.
2015-08-14
Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.
Sedimentation of Rigid Cylindrical Particles with Mechanical Contacts
Institute of Scientific and Technical Information of China (English)
LIN Jian-Zhong; WANG Ye-Long; James A. Olsen
2005-01-01
@@ A collision model of two cylindrical particles is put forward. Based on the model the sedimentation of rigid cylindrical particles with mechanical contacts is simulated numerically by using the lattice Boltzmann method.
Numerical Simulation of Large Diameter Cylindrical Structure Slamming
Institute of Scientific and Technical Information of China (English)
XU Jing; WANG De-yu
2008-01-01
The water entry of large diameter cylindrical structure is studied by applying numerical simulation method. The processes of different diameter cylindrical structures impacting water with various constant velocities are calculated numerically. Thereafter, analyzed are the distribution of slamming pressure on structure during slamming course and the influence of slamming velocity and cylindrical diameter on slamming process. Furthermore, presented herein is an equation being used to forecast the peak slamming force on a large diameter cylindrical structure.
Variable-focus cylindrical liquid lens array
Zhao, Wu-xiang; Liang, Dong; Zhang, Jie; Liu, Chao; Zang, Shang-fei; Wang, Qiong-hua
2013-06-01
A variable-focus cylindrical liquid lens array based on two transparent liquids of different refractive index is demonstrated. An elastic membrane divides a transparent reservoir into two chambers. The two chambers are filled with liquid 1 and liquid 2, respectively, which are of different refractive index. The micro-clapboards help liquid 1, liquid 2 and the elastic membrane form a cylindrical lens array. Driving these two liquids to flow can change the shape of the elastic membrane as well as the focal length. In this design, the gravity effect of liquid can be overcome. A demo lens array of positive optical power is developed and tested. Moreover, a potential application of the proposed lens array for autostereoscopic 3D displays is emphasized.
Determination of Coil Inductances Cylindrical Iron Nucleus
Directory of Open Access Journals (Sweden)
Azeddine Mazouz
2014-03-01
Full Text Available The paper describes the investigation and development of a structure and performance characteristics of a coil iron nucleus cylindrical (C.I.N.C. The coil iron nucleus cylindrical is a nonlinear electro radio in which the moving of the nucleus in a sense or in other causes change in inductance and can reach extreme values at the superposition of nucleus and coil centers. The variation of the inductance and the degree of freedom of movement of the nucleus can lead to a device with electromechanical conversion The aim of this paper is the determination and visualization of self inductance and mutual of the (C.I.N.C based on geometric dimensions and the displacement of the nucleus.
Ion distributions in plane and cylindrical chambers.
Rosen, R; George, E P
1975-11-01
The ion chamber equations of Thomson include both ion recombination and space-charge terms. Neglecting the space-charge term, an exact solution is obtained for the ion densities across a plane ionization chamber. The method is extended to the cylindrical chamber, and examples are given of the expected ion distributions in both geometries. Current-voltage relationships are derived for both chambers and compared with those of other workers. If the space-charge term is retained, the ion chamber equations for both geometries are not soluble in closed form. The cylindrical chamber is considered and a computer solution is obtained for the ion distributions and current. Comparison with the nonspace-charge solution shows that while there is only a small difference in the current-voltage relationship, a significant difference can occur in the ion concentrations.
Buckling optimisation of sandwich cylindrical panels
Abouhamzeh, M.; Sadighi, M.
2016-06-01
In this paper, the buckling load optimisation is performed on sandwich cylindrical panels. A finite element program is developed in MATLAB to solve the governing differential equations of the global buckling of the structure. In order to find the optimal solution, the genetic algorithm Toolbox in MATLAB is implemented. Verifications are made for both the buckling finite element code and also the results from the genetic algorithm by comparisons to the results available in literature. Sandwich cylindrical panels are optimised for the buckling strength with isotropic or orthotropic cores with different boundary conditions. Results are presented in terms of stacking sequence of fibers in the face sheets and core to face sheet thickness ratio.
Crack problem in a long cylindrical superconductor
Yong, Hua-Dong; Zhou, You-He; Zeng, Jun
2008-12-01
In this work, the general problem of a center crack in a long cylindrical superconductor is studied. The dependence of the stress intensity factor on the parameters, including the crack length and the applied field, is investigated. We presented a simple model in which the effect of the crack on the critical current is taken into account. It is assumed that the crack forms a perfect barrier to the flow of current. The Bean model and the Kim model are considered for the critical state. Based on the complex potential and boundary collocation methods, the stress intensity factor under the magnetic field is obtained for a long cylindrical superconductor containing a central crack. The results show that the crack length and the applied field have significant effects on the fracture behavior of the superconductor.
Surface superconductivity in thin cylindrical Bi nanowire.
Tian, Mingliang; Wang, Jian; Ning, Wei; Mallouk, Thomas E; Chan, Moses H W
2015-03-11
The physical origin and the nature of superconductivity in nanostructured Bi remains puzzling. Here, we report transport measurements of individual cylindrical single-crystal Bi nanowires, 20 and 32 nm in diameter. In contrast to nonsuperconducting Bi nanoribbons with two flat surfaces, cylindrical Bi nanowires show superconductivity below 1.3 K. However, their superconducting critical magnetic fields decrease with their diameter, which is the opposite of the expected behavior for thin superconducting wires. Quasiperiodic oscillations of magnetoresistance were observed in perpendicular fields but were not seen in the parallel orientation. These results can be understood by a model of surface superconductivity with an enhanced surface-to-bulk volume in small diameter wires, where the superconductivity originates from the strained surface states of the nanowires due to the surface curvature-induced stress.
Expansion-free Cylindrically Symmetric Models
Sharif, M
2013-01-01
This paper investigates cylindrically symmetric distribution of an-isotropic fluid under the expansion-free condition, which requires the existence of vacuum cavity within the fluid distribution. We have discussed two family of solutions which further provide two exact models in each family. Some of these solutions satisfy Darmois junction condition while some show the presence of thin shell on both boundary surfaces. We also formulate a relation between the Weyl tensor and energy density.
Rarefied gas flow in a cylindrical annulus
Lo, S. S.; Loyalka, S. K.; Storvick, T. S.
1983-09-01
The Hansen-Morse model of the linearized Wang Chang-Uhlenbeck equation is used to study the thermal transpiration and mechanocaloric effects for rarefied polyatomic gases in a cylindrical annulus, where boundary conditions are characterized by diffuse reflection. Phenomenological coefficients at all degrees of rarefaction are reported for physical parameters that represent helium, hydrogen, carbon dioxide, and air. Comparisons with isothermal flow data are given.
Shock initiated instabilities in underwater cylindrical structures
Gupta, Sachin; Matos, Helio; LeBlanc, James M.; Shukla, Arun
2016-10-01
An experimental investigation to understand the mechanisms of dynamic buckling instability in cylindrical structures due to underwater explosive loadings is conducted. In particular, the effects of initial hydrostatic pressure coupled with a dynamic pressure pulse on the stability of metallic cylindrical shells are evaluated. The experiments are conducted at varying initial hydrostatic pressures, below the critical buckling pressure, to estimate the threshold after which dynamic buckling will initiate. The transient underwater full-field deformations of the structures during shock wave loading are captured using high-speed stereo photography coupled with modified 3-D Digital Image Correlation (DIC) technique. Experimental results show that increasing initial hydrostatic pressure decreases the natural vibration frequency of the structure indicating loss in structural stiffness. DIC measurements reveal that the initial structural excitations primarily consist of axisymmetric vibrations due to symmetrical shock wave loading in the experiments. Following their decay after a few longitudinal reverberations, the primary mode of vibration evolves which continues throughout later in time. At the initial hydrostatic pressures below the threshold value, these vibrations are stable in nature. The analytical solutions for the vibration frequency and the transient response of cylindrical shell are discussed in the article by accounting for both (1) the added mass effect of the surrounding water and (2) the effect of initial stress on the shell imposed by the hydrostatic pressure. The analytical solutions match reasonably well with the experimental vibration frequencies. Later, the transient response of a cylindrical shell subjected to a general underwater pressure wave loading is derived which leads to the analytical prediction of dynamic stability.
Machining Thin-Walled Cylindrical Parts
Cimbak, Joe; Spagnolo, Jim; Kraus, Dan
1988-01-01
Cylindrical walls only few thousandths of inch thick machined accurately and without tears or punctures with aid of beryllium copper mandrel. Chilled so it contracts, then inserted in cylinder. As comes to room temperature, mandrel expands and fits snugly inside cylinder. Will not allow part to slide and provides solid backup to prevent deflection when part machined by grinding wheel. When machining finished, cylinder-and-mandrel assembly inserted in dry ice, mandrel contracts and removed from part.
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Simulation Analysis of Cylindrical Panoramic Image Mosaic
Directory of Open Access Journals (Sweden)
ZHU Ningning
2017-04-01
Full Text Available With the rise of virtual reality (VR technology, panoramic images are used more widely, which obtained by multi-camera stitching and take advantage of homography matrix and image transformation, however, this method will destroy the collinear condition, make it's difficult to 3D reconstruction and other work. This paper proposes a new method for cylindrical panoramic image mosaic, which set the number of mosaic camera, imaging focal length, imaging position and imaging attitude, simulate the mapping process of multi-camera and construct cylindrical imaging equation from 3D points to 2D image based on photogrammetric collinearity equations. This cylindrical imaging equation can not only be used for panoramic stitching, but also be used for precision analysis, test results show: ①this method can be used for panoramic stitching under the condition of multi-camera and incline imaging; ②the accuracy of panoramic stitching is affected by 3 kinds of parameter errors including focus, displacement and rotation angle, in which focus error can be corrected by image resampling, displacement error is closely related to object distance and rotation angle error is affected mainly by the number of cameras.
Characteristics of Left-Right Spiral Hollow Cylindrical Roller
Institute of Scientific and Technical Information of China (English)
Liming Lu; Qiping Chen; Yujiang Qin
2015-01-01
Based on new rolling⁃sliding compound bearings, the wear between the one⁃way spiral hollow cylindrical roller and the ribs of the inner and outer ring of rolling⁃sliding compound bearings is reduced by innovational structural design. A new left⁃right spiral hollow cylindrical roller is proposed to replace the one⁃way spiral hollow cylindrical roller. The finite element analysis models of ordinary cylindrical rollers, one⁃way spiral hollow cylindrical rollers and left⁃right spiral hollow cylindrical rollers are respectively established by ABAQUS. The axial displacement of their center mass and the stress distribution of left⁃right spiral hollow cylindrical rollers are compared and analyzed. Theoretical study results show that this new left⁃right spiral hollow cylindrical roller not only inherits the advantages of one⁃way spiral hollow cylindrical rollers, but also avoids the axial offset and the serious wear of the one⁃way spiral hollow cylindrical roller. And the theory research conclusion is verified by the experiment. The left⁃right spiral hollow cylindrical roller has the advantages to overcome boundary stress concentration like logarithmic convex roller. The rolling⁃sliding compound bearings equipped with the new rollers can be better to adapt to the impact of vibration load.
Motion parallax in immersive cylindrical display systems
Filliard, N.; Reymond, G.; Kemeny, A.; Berthoz, A.
2012-03-01
Motion parallax is a crucial visual cue produced by translations of the observer for the perception of depth and selfmotion. Therefore, tracking the observer viewpoint has become inevitable in immersive virtual (VR) reality systems (cylindrical screens, CAVE, head mounted displays) used e.g. in automotive industry (style reviews, architecture design, ergonomics studies) or in scientific studies of visual perception. The perception of a stable and rigid world requires that this visual cue be coherent with other extra-retinal (e.g. vestibular, kinesthetic) cues signaling ego-motion. Although world stability is never questioned in real world, rendering head coupled viewpoint in VR can lead to the perception of an illusory perception of unstable environments, unless a non-unity scale factor is applied on recorded head movements. Besides, cylindrical screens are usually used with static observers due to image distortions when rendering image for viewpoints different from a sweet spot. We developed a technique to compensate in real-time these non-linear visual distortions, in an industrial VR setup, based on a cylindrical screen projection system. Additionally, to evaluate the amount of discrepancies tolerated without perceptual distortions between visual and extraretinal cues, a "motion parallax gain" between the velocity of the observer's head and that of the virtual camera was introduced in this system. The influence of this artificial gain was measured on the gait stability of free-standing participants. Results indicate that, below unity, gains significantly alter postural control. Conversely, the influence of higher gains remains limited, suggesting a certain tolerance of observers to these conditions. Parallax gain amplification is therefore proposed as a possible solution to provide a wider exploration of space to users of immersive virtual reality systems.
Radiation of sound from unflanged cylindrical ducts
Hartharan, S. L.; Bayliss, A.
1983-01-01
Calculations of sound radiated from unflanged cylindrical ducts are presented. The numerical simulation models the problem of an aero-engine inlet. The time dependent linearized Euler equations are solved from a state of rest until a harmonic solution is attained. A fourth order accurate finite difference scheme is used and solutions are obtained from a fully vectorized Cyber-203 computer program. Cases of both plane waves and spin modes are treated. Spin modes model the sound generated by a turbofan engine. Boundary conditions for both plane waves and spin modes are treated. Solutions obtained are compared with experiments conducted at NASA Langley Research Center.
Free vibrations of circular cylindrical shells
Armenàkas, Anthony E; Herrmann, George
1969-01-01
Free Vibrations of Circular Cylindrical Shells deals with thin-walled structures that undergo dynamic loads application, thereby resulting in some vibrations. Part I discusses the treatment of problems associated with the propagation of plane harmonic waves in a hollow circular cylinder. In such search for solutions, the text employs the framework of the three-dimensional theory of elasticity. The text explains the use of tables of natural frequencies and graphs of representative mode shapes of harmonic elastic waves bounding in an infinitely long isotropic hollow cylinder. The tables are
Kaluza-Klein Magnetized Cylindrical Wormhole
Hashemi, S Sedigheh
2015-01-01
A new exact vacuum solution in five dimensions, which describes a magnetized cylindrical wormhole in $3+1$ dimensions is presented. The magnetic field lines are stretched along the wormhole throat and are concentrated near to it. We study the motion of neutral and charged test particles under the influence of the magnetized wormhole. The effective potential for a neutral test particle around and across the magnetized wormhole has a repulsive character. The total magnetic flux on either side of the wormhole is obtained. We present analytic expressions which show regions in which the null energy condition is violated.
Cellular Cell Bifurcation of Cylindrical Detonations
Institute of Scientific and Technical Information of China (English)
HAN Gui-Lai; JIANG Zong-Lin; WANG Chun; ZHANG Fan
2008-01-01
Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.
A cylindrical furnace for absorption spectral studies
Indian Academy of Sciences (India)
R Venkatasubramanian
2001-06-01
A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material being heated can be prevented from depositing on the windows of the absorption cell by maintaining a higher temperature at both the ends of the absorption cell.
Cylindrical metamaterial-based subwavelength antenna
DEFF Research Database (Denmark)
Erentok, Aycan; Kim, Oleksiy S.; Arslanagic, Samel
2009-01-01
A subwavelength monopole antenna radiating in the presence of a truncated cylindrical shell, which has a capped top face and is made of a negative permittivity metamaterial, is analyzed numerically by a method of moments for the volume-surface integral equation oil the one hand, and a finite...... element method on the other hand. It is shown that a center-fed truncated cylinder, in contrast to an infinite cylinder, provides subwavelength resonances, thus suggesting the possibility, of having a subwavelength antenna system....
Stability analysis of cylindrical Vlasov equilibria
Energy Technology Data Exchange (ETDEWEB)
Short, R.W.
1979-01-01
A general method of stability analysis is described which may be applied to a large class of such problems, namely those which are described dynamically by the Vlasov equation, and geometrically by cylindrical symmetry. The method is presented for the simple case of the Vlasov-Poisson (electrostatic) equations, and the results are applied to a calculation of the lower-hybrid-drift instability in a plasma with a rigid rotor distribution function. The method is extended to the full Vlasov-Maxwell (electromagnetic) equations. These results are applied to a calculation of the instability of the extraordinary electromagnetic mode in a relativistic E-layer interacting with a background plasma.
OPTIMAL THICKNESS OF A CYLINDRICAL SHELL
Directory of Open Access Journals (Sweden)
Paul Ziemann
2015-01-01
Full Text Available In this paper an optimization problem for a cylindrical shell is discussed. The aim is to look for an optimal thickness of a shell to minimize the deformation under an applied external force. As a side condition, the volume of the shell has to stay constant during the optimization process. The deflection is calculated using an approach from shell theory. The resulting control-to-state operator is investigated analytically and a corresponding optimal control problem is formulated. Moreover, necessary conditions for an optimal solution are stated and numerical solutions are presented for different examples.
Forced Vibration Analysis for a FGPM Cylindrical Shell
Directory of Open Access Journals (Sweden)
Hong-Liang Dai
2013-01-01
Full Text Available This article presents an analytical study for forced vibration of a cylindrical shell which is composed of a functionally graded piezoelectric material (FGPM. The cylindrical shell is assumed to have two-constituent material distributions through the thickness of the structure, and material properties of the cylindrical shell are assumed to vary according to a power-law distribution in terms of the volume fractions for constituent materials, the exact solution for the forced vibration problem is presented. Numerical results are presented to show the effect of electric excitation, thermal load, mechanical load and volume exponent on the static and force vibration of the FGPM cylindrical shell. The goal of this investigation is to optimize the FGPM cylindrical shell in engineering, also the present solution can be used in the forced vibration analysis of cylindrical smart elements.
Optical inspection system for cylindrical objects
Brenden, Byron B.; Peters, Timothy J.
1989-01-01
In the inspection of cylindrical objects, particularly O-rings, the object is translated through a field of view and a linear light trace is projected on its surface. An image of the light trace is projected on a mask, which has a size and shape corresponding to the size and shape which the image would have if the surface of the object were perfect. If there is a defect, light will pass the mask and be sensed by a detector positioned behind the mask. Preferably, two masks and associated detectors are used, one mask being convex to pass light when the light trace falls on a projection from the surface and the other concave, to pass light when the light trace falls on a depression in the surface. The light trace may be either dynamic, formed by a scanned laser beam, or static, formed by such a beam focussed by a cylindrical lens. Means are provided to automatically keep the illuminating receiving systems properly aligned.
Vibration analysis of bimodulus laminated cylindrical panels
Khan, K.; Patel, B. P.; Nath, Y.
2009-03-01
This paper deals with the flexural vibration behavior of bimodular laminated composite cylindrical panels with various boundary conditions. The formulation is based on first order shear deformation theory and Bert's constitutive model. The governing equations are derived using finite element method and Lagrange's equation of motion. An iterative eigenvalue approach is employed to obtain the positive and negative half cycle free vibration frequencies and corresponding mode shapes. A detailed parametric study is carried out to study the influences of thickness ratio, aspect ratio, lamination scheme, edge conditions and bimodularity ratio on the free vibration characteristics of bimodulus angle- and cross-ply composite laminated cylindrical panels. It is interesting to observe that there is a significant difference between the frequencies of positive and negative half cycles depending on the panel parameters. Through the thickness distribution of modal stresses for positive half cycle is significantly different from that for negative half cycle unlike unimodular case wherein the stresses at a particular location in negative half cycle would be of same magnitude but of opposite sign of those corresponding to positive half cycle. Finally, the effect of bimodularity on the steady state response versus forcing frequency relation is studied for a typical case.
Multimode interaction in axially excited cylindrical shells
Directory of Open Access Journals (Sweden)
Silva F. M. A.
2014-01-01
Full Text Available Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural frequencies. The shell is modelled using the Donnell nonlinear shallow shell theory and the discretized equations of motion are obtained by applying the Galerkin method. For this, a modal solution that takes into account the modal interaction among the relevant modes and the influence of their companion modes (modes with rotational symmetry, which satisfies the boundary and continuity conditions of the shell, is derived. Special attention is given to the 1:1:1:1 internal resonance (four interacting modes. Solving numerically the governing equations of motion and using several tools of nonlinear dynamics, a detailed parametric analysis is conducted to clarify the influence of the internal resonances on the bifurcations, stability boundaries, nonlinear vibration modes and basins of attraction of the structure.
Data fusion for cylindrical form measurements
Liu, Pei; Jusko, Otto; Tutsch, Rainer
2015-12-01
For high-precision form measurements of cylindrical workpieces form profiles such as roundness and straightness profiles are independently acquired via a bird-cage strategy. The 3D point cloud reconstructed by fusing these intersected profiles is meaningful in dimension and form assessment for cylinder, since enhanced accuracy can be achieved by fusion results. Moreover, it plays an important role as the input to other calculations. However, these data cannot be accurately aligned in form reconstruction, due to random absolute offsets in profiles and a lack of absolute positions. Therefore, we propose an approach to data fusion of these profiles to reconstruct cylindrical form. The uncertainties of the fused profile are evaluated, taking an individual contribution of a single profile and a global contribution of all profiles into account. The associated uncertainties are propagated using the Monte Carlo method. Experimental study results indicate that the data fusion procedure improves the accuracy of available datasets. After fusion, all available data points are capable of being used in the form assessment.
Code Verification of Magnetized Cylindrical Liner Implosions
Hess, Mark; Weis, Matthew; Martin, Matthew; Sefkow, Adam; Nakhleh, Charles; Lau, Y. Y.
2012-10-01
We investigate the physics of magnetized cylindrical liner implosions with existing MHD codes to verify code accuracy, as well as to understand parametric behavior on figures-of-merit, e.g. radial liner velocity, for designing experiments. In our problem, we assume that there exists a 1-D metallic cylindrical liner with an initial axial magnetic seed field imposed in the system. The liner radially implodes due to a specified drive current while the effects of liner pressure and magnetic seed field compression oppose the implosion. This problem is of importance for future magnetized liner fusion experiments, e.g. MagLIF [1].[4pt]Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. [4pt] [1] S.A. Slutz et al, Phys. Plasmas 17, 056303 (2010).
Low distortion laser welding of cylindrical components
Kittel, Sonja
2011-02-01
Automotive components are for the most part cylindrical and thus the weld seams are of radial shape. Radial weld seams are usually produced by starting at a point on the component's surface rotating the component resulting in an overlap zone at the start/end of the weld. In this research, it is shown that the component's distortion strongly depends on the overlap of weld start and end. A correlation between overlap zone and distortion is verified by an experimental study. In order to reduce distortion generated by the overlap zone a special optics is used which allows shaping the laser beam into a ring shape which is then focused on the cylindrical surface and produces a radial ring weld seam simultaneously by one laser pulse. In doing this, the overlap zone is eliminated and distortion can be reduced. Radial weld seams are applied on precision samples and distortion is measured after welding. The distortion of the precision samples is measured by a tactile measuring method and a comparison of the results of welding with the ring optics to reference welds is done.
Magnetostatic interactions and forces between cylindrical permanent magnets
Energy Technology Data Exchange (ETDEWEB)
Vokoun, David [Institute of Physics ASCR, v.v.i., Prague (Czech Republic)], E-mail: vokoun@fzu.cz; Beleggia, Marco [Institute for Materials Research, University of Leeds, Leeds LS2 9JT (United Kingdom); Heller, Ludek; Sittner, Petr [Institute of Physics ASCR, v.v.i., Prague (Czech Republic)
2009-11-15
Permanent magnets of various shapes are often utilized in magnetic actuators, sensors or releasable magnetic fasteners. Knowledge of the magnetic force is required to control devices reliably. Here, we introduce an analytical expression for calculating the attraction force between two cylindrical permanent magnets on the assumption of uniform magnetization. Although the assumption is not fulfilled exactly in cylindrical magnets, we obtain a very good agreement between the calculated and measured forces between two identical cylindrical magnets and within an array of NdFeB cylindrical magnets.
Magnetostatic interactions and forces between cylindrical permanent magnets
Vokoun, David; Beleggia, Marco; Heller, Luděk; Šittner, Petr
2009-11-01
Permanent magnets of various shapes are often utilized in magnetic actuators, sensors or releasable magnetic fasteners. Knowledge of the magnetic force is required to control devices reliably. Here, we introduce an analytical expression for calculating the attraction force between two cylindrical permanent magnets on the assumption of uniform magnetization. Although the assumption is not fulfilled exactly in cylindrical magnets, we obtain a very good agreement between the calculated and measured forces between two identical cylindrical magnets and within an array of NdFeB cylindrical magnets.
Unbalanced Cylindrical Magnetron for Accelerating Cavities Coating
Rosaz, Guillaume; Calatroni, Sergio; Sublet, Alban; Tobarelli, Mauro
2016-01-01
We report in this paper the design and qualification of a cylindrical unbalanced magnetron source. The dedicated magnetic assemblies were simulated using a finite element model. A hall-effect magnetic probe was then used to characterize those assemblies and compared to the theoretical magnet profiles. These show a good agreement between the expected and actual values. the qualification of the different magnetic assemblies was then performed by measuring the ion flux density reaching the surface of the sample to be coated using a commercial retarding field energy analyzer. The strongest unbalanced configuration shows an increase from 0.016A.cm^-2 to 0.074A.cm^-2 of the ion flux density reaching the sample surface compared to the standard balanced configuration for a pressure 5.10^-3 mbar and a plasma source power of 300W.
Free Vibration of Partially Supported Cylindrical Shells
Directory of Open Access Journals (Sweden)
S. Mirza
1995-01-01
Full Text Available The effects of detached base length on the natural frequencies and modal shapes of cylindrical shell structures were investigated in this work. Some of the important applications for this type of problem can be found in the cracked fan and rotor blades that can be idealized as partially supported shells with varying unsupported lengths. A finite element model based on small deflection linear theory was developed to obtain numerical solutions for this class of problems. The numerical results were generated for shallow shells and some of the degenerate cases are compared with other results available in the literature. The computations presented here involve a wide range of variables: material properties, aspect ratios, support conditions, and radius to base ratio.
Cylindrical wormholes with positive cosmological constant
Richarte, Mart'\\in G
2013-01-01
We construct cylindrical, traversable wormholes with finite radii by taking into account the cut-and-paste procedure for the case of cosmic string manifolds with a positive cosmological constant. Under reasonable assumptions about the equation of state of the matter located at the shell, we find that the wormhole throat undergoes a monotonous evolution provided it moves at a constant velocity. In order to explore the dynamical nonlinear behaviour of the wormhole throat, we consider that the matter at the shell is supported by anisotropic Chaplygin gas, anti-Chaplygin gas, or a mixed of Chaplygin and anti-Chaplygin gases implying that wormholes could suffer an accelerated expansion or contraction but the oscillatory behavior seems to be forbidden.
Cylindrical wormholes with positive cosmological constant
Richarte, Martín G.
2013-07-01
We construct cylindrical, traversable wormholes with finite radii by taking into account the cut-and-paste procedure for the case of cosmic string manifolds with a positive cosmological constant. Under reasonable assumptions about the equation of state of the matter located at the shell, we find that the wormhole throat undergoes a monotonous evolution provided it moves at a constant velocity. In order to explore the dynamical nonlinear behavior of the wormhole throat, we consider that the matter of the shell is supported by anisotropic Chaplygin gas, anti-Chaplygin gas, or a mixture of Chaplygin and anti-Chaplygin gases, implying that wormholes could suffer an accelerated expansion or contraction, but that oscillatory behavior seems to be forbidden.
Mathematical model of cylindrical form tolerance
Institute of Scientific and Technical Information of China (English)
蔡敏; 杨将新; 吴昭同
2004-01-01
Tolerance is essential for integration of CAD and CAM. Unfortunately, the meaning of tolerances in the national standard is expressed in graphical and language forms and is not adaptable for expression, processing and data transferring with computers. How to interpret its semantics is becoming a focus of relevant studies. This work based on the mathematical definition of form tolerance in ANSI Y 14.5.1 M-1994, established the mathematical model of form tolerance for cylindrical feature. First, each tolerance in the national standard was established by vector equation. Then on the foundation of toler-ance's mathematical definition theory, each tolerance zone's mathematical model was established by inequality based on degrees of feature. At last the variance area of each tolerance zone is derived. This model can interpret the semantics of form tolerance exactly and completely.
Mathematical model of cylindrical form tolerance
Institute of Scientific and Technical Information of China (English)
蔡敏; 杨将新; 吴昭同
2004-01-01
Tolerance is essential for integration of CAD and CAM.Unfortunately,the meaning of tolerances in the national standard is expressed in graphical and language forms and is not adaptable for expression,processing and data transferring with computers.How to interpret its semantics is becoming a focus of relevant studies.This work based on the mathematical definition of form tolerance in ANSI Y 14.5.1 M-1994,established the mathematical model of form tolerance for cylindrical feature.First,each tolerance in the national standard was established by vector equation.Then on the foundation of tolerance's mathematical definition theory,each tolerance zone's mathematical model was established by inequality based on degrees of feature.At last the variance area of each tolerance zone is derived.This model can interpret the semantics of form tolerance exactly and completely.
Study of Cylindrical Honeycomb Solar Collector
Directory of Open Access Journals (Sweden)
Atish Mozumder
2014-01-01
Full Text Available We present the results of our investigation on cylindrical honeycomb solar collector. The honeycomb has been fabricated with transparent cellulose triacetate polymer sheets. Insulation characteristics of the honeycomb were studied by varying the separation between the honeycomb and the absorber plate. The optimal value of the separation was found to be 3.3 mm for which the heat transfer coefficient is 3.06 W m−2 K−1. This supports result of previous similar experiments. Further we test the honeycomb through a field experiment conducted in Delhi (28.6°N, 77°E and found that when the incident angle of the solar radiation is within 20° then the performance of the system with the honeycomb is better than the one without the honeycomb.
SPSM and its application in cylindrical shells
Institute of Scientific and Technical Information of China (English)
NIE Wu; ZHOU Su-lian; PENG Hui
2008-01-01
In naval architectures, the structure of prismatic shell is used widely. But there is no suitable method to analyze this kind of structure. Stiffened prismatic shell method (SPSM) presented in this paper, is one of the harmonic semi-analytic methods. Theoretically, strong stiffened structure can be analyzed economically and accurately. SPSM is based on the analytical solution of the governing differential equations for orthotropic cylindrical shells. In these differential equations, the torsional stiffness, bending stiffness and the exact position of each stiffener are taken into account with the Heaviside singular function. An algorithm is introduced, in which the actions of stiffeners on shells are replaced by external loads at each stiffener position. Stiffened shells can be computed as non-stiffened shells. Eventually, the displacement solution of the equations is acquired by the introduction of Green function. The stresses in a corrugated transverse bulkhead without pier base of an oil tanker are computed by using SPSM.
Indentation of Ellipsoidal and Cylindrical Elastic Shells
Vella, Dominic
2012-10-01
Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.
Space charge emission in cylindrical diode
Energy Technology Data Exchange (ETDEWEB)
Torres-Córdoba, Rafael; Martínez-García, Edgar [Universidad Autónoma de Cd. Juárez-IIT, Cd. Juárez, Chihuahua, México (Mexico)
2014-02-15
In this paper, a mathematical model to describe cylindrical electron current emissions through a physics approximation method is presented. The proposed mathematical approximation consists of analyzing and solving the nonlinear Poisson's equation, with some determined mathematical restrictions. Our findings tackle the problem when charge-space creates potential barrier that disable the steady-state of the beam propagation. In this problem, the potential barrier effects of electron's speed with zero velocity emitted through the virtual cathode happens. The interaction between particles and the virtual cathode have been to find the inter-atomic potentials as boundary conditions from a quantum mechanics perspective. Furthermore, a non-stationary spatial solution of the electrical potential between anode and cathode is presented. The proposed solution is a 2D differential equation that was linearized from the generalized Poisson equation. A single condition was used solely, throughout the radial boundary conditions of the current density formation.
Ingestion of six cylindrical and four button batteries
DEFF Research Database (Denmark)
Nielsen, Simon U; Rasmussen, Morten; Hoegberg, Lotte C G
2010-01-01
We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis.......We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis....
Settling of a cylindrical particle in a stagnant fluid
DEFF Research Database (Denmark)
Sørensen, Henrik; Rosendahl, Lasse; Yin, Chungen;
2007-01-01
The objective of this work is to collect data and develop models for cylindrical particles which could be used in numerical multiphase flow modeling. Trajectories of cylindrical particles settling in stagnant water are filmed from two directions in order to derive detailed information on their mo...
Tunable Omnidirectional Surface Plasmon Resonance in Cylindrical Plasmonic Structure
Institute of Scientific and Technical Information of China (English)
WANG Yi; WANG Bing; ZHOU Zhi-Ping
2008-01-01
@@ The tunable omnidirectional surface plasmon resonance in the optical range is theoretically demonstrated in a cylindrical plasmonic crystal by using rigorous coupled-wave analysis.The cylindrical plasmonic crystal consists of an infinite chain of two-dimensional cylindrical metal-dielectric-dielectric-metal structures.The dispersion relation of the cylindrical plasmonic crystal is obtained by calculating the absorptance as a function of a TM-polarized incident plane wave and its in-plane wave vector.The omnidirectional surface plasmon resonance can be tuned from UV region to visible region by adjusting the thickness of the cylindrical dielectric layers.The absorption spectrum of the infinite chain of nanocylinders is also investigated for comparison.
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{μ _0/p_0} I/(2 π ) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field
Surface tension and long range corrections of cylindrical interfaces
Energy Technology Data Exchange (ETDEWEB)
Bourasseau, E. [CEA/DAM DIF, F-91297 Arpajon Cedex (France); Malfreyt, P. [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); Ghoufi, A., E-mail: aziz.ghoufi@univ-rennes1.fr [Institut de Physique de Rennes, UMR 6251 CNRS, Université de Rennes 1, 263 avenue Général Leclerc, 35042 Rennes (France)
2015-12-21
The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential, (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.
Functional evolution of quantum cylindrical waves
Cho, D H J; Cho, Demian H.J.; Varadarajan, Madhavan
2006-01-01
Kucha{\\v{r}} showed that the quantum dynamics of (1 polarization) cylindrical wave solutions to vacuum general relativity is determined by that of a free axially-symmetric scalar field along arbitrary axially-symmetric foliations of a fixed flat 2+1 dimensional spacetime. We investigate if such a dynamics can be defined {\\em unitarily} within the standard Fock space quantization of the scalar field. Evolution between two arbitrary slices of an arbitrary foliation of the flat spacetime can be built out of a restricted class of evolutions (and their inverses). The restricted evolution is from an initial flat slice to an arbitrary (in general, curved) slice of the flat spacetime and can be decomposed into (i) `time' evolution in which the spatial Minkowskian coordinates serve as spatial coordinates on the initial and the final slice, followed by (ii) the action of a spatial diffeomorphism of the final slice on the data obtained from (i). We show that although the functional evolution of (i) is unitarily implemen...
Technology Selections for Cylindrical Compact Fabrication
Energy Technology Data Exchange (ETDEWEB)
Jeffrey A. Phillips
2010-10-01
A variety of process approaches are available and have been used historically for manufacture of cylindrical fuel compacts. The jet milling, fluid bed overcoating, and hot press compacting approach being adopted in the U.S. AGR Fuel Development Program for scale-up of the compacting process involves significant paradigm shifts from historical approaches. New methods are being pursued because of distinct advantages in simplicity, yield, and elimination of process mixed waste. Recent advances in jet milling technology allow simplified dry matrix powder preparation. The matrix preparation method is well matched with patented fluid bed powder overcoating technology recently developed for the pharmaceutical industry and directly usable for high density fuel particle matrix overcoating. High density overcoating places fuel particles as close as possible to their final position in the compact and is matched with hot press compacting which fully fluidizes matrix resin to achieve die fill at low compacting pressures and without matrix end caps. Overall the revised methodology provides a simpler process that should provide very high yields, improve homogeneity, further reduce defect fractions, eliminate intermediate grading and QC steps, and allow further increases in fuel packing fractions.
Acoustic transfer admittance of cylindrical cavities
Guianvarc'h, C.; Durocher, J.-N.; Bruneau, M.; Bruneau, A.-M.
2006-05-01
The reciprocity calibration method uses two microphones acoustically connected by a coupler, a cylindrical cavity closed at each end by the diaphragms of the transmitting and receiving microphones. The acoustic transfer admittance of the coupler, including the thermal conductivity effect of the fluid, must be modelled precisely to obtain the accurate sensitivity of the microphones from the electrical transfer impedance measurement. It appears that the analytical model quoted in the current standard [International Electrotechnical Commission IEC 61064-2, Measurement Microphones, Part 2: Primary Method for Pressure Calibration of Laboratory Standard Microphones by the Reciprocity Technique, 1992] is not the appropriate one and that it should be revised, as also suggested by a recent EUROMET project report [K. Rasmussen, Datafiles simulating a pressure reciprocity calibration of microphones, EUROMET Project 294 Report PL-13, 2001]. Thus, it is the aim of the paper to investigate analytically the acoustic field inside the coupler, revisiting the assumptions of the earlier work, leading to a coherent description and therefore providing clarity which should facilitate discussion of a possible revised standard.
Cylindrical shell buckling through strain hardening
Energy Technology Data Exchange (ETDEWEB)
Bandyopadhyay, K.; Xu, J.; Shteyngart, S. [Brookhaven National Lab., Upton, NY (United States); Gupta, D. [USDOE, Germantown, MD (United States)
1995-04-01
Recently, the authors published results of plastic buckling analysis of cylindrical shells. Ideal elastic-plastic material behavior was used for the analysis. Subsequently, the buckling analysis program was continued with the realistic stress-strain relationship of a stainless steel alloy which does not exhibit a clear yield point. The plastic buckling analysis was carried out through the initial stages of strain hardening for various internal pressure values. The computer program BOSOR5 was used for this purpose. Results were compared with those obtained from the idealized elastic-plastic relationship using the offset stress level at 0.2% strain as the yield stress. For moderate hoop stress values, the realistic stress-grain case shows a slight reduction of the buckling strength. But, a substantial gain in the buckling strength is observed as the hoop stress approaches the yield strength. Most importantly, the shell retains a residual strength to carry a small amount of axial compressive load even when the hoop stress has exceeded the offset yield strength.
Buckling localization in a cylindrical panel under axial compression
DEFF Research Database (Denmark)
Tvergaard, Viggo; Needleman, A.
2000-01-01
Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum...
Electromagnetic Cylindrical Transparent Devices with Irregular Cross Section
Directory of Open Access Journals (Sweden)
C. Yang
2010-04-01
Full Text Available Electromagnetic transparent device is very important for antenna protection. In this paper, the material parameters for the cylindrical transparent devices with arbitrary cross section are developed based on the coordinate transformation. The equivalent two-dimensional (2D transparent devices under TE plane and cylindrical wave irradiation is designed and studied by full-wave simulation, respectively. It shows that although the incident waves are distorted in the transformation region apparently, they return to the original wavefronts when passing through the device. All theoretical and numerical results validate the material parameters for the cylindrical transparent devices with arbitrary cross section we developed.
New cylindrical gravitational soliton waves and gravitational Faraday rotation
Tomizawa, Shinya
2013-01-01
In terms of gravitational solitons, we study gravitational non-linear effects of gravitational solitary waves such as Faraday rotation. Applying the Pomeransky's procedure for inverse scattering method, which has been recently used for constructing stationary black hole solutions in five dimensions to a cylindrical spacetime in four dimensions, we construct a new cylindrically symmetric soliton solution. This is the first example to be applied to the cylindrically symmetric case. In particular, we clarify the difference from the Tomimatsu's single soliton solution, which was constructed by the Belinsky-Zakharov's procedure.
γ-ray self-absorption of cylindrical fissile material
Institute of Scientific and Technical Information of China (English)
HUANG Yong-Yi; CHENG Yi-Ying; TIAN Dong-Feng; LU Fu-Quan; YANG Fu-Jia
2005-01-01
The self-absorption of γ-ray emitted from cylindrical fissile materials, such as 235U and 239Pu, does not possess spherical symmetry. The analytical formulae of self-absorption for γ-ray throughout the cylinder have been obtained. The intensity of γ-ray is a function of γ-ray outgoing directions and cylindrical configurations, accordingly one can acquire the information about geometrical configuration of cylindrical fissile materials through multi-location measurements. Further more, the method is given in this article. The result can be applied to the fissile material safeguard, such as nuclear monitoring and verifying.
Plasmonic Bloch oscillations in cylindrical metal-dielectric waveguide arrays.
Shiu, Ruei-Cheng; Lan, Yung-Chiang; Chen, Chin-Min
2010-12-01
This study investigates plasmonic Bloch oscillations (PBOs) in cylindrical metal-dielectric waveguide arrays (MDWAs) by performing numerical simulations and theoretical analyses. Optical conformal mapping is used to transform cylindrical MDWAs into equivalent chirped structures with permittivity and permeability gradients across the waveguide arrays, which is caused by the curvature of the cylindrical waveguide. The PBOs are attributed to the transformed structure. The period of oscillation increases with the wavelength of the incident Gaussian beam. However, the amplitude of oscillation is almost independent of wavelength.
Cylindrical array luminescent solar concentrators: performance boosts by geometric effects.
Videira, Jose J H; Bilotti, Emiliano; Chatten, Amanda J
2016-07-11
This paper presents an investigation of the geometric effects within a cylindrical array luminescent solar concentrator (LSC). Photon concentration of a cylindrical LSC increases linearly with cylinder length up to 2 metres. Raytrace modelling on the shading effects of circles on their neighbours demonstrates effective incident light trapping in a cylindrical LSC array at angles of incidence between 60-70 degrees. Raytrace modelling with real-world lighting conditions shows optical efficiency boosts when the suns angle of incidence is within this angle range. On certain days, 2 separate times of peak optical efficiency can be attained over the course of sunrise-solar noon.
Thrifty: An Exascale Architecture for Energy Proportional Computing
Energy Technology Data Exchange (ETDEWEB)
Torrellas, Josep [Univ. of Illinois, Champaign, IL (United States)
2014-12-23
The objective of this project is to design different aspects of a novel exascale architecture called Thrifty. Our goal is to focus on the challenges of power/energy efficiency, performance, and resiliency in exascale systems. The project includes work on computer architecture (Josep Torrellas from University of Illinois), compilation (Daniel Quinlan from Lawrence Livermore National Laboratory), runtime and applications (Laura Carrington from University of California San Diego), and circuits (Wilfred Pinfold from Intel Corporation). In this report, we focus on the progress at the University of Illinois during the last year of the grant (September 1, 2013 to August 31, 2014). We also point to the progress in the other collaborating institutions when needed.
A mean curvature estimate for cylindrically bounded submanifolds
Alias, Luis J
2010-01-01
We extend the estimate obtained in [1] for the mean curvature of a cylindrically bounded proper submanifold in a product manifold with an Euclidean space as one factor to a general product ambient space endowed with a warped product structure.
Cylindrical invisibility cloak with simplified material parameters is inherently visible.
Yan, Min; Ruan, Zhichao; Qiu, Min
2007-12-07
It was proposed that perfect invisibility cloaks can be constructed for hiding objects from electromagnetic illumination [J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006)10.1126/science.1125907]. The cylindrical cloaks experimentally demonstrated [D. Schurig, Science 314, 977 (2006)10.1126/science.1133628] and theoretically proposed [W. Cai, Nat. Photon. 1, 224 (2007)10.1038/nphoton.2007.28] have however simplified material parameters in order to facilitate easier realization as well as to avoid infinities in optical constants. Here we show that the cylindrical cloaks with simplified material parameters inherently allow the zeroth-order cylindrical wave to pass through the cloak as if the cloak is made of a homogeneous isotropic medium, and thus visible. To all high-order cylindrical waves, our numerical simulation suggests that the simplified cloak inherits some properties of the ideal cloak, but finite scatterings exist.
Response of an electrostatic probe for a right cylindrical spacer
DEFF Research Database (Denmark)
Rerup, T; Crichton, George C; McAllister, Iain Wilson
1994-01-01
During the last decade many experimental studies of surface charge phenomena have been undertaken employing right cylindrical spacers. Measurement of the surface charge was performed using small electrostatic field probes to scan across the dielectric surface. Charges are electrostatically induced...
Cylindrically symmetric Einstein-Yang-Mills-Higgs gauge configurations.
Mondaini, R. P.
1985-02-01
Two solutions are obtained for coupled Einstein-Yang-Mills-Higgs fields with cylindrical symmetry and rigid rotation. The Higgs fields are responsible for the creation of singularities and infinite energy densities at the cylinder's axis.
DETERMINATION OF ECONOMIC SIZES FOR RC CYLINDRICAL WATER STORAGE TANKS
Directory of Open Access Journals (Sweden)
Güneş KOZLUCA
2007-03-01
Full Text Available Water storage tanks are built in different shapes and sizes according to needs. Designs of water storage tanks with low costs are quite important for the national economy. Cylindrical and sphere tanks are the most economic types of tanks in terms of material cost. In this study several cylindrical tank designs are made. Then most economic tank radius – tank height ratio is searched by simply changing thickness, height and the radius of the tank considered. Storage capacity of these cylindrical tanks are all the same. All these reinforced tanks have cylindrical reinforced concrete walls fixed at the bottom and free top edge without roof. It is thought that tanks constructed with this optimal ratio will be beneficial.
External Cylindrical Nozzle with Controlled Vacuum
Directory of Open Access Journals (Sweden)
V. N. Pil'gunov
2015-01-01
Full Text Available There is a developed design of the external cylindrical nozzle with a vacuum camera. The paper studies the nozzle controllability of flow rate via regulated connection of the evacuated chamber to the atmosphere through an air throttle. Working capacity of the nozzle with inlet round or triangular orifice are researched. The gap is provided in the nozzle design between the external wall of the inlet orifice and the end face of the straight case in the nozzle case. The presented mathematical model of the nozzle with the evacuated chamber allows us to estimate the expected vacuum amount in the compressed section of a stream and maximum permissible absolute pressure at the inlet orifice. The paper gives experimental characteristics of the fluid flow process through the nozzle for different values of internal diameter of a straight case and an extent of its end face remoteness from an external wall of the inlet orifice. It estimates how geometry of nozzle constructive elements influences on the volume flow rate. It is established that the nozzle capacity significantly depends on the shape of inlet orifice. Triangular orifice nozzles steadily work in the mode of completely filled flow area of the straight case at much more amounts of the limit pressure of the flow. Vacuum depth in the evacuated chamber also depends on the shape of inlet orifice: the greatest vacuum is reached in a nozzle with the triangular orifice which 1.5 times exceeds the greatest vacuum with the round orifice. Possibility to control nozzle capacity through the regulated connection of the evacuated chamber to the atmosphere was experimentally estimated, thus depth of flow rate regulation of the nozzle with a triangular orifice was 45% in comparison with 10% regulation depth of the nozzle with a round orifice. Depth of regulation calculated by a mathematical model appeared to be much more. The paper presents experimental dependences of the flow coefficients of nozzle input orifice
Improved Analysis Techniques for Cylindrical and Spherical Double Probes (Preprint)
2012-03-21
accounts for the finite, but non -negligible extent of the plasma sheath. One of the most extensive assessments of ion collection by a biased cylindrical...Approved for public release; distribution unlimited. 4 regardless of rP/λD so long as the electron distribution function is Maxwellian such that...731. 3 J.G. Laframboise, Theory of Spherical and Cylindrical Langmuir Probes in a Collisionless, Maxwellian Plasma at Rest, (University of Toronto
An Approximate Solution for Spherical and Cylindrical Piston Problem
Indian Academy of Sciences (India)
S K Singh; V P Singh
2000-02-01
A new theory of shock dynamics (NTSD) has been derived in the form of a finite number of compatibility conditions along shock rays. It has been used to study the growth and decay of shock strengths for spherical and cylindrical pistons starting from a non-zero velocity. Further a weak shock theory has been derived using a simple perturbation method which admits an exact solution and also agrees with the classical decay laws for weak spherical and cylindrical shocks.
On elliptic cylindrical Kadomtsev-Petviashvili equation for surface waves
Khusnutdinova, K R; Matveev, V B; Smirnov, A O
2012-01-01
The `elliptic cylindrical Kadomtsev-Petviashvili equation' is derived for surface gravity waves with nearly-elliptic front, generalising the cylindrical KP equation for nearly-concentric waves. We discuss transformations between the derived equation and two existing versions of the KP equation, for nearly-plane and nearly-concentric waves. The transformations are used to construct important classes of exact solutions of the derived equation and corresponding approximate solutions for surface waves.
Cylindrical bubbles and blobs from a Class II Hydrophobin
Russo, Paul; Pham, Michael; Blalock, Brad
2012-02-01
Cerato ulmin is a class II hydrophobin. In aqueous suspensions, it easily forms cylindrical air bubbles and cylindrical oil blobs. The conditions for formation of these unusual structures will be discussed, along with scattering and microscopic investigations of their remarkable stability. Possible applications in diverse fields including polymer synthesis and oil spill remediation will be considered. Acknowledgment is made to Dr. Wayne C. Richards of the Canadian Forest Service for the gift of Cerato ulmin.
Theory and modeling of cylindrical thermo-acoustic transduction
Energy Technology Data Exchange (ETDEWEB)
Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)
2016-06-03
Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.
A cylindrical specimen holder for electron cryo-tomography
Energy Technology Data Exchange (ETDEWEB)
Palmer, Colin M., E-mail: cpalmer@mrc-lmb.cam.ac.uk; Löwe, Jan, E-mail: jyl@mrc-lmb.cam.ac.uk
2014-02-01
The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the “missing wedge” problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. - Highlights: • The missing wedge is a serious problem for electron cryo-tomography. • Cylindrical specimens allow the missing wedge to be eliminated. • Carbon nanopipettes can be used as cylindrical holders for tomography of frozen-hydrated specimens. • Cryo-tomography of cylindrical biological samples demonstrates a reduction of deleterious effects associated with the missing wedge.
Novel spherical hohlraum with cylindrical laser entrance holes and shields
Energy Technology Data Exchange (ETDEWEB)
Lan, Ke [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zheng, Wudi [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)
2014-09-15
Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.
Determination of the Boltzmann Constant Using the Differential - Cylindrical Procedure
Feng, X J; Lin, H; Gillis, K A; Moldover, M R
2015-01-01
We report in this paper the progresses on the determination of the Boltzmann constant using the acoustic gas thermometer (AGT) of fixed-length cylindrical cavities. First, we present the comparison of the molar masses of pure argon gases through comparing speeds of sound of gases. The procedure is independent from the methodology by Gas Chromatography-Mass Spectrometry (GC-MS). The experimental results show good agreement between both methods. The comparison offers an independent inspection of the analytical results by GC-MS. Second, we present the principle of the novel differential-cylindrical procedure based on the AGT of two fixed-length cavities. The deletion mechanism for some major perturbations is analyzed for the new procedure. The experimental results of the differential-cylindrical procedure demonstrate some major improvements on the first, second acoustic and third virial coefficients, and the excess half-widths. The three acoustic virial coefficients agree well with the stated-of-the-art experime...
Experiments of cylindrical isentropic compression by ultrahigh magnetic field
Directory of Open Access Journals (Sweden)
Gu Zhuowei
2015-01-01
Full Text Available The high Explosive Magnetic Flux Implosion Compression Generator (EMFICG is a kind of unique high energy density dynamic technique with characters like ultrahigh pressure and low temperature rising and could be suitable as a tool of cylindrical isentropic compression. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP have developed EMFICG technique and realized cylindrical isentropic compression. In the experiments, a seed magnetic field of 5–6 Tesla were built first and compressed by a stainless steel liner which is driven by high explosive. The inner free surface velocity of sample was measured by PDV. The isentropic compression of a copper sample was verified and the isentropic pressure is over 100 GPa. The cylindrical isentropic compression process has been numerical simulated by 1D MHD code and the simulation results were compared with the experiments. Compared with the transitional X-ray flash radiograph measurement, this method will probably promote the data accuracy.
Encoding high-order cylindrically polarized light beams.
Moreno, Ignacio; Davis, Jeffrey A; Cottrell, Don M; Donoso, Ramiro
2014-08-20
In this work we present a setup for the experimental production of cylindrically polarized beams, as well as other variations of polarized light beams. The optical system uses a single transmissive phase-only spatial light modulator, which is used to apply different spatial phase modulation to two output collinear R and L circularly polarized components. Different cylindrically polarized light beams can be obtained by applying different phase shifts to these two circularly polarized components. The system is very efficient since modulation is directly applied to the light beam (as opposed to other common methods operating in the first order of encoded diffraction gratings). Different variations to the cylindrically polarized light beams are also reported, obtained by adding linear or quadratic relative phase shifts between the two circular polarization components of the light beam. Experimental results are provided in all cases.
A cylindrical converging shock tube for shock-interface studies.
Luo, Xisheng; Si, Ting; Yang, Jiming; Zhai, Zhigang
2014-01-01
A shock tube facility for generating a cylindrical converging shock wave is developed in this work. Based on the shock dynamics theory, a specific wall profile is designed for the test section of the shock tube to transfer a planar shock into a cylindrical one. The shock front in the converging part obtained from experiment presents a perfect circular shape, which proves the feasibility and reliability of the method. The time variations of the shock strength obtained from numerical simulation, experiment, and theoretical estimation show the desired converging effect in the shock tube test section. Particular emphasis is then placed on the problem of shock-interface interaction induced by cylindrical converging shock waves. For this purpose, membrane-less gas cylinder is adopted to form the interface between two different fluids while the laser sheet technique to visualize the flow field. The result shows that it is convenient to perform such experiments in this facility.
POSTBUCKLING OF PRESSURE-LOADED SHEAR DEFORMABLE LAMINATED CYLINDRICAL PANELS
Institute of Scientific and Technical Information of China (English)
沈惠申
2003-01-01
A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation shell theory with yon Kdrmdn-Donnell-type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of shear deformable laminated cylindrical panels under lateral pressure. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, moderately thick, cross-ply laminated cylindrical panels. The effects played by transverse shear deformation, panel geometric parameters, total number of plies, fiber orientation, and initial geometric imperfections are studied.
Design of elliptic cylindrical thermal cloak with layered structure
Yuan, Xuebo; Lin, Guochang; Wang, Youshan
2017-01-01
Thermal cloak has potential applications in thermal protection and sensing. Based on the theories of spatial transformation and effective medium, layered structure of elliptic cylindrical thermal cloak was designed. According to theoretical analysis and numerical simulation, the layered structure has typical characteristics of perfect thermal cloak. The external temperature field remains unchanged, while the internal temperature gradient decreases obviously. Meanwhile, the cloaking effect is stable in any direction. The cloaking effect can be improved by increasing the number of discretization layers or reducing the cloak thickness. The elliptic cylindrical cloak can be considered as cylindrical cloak when the focal distance is close to zero. This study has provided an effective way for realizing thermal cloak with more complex shapes.
Third-generation cylindrical diffusers for medical use
Lytle, A. Charles; Narciso, Hugh L.; Spain, David V.; Doiron, Daniel R.
1993-05-01
Cylindrical light diffusion is a key element in a variety of medical applications which require the controlled administration of light to a treatment site within the body. Applications such as photodynamic therapy (PDT), laser induced hyperthermia (LHT), and photoatherolytic (PAL) therapy may all require that light be diffused in this manner. Cylindrical diffusers are typically used in tubular cavities, such as the bronchus, trachea, or the esophagus, and in interstitial applications where uniform illumination over a specified length is required to maximize the therapeutic response. A third generation of cylindrical diffuser with improved performance has been developed to more effectively meet these needs. This paper will discuss the evolution of cylinder diffusers and will describe the characteristics and performance of this new generation device.
Radiation and scattering from printed antennas on cylindrically conformal platforms
Kempel, Leo C.; Volakis, John L.; Bindiganavale, Sunil
1994-01-01
The goal was to develop suitable methods and software for the analysis of antennas on cylindrical coated and uncoated platforms. Specifically, the finite element boundary integral and finite element ABC methods were employed successfully and associated software were developed for the analysis and design of wraparound and discrete cavity-backed arrays situated on cylindrical platforms. This work led to the successful implementation of analysis software for such antennas. Developments which played a role in this respect are the efficient implementation of the 3D Green's function for a metallic cylinder, the incorporation of the fast Fourier transform in computing the matrix-vector products executed in the solver of the finite element-boundary integral system, and the development of a new absorbing boundary condition for terminating the finite element mesh on cylindrical surfaces.
Numerical investigation on evolution of cylindrical cellular detonation
Institute of Scientific and Technical Information of China (English)
WANG Chun; JIANG Zong-lin; HU Zong-min; HAN Gui-lai
2008-01-01
Cylindrical cellular detonation is numerically investigated by solving twodimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh.The one-step reversible chemical reaction model is applied to simplify the control parameters of chemical reaction.Numerical results demonstrate the evolution of cellular cell splitting of cylindrical cellular detonation explored in experimentas.Split of cellular structures shows different features in the near-field and far-field from the initiation zone.Variation of the local curvature is a key factor in the behavior of cell split of cylindrical cellular detonation in propagation.Numerical results show that split of cellular structures comes from the self-organization of transverse waves corresponding to the development of small disturbances along the detonation front related to detonation instability.
The magnetic properties of the hollow cylindrical ideal remanence magnet
DEFF Research Database (Denmark)
Bjørk, Rasmus
2016-01-01
We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...... and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown...... to generate a field exactly twice as large as the equivalent ideal remanence magnet....
Transient impact responses of laminated composite cylindrical shells
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The generalized ray method(GRM) has been successfully used to study the transient elastic wave transmitting in the beams,planar trusses,space frames and infinite layered media.In this letter,the GRM is extended to investigate the early short time transient responses of laminated composite cylindrical shells under impact load.By using the Laplace transformation and referring to the boundary conditions,the ray groups transmitting in the finite laminated cylindrical shells under the shock load are obtained ...
Static Cylindrically Symmetric Interior Solutions in f(R) Gravity
Sharif, M
2013-01-01
We investigate some exact static cylindrically symmetric solutions for a perfect fluid in the metric $f(R)$ theory of gravity. For this purpose, three different families of solutions are explored. We evaluate energy density, pressure, Ricci scalar and functional form of $f(R)$. It is interesting to mention here that two new exact solutions are found from the last approach, one is in particular form and the other is in the general form. The general form gives a complete description of a cylindrical star in $f(R)$ gravity.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium.
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-06-15
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium.
Ideal cylindrical cloak: perfect but sensitive to tiny perturbations.
Ruan, Zhichao; Yan, Min; Neff, Curtis W; Qiu, Min
2007-09-14
A cylindrical wave expansion method is developed to obtain the scattering field for an ideal two-dimensional cylindrical invisibility cloak. A near-ideal model of the invisibility cloak is set up to solve the boundary problem at the inner boundary of the cloak shell. We confirm that a cloak with the ideal material parameters is a perfect invisibility cloak by systematically studying the change of the scattering coefficients from the near-ideal case to the ideal one. However, because of the slow convergence of the zeroth-order scattering coefficients, a tiny perturbation on the cloak would induce a noticeable field scattering and penetration.
Confined and interface phonons in combined cylindrical nanoheterosystem
Directory of Open Access Journals (Sweden)
O.M.Makhanets
2006-01-01
Full Text Available The spectra of all types of phonons existing in a complicated combined nanoheterosystem consisting of three cylindrical quantum dots embedded into the cylindrical quantum wire placed into vacuum are studied within the dielectric continuum model. It is shown that there are confined optical (LO and interface phonons of two types: top surface optical (TSO and side surface optical (SSO modes of vibration in such a nanosystem. The dependences of phonon energies on the quasiwave numbers and geometrical parameters of quantum dots are investigated and analysed.
Friction Compensation in the Upsetting of Cylindrical Test Specimens
DEFF Research Database (Denmark)
Christiansen, Peter; Martins, P. A. F.; Bay, Niels Oluf
2016-01-01
This manuscript presents a combined numerical andexperimental methodology for determining the stress-straincurve of metallic materials from the measurements of forceand displacement obtained in the axial compression of cylindrical test specimens with friction between the specimens and the platens...... model or combined friction models are utilized .Experimental results obtained from cylindrical and Rastegaev test specimens with different lubricants combined with the experimental determination of friction by means of ring compression tests allows compensating the effect of friction...... Appendix is provided for those readers interested in utilizing the associated numerical algorithm for determining the stress straincurves of metallic materials....
The magnetic properties of the hollow cylindrical ideal remanence magnet
Bjørk, R
2016-01-01
We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown to generate a field exactly twice as large as the equivalent ideal remanence magnet.
Liquid bridge as a tunable-focus cylindrical liquid lens
Chen, H.; Tabatabaei, N.; Amirfazli, A.
2017-01-01
We proposed a method to create a tunable-focus cylindrical liquid lens using a liquid bridge between two narrow surfaces. Due to the surface edge effect, the interface of the liquid bridge (on the long side) was shown to be able to serve as a tunable-focus cylindrical liquid lens. The working distance of the lens can be adjusted by changing either or both of the height of the bridge (H) and the volume of the liquid (V). By varying H and V, the lens can serve as either diverging or converging lens, with a minimum working distance of 2.11 mm.
Simple model of capillary condensation in cylindrical pores
Szybisz, Leszek; Urrutia, Ignacio
2002-11-01
A simple model based on an approximation of the dropletlike model is formulated for studying adsorption of fluids into cylindrical pores. This model yields a nearly universal description of capillary condensation transitions for noble gases confined by alkali metals. The system's thermodynamical behavior is predicted from the values of two dimensionless parameters: D* (the reduced asymptotic strength of the fluid-adsorber interaction, a function of temperature) and R* (the reduced radius of the pore). The phenomenon of hysteresis inherently related to capillary condensation is discussed. The connection to a previously proposed universality for cylindrical pores is also established.
Exploring Cylindrical Solutions in Modified f(G) Gravity
Houndjo, M J S; Momeni, D; Myrzakulov, R
2013-01-01
We present cylindrically symmetric solutions for a type of the Gauss-Bonnet gravity, in details. We derive the full system of the field equations and show that there exist seven families of exact solutions for three forms of viable models. By applying the method based on the effective fluid energy momentum tensor components, we evaluate the mass per unit length for the solutions. From dynamical point of the view, by evaluating the null energy condition for these configurations, we show that in some cases the azimuthal pressure breaks the energy condition. This violation of the null energy condition predicts the existence of a cylindrical wormhole.
Metallurgical Evaluation of the Five-Inch Cylindrical Induction Melter
Energy Technology Data Exchange (ETDEWEB)
Imrich, K.J.
2000-08-15
A metallurgical evaluation of the 5-inch cylindrical induction melter (CIM) vessel was performed by the Materials Technology Section to evaluate the metallurgical condition after operating for approximately 375 hours at 1400 to 1500 Degrees Celsius during a 2 year period. Results indicate that wall thinning and significant grain growth occurred in the lower portion of the conical section and the drain tube. No through-wall penetrations were found in the cylindrical and conical sections of the CIM vessel and only one leak site was identified in the drain tube. Failure of the drain tube was associated with a localized over heating and intercrystalline fracture.
The Levitating Buddha: Constructing a Realistic Cylindrical Mirror Pseudo Image
Caussat, María Alicia; Rabal, Héctor; Muramatsu, Mikiya
2006-10-01
There are several interesting experiments involving image formation that can be easily implemented using mirrored foil, a very inexpensive material. When the foil is somewhat bent by holding its opposite edges and slightly pulling them together, cylindrical surfaces are generated. They behave as cylindrical mirrors, and circular or elliptical cross sections can be made. A project that can be easily built with the mirror foil is the generation of a pseudo image that is so compelling in its apparent reality that it can easily be taken to be the object itself.
Nonlinear dynamo action in a precessing cylindrical container.
Nore, C; Léorat, J; Guermond, J-L; Luddens, F
2011-07-01
It is numerically demonstrated by means of a magnetohydrodynamics code that precession can trigger the dynamo effect in a cylindrical container. When the Reynolds number, based on the radius of the cylinder and its angular velocity, increases, the flow, which is initially centrosymmetric, loses its stability and bifurcates to a quasiperiodic motion. This unsteady and asymmetric flow is shown to be capable of sustaining dynamo action in the linear and nonlinear regimes. The magnetic field thus generated is unsteady and quadrupolar. These numerical evidences of dynamo action in a precessing cylindrical container may be useful for an experiment now planned at the Dresden sodium facility for dynamo and thermohydraulic studies in Germany.
Optical trapping and optical binding using cylindrical vector beams
Directory of Open Access Journals (Sweden)
S. E. Skelton
2011-09-01
Full Text Available We report on the use of cylindrical vector beams for optical manipulation of micron and sub-micron sized particles using the methods of a single-beam gradient force trap (optical tweezers and an evanescent-field surface trap (optical binding. We have demonstrated a stable interferometric method for the synthesis of cylindrical vector beams (CVBs, and present measurements demonstrating polarization-controlled focal volume shaping using CVBs in an optical tweezers. Furthermore we show how appropriate combinations of CVBs corresponding to superpositions of optical fibre modes can be used for controlled trapping and trafficking of micro- and nanoparticles along a tapered optical fibre.
Active Constrained Layer Damping of Thin Cylindrical Shells
RAY, M. C.; OH, J.; BAZ, A.
2001-03-01
The effectiveness of the active constrained layer damping (ACLD) treatments in enhancing the damping characteristics of thin cylindrical shells is presented. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. Experiments are performed to verify the numerical predictions. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Gravitational collapse of a cylindrical null shell in vacuum
Directory of Open Access Journals (Sweden)
S. Khakshournia
2008-03-01
Full Text Available Barrabès-Israel null shell formalism is used to study the gravitational collapse of a thin cylindrical null shell in vacuum. In general the lightlike matter shell whose history coincides with a null hypersurface is characterized by a surface energy density. In addition, a gravitational impulsive wave is present on this null hypersurface whose generators admit both the shear and expansion. In the case of imposing the cylindrical flatness the surface energy-momentum tensor of the matter shell on the null hypersurface vanishes and the null hyper- surface is just the history of the gravitational wave .
Efficient Generation of Truncated Bessel Beams using Cylindrical Waveguides
Ilchenko, Vladimir S.; Mohageg, Makan; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Maleki, Lute
2007-01-01
In this paper we address efficient conversion between a Gaussian beam (a truncated plane wave) and a truncated Bessel beam of agiven order, using cylindrical optical waveguides and whispering gallery mode resonators. Utilizing a generator based on waveguides combined with whispering gallery mode resonators, we have realized Bessel beams of the order of 200 with a conversion efficiency exceeding 10 %.
A winning strategy for 3 x n Cylindrical Hex
DEFF Research Database (Denmark)
Huneke, S. C.; Hayward, R.; Toft, Bjarne
2014-01-01
For Cylindrical Hex on a board with circumference 3, we give a winning strategy for the end-to-end player. This is the first known winning strategy for odd circumference at least 3, answering a question of David Gale. (C) 2014 Elsevier B.V. All rights reserved....
QUASI-PML FOR WAVES IN CYLINDRICAL COORDINATES. (R825225)
We prove that the straightforward extension of Berenger's original perfectly matched layer (PML) is not reflectionless at a cylindrical interface in the continuum limit. A quasi-PLM is developed as an absorbing boundary condition (ABC) for the finite-difference time-domain method...
Imaging for Borehole Wall by a Cylindrical Linear Phased Array
Institute of Scientific and Technical Information of China (English)
ZHANG Bi-Xing; SHI Fang-Fang; WU Xian-Mei; GONG Jun-Jie; ZHANG Cheng-Guang
2010-01-01
@@ A new ultrasonic cylindrical linear phased array (CLPA) transducer is designed and fabricated for the borehole wall imaging in petroleum logging based on the previous theoretical researches.First,the CLPA transducer,which is made up of numbers of the piezoelectric elements distributed on the surface of a cylinder uniformly,is designed and fabricated.
A circumferential crack in a cylindrical shell under tension.
Duncan-Fama, M. E.; Sanders, J. L., Jr.
1972-01-01
A closed cylindrical shell under uniform internal pressure has a slit around a portion of its circumference. Linear shallow shell theory predicts inverse square-root-type singularities in certain of the stresses at the crack tips. This paper reports the computed strength of these singularities for different values of a dimensionless parameter based on crack length, shell radius and shell thickness.
3D impurity inspection of cylindrical transparent containers
DEFF Research Database (Denmark)
Kragh, Mikkel Fly; Bjerge, Kim; Ahrendt, Peter
2016-01-01
This paper presents a method for automatically detecting and three-dimensionally positioning particles based on sequences of 2D images of rotating cylindrical transparent containers. The method can be used in the manufacturing industry by distinguishing between particles residing inside or outsid...
Constitutive sensitivity of the oscillatory behaviour of hyperelastic cylindrical shells
Aranda-Iglesias, D.; Vadillo, G.; Rodríguez-Martínez, J. A.
2015-12-01
Free and forced nonlinear radial oscillations of a thick-walled cylindrical shell are investigated. The shell material is taken to be incompressible and isotropic within the framework of finite nonlinear elasticity. In comparison with previous seminal works dealing with the dynamic behaviour of hyperelastic cylindrical tubes, in this paper we have developed a broader analysis on the constitutive sensitivity of the oscillatory response of the shell. In this regard, our investigation is inspired by the recent works of Bucchi and Hearn (2013) [28,29], who carried out a constitutive sensitivity analysis of similar problem with hyperelastic cylindrical membranes subjected to static inflation. In the present paper we consider two different Helmholtz free-energy functions to describe the material behaviour: Mooney-Rivlin and Yeoh constitutive models. We carry out a systematic comparison of the results obtained by application of both constitutive models, paying specific attention to the critical initial and loading conditions which preclude the oscillatory response of the cylindrical tube. It has been found that these critical conditions are strongly dependent on the specific constitutive model selected, even though both Helmholtz free-energy functions were calibrated using the same experimental data.
Capillary condensation of 4He in cylindrical pores
Urrutia, Ignacio; Szybisz, Leszek
2004-10-01
The adsorption of superfluid 4He confined into cylindrical pores of alkali metals is illustrated by looking at the case of Na. A density functional formalism is utilized for the theoretical description. The energetics and density profiles are determined as a function of the radius of cylinders and the filling fraction. These results are compared with those provided by a simple model recently proposed.
Characterization of Density Profile of Cylindrical Pulsed Gas Jets
Institute of Scientific and Technical Information of China (English)
YU Quan-Zhi; LI Yu-Tong; ZhANG Jie; ZHENG Jun; LI Han-Ming; PENG Xiao-Yu; LI Kun
2004-01-01
@@ We investigated the characteristics of argon and helium gas jets produced by a cylindrical nozzle under pressures from I to 6 Mpa using a femtosecond laser interferometry. A radial parabolic distribution and an axial exponential distribution of the gas jet density profiles are identified. The results show that the density increases linearly with the backing pressure.
Spherical coordinate descriptions of cylindrical and spherical Bessel beams.
Poletti, M A
2017-03-01
This paper derives a generalized spherical harmonic description of Bessel beams. The spherical harmonic description of the well-known cylindrical Bessel beams is reviewed and a family of spherical Bessel beams are introduced which can provide a number of azimuthal phase variations for a single beam radial amplitude. The results are verified by numerical simulations.
On stability cylindrical shell with a viscoelastic core
2013-01-01
Stability of cylindrical shell with a viscoelastic core is investigated under action both of external uniform pressure and constant temperature field. Core effect is modelled by means of Winkler formula. Besides of instant and prolonged critical parameters, the instability critical time are defined.
Chaotic Vibrations of Closed Cylindrical Shells in a Temperature Field
Directory of Open Access Journals (Sweden)
A.V. Krysko
2008-01-01
Full Text Available Complex vibrations of cylindrical shells embedded in a temperature field are studied, and the Bubnov-Galerkin method in higher approximations and in the Fourier representation is applied. Both lack and influence of temperature field on the shell dynamics are analyzed.
Internally Pressurized Spherical and Cylindrical Cavities in Rock Salt
DEFF Research Database (Denmark)
Krenk, Steen
1978-01-01
The paper deals with the stress distribution around cavities under pressure in an infinite, non-linear elastic material. A homogeneous stress state is assumed at infinity. For spherical and cylindrical cavities simple formulae are derived for the stress concentration, the extent of the non-linear...
KE-Rod Initial Velocity of Hollow Cylindrical Charge
Directory of Open Access Journals (Sweden)
Wang Shushan
2011-01-01
Full Text Available KE-rod warhead is a kind of forward interception warhead. To control the KE-rods to disperse uniformly, the hollow cylindrical charge is applied. Initial velocity is crucial to KE-rods distribution and the coordination between the fuze and the warhead. Therefore, based on the classical Gurney formula of cylindrical charge and tabulate interlayer charge, a mathematical model for calculating the KE-rod initial velocity of hollow cylindrical charge has been deduced based on certain assumptions, of which the basis theory is energy and momentum conservation. To validate this deduced equation, high-speed photography and metal-pass target experimental methods were applied simultaneously to test the initial velocity of designed KE-rod warhead. Testing results clearly indicate that the calculated results of the derived mathematical model coincides with the experimental results, and with the increase in hollow radius, the calculated results become much closer to the experimental results. But the calculated results of classical Gurney formula are far above the experimental results, and the relative error increases with increase in the hollow diameter. The derived mathematical model with satisfactory accuracy is applicable to calculate the KE-rod initial velocity of hollow cylindrical charge in engineering applications.Defence Science Journal, 2011, 61(1, pp.25-29, DOI:http://dx.doi.org/10.14429/dsj.61.72
Development and Evaluation of Gold 3D Cylindrical Nanoelectrode Ensembles
Institute of Scientific and Technical Information of China (English)
CAO Li-Xin; YAN Pei-Sheng; SUN Ke-Ning; KIRK W Donald
2007-01-01
Gold 3D cylindrical nanoelectrode ensembles (NEEs), 100 nm in diameter and 500 nm in length were prepared by electroless template synthesis in polycarbonate filter membranes, followed by selective controlled chemical etching. The morphology of the nanowires and cylindrical NEEs was imaged by scanning electron microscopy. The protruding nanoelectrodes were in good parallel order. EDX study showed that the nanoelectrode elements consisted of pure gold. The electrochemical evaluation of the 3D electrodes was conducted using the well known [Fe(CN)6]3-/[Fe(CN)6]4- couple. Cyclic voltammgrams (CV) show a very low double layer charging current and a higher ratio of signal to background current than 2D disc NEEs. Electrochemical impedance spectroscopy (EIS) indicates that the 3D cylindrical NEEs effectively accelerate the charge transfer process, which is in consistent with the results of CV. The linear relationship with a slope of 0.5 between lg Ipc and lg v shows that linear diffusion is dominant on the 3D cylindrical NEEs at conventional scan rates.
Static Solutions of Einstein's Equations with Cylindrical Symmetry
Trendafilova, C. S.; Fulling, S. A.
2011-01-01
In analogy with the standard derivation of the Schwarzschild solution, we find all static, cylindrically symmetric solutions of the Einstein field equations for vacuum. These include not only the well-known cone solution, which is locally flat, but others in which the metric coefficients are powers of the radial coordinate and the spacetime is…
PCM thermal energy storage in cylindrical containers of various configurations
Energy Technology Data Exchange (ETDEWEB)
Mujumdar, A.S.; Ali Ashraf, F.; Menon, A.S.; Weber, M.E.
1981-01-01
Experimental measurements are reported for the time variation of surface-averaged rate of heat storage during melting in single, thin-walled cylindrical containers of copper filled with a commercially available paraffin wax. For the wax used the enthalpy-temperature curve was obtained using a differential scanning calorimeter according to the ASTM method. 12 refs.
A cylindrical drift chamber with azimuthal and axial position readout
Energy Technology Data Exchange (ETDEWEB)
Bar-Yam, Z.; Cummings, J.P.; Dowd, J.P.; Eugenio, P.; Hayek, M.; Kern, W.; King, E.; Shenhav, N.; Chung, S.U.; Hackenburg, R.W.; Olchanski, C.; Weygand, D.P.; Willutzki, H.J.; Brabson, B.B.; Crittenden, R.R.; Dzierba, A.R.; Gunter, J.; Lindenbusch, R.; Rust, D.R.; Scott, E.; Smith, P.T.; Sulanke, T.; Teige, S.; Denisov, S.; Dushkin, A.; Kochetkov, V.; Lipaev, V.; Popov, A.; Shein, I.; Soldatov, A.; Anoshina, E.V.; Bodyagin, V.A.; Demianov, A.I.; Gribushin, A.M.; Kodolova, O.L.; Korotkikh, V.L.; Kostin, M.A.; Ostrovidov, A.I.; Sarycheva, L.I.; Sinev, N.B.; Vardanyan, I.N.; Yershov, A.A.; Adams, T.; Bishop, J.M.; Cason, N.M.; Sanjari, A.H.; LoSecco, J.M.; Manak, J.J.; Shephard, W.D.; Stienike, D.L.; Taegar, S.A.; Thompson, D.R.; Brown, D.S.; Pedlar, T.; Seth, K.K.; Wise, J.; Zhao, D.; Adams, G.S.; Napolitano, J.; Nozar, M.; Smith, J.A.; Witkowski, M. [Massachusetts Univ., North Dartmouth, MA (United States)]|[Brookhaven National Laboratory, Upton, L.I., NY 11973 (United States)]|[Indiana University, Bloomington, IN 47405 (United States)]|[Institute for High Energy Physics, Protvino (Russian Federation)]|[Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)]|[University of Notre Dame, Notre Dame, IN 46556 (United States)]|[Northwestern University, Evanston, IL 60208 (United States)]|[Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)
1997-02-21
A cylindrical multiwire drift chamber with axial charge-division has been constructed and used in experiment E852 at Brookhaven National Laboratory. It serves as a trigger element and as a tracking device for recoil protons in {pi}{sup -}p interactions. We describe the chamber`s design considerations, details of its construction, electronics, and performance characteristics. (orig.).
Charged Cylindrical Polytropes with Generalized Polytropic Equation of State
Azam, M; Noureen, I; Rehman, M A
2016-01-01
We study the general formalism of polytropes in relativistic regime with generalized polytropic equations of state in the vicinity of cylindrical symmetry. We take charged anisotropic fluid distribution of matter with conformally flat condition for the development of general framework of polytropes. We discussed the stability of the model by Whittaker formula and concluded that one of the developed model is physically viable.
Microfabrication of cylindrical microfluidic channel networks for microvascular research.
Huang, Zhouchun; Li, Xiang; Martins-Green, Manuela; Liu, Yuxin
2012-10-01
Current methods for formation of microvascular channel scaffolds are limited with non-circular channel cross-sections, complicated fabrication, and less flexibility in microchannel network design. To address current limitations in the creation of engineered microvascular channels with complex three-dimensional (3-D) geometries in the shape of microvessels, we have developed a reproducible, cost-effective, and flexible micromanufacturing process combined with photolithographic reflowable photoresist and soft lithography techniques to fabricate cylindrical microchannel and networks. A positive reflowable photoresist AZ P4620 was used to fabricate a master microchannel mold with semi-circular cross-sections. By the alignment and bonding of two polydimethylsiloxane (PDMS) microchannels replicated from the master mold together, a cylindrical microchannel or microchannel network was created. Further examination of the channel dimensions and surface profiles at different branching levels showed that the shape of the microfluidic channel was well approximated by a semi-circular surface, and a multi-level, multi-depth channel network was created. In addition, a computational fluidic dynamics (CFD) model was used to simulate shear flows and corresponding pressure distributions inside of the microchannel and channel network based on the dimensions of the fabricated channels. The fabricated multi-depth cylindrical microchannel network can provide platforms for the investigation of microvascular cells growing inside of cylindrical channels under shear flows and lumen pressures, and work as scaffolds for the investigation of morphogenesis and tubulogenesis.
Strength Reliability Analysis of Stiffened Cylindrical Shells Considering Failure Correlation
Institute of Scientific and Technical Information of China (English)
Xu Bai; Liping Sun; Wei Qin; Yongkun Lv
2014-01-01
The stiffened cylindrical shell is commonly used for the pressure hull of submersibles and the legs of offshore platforms. There are various failure modes because of uncertainty with the structural size and material properties, uncertainty of the calculation model and machining errors. Correlations among failure modes must be considered with the structural reliability of stiffened cylindrical shells. However, the traditional method cannot consider the correlations effectively. The aim of this study is to present a method of reliability analysis for stiffened cylindrical shells which considers the correlations among failure modes. Firstly, the joint failure probability calculation formula of two related failure modes is derived through use of the 2D joint probability density function. Secondly, the full probability formula of the tandem structural system is given with consideration to the correlations among failure modes. At last, the accuracy of the system reliability calculation is verified through use of the Monte Carlo simulation. Result of the analysis shows the failure probability of stiffened cylindrical shells can be gained through adding the failure probability of each mode.
Flow-induced vibrations of circular cylindrical structures. [LMFBR
Energy Technology Data Exchange (ETDEWEB)
Chen, S.
1977-06-01
The problems of flow-induced vibrations of circular cylindrical structures are reviewed. First, the general method of analysis and classification of structural responses are presented. Then, the presentation is broken up along the lines with stationary fluid, parallel flow, and cross flow. Finally, design considerations and future research needs are pointed out. 234 references.
The cylindrical or tubiliform glands of Nephila clavipes.
Candelas, G C; Ortiz, A; Molina, C
1986-02-01
The cylindrical or tubiliform glands of the spider Nephila clavipes have been studied and compared to the large ampullates on which we have previously reported. The three pairs of cylindrical or tubiliform glands secrete the fibroin for the organism's egg case. Their solubilized luminar contents migrate as a homogeneous band in Sodium dodecyl sulfate polyacrylamide gel electrophoresis and turn out to be a larger protein than that produced by the large ampullates. The excised cylindrical glands remain metabolically active for several hours in a simple culture medium, where fibroin synthesis can be monitored through the incorporation of 14C alanine. The glands' response to a fibroin production stimulus does not reach the magnitude displayed by the large ampullates, but this is to be expected since their products supply different functions in this organism. This fibroin also seems to be elongated discontinuously. Translational pauses have been detected in the secretory epithelium of cylindrical and large ampullate glands of Nephila as well as in the silk glands of Bombyx mori. Since these glands produce the fibroin for the females egg case, they should prove to be an interesting model system.
Employing a cylindrical single crystal in gas-surface dynamics
Hahn, C.; Shan, J.; Liu, Y.; Berg, van den O.; Kleijn, A.W.; Juurlink, L.B.F.
2012-01-01
We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a crysta
The Quality Factor of the Folded Cylindrical Helix
Directory of Open Access Journals (Sweden)
S. R. Best
2009-12-01
Full Text Available Any electrically small antenna can be impedance matched at any single frequency using a number of well known techniques. Once the small antenna is impedance matched, the primary characteristics of interest are its radiation efficiency, its operating bandwidth and to a lesser extent, its radiation patterns. The bandwidth of the small antenna is often quantified using the antenna's quality factor (Q since fundamental lower bounds for Q are defined in terms of the antenna's occupied volume. The lower bound on Q, also known as the Chu-limit, is defined in terms of the spherical volume occupied by the antenna. However, many small antenna designs are constrained to fit within volumes other than a sphere. To address this issue, Gustafsson et al derived lower bounds for antennas of arbitrary shape with a specific focus on cylindrical and planar shaped antennas. In this paper we consider the quality factor of the folded cylindrical helix, an antenna design that effectively utilizes the available cylindrical volume. We compare its Q to the Gustaffson limit as a function of length-to-diameter ratio, while maintaining a fixed value of ka, and show that it’s Q is at or above Gustafsson’s lower bound for cylindrical shaped antennas.
Magnetoresistance of cylindrical nanowires with artificial pinning site
Vidal, Enrique Vilanova
2015-05-01
New concepts of magnetic memory devices are exploiting the movement of data bits by current induced domain wall motion. This concept has been widely explored with rectangular nanowires (NWs) or stripes both theoretically and experimentally [1]. In the case of cylindrical NWs not much progress has been made on the experimental side, despite its promising advantages like the absence of Walker breakdown [2].
Development of new cylindrical magnetrons for industrial use
Clayton, B
2000-01-01
four-fold system. In an attempt to tackle this problem, a finite element model of the magnetic field generated by the magnetic assembly was built, run and verified. Changes were made to this model, and a new .magnet assembly was built and tested based on the results obtained. This did not lead to a final solution of the problem, but has set bounds within which the solution must lie. A number of alternative techniques were considered and tested with a view to the construction of a cylindrical sputtering device. This device was required to be capable of depositing tribological coatings inside approximately cylindrical substrates of diameters less than 100mm, in an industrial situation. A cylindrical magnetron device was designed, and constructed as a prototype, using a magnetic assembly inside a cylindrical target with outside diameter (o.d.) 40mm. Two alternative magnetic assemblies were tested, and found to have complimentary advantages. The magnetron characteristics of the device were tested, as were key pro...
Polaron in a quasi 1D cylindrical quantum wire
Directory of Open Access Journals (Sweden)
I.Nsangou
2005-01-01
Full Text Available Polaron states in a quasi 1D cylindrical quantum wire with a parabolic confinement potential are investigated applying the Feynman variational principle. The effect of the wire radius on the polaron ground state energy level, the mass and the Fröhlich electron-phonon-coupling constant are obtained for the case of a quasi 1D cylindrical quantum wire. The effect of anisotropy of the structure on the polaron ground state energy level and the mass are also investigated. It is observed that as the wire radius tends to zero, the polaron mass and energy diverge logarithmically. The polaron mass and energy differ from the canonical strong-coupling behavior by the Fröhlich electron-phonon coupling constant and the radius of the quasi 1D cylindrical quantum wire that are expressed through a logarithmic function. Moreover, it is observed that the polaron energy and mass for strong coupling for the case of the quasi 1D cylindrical quantum wire are greater than those for bulk crystals. It is also observed that the anisotropy of the structure considerably affects both the polaron ground state energy level and the mass. It is found that as the radius of the cylindrical wire reduces, the regimes of the weak and intermediate coupling polaron shorten while the region of the strong coupling polaron broadens and extends into those of the weak and intermediate ones. Analytic expressions for the polaron ground state energy level and mass are derived for the case of strong coupling polarons.
Directory of Open Access Journals (Sweden)
Farhad Ali
2016-08-01
Full Text Available In this paper we find the Noether symmetries of the Lagrangian of cylindrically symmetric static spacetimes. Using this approach we recover all cylindrically symmetric static spacetimes appeared in the classification by isometries and homotheties. We give different classes of cylindrically symmetric static spacetimes along with the Noether symmetries of the corresponding Lagrangians and conservation laws.
Design algorithm for generatrix profile of cylindrical crowned rollers
Directory of Open Access Journals (Sweden)
Creţu Spiridon
2017-01-01
Full Text Available The cross-section of roller profile controls the pressure distribution in the contact area and radically affects the roller bearings basic dynamic load rating and rating lives. Today the most used roller profiles are the logarithmic profile and cylindrical-crowned (ZB profile. The logarithmic profile has a continuous evolution with no discontinuities till the intersection with the end fillet while ZB profile has two more discontinuities at the intersections points between the crowning circle and straight line generatrix. Using a semianalytical method, a numerical study has been carried out to find the optimum ZB profile for rollers incorporated in cylindrical rollers bearings. The basic reference rating life (L10_r has been used as optimization criterion.
NONLINEAR THEORY OF DYNAMIC STABILITY FOR LAMINATED COMPOSITE CYLINDRICAL SHELLS
Institute of Scientific and Technical Information of China (English)
周承倜; 王列东
2001-01-01
Hamilton Principle was uaed to derive the general governing equations of nonlinear dynamic stability for laminated cylindrical shells in which, factors of nonlinear large deflection, transverse shear and longitudinal inertia force were concluded. Equations were solved by variational method. Analysis reveals that under the action of dynamic load,laminated cylindrical shells will fall into a state of parametric resonance and enter into the dynamic unstable region that causes dynamic instability of shells. Laminated shells of three typical composites were computed: i.e. T300/5 208 graphite epoxy E-glass epoxy, and ARALL shells. Results show that all factors will induce important influence for dynamic stability of laminated shells. So, in research of dynamic stability for laminated shells, to consider these factors is important.
Selective decay in a long cylindrical geometry in SSX
Gray, T.; Brown, M.; Dandurand, D.; Zhang, X.
2010-11-01
A helical, minimum-energy relaxed plasma state has been observed in a long cylindrical volume. The cylinder is long enough (L/R = 13) so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >=50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. The relaxed state is rapidly attained in 1--2 axial Alfvén times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇xB = λB. Merging experiments are planned and additional data will be presented if available.
Shielding and Radiation Characteristics of Cylindrical Layered Bianisotropic Structures
Directory of Open Access Journals (Sweden)
A. Toscano
2005-12-01
Full Text Available In this paper we propose an analytical study in the spectral domainof cylindrical layered structures filled with general bianisotropicmedia and fed by a 3D electric source. The integrated structure ischaracterized in terms of transmission matrices leading to anequivalent circuit representation of the whole multilayered structure.Within the framework of this two-port formalism, we present a newcontribution to the computation of the Green's function arising in theanalysis of multilayered conformal integrated antennas loaded withgeneral bianisotropic materials. We also propose an analytical study ofthe shielding effectiveness of general bianisotropic materials locatedin multilayered, cylindrical configuration. The expression of theshielded fields sustained both by plane wave and arbitrary sources isobtained in a closed analytical form. Numerical results are alsopresented showing effects of electromagnetic parameters on radiationpattern, matching properties and radar cross section of the integratedstructure.
Gamma ray absorption of cylindrical fissile material with dual shields
Institute of Scientific and Technical Information of China (English)
WU Chen-Yan; TIAN Dong-Feng; CHENG Yi-Ying; HUANG Yong-Yi; LU Fu-Quan; YANG Fu-Jia
2005-01-01
This work analyzed the gamma ray attenuation effect from the self-absorption and shield attenuation perspectively. An exact mathematical equation was given for the geometric factor of the cylindrical fissile material with dual shields. In addition, several approximation approaches suitable for real situation were discussed, especially in the radial and axial directions of the cylinders, since the G-factors have simple forms. Then the space distribution patterns of the G-factor were analyzed based on numerical result and effective ways to solve the geometric information of the cylindrical fissile material, the radii and the heights, were deduced. This method was checked and verified by numerical calculation. Because of the efficiency of the method, it is ideal for application in real situations, such as nuclear safeguards, which demands speed of detection and accuracy of geometric analysis.
Dynamic response of cylindrical lined cavity in elastic medium
Institute of Scientific and Technical Information of China (English)
高盟; 王滢; 高广运
2013-01-01
An analytical solution to the transient dynamic response of a cylindrical lining subjected to an internal loading was presented and the dynamic interaction between the lining and surrounding soil was considered. The lining structure and the soil were treated as a cylindrical elastic shell and an infinite elastic compressible medium, respectively. A two-dimensional axisymmetric wave equation was derived from the governing equation of displacement by introducing the potential functions. Shell equation of motion was established based on continuity conditions. The closed-form solution for dynamic response of the lining due to an impact loading was obtained in Laplace transforms and inverse transforms. Detailed parametric studies were also presented to illustrate the influences of the Poisson ratio of soil, the dynamic shear moduli of both soil and lining and the thickness of lining on dynamic response of the lining.
Fem Formulation of Heat Transfer in Cylindrical Porous Medium
Azeem; Khaleed, H. M. T.; Soudagar, Manzoor Elahi M.
2017-08-01
Heat transfer in porous medium can be derived from the fundamental laws of flow in porous region ass given by Henry Darcy. The fluid flow and energy transport inside the porous medium can be described with the help of momentum and energy equations. The heat transfer in cylindrical porous medium differs from its counterpart in radial and axial coordinates. The present work is focused to discuss the finite element formulation of heat transfer in cylindrical porous medium. The basic partial differential equations are derived using Darcy law which is the converted into a set of algebraic equations with the help of finite element method. The resulting equations are solved by matrix method for two solution variables involved in the coupled equations.
Highly compressed nanosolution restricted in cylindrical carbon nanospaces
Nishi, Masayasu; Ohkubo, Takahiro; Tsurusaki, Kazuma; Itadani, Atsushi; Ahmmad, Bashir; Urita, Koki; Moriguchi, Isamu; Kittaka, Shigeharu; Kuroda, Yasushige
2013-02-01
We shed light on the specific hydration structure around a zinc ion of nanosolution restricted in a cylindrical micropore of single-wall carbon nanotube (SWNT) by comparison with the structure restricted in a cylindrical mesopore of multi-wall carbon nanotube (MWNT) and that of bulk aqueous solution. The average micropore width of open-pore SWNT was 0.87 nm which is equivalent to the size of a hydrated zinc ion having 6-hydrated water molecules. We could impregnate the zinc ions into the micropore of SWNT with negligible amounts of ion-exchanged species on surface functional groups by the appropriate oxidation followed by heat treatment under an inert condition. The results of X-ray absorption fine structure (XAFS) spectra confirmed that the proportion of dissolved species in nanospaces against the total adsorbed amounts of zinc ions on the open-pore SWNT and MWNT were 44 and 61%, respectively, indicating the formation of a dehydrated structure in narrower nanospaces. The structure parameters obtained by the analysis of XAFS spectra also indicate that the dehydrated and highly compressed hydration structure can be stably formed inside the cylindrical micropore of SWNT where the structure is different from that inside the slit-shaped micropore whose pore width is less than 1 nm. Such a unique structure needs not only a narrow micropore geometry which is equivalent to the size of a hydrated ion but also the cylindrical nature of the pore.We shed light on the specific hydration structure around a zinc ion of nanosolution restricted in a cylindrical micropore of single-wall carbon nanotube (SWNT) by comparison with the structure restricted in a cylindrical mesopore of multi-wall carbon nanotube (MWNT) and that of bulk aqueous solution. The average micropore width of open-pore SWNT was 0.87 nm which is equivalent to the size of a hydrated zinc ion having 6-hydrated water molecules. We could impregnate the zinc ions into the micropore of SWNT with negligible amounts of
NONLINEAR FARADAY WAVES IN A PARAMETRICALLY EXCITED CIRCULAR CYLINDRICAL CONTAINER
Institute of Scientific and Technical Information of China (English)
菅永军; 鄂学全; 柏威
2003-01-01
In the cylindrical coordinate system, a singular perturbation theory of multiple-scale asymptotic expansions was developed to study single standing water wave mode bysolving potential equations of water waves in a rigid circular cylinder, which is subject to avertical oscillation. It is assumed that the fluid in the circular cylindrical vessel is inviscid ,incompressible and the motion is irrotational, a nonlinear amplitude equation with cubicand vertically excited terms of the vessel was derived by expansion of two-time scales withoutconsidering the effect of surface tension. It is shown by numerical computation that differentfree surface standing wave patterns will be formed in different excited frequencies andamplitudes. The contours of free surface waves are agreed well with the experimental resultswhich were carried out several years ago.
Electrostatic resonances and optical responses of cylindrical clusters
Choy, C. W.; Xiao, J. J.; Yu, K. W.
2008-12-01
We developed a Green function formalism (GFF) for computing the electrostatic resonance in clusters of cylindrical particles. In the GFF, we take advantage of a surface integral equation to avoid matching the complicated boundary conditions on the surfaces of the particles. Numerical solutions of the eigenvalue equation yield a pole spectrum in the spectral representation. The pole spectrum can in turn be used to compute the optical response of these particles. For two cylindrical particles, the results are in excellent agreement with the exact results from the multiple image method and the normal mode expansion method. The results of this work can be extended to investigate the enhanced nonlinear optical responses of metal-dielectric composites, as well as optical switching in plasmonic waveguides.
Elasticity solutions for functionally graded plates in cylindrical bending
Institute of Scientific and Technical Information of China (English)
YANG Bo; DING Hao-jiang; CHEN Wei-qiu
2008-01-01
The plate theory of functionally graded materials suggested by Mian and Spencer is extended to analyze the cylindrical bending problem of a functionally graded rectangular plate subject to uniform load. The expansion formula for displacements is adopted. While keeping the assumption that the material parameters can vary along the thickness direction in an arbitrary fashion, this paper considers orthotropic materials rather than isotropic materials. In addition, the traction-free condition on the top surface is replaced with the condition of uniform load applied on the top surface. The plate theory for the particular case of cylindrical bending is presented by considering an infinite extent in the y-direction. Effects of boundary conditions and material inhomogeneity on the static response of functionally graded plates are investigated through a numerical example.
Enhanced converse magnetoelectric effect in cylindrical piezoelectric-magnetostrictive composites
Wu, Gaojian; Zhang, Ru; Zhang, Ning
2016-10-01
Enhanced converse magnetoelectric (ME) effect has been experimentally observed in cylindrical PZT-Terfenol-D piezoelectric-magnetostrictive bilayered composites, where the piezoelectric and magnetostrictive components are coupled through normal stresses instead of shear stresses that act in most of previous multiferroic composites. A theoretical model based on elastodynamics analysis has been proposed to describe the frequency response of converse ME effect for axial and radial modes in the bilayered cylindrical composites. The theory shows good agreement with the experimental results. The different variation tendency of resonant converse ME coefficient, as well as different variation rate of resonance frequency with bias magnetic field for axial and radial modes is interpreted in terms of demagnetizing effect. This work is of theoretical and technological significance for the application of converse ME effect as magnetic sensor, transducers, coil-free flux switch, etc.
Cylindrical luminescent solar concentrators with near-infrared quantum dots.
Inman, R H; Shcherbatyuk, G V; Medvedko, D; Gopinathan, A; Ghosh, S
2011-11-21
We investigate the performance of cylindrical luminescent solar concentrators (CLSCs) with near-infrared lead sulfide quantum dots (QDs) in the active region. We fabricate solid and hollow cylinders from a composite of QDs in polymethylmethacrylate, prepared by radical polymerization, and characterize sample homogeneity and optical properties using spectroscopic techniques. We additionally measure photo-stability and photocurrent outputs under both laboratory and external ambient conditions. The experimental results are in good agreement with theoretical calculations which demonstrate that the hollow CLSCs have higher absorption of incident radiation and lower self-absorption compared to solid cylindrical and planar geometries with similar geometric factors, resulting in a higher optical efficiency. © 2011 Optical Society of America
Rated MW from a heliostat field on cylindrical external receiver
Energy Technology Data Exchange (ETDEWEB)
Al-Rabghi, O.M.; Fathalah, K.A. [King Abdulaziz Univ., Mechanical Engineering Dep., Jeddah (Saudi Arabia); Elsayed, M.M. [Kuwait Univ., Mechanical Engineering Dep., Safat (Kuwait)
1995-12-31
Some of the reflected beam radiation from a heliostat field bypasses the receiver surface. The spillage factor which is a measure of how much of reflected beam radiation actually intercepted by the receiver surface, is calculated and plotted for easy access. The variation of the spillage with tower height, external cylindrical receiver size, dimensionless radial distance from the tower is computed and plotted. The value of the rated MW energy absorbed by an external cylindrical receiver, is investigated, and its relations to the tower height, the site location and the field radius are given. The effect of changing the radial spacing on the rated MW and the total number of heliostats in the field is also computed and depicted. The developed set of charts for the spillage factor are believed to be very useful for solar central receiver system design. (author) 7 figs., 21 refs.
Plastic Buckling of Cylindrical Shells Under Transverse Loading
Institute of Scientific and Technical Information of China (English)
ZHANG Chonghou; LIU Yansheng; Yoshiaki Goto
2008-01-01
Thick cylindrical shells under transverse loading exhibit an elephant foot buckling mode, whereas moderately thick cylindrical shells show a diamond buckling mode. There exists some intermediate geome- try at which the transition between buckling modes can take place. This behavior is significantly influenced by the radius-to-thickness ratio and the material yield strength, rather than the length-to-radius ratio and the axial force. This paper presents a critical value at which the transition of buckling modes occurs as a func- tion of the radius-to-thickness ratio and the material yield strength. The result shows that the circumferential wave number of the diamond buckling mode increases with decreasing wall thickness. The strain concentra- tion is also intensified for the diamond buckling modes compared with the elephant foot buckling modes.
Friction Compensation in the Upsetting of Cylindrical Test Specimens
DEFF Research Database (Denmark)
Christiansen, Peter; Martins, P. A. F.; Bay, Niels Oluf
2016-01-01
This manuscript presents a combined numerical andexperimental methodology for determining the stress-straincurve of metallic materials from the measurements of forceand displacement obtained in the axial compression of cylindrical test specimens with friction between the specimens and the platens...... model or combined friction models are utilized .Experimental results obtained from cylindrical and Rastegaev test specimens with different lubricants combined with the experimental determination of friction by means of ring compression tests allows compensating the effect of friction...... in the determination of the material flow curve. Comparison with the flow curves determined without friction compensation shows the viability of the proposed methodology. The proposed methodology is a simple and effective alternative to other solutions available in the literature and the pseudo-code supplied inthe...
Settling of a cylindrical particle in a stagnant fluid
DEFF Research Database (Denmark)
Sørensen, Henrik; Rosendahl, Lasse; Yin, Chungen
2007-01-01
on their motion. In total 66 experiments were carried out with a particle Reynolds number in the range between 2000 and 15000. All experiments show a distinct oscillation around one of the particle minor axes. For all experiments the oscillating velocity is compared to the mean settling velocity, and it is found......The objective of this work is to collect data and develop models for cylindrical particles which could be used in numerical multiphase flow modeling. Trajectories of cylindrical particles settling in stagnant water are filmed from two directions in order to derive detailed information...... that the oscillating velocity increases with increasing mean settling velocity. Based on the experiment new expressions for drag and lift coefficient are proposed....
Nonlinear dynamical behavior of shallow cylindrical reticulated shells
Institute of Scientific and Technical Information of China (English)
WANG Xin-zhi; LIANG Cong-xing; HAN Ming-jun; YEH Kai-yuan; WANG Gang
2007-01-01
By using the method of quasi-shells , the nonlinear dynamic equations of three-dimensional single-layer shallow cylindrical reticulated shells with equilateral triangle cell are founded. By using the method of the separating variable function, the transverse displacement of the shallow cylindrical reticulated shells is given under the conditions of two edges simple support. The tensile force is solved out from the compatible equations, a nonlinear dynamic differential equation containing second and third order is derived by using the method of Galerkin. The stability near the equilibrium point is discussed by solving the Floquet exponent and the critical condition is obtained by using Melnikov function. The existence of the chaotic motion of the single-layer shallow cylinmapping.
Beamformer for Cylindrical Conformal Array of Non-isotropic Antennas
Directory of Open Access Journals (Sweden)
ZOU, L.
2011-02-01
Full Text Available The principal objective of this investigation is to facilitate minimum variance distortionless response (MVDR beamforming technique for a cylindrical conformal array geometry. An array of directional radiating elements is postulated to cover a surface typical of the cylinder of an aircraft or missile. Borrowing the analysis of conformal array antennas, the authors first derive a deterministic expression that describes the beam pattern of arbitrary weighted cylindrical conformal array. Then, making use of the MVDR beamforming, we derive the beamformer for uniform linear array (ULA of directional antennas which are different from the traditional omnidirectional elements. Thus, the pattern of a directional element is synthesized by the antennas on the same ring array, and we design the MVDR beamformer, which uses MVDR beamforming for ULA of the synthesized pattern. To demonstrate the validity of the method, and cylinder arrays are constructed and experimental results agree well with theoretical expectations.
Performance of cylindrical-conical cyclones with different geometrical configurations
Directory of Open Access Journals (Sweden)
J.D.A.M. Santana
2001-09-01
Full Text Available The present work is a continuation of a study of the influence of geometric characteristics on the performance of reverse-flow cylindrical-conical cyclones. After studying the behavior of the pressure drop in previous work (Arnosti et al., 1998, here performance in terms of collection efficiency in the removal of particulate material is addressed. The independent variables considered in this study were inlet gas velocity (three velocities and the following dimensions of the cyclone: the cylindrical section (three heights and internal height of the gas exit duct (three heights. The tests were performed using an 3³ experimental design. Analysis of the results for overall efficiency was carried out using response surfaces and the statistical parameters were estimated from linear regression.
On sector magnets or transverse electromagnetic fields in cylindrical coordinates
Zolkin, Timofey
2016-01-01
The Laplace's equations for the scalar and vector potentials describing electric or magnetic fields in cylindrical coordinates with translational invariance along azimuthal coordinate are considered. The series of special functions which, when expanded in power series in radial and vertical coordinates, in lowest order replicate the harmonic homogeneous polynomials of two variables are found. These functions are based on radial harmonics found by Edwin~M.~McMillan in his more-than-40-years "forgotten" article, which will be discussed. In addition to McMillan's harmonics, second family of adjoint radial harmonics is introduced, in order to provide symmetric description between electric and magnetic fields and to describe fields and potentials in terms of same special functions. Formulas to relate any transverse fields specified by the coefficients in the power series expansion in radial or vertical planes in cylindrical coordinates with the set of new functions are provided. This result is no doubt important f...
Effective thermoelastic properties of composites with periodicity in cylindrical coordinates
Chatzigeorgiou, George
2012-09-01
The aim of this work is to study composites that present cylindrical periodicity in the microstructure. The effective thermomechanical properties of these composites are identified using a modified version of the asymptotic expansion homogenization method, which accounts for unit cells with shell shape. The microscale response is also shown. Several numerical examples demonstrate the use of the proposed approach, which is validated by other micromechanics methods. © 2012 Elsevier Ltd. All rights reserved.
On the accuracy of the asymptotic theory for cylindrical shells
DEFF Research Database (Denmark)
Niordson, Frithiof; Niordson, Christian
1999-01-01
We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this shell theory for a cylindrical shell with clamped ends with the results of a solution to the three......-dimensional problem. The results are also compared with those of some commonly used engineering shell theories....
Rotating cylindrically symmetric Kaluza-Klein ﬂuid model
Indian Academy of Sciences (India)
Ramesh Tikekar; L K Patel
2000-09-01
Kaluza-Klein ﬁeld equations for stationary cylindrically symmetric ﬂuid models in standard Einstein theory are formulated and a set of physically viable solutions is reported. This set is believed to be the ﬁrst such Kaluza-Klein solutions and it includes the Kaluza-Klein counterpart of Davidson’s solution describing spacetime of a perfect ﬂuid in rigid rotation about a regular axis.
Charged cylindrical polytropes with generalized polytropic equation of state
Energy Technology Data Exchange (ETDEWEB)
Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan); Mardan, S.A.; Noureen, I.; Rehman, M.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan)
2016-09-15
We study the general formalism of polytropes in the relativistic regime with generalized polytropic equations of state in the vicinity of cylindrical symmetry. We take a charged anisotropic fluid distribution of matter with a conformally flat condition for the development of a general framework of the polytropes. We discuss the stability of the model by the Whittaker formula and conclude that one of the models developed is physically viable. (orig.)
Liquid-drop-like model for cylindrical helium systems
Szybisz, Leszek
2000-08-01
Free liquid 4He at T=0 K with cylindrical symmetry is studied. The ground-state energy and chemical potential are computed by using a density functional approach. A liquid-drop-like model is formulated for analyzing the behavior of these observables as a function of the size of the systems. It is shown that such a model allows to get precise information about the asymptotic values of the energy per particle and surface tension.
Resonance in a cylindrical wraparound microstrip structure with superstrate
Wong, Kin-Lu; Tsai, Ruenn-Bo; Row, Jeen-Sheen
1994-06-01
Analysis of the resonance problem of a cylindrical wrap-around microstrip structure with superstrate is presented. In this study the rigorous full-wave formulation and Galerkin's method are used. The numerical convergence for the selected sinusoidal basis functions with edge singularity is also discussed. Numerical results of the superstrate loading effects on the real and imaginary parts of complex resonant frequency of the structures as a radiator and as a resonator are calculated and analyzed.
Study of Contact Melting Inside Isothermally Heated Vertical Cylindrical Capsules
Institute of Scientific and Technical Information of China (English)
ChenWenzhen; ChengShangmo; 等
1993-01-01
Close-contact melting processes of phase change material(PCM) inside vertical cylindrical capsule are studied.PCM are heated bhy the capsule isothermalyy at the bottom and side.The theoretical formulas of the melting rate and thickness of liquid layer during the heat transfer process are obtained by analysis,which are convenient for engineering predictions.Finally,the factors that affect melting are discussed.and conclusions are drawn.
Charged cylindrical polytropes with generalized polytropic equation of state
Azam, M.; Mardan, S. A.; Noureen, I.; Rehman, M. A.
2016-09-01
We study the general formalism of polytropes in the relativistic regime with generalized polytropic equations of state in the vicinity of cylindrical symmetry. We take a charged anisotropic fluid distribution of matter with a conformally flat condition for the development of a general framework of the polytropes. We discuss the stability of the model by the Whittaker formula and conclude that one of the models developed is physically viable.
Beltrami flow structure in a diffuser. Quasi-cylindrical approximation
González, Rafael; Sartarelli, Andrés Salvador; 10.4279/PIP.040002
2012-01-01
We determine the flow structure in an axisymmetric diffuser or expansion region connecting two cylindrical pipes when the inlet flow is a solid body rotation with a uniform axial flow of speeds Omega and U, respectively. A quasi-cylindrical approximation is made in order to solve the steady Euler equation, mainly the Bragg-Hawthorne equation. As in our previous work on the cylindrical region downstream [R Gonz\\'alez et al., Phys. Fluids 20, 24106 (2008); R. Gonz\\'alez et al., Phys. Fluids 22, 74102 (2010), R Gonz\\'alez et al., J. Phys.: Conf. Ser. 296, 012024 (2011)], the steady flow in the transition region shows a Beltrami flow structure. The Beltrami flow is defined as a field v_B that satisfies omega_B=nabla v_B= gamma v_B, with gamma = constant. We say that the flow has a Beltrami flow structure when it can be put in the form v = U e_z + Omega r e_theta + v_B, being U and Omega constants, i.e it is the superposition of a solid body rotation and translation with a Beltrami one. Therefore, those findings a...
Modelization of coupled heat transfer inside a cylindrical glass block
Energy Technology Data Exchange (ETDEWEB)
Tanguier, J.L.; Kheiri, A.; Kleinclauss, J. [Faculte des Sciences, 54 - Vandoeuvre-les-Nancy (France)
1995-01-01
Modelization of coupled heat transfer inside a cylindrical glass block. In crystal industry, the furnaces used to warm up glass before forming are supplied with 4 bar pressure gas. They are noisy, polluting and high consumers of energy. To limit these effects and improve the energetic performances, an electrical infrared furnace is studied. To perfect it, it is necessary to identify the mechanisms of heat transfer which govern the evolution of the temperature into a cylindrical semitransparent media. After a long and thorough bibliography relative to the thermo-optical properties of crystal, the measurement of the field of temperature into the cylindrical block during the phases of working is led into the factory. To do this, it was necessary to adapt a reliable technical measurement device adjusted to industrial surrounding. A fundamental analysis of the results allows us to propose a model of the coupled heat transfer (radiation, conduction and convection) inside glass and between glass and its surroundings. The model is built on brightness and it is based on a triple discretization: temporal, spectral and zonal. This model provides the spectral distribution of the infrared radiation and the electrical power necessary to obtain a good heating of the crystal according to the manufactory charges. The first tests made with the experimental furnace, built by us, show that it is possible to warm up glass with infrared radiation and that this proceeding reduces the energy consumption and the nuisances. (authors). 19 refs., 7 figs.
Tunnel Point Cloud Filtering Method Based on Elliptic Cylindrical Model
Zhua, Ningning; Jiaa, Yonghong; Luo, Lun
2016-06-01
The large number of bolts and screws that attached to the subway shield ring plates, along with the great amount of accessories of metal stents and electrical equipments mounted on the tunnel walls, make the laser point cloud data include lots of non-tunnel section points (hereinafter referred to as non-points), therefore affecting the accuracy for modeling and deformation monitoring. This paper proposed a filtering method for the point cloud based on the elliptic cylindrical model. The original laser point cloud data was firstly projected onto a horizontal plane, and a searching algorithm was given to extract the edging points of both sides, which were used further to fit the tunnel central axis. Along the axis the point cloud was segmented regionally, and then fitted as smooth elliptic cylindrical surface by means of iteration. This processing enabled the automatic filtering of those inner wall non-points. Experiments of two groups showed coincident results, that the elliptic cylindrical model based method could effectively filter out the non-points, and meet the accuracy requirements for subway deformation monitoring. The method provides a new mode for the periodic monitoring of tunnel sections all-around deformation in subways routine operation and maintenance.
Fluid-structure coupled analysis of underwater cylindrical shells
Institute of Scientific and Technical Information of China (English)
AI Shang-mao; SUN Li-ping
2008-01-01
Underwater cylindrical shell structures have been found a wide of application in many engineering fields,such as the element of marine,oil platforms,etc.The coupled vibration analysis is a hot issue for these underwater structures.The vibration characteristics of underwater structures are influenced not only by hydrodynamic pressure but also by hydrostatic pressure corresponding to different water depths.In this study,an acoustic finite element method was used to evaluate the underwater structures.Taken the hydrostatic pressure into account in terms of initial stress stiffness,an acoustical fluid-structure coupled analysis of underwater cylindrical shells has been made to study the effect of hydrodynamic pressures on natural frequency and sound radiation.By comparing with the frequencies obtained by the acoustic finite element method and by the added mass method based on the Bessel function,the validity of present analysis was checked.Finally,test samples of the sound radiation of stiffened cylindrical shells were acquired by a harmonic acoustic analysis.The results showed that hydrostatic pressure plays an important role in determining a large submerged body motion,and the characteristics of sound radiation change with water depth. Furthermore,the analysis methods and the results are of significant reference value for studies of other complicated submarine structures.
Microfluidic step-emulsification in a cylindrical geometry
Chakraborty, Indrajit; Leshansky, Alexander M.
2016-11-01
The model microfluidic device for high-throughput droplet generation in a confined cylindrical geometry is investigated numerically. The device comprises of core-annular pressure-driven flow of two immiscible viscous liquids through a cylindrical capillary connected co-axially to a tube of a larger diameter through a sudden expansion, mimicking the microfluidic step-emulsifier (1). To study this problem, the numerical simulations of axisymmetric Navier-Stokes equations have been carried out using an interface capturing procedure based on coupled level set and volume-of-fluid (CLSVOF) methods. The accuracy of the numerical method was favorably tested vs. the predictions of the linear stability analysis of core-annular two-phase flow in a cylindrical capillary. Three distinct flow regimes can be identified: the dripping (D) instability near the entrance to the capillary, the step- (S) and the balloon- (B) emulsification at the step-like expansion. Based on the simulation results we present the phase diagram quantifying transitions between various regimes in plane of the capillary number and the flow-rate ratio. MICROFLUSA EU H2020 project.
Determining the axis orientation of cylindrical magnetic flux rope
Rong, Zhaojin; Wan, Weixing; Shen, Chao; Zhang, Tielong; Lui, Anthony; Wang, Yuming; Dunlop, malcolm; Zhang, Yongcun; Zong, Qiugang
2013-04-01
We develop a new simple method for inferring the orientation of a magnetic flux rope, which is assumed to be a time-independent cylindrically symmetric structure via the direct single-point analysis of magnetic field structure. The model tests demonstrate that, for the cylindrical flux rope regardless of whether it is force-free or not, the method can consistently yield the axis orientation of the flux rope with higher accuracy and stability than the minimum variance analysis of the magnetic field and the Grad-Shafranov reconstruction technique. Moreover, the radial distance to the axis center and the current density can also be estimated consistently. Application to two actual flux transfer events observed by the four satellites of the Cluster mission demonstrates that the method is more appropriate to be used for the inner part of flux rope, which might be closer to the cylindrical structure, showing good agreement with the results obtained from the optimal Grad-Shafranov reconstruction and the least squares technique of Faraday's law, but fails to produce such agreement for the outer satellite that grazes the flux rope. Therefore, the method must be used with caution.
Characteristics of Cylindrical Microwave Plasma Source at Low Pressure
Park, Seungil; Youn, S.; Kim, S. B.; Yoo, S. J.
2016-10-01
A microwave plasma source with a cylindrical resonance cavity has been proposed to generate the plasma at low pressure. This plasma source consists of magnetron, waveguide, antenna, and cavity. The microwave generating device is a commercial magnetron with 1 kW output power at the frequency of 2.45 GHz. The microwave is transmitted through the rectangular waveguide with the whistle shape, and coupled to the cavity by the slot antenna. The resonant mode of the cylindrical cavity is the TE111 mode. The operating pressure is between 0.1 Torr and 0.3 Torr with the Argon and nitrogen gas. The electron temperature and electron number density of argon plasma were measured with the optical emission spectroscopy measurement. And Ar1s5 metastable density was measured using tunable diode laser absorption spectroscopy (TDLAS). The plasma diagnostic results of a cylindrical microwave plasma source would be described in this study. This work was supported by R&D Program of ``Plasma Advanced Technology for Agriculture and Food (Plasma Farming)'' through the National Fusion Research Institute of Korea (NFRI) funded by the Government funds.
Optimization analysis on assembly interference of cylindrical roller bearings
Directory of Open Access Journals (Sweden)
Zhen-huan Ye
2015-07-01
Full Text Available Distribution of loads and contact stress has a great influence on fatigue life of bearings. In view of the fact that the nonload area is ubiquitous in cylindrical roller bearings, there is a method for prolonging the fatigue life design by adjusting the working clearance of cylindrical roller bearings. In this article, optimization model of fatigue life of cylindrical roller bearings is developed with a quasi-dynamic method and calculated method of bearing life based on micro-area contact, considering the effect of assembly interference, temperature rise, and high-speed centrifugation. Aiming to the different geometry parameters and operating parameters of bearings, the effects of assembly interference on bearing fatigue life are discussed. The results show that the optimum fatigue life of roller bearings is achieved at negative working clearance with the loads distributed evenly within half ring. The optimum working clearance of roller bearings is not influenced by radial load. But with the increase in pitch diameter or decrease in rolling elements, the optimum assembly interference increases, and accelerating revolution of roller bearings will increase the optimum assembly interference as well.
Cylindrical Effects on Magneto-Rayleigh-Taylor Instability
Weis, Matthew; Lau, Yue Ying; Gilgenbach, Ronald; Jennings, Christopher; Hess, Mark
2012-10-01
This paper concentrates on the effects of cylindrical geometry on the magneto-Rayleigh-Taylor instability (MRT), a major concern in the magnetized liner inertial fusion concept (MagLIF) [1]. Several issues are being studied, such as the Bell-Plesset effect [2], the effects of magnetic shear and feedthrough [3], and the nonzero MRT growth rate that remains (but was hardly noticed) in the k = m = 0 limit in Harris' seminal paper on a cylindrical liner [4], where k and m are respectively the azimuthal and axial wavenumber. We shall use simulation and direct integration of the eigenvalue equation to investigate the importance of the cylindrical geometry, which is particularly relevant in the final stage of compression in the MagLIF concept. [4pt] [1] S. A. Slutz, et. al, Phys. Plasmas 17, 056303 (2010). [0pt] [2] G. I. Bell, Los Alamos Scientific Laboratory, Report LA-1321 (1951); M. S. Plesset, J. Appl. Phys. 25, 96 (1954).[0pt] [3] P. Zhang et al., Phys. Plasmas 19, 200703 (2012); Y. Y. Lau et al., Phys. Rev. E 83, 006405 (2011). [0pt] [4] E. G. Harris, Phys. Fluids 5, 1057 (1962).
Chain-Based Communication in Cylindrical Underwater Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Nadeem Javaid
2015-02-01
Full Text Available Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs. Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS and Congestion adjusted PEGASIS (C-PEGASIS. Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.
A mathematical model of microalgae growth in cylindrical photobioreactor
Bakeri, Noorhadila Mohd; Jamaian, Siti Suhana
2017-08-01
Microalgae are unicellular organisms, which exist individually or in chains or groups but can be utilized in many applications. Researchers have done various efforts in order to increase the growth rate of microalgae. Microalgae have a potential as an effective tool for wastewater treatment, besides as a replacement for natural fuel such as coal and biodiesel. The growth of microalgae can be estimated by using Geider model, which this model is based on photosynthesis irradiance curve (PI-curve) and focused on flat panel photobioreactor. Therefore, in this study a mathematical model for microalgae growth in cylindrical photobioreactor is proposed based on the Geider model. The light irradiance is the crucial part that affects the growth rate of microalgae. The absorbed photon flux will be determined by calculating the average light irradiance in a cylindrical system illuminated by unidirectional parallel flux and considering the cylinder as a collection of differential parallelepipeds. Results from this study showed that the specific growth rate of microalgae increases until the constant level is achieved. Therefore, the proposed mathematical model can be used to estimate the rate of microalgae growth in cylindrical photobioreactor.
Research on cylindrical indexing cam’s unilateral machining
Directory of Open Access Journals (Sweden)
Junhua Chen
2015-08-01
Full Text Available The cylindrical cam ridge of the indexer is a spatial curved surface, which is difficult to design and machine. The cylindrical cam has some defects after machining because conventional machining methods have inaccuracies. This article aims at proposing a precise way to machine an indexing cam, using basic motion analysis and analytic geometry approach. Analytical methodology is first applied in the cam’s motion analysis, to obtain an error-free cam follower’s trajectory formula, and then separate the continuous trajectory curve by thousandth resolution, to create a three-dimensional discrete trajectory curve. Planar formulae and spherical formulae can be built on the loci. Based on the machine principle, the cutting cutter’s position and orientation will be taken into account. This article calculates the formula set as presented previously and obtains the ultimate cutter path coordinate value. The new error-free cutter path trajectory is called the unilateral machining trajectory. The earned results will compile into numerical control processing schedule. This processing methodology gives a convenient and precision way to manufacture a cylindrical indexing cam. Experimental results are also well supported.
Vibration control of cylindrical shells using active constrained layer damping
Ray, Manas C.; Chen, Tung-Huei; Baz, Amr M.
1997-05-01
The fundamentals of controlling the structural vibration of cylindrical shells treated with active constrained layer damping (ACLD) treatments are presented. The effectiveness of the ACLD treatments in enhancing the damping characteristics of thin cylindrical shells is demonstrated theoretically and experimentally. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. The FEM is used to predict the natural frequencies and the modal loss factors of shells which are partially treated with patches of the ACLD treatments. The predictions of the FEM are validated experimentally using stainless steel cylinders which are 20.32 cm in diameter, 30.4 cm in length and 0.05 cm in thickness. The cylinders are treated with ACLD patches of different configurations in order to target single or multi-modes of lobar vibrations. The ACLD patches used are made of DYAD 606 visco-elastic layer which is sandwiched between two layers of PVDF piezo-electric films. Vibration attenuations of 85% are obtained with maximum control voltage of 40 volts. Such attenuations are attributed to the effectiveness of the ACLD treatment in increasing the modal damping ratios by about a factor of four over those of conventional passive constrained layer damping (PCLD) treatments. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.
Chain-based communication in cylindrical underwater wireless sensor networks.
Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios
2015-01-01
Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.
Fabrication and analysis of cylindrical resin AFM microcantilevers
Energy Technology Data Exchange (ETDEWEB)
Cheneler, D., E-mail: D.Cheneler@bham.ac.uk [School of Mechanical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Bowen, J. [School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Leigh, S.J.; Purssell, C.P.; Billson, D.R.; Hutchins, D.A. [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Ward, M.C.L. [School of Mechanical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)
2011-07-15
In this paper a new method of fabricating cylindrical resin microcantilevers using the Direct Digital Manufacturing (DDM) technique of Micro-stereolithography (MSL) is described. The method is rapid and commercially viable, allowing the fabrication of atomic force microscope (AFM) cantilevers which exhibit much larger spring constants than those currently commercial available. This allows for experimentation in a force regime orders of magnitude higher than currently possible using the AFM. This makes these cantilevers ideally suited for AFM-based depth sensing indentation. Due to their geometry, the assumptions used in the standard Euler-Bernoulli beam theory usually used to analyse AFM cantilevers may no longer be valid. Therefore approximate analytical solutions based on Timoshenko beam theory have been derived for the stiffness and resonant frequency of these cantilevers. Prototypes of the cantilevers have been fabricated and tested. Results show good agreement between experiment and theory. -- Highlights: {yields} Direct Digital Manufacturing (DDM) has been used to make commercially viable AFM cantilevers. {yields} Analytical expressions for resonant frequency of Timoshenko beams has been derived. {yields} Dynamics of cylindrical AFM cantilevers has been discussed. {yields} Expressions for dynamic properties of conical AFM cantilevers has been derived. {yields} Effect of metallisation of cylindrical AFM cantilevers has been discussed.
TUNNEL POINT CLOUD FILTERING METHOD BASED ON ELLIPTIC CYLINDRICAL MODEL
Directory of Open Access Journals (Sweden)
N. Zhu
2016-06-01
Full Text Available The large number of bolts and screws that attached to the subway shield ring plates, along with the great amount of accessories of metal stents and electrical equipments mounted on the tunnel walls, make the laser point cloud data include lots of non-tunnel section points (hereinafter referred to as non-points, therefore affecting the accuracy for modeling and deformation monitoring. This paper proposed a filtering method for the point cloud based on the elliptic cylindrical model. The original laser point cloud data was firstly projected onto a horizontal plane, and a searching algorithm was given to extract the edging points of both sides, which were used further to fit the tunnel central axis. Along the axis the point cloud was segmented regionally, and then fitted as smooth elliptic cylindrical surface by means of iteration. This processing enabled the automatic filtering of those inner wall non-points. Experiments of two groups showed coincident results, that the elliptic cylindrical model based method could effectively filter out the non-points, and meet the accuracy requirements for subway deformation monitoring. The method provides a new mode for the periodic monitoring of tunnel sections all-around deformation in subways routine operation and maintenance.
Sub-aperture stitching test of a cylindrical mirror with large aperture
Xue, Shuai; Chen, Shanyong; Shi, Feng; Lu, Jinfeng
2016-09-01
Cylindrical mirrors are key optics of high-end equipment of national defense and scientific research such as high energy laser weapons, synchrotron radiation system, etc. However, its surface error test technology develops slowly. As a result, its optical processing quality can not meet the requirements, and the developing of the associated equipment is hindered. Computer Generated-Hologram (CGH) is commonly utilized as null for testing cylindrical optics. However, since the fabrication process of CGH with large aperture is not sophisticated yet, the null test of cylindrical optics with large aperture is limited by the aperture of the CGH. Hence CGH null test combined with sub-aperture stitching method is proposed to break the limit of the aperture of CGH for testing cylindrical optics, and the design of CGH for testing cylindrical surfaces is analyzed. Besides, the misalignment aberration of cylindrical surfaces is different from that of the rotational symmetric surfaces since the special shape of cylindrical surfaces, and the existing stitching algorithm of rotational symmetric surfaces can not meet the requirements of stitching cylindrical surfaces. We therefore analyze the misalignment aberrations of cylindrical surfaces, and study the stitching algorithm for measuring cylindrical optics with large aperture. Finally we test a cylindrical mirror with large aperture to verify the validity of the proposed method.
The analysis of the bending stiffness and intensity of cylindrical tubes
Institute of Scientific and Technical Information of China (English)
SONG YuQuan; GUAN ZhiPing; NIE YuQin; GUAN XiaoFang
2007-01-01
Based on the mechanics of material, the bending stiffness and intensity of cylindrical bar and tube are analyzed. By comparing the cylindrical tube whose ratio of outside diameter to internal diameter is 0.7 with the cylindrical bar, it is concluded that when both of them have the same mass, the section stiffness of the cylindrical tube is three times that of the cylindrical bar; when both of them have the same external diameter, the mass of the cylindrical tube is only 1/2 that of the cylindrical bar, but the section stiffness of the cylindrical tube is 3/4 that of the cylindrical bar.By virtue of the elemental elastic-plastic theory, the yield stress of the liquid-filled cylindrical tube is investigated. Due to the incompressibility of liquid and the strain hardening effect of material, the yield stress of the liquid-filled tube is enlarged compared with the hollow tube, thus raising its bending intensity. Under the dynamic load, compared with the hollow tube, the impact resistance of the liquid-filled tube is also raised due to elastic recovery. Because the hydraulic pressures perpendicular to the inner surface are identical everywhere, the local stress concentration resulting from the ovalisation of the tube would be decreased, and the resistance to buckling would be improved.
The analysis of the bending stiffness and intensity of cylindrical tubes
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the mechanics of material,the bending stiffness and intensity of cylin-drical bar and tube are analyzed. By comparing the cylindrical tube whose ratio of outside diameter to internal diameter is 0.7 with the cylindrical bar,it is concluded that when both of them have the same mass,the section stiffness of the cylindrical tube is three times that of the cylindrical bar;when both of them have the same external diameter,the mass of the cylindrical tube is only 1/2 that of the cylindrical bar,but the section stiffness of the cylindrical tube is 3/4 that of the cylindrical bar. By virtue of the elemental elastic-plastic theory,the yield stress of the liquid-filled cylindrical tube is investigated. Due to the incompressibility of liquid and the strain hardening effect of material,the yield stress of the liquid-filled tube is enlarged compared with the hollow tube,thus raising its bending intensity. Under the dy-namic load,compared with the hollow tube,the impact resistance of the liquid-filled tube is also raised due to elastic recovery. Because the hydraulic pressures per-pendicular to the inner surface are identical everywhere,the local stress concen-tration resulting from the ovalisation of the tube would be decreased,and the re-sistance to buckling would be improved.
Muon detection studied by pulse-height energy analysis: Novel converter arrangements
Energy Technology Data Exchange (ETDEWEB)
Holmlid, Leif, E-mail: holmlid@chem.gu.se [Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg (Sweden); Olafsson, Sveinn [Faculty of Physical Sciences, University of Iceland, Reykjavik (Iceland)
2015-08-15
Muons are conventionally measured by a plastic scintillator–photomultiplier detector. Muons from processes in ultra-dense hydrogen H(0) are detected here by a novel type of converter in front of a photomultiplier. The muon detection yield can be increased relative to that observed with a plastic scintillator by at least a factor of 100, using a converter of metal, semiconductor (Ge), or glass for interaction with the muons penetrating through the metal housing of the detector. This detection process is due to transient formation of excited nuclei by the well-known process of muon capture, giving beta decay. The main experimental results shown here are in the form of beta electron energy spectra detected directly by the photomultiplier. Events which give a high-energy tail in the energy spectra are probably due to gamma photons from the muons. Sharp and intense x-ray peaks from a muonic aluminium converter or housing material are observed. The detection conversion in glass and Ge converters has a time constant of the order of many minutes to reach the final conversion level, while the process in metal converters is stabilized faster. The time constants are not due to lifetimes of the excited nuclei or neutrons but are due to internal charging in the insulating converter material. Interaction of this charging with the high voltage in the photomultiplier is observed.
Muon detection studied by pulse-height energy analysis: Novel converter arrangements
Holmlid, Leif; Olafsson, Sveinn
2015-08-01
Muons are conventionally measured by a plastic scintillator-photomultiplier detector. Muons from processes in ultra-dense hydrogen H(0) are detected here by a novel type of converter in front of a photomultiplier. The muon detection yield can be increased relative to that observed with a plastic scintillator by at least a factor of 100, using a converter of metal, semiconductor (Ge), or glass for interaction with the muons penetrating through the metal housing of the detector. This detection process is due to transient formation of excited nuclei by the well-known process of muon capture, giving beta decay. The main experimental results shown here are in the form of beta electron energy spectra detected directly by the photomultiplier. Events which give a high-energy tail in the energy spectra are probably due to gamma photons from the muons. Sharp and intense x-ray peaks from a muonic aluminium converter or housing material are observed. The detection conversion in glass and Ge converters has a time constant of the order of many minutes to reach the final conversion level, while the process in metal converters is stabilized faster. The time constants are not due to lifetimes of the excited nuclei or neutrons but are due to internal charging in the insulating converter material. Interaction of this charging with the high voltage in the photomultiplier is observed.
Energy Technology Data Exchange (ETDEWEB)
Killian, E.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States)
1997-11-01
A technique has been developed at the Idaho National Engineering Laboratory to sum high resolution gamma-ray pulse spectra from systems with multiple Ge detectors. Lockheed Martin Idaho Technologies Company operates a multi-detector spectrometer configuration at the Stored Waste Examination Pilot Plant facility which is used to characterize the radionuclide contents in waste drums destined for shipment to Waste Isolation Pilot Plant. This summing technique was developed to increase the sensitivity of the system, reduce the count times required to properly quantify the radio-nuclides and provide a more consistent methodology for combining data collected from multiple detectors. In spectrometer systems with multiple detectors looking at non homogeneous waste forms it is often difficult to combine individual spectrum analysis results from each detector to obtain a meaningful result for the total waste container. This is particularly true when the counting statistics in each individual spectrum are poor. The spectrum summing technique adds the spectra collected by each detector into a single spectrum which has better counting statistics than each individual spectrum. A normal spectral analysis program can then be used to analyze the sum spectrum to obtain radio-nuclide values which have smaller errors and do not have to be further manipulated to obtain results for the total waste container. 2 refs., 2 figs.
Three-step cylindrical seal for high-performance turbomachines
Hendricks, Robert C.
1987-01-01
A three-step cylindrical seal configuration representing the seal for a high performance turbopump (e.g., the space shuttle main engine fuel pump) was tested under static (nonrotating) conditions. The test data included critical mass flux and pressure profiles over a wide range of inlet temperatures and pressures for fluid nitrogen and fluid hydrogen with the seal in concentric and fully eccentric positions. The critical mass flux (leakage rate) was 70% that of an equivalent straight cylindrical seal with a correspondingly higher pressure drop based on the same flow areas of 0.3569 sq cm but 85% that of the straight seal based on the third-step flow area of 0.3044 sq cm. The mass flow rates for the three step cylindrical seal in the fully eccentric and concentric positions were essentially the same, and the trends in flow coefficient followed those of a simple axisymmetric inlet configuration. However, for inlet stagnation temperatures less than the thermodynamic critical temperature the pressure profiles exhibited a flat region throughout the third step of the seal, with the pressure magnitude dependent on the inlet stagnation temperature. Such profiles represent an extreme positive direct stiffness. These conditions engendered a crossover in the pressure profile upstream of the postulated choke that resulted in a local negative stiffness. Flat and crossover profiles resulting from choking within the seal are practically unknown to the seal designer. However, they are of critical importance to turbomachine stability and must be integrated into any dynamic analysis of a seal of this configuration. In addition, choking is highly dependent on geometry, inlet-to-backpressure ratio, and inlet temperature and can occur within the seal even though the backpressure is above the critical pressure.
Interaction of cylindrically converging diffracted shock with uniform interface
Liang, Yu; Ding, Juchun; Zhai, Zhigang; Si, Ting; Luo, Xisheng
2017-08-01
The Richtmyer-Meshkov instability of an unperturbed air/SF6 interface subjected to a diffracted shock is experimentally studied by high-speed schlieren photography under cylindrical circumstances. The cylindrically converging diffracted shock (CCDS) is produced by a cylindrically uniform shock diffracting around a rigid cylinder(s), and the unperturbed interface is created by a soap film technique. The effects of coupling of multiple rigid cylinders and diverse spacings from the cylinder to interface on a flow field are highlighted. Schlieren images indicate that the amplitude of disturbances on the CCDS increases compared with the local shock radius. After the CCDS impact, a bulge is derived from the interface due to the shock-shock interaction inside the interface, and the number of bulges depends upon the number of cylinders. As the number of cylinders increases, the bulge becomes less pronounced, which is ascribed to additional shock-shock interactions inside the volume. As the distance between the cylinder and interface increases, an air cavity is first observed before the formation of a bulge. The amplitude of perturbation on the interface is found to reduce before the central reflected shock arrival because of the Rayleigh-Taylor stabilization effect. Through equating the pre-interface disturbance of the CCDS to the pre-shock perturbation of the perturbed interface, the initially linear growth rate is theoretically computed based on the impulsive model considering the Bell-Plesset effect. The theoretical results are found to deviate greatly from the experimental counterparts. Instead, taking the post-shock interface amplitude as an initial interface amplitude, the model works well. Therefore, the interface perturbations produced are notably smaller than the disturbances causing them. Moreover, the nonlinear behavior of perturbation growth is estimated by the model considering the Rayleigh-Taylor effect.
Finite-amplitude waves in cylindrical lined ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
A second-order uniformly valid expansion is obtained for nonlinear waves propagating in a cylindrical duct lined with a point-reacting acoustic material that consists of a porous sheet followed by honey-comb cavities and backed by the impervious walls of the duct. The effect of the liner is taken into account by coupling the waves in the duct with those in the liner. As in the two-dimensional case, the nonlinearity increases the attenuation rate at all frequencies except in narrow bandwidths around the resonant frequencies, irrespective of the geometrical dimensions of the liner or the acoustic properties of the porous sheet.
PERFORATION OF PLASTIC SPHERICAL SHELLS UNDER IMPACT BY CYLINDRICAL PROJECTILES
Institute of Scientific and Technical Information of China (English)
NING Jian-guo; SONG Wei-dong
2006-01-01
The objective is to study the perforation of a plastic spherical shell impacted by a cylindrical projectile. First, the deformation modes of the shell were given by introducing an isometric transformation. Then, the perforation mechanism of the shell was analyzed and an analytical model was advanced. Based on Hamilton principle, the governing equation was obtained and solved using Runge-Kuta method. Finally, some important theoretical predictions were given to describe the perforation mechanism of the shell. The results will play an important role in understanding the perforation mechanism of spherical shells impacted by a projectile.
Metamaterial Structure Design Optimization: A Study of the Cylindrical Cloak
2013-03-01
energy. iv First, I wish to thank God and my savior, Jesus Christ , for the opportunity to study His creation. Next, a big thank-you goes to my loving wife...requirements to create a more physically realizable set of material parameters. 6 2.1 TO Cylindrical Cloak Originally , TO was conceived in an effort to avoid...TO method to designing a cloak consists of deforming the coordinate system such that the origin point is expanded into a boundary around an area to be
Polar POLICRYPS diffractive structures generate cylindrical vector beams
Energy Technology Data Exchange (ETDEWEB)
Alj, Domenico; Caputo, Roberto, E-mail: roberto.caputo@fis.unical.it; Umeton, Cesare [Department of Physics and CNR-NANOTEC University of Calabria, I-87036 Rende (CS) (Italy); Paladugu, Sathyanarayana [Soft Matter Lab, Department of Physics, Bilkent University, Ankara 06800 (Turkey); Volpe, Giovanni [Soft Matter Lab, Department of Physics, Bilkent University, Ankara 06800 (Turkey); UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey)
2015-11-16
Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.
DYNAMICAL BEHAVIOR OF VISCOELASTIC CYLINDRICAL SHELLS UNDER AXIAL PRESSURES
Institute of Scientific and Technical Information of China (English)
程昌钧; 张能辉
2001-01-01
The hypotheses of the Kármán-Donnell theory of thin shells with large deflections and the Boltzmann laws for isotropic linear, viscoelastic materials, the constitutive equations of shallow shells are first derived. Then the governing equations for the deflection equations of elastic thin plates. Introducing proper assumptions, an approximate theory for viscoelastic cylindrical shells under axial pressures can be obtained. Finally, the dynamical behavior is studied in detail by using several numerical methods. Dynamical properties,such as, hyperchaos , chaos, strange attractor, limit cycle etc., are discovered.
Colliding wall-jets on a cylindrical surface
Tesař, Václav; Peszynski, Kazimierz
2015-05-01
Paper discusses aerodynamics and potential engineering applications of an unusual and in literature practically unknown fluid flow configuration, with two wall-jets attached to a cylindrical surface so that they collide head-on and by mutual conjunction generate a single jet directed away from the wall. Applications are envisaged in pneumatic sensors, particularly those operating at low Reynolds numbers. Performed experimental investigation, combined with numerical flowfield computations, revealed several interesting aspects. The most interesting among them is the discovery of symmetry-breaking existence of three different stable flow regimes. This opens a possibility for fluidic tristable amplifiers and systems operating with ternary logic.
ANALYSIS OF TRANSIENT THERMAL STRESS IN CYLINDRICALLY ORTHOTROPIC TUBES
Institute of Scientific and Technical Information of China (English)
凌道盛
2003-01-01
The incorrect deduction of equations in the research works devoted to the studies of transient stress in cylindrically orthotropic tubes and done by Kardomateas ( Journal of Applied Mechanics, 1989, 1990) leads to the wrong results. The errata (1991) correct the deduction error, but do not give the right numerical results. All errors are corrected, and the Mathematica is adopted to solve the large argument problem for Bessel function. A theoretical solution of the transient thermal stresses in tubes with uniform form is presented,and a numerical example is studied.
Cylindrical Three-Dimensional Porous Anodic Alumina Networks
Directory of Open Access Journals (Sweden)
Pedro M. Resende
2016-11-01
Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.
Experimental comparison of symmetry in rugby and cylindrical holhraums
Philippe, Franck; Tassin, Veronique; Laffite, Stephane; Monteil, Marie-Christine; Bastian, Josiane; Lours, Laurence; Villette, Bruno; Stemmler, Philippe; Bednarczyk, Sophie; Reneaume, Benoit; di Nicola, Pascale; Raffin, Vincent
2007-11-01
Recently, holhraum shape optimization has been investigated as a practical way to achieve ignition at lower energy [1][2]. Rugby shaped holhraums theoretically allow better energetic coupling and symmetry control than classical cylinders. As a first step toward an experimental validation of this design, this talk presents the results of experiments on the OMEGA laser facility dedicated to the comparison of symmetry in cylindrical and rugby holhraums. Foamball radiographs and Symcaps emission contours for both type of holhraums are compared to numerical simulation results. [1] M. Vandenboomgaerde et al., accepted by Phys. Rev. Lett. [2] P. Amendt et al., Phys. Plasmas 14, 056312 (2007)
Phase transition properties of a cylindrical ferroelectric nanowire
Indian Academy of Sciences (India)
Wang Ying; Yang Xiong
2013-11-01
Based on the transverse Ising model (TIM) and using the mean-field theory, we investigate the phase transition properties of a cylindrical ferroelectric nanowire. Two different kinds of phase diagrams are constructed. We discuss systematically the effects of exchange interactions and the transverse field parameters on the phase diagrams. Moreover, the cross-over features of the parameters from the ferroelectric dominant phase diagram to the paraelectric dominant phase diagram are determined for the ferroelectric nanowire. In addition, the polarizations of the surface shell and the core are illustrated in detail by modifying the TIM parameters.
PCM thermal energy storage in cylindrical containers of various configurations
Mujumdar, A. S.; Ashraf, F. A.; Menon, A. S.; Weber, M. E.
Experimental measurements are reported for the time variation of surface-averaged rate of heat storage during melting in single, thin-walled cylindrical containers of copper filled with a commercially available paraffin wax. For the wax used the enthalpy-temperature curve was obtained using a differential scanning calorimeter according to the ASTM method. Three lengths and three equivalent diameters of plain circular, plain square and internally partitioned cylinders were studied for their heat storage characteristics. The heat transfer measurements revealed the importance of natural convection during melting. The effects of cylinder geometry and temperature of the external fluid on instantaneous and integral heat storage rate were examined experimentally.
Experimental Investigations of Compressed Sandwich Composite/Honeycomb Cylindrical Shells
Muc, A.; Stawiarski, A.; Romanowicz, P.
2017-06-01
This article explains in some details the behaviour of thick, deep cylindrical sandwich panels subjected to compressive loads. In general, experimental results indicated that two different forms of failure have been observed - the first corresponds to the overall buckling and the second to the facesheet wrinkling. The obtained experimentally damages of shells are verified and validated with the use of the FE analysis, 2-D and 3-D both in the linear and non-linear approach. The unidirectional strain gauges were applied to detect the initiation of the overall buckling mode.
Interaction of Explosive Shocks with Airborne Cylindrical Targets of Elliptical
Directory of Open Access Journals (Sweden)
V.P. Singh
1990-07-01
Full Text Available A theoretical model to find pressure-space history around a cylindrical target of elliptical cross-section has been presented for assessing the damage by warheads exploding in the vicinity of an airborne vehicle. The energy hypothesis has been used to find the attenuation law from a point explosion. The Whitham-Bryson and Gross theory for shock interaction has been modified to take into account the finite strength of incident shock. The theoretical results have also been compared with Heilig's experimental results.
Three-dimensional global fluid simulations of cylindrical magnetized plasmas
DEFF Research Database (Denmark)
Naulin, Volker; Windisch, T.; Grulke, O.
2008-01-01
. Thus, it is possible to assess the reproductive and predictive capabilities of plasma simulations in unprecedented detail. Here, three-dimensional global fluid simulations of a cylindrical magnetized plasma are presented. This plasma is characterized by the existence of spatially localized sources...... and sinks. The traditional scale separation paradigm is not applied in the simulation model to account for the important evolution of the background profiles due to the dynamics of turbulent fluctuations. Furthermore, the fluid modeling of sheath boundary conditions, which determine the plasma conditions...
Preliminary analysis techniques for ring and stringer stiffened cylindrical shells
Graham, J.
1993-03-01
This report outlines methods of analysis for the buckling of thin-walled circumferentially and longitudinally stiffened cylindrical shells. Methods of analysis for the various failure modes are presented in one cohesive package. Where applicable, more than one method of analysis for a failure mode is presented along with standard practices. The results of this report are primarily intended for use in launch vehicle design in the elastic range. A Microsoft Excel worksheet with accompanying macros has been developed to automate the analysis procedures.
Radiation from a charge rotating inside a cylindrical grating
Kotanjyan, A. S.; Mkrtchyan, A. R.; Saharian, A. A.
2017-07-01
We investigate the spectral-angular distribution for the radiation emitted by a point charge moving along a helical trajectory inside a cylindrical grating with conducting strips. Two types of the radiation processes are realized: undulator and Smith-Purcell radiations. Their relative contributions to the total radiation intensity are discussed in various asymptotic regions of the parameters describing the diffraction grating and for large harmonics. The region of the parameters is specified for which the interference effects between the undulator and Smith-Purcell radiations are essential.
Magnetic forces between arrays of cylindrical permanent magnets
DEFF Research Database (Denmark)
Vokoun, D.; Tomassetti, G.; Beleggia, Marco
2011-01-01
Permanent magnet arrays are often employed in a broad range of applications: actuators, sensors, drug targeting and delivery systems, fabrication of self-assembled particles, just to name a few. An estimate of the magnetic forces in play between arrays is required to control devices and fabrication...... procedures. Here, we introduce analytical expressions for calculating the attraction force between two arrays of cylindrical permanent magnets and compare the predictions with experimental data obtained from force measurements with NdFeB magnets. We show that the difference between predicted and measured...
The hydrodynamic instability of powerful cylindrical magnetohydrodynamic pumps
Energy Technology Data Exchange (ETDEWEB)
Valdmane, R.A.; Ulmanis, L.Ya.; Valdamanis, Ya.Ya.
1984-01-01
A numerical calculation is the basis for analyzing the issues of stability of the speed profile in channels of powerful cylindrical magnetohydrodynamic (MGD) pumps. A one dimensional hydraulic model is used in the calculations. The questions about stability of movement relative to transverse perturbations in speed are discussed. It is shown that at high values of the parameter epsilon and the radius of the channel the movement is unstable with respect to the transverse shifts. The results are of interest for studies of liquid metal magnetohydrodynamic generators.
Finite Amplitude Electron Plasma Waves in a Cylindrical Waveguide
DEFF Research Database (Denmark)
Juul Rasmussen, Jens
1978-01-01
The nonlinear behaviour of the electron plasma wave propagating in a cylindrical plasma waveguide immersed in an infinite axial magnetic field is investigated using the Krylov-Bogoliubov-Mitropolsky perturbation method, by means of which is deduced the nonlinear Schrodinger equation governing...... the long-time slow modulation of the wave amplitude. From this equation the amplitude-dependent frequency and wavenumber shifts are calculated, and it is found that the electron waves with short wavelengths are modulationally unstable with respect to long-wavelength, low-frequency perturbations...
Liquid bridging of cylindrical colloids in near-critical solvents
Labbé-Laurent, M.; Law, A. D.; Dietrich, S.
2017-09-01
Within mean field theory, we investigate the bridging transition between a pair of parallel cylindrical colloids immersed in a binary liquid mixture as a solvent that is close to its critical consolute point Tc. We determine the universal scaling functions of the effective potential and of the force between the colloids. For a solvent that is at the critical concentration and close to Tc, we find that the critical Casimir force is the dominant interaction at close separations. This agrees very well with the corresponding Derjaguin approximation for the effective interaction between the two cylinders, while capillary forces originating from the extension of the liquid bridge turn out to be more important at large separations. In addition, we are able to infer from the wetting characteristics of the individual colloids the first-order transition of the liquid bridge connecting two colloidal particles to the ruptured state. While specific to cylindrical colloids, the results presented here also provide an outline for identifying critical Casimir forces acting on bridged colloidal particles as such and for analyzing the bridging transition between them.
Cylindrical acoustical holography applied to full-scale jet noise.
Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; Krueger, David W; James, Michael M
2014-09-01
Near-field acoustical holography methods are used to predict sound radiation from an engine installed on a high-performance military fighter aircraft. Cylindrical holography techniques are an efficient approach to measure the large and complex sound fields produced by full-scale jets. It is shown that a ground-based, one-dimensional array of microphones can be used in conjunction with a cylindrical wave function field representation to provide a holographic reconstruction of the radiated sound field at low frequencies. In the current work, partial field decomposition methods and numerical extrapolation of data beyond the boundaries of the hologram aperture are required prior to holographic projection. Predicted jet noise source distributions and directionality are shown for four frequencies between 63 and 250 Hz. It is shown that the source distribution narrows and moves upstream, and that radiation directionality shifts toward the forward direction, with increasing frequency. A double-lobe feature of full-scale jet radiation is also demonstrated.
Progress on Diamond-Based Cylindrical Dielectric Accelerating Structures
Kanareykin, A.; Schoessow, P.; Conde, M.; Gai, W.
2006-11-01
The development of a high gradient diamond-based cylindrical dielectric loaded accelerator (DLA) is presented. A diamond-loaded DLA can potentially sustain accelerating gradients far in excess of the limits experimentally observed for conventional metallic accelerating structures. The electrical and mechanical properties of diamond make it an ideal candidate material for use in dielectric accelerators: high rf breakdown level, extremely low dielectric losses and the highest available thermoconductive coefficient. We used the hot-filament Chemical Vapor Deposition (CVD) process to produce high quality 5-10 cm long cylindrical diamond layers. Our collaboration has also been developing a new method of CVD diamond surface preparation that reduces the secondary electron emission coefficient below unity. Special attention was paid to the numerical optimization of the waveguide to structure rf coupling section, where the surface magnetic and electric fields were minimized relative to the accelerating gradient and within known metal surface breakdown limits. We conclude with a brief overview of the use of diamond microstructures for use in compact rf sources.
An Analytical Solution for Cylindrical Concrete Tank on Deformable Soil
Directory of Open Access Journals (Sweden)
Shirish Vichare
2010-07-01
Full Text Available Cylindrical concrete tanks are commonly used in wastewater treatment plants. These are usually clarifier tanks. Design codes of practice provide methods to calculate design forces in the wall and raft of such tanks. These methods neglect self-weight of tank material and assume extreme, namely ‘fixed’ and ‘hinged’ conditions for the wall bottom. However, when founded on deformable soil, the actual condition at the wall bottom is neither fixed nor hinged. Further, the self-weight of the tank wall does affect the design forces. Thus, it is required to offer better insight of the combined effect of deformable soil and bottom raft stiffness on the design forces induced in such cylindrical concrete tanks. A systematic analytical method based on fundamental equations of shells is presented in this paper. Important observations on variation of design forces across the wall and the raft with different soil conditions are given. Set of commonly used tanks, are analysed using equations developed in the paper and are appended at the end.
Acoustic mode coupling of two facing, shallow cylindrical cavities
McCarthy, Philip; Ekmekci, Alis
2016-11-01
Cavity mode excitation by grazing flows is a well-documented source for noise generation. Similarly to their rectangular equivalents, single cylindrical cavities have been shown to exhibit velocity dependent self-sustaining feedback mechanisms that produce significant tonal noise. The present work investigates the effect of cavity mode coupling on the tonal noise generation for two facing, shallow cylindrical cavities. This geometric arrangement may occur for constrained flows, such as those within ducts, silencers or between aircraft landing gear wheels. For the latter configuration, the present study has observed that the tonal frequency dependence upon the freestream Mach number, associated with the single cavity feedback mechanism, no longer holds true. Instead, two simultaneously present and distinct large amplitude tones that are independent (in frequency) of speed, propagate to the far field. These two, fixed frequency tones are attributable to the first order transverse mode, and the first order transverse and azimuthal modes for the two combined cavities and the volume between them. Altering either the cavity aspect ratio or the inter-cavity spacing thus changes the acoustic resonant volume and translates the centre frequencies of the observed tones correspondingly. The authors would like to thank Bombardier and Messier-Bugatti-Dowty for their continued support.
Local and Global Casimir Energies for a Semitransparent Cylindrical Shell
Cavero-Pelaez, I; Milton, K A; Cavero-Pelaez, Ines; Kirsten, Klaus; Milton, Kimball A.
2006-01-01
The local Casimir energy density and the global Casimir energy for a massless scalar field associated with a $\\lambda\\delta$-function potential in a 3+1 dimensional circular cylindrical geometry are considered. The global energy is examined for both weak and strong coupling, the latter being the well-studied Dirichlet cylinder case. For weak-coupling,in $\\mathcal{O}(\\lambda^2)$, the total energy is shown to vanish by both analytic and numerical arguments, based both on Green's-function and zeta-function techniques. Divergences occurring in the calculation are shown to be absorbable by renormalization of physical parameters of the model. The global energy may be obtained by integrating the local energy density only when the latter is supplemented by an energy term residing precisely on the surface of the cylinder. The latter is identified as the integrated local energy density of the cylindrical shell when the latter is physically expanded to have finite thickness. Inside and outside the shell, the local energ...
Micro-photonic cylindrical waveguide based protein biosensor
Energy Technology Data Exchange (ETDEWEB)
Padigi, Sudhaprasanna Kumar [Department of Electrical and Computer Engineering, Portland State University, 160-11 FAB, 1900 SW Fourth Avenue, Portland, OR 97201 (United States); Asante, Kofi [Department of Physics, Portland State University, Portland, OR 97201 (United States); Kovvuri, Vijay Sekhar Reddy [Department of Electrical and Computer Engineering, Portland State University, 160-11 FAB, 1900 SW Fourth Avenue, Portland, OR 97201 (United States); Reddy, Ravi Kiran Kondama [Department of Electrical and Computer Engineering, Portland State University, 160-11 FAB, 1900 SW Fourth Avenue, Portland, OR 97201 (United States); Rosa, Andres La [Department of Physics, Portland State University, Portland, OR 97201 (United States); Prasad, Shalini [Department of Electrical and Computer Engineering, Portland State University, 160-11 FAB, 1900 SW Fourth Avenue, Portland, OR 97201 (United States)
2006-09-14
In this paper we experimentally demonstrate the fabrication and operation of a rapidly prototyped optical cylindrical micro-waveguide based biosensor. This device works on the principle of variation to the light intensity and path of coupled input light due to the binding of protein bio-molecules onto the micro-waveguide surface as a method of physical transduction. The variation to the coupled light intensity and path is dependent on the nature of the bio-molecule and the density of the bio-molecules. This technique has been used to identify protein biomarkers for inflammation and thrombosis, namely myeloperoxidase (MPO) and C-reactive protein (CRP). The detection limit that has been demonstrated is pg ml{sup -1}. The detection speed is of the order of seconds from the time of injection of the bio-molecule. The optical signature that is obtained to identify a protein bio-molecule is entirely dependent on the nature of adsorption of the bio-molecule on to the cylindrical cavity surfaces. This in turn is dependent on the protein conformation and the surface charge of the bio-molecules. Hence a specific protein bio-molecule generates a unique optical identifier based on the nature of binding/adsorption to the cavity surface. This physical phenomenon is exploited to identify individual proteins. This technique is a demonstration of detection of nano-scale protein bio-molecules using the optical biosensor technique with unprecedented sensitivity.
Implosion of Cylindrical Cavities via Short Duration Impulsive Loading
Huneault, Justin; Higgins, Andrew
2014-11-01
An apparatus has been developed to study the collapse of a cylindrical cavity in gelatin subjected to a symmetric impact-driven impulsive loading. A gas-driven annular projectile is accelerated to approximately 50 m/s, at which point it impacts a gelatin casting confined by curved steel surfaces that allow a transition from an annular geometry to a cylindrically imploding motion. The implosion is visualized by a high-speed camera through a window which forms the top confining wall of the implosion cavity. The initial size of the cavity is such that the gelatin wall is two to five times thicker than the impacting projectile. Thus, during impact the compression wave which travels towards the cavity is closely followed by a rarefaction resulting from the free surface reflection of the compression wave in the projectile. As the compression wave in the gelatin reaches the inner surface, it will also reflect as a rarefaction wave. The interaction between the rarefaction waves from the gelatin and projectile free surfaces leads to large tensile stresses resulting in the spallation of a relatively thin shell. The study focuses on the effect of impact parameters on the thickness and uniformity of the imploding shell formed by the cavitation in the imploding gelatin cylinder.
Design of Slit between Micro Cylindrical Pillars for Cell Sorting
Directory of Open Access Journals (Sweden)
Yusuke Takahashi
2016-12-01
Full Text Available Micro slits have been designed between micro cylindrical pillars to sort biological cells. Micro cylindrical pillars of 0.02 mm diameter and 0.055 mm height were fabricated on the glass plate using the photolithography technique. Variation was made on the gap between pillars: 0.01 mm, 0.02 mm, 0.03 mm, and 0.04 mm. The micro pillars are set in the flow path between parallel plates, of which dimension of the cross section is 5 mm width and 0.055 mm height. Three kinds of biological cells were used in the test alternatively: C2C12 (mouse myoblast cell line originated with cross-striated muscle of C3H mouse, Hepa1-6 (mouse hepatoma cell line of C57L mouse, or swine red blood cell. The suspension of cells was introduced into the slits by the syringe pump at the flow rate between 0.4 and 500 cm3/hour. The deformation of the cell at the slit can be observed by the microscope. The experimental results show that the designed slit has capability for sorting cells according to the size and deformability of the cell.
Array gain for a cylindrical array with baffle scatter effects.
Bertilone, Derek C; Killeen, Damien S; Bao, Chaoying
2007-11-01
Cylindrical arrays used in sonar for passive underwater surveillance often have sensors surrounding a cylindrical metal baffle. In some operational sonars, the phones in each stave (i.e., each line of phones aligned with the cylinder axis) are hardwired together so that the array is equivalent to a baffled circular array of directional elements, where each element corresponds to a line array of omnidirectional phones steered to broadside. In this paper a model is introduced for computing the array gain of such an array at high frequencies, which incorporates baffle scatter using infinite, rigid cylinder scattering theory, and with ambient noise described by an angular spectral density function. In practice the phones are often offset from the baffle surface, and the acoustic field sampled by the staves is distorted at high frequencies due to interference between the incident and scattered fields. Examples are given to illustrate the resulting array gain degradation, using three noise distributions that are frequently used in sonar performance modeling: three-dimensional isotropic, two-dimensional isotropic, and surface dipole noise.
Finite deformations of an electroelastic circular cylindrical tube
Melnikov, Andrey; Ogden, Ray W.
2016-12-01
In this paper the theory of nonlinear electroelasticity is used to examine deformations of a pressurized thick-walled circular cylindrical tube of soft dielectric material with closed ends and compliant electrodes on its curved boundaries. Expressions for the dependence of the pressure and reduced axial load on the deformation and a potential difference between, or uniform surface charge distributions on, the electrodes are obtained in respect of a general isotropic electroelastic energy function. To illustrate the behaviour of the tube, specific forms of energy functions accounting for different mechanical properties coupled with a deformation independent quadratic dependence on the electric field are used for numerical purposes, for a given potential difference and separately for a given charge distribution. Numerical dependences of the non-dimensional pressure and reduced axial load on the deformation are obtained for the considered energy functions. Results are then given for the thin-walled approximation as a limiting case of a thick-walled cylindrical tube without restriction on the energy function. The theory described herein provides a general basis for the detailed analysis of the electroelastic response of tubular dielectric elastomer actuators, which is illustrated for a fixed axial load in the absence of internal pressure and fixed internal pressure in the absence of an applied axial load.
On the physics of propagating Bessel modes in cylindrical waveguides
Gómez-Correa, J. E.; Balderas-Mata, S. E.; Coello, V.; Puente, N. P.; Rogel-Salazar, J.; Chávez-Cerda, S.
2017-05-01
In this paper, we demonstrate that by using a mathematical physics approach—focusing attention on the physics and using mathematics as a tool—it is possible to visualize the formation of the transverse modes inside a cylindrical waveguide. The opposite (physical mathematics) approach looks at the mathematical problem and then tries to impose a physical interpretation. For cylindrical waveguides, the physical mathematics route leads to the Bessel differential equation, and it is argued that in the core of the waveguide there are only Bessel functions of the first kind in the description of the transverse modes. The Neumann functions are deemed non-physical due to their singularity at the origin and are eliminated from the final description of the solution. In this paper, by combining geometric optics and wave optics concepts, we show that the inclusion of the Neumann function is physically necessary to describe fully and properly the formation of the propagating transverse modes. With this approach, we also show that the field outside a dielectric waveguide arises in a natural way.
Beam Switching Cylindrical Array Antenna System for Communication
Directory of Open Access Journals (Sweden)
V. C. Misra
1998-10-01
Full Text Available The beam switching cylindrical array, which is a unique system, has been designed and developed to cover 360° in azimuth plane by generating 16 beams with specified elevation coverage.In this design, the concept of fast aperture selection (4 x 4 in microseconds from the total cylindrical array has been realised successfully to meet the requirement of point-to-multipoint communication. The components of the array, viz., radiating elements, powder dividers, switches, etc., are designed in printed circuit type, and hence, objectives of lightweight and ease of reproducibility are achieved. The lightweight of the array makes it accessible for easy mounting at a specified height for achieving longer communication range. Finally, a low-loss radome is incorporated to protect the array from environmental conditions. The various parameters, viz., return loss, gain, and switched-beam radiation patterns were measured over a bandwidth of 300 MHz in L- band and typical measured results are presented in this paper.
Nonlinear RF spurious in a cylindrical cavity with superconducting endplates
Mateu, Jordi; Collado, Carlos; Shaw, Timothy J.; O'Callaghan, Juan M.
2002-08-01
We have developed a method to calculate the distribution of fundamental and spurious fields in a metallic cylindrical cavity with superconducting endplates in which signals at two different frequencies are injected. The nonlinearity in the superconductor produces the typical intermodulation effects if the frequencies of the injected signals are sufficiently close to each other and near a resonant mode. Our method uses harmonic balance to match the fields in the cavity with the currents on the endplates. The method can be used for a variety of nonlinear models of the superconducting endplate, and could be the base for a nondestructive procedure to extract the nonlinear parameters of an HTS sample from RF measurements. Our analysis is restricted to the TE0 1 1 mode, but the method can be applied to any propagating mode in the cylindrical cavity. Closed-form equations for the case of square-law nonlinearities in the superconductor are derived and used to check the validity of the harmonic balance calculation.
Unpolarized radiative cylindrical spacetimes Trapped surfaces and quasilocal energy
Gonçalves, S M C V
2003-01-01
We consider the most general vacuum cylindrical spacetimes, which are defined by two global, spacelike, commuting, non-hypersurface-orthogonal Killing vector fields. The cylindrical waves in such spacetimes contain both + and $\\times$ polarizations, and are thus said to be unpolarized. We show that there are no trapped cylinders in the spacetime, and present a formal derivation of Thorne's C-energy, based on a Hamiltonian reduction approach. Using the Brown-York quasilocal energy prescription, we compute the actual physical energy (per unit Killing length) of the system, which corresponds to the value of the Hamiltonian that generates unit proper-time translations orthogonal to a given fixed spatial boundary. The C-energy turns out to be a monotonic non-polynomial function of the Brown-York quasilocal energy. Finally, we show that the Brown-York energy at spatial infinity is related to an asymptotic deficit angle in exactly the same manner as the specific mass of a straight cosmic string is to the former.
On Sector Magnets or Transverse Electromagnetic Fields in Cylindrical Coordinates
Energy Technology Data Exchange (ETDEWEB)
Zolkin, Timofey [Fermilab
2016-03-10
The Laplace's equations for the scalar and vector potentials describing electric or magnetic fields in cylindrical coordinates with translational invariance along azimuthal coordinate are considered. The series of special functions which, when expanded in power series in radial and vertical coordinates, in lowest order replicate the harmonic homogeneous polynomials of two variables are found. These functions are based on radial harmonics found by Edwin~M.~McMillan in his more-than-40-years "forgotten" article, which will be discussed. In addition to McMillan's harmonics, second family of adjoint radial harmonics is introduced, in order to provide symmetric description between electric and magnetic fields and to describe fields and potentials in terms of same special functions. Formulas to relate any transverse fields specified by the coefficients in the power series expansion in radial or vertical planes in cylindrical coordinates with the set of new functions are provided. This result is no doubt important for potential theory while also critical for theoretical studies, design and proper modeling of sector dipoles, combined function dipoles and any general sector element for accelerator physics. All results are presented in connection with these problems.
Influence of Ring Stiffeners on a Steel Cylindrical Shell
Directory of Open Access Journals (Sweden)
D. Lemák
2005-01-01
Full Text Available Shell structures are usually formed from concrete, steel and nowadays also from many others materials. Steel is typically used in the structures of chimneys, reservoirs, silos, pipelines, etc. Unlike concrete shells, steel shells are regularly stiffened with the help of longitudinal and/or ring stiffeners.The authors of this paper investigated steel cylindrical shells and their stiffening with the use of ring stiffeners. The more complete the stiffening, the more closely the shell will act to beam theory, and the calculations will be much easier. However, this would make realization of the structure more expensive and more laborious. The target of the study is to find the limits of ring stiffeners for cylindrical shells. Adequate stiffeners will eliminate semi-bending action of the shells in such way that the shell structures can be analyzed with the use of numerical models of the struts (e.g., by beam theory without significant divergences from reality. Recommendations are made for the design of ring stiffeners, especially for the distances between stiffeners and for their bending stiffness.
Entropy generation analysis of cylindrical heat pipe using nanofluid
Energy Technology Data Exchange (ETDEWEB)
Ghanbarpour, Morteza, E-mail: morteza.ghanbarpour@energy.kth.se; Khodabandeh, Rahmatollah
2015-06-20
Highlights: • Entropy generation of heat pipe with nanofluid has been studied. • Nanofluid has significant effect on heat pipe performance. • Entropy generation in heat pipe decreases when nanofluids are used as working fluids. - Abstract: Thermal performance of cylindrical heat pipe with nanofluid is studied based on the laws of thermodynamics. The objective of the present work is to investigate nanofluids effect on different sources of entropy generation in heat pipe caused by heat transfer between hot and cold reservoirs and also frictional losses and pressure drop in the liquid and vapor flow along heat pipe. An analytical study was performed to formulate all sources of entropy generation and the predicted results are compared with experimental ones. Cylindrical miniature grooved heat pipes of 250 mm length and 6.35 mm outer diameter were fabricated and tested with distilled water and water based TiO{sub 2} and Al{sub 2}O{sub 3} nanofluids at different concentrations as working fluids. Analytical and experimental results revealed that the entropy generation in heat pipes decreases when nanofluids are used as working fluids instead of basefluid which results in improved thermal performance of the heat pipes with nanofluids.
Vibration of in-vacuo elliptic cylindrical shells
Boisvert, Jeffrey E.; Hayek, Sabih I.
2003-10-01
The equations of motion for the vibration of elliptic cylindrical shells of constant thickness were derived using a Galerkin approach. The elastic strain energy density used in this derivation has seven independent kinematic variables: three displacements, two thickness-shear, and two thickness-stretch. The resulting seven coupled algebraic equations are symmetric and positive definite. The shell has a constant thickness, h, finite length, L, and is simply supported at its ends, (z=0,L), where z is the axial coordinate. The elliptic cross-section is defined by the shape parameter, a, and the half-length of the major axis, l. The modal solutions are expanded in a doubly infinite series of comparison functions in terms of circular functions in the angular and axial coordinates. The natural frequencies and the mode shapes were obtained by the Galerkin method. Numerical results were obtained for several h/l and L/l ratios, and various shape parameters, including the limiting case of a simply supported cylindrical shell (a=100). [Work supported by ONR and the Navy/ASEE Summer Faculty Program.
Nonlinear Dynamic Buckling of Damaged Composite Cylindrical Shells
Institute of Scientific and Technical Information of China (English)
WANG Tian-lin; TANG Wen-yong; ZHANG Sheng-kun
2007-01-01
Based on the first order shear deformation theory(FSDT), the nonlinear dynamic equations involving transverse shear deformation and initial geometric imperfections were obtained by Hamilton's philosophy. Geometric deformation of the composite cylindrical shell was treated as the initial geometric imperfection in the dynamic equations, which were solved by the semi-analytical method in this paper. Stiffness reduction was employed for the damaged sub-layer, and the equivalent stiffness matrix was obtained for the delaminated area. By circumferential Fourier series expansions for shell displacements and loads and by using Galerkin technique, the nonlinear partial differential equations were transformed to ordinary differential equations which were finally solved by the finite difference method. The buckling was judged from shell responses by B-R criteria, and critical loads were then determined. The effect of the initial geometric deformation on the dynamic response and buckling of composite cylindrical shell was also discussed, as well as the effects of concomitant delamination and sub-layer matrix damages.
Natural frequency of a circular cylindrical shell filled with fluid
Energy Technology Data Exchange (ETDEWEB)
Jeong, Kyeong Hoon; Kim, Tae Wan; Kim, Kang Soo; Park, Keun Bae [Korea Atomic Energy Research Institute, Taejon (Korea)
1998-08-01
This report presents an analytical method for evaluating the free vibration of a circular cylindrical shell filled with bounded compressible fluid. The analytical method was developed by means of the finite Fourier series expansion method. The compressible fluid motion was determined by means of the linear velocity potential theory. To clarify the validity of the analytical method, the natural frequencies of a circular cylindrical shell with the clamped-clamped boundary condition, and filled with water, were obtained by the analytical method and the finite element method using a commercial ANSYS 5.2 software. Excellent agreement on the natural frequencies of the fluid-filled shell structure was found. The compressibility and density of fluid effects the normalized coupled natural frequencies were investigated. The density of fluid affects on all coupled natural frequencies of the shell,, whereas the compressibility and bounding of fluid affects mainly on the natural frequencies of lower circumferential modes. The theory developed in this report will be applicable to the dynamic analysis of a core support barrel in SMART integral reactor filled with coolant. (author). 15 refs., 14 figs., 1 tab.
Self-sustained oscillation for compressible cylindrical cavity flows
Directory of Open Access Journals (Sweden)
Kung-Ming CHUNG
2017-08-01
Full Text Available The presence of a cavity changes the mean and fluctuating pressure distributions. Similarities are observed between a cylindrical cavity and a rectangular cavity for a compressible flow. The type of cavity flow field depends on the diameter-to-depth ratio and the length-to-depth ratio. The feedback loop is responsible for the generation of discrete acoustic tones. In this study, the self-sustained oscillation for a compressible cylindrical cavity flow was investigated experimentally. For open-type cavities, the power spectra show that the strength of resonance depends on the diameter-to-depth ratio (4.43–43.0 and the incoming boundary layer thickness-to-depth ratio (0.72–7.0. The effective streamwise length is used as the characteristic length to estimate the Strouhal number. At higher modes, there is a large deviation from Rossiter’s formula for rectangular cavities. The gradient-based searching method was used to evaluate the values of the empirical parameters. Less phase lag and a lower convection velocity are observed.
Orbital motion theory and operational regimes for cylindrical emissive probes
Chen, Xin; Sanchez-Arriaga, G.
2017-02-01
A full-kinetic model based on the orbital-motion theory for cylindrical emissive probes (EPs) is presented. The conservation of the distribution function, the energy, and the angular momentum for cylindrical probes immersed in collisionless and stationary plasmas is used to write the Vlasov-Poisson system as a single integro-differential equation. It describes self-consistently the electrostatic potential profile and, consequently, the current-voltage (I-V) probe characteristics. Its numerical solutions are used to identify different EP operational regimes, including orbital-motion-limited (OML)/non-OML current collection and monotonic/non-monotonic potential, in the parametric domain of probe bias and emission level. The most important features of the potential and density profiles are presented and compared with common approximations in the literature. Conventional methods to measure plasma potential with EPs are briefly revisited. A direct application of the model is to estimate plasma parameters by fitting I-V measurements to the theoretical results.
Multimode laser emission from free-standing cylindrical microcavities
Energy Technology Data Exchange (ETDEWEB)
Peter, Jaison, E-mail: jaisonpeter@cusat.ac.in; Radhakrishnan, P.; Nampoori, V.P.N.; Kailasnath, M.
2014-05-01
We report a well resolved whispering gallery mode (WGM) laser emission from a free-standing microring cavity based on a dye doped hollow polymer optical fiber (DDHPOF), which is transversely pumped by a pulsed Nd:YAG laser. The microring laser is characterized by a well-defined, low threshold pump power at which the emission spectral intensity dramatically increases and collapses into several dominant microcavity laser modes with reduced mode spacing and high Q-value. Resonant modes are excited inside the gain medium which is strongly confined along the radial direction so that the spacing of lasing modes is controlled by the diameter of the cylindrical microcavity. A variation in the free spectral range of WGM spectra from 0.23 to 0.09 nm coupled with a red-shift is observed with an increase in the diameter of DDHPOFs. - Highlights: • Different diameter free-standing cylindrical microcavity lasers have been fabricated and their performances have been evaluated. • The microring laser is characterized by a well-defined, low threshold pump power, with reduced mode spacing and high Q-value. • When the diameter of DDHPOF increases, the number of lasing peaks increases along with the decrease of the FSR as observed from our studies. • It is also found that whispering gallery lasing envelope is shifted from 559 to 571 nm (Stokes shift) with the diameter.
Cylindrical Liner Z-pinch Experiments on the MAGPIE Generator
Burdiak, Guy; Lebedev, Sergey V.; Harvey-Thompson, Adam J.; Swadling, George F.; Suzuki-Vidal, Francisco; Skidmore, Jonathan; Suttle, Lee; Khoory, Essa; Pickworth, Louisa; de Grouchy, Philip; Hall, Gareth N.; Bland, Simon N.; Weinwurm, Marcus; Chittenden, Jeremy P.
2012-10-01
Experimental data from gas-filled cylindrical liner z-pinch experiments is presented. The MAGPIE current (1.4 MA, 240 ns) is applied to a thin walled (80um) Al tube with a static gas-fill inside. The system is diagnosed axially using interferometry, optical streak photography and optical spectroscopy. We observe a series of cylindrically converging shock waves driven into the gas-fill from the inside liner surface. No bulk motion of the liner occurs. The timing of the shocks and their trajectories provide information on the shock launching mechanisms. This in turn allows a study of the response of the liner to the current pulse. Shock wave timing is compared to measurements of the liner resistance and optical images of the liner's outside surface. The system provides a useful, essentially 1D problem for testing MagLIF relevant MHD codes, particularly with regards to EOS, strength and resistivity models. This work may also be relevant to the study of shocks in astrophysical plasmas. The shocks launched into the gas radiatiate strongly; spatially resolved optical spectroscopy data and radial electron density profiles from interferometry images provide evidence for a radiative precursor ahead of the first shock. Instabilities are seen to develop in the downstream regions.
Employing a cylindrical single crystal in gas-surface dynamics.
Hahn, Christine; Shan, Junjun; Liu, Ying; Berg, Otto; Kleijn, Aart W; Juurlink, Ludo B F
2012-03-21
We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a crystal temperature range of 89 to 1100 K. A microchannel plate-based low energy electron diffraction/retarding field Auger electron spectrometer (AES) apparatus identifies surface structures present on the outer surface of the cylinder, while a separate double pass cylindrical mirror analyzer AES verifies surface cleanliness. A supersonic molecular beam, skimmed by a rectangular slot, impinges molecules on a narrow longitudinal strip of the surface. Here, we use the King and Wells technique to demonstrate how surface structure influences the dissociation probability of deuterium at various kinetic energies. Finally, we introduce spatially-resolved temperature programmed desorption from areas exposed to the supersonic molecular beam to show how surface structures influence desorption features.
Cylindrical diffractive lenses recorded on PVA/AA photopolymers
Fernández, R.; Gallego, S.; Márquez, A.; Navarro-Fuster, V.; Francés, J.; Neipp, C.; Beléndez, A.; Pascual, I.
2016-04-01
Photopolymers are optical recording materials appealing for many different applications such as holography, data storage, interconnectors, solar concentrations, or wave-guides fabrication. Recently the capacity of photopolymers to record diffractive optical elements (DOE's) has been investigated. Different authors have reported proposes to record DOE like fork gratings, photonics structures, lenses, sinusoidal, blazed or fork gratings. In these experiments there are different experimental set-ups and different photopolymers. In this work due to the improvement in the spatial light modulation technology together with the photopolymer science we propose a recording experimental system of DOE using a Liquid Cristal based on Silicon (LCoS) display as a master to store complex DOE like cylindrical lenses. This technology permits us an accurate control of the phase and the amplitude of the recording beam, with a very small pixel size. The main advantage of this display is that permit us to modify the DOE automatically, we use the software of the LCoS to send the voltage to each pixel In this work we use a photopolymer composed by acrylamide (AA) as polymerizable monomer and polyvinyl alcohol (PVA). We use a coverplated and index matched photopolymer to avoid the influence of the thickness variation on the transmitted light. In order to reproduce the material behaviour during polymerization, we have designed our model to simulate cylindrical lenses and used Fresnel propagation to simulate the light propagation through the DOE and analyze the focal plane and the properties of the recorded lenses.
NUMERICAL SIMULATION OF SPHERICAL, CYLINDRICAL AND AXIAL BUBBLE CLOUDS COLLAPSE
Institute of Scientific and Technical Information of China (English)
MAHDI Miralam; EBRAHIMI Reza; SHAMS Mehrzad
2012-01-01
The nonlinear dynamics of a spherical,cylindrical and axial cloud of cavitation bubbles were numerically simulated in order to learn more about the physical phenomena occurring in the cloud cavitation.The simulations employed the fully nonlinear continuum mixture equations coupled with the Gilmore equation for the dynamics of bubbles by considering the compressibility of liquid.A set of the Navier-Stokes equations was solved for the gas inside a spherical bubble,considering heat transfer through the gas inside the bubble and the liquid layer.The flow field around the cylindrical and axial cloud was obtained by solving the Navier-Stokes equations using a finite volume method and a dynamic layering mesh scheme.The calculated strength of shock wave in the liquid around the cloud was of the order of 1 × 106 Pa and the propagation of this shock wave lasted for 10 μs.The conducted investigations illustrate that the shock wave propagates before the cloud has completely collapsed.A good agreement with experimental data was observed.
Smart Cylindrical Dome Antenna Based on Active Frequency Selective Surface
Directory of Open Access Journals (Sweden)
Tongyu Ding
2017-01-01
Full Text Available In this paper, we proposed a beamforming antenna, which is realized using an omnidirectional antenna in the center surrounded by a cylindrical smart dome. The smart dome is made of 16 active frequency selective surface columns of which the amplitude and phase response can be continuously tuned by varying the bias voltages of the employed varactors. Thus, the performance of the proposed antenna could achieve higher gain, better nulling level, and more agility than many switch methods-based cylindrical reconfigurable antennas. Moreover, in order to overcome the unavailable analytical synthesis caused by complex mutual coupling between columns, we develop a genetic algorithm based optimization system and conducted a serial of experiments to evaluate the high-gain, nulling, continuously steering, and frequency-invariant ability. The results show that, during the frequency tunable range of the AFSS (2.0 GHz to 2.7 GHz, the antenna can offer an additional gain of up to 6.57 dB and nulling level of −56.41 dBi. For the high-gain modes, the −3 dB beam widths are 26°–34°, which offers enhanced angular resolution compared with other reported beam-sweeping work. Furthermore, the radiation pattern is continuously steerable.
Ultrasound cylindrical phased array for transoesophageal thermal therapy: initial studies
Energy Technology Data Exchange (ETDEWEB)
Melodelima, David [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Lafon, Cyril [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Prat, Frederic [Centre Hospitalier Bicetre, 78 Avenue General Leclerc, 94275 Le Kremlin Bicetre (France); Birer, Alain [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Cathignol, Dominique [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France)
2002-12-07
This work was undertaken to investigate the feasibility of constructing a cylindrical phased array composed of 64 elements spread around the periphery (OD 10.6 mm) for transoesophageal ultrasound thermotherapy. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were successively excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. For these feasibility studies, we used a cylindrical prototype (OD 10.6 mm) composed of 16 elementary transducers distributed over a quarter of the cylinder, all operating at 4.55 MHz. The active part was mechanically reinforced by a rigid damper structure behind the transducers. It was shown that an ultrasound field similar to that emitted by a plane transducer could be generated. Ex vivo experiments on pig's liver demonstrated that the ultrasound beam could be accurately rotated to generate sector-based lesions to a suitable depth (up to 19 mm). Throughout these experiments, exposures lasting 20 s were delivered at an acoustic intensity of 17 W cm{sup -2}. By varying the power from exposure to exposure, the depth of the lesion at different angles could be controlled.
Coupled dilaton and electromagnetic field in cylindrically symmetric spacetime
Indian Academy of Sciences (India)
A Banerjee; S Chatterjee; Tanwi Ghosh
2000-03-01
An exact solution is obtained for coupled dilaton and electromagnetic ﬁeld in a cylindrically symmetric spacetime where an axial magnetic ﬁeld as well as a radial electric ﬁeld both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric ﬁeld or to that with pure magnetic ﬁeld. In the ﬁrst case we have a curvature singularity at a ﬁnite distance from the axis indicating the existence of the boundary of a charged cylinder which may represent the source of the electric ﬁeld. For the second case we have a singularity on the axis. When the dilaton ﬁeld is absent the electromagnetic ﬁeld disappears in both the cases. Whereas the contrary is not true. It is further shown that light rays except for those proceeding in the radial direction are either trapped or escape to inﬁnity depending on the magnitudes of certain constant parameters as well as on the nature of the electromagnetic ﬁeld. Nature of circular geodesics is also studied in the presence of dilaton ﬁeld in the cylindrically symmetric spacetime.
Stability of perfect and imperfect cylindrical shells under axial compression and torsion
Institute of Scientific and Technical Information of China (English)
袁喆; 霍世慧; 耿小亮
2014-01-01
Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through comparing critical loads and the first buckling modes with those obtained through theoretical analysis. Two typical initial defects, non-circularity and uneven thickness distribution, were studied. Critical loads decline with the increase of non-circularity, which exist in imperfect cylindrical shells under both axial compression and torsion. Non-circularity defect has no effect on the first buckling mode when cylindrical shell is under torsion. Unfortunately, it has a completely different buckling mode when cylindrical shell is under axial compression. Critical loads decline with the increase of thickness defect amplitude, which exist in imperfect cylindrical shells under both axial compression and torsion, too. A greater wave number is conducive to the stability of cylindrical shells. The first buckling mode of imperfect cylindrical shells under torsion maintains its original shape, but it changes with wave number when the cylindrical shell is under axial compression.
Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes
Goriely, A.
2013-03-06
Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells reinforced by one or two families of fibres. We consider both small and large deformations and the reduction from thick cylindrical shells (tubes) to thin shells (cylindrical membranes). In particular, a number of universal parameter regimes can be identified where the response behaviour of the cylinder is qualitatively different. This include the possibility of inversion of twist or axial strain when the cylinder is subject to internal pressure. Copyright © The Royal Society 2013.
Unique features of cylindrical type solar-module contrasted with plane or conventional type ones
Hiraki, Hirohisa; Hiraki, Akio; Maeda, Masakatsu; Takahashi, Yasuo
2012-08-01
Due to their shape and construction, Cu(In,Ga)Se2 [CIGS] cylindrical photovoltaic [PV] panels have unique features that planar or conventional PV panels do not have. For example, a) they capture sunlight over an angular range of 360°, b) they are self-ballasting (no roof penetrations, no attachments required) and c) they are high-reliability hermetically sealed cylindrical packages. In field tests in Japan, cylindrical PV panels have proven their durability against typhoons, and also their excellent electrical properties. Finally, as a new application of cylindrical PV panels, we suggest the new concept of fusion or combination of PV generation and agriculture.
Institute of Scientific and Technical Information of China (English)
HE Cunfu; HANG Lijun; WU Bin
2007-01-01
To conveniently carry out the pipeline leak experiment in a laboratory,leak acoustic signals are simulated by using the converse piezoelectric effect of a piezoelectric transducer (PZT) cylindrical phase modulator.On the basis of the piezoelectric equations and electromechanical equivalence principle,the transfer function of a PZT cylindrical phase modulator is delivered.A PZT cylindrical phase modulator is designed,and the numerical simulation is conducted.Results prove that the PZT cylindrical phase modulator can effectively simulate leak acoustic emission signals when the frequency is lower than 25 KHz.
Cylindrical Jet-Wind Interaction Model of Gamma-Ray Burst Afterglows
Institute of Scientific and Technical Information of China (English)
Hai-Tao Ma; Yong-Feng Huang; Zi-Gao Dai; Tan Lu
2003-01-01
Observations on relativistic jets in radio galaxies, active galactic nuclei,and "microquasars" revealed that many of these outflows are cylindrical, not coni-cal. So it is worthwhile to investigate the evolution of cylindrical jets in gamma-raybursts. We discuss afterglows from cylindrical jets in a wind environment. Numeri-cal results as well as analytic solutions in some special cases are presented. Our lightcurves are steeper compared to those in the homogeneous interstellar medium case,carefully considered by Cheng, Huang & Lu. We conclude that some afterglows,used to be interpreted as isotropic fireballs in a wind environment, can be fitted aswell by cylindrical jets interacting with a wind.
Directory of Open Access Journals (Sweden)
Chi-Chieh Huang
2014-06-01
Full Text Available We present a wide-angle, broad-spectrum cylindrical lens based on reflections from an array of three-dimensional, high-aspect-ratio micro-mirrors fabricated on a cylindrical elastomeric substrate, functionally inspired by natural reflecting superposition compound eyes. Our device can perform one-dimensional focusing and beam-shaping comparable to conventional refraction-based cylindrical lenses, while avoiding chromatic aberration. The focal length of our cylindrical lens is 1.035 mm, suitable for micro-optical systems. Moreover, it demonstrates a wide field of view of 152° without distortion, as well as modest spherical aberrations. Our work could be applied to diverse applications including laser diode collimation, barcode scanning, holography, digital projection display, microlens arrays, and optical microscopy.
A simple construction for a cylindrical cloak via inverse homogenization
Anderson, Tom H; Lakhtakia, Akhlesh
2011-01-01
An effective cylindrical cloak may be conceptualized as an assembly of adjacent local neighbourhoods, each of which is made from a homogenized composite material (HCM). The HCM is required to be a certain uniaxial dielectric-magnetic material, characterized by positive-definite constitutive dyadics. It can arise from the homogenization of remarkably simple component materials, such as two isotropic dielectric-magnetic materials, randomly distributed as oriented spheroidal particles. By carefully controlling the spheroidal shape of the component particles, a high degree of HCM anisotropy may be achieved, which is necessary for the cloaking effect to be realized. The inverse Bruggeman formalism can provide estimates of the shape and constitutive parameters for the component materials, as well as their volume fractions.
Kaluza-Klein magnetized cylindrical wormhole and its gravitational lensing
Hashemi, S. Sedigheh; Riazi, Nematollah
2016-10-01
A new exact vacuum solution in five dimensions, which describes a magnetized cylindrical wormhole in 3+1 dimensions is presented. The magnetic field lines are stretched along the wormhole throat and are concentrated near to it. We study the motion of neutral and charged test particles under the influence of the magnetized wormhole. The effective potential for a neutral test particle around and across the magnetized wormhole has a repulsive character. The gravitational lensing for the magnetized wormhole for various lens parameters are calculated and compared. The total magnetic flux on either side of the wormhole is obtained. We present analytic expressions which show regions in which the null energy condition is violated.
Non-linear effects for cylindrical gravitational two-soliton
Tomizawa, Shinya
2015-01-01
Using a cylindrical soliton solution to the four-dimensional vacuum Einstein equation, we study non-linear effects of gravitational waves such as Faraday rotation and time shift phenomenon. In the previous work, we analyzed the single-soliton solution constructed by the Pomeransky's improved inverse scattering method. In this work, we construct a new two-soliton solution with complex conjugate poles, by which we can avoid light-cone singularities unavoidable in a single soliton case. In particular, we compute amplitudes of such non-linear gravitational waves and time-dependence of the polarizations. Furthermore, we consider the time shift phenomenon for soliton waves, which means that a wave packet can propagate at slower velocity than light.
Symbolic Solution for Generalized Quantum Cylindrical Wells using Computer Algebra
Villegas, Edward Yesid
2012-01-01
This paper present how to solve the problem of cylindrical quantum wells with potential energy different from zero and with singularity of the energy on the axis of the cylinder. The solution to the problem was obtained using methods of computer algebra. The results depend of Bessel and Kummer functions. This paper present energy levels and wave functions in some of the cases with an exactly form and in other cases with an approximated form, this form depended on the possibility of integrating the special functions and calculating the zeros of these functions. Here we can see the power of the method in the applications concerning complex problems of quantum mechanics, and the possibility of being able to apply this method in order to solve other problems in science and also in engineering.
Theoretical analysis on x-ray cylindrical grating interferometer
Cong, Wenxiang; Wang, Ge
2015-01-01
Grating interferometer is a state of art x-ray imaging approach, which can simultaneously acquire information of x-ray attenuation, phase shift, and small angle scattering. This approach is very sensitive to micro-structural variation and offers superior contrast resolution for biological soft tissues. The present grating interferometer often uses flat gratings, with serious limitations in the field of view and the flux of photons. The use of curved gratings allows perpendicular incidence of x-rays on the gratings, and gives higher visibility over a larger field of view than a conventional interferometer with flat gratings. In the study, we present a rigorous theoretical analysis of the self-imaging of curved transmission gratings based on Rayleigh-Sommerfeld diffraction. Numerical simulations have demonstrated the self-imaging phenomenon of cylindrical grating interferometer. The theoretical results are in agreement with the results of numerical simulations.
Linear stability analysis of capillary instabilities for concentric cylindrical shells
Liang, X; Nave, J -C; Johnson, S G
2010-01-01
Motivated by complex multi-fluid geometries currently being explored in fibre-device manufacturing, we study capillary instabilities in concentric cylindrical flows of N fluids with arbitrary viscosities, thicknesses, densities, and surface tensions in both the Stokes regime and for the full Navier--Stokes problem. Generalising previous work by Tomotika (N=2), Stone & Brenner (N=3, equal viscosities) and others, we present a full linear stability analysis of the growth modes and rates, reducing the system to a linear generalised eigenproblem in the Stokes case. Furthermore, we demonstrate by Plateau-style geometrical arguments that only axisymmetric instabilities need be considered. We show that the N=3 case is already sufficient to obtain several interesting phenomena: limiting cases of thin shells or low shell viscosity that reduce to N=2 problems, and a system with competing breakup processes at very different length scales. The latter is demonstrated with full 3-dimensional simulations. Many $N > 3$ c...
The compliance contact model of cylindrical joints with clearances
Institute of Scientific and Technical Information of China (English)
Caishan Liu; Ke Zhang; Lei Yang; Keren Wang
2005-01-01
This paper is concerned with the determination of the normal force-displacement (NFD) relation for the contact problem of cylindrical joints with clearance. A simple formulation for this contact problem is developed by modeling the pin as a rigid wedge and the elastic plate as a simple Winkler elastic foundation. The numerical results show that the normal displacement relation based on Hertz theory is only valid for the case of large clearance with a small normal load, and the NFD relation based on Persson theory is only effective in the case of very small clearance. The proposed approximate model in this paper gives better results than Hertz theory and Persson theory in a large range of clearances as seen from the comparison with the results of FEM.
Cylindrically symmetric solitons in Einstein-Yang-Mills theory
Galtsov, D V; Davydov, Evgeny A.; Gal'tsov, Dmitri V.
2006-01-01
Recently new Einstein-Yang-Mills (EYM) soliton solutions were presented which describe superconducting strings with Kasner asymptotic (hep-th/0610183). Here we study the static cylindrically symmetric SU(2) EYM system in more detail. The ansatz for the gauge field corresponds to superposition of the azimuthal $B_\\phi$ and the longitudinal $B_z$ components of the color magnetic field. We derive sum rules relating data on the symmetry axis to asymptotic data and show that generic asymptotic structure of regular solutions is Kasner. Solutions starting with vacuum data on the axis generically are divergent. Regular solutions correspond to some bifurcation manifold in the space of parameters which has the low-energy limiting point corresponding to string solutions in flat space (with the divergent total energy) and the high-curvature point where gravity is crucial. Some analytical results are presented for the low energy limit, and numerical bifurcation curves are constructed in the gravitating case. Depending on ...
Note: Continuous synthesis of uniform vertical graphene on cylindrical surfaces.
Bo, Zheng; Cui, Shumao; Yu, Kehan; Lu, Ganhua; Mao, Shun; Chen, Junhong
2011-08-01
This note describes a new reactor design for continuous synthesis of vertically oriented graphene (VG) sheets on cylindrical wire substrates using an atmospheric plasma-enhanced chemical vapor deposition (PECVD) system. Through combining a U-shaped reactor design with "dynamic mode" synthesis featuring simultaneous rotational and axial movements of the metallic wire substrate, the new setup can enable continuous synthesis of VG sheets on the wire surface with remarkable uniformity in both circumferential and axial directions. In contrast, synthesis of VG at "static mode" with a fixed substrate can only lead to non-uniform growth of VG sheets on the wire surface. Potential applications of the resulting uniform-VG-coated metallic wire could include field emitters, field-ionization-based neutral atom detectors, and indoor corona discharges.
Radiation and scattering from imperfect cylindrical electromagnetic cloaks.
Isic, G; Gajic, R; Novakovic, B; Popovic, Z V; Hingerl, K
2008-02-04
The design of electromagnetic invisibility cloaks is based on singular mappings prescribing zero or infinite values for material parameters on the inner surface of the cloak. Since this is only approximately feasible, an asymptotic analysis is necessary for a sound description of cloaks. We adopt a simple and effective approach for analyzing electromagnetic cloaks - instead of the originally proposed singular mapping, nonsingular mappings asymptotically approaching the ideal one are considered. Scattering and radiation from this type of imperfect cylindrical cloaks is solved analytically and the results are confirmed by full-wave finite element simulations. Our analysis sheds more light on the influence of this kind of imperfection on the cloaking performance and further explores the physics of cloaking devices.
Vector cylindrical harmonics for low-dimensional convection models
Kelley, Douglas H; Knox, Catherine A
2016-01-01
Approximate empirical models of thermal convection can allow us to identify the essential properties of the flow in simplified form, and to produce empirical estimates using only a few parameters. Such "low-dimensional" empirical models can be constructed systematically by writing numerical or experimental measurements as superpositions of a set of appropriate basis modes, a process known as Galerkin projection. For Boussinesq convection in a cylinder, those basis modes should be defined in cylindrical coordinates, vector-valued, divergence-free, and mutually orthogonal. Here we construct two such basis sets, one using Bessel functions in the radial direction, and one using Chebyshev polynomials. We demonstrate that each set has those desired characteristics and demonstrate the advantages and drawbacks of each set. We show their use for representing sample simulation data and point out their potential for low-dimensional convection models.
Mode-selectable ultrasonic transducer for cylindrical ferromagnetic waveguides
Kim, Youngkyu; Lee, Hocheol; Cho, Seung Hyun; Kim, Yoon Young
2003-07-01
Ultrasonic inspection techniques using magnetostrictive transducers have received much attention in recent years as non-contact, non-destructive means of inspecting ferromagnetic materials. By the selection of a desired mode and thus the rejection of the unwanted modes among propagating waves in a waveguide, different types of flaws existing in a cylindrical ferromagnetic waveguide can be effectively detected. However, desired mode selection methods have not been fully developed yet. The purpose of this research is to present a mangetostrictive sensor based technique for the selection of either the bending or longitudinal waves alone in a ferromagnetic waveguide. To achieve this goal, new bias magnet configurations, particularly for bending mode selection are suggested. Several experimental results are conducted to verify the effectiveness of the suggested magnetostrictive sensors.
Response of long shallow cylindrical panels to radial line loads
Johnson, E. R.; Hyer, M. W.; Carper, D. M.
1984-01-01
The large displacement static response of shallow orthotropic panels subjected to lateral loading is examined both theoretically and experimentally. The panels are circular cylindrical open shells which are also thin and long. The straight edges are simply supported at a fixed distance apart, and the curved edges are free. The lateral load is a spatially uniform line load acting along the generator direction of the cylinder, and is directed radially inward toward the center of curvature. The load induces a circumferential thrust, and the panel can, and does, snap-through to an inverted configuration at the buckling load. The effect of load position on the response is also examined. The test panels discussed in the paper are /(90/0)3/S graphite-epoxy laminates. Nominal dimensions are a radius of 60 in., a thickness of 0.060 in., and an arc length of 12 in. Very good agreement between theory and experiment is achieved.
Nonobvious features of dynamics of circular cylindrical shells
Leizerovich, G. S.; Taranukha, N. A.
2008-04-01
In the framework of the nonlinear theory of flexible shallow shells, we study free bending vibrations of a thin-walled circular cylindrical shell hinged at the end faces. The finite-dimensional shell model assumes that the excitation of large-amplitude bending vibrations inevitably results in the appearance of radial vibrations of the shell. The modal equations are obtained by the Bubnov-Galerkin method. The periodic solutions are found by the Krylov-Bogolyubov method. We show that if the tangential boundary conditions are satisfied "in the mean," then, for a shell of finite length, significant errors arise in determining its nonlinear dynamic characteristics. We prove that small initial irregularities split the bending frequency spectrum, the basic frequency being smaller than in the case of an ideal shell.
Transverse shear effect in a circumferentially cracked cylindrical shell
Delale, F.; Erdogan, F.
1979-01-01
The objectives of the paper are to solve the problem of a circumferentially-cracked cylindrical shell by taking into account the effect of transverse shear, and to obtain the stress intensity factors for the bending moment as well as the membrane force as the external load. The formulation of the problem is given for a specially orthotropic material within the framework of a linearized shallow shell theory. The particular theory used permits the consideration of all five boundary conditions as to moment and stress resultants on the crack surface. The effect of Poisson's ratio on the stress intensity factors and the nature of the out-of-plane displacement along the edges of the crack, i.e., bulging, are also studied.
Vibrations of cantilevered shallow cylindrical shells of rectangular planform
Leissa, A. W.; Lee, J. K.; Wang, A. J.
1981-01-01
A cantilevered, shallow shell of circular cylindrical curvature and rectangular planform exhibits free vibration behavior which differs considerably from that of a cantilevered beam or of a flat plate. Some numerical results can be found for the problem in the previously published literature, mainly obtained by using various finite element methods. The present paper is the first definitive study of the problem, presenting accurate non-dimensional frequency parameters for wide ranges of aspect ratio, shallowness ratio and thickness ratio. The analysis is based upon shallow shell theory. Numerical results are obtained by using the Ritz method, with algebraic polynomial trial functions for the displacements. Convergence is investigated, with attention being given both to the number of terms taken for each co-ordinate direction and for each of the three components of displacement. Accuracy of the results is also established by comparison with finite element results for shallow shells and with other accurate flat plate solutions.
Cylindrically symmetric cosmological model of the universe in modified gravity
Mishra, B.; Vadrevu, Samhita
2017-02-01
In this paper, we have constructed the cosmological models of the universe in a cylindrically symmetric space time in two classes of f(R,T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011). We have discussed two cases: one in the linear form and the other in the quadratic form of R. The matter is considered to be in the form of perfect fluid. It is observed that in the first case, the pressure and energy density remain the same, which reduces to a Zeldovich fluid. In the second case we have studied the quadratic function of f(R,T) gravity in the form f(R)=λ(R+R2) and f(T)=λ T. In the second case the pressure is in the negative domain and the energy density is in the positive domain, which confirms that the equation of state parameter is negative. The physical properties of the constructed models are studied.
From Cylindrical to Stretching Ridges and Wrinkles in Twisted Ribbons
Pham Dinh, Huy; Démery, Vincent; Davidovitch, Benny; Brau, Fabian; Damman, Pascal
2016-09-01
Twisted ribbons under tension exhibit a remarkably rich morphology, from smooth and wrinkled helicoids, to cylindrical or faceted patterns. This complexity emanates from the instability of the natural, helicoidal symmetry of the system, which generates both longitudinal and transverse stresses, thereby leading to buckling of the ribbon. Here, we focus on the tessellation patterns made of triangular facets. Our experimental observations are described within an "asymptotic isometry" approach that brings together geometry and elasticity. The geometry consists of parametrized families of surfaces, isometric to the undeformed ribbon in the singular limit of vanishing thickness and tensile load. The energy, whose minimization selects the favored structure among those families, is governed by the tensile work and bending cost of the pattern. This framework describes the coexistence lines in a morphological phase diagram, and determines the domain of existence of faceted structures.
Circumferential buckling instability of a growing cylindrical tube
Moulton, D.E.
2011-03-01
A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common phenomenon in biological tissues, where it is referred to as mucosal folding. Here, we investigate this buckling instability in a growing elastic tube. A change in thickness due to growth can have a dramatic impact on circumferential buckling, both in the critical pressure and the buckling pattern. We consider both single- and bi-layer tubes and multiple boundary conditions. We highlight the competition between geometric effects, i.e. the change in tube dimensions, and mechanical effects, i.e. the effect of residual stress, due to differential growth. This competition can lead to non-intuitive results, such as a tube growing to be thinner and yet buckle at a higher pressure. © 2011 Elsevier Ltd. All rights reserved.
First and second sound in cylindrically trapped gases.
Bertaina, G; Pitaevskii, L; Stringari, S
2010-10-08
We investigate the propagation of density and temperature waves in a cylindrically trapped gas with radial harmonic confinement. Starting from two-fluid hydrodynamic theory we derive effective 1D equations for the chemical potential and the temperature which explicitly account for the effects of viscosity and thermal conductivity. Differently from quantum fluids confined by rigid walls, the harmonic confinement allows for the propagation of both first and second sound in the long wavelength limit. We provide quantitative predictions for the two sound velocities of a superfluid Fermi gas at unitarity. For shorter wavelengths we discover a new surprising class of excitations continuously spread over a finite interval of frequencies. This results in a nondissipative damping in the response function which is analytically calculated in the limiting case of a classical ideal gas.
INTERNAL FINISHING OF CYLINDRICAL PIPES USING SINTERED MAGNETIC ABRASIVES
Directory of Open Access Journals (Sweden)
PALWINDER SINGH
2011-07-01
Full Text Available An internal magnetic abrasive finishing (MAF process was proposed to produce highly finished inner surfaces of workpieces used in critical applications. The process principle and the finishing characteristics of magnetic abrasive finishing of cylindrical pipes using sintered magnetic abrasives are described in this research work. Thesintered magnetic abrasive is a mixture of Al2O3 abrasive and ferromagnetic particles. The Al2O3 based sintered magnetic abrasives have been developed in sintering machine. The surface roughness measurements resulting from finishing experiments demonstrate the effects of the abrasive behavior on the surface modifications. Thesurface finish was analysed in terms of percent improvement in surface finish (PISF. Also surface finish was analysed using Response Surface Methodology (RSM. The obtained maximum PISF was 95% and minimum surface roughness was 0.05 μm Ra. To further study the improvement in surface finish, the surface was microscopically examined using X-Ray Diffraction (XRD.
Evaluation of hybrid composite materials in cylindrical specimen geometries
Liber, T.; Daniel, I. M.
1976-01-01
Static and fatigue properties of three composite materials and hybrids were examined. The materials investigated were graphite/epoxy, S-glass/epoxy, PRD-49 (Kevlar 49)/epoxy, and hybrids in angle-ply configurations. A new type of edgeless cylindrical specimen was developed. It is a flattened tube with two flat sides connected by curved sections and it is handled much like the standard flat coupon. Special specimen fabrication, tabbing, and tab region reinforcing techniques were developed. Axial modulus, Poisson's ratio, strength, and ultimate strain were obtained under static loading from flattened tube specimens of nine laminate configurations. In the case of graphite/epoxy the tubular specimens appeared to yield somewhat higher strength and ultimate strain values than flat specimens. Tensile fatigue tests were conducted with all nine types of specimens and S-N curves obtained. Specimens surviving 10 million cycles of tensile loading were subsequently tested statically to failure to determine residual properties.
Photoacoustic section imaging with an integrating cylindrical detector
Gratt, Sibylle; Passler, Klaus; Nuster, Robert; Paltauf, Guenther
2011-07-01
A piezoelectric detector with cylindrical shape for photoacoustic section imaging is characterized. This detector is larger than the imaging object in direction of the cylinder axis, giving rise to its integrating properties. Its focal volume has the shape of a slice and the acquisition of signals for one section image requires rotation of an object about an axis perpendicular to this slice. Image reconstruction from the signals requires the application of the inverse Radon transform. It is shown that implementing the Abel transform is a suitable step in data processing, allowing speeding up the data acquisition since the scanning angle can be reduced. The resolution of the detector was estimated in directions perpendicular and parallel to the detection plane. An upper limit for the out of plane resolution is given and section images of a zebra fish are shown.
NONLINEAR WAVE INDUCED BY AN ACCELERATING CYLINDRICAL TANK
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper presents a method of solving Lagrangian version of governing equations that allows boundary conditions at the free surface to be satisfied exactly, which is a three-dimensional generalization of a method first put forward by Stoker. Analytical expressions of nonlinear hydrodynamic pressure up to the third order and of free surface displacement up to the fourth order of an accelerating cylindrical tank were obtained. Here only the motions of objects in their early stage after initial impulses was considered. As a justification of the method, the importment special case when the ratio of tank diameter to fluid depth tends to infinity was taken as an exainple, which shows that the linear hydrodynamic pressure obtained agrees completely with Westergaard or von Karman's classical result.
Rotating solitary wave at the wall of a cylindrical container
Amaouche, Mustapha
2013-04-30
This paper deals with the theoretical modeling of a rotating solitary surface wave that was observed during water drainage from a cylindrical reservoir, when shallow water conditions were reached. It represents an improvement of our previous study, where the radial flow perturbation was neglected. This assumption led to the classical planar Korteweg–de Vries equation for the wall wave profile, which did not account for the rotational character of the base flow. The present formulation is based on a less restricting condition and consequently corrects the last shortcoming. Now the influence of the background flow appears in the wave characteristics. The theory provides a better physical depiction of the unique experiment by predicting fairly well the wave profile at least in the first half of its lifetime and estimating the speed of the observed wave with good accuracy.
Large Scale Magnetohydrodynamic Dynamos from Cylindrical Differentially Rotating Flows
Ebrahimi, F
2015-01-01
For cylindrical differentially rotating plasmas threaded with a uniform vertical magnetic field, we study large-scale magnetic field generation from finite amplitude perturbations using analytic theory and direct numerical simulations. Analytically, we impose helical fluctuations, a seed field, and a background flow and use quasi-linear theory for a single mode. The predicted large-scale field growth agrees with numerical simulations in which the magnetorotational instability (MRI) arises naturally. The vertically and azimuthally averaged toroidal field is generated by a fluctuation-induced EMF that depends on differential rotation. Given fluctuations, the method also predicts large-scale field growth for MRI-stable rotation profiles and flows with no rotation but shear.
The Einstein field equations for cylindrically symmetric elastic configurations
Energy Technology Data Exchange (ETDEWEB)
Brito, I; Vaz, E G L R [Departamento de Matematica e Aplicacoes, Universidade do Minho, 4800-058 Guimaraes (Portugal); Carot, J, E-mail: ireneb@math.uminho.pt, E-mail: jcarot@uib.cat, E-mail: evaz@math.uminho.pt [Departament de Fisica, Universitat de les Illes Balears, Cra Valdemossa pk 7.5, E-07122 Palma (Spain)
2011-09-22
In the context of relativistic elasticity it is interesting to study axially symmetric space-times due to their significance in modeling neutron stars and other astrophysical systems of interest. To approach this problem, here, a particular class of these space-times is considered. A cylindrically symmetric elastic space-time configuration is studied, where the material metric is taken to be flat. The components of the energy-momentum tensor for elastic matter are written in terms of the invariants of the strain tensor, here chosen to be the eigenvalues of the pulled-back material metric. The Einstein field equations are presented and a condition confirming the existence of a constitutive function is obtained. This condition leads to special cases, in one of which a new system for the metric functions and an expression for the constitutive function are deduced. The new system depends on a particular function, which builds up the constitutive equation.
Magnetoelectroelastic fields in rotating multiferroic composite cylindrical structures
Institute of Scientific and Technical Information of China (English)
Ji YING; Hui-ming WANG
2009-01-01
An analytical solution is obtained for a rotating multiferroic composite hollow cylinder made of radially polarized piezoelectric and piezomagnetic materials. Both the number of layers and the stacking sequence of the composite cylinder can be arbitrary. General mechanical, electric and magnetic boundary conditions can be applied at both the inner and outer cylindrical surfaces. The state space method is employed so that only a 2×2 matrix is involved in the whole solving procedure. In the nu-merical experiments, the distributions of elastic, electric as well as magnetic fields in an internally pressurized rotating BaTiO3/CoFe204 composite hollow cylinder subjected to different boundary conditions are presented graphically. The results clearly show that the stress fields in a multiferroic composite cylinder are controllable.
The cylindrical magnetic Rayleigh-Taylor instability for viscous fluids
Energy Technology Data Exchange (ETDEWEB)
Chambers, K.; Forbes, L. K. [School of Mathematics and Physics, University of Tasmania, Private Bag 37-Hobart, Tasmania 7005 (Australia)
2012-10-15
This paper considers a cylindrical Rayleigh-Taylor instability, in which a heavy fluid surrounds a light fluid, and gravity is directed radially inwards. A massive object is located at the centre of the light fluid, and it behaves like a line dipole both for fluid flow and magnetic field strength. The initially circular interface between the two conducting fluids evolves into plumes, dependent on the magnetic and fluid dipole strengths and the nature of the initial disturbance to the interface. A spectral method is presented to solve the time-dependent interface shapes, and results are presented and discussed. Bipolar solutions are possible, and these are of particular relevance to astrophysics. The solutions obtained resemble structures of some HII regions and nebulae.
Geometric design constratins for controlled fragmentation of metallic cylindrical shells
Pike, Allen William
Geometric designs for the controlled fragmentation of cylindrical shells have been successfully modeled by means of CTH hydrocode simulation. Design parameters varied include the shell radius, thickness, and the depth and spacing of interior notches. A large number of shell designs were analyzed and their controlled fragmentation effectiveness categorized. The best overall controlled fragmentation designs exhibit full and complete fragment breakup as prescribed along the system of interior grooves or notches without any of the individual fragments naturally fragmenting throughout their thicknesses. For the combination of the Composition C-4 explosive and the 4340 steel, the best performing designs were shown to commonly possess the following characteristics: (1) they each have notch or groove depths greater than half of the shell thickness, (2) they each have notch or groove spacing within a range that is approximately the same as the shell thickness, and (3) they each have shell thicknesses many times smaller than the shell radius.
Polaronic Effects of an Exciton in a Cylindrical Quantum Wire
Institute of Scientific and Technical Information of China (English)
WANG Rui-Qiang; XIE Hong-Jing; GUO Kang-Xian; YU You-Bin; DENG Yong-Qing
2005-01-01
The effects of exciton-optical phonon interaction on the binding energy and the total and reduced effective masses of an exciton in a cylindrical quantum wire have been investigated. We adopt a perturbative-PLL [T.D. Lee,F. Low, and D. Pines, Phys. Rev. B90 (1953) 297] technique to construct an effective Hamiltonian and then use a variational solution to deal with the exciton-phonon system. The interactions of exciton with the longitudinal-optical phonon and the surface-optical phonon have been taken into consideration. The numerical calculations for GaAs show that the influences of phonon modes on the exciton in a quasi-one-dimensional quantum wire are considerable and should not be neglected. Moreover the numerical results for heavy- and light-hole exciton are obtained, which show that the polaronic effects on two types of excitons are very different but both depend heavily on the sizes of the wire.
SOLUTIONS FOR CYLINDRICAL CAVITY IN SATURATED THERMOPOROELASTIC MEDIUM
Institute of Scientific and Technical Information of China (English)
Bing Bai; Tao Li
2009-01-01
Based on the thermodynamics of irreversible processes, the mass conservation equa-tion and heat energy balance equation are established. The governing equations of thermal con-solidation for homogeneous isotropic materials are presented, accounting for the coupling effects of the temperature, stress and displacement fields. The ease of a saturated medium with a long cylindrical cavity subjected to a variable thermal loading and a variable hydrostatic pressure (or a variable radial water flux) with time is considered. The analytical solutions are derived in the Laplace transform space. Then, the time domain solutions are obtained by a numerical inversion scheme. The results of a typical example indicate that thermodynamically coupled effects have considerable influences on thermal responses.
Traveling circumferential unstable wave of cylindrical flame front
Trilis, A. V.; Vasiliev, A. A.; Sukhinin, S. V.
2016-06-01
The researches of stability of cylindrical front of deflagration combustion in an annular combustion chamber were made using phenomenological model. The flame front is described as discontinuity of gasdynamic parameters. It is considered that the combustion products are under chemical equilibrium. The combustible mixture and the combustion products are ideal gases. The velocity of deflagration combustion is determined using the Chapman-Jouget theory. It depends on the temperature of combustible mixture only. It is found that the combustible flame front is unstable for several types of small disturbances in the system Mechanics of instabilities are examined using both the numeric and analytical methods. The cases of evolution of the unstable waves rotating in circular channel are presented.
Cylindrical Antenna With Partly Adaptive Phased-Array Feed
Hussein, Ziad; Hilland, Jeff
2003-01-01
A proposed design for a phased-array fed cylindrical-reflector microwave antenna would enable enhancement of the radiation pattern through partially adaptive amplitude and phase control of its edge radiating feed elements. Antennas based on this design concept would be attractive for use in radar (especially synthetic-aperture radar) and other systems that could exploit electronic directional scanning and in which there are requirements for specially shaped radiation patterns, including ones with low side lobes. One notable advantage of this design concept is that the transmitter/ receiver modules feeding all the elements except the edge ones could be identical and, as a result, the antenna would cost less than in the cases of prior design concepts in which these elements may not be identical.
Magneto-Rayleigh-Taylor growth and feedthrough in cylindrical liners
Weis, Matthew; Lau, Y. Y.; Gilgenbach, Ronald; Peterson, Kyle; Hess, Mark
2013-10-01
Cylindrical liner implosions in the MagLIF concept are susceptible to the magneto-Rayleigh-Taylor instability (MRT). The linearized ideal MHD equations are solved, including the presence of an axial magnetic field and the effects of sausage and kink modes. The eigenmode solution, using appropriate equilibrium profiles, allows an assessment of the local MRT growth rate and of the instantaneous feedthrough factor during the entire implosion process. Of particular interest will be the high convergence/stagnation phase, which is difficult to image experimentally. Strong axial magnetic fields can mitigate feedthrough and MRT growth, which may be useful at the fuel/liner interface during this phase of the MagLIF implosion. For the MRT growth rate and feedthrough factors, the LLNL code, HYDRA, is used to benchmark with the analytic theory, and with experiments on the Z-machine. This work was supported by DoE and NSF.
Slow light with electromagnetically induced transparency in cylindrical waveguide
Hatta, Agus Muhamad; Al-Hagan, Ola A; Moiseev, Sergey A
2014-01-01
Slow light with electromagnetically induced transparency (EIT) in the core of cylindrical waveguide (CW) for an optical fiber system containing three-level atoms is investigated. The CW modes are treated in the weakly guiding approximation which renders the analysis into manageable form. The transparency window and permittivity profile of the waveguide due to the strong pump field in the EIT scheme is calculated. For a specific permittivity profile of the waveguide due to EIT, the propagation constant of the weak signal field and spatial shape of fundamental guided mode are calculated by solving the vector wave equation using the finite difference method. It is found that the transparency window and slow light field can be controlled via the CW parameters. The reduced group velocity of slow light in this configuration is useful for many technological applications such as optical memories, effective control of single photon fields, optical buffer and delay line.
NUMERICAL SIMULATION OF ORIENTATION DISTRIBUTION FUNCTION OF CYLINDRICAL PARTICLE SUSPENSIONS
Institute of Scientific and Technical Information of China (English)
林建忠; 张凌新
2002-01-01
The orientation distribution function of cylindrical particle suspensions was deduced and numerically simulated, and an application was taken in a wedge-shaped flow field. The relationship between the orientation distribution function and particle orientation angles was obtained. The results show that comparing with the most probable angle distribution which comes to being in short time, the distribution of the steady state doesn' t vary much in range ; the main difference is the anti-clockwise rotation in the right and upper field, that is, particles rotate more at the points where the velocity gradients are larger.The most probable orientations are close to the direction of local streamlines. In the direction of streamlines, with poleradius decreasing, the most probable angles increase,but the angles between their orientations and the local streamlines decrease.
Vibratory behaviors of Jeffcott system on cylindrical roller bearings
Institute of Scientific and Technical Information of China (English)
Hao WU; Jianwen WANG; Qi AN
2009-01-01
A Jeffcott rotor system on cylindrical roller beatings is studied in detail. Its critical speed is calculated by a new calculation method with roller bearing stiffness and damping. The influences of beating parameters, such as the roller length, rotor mass, distance between the bearings and the kinematics viscosity of lubrication on the system critical speed are numerically studied, and the influences of an oil film and damping on the critical speed are also studied. Regular curves of the relationship between the geometric parameters and the system critical speed are obtained. The results show that with increasing roller length and radial load, the critical speed increases; and with increasing rotor mass and the distance between the beatings and the kinematics viscosity, the critical speed decreases. This means that an oil film will decrease the critical rotational speed of the rotor system.
On several static cylindrically symmetric solutions of the Einstein equations
Grigoryev, Sergey; Leonov, Arkadiy
2016-04-01
We study the Einstein equations in the static cylindrically symmetric case with the stress-energy tensor of the form T νμ = diag{μ,-αμ,-βμ,-γμ}, where μ is an unknown function and α, β, γ are arbitrary real constants (α is assumed to be nonzero). The stress-energy tensor of this form includes as special cases several well-known solutions, such as the perfect fluid solution with the barotropic equation of state, the solution with the static electric field and the solution with the massless scalar field. We solve the Einstein equations with this stress-energy tensor and study some properties of the obtained metric.
ADVANCES IN THE MODEL OF CYLINDRICAL ALKALINE CELLS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The advancement of a systematic investigation on the modeling of cylindrical alkaline cells is presented.Initial analysis utilizes thermodynamic and kinetic information to predict alkaline cell performance under low discharge rates.Subsequent modling has taken into consideration detailed information on the chemistry of electrode reactions,mass tranport of dissolved species,physical and chemical properties of the electrolyte and solid phases,and internal geonetry of cell systems.The model is capable of predicting alkaline cell performance under a variety of dicharge conditions.The model also provides information regarding internal cell changes during discharge.The model is the basis of a rational approach for the optimal design of cells.
Magnified imaging based on non-Hermitian nonlocal cylindrical metasurfaces
Savoia, Silvio; Valagiannopoulos, Constantinos A.; Monticone, Francesco; Castaldi, Giuseppe; Galdi, Vincenzo; Alà, Andrea
2017-03-01
We show that a cylindrical lensing system composed of two metasurfaces with suitably tailored non-Hermitian (i.e., with distributed gain and loss) and nonlocal (i.e., spatially dispersive) properties can perform magnified imaging with reduced aberrations. More specifically, we analytically derive the idealized surface-impedance values that are required for "perfect" magnification and imaging and elucidate the role and implications of non-Hermiticity and nonlocality in terms of spatial resolution and practical implementation. For a basic demonstration, we explore some proof-of-principle quasilocal and multilayered implementations and independently validate the outcomes via full-wave numerical simulations. We also show that the metasurface frequency-dispersion laws can be chosen so as to ensure unconditional stability with respect to arbitrary temporal excitations. These results, which extend previous studies on planar configurations, may open intriguing venues in the design of metastructures for field imaging and processing.
Dimension effects in plasma immersion ion implantation of cylindrical bore
Tian Xiu Bo; Tong Hong Hui; Chu, P K
2002-01-01
Plasma immersion ion implantation is a new technique pertaining to ion implantation. Different from the case of exterior surface treatment, plasma immersion ion implantation of interior surface possesses dimension effects. Consequently it is a challenge to implant the inner wall of a cylindrical bore due to this finite dimension.The ion energy cannot be linearly changed with applied voltage and there exists a saturation value due to overlap effect of plasma sheath. The plasma in the bore may rapidly be depleted, which is attributed to finite plasma volume and plasma-sheath con-flowing effect. For instance the plasma depletion time is about 0.55 mu s when a bore with a diameter of 20 cm is treated under conditions of applied voltage of 30 kV and plasma density of 2 x 10 sup 1 sup 5 ions/cm sup 3. Interior plasma-source hardware may be an effective solution
DOA Estimation of Cylindrical Conformal Array Based on Geometric Algebra
Directory of Open Access Journals (Sweden)
Minjie Wu
2016-01-01
Full Text Available Due to the variable curvature of the conformal carrier, the pattern of each element has a different direction. The traditional method of analyzing the conformal array is to use the Euler rotation angle and its matrix representation. However, it is computationally demanding especially for irregular array structures. In this paper, we present a novel algorithm by combining the geometric algebra with Multiple Signal Classification (MUSIC, termed as GA-MUSIC, to solve the direction of arrival (DOA for cylindrical conformal array. And on this basis, we derive the pattern and array manifold. Compared with the existing algorithms, our proposed one avoids the cumbersome matrix transformations and largely decreases the computational complexity. The simulation results verify the effectiveness of the proposed method.
Vibrations of cantilevered shallow cylindrical shells of rectangular planform
Leissa, A. W.; Lee, J. K.; Wang, A. J.
1981-10-01
A cantilevered, shallow shell of circular cylindrical curvature and rectangular planform exhibits free vibration behavior which differs considerably from that of a cantilevered beam or of a flat plate. Some numerical results can be found for the problem in the previously published literature, mainly obtained by using various finite element methods. The present paper is the first definitive study of the problem, presenting accurate non-dimensional frequency parameters for wide ranges of aspect ratio, shallowness ratio and thickness ratio. The analysis is based upon shallow shell theory. Numerical results are obtained by using the Ritz method, with algebraic polynomial trial functions for the displacements. Convergence is investigated, with attention being given both to the number of terms taken for each co-ordinate direction and for each of the three components of displacement. Accuracy of the results is also established by comparison with finite element results for shallow shells and with other accurate flat plate solutions.
Vibration of cylindrical shells of bimodulus composite materials
Bert, C. W.; Kumar, M.
1982-03-01
A theory is formulated for the small amplitude free vibration of thick, circular cylindrical shells laminated of bimodulus composite materials, which have different elastic properties depending upon whether the fiber-direction strain is tensile or compressive. The theory used is the dynamic, shear deformable (moderately thick shell) analog of the Sanders best first approximation thin shell theory. By means of tracers, the analysis can be reduced to that of various simpler shell theories, namely Love's first approximation, and Donnell's shallow shell theory. As an example of the application of the theory, a closed form solution is presented for a freely supported panel or complete shell. To validate the analysis, numerical results are compared with existing results for various special cases. Also, the effects of the various shell theories, thickness shear flexibility, and bimodulus action are investigated.
Effect of Light Conducting Cylindrical Inserts on Gingival Microleakage
Directory of Open Access Journals (Sweden)
SM. Moazzami
2007-03-01
Full Text Available Objective: Microleakage in the gingival floor of class II composite restorations can compromise the marginal adaptation of the filling material to the cavity edges. The aim of this study was to evaluate the effect of light conducting cylindrical inserts in decreasing the microleakage of the gingival floor in cavities 1mm below the CEJ.Materials and Methods: Eighty maxillary first molars were randomly divided into eight groups according to use of glass inserts, type of resin (Coltene unfilled resin versus Scotchbond multi purpose and filling technique (one-unit versus incremental. Proximal class II cavities were prepared in all samples with the gingival floor one millimeter below the CEJ. Etched and silan-treated glass inserts were made from 2mm cylindrical bioglass material and cavities were restored according to research protocol. The samples were subjected to 2500 thermal cycles (5-55oC, immersed in 0.5% basic fuchsin solution, embedded in epoxy resin and cut centrally and laterally (buccally or lingually in a mesiodistal direction. Microleakage was scored and collected data were statistically analyzed using Kruskal-Wallis and Mann-Whitney tests.Results: Minimal dye penetration was observed in the group that employed the incre-mental technique along with Scotchbond, with or without glass inserts. A significant difference was observed between the eight groups. In addition the use of the incremental technique and glass inserts had a significant effect on the microleakage of lateral and central sections, respectively. Application of dentin bonding agent signifi-cantly affected both sections.Conclusion: Glass inserts were effective in decreasing cervical microleakage of class II cavities restored with composite resin.
Self-consistent equilibria in cylindrical reversed-field pinch
Energy Technology Data Exchange (ETDEWEB)
Lo Surdo, C. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. di Energia; Paccagnella, R.; Guo, S. [CNR, Padua (Italy). Istituto Gas Ionizzati
1995-07-01
The object of this work is to study the self-consistent magnetofluidstatic equilibria of a 2-region (plasma + gas) reversed-field pinch (RFP) in cylindrical approximation (namely, with vanishing inverse aspect ratio). Differently from what happens in a tokamak, in a RFP a significant part of the plasma current is driven by a dynamo electric field (DEF), in its turn mainly due to plasma turbulence. So, it is worked out a reasonable mathematical model of the above self-consistent equilibria under the following main points it has been: (a) to the lowest order, and according to a standard ansatz, the turbulent DEF say {epsilon}{sup t}, is expressed as a homogeneous transform of the magnetic field B of degree 1, {epsilon}{sup t}=({alpha}) (B), with {alpha}{identical_to}a given 2-nd rank tensor, homogeneous of degree 0 in B and generally depending on the plasma state; (b) {epsilon}{sup t} does not explicitly appear in the plasma energy balance, as it were produced by a Maxwell demon able of extract the corresponding Joule power from the plasma. In particular, it is showed that, if both {alpha} and the resistivity tensor {eta} are isotropic and constant, the magnetic field is force-free with abnormality equal to {alpha}{eta}{sub 0}/{eta}, in the limit of vanishing {beta}; that is, the well-known J.B. Taylor`result is recovered, in this particular conditions, starting from ideas quite different from the usual ones (minimization of total magnetic energy under constrained total elicity). Finally, the general problem is solved numerically under circular (besides cylindrical) symmetry, for simplicity neglecting the existence of gas region (i.e., assuming the plasma in direct contact with the external wall).
Resonant Excitation of a Truncated Metamaterial Cylindrical Shell by a Thin Wire Monopole
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Erentok, Aycan; Breinbjerg, Olav
2009-01-01
A truncated metamaterial cylindrical shell excited by a thin wire monopole is investigated using the integral equation technique as well as the finite element method. Simulations reveal a strong field singularity at the edge of the truncated cylindrical shell, which critically affects the matching...
On the Energy-Momentum Densities of the Cylindrically Symmetric Gravitational Waves
Havare, A; Yetkin, T; Havare, Ali; Salti, Mustafa; Yetkin, Taylan
2005-01-01
In this study, using Moller and Tolman prescriptions we calculate energy and momentum densities for the general cylindrically symmetric spacetime metric. We find that results are finite and well defined in these complexes. We also give the results for some cylindrically symmetric spacetime models.
Numerical computation of the restoring force in a cylindrical bearing containing magnetic liquid
Directory of Open Access Journals (Sweden)
Greconici Marian
2008-01-01
Full Text Available Present paper deals with the second order of magnetic levitation, applied to a cylindrical bearing holding a magnetized shaft and the magnetic liquid The magnetic restoring force acting on the shaft of the cylindrical bearing. was numerically evaluated, the liquid being considered a nonlinear medium.
Energy-Momentum Pseudo-tensor of Cylindrical Gravitational Waves of Both the Polarized States
Institute of Scientific and Technical Information of China (English)
文德华; 李芳昱; 刘良钢
2002-01-01
According to the Einstein-Tolman expression of the energy-momentum pseudo-tensor (EMPT), we. calculate the EMPT of cylindrical gravitational waves (CGW) of both the polarized states (BPS) in cylindrical polar coordinates and Cartesian coordinates. We find that Cartesian coordinates are the more suitable coordinates to describe the CGW of BPS.
A novel vibration mode testing method for cylindrical resonators based on microphones.
Zhang, Yongmeng; Wu, Yulie; Wu, Xuezhong; Xi, Xiang; Wang, Jianqiu
2015-01-16
Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.
A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones
Directory of Open Access Journals (Sweden)
Yongmeng Zhang
2015-01-01
Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.
Orientation of cylindrical particles in gas-solid circulating fluidized bed
Institute of Scientific and Technical Information of China (English)
Jie Cai; Qihe Li; Zhulin Yuan
2012-01-01
The orientation of cylindrical particles in a gas-solid circulating fluidized bed was investigated by establishing a three-dimensional Euler-Lagrange model on the basis of rigid kinetics,impact kinetics and gas-solid two-phase flow theory.The resulting simulation indicated that the model could well illustrate the orientation of cylindrical particles in a riser during fluidization,The influences of bed structure and operation parameters on orientation of cylindrical particles were then studied and compared with related experimental results.The simulation results showed that the majority of cylindrical particles move with small nutation angles in the riser,the orientation of cylindrical particles is affected more obviously by their positions than by their slenderness and local gas velocities.The simulation results well agree with experiments,thus validating the proposed model and computation.
Energy Technology Data Exchange (ETDEWEB)
Albertazzi, Armando Jr; Pont, Alex Dal [Federal University of Santa Catarina, Metrology and Automation Laboratory, Cx Postal 5053, CEP 88 040-970, Florianopolis, SC (Brazil)
2005-01-01
This paper introduces a new design of a white light interferometer, suitable for measurement of cylindrical or quasi-cylindrical parts. A high precision 45 deg. conical mirror is used to direct collimated light radially, making it possible to measure in true cylindrical coordinates. The image of the measurand, distorted by the conical mirror, is projected in a high resolution digital camera. A mapping algorithm is used to reconstruct the cylindrical geometry from the distorted image. The rest of the interferometer is quite similar to a conventional white light interferometer: A flat reference mirror is scanned through the measurement range while an algorithm is searching for the maximum contrast position of the interference pattern. The performance evaluation of a configuration suitable for measurement of external cylindrical surfaces is also presented in this paper. A master cylinder was used as reference. Uncertainties of about 1.0 {mu}m were found at the present stage of development.
Observing of tree trunks and other cylindrical objects using GPR
Jezova, Jana; Lambot, Sebastien
2016-04-01
Trees are a part of our everyday life, hence it is important to prevent their collapse to protect people and urban infrastructures. It is also important to characterize tree wood properties for usages in construction. In order to investigate internal parts of tree trunks non-invasively, ground-penetrating radar (GPR), or in this case, ultra-wideband microwave radar as a general tool, appears to be a very promising technology. Nevertheless, tree trunk tomography using microwave radar is a complicated task due to the circular shape of the trunk and the very complex (heterogeneous and anisotropic) internal structures of the trunk. Microwave sensing of tree trunks is also complicated due to the electromagnetic properties of living wood, which strongly depend on water content, density and temperature of wood. The objective of this study is to describe tree trunk radar cross sections including specific features originating from the particular circumferential data acquisition geometry. In that respect, three experiments were performed: (1) numerical simulations using a finite-difference time-domain software, namely, gprMax 2D, (2) measurements on a simplified laboratory trunk model including plastic and cardboard pipes, sand and air, and (3) measurements over a real tree trunk. The analysis was further deepened by considering: (1) common zero-offset reflection imaging, (2) imaging with a planar perfect electrical conductor (PEC) at the opposite side of the trunk, and (3) imaging with a PEC arc at the opposite side of the trunk. Furthermore, the shape of the reflection curve of a cylindrical target was analytically derived based on the straight-ray propagation approximation. Subsequently, the total internal reflection (TIR) phenomenon occurring in cylindrical objects was observed and analytically described. Both the straight-ray reflection curve and TIR were well observed on the simulated and laboratory radar data. A comparison between all experiments and radar
Ultrasonic Concentration in a Line-Driven Cylindrical Tube
Energy Technology Data Exchange (ETDEWEB)
G.R. Goddard
2004-12-15
The fractionation of particles from their suspending fluid or noninvasive micromanipulation of particles in suspension has many applications ranging from the recovery of valuable reagents from process flows to the fabrication of microelectromechanical devices. Techniques based on size, density, solubility, or electromagnetic properties exist for fulfilling these needs, but many particles have traits that preclude their use such as small size, neutral buoyancy, or uniform electromagnetic characteristics. While separation by those techniques may not be possible, often compressibility differences exist between the particle and fluid that would allow fractionation by acoustic forces. The potential of acoustic separation is known, but due to inherent difficulties in achieving and maintaining accurate alignment of the transduction system, it is rarely utilized. The objective of this project is to investigate the use of structural excitation as a potentially efficient concentration/fractionation method for particles in suspension. It is demonstrated that structural excitation of a cylindrically symmetric cavity, such as a tube, allows non-invasive, fast, and low power concentration of particles suspended in a fluid. The inherent symmetry of the system eliminates the need for careful alignment inherent in current acoustic concentration devices. Structural excitation distributes the acoustic field throughout the volume of the cavity, which also significantly reduces temperature gradients and acoustic streaming in the fluid; cavitation is no longer an issue. The lowest-order coupled modes of a long cylindrical glass tube and fluid-filled cavity, driven by a line contact, are tuned, via material properties and aspect ratio, to achieve a coupled dipolar vibration of the system, shown to generate efficient concentration of particles to the central axis of the tube. A two dimensional elastodynamic model of the system was developed and subsequently utilized to optimize particle
Ultrasonic Concentration in a Line-Driven Cylindrical Tube
Energy Technology Data Exchange (ETDEWEB)
Goddard, Gregory Russ [Portland State Univ., Portland, OR (United States)
2004-01-01
The fractionation of particles from their suspending fluid or noninvasive micromanipulation of particles in suspension has many applications ranging from the recovery of valuable reagents from process flows to the fabrication of microelectromechanical devices. Techniques based on size, density, solubility, or electromagnetic properties exist for fulfilling these needs, but many particles have traits that preclude their use such as small size, neutral buoyancy, or uniform electromagnetic characteristics. While separation by those techniques may not be possible, often compressibility differences exist between the particle and fluid that would allow fractionation by acoustic forces. The potential of acoustic separation is known, but due to inherent difficulties in achieving and maintaining accurate alignment of the transduction system, it is rarely utilized. The objective of this project is to investigate the use of structural excitation as a potentially efficient concentration/fractionation method for particles in suspension. It is demonstrated that structural excitation of a cylindrically symmetric cavity, such as a tube, allows non-invasive, fast, and low power concentration of particles suspended in a fluid. The inherent symmetry of the system eliminates the need for careful alignment inherent in current acoustic concentration devices. Structural excitation distributes the acoustic field throughout the volume of the cavity, which also significantly reduces temperature gradients and acoustic streaming in the fluid; cavitation is no longer an issue. The lowest-order coupled modes of a long cylindrical glass tube and fluid-filled cavity, driven by a line contact, are tuned, via material properties and aspect ratio, to achieve a coupled dipolar vibration of the system, shown to generate efficient concentration of particles to the central axis of the tube. A two dimensional elastodynamic model of the system was developed and subsequently utilized to optimize particle
SHEAR WAVE SCATTERING FROM A PARTIALLY DEBONDED PIEZOELECTRIC CYLINDRICAL INCLUSION
Institute of Scientific and Technical Information of China (English)
FengWenjie; WangLiqun; JiangZhiqing; ZhaoYongmao
2004-01-01
The scattering of SH wave by a cylindrical piezoelectric inclusion partially debonded from its surrounding piezoelectric material is investigated using the wave function expansion method and singular integral equation technique. The debonding regions are modeled as multiple arc-shaped interface cracks with non-contacting faces. By expressing the scattered fields as wave function expansions with unknown coefficients, the mixed boundary value problem is firstly reduced to a set of simultaneous dual series equations. Then dislocation density functions are introduced as unknowns to transform these dual series equations into Cauchy singular integral equations of the first type, which can be numerically solved easily. The solution is valid for arbitrary number and size of the debonds. Finally, numerical results of the dynamic stress intensity factors are presented for the cases of one debond and two debonds. The effects of incidence direction, crack configuration and various material parameters on the dynamic stress intensity factors are respectively discussed. The solution of this problem is expected to find applications in the investigation of dynamic fracture properties of piezoelectric materials with cracks.
Jamming of Cylindrical Grains in Featureless Vertical Channels
Baxter, G. William; Barr, Nicholas; Weible, Seth; Friedl, Nicholas
2013-03-01
We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel. With a grain height less than the grain diameter, these grains resemble aspirin tablets, poker chips, or coins. Unidisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. Channel widths are chosen so that no combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College
Jamming of Monodisperse Cylindrical Grains in Featureless Vertical Channels
Friedl, Nicholas; Baxter, G. William
2014-03-01
We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel under the influence of gravity. These grains have an aspect-ratio less than two (H/D aspirin tablets, 35mm film canisters, poker chips, or coins. Monodisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. No combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.
Electron cyclotron resonance heating in a short cylindrical plasma system
Indian Academy of Sciences (India)
Vipin K Yadav; D Bora
2004-09-01
Electron cyclotron resonance (ECR) plasma is produced and studied in a small cylindrical system. Microwave power is delivered by a CW magnetron at 2.45 GHz in TE10 mode and launched radially to have extraordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the first two ECR surfaces ( = 875.0 G and = 437.5 G) reside in the system. ECR plasma is produced with hydrogen with typical plasma density e as 3.2 × 1010 cm-3 and plasma temperature e between 9 and 15 eV. Various cut-off and resonance positions are identified in the plasma system. ECR heating (ECRH) of the plasma is observed experimentally. This heating is because of the mode conversion of X-wave to electron Bernstein wave (EBW) at the upper hybrid resonance (UHR) layer. The power mode conversion efficiency is estimated to be 0.85 for this system. The experimental results are presented in this paper.
Formation of a cylindrical bridge in cell division
Citron, Daniel; Schmidt, Laura E.; Reichl, Elizabeth; Ren, Yixin; Robinson, Douglas; Zhang, Wendy W.
2007-11-01
In nature, the shape transition associated with the division of a mother cell into two daughter cells proceeds via a variety of routes. In the cylinder-thinning route, which has been observed in Dictyostelium and most animal cells, the mother cell first forms a broad bridge-like region, also known as a furrow, between two daughter cells. The furrow then rapidly evolves into a cylindrical bridge, which thins and eventually severs the mother cell into two. The fundamental mechanism underlying this division route is not understood. Recent experiments on Dictyostelium found that, while the cylinder-thinning route persists even when key actin cross-linking proteins are missing, it is disrupted by the removal of force-generating myosin-II proteins. Other measurements revealed that mutant cells lacking myosin-II have a much more uniform tension over the cell surface than wild-type cells. This suggests that tension variation may be important. Here we use a fluid model, previously shown to reproduce the thinning dynamics [Zhang & Robinson, PNAS 102, 7186 (2005)], to test this idea. Consistent with the experiments, the model shows that the cylinder formation process occurs regardless of the exact viscoelastic properties of the cell. In contrast to the experiments, a tension variation in the model hinders, rather then expedites, the cylinder formation.
Straight cylindrical seal for high-performance turbomachines
Hendricks, Robert C.
1987-01-01
A straight cylindrical seal configuration representing the seal for a high-performance turbopump (e.g., the space shuttle main engine fuel pump) was tested under static (nonrotating) conditions. The test data included critical mass flux and pressure profiles over a wide range of inlet temperatures and pressures for fluid nitrogen and fluid hydrogen with the seal in concentric and fully eccentric positions. The critical mass fluxes (or leakage rates) for the concentric and fully eccentric configurations were nearly the same when based on stagnation conditions upstream of the seal. The fully eccentric configuration pressure profiles of the gas and liquid were different. Further, the pressure differences between the maximum and the minimum clearance positions were highly dependent on the geometric conditions, the temperature, and the absolute pressure at both the inlet and the exit. The pressure differences were greatest in the inlet region. The results, although complex, tend to follow the corresponding-states principles for critical flows. Gaseous injection near the seal exit plane significantly altered the pressure profiles and could be used to control turbomachine instabilities.
Nonstationary Stokes System in Cylindrical Domains Under Boundary Slip Conditions
Zaja¸czkowski, Wojciech M.
2017-03-01
Existence and uniqueness of solutions to the nonstationary Stokes system in a cylindrical domain {Ωsubset{R}^3} and under boundary slip conditions are proved in anisotropic Sobolev spaces. Assuming that the external force belong to {L_r(Ω×(0,T))} and initial velocity to {W_r^{2-2/r}(Ω)} there exists a solution such that velocity belongs to {W_r^{2,1}(Ω×(0,T))} and gradient of pressure to {L_r(Ω×(0,T))}, {rin(1,∞)}, {T > 0}. Thanks to the slip boundary conditions and a partition of unity the Stokes system is transformed to the Poisson equation for pressure and the heat equation for velocity. The existence of solutions to these equations is proved by applying local considerations. In this case we have to consider neighborhoods near the edges which by local mapping can be transformed to dihedral angle {π/2}. Hence solvability of the problem bases on construction local Green functions (near an interior point, near a point of a smooth part of the boundary, near a point of the edge) and their appropriate estimates. The technique presented in this paper can also work in other functional spaces: Sobolev-Slobodetskii, Besov, Nikolskii, Hölder and so on.
Optical and spectral tunability of multilayer spherical and cylindrical nanoshells
Daneshfar, Nader; Bazyari, Khashayar
2014-08-01
This theoretical work presents a comparative study of the optical properties and spectral tunability of hybrid multilayer spherical and cylindrical nanoshells based on the quasi-static approximation of classical electrodynamics. The interband transitions have been considered using the Drude-Lorentz model for the complex dielectric function of metallic layers because the optical properties of metals arise from both the optical excitation of interband transitions and the free-electron response. A general formula for N-ayer concentric nanoshells is arranged, and numerical calculations are performed for the four-layer nanoshells as an example. We have analyzed in detail different configurations of nanoshells such as dielectric-metal-dielectric-metal with dielectric core, metal-dielectric-metal-dielectric with metal core and semiconductor-metal-dielectric-metal with semiconductor core because composition of nanoshells have dramatic influence on their optical properties. The absorbance spectrum behavior of the shell thicknesses, surrounding medium, shape and composition of each layer of the nanoshell is numerically investigated.
Evolution of local ideal helical perturbations in cylindrical plasma
Institute of Scientific and Technical Information of China (English)
Zhang Wen-Lu; Li Ding
2004-01-01
The evolution of a local helical perturbation and its stability property for arbitrary magnetic shear configurations are investigated for the case of in cylindrical geometry. An analytic stability criterion has been obtained which predicts that a strong magnetic shear will enhance the instability in the positive shear region but enhance the stability in the negative shear region. The perturbations with the poloidal and toroidal perturbation mode numbers m/n = 1/1 is most unstable due to the stabilizing terms increasing with m. For m/n = 1/1 local perturbations in the conventional positivemagnetic shear (PMS) configurations, a larger qmin exhibits a weaker shear in the core and is favourable to the stability,while in the reversed magnetic shear (RMS) configurations, a larger q0 corresponds to a stronger positive shear in the middle region, which enhances the instability. No instabilities are found for m ≥ 2 local perturbations. The stability for RMS configuration is not better than that for PMS configuration.
Optoacoustic sensing for target detection inside cylindrical catheters
Tavakoli, Behnoosh; Guo, Xiaoyu; Taylor, Russell H.; Kang, Jin U.; Boctor, Emad M.
2014-03-01
Optoacoustic sensing is a hybrid technique that combines the advantages of high sensing depth of ultrasound with contrast of optical absorption. In this study a miniature optoacoustic probe that can characterize the target properties located at the distal end of a catheter is investigated. The probe includes an optical fiber to illuminate the target with the pulsed laser light and a hydrophone to detect the generated optoacoustic signal. The probe is designed for the forwardsensing and therefore the acoustic signal propagates along the tube before being detected. Due to the circular geometry, the waves inside the tube are highly complex. A three dimensional numerical simulation is performed to model the optoacoustic wave generation and propagation inside the water filled cylindrical tubes. The effect of the boundary condition, tube diameter and target size on the detected signal is systematically evaluated. A prototype of the probe is made and tested for detecting an absorbing target inside a 2mm diameter tube submerged in water. The preliminary experimental results corresponding to the simulation is acquired. Although many different medical applications for this miniature probe may exist, our main focus is on detecting the occlusion inside the ventricular shunts. These catheters are used to divert the excess cerebrospinal fluid to the absorption site and regulate inter cranial pressure of hydrocephalous patients. Unfortunately the malfunction rate of these catheters due to blockage is very high. This sensing tool could locate the occluding tissue non-invasively and can potentially characterize the occlusion composites by scanning at different wavelengths of the light.
Self-Assembly of Supramolecular Composites under Cylindrical Confinement
Bai, Peter; Thorkelsson, Kari; Ercius, Peter; Xu, Ting
2014-03-01
Block copolymer (BCP) or BCP-based supramolecules are useful platforms to direct nanoparticle (NP) assemblies. However, the variety of NP assemblies is rather limited in comparison to those shown by DNA-guided approach. By subjecting supramolecular nanocomposites to 2-D cylindrical confinement afforded by anodic aluminum oxide membranes, a range of new NP assemblies such as stacked rings, and single and double helices can be readily obtained, as confirmed by TEM and TEM tomography. At low NP loadings (3 v%), the nanostructure conforms to the supramolecule morphology. However, at higher NP loadings (6-9 v%), the nanostructure deviates significantly from the morphology of supramolecular nanocomposites in bulk or in thin film, suggesting that frustrated NP packing, in addition to simple supramolecule templating, may play a significant role in the self-assembly process. The present studies demonstrate that 2-D confinement can be an effective means to tailor self-assembled NP structures and may open further opportunities to manipulate the macroscopic properties of NP assemblies.
Critical velocity of sandwich cylindrical shell under moving internal pressure
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Critical velocity of an infinite long sandwich shell under moving internal pres-sure is studied using the sandwich shell theory and elastodynamics theory. Propagation of axisymmetric free harmonic waves in the sandwich shell is studied using the sandwich shell theory by considering compressibility and transverse shear deformation of the core, and transverse shear deformation of face sheets. Based on the elastodynamics theory, displacement components expanded by Legendre polynomials, and position-dependent elastic constants and densities are introduced into the equations of motion. Critical ve-locity is the minimum phase velocity on the desperation relation curve obtained by using the two methods. Numerical examples and the finite element (FE) simulations are pre-sented. The results show that the two critical velocities agree well with each other, and two desperation relation curves agree well with each other when the wave number κ is relatively small. However, two limit phase velocities approach to the shear wave velocities of the face sheet and the core respectively when k limits to infinite. The two methods are efficient in the investigation of wave propagation in a sandwich cylindrical shell when κ is relatively small. The critical velocity predicted in the FE simulations agrees with theoretical prediction.
A cylindrical standing wave ultrasonic motor using bending vibration transducer.
Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun
2011-07-01
A cylindrical standing wave ultrasonic motor using bending vibration transducer was proposed in this paper. The proposed stator contains a cylinder and a bending vibration transducer. The two combining sites between the cylinder and the transducer locate at the adjacent wave loops of bending vibration of the transducer and have a distance that equal to the half wave length of bending standing wave excited in the cylinder. Thus, the bending mode of the cylinder can be excited by the bending vibration of the transducer. Two circular cone type rotors are pressed in contact to the end rims of the teeth, and the preload between the rotors and stator is accomplished by a spring and nut system. The working principle of the proposed motor was analyzed. The motion trajectories of teeth were deduced. The stator was designed and analyzed with FEM. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 165rpm and maximum torque of 0.45Nm at an exciting voltage of 200V(rms).
Internal resonance of axially moving laminated circular cylindrical shells
Wang, Yan Qing; Liang, Li; Guo, Xing Hui
2013-11-01
The nonlinear vibrations of a thin, elastic, laminated composite circular cylindrical shell, moving in axial direction and having an internal resonance, are investigated in this study. Nonlinearities due to large-amplitude shell motion are considered by using Donnell's nonlinear shallow-shell theory, with consideration of the effect of viscous structure damping. Differently from conventional Donnell's nonlinear shallow-shell equations, an improved nonlinear model without employing Airy stress function is developed to study the nonlinear dynamics of thin shells. The system is discretized by Galerkin's method while a model involving four degrees of freedom, allowing for the traveling wave response of the shell, is adopted. The method of harmonic balance is applied to study the nonlinear dynamic responses of the multi-degrees-of-freedom system. When the structure is excited close to a resonant frequency, very intricate frequency-response curves are obtained, which show strong modal interactions and one-to-one-to-one-to-one internal resonance phenomenon. The effects of different parameters on the complex dynamic response are investigated in this study. The stability of steady-state solutions is also analyzed in detail.
Approximate Relativistic Solutions for One-Dimensional Cylindrical Coaxial Diode
Institute of Scientific and Technical Information of China (English)
曾正中; 刘国治; 邵浩
2002-01-01
Two approximate analytical relativistic solutions for one-dimensional, space-chargelimited cylindrical coaxial diode are derived and utilized to compose best-fitting approximate solutions. Comparison of the best-fitting solutions with the numerical one demonstrates an error of about 11% for cathode-inside arrangement and 12% in the cathode-outside case for ratios of larger to smaller electrode radius from 1.2 to 10 and a voltage above 0.5 MV up to 5 MV. With these solutions the diode lengths for critical self-magnetic bending and for the condition under which the parapotential model validates are calculated to be longer than 1 cm up to more than 100 cm depending on voltage, radial dimensions and electrode arrangement. The influence of ion flow from the anode on the relativistic electron-only solution is numerically computed, indicating an enhancement factor of total diode current of 1.85 to 4.19 related to voltage, radial dimension and electrode arrangement.
Transfer of polarized line radiation in 2D cylindrical geometry
Milić, I.
2013-07-01
Aims: This paper deals with multidimensional NLTE polarized radiative transfer in the case of two level atom in the absence of lower level polarization. We aim to develop an efficient and robust method for 2D cylindrical geometry and to apply it to various axi-symmetrical astrophysical objects such as rings, disks, rotating stars, and solar prominences. Methods: We review the methods of short characteristics and Jacobi iteration applied to axisymmetric geometry. Then we demonstrate how to use a reduced basis for polarized intensity and polarized source function to self-consistently solve the coupled equations of radiative transfer and statistical equilibrium for linearly polarized radiation. We discuss some peculiarities that do not appear in Cartesian geometry, such as angular interpolation in performing the formal solution. We also show how to account for two different types of illuminating radiation. Results: The proposed method is tested on homogeneous, self-emitting cylinders to compare the results with those in 1D geometries. We demonstrate a possible astrophysical application on a very simple model of circumstellar ring illuminated by a host star where we show that such a disk can introduce a significant amount of scattering polarization in the system. Conclusions: This method is found to converge properly and, apparently, to allow for substantial time saving compared to 3D Cartesian geometry. We also discuss the advantages and disadvantages of this approach in multidimensional radiative transfer modeling.
Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.
Abolghasemibizaki, Mehran; Mohammadi, Reza
2017-09-08
Impacting on a superhydrophobic surface, water droplet spreads to a pancake shape and then retracts and bounces off. Although the collision time is mostly in the order of couple of 10ms for millimetric droplets, researchers have shown recently that decorating the superhydrophobic surface with a single macrotexture or intersecting ridge reduces this contact time if the droplet hits the texture or the intersection exactly in the center. Hence, covering the surface with ridges should address this hitting point restriction. Using an extruder-type 3D printer, we fabricated a superhydrophobic surface fully decorated with cylindrical ridges. The dynamic of water droplet impact on this surface at different impact velocities has been studied for varied droplet volumes and ridge sizes. Our data show that regardless of the location of the contact point, when the kinetic energy of the drop is sufficient to completely wet the ridges, the contact time reduces ∼13% as the consequence of ∼20% faster retraction. For higher impact velocity, the contact becomes shorter since the flattened drop splashes from the periphery. Moreover, the simplified, time-efficient and inexpensive method of fabricating the surfaces presented in this paper can be implemented in fabricating many versatile superhydrophobic surfaces with complex geometries. Copyright © 2017 Elsevier Inc. All rights reserved.
A Novel Cylindrical DRA for C-Band Applications
Directory of Open Access Journals (Sweden)
Hamed Gharsallah
2016-08-01
Full Text Available In this paper, we study a Dielectric Resonator Antenna of cylindrical shape with circular polarization for applications in the C band. The proposed antenna is composed of two different layers. The first is Polyflon Polyguide with relative permittivity er1 = 2.32 and a loss tangent tand = 0.002 as a lower layer. The second is Rogers RO3010 with relative permittivity er2 = 10.2 and a loss tangent tand = 0.0035 as an upper layer which is excited by dual probe feed. The 90° phase shift of two probes feed can create a circular polarization. In this study, we focused on the effect of the variations in the height of the Polyflon Polyguide as well as the probe feed. Simulations under HFSS software have led to bandwidth values of about 2.2 GHz and 2.6 GHz for the proposed antenna with one probe and dual probe, respectively. The obtained gains are higher than 5.4 dB and can range up 8.1 dB.
Biomimetic surface structuring using cylindrical vector femtosecond laser beams
Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel
2017-03-01
We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.
Fatigue and Model Analysis of the CNC Cylindrical Grinder
Directory of Open Access Journals (Sweden)
Lin Jui-Chang
2016-01-01
Full Text Available The purpose of this study is to lower deviation of workpiece by meeting high stability and rigidity to prevent the resonance in producing procedure of the CNC universal cylindrical grinding machine. Using finite element analysis software ABAQUS in grinder machine tools for numerical simulation of several analyses for the following: structural rigidity analysis, optimized design, vibration frequency analysis and fatigue damage analysis. This work aims on state of the transmission of outer diameter spindle to proceed in stress and fatigue life analysis by FE-SAFE Subroutine. The max values of equivalent stress and average amount of displacement in structural rigidity analysis are 0.67(Mpa and 0.92(µm. Optimization design effectively reducing extreme value of stress, the largest decline of about 5.43%. Modal analysis compared with the experimental, the average error percentage was less than 10% of parts. The whole structure error does not exceed 3%. The fatigue life of approximately 1,193,988 times, estimates into real life time can use more than sixty years, from the viewpoint of structural strength, spindle has a good high breaking strength is designed to be safe.
Structure and adsorption of water in nonuniform cylindrical nanopores
Torrie, G. M.; Lakatos, G.; Patey, G. N.
2010-12-01
Grand canonical Monte Carlo simulations are used to examine the adsorption and structure of water in the interior of cylindrical nanopores in which the axial symmetry is broken either by varying the radius as a function of position along the pore axis or by introducing regions where the characteristic strength of the water-nanopore interaction is reduced. Using the extended simple point charge (SPC/E) model for water, nanopores with a uniform radius of 6.0 Å are found to fill with water at chemical potentials approximately 0.5 kJ/mol higher than the chemical potential of the saturated vapor. The water in these filled pores exists in either a weakly structured fluidlike state or a highly structured uniformly polarized state composed of a series of stacked water clusters with pentagonal cross sections. This highly structured state can be disrupted by creating hydrophobic regions on the surface of the nanopore, and the degree of disruption can be systematically controlled by adjusting the size of the hydrophobic regions. In particular, hydrophobic banded regions with lengths larger than 9.2 Å result in a complete loss of structure and the formation of a liquid-vapor coexistence in the tube interior. Similarly, the introduction of spatial variation in the nanopore radius can produce two condensation transitions at distinct points along the filling isotherm.
Buckling analysis of composite cylindrical shell using numerical analysis method
Energy Technology Data Exchange (ETDEWEB)
Jung, Hae Young; Bae, Won Byung [Pusan Nat' l Univ., Busan (Korea, Republic of); Cho, Jong Rae [Korea Maritime Univ., Busan (Korea, Republic of); Lee, Woo Hyung [Underwater Vehicle Research Center, Busan (Korea, Republic of)
2012-01-15
The objective of this paper is to predict the buckling pressure of a composite cylindrical shell using buckling formulas (ASME 2007, NASA SP 8007) and finite element analysis. The model in this study uses a stacking angle of [0/90]12t and USN 125 composite material. All specimens were made using a prepreg method. First, finite element analysis was conducted, and the results were verified through comparison with the hydrostatic pressure bucking experiment results. Second, the values obtained from the buckling formula and the buckling pressure values obtained from the finite element analysis were compared as the stacking angle was changed in 5 .deg. increments from 20 .deg. to 90 .deg. The linear and nonlinear results of the finite element analysis were consistent with the results of the experiment, with a safety factor of 0.85-1. Based on the above result, the ASME 2007 formula, a simplified version of the NASA SP 8007 formula, is regarded as a buckling formula that provides a reliable safety factor.
Sludge mobilization with submerged nozzles in horizontal cylindrical tanks
Energy Technology Data Exchange (ETDEWEB)
Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.
1995-10-01
The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code.
Sedimentation of short cylindrical pollutants with mechanical contacts
Institute of Scientific and Technical Information of China (English)
LIN Jian-zhong; WANG Ye-long; ZHANG Wei-feng
2005-01-01
Lattice Boltzmann method and elastic particle collision model were used to investigate the sedimentation of short cylindrical pollutant particles with mechanical contacts for varying bulk number density ε and terminal Reynolds number ReT. The corresponding experiments were performed as a comparison. The clusters of pollutant particles with an inverted "T" structure were observed, the pollutant particles for high ε and large ReT scattered wider than that for low ε and small ReT. The sedimentation velocities increased suddenly at the initial stage, then decreased drastically, after that swayed around and approached to a steady value. The time to steady state did not depend on ε and ReT. The effect of particle interactions was to hinder the average sedimentation velocity, and hindrance was directly proportional to ε. The orientation distributions of pollutant particles depended on ReT and ε, especially on the former. Both the standard deviations of vertical and horizontal velocity, the former was larger than the latter, were nearly independent on ε and ReT.
Nonlinear damping calculation in cylindrical gear dynamic modeling
Guilbault, Raynald; Lalonde, Sébastien; Thomas, Marc
2012-04-01
The nonlinear dynamic problem posed by cylindrical gear systems has been extensively covered in the literature. Nonetheless, a significant proportion of the mechanisms involved in damping generation remains to be investigated and described. The main objective of this study is to contribute to this task. Overall, damping is assumed to consist of three sources: surrounding element contribution, hysteresis of the teeth, and oil squeeze damping. The first two contributions are considered to be commensurate with the supported load; for its part however, squeeze damping is formulated using expressions developed from the Reynolds equation. A lubricated impact analysis between the teeth is introduced in this study for the minimum film thickness calculation during contact losses. The dynamic transmission error (DTE) obtained from the final model showed close agreement with experimental measurements available in the literature. The nonlinear damping ratio calculated at different mesh frequencies and torque amplitudes presented average values between 5.3 percent and 8 percent, which is comparable to the constant 8 percent ratio used in published numerical simulations of an equivalent gear pair. A close analysis of the oil squeeze damping evidenced the inverse relationship between this damping effect and the applied load.
Cylindrical Field Effect Transistor: A Full Volume Inversion Device
Fahad, Hossain M.
2010-12-01
The increasing demand for high performance as well as low standby power devices has been the main reason for the aggressive scaling of conventional CMOS transistors. Current devices are at the 32nm technology node. However, due to physical limitations as well as increase in short-channel effects, leakage, power dissipation, this scaling trend cannot continue and will eventually hit a barrier. In order to overcome this, alternate device topologies have to be considered altogether. Extensive research on ultra thin body double gate FETs and gate all around nanowire FETs has shown a lot of promise. Under strong inversion, these devices have demonstrated increased performance over their bulk counterparts. This is mainly attributed to full carrier inversion in the body. However, these devices are still limited by lithographic and processing challenges making them unsuitable for commercial production. This thesis explores a unique device structure called the CFET (Cylindrical Field Effect Transistors) which also like the above, relies on complete inversion of carriers in the body/bulk. Using dual gates; an outer and an inner gate, full-volume inversion is possible with benefits such as enhanced drive currents, high Ion/Ioff ratios and reduced short channel effects.
Prediction of Vibrational Behavior of Grid-Stiffened Cylindrical Shells
Directory of Open Access Journals (Sweden)
G. H. Rahimi
2014-01-01
Full Text Available A unified analytical approach is applied to investigate the vibrational behavior of grid-stiffened cylindrical shells with different boundary conditions. A smeared method is employed to superimpose the stiffness contribution of the stiffeners with those of shell in order to obtain the equivalent stiffness parameters of the whole panel. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stoke's transformation. A 3D finite element model is also built using ABAQUS software which takes into consideration the exact geometric configuration of the stiffeners and the shell. The achievements from the two types of analyses are compared with each other and good agreement has been obtained. The Influences of variations in shell geometrical parameters, boundary condition, and changes in the cross stiffeners angle on the natural frequencies are studied. The results obtained are novel and can be used as a benchmark for further studies. The simplicity and the capability of the present method are also discussed.
Global stability of the ballooning mode in a cylindrical model
Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.
2013-07-01
Ballooning disturbances in a finite-pressure plasma in a curvilinear magnetic field are described by the system of coupled equations for the Alfvén and slow magnetosonic modes. In contrast to most previous works that locally analyzed the stability of small-scale disturbances using the dispersion relationship, a global analysis outside a WKB approximation but within a simple cylindrical geometry, when magnetic field lines are circles with constant curvature, is performed in the present work. This model is relatively simple; nevertheless, it has the singularities necessary for the formation of the ballooning mode: field curvature and non-uniform thermal plasma pressure. If the disturbance finite radial extent is taken into account, the instability threshold increases as compared to a WKB approximation. The simplified model used in this work made it possible to consider the pattern of unstable disturbances at arbitrary values of the azimuthal wavenumber ( k y ). Azimuthally large-scale disturbances can also be unstable, although the increment increases with decreasing azimuthal scale and reaches saturation when the scales are of the order of the pressure nonuniformity dimension.
Elastic Buckling of Bionic Cylindrical Shells Based on Bamboo
Institute of Scientific and Technical Information of China (English)
Jian-feng Ma; Wu-yi Chen; Ling Zhao; Da-hai Zhao
2008-01-01
High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years.Biomimicking from nature may offer the potential for lightweight design. In the viewpoint of mechanics properties, the culm of bamboo comprises of two types of cells and the number of the vascular bundles takes a gradient of distribution. A three-point bending test was carried out to measure the elastic modulus. Results show that the elastic modulus of bamboo decreases gradually from the periphery towards the centre. Based on the structural characteristics of bamboo, a bionic cylindrical structure was designed to mimic the gradient distribution of vascular bundles and parenchyma cells. The buckling resistance of the bionic structure was compared with that of a traditional shell of equal mass under axial pressure by finite element simulations. Results show that the load-bearing capacity of bionic shell is increased by 124.8%. The buckling mode of bionic structure is global buckling while that of the conventional shell is local buckling.
Crack path simulation for cylindrical contact under fretting conditions
Directory of Open Access Journals (Sweden)
R.A. Cardoso
2016-02-01
Full Text Available In this work different strategies to estimate crack path for cylindrical contacts under fretting conditions are carried out. The main goal is to propose and to evaluate methodologies not only to estimate the direction of crack initiation but also the subsequent propagation in its earlier stages, where the stress field is multiaxial, non-proportional and decays very fast due to the proximity with the contact interface. Such complex conditions pose a substantial challenge to the modelling of crack path. The numerical simulations are provided by a 2D Finite Element Analysis taking into account interactions between the crack faces. The results show that, under fretting conditions, models based on the critical plane method are not effective to estimate the crack initiation orientation, while models based on a so called “critical direction” applied along a critical distance provide better results. Regarding the subsequent crack propagation orientation, it was possible to see that stress intensity factor based models where one considers an infinitesimal virtual crack emerging from an original preexistent crack are powerful mechanisms of crack orientation estimation.
Cylindrical Bending of Deformable Textile Rectangular Patch Antennas
Directory of Open Access Journals (Sweden)
Freek Boeykens
2012-01-01
Full Text Available Textile patch antennas are well known as basic components for wearable systems that allow communication between a human body and the external world. Due to their flexibility, textile antennas are subjected to bending when worn, causing a variation in resonance frequency and radiation pattern with respect to the flat state in which their nominal design is performed. Hence, it is important for textile antenna engineers to be able to predict these performance parameters as a function of the bending radius. Therefore, we propose a comprehensive analytical model that extends the cylindrical cavity model for conformal rigid patch antennas by incorporating the effects of patch stretching and substrate compression. It allows to predict the resonance frequency and the radiation pattern as a function of the bending radius. Its validity has been verified experimentally. Unlike previous contributions, which concerned only qualitative studies by means of measurements and numerical full-wave simulations, the proposed model offers advantages in terms of physical insight, accuracy, speed, and cost.
Behaviour of Large Cylindrical Offshore Structures Subjected to Wave Loads
Directory of Open Access Journals (Sweden)
Begüm Yurdanur DAĞLI
2017-08-01
Full Text Available Spar-type and monopole substructures consisting of a large-diameter, single vertical cylinders have been used as wind turbine towers, oil storage platforms, tankers and wave energy converters at deepwater region in the sea. These towers and platforms are exposed to environmental forces such as wind, wave and current. Wave force is the most effective force in the total environmental force. The body disturbs the incident wave and Diffraction Theory is used for computing the pressure distribution for designing the structure. Therefore, this study aims to present the effect of structural design of towers on dynamic behavior due to wave actions. Two different cases of structural models are selected to employ bidirectional fluid structure interaction (FSI analysis. Diffraction Theory is utilized to investigate wave forces. Solid and fluid domains are modeled in Abaqus finite elements program. Behaviors of various types of offshore structures are evaluated and compared according to the significant stresses and displacements. The hydrodynamic pressure on the cylindrical structure surface and the diffraction forces acting on structures are presented. Mode shapes, first three natural frequencies are comparatively given.
Cylindrical sound wave generated by shock-vortex interaction
Ribner, H. S.
1985-01-01
The passage of a columnar vortex broadside through a shock is investigated. This has been suggested as a crude, but deterministic, model of the generation of 'shock noise' by the turbulence in supersonic jets. The vortex is decomposed by Fourier transform into plane sinusoidal shear waves disposed with radial symmetry. The plane sound waves produced by each shear wave/shock interaction are recombined in the Fourier integral. The waves possess an envelope that is essentially a growing cylindrical sound wave centered at the transmitted vortex. The pressure jump across the nominal radius R = ct attenuates with time as 1/(square root of R) and varies around the arc in an antisymmetric fashion resembling a quadrupole field. Very good agreement, except near the shock, is found with the antisymmetric component of reported interferometric measurements in a shock tube. Beyond the front r approximately equals R is a precursor of opposite sign, that decays like 1/R, generated by the 1/r potential flow around the vortex core. The present work is essentially an extension and update of an early approximate study at M = 1.25. It covers the range (R/core radius) = 10, 100, 1000, and 10,000 for M = 1.25 and (in part) for M = 1.29 and, for fixed (R/core radius) = 1000, the range M = 1.01 to infinity.
Thermoconvective vortices in a cylindrical annulus with varying inner radius.
Castaño, D; Navarro, M C; Herrero, H
2014-12-01
This paper shows the influence of the inner radius on the stability and intensity of vertical vortices, qualitatively similar to dust devils and cyclones, generated in a cylindrical annulus non-homogeneously heated from below. Little relation is found between the intensity of the vortex and the magnitude of the inner radius. Strong stable vortices can be found for both small and large values of the inner radius. The Rankine combined vortex structure, that characterizes the tangential velocity in dust devils, is clearly observed when small values of the inner radius and large values of the ratio between the horizontal and vertical temperature differences are considered. A contraction on the radius of maximum azimuthal velocity is observed when the vortex is intensified by thermal mechanisms. This radius becomes then nearly stationary when frictional force balances the radial inflow generated by the pressure drop in the center, despite the vortex keeps intensifying. These results connect with the behavior of the radius of the maximum tangential wind associated with a hurricane.
Nonlinear asymmetric tearing mode evolution in cylindrical geometry
Teng, Q.; Ferraro, N.; Gates, D. A.; Jardin, S. C.; White, R. B.
2016-10-01
The growth of a tearing mode is described by reduced MHD equations. For a cylindrical equilibrium, tearing mode growth is governed by the modified Rutherford equation, i.e., the nonlinear Δ'(w ) . For a low beta plasma without external heating, Δ'(w ) can be approximately described by two terms, Δ'ql(w ), ΔA'(w ) [White et al., Phys. Fluids 20, 800 (1977); Phys. Plasmas 22, 022514 (2015)]. In this work, we present a simple method to calculate the quasilinear stability index Δql' rigorously, for poloidal mode number m ≥2 . Δql' is derived by solving the outer equation through the Frobenius method. Δ'ql is composed of four terms proportional to: constant Δ'0 , w, w ln w , and w2. ΔA' is proportional to the asymmetry of island that is roughly proportional to w. The sum of Δql' and ΔA' is consistent with the more accurate expression calculated perturbatively [Arcis et al., Phys. Plasmas 13, 052305 (2006)]. The reduced MHD equations are also solved numerically through a 3D MHD code M3D-C1 [Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)]. The analytical expression of the perturbed helical flux and the saturated island width agree with the simulation results. It is also confirmed by the simulation that the ΔA' has to be considered in calculating island saturation.
Dipole radiation from a cylindrical hole in the earth.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Johnson, William Arthur; Basilio, Lorena I.
2005-08-01
This report examines the problem of an antenna radiating from a cylindrical hole in the earth and the subsequent far-zone field produced in the upper air half space. The approach used for this analysis was to first examine propagation characteristics along the hole for surrounding geologic material properties. Three cases of sand with various levels of moisture content were considered as the surrounding material to the hole. For the hole diameters and sand cases examined, the radiation through the earth medium was found to be the dominant contribution to the radiation transmitted through to the upper half-space. In the analysis presented, the radiation from a vertical and a horizontal dipole source within the hole is used to determine a closed-form expression for the radiation in the earth medium which represents a modified element factor for the source and hole combination. As the final step, the well-known results for a dipole below a half space, in conjunction with the use of Snell's law to transform the modified element factor to the upper half space, determine closed-form expressions for the far-zone radiated fields in the air region above the earth.
RESEARCH ON THE FLOW STABILITY IN A CYLINDRICAL PARTICLE TWO-PHASE BOUNDARY LAYER
Institute of Scientific and Technical Information of China (English)
林建忠; 聂德明
2003-01-01
Based on the momentum and constitutive equations, the modified Orr-Sommerfeld equation describing the flow stability in a cylindrical particle two-phase flow was derived. For a cylindrical particle two-phase boundary layer, the neutral stability curves and critical Reynolds number were given with numerical simulation. The results show that the cylindrical particles have a suppression effect on the flow instability, the larger the particle volume fraction and the particle aspect-ratio are, the more obvious the suppression effect is.
Excitation of a cylindrical cavity by a helical current and an axial electron beam current
Davidovich, M. V.; Bushuev, N. A.
2013-07-01
The explicit expressions (in the Vainshtein and Markov forms) are derived for the excitation of a cylindrical cavity with perfectly conducting walls and with impedance end faces. Excitation of a cylindrical cavity and a cylindrical waveguide with a preset nonuniform axial electron-beam current and a helical current with a variable pitch, which is excited by a concentrated voltage source and is loaded by a preset pointlike matched load, is considered. For the helical current, the integro-differential equation is formulated. The traveling-wave tube (TWT) is simulated in the preset beam current approximation taking into account the nonuniform winding of the spiral coil, nonuniform electron beam, and losses.
Electrode Design of Cylindrical Coplanar-grid CdZnTe Detector by Finite Element Methods
Institute of Scientific and Technical Information of China (English)
JIN Wei; SANG Wen-bin; ZHANG Qi; MIN Jia-Hua; SHEN Yan
2004-01-01
Cylindrical coplanar- grid configurations, which offer a lot of advantages over established designs,can effectively overcome the problem of poor hole collection. Finite element analysis is utilized for simulating the potential distribution of the cylindrical coplanar-grid detector under different models by varying the widths of grid and pitch of electrodes. In addition, a modified grid pattern has been discussed to improve the weighting potential match between two grids. In this way, the geometry of electrodes for cylindrical coplanar- grid detectors is optimized.
Structure and stability of superfluid 4He systems with cylindrical symmetry
Szybisz, Leszek; Gatica, Silvina M.
2001-12-01
The structure and stability of superfluid 4He systems with cylindrical symmetry are studied. Ground-state energies and density profiles are computed by using density-functional approaches. A model to understand the energetics of cylindrical systems is developed by following the main ideas of the Droplet Model utilized to describe spherical clusters. The necessary condition for stability is formulated by imposing a positive longitudinal isothermal compressibility along the principal axis of the cylinder. It is shown that free cylinders of 4He at T=0 K are unstable. As an example of the evolution towards stable systems, results for liquid 4He confined by cylindrical nanopores in Cs are reported.
Behavior of R/C Cylindrical Panel Subjected to Combined Axial and Shear Loadings
Hara, Takashi
2009-01-01
p. 1722-1730 Reinforced concrete (R/C) cylindrical panels have been applied to the roof or the underground structures. Also, in constructing a high rise building, an R/C wall is often used to improve the lateral rigidity of the building comparing with beam column systems under wind or seismic loading. In this paper, the behavior of R/C cylindrical shell under combined axial and lateral shear loadings is analyzed numerically. R/C cylindrical shells are often adopted for the core wa...
Characteristic-Based Time Domain Method for Cylindrically Conformal Microstrip Patch Antennas
Institute of Scientific and Technical Information of China (English)
XU Xiao-wen; XIN Li
2005-01-01
The characteristics of a cylindrical conformal microstrip patch antenna are analyzed by using the characteristic-based time domain (CBTD) method. A governing equation in the cylindrical coordinate system is formulated directly to facilitate the analysis of cylindrically conformal microstrip patch antennas. The algorithm has second-order accuracy both in time and space domain and has the potential to eliminate the spurious wave reflection from the numerical boundaries of the computational domain. Numerical results demonstrate the important merits and accuracy of the proposed technique in computational electromagnetics.
筒式发射器圆柱凸轮机构设计%Design of cylindrical cam mechanism in cylindrical launcher
Institute of Scientific and Technical Information of China (English)
郭三学
2011-01-01
针对火箭抛锚器的应用特点,采用筒式发射器的结构形式,设计了圆柱凸轮控制机构,通过等速推杆运动规律实现对火帽的准确击发,确定了凸轮轮廓曲线,圆柱凸轮机构经使用能安全可靠的击发火箭抛锚体.%The structure of the cylindrical launcher is adopted to design the cylindrical cam control mechanism according to the feature of the rocket anchor projectile. The precise percussion is realized by means of the constant velocity motion pattern The cam contour curve was confirmed. The practice indicates that the cylindrical cam mechanism can launch the rocket anchor projectile safely and reliably.
Directory of Open Access Journals (Sweden)
Jae S. Ahn
2015-01-01
Full Text Available We introduce higher-order cylindrical shell element based on ESL (equivalent single-layer theory for the analysis of laminated composite shells. The proposed elements are formulated by the dimensional reduction technique from three-dimensional solid to two-dimensional cylindrical surface with plane stress assumption. It allows the first-order shear deformation and considers anisotropic materials due to fiber orientation. The element displacement approximation is established by the integrals of Legendre polynomials with hierarchical concept to ensure the C0-continuity at the interface between adjacent elements as well as C1-continuity at the interface between adjacent layers. For geometry mapping, cylindrical coordinate is adopted to implement the exact mapping of curved shell configuration with a constant curvature with respect to any direction in the plane. The verification and characteristics of the proposed element are investigated through the analyses of three cylindrical shell problems with different shapes, loadings, and boundary conditions.
Analysis on Forced Vibration of Thin-Wall Cylindrical Shell with Nonlinear Boundary Condition
Directory of Open Access Journals (Sweden)
Qiansheng Tang
2016-01-01
Full Text Available Forced vibration of thin-wall cylindrical shell under nonlinear boundary condition was discussed in this paper. The nonlinear boundary was modeled as supported clearance in one end of shell and the restraint was assumed as linearly elastic in the radial direction. Based on Sanders’ shell theory, Lagrange equation was utilized to derive the nonlinear governing equations of cylindrical shell. The displacements in three directions were represented by beam functions and trigonometric functions. In the study of nonlinear dynamic responses of thin-wall cylindrical shell with supported clearance under external loads, the Newmark method is used to obtain time history, frequency spectrum plot, phase portraits, Poincare section, bifurcation diagrams, and three-dimensional spectrum plot with different parameters. The effects of external loads, supported clearance, and support stiffness on nonlinear dynamics behaviors of cylindrical shell with nonlinear boundary condition were discussed.
A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition
Kuang, Longyu; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Lilin; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian
2016-01-01
A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named as three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is made of three cylindrical hohlraums orthogonally jointed. Laser beams are injected through every entrance hole with the same incident angle of 55{\\deg}. The view-factor simulation result shows that the time-varying drive asymmetry of TACH is no more than 1.0% in the whole drive pulse period without any supplementary technology such as beam phasing etc. Its coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, the proposed hohlraum provides a competitive candidate for ignition hohlraum.
Indian Academy of Sciences (India)
M Eghbali; B Farokhi
2015-04-01
The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distributions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified nonlinear Schrödinger equation (NLSE) is derived. The presence of hot non-extensive -distributed ions and electron is shown to influence the modulational instability (MI) of the waves. It is shown that the properties of the MI of DAW in cylindrical and spherical geometries differ from those in a planar one-dimensional geometry. Furthermore, it is observed that the non-extensive distributed ions have more effect on the MI of the DAW than electrons. Also, it is found that there is a MI period for cylindrical and spherical wave modulations, which does not exist in the one-dimensional case.
Numerical investigation of Richtmyer-Meshkov instability driven by cylindrical shocks
Institute of Scientific and Technical Information of China (English)
Baolin Tian; Dexun FU; Yanwen Ma
2006-01-01
In this Paper,a numerical method with high order accuracy and high resolution was developed to simulate the Richtmyer-Meshkov(RM) instability driven by cylindrical shock waves.Compressible Euler equations in cylindrical coordinate were adopted for the cylindrical geometry and a third order accurate group control scheme was adopted to discretize the equations.Moreover,an adaptive grid technique was developed to refine the grid near the moving interface to improve the resolution of numerical solutions.The results of simulation exhibited the evolution process of RM instability,and the effect of Atwood number was studied.The larger the absolute value of Atwood number,the larger the perturbation amplitude.The nonlinear effect manifests more evidently in cylindrical geometry.The shock reflected from the pole center accelerates the interface for the second time,considerably complicating the interface evolution process,and such phenomena of reshock and secondary shock were studied.
Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok
2013-02-06
In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.
Directory of Open Access Journals (Sweden)
Seung-Bok Choi
2013-02-01
Full Text Available In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.
THE STRUCTURAL ANALYSIS OF STEEL SILOS WITH CYLINDRICAL-WALL BEARING AND PROFILE-STEEL BEARING
Directory of Open Access Journals (Sweden)
Zhengjun Tang
2015-04-01
Full Text Available The silos are widely used in bulk material in many fields such as agriculture, mining, chemical, electric power storage, etc. Thin metal cylindrical silo shells are vulnerable to buckling failure caused by the compressive wall friction force. In this paper, the structural analysis of two types of steel silo with cylindrical-wall bearing and profile-steel bearing is implemented by Abaqus finite element analysis. The results indicate that under the same loading conditions, steel silos with profile-steel bearing and cylindrical-Wall bearing have similar values in Mises stress, but the steel silo with profile-steel bearing has a smaller radial displacement and a better capability of buckling resistance. Meanwhile, the total steel volumes reduced 8.0% comparing to the steel silo with cylindrical-wall bearing. Therefore, steel soil with profile-steel bearing not only has a less steel volumes but also a good stability.
Overlap Technique for End-Cap Seals on Cylindrical Magnetic Shields
Malkowski, S; Boissevain, J; Daurer, C; Filippone, B W; Hona, B; Plaster, B; Woods, D; Yan, H
2013-01-01
We present results from studies of the effectiveness of an overlap technique for forming a magnetic seal across a gap at the boundary between a cylindrical magnetic shield and an end-cap. In this technique a thin foil of magnetic material overlaps the two surfaces, thereby spanning the gap across the cylinder and the end-cap, with the magnetic seal then formed by clamping the thin magnetic foil to the surfaces of the cylindrical shield and the end-cap on both sides of the gap. In studies with a prototype 31-cm diameter, 91-cm long, 0.16-cm thick cylindrical magnetic shield and flared end-cap, the magnetic shielding performance of our overlap technique is comparable to that obtained with the conventional method in which the end-cap is placed in direct lapped contact with the cylindrical shield via through bolts or screws.
Analysis of a cylindrical-rectangular microstrip structure with an airgap
Wong, Kin-Lu; Cheng, Yuan-Tung; Row, Jeen-Sheen
1994-06-01
The resonance problem of the cylindrical-rectangular microstrip structure with an airgap between the substrate layer and the ground conducting cylinder is studied by using a rigorous full-wave approach and a moment method calculation.
A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition
Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian
2016-01-01
A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum. PMID:27703250
Vibration Analysis of Cylindrical Sandwich Aluminum Shell with Viscoelastic Damping Treatment
Directory of Open Access Journals (Sweden)
Tai-Hong Cheng
2013-01-01
Full Text Available This paper has applied the constrained viscoelastic layer damping treatments to a cylindrical aluminum shell using layerwise displacement theory. The transverse shear, the normal strains, and the curved geometry are exactly taken into account in the present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The damped natural frequencies, modal loss factors, and frequency response functions of cylindrical viscoelastic aluminum shells are compared with those of the base thick aluminum panel without a viscoelastic layer. The thickness and damping ratio of the viscoelastic damping layer, the curvature of proposed cylindrical aluminum structure, and placement of damping layer of the aluminum panel were investigated using frequency response function. The presented results show that the sandwiched viscoelastic damping layer can effectively suppress vibration of cylindrical aluminum structure.
Feng, Huicheng; Wong, Teck Neng; Che, Zhizhao
2016-08-01
Induced charge electrophoresis of a conducting cylinder suspended in a nonconducting cylindrical pore is theoretically analyzed and a micromotor is proposed that utilizes the cylinder rotation. The cylinder velocities are analytically obtained in the Dirichlet and the Neumann boundary conditions of the electric field on the cylindrical pore. The results show that the cylinder not only translates but also rotates when it is eccentric with respect to the cylindrical pore. The influences of a number of parameters on the cylinder velocities are characterized in detail. The cylinder trajectories show that the cylinder approaches and becomes stationary at certain positions within the cylindrical pore. The proposed micromotor is capable of working under a heavy load with a high rotational velocity when the eccentricity is large and the applied electric field is strong.
Qiu, Q.; Fang, Z. P.; Wan, H. C.; Zheng, L.
2013-07-01
Based on the Donnell assumptions and linear visco-elastic theory, the constitutive equations of the cylindrical shell with multilayer Passive Constrained Layer Damping (PCLD) treatments are described. The motion equations and boundary conditions are derived by Hamilton principle. After trigonometric series expansion and Laplace transform, the state vector is introduced and the dynamic equations in state space are established. The transfer function method is used to solve the state equation. The dynamic performance including the natural frequency, the loss factor and the frequency response of clamped-clamped multi-layer PCLD cylindrical shell is obtained. The results show that multi-layer PCLD cylindrical shell is more effective than the traditional three-layer PCLD cylindrical shell in suppressing vibration and noise if the same amount of material is applied. It demonstrates a potential application of multi-layer PCLD treatments in many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.
Nonlinear evolution of cylindrical gravitational waves: Numerical method and physical aspects
Celestino, Juliana; de Oliveira, H. P.; Rodrigues, E. L.
2016-05-01
General cylindrical waves are the simplest axisymmetrical gravitational waves that contain both + and × modes of polarization. In this paper, we have studied the evolution of general cylindrical gravitational waves in the realm of the characteristic scheme with a numerical code based on the Galerkin-Collocation method. The investigation consists of the numerical realization of concepts such as Bondi mass and the news functions adapted to cylindrical symmetry. The Bondi mass decays due to the presence of the news functions associated with both polarization modes. We have interpreted each polarization mode as channels from which mass is extracted. Under this perspective, we have presented the enhancement effect of the polarization mode + due to the nonlinear interaction with the mode ×. After discussing the role of matter in cylindrical symmetry, we have extended the numerical code to include electromagnetic fields.
Nonlinear evolution of cylindrical gravitational waves: numerical method and physical aspects
Celestino, Juliana; Rodrigues, E L
2015-01-01
General cylindrical waves are the simplest axisymmetrical gravitational waves that contain both $+$ and $\\times$ modes of polarization. In this paper, we have studied the evolution of general cylindrical gravitational waves in the realm of the characteristic scheme with a numerical code based on the Galerkin-Collocation method. The investigation consists of the numerical realization of concepts such as Bondi mass and the news functions adapted to cylindrical symmetry. The Bondi mass decays due to the presence of the news functions associated with both polarization modes. We have interpreted that each polarization mode as channels from which mass is extracted. Under this perspective, we have presented the enhancement effect of the polarization mode $+$ due to the nonlinear interaction with the mode $\\times$. After discussing the role of matter in cylindrical symmetry, we have extended the numerical code to include electromagnetic fields.
3D MODELLING OF A SHRINK FITTED CONCAVE ENDED CYLINDRICAL TANK FOR AUTOMOTIVE INDUSTRY
National Research Council Canada - National Science Library
Mirela C Ghita; Constantin A Micu; Mihai D L Talu; Stefan D L Talu
2013-01-01
The aim of this work is to present a method that allows the optimal design of a shrink fitted concave ended cylindrical tank for the storage of methane gas, based on the application of the Finite Element Method (FEM...
Comparison between cylindrical and prismatic lithium-ion cell costs using a process based cost model
Ciez, Rebecca E.; Whitacre, J. F.
2017-02-01
The relative size and age of the US electric vehicle market means that a few vehicles are able to drive market-wide trends in the battery chemistries and cell formats on the road today. Three lithium-ion chemistries account for nearly all of the storage capacity, and half of the cells are cylindrical. However, no specific model exists to examine the costs of manufacturing these cylindrical cells. Here we present a process-based cost model tailored to the cylindrical lithium-ion cells currently used in the EV market. We examine the costs for varied cell dimensions, electrode thicknesses, chemistries, and production volumes. Although cost savings are possible from increasing cell dimensions and electrode thicknesses, economies of scale have already been reached, and future cost reductions from increased production volumes are minimal. Prismatic cells, which are able to further capitalize on the cost reduction from larger formats, can offer further reductions than those possible for cylindrical cells.
Buckling analysis of a cylindrical shell, under neutron radiation environment
Energy Technology Data Exchange (ETDEWEB)
Arani, A. Ghorbanpour [Department of Mechanical Engineering, School of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Ahmadi, M. [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology (Iran, Islamic Republic of); Ahmadi, A. [Department of Management, University of Tehran, Tehran (Iran, Islamic Republic of); Rastgoo, A. [Department of Mechanical Engineering, School of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Sepyani, H.A., E-mail: hosepiani@yahoo.com [Department of Mechanical Engineering, School of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)
2012-01-15
Highlights: Black-Right-Pointing-Pointer The work investigates the buckling of a shell in the neutron radiation environment. Black-Right-Pointing-Pointer Radiation induced porosity in elastic materials affects the material's properties. Black-Right-Pointing-Pointer The data based technique was used to determine the volume fraction porosity. Black-Right-Pointing-Pointer The theoretical formulations are presented based on the classical shell theory (CST). Black-Right-Pointing-Pointer It was concluded that both T and neutron induced swelling have significant effects. - Abstract: This research investigates the buckling of a cylindrical shell in the neutron radiation environment, subjected to combined static and periodic axial forces. Radiation induced porosity in elastic materials affects the thermal, electrical and mechanical properties of the materials. In this study, the data based technique was used to determine the volume fraction porosity, P, of shell material. A least-squares fit of the Young's module data yielded the estimated Young's modulus. The shell assumed made of iron irradiated in the range of 2-15e-7 dPa/s at 345-650 Degree-Sign C and theoretical formulations are presented based on the classical shell theory (CST). The research deals with the problem theoretically; keeping in mind that one means of generating relevant design data is to investigate prototype structures. A parametric study is followed and the stability of shell is discussed. It is concluded that both temperature and neutron induced swelling have significant effects on the buckling load.
Generation of highly symmetric, cylindrically convergent shockwaves in water
Bland, S. N.; Krasik, Ya. E.; Yanuka, D.; Gardner, R.; MacDonald, J.; Virozub, A.; Efimov, S.; Gleizer, S.; Chaturvedi, N.
2017-08-01
We report on pulsed power driven, exploding copper wire array experiments conducted to generate cylindrical convergent shockwaves in water employing μs risetime currents >550 kA in amplitude and with stored energies of >15 kJ—a substantial increase over previous results. The experiments were carried out on the recently constructed Mega-Ampere-Compression-and-Hydrodynamics facility at Imperial College London in collaboration with colleagues of Technion, Israel. 10 mm diameter arrays consisting of 60 × 130 μm wires were utilized, and the current and voltage diagnostics of the load region suggested that ˜8 kJ of energy was deposited in the wires (and the load region close to the wires) during the experiments, resulting in the formation of dense, highly resistive plasmas that rapidly expanded driving the shockwaves in water. Laser-backlit framing images of the shockfront were obtained at radii 50:1. Framing images and streak photographs showed that the velocity of the shockwave reached ˜7.5 km s-1 at 0.1 mm from the axis. 2D hydrodynamic simulations that match the experimentally obtained implosion trajectory suggest that pressures >1 Mbar are produced within 10 μm of the axis along with water densities of 3gcm-3 and temperatures of many 1000 s of Kelvin. Under these conditions, Quotidian Equation of State suggests that a strongly coupled plasma with an ionization fraction of ˜0.7 would be formed. The results represent a "stepping stone" in the application of the technique to drive different material samples into high pressure, warm dense matter regimes with compact, university scale generators, and provide support in scaling the technique to multi-mega ampere currents.
Scaled-particle theory analysis of cylindrical cavities in solution.
Ashbaugh, Henry S
2015-04-01
The solvation of hard spherocylindrical solutes is analyzed within the context of scaled-particle theory, which takes the view that the free energy of solvating an empty cavitylike solute is equal to the pressure-volume work required to inflate a solute from nothing to the desired size and shape within the solvent. Based on our analysis, an end cap approximation is proposed to predict the solvation free energy as a function of the spherocylinder length from knowledge regarding only the solvent density in contact with a spherical solute. The framework developed is applied to extend Reiss's classic implementation of scaled-particle theory and a previously developed revised scaled-particle theory to spherocylindrical solutes. To test the theoretical descriptions developed, molecular simulations of the solvation of infinitely long cylindrical solutes are performed. In hard-sphere solvents classic scaled-particle theory is shown to provide a reasonably accurate description of the solvent contact correlation and resulting solvation free energy per unit length of cylinders, while the revised scaled-particle theory fitted to measured values of the contact correlation provides a quantitative free energy. Applied to the Lennard-Jones solvent at a state-point along the liquid-vapor coexistence curve, however, classic scaled-particle theory fails to correctly capture the dependence of the contact correlation. Revised scaled-particle theory, on the other hand, provides a quantitative description of cylinder solvation in the Lennard-Jones solvent with a fitted interfacial free energy in good agreement with that determined for purely spherical solutes. The breakdown of classical scaled-particle theory does not result from the failure of the end cap approximation, however, but is indicative of neglected higher-order curvature dependences on the solvation free energy.
Induced hydraulic pumping via integrated submicrometer cylindrical glass capillaries.
Cao, Zhen; Yobas, Levent
2014-08-01
Here, we report on a micropump that generates hydraulic pressure owing to a mismatch in EOF rates of microchannels and submicrometer cylindrical glass capillaries integrated on silicon. The electrical conductance of such capillaries in the dilute limit departs from bulk linear behavior as well as from the surface-charge-governed saturation in nanoslits that is well described by the assumption of a constant surface charge density. The capillaries show rather a gradual decrease in conduction at low salt concentrations, which can be explained more aptly by a variable surface charge density that accounts for chemical equilibrium of the surface. The micropump uses a traditional cross-junction structure with ten identical capillaries integrated in parallel on a side arm and each with a 750 nm diameter and 3 mm length. For an applied voltage of 700 V, a hydraulic pressure up to 5 kPa is generated with a corresponding flow velocity nearly 3 mm/s in a straight field-free branch 20 μm wide, 10 μm deep, and 10 mm long. The micropump utility has been demonstrated in an open tubular LC of three fluorescently labeled amino acids in just less than 20 s with minimal plate height values between 3 and 7 μm. The submicrometer capillaries are self-enclosed and produced through a unique process that does not require high-resolution advanced lithography or wafer-bonding techniques to define their highly controlled precise structures. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Secondary Extinction in Cylindrical and Spherical Crystals for X-Ray and Neutron Diffraction
Institute of Scientific and Technical Information of China (English)
胡华琛; 李兆桓; 杨斌; 沈彩万; 乔英
2001-01-01
The distribution of the reflection power ratio for a neutron or x-ray diffracted from a cylindrical crystal immersed in an homogenous incident beam is obtained by the numerical solution of the transfer equations for the first time. The profile well reflects all the physical properties of the absorption and extinction behaviour in the crystals. A systematic investigation of the secondary extinction for cylindrical and spherical crystals was carried out based on these results.
Seung-Bok Choi; Juncheol Jeon; Jung Woo Sohn; Heung Soo Kim
2013-01-01
In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an excite...
Sound radiation of a functionally graded material cylindrical shell in water by mobility method
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Based on the fundamental dynamic equations of functionally graded material (FGM) cylindrical shell, this paper investigates the sound radiation of vibrational FGM shell in water by mobility method. This model takes into account the exterior fluid loading due to the sound press radiated by the FGM shell. The FGM cylindrical shell was excited by a harmonic line radial force uniformly distributing along the generator. The FGM shell equations of motion, the Helmholtz equation in the exterior fluid medium and th...
Effect of fluid viscosity on wave propagation in a cylindrical bore in micropolar elastic medium
Indian Academy of Sciences (India)
Sunita Deswal; Sushil K Tomar; Rajneesh Kumar
2000-10-01
Wave propagation in a cylindrical bore filled with viscous liquid and situated in a micropolar elastic medium of infinite extent is studied. Frequency equation for surface wave propagation near the surface of the cylindrical bore is obtained and the effect of viscosity and micropolarity on dispersion curves is observed. The earlier problems of Biot and of Banerji and Sengupta have been reduced as a special case of our problem.
Energy Technology Data Exchange (ETDEWEB)
Friedberg, Richard; Manassah, Jamal T. [Department of Physics, Columbia University, New York, New York 10027 (United States); Department of Electrical Engineering, City College of New York, New York 10031 (United States)
2011-08-15
We obtain in both the scalar and vector photon models the analytical expressions for the initial cooperative decay rate and the cooperative Lamb shift for an ensemble of resonant atoms distributed uniformly in an infinite cylindrical geometry for the case that the initial state of the system is prepared in a phased state modulated in the direction of the cylindrical axis. We find that qualitatively the scalar and vector theories give different results.
THE STRUCTURAL ANALYSIS OF STEEL SILOS WITH CYLINDRICAL-WALL BEARING AND PROFILE-STEEL BEARING
Zhengjun Tang; Daibiao Zhou; Chenwei Peng; Wenping Wu
2015-01-01
The silos are widely used in bulk material in many fields such as agriculture, mining, chemical, electric power storage, etc. Thin metal cylindrical silo shells are vulnerable to buckling failure caused by the compressive wall friction force. In this paper, the structural analysis of two types of steel silo with cylindrical-wall bearing and profile-steel bearing is implemented by Abaqus finite element analysis. The results indicate that under the same loading conditions, steel silos with prof...
Magnetization curves for non-elliptic cylindrical samples in a transverse ﬁeld
Indian Academy of Sciences (India)
Debjani Karmakar; K V Bhagwat
2001-01-01
Using recent results for the surface current density on cylindrical surfaces of arbitrary cross-section producing uniform interior magnetic ﬁeld and an assumed set of ﬂux-fronts, solutions of Bean’s critical state model for cylindrical samples with non-elliptic cross-section are presented. Magnetization hysteresis loops for two cross-sections with different aspect ratios are obtained. A comparison with some exact results shows the limitations of this approach.
Instability of Annular Beam with Finite Thickness in Dielectric-Loaded Cylindrical Waveguide
Tamura, Shusuke; Yamakawa, Mitsuhisa; Takashima, Yusuke; Ogura, Kazuo
2008-01-01
The cherenkov and slow cyclotron instabilities driven by an axially injected electron beam in a cylindrical waveguide are studied using a new version of the self-consistent linear theory considering three-dimensional beam perturbations. There are three kinds of models for beam instability analysis, which are based on a cylindrical solid beam, an infinitesimally thin annular beam, and a finitely thick annular beam. Among these models, the beam shape properly representing the often used actual ...
Cylindricity Error Measuring and Evaluating for Engine Cylinder Bore in Manufacturing Procedure
Qiang Chen; Xueheng Tao; Jinshi Lu; Xuejun Wang
2016-01-01
On-line measuring device of cylindricity error is designed based on two-point method error separation technique (EST), which can separate spindle rotation error from measuring error. According to the principle of measuring device, the mathematical model of the minimum zone method for cylindricity error evaluating is established. Optimized parameters of objective function decrease to four from six by assuming that c is equal to zero and h is equal to one. Initial values of optimized parameters...
Nonlinear Rayleigh--Taylor instability of the cylindrical fluid flow with mass and heat transfer
Indian Academy of Sciences (India)
ALY R SEADAWY; K EL-RASHIDY
2016-08-01
The nonlinear Rayleigh--Taylor stability of the cylindrical interface between the vapour and liquid phases of a fluid is studied. The phases enclosed between two cylindrical surfaces coaxial with mass and heat transfer is derived from nonlinear Ginzburg--Landau equation. The F-expansion method is used to get exactsolutions for a nonlinear Ginzburg--Landau equation. The region of solutions is displayed graphically.
Cylindrical shed construction: the shell roof on the Jamin factory at Oosterhout, Netherlands
García García, Rafael; Valcarce Labrador, María Teresa
2009-01-01
The paper provides an overview of cylindrical shed reinforced concrete shells, a type of construction used primarily in industrial buildings. Like other types of shells, most cylindrical sheds were built between the end of World War II and the early nineteen sixties. The article reviews their characteristics and construction parameters based on contemporary studies and briefly documents some of the most prominent structures. The final chapter contains a detailed analysis of the design and con...
Accurate Tooth Lead Crowning without Twist in Cylindrical Helical Gear Grinding
Zhang, Hu; Fang, Chenggang; Huang, XiaoDiao
2014-01-01
Form grinding is a popular finishing process in manufacturing cylindrical gears with tooth flank modification. The tooth flanks are usually twisted when a lead crowning is performed only through additional radial motion during double flank grinding. For solving the problem, this paper proposes a method for application of tooth lead crowning without twist in cylindrical helical gears based on the idea of tooth form correction for spiral bevel and hypoid gears. In this method, the motion of eac...
METHODS OF MODERN DESIGN FOR CYLINDRICAL GEAR DRIVE BASED ON THE INTERNET
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The basic principle of modern design of cylindrical gear drive based on the Internet is described. The methods of optimized design, finite element analysis, CAD design and web design as well as research and development entity of three parties such as institute research unit (or university), enterprise and customer are also studied. Its purpose is to provide a necessary foundation for realizing the design of cylindrical gear drive from different location on the modern Internet and to explore a practice application route.
Analysis on Node Position of Imperfect Resonators for Cylindrical Shell Gyroscopes
Wang, Zidan; Wu, Yulie; Xi, Xiang; Zhang, Yongmeng; Wu, Xuezhong
2016-01-01
For cylindrical shell gyroscopes, node position of their operating eigenmodes has an important influence on the gyroscopes’ performance. It is considered that the nodes are equally separated from each other by 90° when the resonator vibrates in the standing wave eigenmode. However, we found that, due to manufacturing errors and trimming, the nodes may not be equally distributed. This paper mainly analyzes the influences of unbalanced masses on the cylindrical resonators’ node position, by using FEM simulation and experimental measurement. PMID:27483284
Zheng, Ling; Zhang, Dongdong; Wang, Yi
2011-02-01
In this paper, the application of active constrained layer damping (ACLD) treatments is extended to the vibration control of cylindrical shells. The governing equation of motion of cylindrical shells partially treated with ACLD treatments is derived on the basis of the constitutive equations of elastic, piezoelectric and visco-elastic materials and an energy approach. The damping of a visco-elastic layer is modeled by the complex modulus formula. A finite element model is developed to describe and predict the vibration characteristics of cylindrical shells partially treated with ACLD treatments. A closed-loop control system based on proportional and derivative feedback of the sensor voltage generated by the piezo-sensor of the ACLD patches is established. The dynamic behaviors of cylindrical shells with ACLD treatments such as natural frequencies, loss factors and responses in the frequency domain are further investigated. The effects of several key parameters such as control gains, location and coverage of ACLD treatments on vibration suppression of cylindrical shells are also discussed. The numerical results indicate the validity of the finite element model and the control strategy approach. The potential of ACLD treatments in controlling vibration and sound radiation of cylindrical shells used as major critical structures such as cabins of aircraft, hulls of submarines and bodies of rockets and missiles is thus demonstrated.
Institute of Scientific and Technical Information of China (English)
李红云; 林启荣; 刘正兴; 王超
2003-01-01
The control of the piezoelastic laminated cylindrical shell's vibration under hydrostatic pressure was discussed. From Hamilton's principle nonlinear dynamic equations of the piezoelastic laminated cylindrical shell were derived. Based on which, the dynamic equations of a closed piezoelastic cylindrical shell under hydrostatic pressure are obtained. An analytical solution was presented for the case of vibration of a simply supported piezoelastic laminated cylindrical shell under hydrostatic pressure. Using veloctity feedback control, a model for active vibration control of the laminated cylindrical shell with piezoelastic sensor/ actuator is established. Numerical results show that, the static deflection of the cylindrical shell can be changed when voltages with suitable value and direction are applied on the piezoelectric layers. For the dynamic response problem of the system, the larger the gain is, the more the vibration of the system is suppressed in the vicinity of the resonant zone. This presents a potential way to actively reduce the harmful effect of the resonance on the system and verify the feasibility of the active vibration control model.
Flow-Induced Vibration of Circular Cylindrical Structures
Energy Technology Data Exchange (ETDEWEB)
Chen, Shoei-Sheng [Argonne National Lab. (ANL), Argonne, IL (United States). Components Technology Division
1985-06-01
of heat exchanger tube banks are typical examples. Recently, flow-induced vibration has been studied extensively for several reasons. First, with the use of high-strength materials, structures become more slender and more susceptible to vibration. Second, the development of advanced nuclear power reactors requires high-velocity fluid flowing through components, which can cause detrimental vibrations. Third, the dynamic interaction of structure and fluid is one of the most fascinating problems in engineering mechanics. The increasing study is evidenced by many conferences directed to this subject and numerous publications, including reviews and books. In a broad sense, flow-induced vibration encompasses all topics on the dynamic responses of structures submerged in fluid, containing fluid, or subjected to external flow. In this report, discussions focus on circular cylindrical structures with emphasis on nuclear reactor system components.
Prediction of heater power distribution in radiative cylindrical furnaces
Energy Technology Data Exchange (ETDEWEB)
Ravichandran, M.; Dilber, I.; Torok, D.
1999-07-01
In the design of long radiative cylindrical furnaces, it is important to control the temperature variation along the furnace walls and consequently the temperature distribution in the processed material by selectively adjusting the power input to heater rods located circumferentially around the furnace walls. The heaters are grouped in zones located at different axial locations. By adjusting the power to each zone a specified temperature distribution along the furnace can be attained. The radiative interchange between different axial zones of the furnace affects the temperature distribution; this interchange is also impacted by the shadowing caused by the presence of the load, i.e. the processed material. A desired temperature distribution can only be achieved by selectively changing the power input to the heaters. For an a priori assessment of the commercial viability of using process friendly temperature distributions, it is necessary to determine: (a) the maximum power demand from each zone; (b) if active cooling is inevitable and (c) the bounds on temperature distribution that can be achieved without active cooling. It is therefore extremely useful to be able to predict the input power distribution for achieving desired furnace temperature profiles. For a given power input, the temperature distribution inside the furnace could be obtained by using a general purpose Computational Fluid Dynamics (CFD) software, such as FIDAP. A new methodology is developed within the framework of FIDAP software to eliminate the manual trial and error method. The method is based on obtaining the sensitivity of the temperature at the desired locations of the furnace as a function of the power input to the heating elements. Using these sensitivity coefficients, an iterative scheme is designed to adjust the boundary conditions (power to the heating elements in this case) based on the discrepancy of the solution temperatures from the desired temperature distribution. For each of these
Tantawi, Sami G.; Dolgashev, Valery A.; Yeremian, Anahid D.
2016-03-15
A high-power microwave RF window is provided that includes a cylindrical waveguide, where the cylindrical waveguide includes a ceramic disk concentrically housed in a central region of the cylindrical waveguide, a first rectangular waveguide, where the first rectangular waveguide is connected by a first elliptical joint to a proximal end of the cylindrical waveguide, and a second rectangular waveguide, where the second rectangular waveguide is connected by a second elliptical joint to a distal end of the cylindrical waveguide.
Dynamic behaviour of a coaxial cylindrical shells, with a gap partially filled with fluid
Directory of Open Access Journals (Sweden)
Baghdasaryan G.Ye.
2011-09-01
Full Text Available There are numerous studies on the vibrations and dynamic stability of a cylindrical shell filled with fluid. Information about these studies can be found in monographs [1-4] and in a review article [5]. The problem of vibrations of coaxial cylindrical shells, filled with fluid of variable-depth, is considered in [6]. The problem of stability of cylindrical shells partially filled with fluid, with an external dynamic pressure is discussed in [7]. The problems of vibration of coaxial cylindrical shells are considered in [8-11], and besides [8, 11], in the remaining papers which deal with the same case, the vibrations of shells completely filled with fluid are researched in [9, 10]. The question of possible loss of stability is considered in [11]. In this paper, the problem of vibrations and stability of isotropic coaxial circular cylindrical shells of finite length in linear statement is considered, when the region between the shells (the gap is partially filled with an incompressible fluid . The dependence of the vibration frequency on the depth of the filling and the thickness of the gap of the considered hydro-elastic system is studied. The possibility of loss of static stability of hydro-elastic system under the influence of hydrostatic pressure is shown.
Design of Cylindrical Cam with Oscillating Follower Based on 3D Expansion of Planar Profile Model
Institute of Scientific and Technical Information of China (English)
CHEN Junhua; LIN Zuan; WU Yijie
2009-01-01
Cylindrical cam with oscillating follower is widely applicable and used in many mechanical devices and machines. However, a common error exists in the methods of designing planar profile for oscillating follower cylinder cam. In this study, we propose a new hypothesis to solve this design problem with the inclusion of deviation angle. On the basis of this new concept, equations for planar profile expansion and methods of calculating pressure angle are deduced by applying 3D expansion formula of the follower's motion orbit. When the pressure angle is less than allowable value, the minimum base radius can be determined by using MATLAB software. Accordingly, the planar profile of oscillating follower cylinder cam is generated by CAD software. This new method is practical and can be easily adopted for the design of oscillating follower cylindrical cam with desirable accuracy. We applied the method in the design of cylindrical cam for paper feeding mechanism used in high-speed printers. We calculated the planar profile and used it to direct the NC machine for the manufacture of the groove of cylindrical cam. The improved cylindrical cam met all of the requirements of speed and accuracy demanded by high-speed printers. Therefore, our new method has been validated by practical application.
Cylindric partitions, W_r characters and the Andrews-Gordon-Bressoud identities
Foda, O
2015-01-01
We study the Andrews-Gordon-Bressoud (AGB) generalisations of the Rogers-Ramanujan q-series identities in the context of cylindric partitions. We recall the definition of r-cylindric partitions, and provide a simple proof of Borodin's product expression for their generating functions, that can be regarded as a limiting case of an unpublished proof by Krattenthaler. We also recall the relationships between the r-cylindric partition generating functions, the principal characters of affine sl_r algebras, the M^{r, r+d}_r minimal model characters of W_r algebras, and the r-string abaci generating functions, as well as the relationships between them, providing simple proofs for each. We then set r=2, and use 2-cylindric partitions to re-derive the AGB identities as follows. Firstly, we use Borodin's product expression for the generating functions of the 2-cylindric partitions with infinitely-long parts, to obtain the product sides of the AGB identities, times a factor (q; q)_{\\infty}^{-1}, which is the generating ...
Directory of Open Access Journals (Sweden)
Zhenwei Mo
2016-01-01
Full Text Available We use the continuity equation and the Reynolds averaged Navier-Stokes equations to study the flow-pattern characteristics around a turbine runner for the small-opening cylindrical valve of a hydraulic turbine. For closure, we adopt the renormalization-group k-ε two-equation turbulence model and use the computational fluid dynamics (CFD software FLUENT to numerically simulate the three-dimensional unsteady turbulent flow through the entire passage of the hydraulic turbine. The results show that a low-pressure zone develops around the runner blades when the cylindrical valve is closed in a small opening; cavitation occurs at the blades, and a vortex appears at the outlet of the runner. As the cylindrical valve is gradually closed, the flow velocity over the runner area increases, and the pressure gradient becomes more significant as the discharge decreases. In addition, the fluid flow velocity is relatively high between the lower end of the cylindrical valve and the base, so that a high-velocity jet is easily induced. The calculation and analysis provide a theoretical basis for improving the performance of cylindrical-valve operating systems.
Optical testing of long cylindrical lenses by means of scanning deflectometry
van Amstel, Willem D.; van de Goor, Peter F.; Horijon, Jef L.; Nuyens, Peter G. J. M.
2000-11-01
We present an extremely simple and powerful test set-up for measuring the position and the focal line straightness (lateral) and flatness (longitudinal) of cylindrical lenses, in particular of very long cylindrical lenses. Measurement results are presented for 330 mm and 650 mm long plano- convex cylindrical lenses with a focal length f approximately equals 48 mm, showing that a (lateral) straightness measurement accuracy of about +/- 1 micrometers is achieved easily with a set-up using not much more than a laser, a simple beam deflector from a barcode scanner, a PSD (position-sensitive photo diode) with associated electronics and a translation stage. A fully automated cylindrical lens test set-up version, using a PC for control and data processing will be explained. For the 330 mm long cylindrical lenses, the lateral straightness showed better than between 3 and 10 micrometers (peak to peak) and the longitudinal flatness between 20 and 80 micrometers (peak to peak) without corrective bending. It will be demonstrated that the aberration coefficients, as measured by this physical ray tracing approach, are in accordance with the results from numerical simulation by means of a commercially available ray-tracing program.
Liu, Y. Z.; Hao, Y. X.; Zhang, W.; Chen, J.; Li, S. B.
2015-07-01
The nonlinear vibration of a simply supported FGM cylindrical shell with small initial geometric imperfection under complex loads is studied. The effects of radial harmonic excitation, compressive in-plane force combined with supersonic aerodynamic and thermal loads are considered. The small initial geometric imperfection of the cylindrical shell is characterized in the form of the sine-type trigonometric functions. The effective material properties of this FGM cylindrical shell are graded in the radial direction according to a simple power law in terms of the volume fractions. Based on Reddy's third-order shear deformation theory, von Karman-type nonlinear kinematics and Hamilton's principle, the nonlinear partial differential equation that controls the shell dynamics is derived. Both axial symmetric and driven modes of the cylindrical shell deflection pattern are included. Furthermore, the equations of motion can be reduced into a set of coupled nonlinear ordinary differential equations by applying Galerkin's method. In the study of the nonlinear dynamics responses of small initial geometric imperfect FGM cylindrical shell under complex loads, the 4th order Runge-Kutta method is used to obtain time history, phase portraits, bifurcation diagrams and Poincare maps with different parameters. The effects of external loads, geometric imperfections and volume fractions on the nonlinear dynamics of the system are discussed.
The bending vibration response and approximate calculation of elastic cylindrical shell
Institute of Scientific and Technical Information of China (English)
CHEN Xiao-li; SHENG Mei-ping; HE Chen
2006-01-01
Useful structure characteristics of elastic cylindrical shells have led them to being widely applied in virtual projects ,so it is important to conduct vibration research on the shells and find it's a simpler corresponding compact calculation method. Utilising the input and transfer point mobility of a thin plate structure, a theoretical expression of the cylindrical shell's bending vibration responsewas deduced and numerical simulations were done to simplify the theoretical expression within an acceptable error margin, greatly reducing the amount of computations. Furthermore, whole vibration response distributions of the cylindrical shell were analyzed. It was found thathe vibration energy propagates in helical form under mono-frequency excitation, while under bandwidth frequency excitation, it attenuates around in term of fluctuation. The axial attenuation rate of the vibration energy is larger than the circumferential attenuation rate.
LOAD CARRYING CAPABILITY OF LIQUID FILLED CYLINDRICAL SHELL STRUCTURES UNDER AXIAL COMPRESSION
Directory of Open Access Journals (Sweden)
QASIM H. SHAH
2011-08-01
Full Text Available Empty and water filled cylindrical Tin (Sn coated steel cans were loaded under axial compression at varying loading rates to study their resistance to withstand accidental loads. Compared to empty cans the water filled cans exhibit greater resistance to axially applied compression loads before a complete collapse. The time and load or stroke and load plots showed three significant load peaks related to three stages during loading until the cylinder collapse. First peak corresponds to the initial structural buckling of can. Second peak occurs when cylindrical can walls gradually come into full contact with water. The third peak shows the maximum load carrying capability of the structure where pressurized water deforms the can walls into curved shape until can walls fail under peak pressure. The collapse process of water filled cylindrical shell was further studied using Smooth Particle Hydrodynamics (SPH technique in LSDYNA. Load peaks observed in the experimental work were successfully simulated which substantiated the experimental work.
Effect of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Temperature is one of the key parameters for BT20 titanium alloy cylindrical workpiece manufactured by vacuum hot bulge forming. A two-dimensional nonlinear thermo-mechanical coupled FE model was established. Numerical simulation of vacuum hot bulge forming process of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC Marc. The effects of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece were analyzed by numerical simulation.The simulated results show that the Y-direction displacement and the equivalent plastic strain of the workpiece increase with increasing bulge temperature. The residual stress decreases with increasing bulge temperature. The optimal temperature range of BT20 titanium alloy during vacuum hot bulge forming is 750-850 ℃. The corresponding experiments were carried out. The simulated results agreed well with the experimental results.
Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement
Junfeng, Shao; Tingfeng, Wang; Jin, Guo; Anmin, Chen; Mingxing, Jin
2017-02-01
In this paper, we present a study on the spatial confinement effect of laser-induced plasma with a cylindrical cavity in laser-induced breakdown spectroscopy (LIBS). The emission intensity with the spatial confinement is dependent on the height of the confinement cavity. It is found that, by selecting the appropriate height of cylindrical cavity, the signal enhancement can be significantly increased. At the cylindrical cavity (diameter = 2 mm) with a height of 6 mm, the enhancement ratio has the maximum value (approximately 8.3), and the value of the relative standard deviation (RSD) (7.6%) is at a minimum, the repeatability of LIBS signal is best. The results indicate that the height of confinement cavity is very important for LIBS technique to reduce the limit of detection and improve the precision.
Enhancement of second-harmonic generation from silicon stripes under external cylindrical strain.
Zhao, Ji-Hong; Chen, Qi-Dai; Chen, Zhan-Guo; Jia, Gang; Su, Wen; Jiang, Ying; Yan, Zhao-Xu; Dolgova, T V; Aktsipetrov, O A; Sun, Hong-Bo
2009-11-01
The enhanced second-harmonic (SH) generation from Si (111) stripes induced by external cylindrical strain is investigated. The dependence of the intensity of the strain-induced SH on the sample azimuth shows that the Si under cylindrical strain has 3m symmetry, which is similar to that of the Si (111) surface. Further studies indicate that the intensity of the enhanced SH is a quadratic function of the cylindrical strain within the magnitude that the Si stripe can bear. For the p-polarized and s-polarized SH, the intensities are, respectively, enhanced by 47.9% and 13% at epsilon(0)=2.93x10(-4). The enhancement of SH is due to the contributions from the strain-induced second-order nonlinear susceptibility chi(strain)(2) to the bulk dipole.
Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams
Rong, Zihao; Kuang, Cuifang; Fang, Yue; Zhao, Guangyuan; Xu, Yingke; Liu, Xu
2015-11-01
We propose a novel fluorescence emission difference microscopy (FED) system based on focusing cylindrical vector beams. In conventional FED, a Gaussian beam and a 0-2π vortex phase plate are used to generate solid and hollow spots. We focus radially polarized and azimuthally polarized cylindrical vector beams to obtain an expanded solid spot and a shrunken hollow spot, taking advantage of the optical properties of cylindrical vector beams to improve the conventional FED performance. Our novel method enhances FED performance because the hollow spot size determines the FED resolution and an expanded solid spot effectively reduces negative side-lobe emergence during image processing. We demonstrate improved performance theoretically and experimentally using an in-house built FED. Our FED achieved resolution of less than λ/4 in test images of 100 nm nanoparticles, better than the confocal image resolution by a factor of approximately 1/3. We also discuss detailed simulation analyses and FED imaging of biological cells.
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.
1992-06-30
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R. [Department of Science, Campus of Bijar, University of Kurdistan,Bijar (Iran, Islamic Republic of); Sepehri, A. [Faculty of Physics, Shahid Bahonar University,P.O. Box 76175, Kerman (Iran, Islamic Republic of)
2015-03-16
In this paper, we consider the stability of cylindrical wormholes during evolution of universe from inflation to late time acceleration epochs. We show that there are two types of cylindrical wormholes. The first type is produced at the corresponding point where k black F-strings are transited to BIon configuration. This wormhole transfers energy from extra dimensions into our universe, causes inflation, loses it’s energy and vanishes. The second type of cylindrical wormhole is created by a tachyonic potential and causes a new phase of acceleration. We show that wormhole parameters grow faster than the scale factor in this era, overtake it at ripping time and lead to the destruction of universe at big rip singularity.
Institute of Scientific and Technical Information of China (English)
SONG Tian-shu; SUN Li-li; YU Zhen-dong
2005-01-01
Scattering and dynamic stress concentrations of time harmonic SH-wave in an infinite elastic piezoelectric medium with a movable rigid cylindrical inclusion are studied in this paper with the help of complex variable and wave function expansion method. The relations that a movable rigid cylindrical inclusion depends on intensity of incident wave and electric field are revealed. The expressions of dynamic stress at the edge of the inclusion are obtained. Numerical calculations are made with different wave numbers and different piezoelectric characteristic parameters. The calculating results show that dynamic stress concentrations at the edge of the inclusion have linear dependence on the incident electric field. And dynamic analyses are very important for an infinite piezoelectric medium with a movable rigid cylindrical inclusion at larger piezoelectric characteristic parameters.
Cylindrical and spherical soliton collision of electron-acoustic waves in non-Maxwellian plasma
El-Labany, S. K.; Sabry, R.; Moslem, W. M.; Elghmaz, E. A.
2014-02-01
Generation of quasielastic electron-acoustic (EA) waves head-on collision are investigated in non-planar (cylindrical/spherical) plasma composed of cold electrons fluid, hot electrons obeying nonthermal distribution, and stationary ions. The cylindrical/spherical Korteweg-de Vries (KdV) equations describing two bidirectional EA waves are derived and solved analytically. Numerical investigation have shown that only positive electron-acoustic (EA) structures can propagate and collide. The analytical phase shift |Δ A | due to the non-Maxwellian (nonthermal) electrons is different from the Maxwellian case. Both the hot-to-cold electron number density ratio α and nonthermal parameter β have opposite effect on the phase shift behavior. The phase shift of the spherical EA waves is smaller than the cylindrical case, which indicates that the former is more stable for collision. The relevance of the present study to EA waves propagating in the Earth's auroral zone is highlighted.
Magnetization curves for general cylindrical samples in a transverse ﬁeld
Indian Academy of Sciences (India)
K V Bhagwat; Debjani Karmakar
2001-10-01
Using the recent results for the surface current density on cylindrical surfaces of arbitrary cross-section producing uniform interior magnetic ﬁeld we propose a method for obtaining solutions of Bean’s critical state model for general cylindrical samples. The method uses the technique of conformal mapping to express the sample surface and the ﬂux-fronts in terms of a set of coefﬁcients that depend on a parameter. The ﬂux-fronts are to be determined by solving a system of nonlinear ordinary differential equations for the coefﬁcients. Retaining only a certain ﬁnite number of leading coefﬁcients we get an approximate solution. The procedure is illustrated by considering two cylindrical samples – one with an elliptical cross-section and the other with a non-elliptical cross-section. The virgin curve and small and large magnetization hysteresis loops for the two samples are obtained.
A multi-material CCALE-MOF approach in cylindrical geometry
Friess, Marie Billaud; Galera, Stephane; Maire, Pierre-Henri; Shashkov, Mikhail
2011-01-01
In this paper we present recent developments concerning a Cell-Centered Arbitrary Lagrangian Eulerian (CCALE) strategy using the Moment Of Fluid (MOF) interface reconstruction for the numerical simulation of multi-material compressible fluid flows on general unstructured grids in cylindrical geometries. Especially, our attention is focused here on the following points. First, we propose a new formulation of the scheme used during the Lagrangian phase in the particular case of axisymmetric geometries. Then, the MOF method is considered for multi-interface reconstruction in cylindrical geometry. Subsequently, a method devoted to the rezoning of polar meshes is detailed. Finally, a generalization of the hybrid remapping to cylindrical geometries is presented. These explorations are validated by mean of several test cases that clearly illustrate the robustness and accuracy of the new method.
Cylindricity Error Measuring and Evaluating for Engine Cylinder Bore in Manufacturing Procedure
Directory of Open Access Journals (Sweden)
Qiang Chen
2016-01-01
Full Text Available On-line measuring device of cylindricity error is designed based on two-point method error separation technique (EST, which can separate spindle rotation error from measuring error. According to the principle of measuring device, the mathematical model of the minimum zone method for cylindricity error evaluating is established. Optimized parameters of objective function decrease to four from six by assuming that c is equal to zero and h is equal to one. Initial values of optimized parameters are obtained from least square method and final values are acquired by the genetic algorithm. The ideal axis of cylinder is fitted in MATLAB. Compared to the error results of the least square method, the minimum circumscribed cylinder method, and the maximum inscribed cylinder method, the error result of the minimum zone method conforms to the theory of error evaluation. The results indicate that the method can meet the requirement of engine cylinder bore cylindricity error measuring and evaluating.
Plastic Limit Load Analysis of Cylindrical Pressure Vessels with Different Nozzle Inclination
Prakash, Anupam; Raval, Harit Kishorchandra; Gandhi, Anish; Pawar, Dipak Bapu
2016-04-01
Sudden change in geometry of pressure vessel due to nozzle cutout, leads to local stress concentration and deformation, decreasing its strength. Elastic plastic analysis of cylindrical pressure vessels with different inclination angles of nozzle is important to estimate plastic limit load. In the present study, cylindrical pressure vessels with combined inclination of nozzles (i.e. in longitudinal and radial plane) are considered for elastic plastic limit load analysis. Three dimensional static nonlinear finite element analyses of cylindrical pressure vessels with nozzle are performed for incremental pressure loading. The von Mises stress distribution on pressure vessel shows higher stress zones at shell-nozzle junction. Approximate plastic limit load is obtained by twice elastic slope method. Variation in limit pressure with different combined inclination angle of nozzle is analyzed and found to be distinct in nature. Reported results can be helpful in optimizing pressure vessel design.
Cylindrical and spherical positron-acoustic shock waves in nonthermal electron-positron-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Rahman, M.M.; Alam, M.S.; Mamun, A.A., E-mail: shohelplasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)
2015-06-15
The nonlinear propagation of cylindrical and spherical positron-acoustic shock waves (PASWs) in an unmagnetized four-component plasma (containing nonthermal distributed hot positrons and electrons, cold mobile viscous positron fluid, and immobile positive ions) is investigated theoretically. The modified Burgers equation is derived by employing the reductive perturbation method. Analytically, the effects of cylindrical and spherical geometries, nonthermality of electrons and hot positrons, relative number density and temperature ratios, and cold mobile positron kinematic viscosity on the basic features (viz. polarity, amplitude, width, phase speed, etc.) of PASWs are briefly addressed. It is examined that the PASWs in nonplanar (cylindrical and spherical) geometry significantly differ from those in planar geometry. The relevance of our results may be useful in understanding the basic characteristics of PASWs in astrophysical and laboratory plasmas. (author)
Analysis of bearings behaviour with cylindrical rollers with variable center of gravity
Directory of Open Access Journals (Sweden)
Barabas Sorin
2017-01-01
Full Text Available This paper consists in analysis of the contact stress and deformations appeared to the cylindrical rollers with variable center of gravity who equips large bearings, with finite elements method. Also it proposed an innovative model of lubrication system mounts in the hollow cylindrical rollers of the large bearings where it is stored the lubricant who is driven to the raceways through holes fitted with closing/opening systems made in the cover, controlled by a command system, monitoring and control, equipped with temperature sensors and wireless command. Elimination of lubricant, in stages, leads to changes in position of center of gravity of roller, thus to change its behavior in functioning. Comparison of deformations occurred in cylindrical rollers, solid, with hollowness, and with variable center of gravity, allow favorable conclusions, on the implementation of the proposed lubrication system.
Exploring the cylindrical photo-bending shape in polydomain nematic glass
Xuan, Chen; Huo, Yongzhong
2016-01-01
This paper explores different photo-bending shapes in polydomain nematic glass. The motivation is to explain the phenomenon in experiment [1] under polarized light in which a nematic film curls into an circular arc, like part of a cylindrical surface. Polarized light triggers photo-isomerization and therefore makes liquid crystals (LCs) contract along their directors. We apply the Sachs limit to homogenize the deformation of polydomain LC glass. Photo-strain can be either contraction or expansion through the material. Bending shapes can be anticlastic, bowl-shaped and cylindrical affected by Poisson ratio and illumination intensity. An explanation for the cylindrical bend and ways to observe other shapes are given in a parameter plane.
Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells
Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.
2017-03-01
Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Energy Technology Data Exchange (ETDEWEB)
Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.
1992-06-30
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.
A three-dimensional elasticity solution of functionally graded piezoelectric cylindrical panels
Sedighi, M. R.; Shakeri, M.
2009-05-01
This research presents an exact solution of finitely long, simply supported, orthotropic, functionally graded piezoelectric (FGP), cylindrical shell panels under pressure and electrostatic excitation. The FGP cylindrical panel is first divided into linearly inhomogeneous elements (LIEs). The general solution of governing partial differential equations of the LIEs is obtained by separation of variables. The highly coupled partial differential equations are reduced to ordinary differential equations with variable coefficients by means of appropriate trigonometric expansion of displacements and electric potential in circumferential and axial directions. The resulting governing ordinary differential equations are solved by the Galerkin finite element method. In this procedure the quadratic shape function is used in each element. The present method is applied to several benchmark problems. The coupled electromechanical effect on the structural behavior of functionally graded piezoelectric cylindrical shell panels is evaluated. The influence of the material property gradient index on the variables of electric and mechanical fields is studied. Finally some results are compared with published results.
Weak Formulation Study For Thermoelastic Buckling Analysis Of Thick Laminated Cylindrical Shells
Directory of Open Access Journals (Sweden)
Kewei Ding
2015-08-01
Full Text Available Weak formulations of mixed state equations of closed laminated cylindrical shells are presented in the Hamilton System. The Hamilton canonical equation of closed cylindrical shell is established. By means of applying the transfer matrix method and taking the advantage of Hamiltonian matrix in the calculation, a unified approach and three-dimensional thermoelastic solutions are obtained for the buckling analysis of closed thick laminated cylindrical shells. All equations of elasticity can be satisfied and all elastic constants can be taken into account. Numerical results are given to compare with those of FEM calculated using SAP5. The principle and method suggested here have clear physical concepts. The equations and boundary conditions proposed in this paper are weakened. The solutions and results given here may serve as a benchmark for other numerical procedures.
Determination of the Critical Value of Deflection for Embedded Cylindrical Structures
Institute of Scientific and Technical Information of China (English)
LIU Jian-qi; CHEN Bin; WANG Hai-yan
2005-01-01
An embedded cylinder is a large-diameter cylinder embedded in a soil foundation. The state of failure of such an embedded cylindrical structure shows large deflection instead of slide and overturn of the traditional gravity type of structure placed on a rubble base or foundation base. The critical value of deflection of the embedded cylindrical structure, which is the maximum allowable deflection for stability calculation of the cylinder, is a vital control value. Through investigation on deflection and soil pressures on an embedded cylinder by model experiments, the variations of the angle of rotation θ of a cylinder with effective anti-overturning ratio η and moment MH of thrust are discussed. On the basis of experimental study, the critical value of deflection of the cylindrical structure is proposed in the paper. Meanwhile, the formulas for calculating deflection of cylinders are derived.
Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells
Institute of Scientific and Technical Information of China (English)
Chu-lin YU; Zhi-ping CHEN; Ji WANG; Shun-juan YAN; Li-cai YANG
2012-01-01
The effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells is investigated through experimental and numerical buckling analysis using six welded steel cylindrical shell specimens.The relationship between the amplitude of weld reinforcement and the axial plastic buckling critical load is explored.The effect of the material yield strength and the number of circumferential welds on the axial plastic buckling is studied.Results show that circumferential weld reinforcement represents a severe imperfect form of axially compressed welded steel cylindrical shells and the axial plastic buckling critical load decreases with the increment of the mean amplitude of circumferential weld reinforcement.The material yield strength and the number of circumferential welds are found to have no significant effect on buckling waveforms; however,the axial plastic buckling critical load can be decreased to some extent with the increase of the number of circumferential welds.
Inspection of the interior surface of cylindrical vessels using optic fiber shearography
Liu, Bin; Wei, Quan; Tu, Jun; Arola, Dwayne D.; Zhang, Dongsheng
2017-09-01
In this study, a shearography system integrated with a coherent fiber-optic illumination and a fiber-optic imaging bundle is presented to inspect the quality of the interior surface of a cylindrical vessel for safety purposes. The specific optical arrangement is designed for the inspection of a certain area at a small working distance. The optical arrangement of the system was assembled and an aluminum honeycomb sample was evaluated to demonstrate the capability of the system. The important relationship between the image quality and the working distance, as well as the field of view, is discussed. The system has been applied for the inspection of the interior surface of a cylindrical vessel. The experimental results suggest that the shearography system integrated with optical and image fibers can effectively minimize the size of the inspection device and be capable of evaluating the interior surface of cylindrical structures.
Finite Element Modeling of a Fluid Filled Cylindrical Shell with Active Constrained Layer Damping
Institute of Scientific and Technical Information of China (English)
ZHANG Yi; ZHANG Zhi-yi; TONG Zong-peng; HUA Hong-xing
2005-01-01
On the basis of the piezoelectric theory, Mindlin plate theory, viscoelastic theory and ideal fluid equa tion, the finite element modeling of a fluid-filled cylindrical shell with active constrained layer damping (ACLD) was discussed. Energy methods and Lagrange's equation were used to obtain dynamic equations of the cylindrical shell with ACLD treatments, which was modeled as well with the finite element method. The GHM (Golla-Hughes-McTavish) method was applied to model the frequency dependent damping of viscoelastic material. Ideal and incompressible fluid was considered to establish the dynamic equations of the fluid-filled cylindrical shell with ACLD treatments, Numerical results obtained from the finite element analysis were compared with those from an experiment. The comparison shows that the proposed modeling method is accurate and reliable.
Visualization of the Mode Shapes of Pressure Oscillation in a Cylindrical Cavity
Energy Technology Data Exchange (ETDEWEB)
He, Xin [Tsinghua Univ., Beijing (China); Qi, Yunliang [Tsinghua Univ., Beijing (China); Wang, Zhi [Tsinghua Univ., Beijing (China); Wang, Jianxin [Tsinghua Univ., Beijing (China); Shuai, Shijin [Tsinghua Univ., Beijing (China); Tao, Ling [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2015-06-08
Our work describes a novel experimental method to visualize the mode shapes of pressure oscillation in a cylindrical cavity. Acoustic resonance in a cavity is a grand old problem that has been under investigation (using both analytical and numerical methods) for more than a century. In this article, a novel method based on high speed imaging of combustion chemiluminescence was presented to visualize the mode shapes of pressure oscillation in a cylindrical cavity. By generating high-temperature combustion gases and strong pressure waves simultaneously in a cylindrical cavity, the pressure oscillation can be inferred due to the chemiluminescence emissions of the combustion products. We can then visualized the mode shapes by reconstructing the images based on the amplitudes of the luminosity spectrum at the corresponding resonant frequencies. Up to 11 resonant mode shapes were clearly visualized, each matching very well with the analytical solutions.
Design, Development and Testing of a Semi Cylindrical Capacitive Sensor for Liquid Level Measurement
Directory of Open Access Journals (Sweden)
Sagarika PAL
2010-05-01
Full Text Available In the present paper a low cost noncontact semi cylindrical capacitive type liquid level sensor has been designed, developed and tested. The semi cylindrical capacitive sensor consisting of two thin semi cylindrical metal plates separated by a gap distance and mounted around a non conducting storage tank, has been used to measure the liquid level in the tank. The measured capacitance variation with variation of liquid level is linear and obtained in the nano farad range which again has been converted into voltage variation by using proper signal conditioning circuit. Since the sensor is noncontact type it can be used for both conducting and non conducting type of liquid contained within a non conducting tank. For converting the capacitance variation in to voltage variation a series R-L-C resonating circuit has been used instead of conventional bridge circuit. Experimental results confirm the satisfactory performance of the sensor for liquid level measurement.
Characteristics and mechanisms of strain waves generated in rock by cylindrical explosive charges
Institute of Scientific and Technical Information of China (English)
刘科伟; 李萧翰; 李夕兵; 姚志华; 舒宗宪; 袁明华
2016-01-01
A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small spherical explosive charge generated in rock, is used to further study the triggering time of strain gauges installed in radial direction at same distances but different positions surrounding a cylindrical explosive charge in rock. The duration of the first compression phase and peak value of strain wave, and furthermore, their differences are analyzed and some explanations are given. Besides that, the gauge orientation in which the maximum peak value occurs is also discussed. At last, the effect of velocity of detonation (V.O.D.) of a cylindrical explosive charge on the strain waves generated in the surrounding rock is taken as key research and the pattern of peak amplitude of a strain wave varies with the V.O.D. is likely to have been found.
El Ouahdani, M.; Sidki, M.; Ramdani, A.
2005-12-01
This paper presents a study of the ultrasonic wave propagation in a cylindrical layer-substrate structure of an infinite length. We determine the dispersion curves of the structure, the displacements field in the structure and the impact of the contact quality between the layer and the substrate. The industrial application aimed by our study is the control of the massive machine elements with cylindrical cavities coated and exposed to corrosion. The obtained results show that some modes of propagation are insensitive to the layer thickness. Therefore, these modes can be generated during the ultrasonic control of the layer. In addition, for the dimensions considered here, the second mode of propagation is the most adapted for the detection of defects in the vicinity of the internal layer wall. In addition, our study shows the possibility of characterization of the quality of contact between the layer and the substrate from the analysis of dispersion curves of the structure.
On the Stability of Cylindrical Tangential Discontinuity, Generation and Damping of Helical Waves
Ershkovich, A I
2015-01-01
Stability of cylindrical interface between two ideal incompressible fluids, including the magnetic field, surface tension and gravitational field is studied in linear approximation. We found that helical waves arising both in plasma comet tails and on the vertical cylindrical water jet in the air are described by the same dispersion equation where the comet tail magnetic field plays the same stabilizing role as surface tension for water jet. Hence they represent the same phenomenon of Kelvin-Helmholtz instability. Thus helical waves in comet tails and astrophysical jets may be simulated in the laboratory. The resonance nature of the Kelvin- instability damping is demonstrated.
Ansari, R.; Rouhi, S.; Aryayi, M.
2016-01-01
The vibrational behavior of double-walled carbon nanotubes is studied by the use of the molecular structural and cylindrical shell models. The spring elements are employed to model the van der Waals interaction. The effects of different parameters such as geometry, chirality, atomic structure and end constraint on the vibration of nanotubes are investigated. Besides, the results of two aforementioned approaches are compared. It is indicated that by increasing the nanotube side length and radius, the computationally efficient cylindrical shell model gives rational results.
Depletion Interactions in a Cylindric Pipeline with a Small Shape Change
Institute of Scientific and Technical Information of China (English)
LI Chun-Shu; GAO Hai-Xia; XIAO Chang-Ming
2007-01-01
Stressed by external forces, it is possible for a cylindric pipeline to change into an elliptic pipeline. To expose the effect of small shape change of the pipeline on the depletion interactions, both the depletion potentials and depletion forces in the hard sphere systems confined by a cylindric pipeline or by an elliptic pipeline are studied by Monte Carlo simulations. The numerical results show that the depletion interactions are strongly affected by the small change of the shape of the pipeline in a way. Furthermore, it is also found that the depletion interactions will be strengthened if the short axis of the elliptic pipeline is decreased.
Keivani, Maryam; Koochi, Ali; Sedighi, Hamid M.; Abadyan, Mohamadreza; Farrokhabadi, Amin; Shahedin, Abed Moheb
2016-12-01
Herein, the impact of surface layer on the stability of nanoscale tweezers and cantilevers fabricated from nanowires with cylindrical cross section is studied. A modified continuum based on the Gurtin-Murdoch surface elasticity is applied for incorporating the presence of surface layer. Considering the cylindrical geometry of the nanowire, the presence of the Coulomb attraction and dispersion forces are incorporated in the derived formulations. Three different approaches, i.e. numerical differential quadrature method (DQM), an approximated homotopy perturbation method (HPM) and developing lumped parameter model (LPM) have been employed to solve the governing equations. The impact of surface layer on the instability of the system is demonstrated.
Institute of Scientific and Technical Information of China (English)
WANG; Zhengwu; GUO; Baomin; ZHANG; Gexin
2006-01-01
The iterative method in functional analysis is applied to looking for a solution of the Poisson-Boltzmann equation in order to describe the problems of the distribution of the potentials in the electric double layer (EDL) inside the water pool for a cylindrical inverse micelle. Potentials as a function of the position of a particular point in EDL are computed, which display a quantitative is also shown that in the higher-potential range the iterative calculations can give more accurate results. These results indicate the utility of this functional analysis technique in the description of the properties of EDL for a cylindrical inverse micelle.
Directory of Open Access Journals (Sweden)
Mercan Kadir
2016-01-01
Full Text Available In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM is investigated. The method of discrete singular convolution (DSC is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love’s first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.
Walowit, Jed A.
1994-01-01
A viewgraph presentation is made showing the capabilities of the computer code SPIRALI. Overall capabilities of SPIRALI include: computes rotor dynamic coefficients, flow, and power loss for cylindrical and face seals; treats turbulent, laminar, Couette, and Poiseuille dominated flows; fluid inertia effects are included; rotor dynamic coefficients in three (face) or four (cylindrical) degrees of freedom; includes effects of spiral grooves; user definable transverse film geometry including circular steps and grooves; independent user definable friction factor models for rotor and stator; and user definable loss coefficients for sudden expansions and contractions.