Thermal modeling of cylindrical lithium ion battery during discharge cycle
International Nuclear Information System (INIS)
Jeon, Dong Hyup; Baek, Seung Man
2011-01-01
Highlights: → Transient and thermo-electric finite element analysis (FEA) of cylindrical lithium ion (Li-ion) battery was presented. → This model provides the thermal behavior of Li-ion battery during discharge cycle. → A LiCoO 2 /C battery at various discharge rates was investigated. → The contribution of heat source due to joule heating was significant at a high discharge rate. → The contribution of heat source due to entropy change was dominant at a low discharge rate. - Abstract: Transient and thermo-electric finite element analysis (FEA) of cylindrical lithium ion (Li-ion) battery was presented. The simplified model by adopting a cylindrical coordinate was employed. This model provides the thermal behavior of Li-ion battery during discharge cycle. The mathematical model solves conservation of energy considering heat generations due to both joule heating and entropy change. A LiCoO 2 /C battery at various discharge rates was investigated. The temperature profile from simulation had similar tendency with experiment. The temperature profile was decomposed with contributions of each heat sources and was presented at several discharge rates. It was found that the contribution of heat source due to joule heating was significant at a high discharge rate, whereas that due to entropy change was dominant at a low discharge rate. Also the effect of cooling condition and the LiNiCoMnO 2 /C battery were analyzed for the purpose of temperature reduction.
Development of the Cylindrical Wire Electrical Discharge Machining Process.
Energy Technology Data Exchange (ETDEWEB)
McSpadden, SB
2002-01-22
Results of applying the wire Electrical Discharge Machining (EDM) process to generate precise cylindrical forms on hard, difficult-to-machine materials are presented. A precise, flexible, and corrosion-resistant underwater rotary spindle was designed and added to a conventional two-axis wire EDM machine to enable the generation of free-form cylindrical geometries. A detailed spindle error analysis identifies the major source of error at different frequency. The mathematical model for the material removal of cylindrical wire EDM process is derived. Experiments were conducted to explore the maximum material removal rate for cylindrical and 2D wire EDM of carbide and brass work-materials. Compared to the 2D wire EDM, higher maximum material removal rates may be achieved in the cylindrical wire EDM. This study also investigates the surface integrity and roundness of parts created by the cylindrical wire EDM process. For carbide parts, an arithmetic average surface roughness and roundness as low as 0.68 and 1.7 {micro}m, respectively, can be achieved. Surfaces of the cylindrical EDM parts were examined using Scanning Electron Microscopy (SEM) to identify the craters, sub-surface recast layers and heat-affected zones under various process parameters. This study has demonstrated that the cylindrical wire EDM process parameters can be adjusted to achieve either high material removal rate or good surface integrity.
Slow electron distribution function in a cylindrical hollow-cathode discharge
International Nuclear Information System (INIS)
Arslanbekov, R.R.; Kudryavtsev, A.A.; Movchan, I.A.
1992-01-01
The formation of the electron distribution function in a cylindrical hollow cathode at energies up to the threshold for inelastic processes is examined. It is shown that the distribution function is a Maxwellian distribution in the thermal region plus a step determined by the sources of fast electrons. The distribution develops nonlocally, and the distinctive feature of this regime is the absence of a radial dependence when scaled to the total energy. The derived formulas can be used to calculate the electron distribution function simply from a given current and geometrical dimensions of the discharge. 14 refs., 3 figs
Conduction heat transfer in a cylindrical dielectric barrier discharge reactor
Energy Technology Data Exchange (ETDEWEB)
Sadat, H. [Laboratoire d' Etudes Thermiques, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France)], E-mail: hamou.sadat@univ-poitiers.fr; Dubus, N. [Laboratoire d' Etudes Thermiques, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France); Pinard, L.; Tatibouet, J.M.; Barrault, J. [Laboratoire en catalyse et chimie organique, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France)
2009-04-15
The thermal behaviour of a dielectric barrier discharge reactor is studied. The experimental tests are performed on a laboratory reactor with two working fluids: helium and air. A simple heat conduction model for calculating the heat loss is developed. By using temperature measurements in the internal and external electrodes, a thermal resistance of the reactor is defined. Finally, the percentage of the input power that is dissipated to the environment is given.
Construction of the Cylindrical Ozone Generator by Silent Discharge Method
International Nuclear Information System (INIS)
Agus Purwadi; Widdi Usada; Suryadi; Isyuniarto; Sri Sukmajaya
2002-01-01
It has been constructed the ozone generator by silent discharge method. Anode and cathode of discharge tube were made of stainless steel (SS) in the cylinder form with diameters of 22 mm and 25 mm, the length of 100 mm and 110 mm, the equal thickness of 1 mm respectively. The dielectric was made of cylinder glass with diameter of 23 cm, the length of 105 cm and the thickness of 1 mm. The testing of apparatus was carried out by using discharge voltage of 12.5 kV and frequency of 1.5 kHz. Identification of the ozone gas formation was marked by the existing of special ozone smell and the separated of iodine molecule (yellow colour) from the potassium iodide solution which contaminated gas out put from the ozonizer. By using absorbing method can be shown that the ozone production rate was 0.196 mg/s by using oxygen gas input and 0.065 mg/s by using ordinary air input. (author)
A global model of cylindrical and coaxial surface-wave discharges
Kemaneci, Efe; Mitschker, Felix; Rudolph, Marcel; Szeremley, Daniel; Eremin, Denis; Awakowicz, Peter; Brinkmann, Ralf Peter
2017-06-01
A volume-averaged global model is developed to investigate surface-wave discharges inside either cylindrical or coaxial structures. The neutral and ion wall flux is self-consistently estimated based on a simplified analytical description both for electropositive and electronegative plasmas. The simulation results are compared with experimental data from various discharge setups of either argon or oxygen, measured or obtained from the literature over a wide range of pressure and power, for a continuous and a pulse-modulated power input. A good agreement is observed between the simulations and the measurements. The contribution of the wall flux on the net loss rates is quantified for a variety of species in different discharge setups. A coaxial plasmaline is further investigated to reveal the detailed behaviour of plasma properties with respect to input power and pressure.
Discharge Oscillations in a Permanent Magnet Cylindrical Hall-Effect Thruster
Polzin, K. A.; Sooby, E. S.; Raitses, Y.; Merino, E.; Fisch, N. J.
2009-01-01
Measurements of the discharge current in a cylindrical Hall thruster are presented to quantify plasma oscillations and instabilities without introducing an intrusive probe into the plasma. The time-varying component of the discharge current is measured using a current monitor that possesses a wide frequency bandwidth and the signal is Fourier transformed to yield the frequency spectra present, allowing for the identification of plasma oscillations. The data show that the discharge current oscillations become generally greater in amplitude and complexity as the voltage is increased, and are reduced in severity with increasing flow rate. The breathing mode ionization instability is identified, with frequency as a function of discharge voltage not increasing with discharge voltage as has been observed in some traditional Hall thruster geometries, but instead following a scaling similar to a large-amplitude, nonlinear oscillation mode recently predicted in for annular Hall thrusters. A transition from lower amplitude oscillations to large relative fluctuations in the oscillating discharge current is observed at low flow rates and is suppressed as the mass flow rate is increased. A second set of peaks in the frequency spectra are observed at the highest propellant flow rate tested. Possible mechanisms that might give rise to these peaks include ionization instabilities and interactions between various oscillatory modes.
EPA Region 1 No Discharge Zones
This dataset details No Discharge Zones (NDZ) for New England. Boaters may not discharge waste into these areas. Boundaries were determined mostly by Federal Register Environmental Documents in coordination with Massachusetts Coastal Zone Management (MA CZM) and EPA Region 1 Office of Ecosystem Protection (OEP) staff.
Analysis of a cylindrical shell vibrating in a cylindrical fluid region
International Nuclear Information System (INIS)
Chung, H.; Turula, P.; Mulcahy, T.M.; Jendrzejczyk, J.A.
1976-08-01
Analytical and experimental methods are presented for evaluating the vibration characteristics of cylindrical shells such as the thermal liner of the Fast Flux Test Facility (FFTF) reactor vessel. The NASTRAN computer program is used to calculate the natural frequencies, mode shapes, and response to a harmonic loading of a thin, circular cylindrical shell situated inside a fluid-filled rigid circular cylinder. Solutions in a vacuum are verified with an exact solution method and the SAP IV computer code. Comparisons between analysis and experiment are made, and the accuracy and utility of the fluid-solid interaction package of NASTRAN is assessed
Analysis of a cylindrical shell vibrating in a cylindrical fluid region
International Nuclear Information System (INIS)
Chung, H.; Turula, P.; Mulcahy, T.M.; Jendrezejczyk, J.A.
1981-01-01
Analytical and experimental methods are presented for evaluating the vibration characteristics of cylindrical shells such as the thermal liner of the Fast Flux Test Facility (FFTF) reactor vessel. The NASTRAN computer program is used to calculate the natural frequencies, mode shapes, and response to a harmonic loading of a thin, circular cylindrical shell situated inside a fluid-filled rigid circular cylinder. Solutions in a vacuum are verified with an exact solution method and the SAP IV computer code. Comparisons between analysis and experiment are made, and the accuracy and utility of the fluid-solid interaction package of NASTRAN is assessed. (orig.)
The Regional Discharge Model development project
Mäenpää, Tiina; Koivunen, Marita; Lukka, Heli; Wanne, Olli
2010-01-01
Purpose/Theory The goal of the Regional Discharge Model (RDM) project was to develop discharge models, avoid unnecessary hospitalization, and improves the transfer of the patient to the right follow-on treatment or care, utilizing the public and private sector, research and training as well as developing technologies like the Regional Health Information Systems (RHIS) in the Satakunta Hospital District area. The RDM project is part of the ‘Whole life at home’ initiative funded and administere...
Time history of diesel particle deposition in cylindrical dielectric barrier discharge reactors
Energy Technology Data Exchange (ETDEWEB)
Talebizadeh, P.; Rahimzadeh, H., E-mail: rahimzad@aut.ac.ir [Amirkabir University of Technology, Department of Mechanical Engineering (Iran, Islamic Republic of); Ahmadi, G. [Clarkson University, Department of Mechanical and Aeronautical Engineering (United States); Brown, R. [Queensland University of Technology, Biofuel Engine Research Facility (Australia); Inthavong, K. [RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering (Australia)
2016-12-15
Non-thermal plasma (NTP) treatment reactors have recently been developed for elimination of diesel particulate matter for reducing both the mass and number concentration of particles. The role of the plasma itself is obscured by the phenomenon of particle deposition on the reactor surface. Therefore, in this study, the Lagrangian particle transport model is used to simulate the dispersion and deposition of nano-particles in the range of 5 to 500 nm in a NTP reactor in the absence of an electric field. A conventional cylindrical dielectric barrier discharge reactor is selected for the analysis. Brownian diffusion, gravity and Saffman lift forces were included in the simulations, and the deposition efficiencies of different sized diesel particles were studied. The results show that for the studied particle diameters, the effect of Saffman lift is negligible and gravity only affects the motion of particles with a diameter of 500 nm or larger. Time histories of particle transport and deposition were evaluated for one-time injection and a continuous (multiple-time) injection. The results show that the number of deposited particles for one-time injection is identical to the number of deposited particles for multiple-time injections when adjusted with the shift in time. Furthermore, the maximum number of escaped particles occurs at 0.045 s after the injection for all particle diameters. The presented results show that some particle reduction previously ascribed to plasma treatment has ignored contributions from the surface deposition.
Time history of diesel particle deposition in cylindrical dielectric barrier discharge reactors
International Nuclear Information System (INIS)
Talebizadeh, P.; Rahimzadeh, H.; Ahmadi, G.; Brown, R.; Inthavong, K.
2016-01-01
Non-thermal plasma (NTP) treatment reactors have recently been developed for elimination of diesel particulate matter for reducing both the mass and number concentration of particles. The role of the plasma itself is obscured by the phenomenon of particle deposition on the reactor surface. Therefore, in this study, the Lagrangian particle transport model is used to simulate the dispersion and deposition of nano-particles in the range of 5 to 500 nm in a NTP reactor in the absence of an electric field. A conventional cylindrical dielectric barrier discharge reactor is selected for the analysis. Brownian diffusion, gravity and Saffman lift forces were included in the simulations, and the deposition efficiencies of different sized diesel particles were studied. The results show that for the studied particle diameters, the effect of Saffman lift is negligible and gravity only affects the motion of particles with a diameter of 500 nm or larger. Time histories of particle transport and deposition were evaluated for one-time injection and a continuous (multiple-time) injection. The results show that the number of deposited particles for one-time injection is identical to the number of deposited particles for multiple-time injections when adjusted with the shift in time. Furthermore, the maximum number of escaped particles occurs at 0.045 s after the injection for all particle diameters. The presented results show that some particle reduction previously ascribed to plasma treatment has ignored contributions from the surface deposition.
Kosenkov, V. M.; Bychkov, V. M.; Zhekul, V. G.; Poklonov, S. G.
2012-05-01
The influence of the length of a high-voltage discharge channel in water on the plastic deformation of a concentric cylindrical shell has been experimentally studied. Electric discharges induced by micro-conductors in water with channel lengths up to 420 mm have been realized for the first time, and their electrical characteristics have been measured. The effect of the discharge channel length on the efficiency of plastic deformation of a cylindrical shell has been determined.
Current-driven internal kink modes in cylindrical and helicoidal discharges
International Nuclear Information System (INIS)
Edery, D.; Laval, G.; Pellat, R.; Soule, J.L.
1976-01-01
The stability of the internal m=1 kink mode is shown to be very sensitive to small distortions of a circular cylindrical equilibrium. Cylindrical and helicoidal m=2 distortions are destabilizing. Triangular m=3 and quadrangular m=4 distortions provide a means of stabilizing the internal kink moode
Surzhikov, S. T.
2017-08-01
The drift-diffusion model of a Penning discharge in molecular hydrogen under pressures of about 1 Torr with regard to the external electric circuit has been proposed. A two-dimensional axially symmetric discharge geometry with a cylindrical anode and flat cathodes perpendicular to the symmetry axis has been investigated. An external magnetic field of about 0.1 T is applied in the axial direction. Using the developed drift-diffusion model, the electrodynamic structure of a Penning discharge in the pressure range of 0.5-5 Torr at a current source voltage of 200-500 V is numerically simulated. The evolution of the discharge electrodynamic structure upon pressure variations in zero magnetic field (the classical glow discharge mode) and in the axial magnetic field (Penning discharge) has been studied using numerical experiments. The theoretical predictions of the existence of an averaged electron and ion motion in a Penning discharge both in the axial and radial directions and in the azimuthal direction have been confirmed by the calculations.
Current distribution over the electrode surface in a cylindrical VRLA cell during discharge
Czech Academy of Sciences Publication Activity Database
Křivák, P.; Bača, P.; Calábek, M.; Micka, Karel; Král, P.
2006-01-01
Roč. 154, č. 2 (2006), s. 518-522 ISSN 0378-7753 Grant - others:Advanced Lead-Acid Battery Consortium(ES) N4.2 Institutional research plan: CEZ:AV0Z40400503 Keywords : grid design * current distribution * cylindrical lead-acid cell Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.521, year: 2006
EPA Region 1 No Discharge Zones
U.S. Environmental Protection Agency — This dataset details No Discharge Zones (NDZ) for New England. Boaters may not discharge waste into these areas. Boundaries were determined mostly by Federal...
Corona-like multistreamer discharge in water for cylindrical shock wave generation
Czech Academy of Sciences Publication Activity Database
Prukner, Václav; Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav; Frolov, Oleksandr; Martínková, M.
2006-01-01
Roč. 56, suppl.B (2006), s. 342-348 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/22nd./. Praha, 26.6.2006-29.6.2006] R&D Projects: GA ČR GA202/06/1324; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : Shock wave in water * Corona-like multi-streamer discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006
International Nuclear Information System (INIS)
Goedheer, W.J.
1978-09-01
A numerical study of the pressure and temperature profiles of an infinitely long quasi-cylindrical discharge in hydrogen gas is presented. In particular the influence of the diffusion of atoms in the ground state and the reabsorption of Lyman-α and Lyman-β radiation on both the particle balance and the energy balance of the discharge is studied. Because the transport of the charged particles is corrected for toroidal effects in the regime of high collisionality which is present in the discharge, the model is quasi-cylindrical. The results obtained show an increase of the neutral density on the axis and of the ion and electron density near the wall of the discharge, as compared with earlier calculations in which both diffusion and reabsorption of radiation were neglected. The results are in agreement with measurements in the 'Ringboog' experiment. (Auth.)
Kozhevnikov, V. Yu.; Kozyrev, A. V.; Semeniuk, N. S.
2017-12-01
Results of theoretical modeling of the phenomenon of a high-voltage discharge in nitrogen at atmospheric pressure are presented, based on a consistent kinetic theory of the electrons. A mathematical model of a nonstationary high-pressure discharge has been constructed for the first time, based on a description of the electron component from first principles. The physical kinetics of the electrons are described with the help of the Boltzmann kinematic equation for the electron distribution function over momenta with only ionization and elastic collisions taken into account. A detailed spatiotemporal picture of a nonstationary discharge with runaway electrons under conditions of coaxial geometry of the gas diode is presented. The model describes in a self-consistent way both the process of formation of the runaway electron flux in the discharge and the influence of this flux on the rate of ionization processes in the gas. Total energy spectra of the electron flux incident on the anode are calculated. The obtained parameters of the current pulse of the beam of fast electrons correlate well with the known experimental data.
Energy Technology Data Exchange (ETDEWEB)
Moon, H., E-mail: haksu.moon@gmail.com [ElectroScience Laboratory, The Ohio State University, Columbus, OH 43212 (United States); Donderici, B., E-mail: burkay.donderici@halliburton.com [Sensor Physics & Technology, Halliburton Energy Services, Houston, TX 77032 (United States); Teixeira, F.L., E-mail: teixeira@ece.osu.edu [ElectroScience Laboratory, The Ohio State University, Columbus, OH 43212 (United States)
2016-11-15
We present a robust algorithm for the computation of electromagnetic fields radiated by point sources (Hertzian dipoles) in cylindrically stratified media where each layer may exhibit material properties (permittivity, permeability, and conductivity) with uniaxial anisotropy. Analytical expressions are obtained based on the spectral representation of the tensor Green's function based on cylindrical Bessel and Hankel eigenfunctions, and extended for layered uniaxial media. Due to the poor scaling of these eigenfunctions for extreme arguments and/or orders, direct numerical evaluation of such expressions can produce numerical instability, i.e., underflow, overflow, and/or round-off errors under finite precision arithmetic. To circumvent these problems, we develop a numerically stable formulation through suitable rescaling of various expressions involved in the computational chain, to yield a robust algorithm for all parameter ranges. Numerical results are presented to illustrate the robustness of the formulation including cases of practical interest.
Moon, H.; Donderici, B.; Teixeira, F. L.
2016-11-01
We present a robust algorithm for the computation of electromagnetic fields radiated by point sources (Hertzian dipoles) in cylindrically stratified media where each layer may exhibit material properties (permittivity, permeability, and conductivity) with uniaxial anisotropy. Analytical expressions are obtained based on the spectral representation of the tensor Green's function based on cylindrical Bessel and Hankel eigenfunctions, and extended for layered uniaxial media. Due to the poor scaling of these eigenfunctions for extreme arguments and/or orders, direct numerical evaluation of such expressions can produce numerical instability, i.e., underflow, overflow, and/or round-off errors under finite precision arithmetic. To circumvent these problems, we develop a numerically stable formulation through suitable rescaling of various expressions involved in the computational chain, to yield a robust algorithm for all parameter ranges. Numerical results are presented to illustrate the robustness of the formulation including cases of practical interest.
No Discharge Zone Polygons, California, 2006, US EPA Region 9
U.S. Environmental Protection Agency — No Discharge Zones" (NDZs) are designated bodies of water where the discharge of treated and untreated sewage from vessels is prohibited. Federal Law prohibits the...
Studies of the cathode region of the dc glow discharge
International Nuclear Information System (INIS)
Den Hartog, E.A.
1989-01-01
Laser-based spectroscopic diagnostics are employed to gain an increased understanding of the cathode region of a dc helium glow discharge. A pair of diagnostics are used to determine the density (n e ) and temperature (T e ) of low energy electrons confined in the negative glow. The first diagnostic is based on the observed suppression of 2 1 S metastables in the negative glow due to electron collisions. The reaction primarily responsible for the suppression is the metastable spin conversion reaction which converts 2 1 S metastables to 2 3 S metastables. 2 1 S and 2 3 S metastable densities and 2 1 P resonant atom densities are mapped as a function of position, and the maps are analyzed to determine a relation between n e and T e . A second relation between n e and T e is determined by measuring the electron impact transfer rate between Rydberg levels. The intersection of the two relations yields n e and T e for the low energy electrons in the negative glow. Empirical determinations of the current balance at the cathode surface and metastable production are compared to results of Monte Carlo simulations. The current balance comparison leads to the prediction of a field reversal at the cathode fall-negative glow boundary. As a consequence of this field reversal a simple model of the negative glow is suggested, in which the plasma in the negative glow diffuses toward the anode in an ambipolar-like process. Ion production in the negative glow is determined from Monte Carlo simulations. An equation is written balancing production and diffusion losses. This equation is written balancing production and diffusion losses. This equation leads to a third relation between n e and T e which is compared to the earlier results
Directory of Open Access Journals (Sweden)
Takashi Sumiyama
2017-05-01
Full Text Available Spatial structure of high-density radio frequency ring-shaped magnetized discharge plasma sputtering with two facing ZnO/Al2O3 cylindrical targets mounted in ring-shaped hollow cathode has been measured and Al-doped ZnO (AZO thin film is deposited without substrate heating. The plasma density has a peak at ring-shaped hollow trench near the cathode. The radial profile becomes uniform with increasing the distance from the target cathode. A low ion current flowing to the substrate of 0.19 mA/cm2 is attained. Large area AZO films with a resistivity of 4.1 – 6.7×10-4 Ω cm can be prepared at a substrate room temperature. The transmittance is 84.5 % in a visible region. The surface roughnesses of AZO films are 0.86, 0.68, 0.64, 1.7 nm at radial positions of r = 0, 15, 30, 40 mm, respectively, while diffraction peak of AZO films is 34.26°. The grains exhibit a preferential orientation along (002 axis.
LBA Regional River Discharge Data (Coe and Olejniczak)
National Aeronautics and Space Administration — This data set is a subset of a global river discharge data set by Coe and Olejniczak (1999). The subset was created for the study area of the Large Scale...
LBA Regional River Discharge Data (Coe and Olejniczak)
National Aeronautics and Space Administration — ABSTRACT: This data set is a subset of a global river discharge data set by Coe and Olejniczak (1999). The subset was created for the study area of the Large Scale...
Optimization of the Closure-Weld Region of cylindrical Containers for Long-Term Corrosion Resistance
International Nuclear Information System (INIS)
Zekai Ceylan; Mohamed B. Trabia
2001-01-01
Welded cylindrical containers are susceptible to stress corrosion cracking (SCC) in the closure-weld area. An induction coil heating technique may be used to relieve the residual stresses in the closure-weld. This technique involves localized heating of the material by the surrounding coils. The material is then cooled to room temperature by quenching. A two-dimensional axisymmetric finite element model is developed to study the effects of induction coil heating and subsequent quenching. The finite element results are validated through an experimental test. The parameters of the design are tuned to maximize the compressive stress from the outer surface to a depth that is equal to the long-term general corrosion rate of Alloy 22 (Appendix A) multiplied by the desired container lifetime. The problem is subject to geometrical and stress constraints. Two different solution methods are implemented for this purpose. First, off-the-shelf optimization software is used to obtain an optimum solution. These results are not satisfactory because of the highly nonlinear nature of the problem. The paper proposes a novel alternative: the Successive Heuristic Quadratic Approximation (SHQA) technique. This algorithm combines successive quadratic approximation with an adaptive random search. Examples and discussion are included
International Nuclear Information System (INIS)
Lee, Jae Jun; Lee, Gil Soo; Cho, Nam Zin
2006-01-01
Recently, we extended the analytic function expansion nodal (AFEN) method developed quite extensively in Cartesian (x,y,z) geometry and in hexagonal-z geometry to the treatment of the full three dimensional cylindrical (γ,θ,z) geometry for pebble bed reactors(PBRs). The AFEN methodology in this geometry as in hexagonal geometry is 'robust', due to the unique feature of the AFEN method that it does not use the transverse integration. The transverse integration in the usual nodal methods, however, leads to an impasse, that is, failure of the azimuthal term to be transverse-integrated over r-z surface. The recent work reported in Ref. 3 is an attempt in this class of transverse integration nodal methods but it involves several unjustified assumptions and approximations in the formulation. The typical pebble bed reactors have void regions in the top and side regions of the core. Ref. 4 provides finite diffusion coefficients for void regions (with zero other cross reactions) so that the void regions could be modeled by diffusion theory. This paper presents an optional treatment of the void regions in the core based on AFEN methodology
effect of land use on water discharge in humid regions
African Journals Online (AJOL)
LUCY
climatic characteristics, the area is considered as ... Table 1: Mean Monthly Climatic Regime between 1977 and 2008 in Calabar river basin ... geomorphology, third-order basins are considered to be mature for morphometric studies. This also provided a common base for discharge measurement and statistical analysis.
Modelling total sewage water discharge to a regional treatment plant.
Witter, J.V.; Stricker, H.
1986-01-01
In the Netherlands, sewage water is often treated on a regional basis. In case of combined systems that are spread within a large region of several hundreds of square kilometers, reduction of the hydraulic capacity of the regional treatment plant seems possible, because of space-time variations in
Leung, Ka-Ngo [Hercules, CA
2008-04-22
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for facilities which generally represent the site of the discharge. NPDES (National...
U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for facilities which generally represent the site of the discharge. NPDES (National...
A Modified Water-Table Fluctuation Method to Characterize Regional Groundwater Discharge
Directory of Open Access Journals (Sweden)
Lihong Yang
2018-04-01
Full Text Available A modified Water-Table Fluctuation (WTF method is developed to quantitatively characterize the regional groundwater discharge patterns in stressed aquifers caused by intensive agricultural pumping. Two new parameters are defined to express the secondary information in the observed data. One is infiltration efficiency and the other is discharge modulus (recurring head loss due to aquifer discharge. An optimization procedure is involved to estimate these parameters, based on continuous groundwater head measurements and precipitation records. Using the defined parameters and precipitation time series, water level changes are calculated for individual wells with fidelity. The estimated parameters are then used to further address the characterization of infiltration and to better quantify the discharge at the regional scale. The advantage of this method is that it considers recharge and discharge simultaneously, whereas the general WTF methods mostly focus on recharge. In the case study, the infiltration efficiency reveals that the infiltration is regionally controlled by the intrinsic characteristics of the aquifer, and locally distorted by engineered hydraulic structures that alter surface water-groundwater interactions. The seasonality of groundwater discharge is characterized by the monthly discharge modulus. These results from individual wells are clustered into groups that are consistent with the local land use pattern and cropping structures.
U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates...
U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates...
U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES facilities, outfalls/dischargers, waste water treatment plant facilities and waste water treatment plants...
Xiang, HU; Ping, DUAN; Jilei, SONG; Wenqing, LI; Long, CHEN; Xingyu, BIAN
2018-02-01
There exists strong interaction between the plasma and channel wall in the Hall thruster, which greatly affects the discharge performance of the thruster. In this paper, a two-dimensional physical model is established based on the actual size of an Aton P70 Hall thruster discharge channel. The particle-in-cell simulation method is applied to study the influences of segmented low emissive graphite electrode biased with anode voltage on the discharge characteristics of the Hall thruster channel. The influences of segmented electrode placed at the ionization region on electric potential, ion number density, electron temperature, ionization rate, discharge current and specific impulse are discussed. The results show that, when segmented electrode is placed at the ionization region, the axial length of the acceleration region is shortened, the equipotential lines tend to be vertical with wall at the acceleration region, thus radial velocity of ions is reduced along with the wall corrosion. The axial position of the maximal electron temperature moves towards the exit with the expansion of ionization region. Furthermore, the electron-wall collision frequency and ionization rate also increase, the discharge current decreases and the specific impulse of the Hall thruster is slightly enhanced.
Khan, Gufran Sayeed; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian
2010-01-01
The presentation includes grazing incidence X-ray optics, motivation and challenges, mid spatial frequency generation in cylindrical polishing, design considerations for polishing lap, simulation studies and experimental results, future scope, and summary. Topics include current status of replication optics technology, cylindrical polishing process using large size polishing lap, non-conformance of polishin lap to the optics, development of software and polishing machine, deterministic prediction of polishing, polishing experiment under optimum conditions, and polishing experiment based on known error profile. Future plans include determination of non-uniformity in the polishing lap compliance, development of a polishing sequence based on a known error profile of the specimen, software for generating a mandrel polishing sequence, design an development of a flexible polishing lap, and computer controlled localized polishing process.
Hypogenic karst development in a regional discharge area: Buda Thermal Karst, Hungary
Erőss, A.; Mádl-Szőnyi, J.; Csoma, A. É.
2012-04-01
Europe's largest naturally flowing thermal water system can be found in Budapest. The springs and wells that supply the famous baths of Budapest discharge from a regional Triassic carbonate rock aquifer system. As the result of the interaction of discharging waters and carbonate rocks, extensive cave systems has developed and still developing today. These caves belong to the group of hypogenic caves, and their special morphology and peculiar minerals make Budapest, beside the city of spas, also "the capital of caves". According to the recent developments in the speleogenetic theories, hypogenic karsts and caves are viewed in flow system context, and can thus be considered as the manifestations of flowing groundwater. Being a marginal area at the boundary of uplifted carbonates and a sedimentary basin, the Buda Thermal Karst serves as a discharge zone of the regional fluid flow. This implies that it may receive fluid components (karstic and basinal) from several sources resulting in a wide range of discharge features including springs, caves, and mineral precipitates. In this study the discharge areas of the Buda Thermal Karst were investigated to determine how the discharging fluids and adjoining phenomena (e.g. caves, mineral precipitates) can be telltales of their parent fluid systems, the processes acting along the flow path and operating directly at the vicinity of the discharge zone. A comprehensive hydrogeological study was carried out for the investigation of these phenomena and for the characterization of processes acting today at the discharge zone of the Buda Thermal Karst. Methods included hydrogeochemical, mineralogical and microbiological investigations. Among the results of the study, several processes were identified which can be responsible for cave development and formation of minerals, among them mixing corrosion and microbially mediated sulphuric acid speleogenesis have crucial role. Furthermore, the role of the adjacent sedimentary basin was
Discharges in the inlet region of a noble gas MHD generator
International Nuclear Information System (INIS)
Borghi, C.A.
1982-01-01
In this work the onset of the development of the non-equilibrium conductivity in the entrance region of a noble gas MHD generator is investigated both theoretically and experimentally. At low electron densities the discharge seems to be affected by a non-Maxwellian electron distribution. In Chapter II a self-consistent model of a stationary discharge in an Ar-Cs mixture at atmospheric pressure, is set up. It includes the possibility of deviations from a Maxwellian electron energy distribution. The model allows to calculate at what discharge parameters deviations from the Maxwellian electron distribution will become important. In Chapter III the relaxation of the plasma to a new equilibrium situation following a sudden change in the electron thermal energy is calculated by a model which can take radiation and a non-Maxwellian distribution into account. In Chapter IV an Ar-Cs discharge experiment is described with plasma parameters similar to those present in the entrance region of the generator. The ionization relaxation process in a noble gas MHD generator is experimentally studied and described in Chapter V. In this chapter the relaxation ionization region with and without pre-ionization is investigated. Current voltage characteristics are obtained by varying the applied voltage or the external load. The results are confronted with the theoretical results of the non-Maxwellian model developed in Chapter II. Conclusions of this work are drawn in Chapter VI. (Auth.)
Regional regression models of watershed suspended-sediment discharge for the eastern United States
Roman, David C.; Vogel, Richard M.; Schwarz, Gregory E.
2012-01-01
Estimates of mean annual watershed sediment discharge, derived from long-term measurements of suspended-sediment concentration and streamflow, often are not available at locations of interest. The goal of this study was to develop multivariate regression models to enable prediction of mean annual suspended-sediment discharge from available basin characteristics useful for most ungaged river locations in the eastern United States. The models are based on long-term mean sediment discharge estimates and explanatory variables obtained from a combined dataset of 1201 US Geological Survey (USGS) stations derived from a SPAtially Referenced Regression on Watershed attributes (SPARROW) study and the Geospatial Attributes of Gages for Evaluating Streamflow (GAGES) database. The resulting regional regression models summarized for major US water resources regions 1–8, exhibited prediction R2 values ranging from 76.9% to 92.7% and corresponding average model prediction errors ranging from 56.5% to 124.3%. Results from cross-validation experiments suggest that a majority of the models will perform similarly to calibration runs. The 36-parameter regional regression models also outperformed a 16-parameter national SPARROW model of suspended-sediment discharge and indicate that mean annual sediment loads in the eastern United States generally correlates with a combination of basin area, land use patterns, seasonal precipitation, soil composition, hydrologic modification, and to a lesser extent, topography.
Electron emitter pulsed-type cylindrical IEC
International Nuclear Information System (INIS)
Miley, G.H.; Gu, Y.; Stubbers, R.; Zich, R.; Anderl, R.; Hartwell, J.
1997-01-01
A cylindrical version of the single grid Inertial Electrostatic Confinement (IEC) device (termed the C-device) has been developed for use as a 2.5-MeV D-D fusion neutron source for neutron activation analysis. The C-device employs a hollow-tube type cathode with similar anodes backed up by ''reflector'' dishes. The resulting discharge differs from a conventional hollow cathode discharge, by creating an explicit ion beam which is ''pinched'' in the cathode region. Resulting fusion reactions generate ∼10 6 neutron/s. A pulsed version is under development for applications requiring higher fluxes. Several pulsing techniques are under study, including an electron emitter (e-emitter) assisted discharge in a thorated tungsten wire emitter located behind a slotted area in the reflector dishes. Pulsing is initiated after establishing a low power steady-state discharge by pulsing the e-emitter current using a capacitor switch type circuit. The resulting electron jet, coupled with the discharge by the biased slot array, creates a strong pulse in the pinched ion beam. The pulse length/repetition rate are controlled by the e-emitter pulse circuit. Typical parameters in present studies are ∼30micros, 10Hz and 1-amp ion current. Corresponding neutron measurements are an In-foil type activation counter for time averaged rates. Results for a wide variety of operating conditions are presented
Modelling the landslide area and sediment discharge in landslide-dominated region, Taiwan
Teng, Tse-Yang; Huang, -Chuan, Jr.; Lee, Tsung-Yu; Chen, Yi-Chin; Jan, Ming-Young; Liu, Cheng-Chien
2016-04-01
Many studies have indicated the magnified increase of rainfall intensification, landsliding and subsequent sediment discharge due to the global warming effect. However, a few works synthesized the "chain reaction" from rainfall, landsliding to sediment discharge at the same time because of the limited observations of landslide area and sediment discharge during episodes. Besides, the sediment transport strongly depends on the sediment supply and stream power which interact conditionally. In this study, our goal is to build a model that can simulate time-series landslide area and subsequent sediment discharge. The synthesized model would be applied onto Tsengwen Reservoir watershed in southern Taiwan, where lots of landslides occur every year. Unlike other studies, our landslide model considers not only rainfall effect but also previous landslide status, which may be applied to landslide-dominated regions and explains the irrelevant relationship between typhoon rainfall and landslide area. Furthermore, our sediment transport model considers the sediment budget which couples transport- and supply-limited of sediment. The result shows that the simulated time-series landslide area and the sediment transport agree with the observation and the R2 are 0.88 and 0.56, respectively. Reactivated ratio of previous landslide area is 72.7% which indicates the high reoccurrence of historical landslide in landslide-dominated regions. We divided nine historical typhoons into three periods to demonstrate the effect of sediment supply/supply-limited condition upon sediment transport. For instance, the rainfall is smaller in period 3 than in period 1 but the sediment transport is higher in period 3 due to the catastrophic landslide (typhoon Morakot) during period 2. We argue that quantifying sediment transport should couple not only with water discharge but sediment budget, which is rarely considered in calculating sediment transport. Moreover, the parameterization of the controlling
Dual discharge from a stratified two-phase region through side orifices oriented horizontally
International Nuclear Information System (INIS)
Hassan, I.G.; Soliman, H.M.; Sims, G.E.; Kowalski, J.E.
1995-01-01
Experimental data are presented for the mass flow rate and quality of two-phase (air-water) discharge from a stratified region through two side orifices (6.35 mm i.d.) with their parallel centre lines located in a horizontal plane. These data correspond to different values of the interface level between the onsets of gas and liquid entrainments for test-section pressures of 316 and 517 kPa, test-section-to-separators pressure difference ranging from 40 to 235 kPa, orifice separating distance to diameter ratio ranging from 1.5 to 8 and different hydraulic resistances of the lines connecting the test section to the separators. Influences of these independent variables on the deviation between the present results (of mass flow rate and quality) and those corresponding to a single discharge are presented and discussed. Normalized plots are presented showing that the present data of dual discharge and those of a single discharge can be collapsed for the whole test range when specific definition for the dimensionless height of the interface and mass flow rate are used. Excellent agreement is demonstrated between single-discharge correlations and the present data using these dimensionless quantities. (author). 12 refs., 1 tab., 16 figs
Shuaibov, A. K.; Grabovaya, I. A.; Minya, A. Ĭ.; Gomoki, Z. T.
2008-11-01
Radiation of glow and capacitive discharges in inert gas-iodine vapor mixtures is studied in the spectral range 150-210 nm, which coincides with the main absorption maximum of the DNA molecules. Iodine atomic spectral lines at 150.7, 161.8, 170.2, 183.0, and 206.2 nm are observed in the spectra. The emission intensity of the iodine spectral lines is optimized by varying the glow discharge current, capacitive discharge frequency, as well as pressure and composition of the gas mixtures. The glow and capacitive discharges are ignited in cylindrical quartz tubes with interelectrode gaps of 10 and 6 cm. Helium and neon are found to be the most effective buffer gases. The optimum partial pressures of the light inert gases and iodine vapor in the glow discharge are within 0.4-0.6 kPa and 100-150 Pa, respectively. In the capacitive discharge in He(Ne)-I2 mixtures, the optimum partial helium, neon, and iodine vapor pressures are within 0.8-2.0 kPa, 0.5-1.0 kPa, and ≤ 60 Pa, respectively. It is demonstrated that pulsed bactericidal radiation sources with light pulse lengths of 400-500 ns and continuous radiation sources emitting within the spectral range 150-207 nm can be designed on the basis of low-density iodine vapor plasma.
Tecklenburg, J.; Hattermann, F. F.; Liersch, S.
2012-04-01
A discharge time series is the result of complex and interacting processes. Important for the runoff variability are catchment characteristics like the basin size and shape, gradient of altitude and exposition as well as micro- and macroclimatic conditions. The discharge dynamic of the Blue Nile is predominantly controlled by the monsoon variability. Due to the steep gradients in the Ethiopian highlands, the surface flow component represents the main fraction of the total discharge. The composition of discharge and the resulting time response of river runoff is further a function of subsurface retention and surface roughness. Thus, the soil surface characteristics and thereby the land use are main factors controlling formation of local water availability in the Upper Blue Nile basin. During the last 30 years the continual transformation of forest and grassland to cropland reduced the total forest area of Ethiopia to 2.5 % with respect to the total area. Regarding the discharge formation process, land cover change supports generation of surface flow because of degradation of the surface roughness with two mainly negative effects: more surface runoff and less vegetation cover leads to erosion and degradation of soils. On the other hand, the water available for plants (soil moisture) may be reduced by a decreasing infiltration rate. Both effects have consequences for agricultural production and lead to an increasing demand for irrigation. Thus, the combination of the processes may accelerate the negative environmental response which makes the system highly vulnerable and sensitive to changes in driving forces. This study aims at analyzing the correlation of possible regional drivers with the inter-seasonal and inter-annual variability of subcatchment discharge generation. The study will be carried out applying the eco-hydrological model SWIM (Soil and Water Integrated Model) driven by observed and scenario climate data. Based on satellite image information the effect
Radon as an indicator of submarine groundwater discharge in coastal regions
International Nuclear Information System (INIS)
Jacob, Noble; Shivanna, K.; Suresh Babu, D.S.
2009-01-01
This article reviews the various available methodologies to estimate submarine groundwater discharge (SGD) and demonstrates the utility of radon with a case study. An attempt has been made to identify the existence of submarine groundwater discharge (SGD) and semi-quantitatively estimate its rate in the coastal area of Vizhinjam, Thiruvananthapuram, Kerala. Natural 222 Rn (half-life = 3.8 days) was used as a tracer of SGD because of its conservative nature, short half-life, easiness in measurement and high abundance in groundwater. As in situ radon ( 222 Rn) monitoring study conducted in this region indicated comparatively higher 222 Rn activities (average 14.1±1.7 Bq/m 3 ) in the coastal waters revealing significant submarine groundwater discharge. The SGD may be a combination of fresh groundwater and recirculated seawater that is controlled by the hydraulic gradient in the adjacent aquifer and varying tidal conditions in the coastal waters. Using a transient 222 Rn mass balance model for the coastal waters, SGD rates were computed and the average value was found to be 10.9±6.1 cm/day. These estimates are comparable with those reported in the literature. In general, identification and estimation of submarine groundwater discharge is important in the Indian context because of the possibility of large amounts of groundwater loss through its long coastline, that can be judiciously exploited to cater to the present water requirements for drinking and irrigation purposes. (author)
Study of the cathodic region of a hydrogen luminescent discharge: spectroscopic diagnoses
International Nuclear Information System (INIS)
Barbeau, Claude
1991-01-01
This research thesis addresses the study of the cathodic region of a hydrogen luminescent discharge in direct current, and belongs to the field of studies on plasma-surface interactions, notably in order to understand and optimise electric discharges in H 2 CH 4 mixtures used for steel cementation and hard carbon deposition. The author first presents the main characteristics of the abnormal discharge, and details operation conditions as well as the characteristics of the different experimental assemblies. The experimental study of the cathodic region has been mainly performed by high resolution emission spectroscopy, and multi-photon laser spectroscopy (laser-induced fluorescence, optogalvanic effect). In the second part, the author reports an analysis of the Doppler broadening of emission profiles of atomic lines (notably the Balmer series). Experimental results are compared with those of Monte Carlo simulation which addresses mechanisms of creation of excited atoms as well as their energetic distribution. The next parts report the development of methods and techniques for the measurement of the electric field of the cathodic drop and of gas temperature, experimental results and their interpretation [fr
Lamontagne, S; Taylor, A R; Herpich, D; Hancock, G J
2015-02-01
The Tertiary Limestone Aquifer (TLA) is one of the major regional hydrogeological systems of southern Australia. Submarine groundwater discharge (SGD) of freshwater from the TLA occurs through spring creeks, beach springs and diffusively through beach sands, but the magnitude of the total flux is not known. Here, a range of potential environmental tracers (including temperature, salinity, (222)Rn, (223)Ra, (224)Ra, (226)Ra, (228)Ra, and (4)He) were measured in potential sources of SGD and in seawater along a 45 km transect off the coastline to evaluate SGD from the TLA. Whilst most tracers had a distinct signature in the sources of water to the coastline, salinity and the radium quartet had the most distinct SGD signal in seawater. A one-dimensional advection-dispersion model was used to estimate the terrestrial freshwater component of SGD (Qfw) using salinity and the recirculated seawater component (Qrsw) using radium activity in seawater. Qfw was estimated at 1.2-4.6 m(3) s(-1), similar in magnitude to previously measured spring creek discharge (∼3 m(3) s(-1)) for the area. This suggests that other terrestrial groundwater discharge processes (beach springs and diffuse discharge through beach sands) were no more than 50% of spring creek discharge. The largest component of total SGD was Qrsw, estimated at 500-1000 m(3) s(-1) and possibly greater. The potential for wave, storm, or buoyancy-driven porewater displacement from the seafloor could explain the large recirculation flux for this section of the Southern Ocean Continental Shelf. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
S. C. van Pelt
2009-12-01
Full Text Available Studies have demonstrated that precipitation on Northern Hemisphere mid-latitudes has increased in the last decades and that it is likely that this trend will continue. This will have an influence on discharge of the river Meuse. The use of bias correction methods is important when the effect of precipitation change on river discharge is studied. The objective of this paper is to investigate the effect of using two different bias correction methods on output from a Regional Climate Model (RCM simulation. In this study a Regional Atmospheric Climate Model (RACMO2 run is used, forced by ECHAM5/MPIOM under the condition of the SRES-A1B emission scenario, with a 25 km horizontal resolution. The RACMO2 runs contain a systematic precipitation bias on which two bias correction methods are applied. The first method corrects for the wet day fraction and wet day average (WD bias correction and the second method corrects for the mean and coefficient of variance (MV bias correction. The WD bias correction initially corrects well for the average, but it appears that too many successive precipitation days were removed with this correction. The second method performed less well on average bias correction, but the temporal precipitation pattern was better. Subsequently, the discharge was calculated by using RACMO2 output as forcing to the HBV-96 hydrological model. A large difference was found between the simulated discharge of the uncorrected RACMO2 run, the WD bias corrected run and the MV bias corrected run. These results show the importance of an appropriate bias correction.
Hlavcova, K.; Szolgay, J.; Kohnova, S.; Kalas, M.
2003-04-01
In the case of the absence of measured runoff optimisation techniques cannot be used to estimate the parameters of monthly rainfall-runoff models. In such a case usually empirical regression methods were used for relating the model parameters to the catchment characteristics in a given region. In the paper a different method for the regional calibration of a monthly water balance model, which can be used for planning purposes, is proposed. Instead of using the regional regression approach a method is proposed, which involves the calibration of a monthly water balance model to gauged sites in the given region simultaneously. A regional objective function was constructed and for the calibration a genetic programming algorithm was employed. It is expected, that the regionally calibrated model parameters can be used in ungauged basins with similar physiographic conditions. The comparison of the performance of such a regional calibration scheme was compared with two single site calibration methods in a region of West Slovakia. The results are based on a study that aimed at computing surface water inflow into a lowland area with valuable groundwater resources. Monthly discharge time series had to be estimated in small ungauged rivers entering the study area.
Regional differences in climate change impacts on groundwater and stream discharge in Denmark
DEFF Research Database (Denmark)
Van Roosmalen, Lieke Petronella G; Christensen, Britt S.B.; Sonnenborg, Torben O.
2007-01-01
Regional impact studies of the effects of future climate change are necessary because projected changes in meteorological variables vary regionally and different hydrological systems can react in various ways to the same changes. In this study the effects of climate change on groundwater recharge...... of the hydrological response to the simulated climate change is highly dependant on the geological setting of the model area. In the Jylland area, characterized by sandy top soils and large interconnected aquifers, groundwater recharge increases significantly, resulting in higher groundwater levels and increasing...... groundwater-river interaction. On Sjaelland, where the topsoil is dominated by low-permeability soils and the aquifers are protected by thick clay layers of regional extent, only minor changes in groundwater levels are predicted. The primary effect in this area is the change in stream discharge, caused...
Cenderelli, Daniel A.; Wohl, Ellen E.
2001-09-01
Glacial-lake outburst floods (GLOFs) in the Mount Everest region of Nepal on 3 September 1977 and 4 August 1985 dramatically modified channels and valleys in the region by eroding, transporting, and depositing large quantities of sediment for tens of kilometers along their flood routes. Prior to this research, the GLOF discharges had not been determined and the hydrology of "normal" climatic floods (SHFFs: seasonal high flow floods) was not known. A one-dimensional step-backwater flow model was utilized, in conjunction with paleostage indicators, to estimate the peak discharges of the GLOFs and SHFFs and to reconstruct the hydrology and hydraulic conditions of the GLOFs at 10 reaches and SHFFs at 18 reaches. The most reliable GLOF and SHFF peak discharge estimates were upstream from constrictions where there was critical-depth control. The peak discharge of the 1977 GLOF at 8.6 km from the breached moraine was approximately 1900 m 3/s. At 7.1 km downstream from the breached moraine, the 1985 GLOF discharge was estimated at 2350 m 3/s. At 27 km downstream from the breached moraine, the 1985 GLOF attenuated to an estimated discharge of 1375 m 3/s. The peak discharges of SHFFs ranged from 7 to 205 m 3/s and were positively correlated with increasing drainage area. The GLOF discharges were 7 to 60 times greater than the SHFF discharges with the greatest ratios occurring near the breached moraines. The downstream decline in the ratio between the GLOF discharge and SHFF discharge is the result of the downstream attenuation of the GLOF and the increased discharge of the SHFF because of increased contributing drainage area and the increased effects of monsoonal precipitation at lower elevations.
Directory of Open Access Journals (Sweden)
P. De Vita
2012-05-01
Full Text Available Thus far, studies on climate change have focused mainly on the variability of the atmospheric and surface components of the hydrologic cycle, investigating the impact of this variability on the environment, especially with respect to the risks of desertification, droughts and floods. Conversely, the impacts of climate change on the recharge of aquifers and on the variability of groundwater flow have been less investigated, especially in Mediterranean karst areas whose water supply systems depend heavily upon groundwater exploitation.
In this paper, long-term climatic variability and its influence on groundwater recharge were analysed by examining decadal patterns of precipitation, air temperature and spring discharges in the Campania region (southern Italy, coupled with the North Atlantic Oscillation (NAO.
The time series of precipitation and air temperature were gathered over 90 yr, from 1921 to 2010, using 18 rain gauges and 9 air temperature stations with the most continuous functioning. The time series of the winter NAO index and of the discharges of 3 karst springs, selected from those feeding the major aqueducts systems, were collected for the same period.
Regional normalised indexes of the precipitation, air temperature and karst spring discharges were calculated, and different methods were applied to analyse the related time series, including long-term trend analysis using smoothing numerical techniques, cross-correlation and Fourier analysis.
The investigation of the normalised indexes highlighted the existence of long-term complex periodicities, from 2 to more than 30 yr, with differences in average values of up to approximately ±30% for precipitation and karst spring discharges, which were both strongly correlated with the winter NAO index.
Although the effects of the North Atlantic Oscillation (NAO had already been demonstrated in the long-term precipitation and streamflow patterns of
Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region
Ellis, J.; Jasechko, S.
2016-12-01
Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.
U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....
U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....
U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....
Vegetation induced diel signal and its meaning in recharge and discharge regions
Gribovszki, Zoltán; Tóth, Tibor; Csáfordi, Péter; Szabó, András; Móricz, Norbert; Kalicz, Péter
2017-04-01
Afforestation, promoted by the European Union is planned in Hungary in the next decades. One of the most important region for afforestation is the Hungarian Great Plain where the precipitation is far below potential ET so forests can not survive without significant water uptake from shallow groundwater. Diel fluctuations of hydrological variables (e.g., soil moisture, shallow groundwater level, streamflow rate) are rarely investigated in the hydrologic literature although these short-term fluctuations may incorporate useful information (like groundwater uptake) about hydro-ecological systems in shallow groundwater areas. Vegetation induced diel fluctuations are rarely compared under varying hydrologic conditions (such as recharge and discharge zones). In this study, the data of soil moisture and shallow groundwater monitoring under different surface covers (forest and neighboring agricultural plots) in discharge and recharge regions were analyzed to gain a better understanding of the vegetation hydrological impact or water uptake in changing climate. The pilot areas of the study are located in Hungarian Great Plain and in Western Hungary. The water table under the forest displayed a typical night-time recovery in the discharge region, indicating a significant groundwater supply. Certainly, the root system of the forest was able to tap the groundwater in depths measuring a few metres, while the shallower roots of the herbaceous vegetation generally did not reach the groundwater reservoir at these depths. In the recharge zone the water table under the forest showed step-like diel pattern that refer to a lack of additional groundwater supply from below. The low groundwater evapotranspiration of the forest in the recharge zone was due to the lack of the groundwater supply in the recharge area. Similar patterns can be detected in the soil moisture of recharge and discharge zones as well. Our results suggest that local estimations of groundwater evapotranspiration from
Directory of Open Access Journals (Sweden)
Fan Xiufeng
2015-04-01
Full Text Available This article is based on the years from 1991 to 2012 of the nine categories of the provincial pollutant discharge indexes of China, uses the „vertical and horizontal method“ to calculate the comprehensive indexes that can fully measure the provincial pollutant discharge situation of China, establishes a dynamic inter-provincial panel data regression model and makes an empirical test on the relationship among foreign direct investments, foreign trade and pollutant discharge these three factors. The results show that foreign direct investment and foreign trade in different regions have a different impact on pollutant discharge. Therefore, local governments should at all levels be based on local conditions to attract foreign investment and develop foreign trade for the targeted optimization of the structure of introducing foreign investment and improving the quality of foreign trade growth, thus improving the overall situation of China’s pollutant discharge.
Acute care inpatients with long-term delayed-discharge: evidence from a Canadian health region
Directory of Open Access Journals (Sweden)
Costa Andrew P
2012-06-01
Full Text Available Abstract Background Acute hospital discharge delays are a pressing concern for many health care administrators. In Canada, a delayed discharge is defined by the alternate level of care (ALC construct and has been the target of many provincial health care strategies. Little is known on the patient characteristics that influence acute ALC length of stay. This study examines which characteristics drive acute ALC length of stay for those awaiting nursing home admission. Methods Population-level administrative and assessment data were used to examine 17,111 acute hospital admissions designated as alternate level of care (ALC from a large Canadian health region. Case level hospital records were linked to home care administrative and assessment records to identify and characterize those ALC patients that account for the greatest proportion of acute hospital ALC days. Results ALC patients waiting for nursing home admission accounted for 41.5% of acute hospital ALC bed days while only accounting for 8.8% of acute hospital ALC patients. Characteristics that were significantly associated with greater ALC lengths of stay were morbid obesity (27 day mean deviation, 99% CI = ±14.6, psychiatric diagnosis (13 day mean deviation, 99% CI = ±6.2, abusive behaviours (12 day mean deviation, 99% CI = ±10.7, and stroke (7 day mean deviation, 99% CI = ±5.0. Overall, persons with morbid obesity, a psychiatric diagnosis, abusive behaviours, or stroke accounted for 4.3% of all ALC patients and 23% of all acute hospital ALC days between April 1st 2009 and April 1st, 2011. ALC patients with the identified characteristics had unique clinical profiles. Conclusions A small number of patients with non-medical days waiting for nursing home admission contribute to a substantial proportion of total non-medical days in acute hospitals. Increases in nursing home capacity or changes to existing funding arrangements should target the sub
Global 3D Braginskii simulations of the tokamak edge region of IWL discharges
Francisquez, M.; Zhu, B.; Rogers, B. N.
2017-11-01
A study of plasma turbulence and profile evolution in conditions of low (L-mode) and high (H-mode) confinement at the edge of an axisymmetric, nested circular flux-surface approximation to an inner wall limited (IWL) Alcator C-Mod discharge is presented, using numerical simulations with the global drift-ballooning (GDB) code. GDB solves drift-reduced Braginskii two-fluid equations for electromagnetic low-frequency turbulence in a 3D annulus centered on the last closed flux-surface (LCFS). Three simulations that investigate the conditions of a reference L-mode, a high density, and a high temperature (or H-mode-like) shot were performed using realistic parameters. L-mode transport appears to be largely driven by drift resistive ballooning structures. Its pressure profile exhibits a near-SOL breakpoint that Mirror Langmuir Probes (MLP) detect in C-Mod. The high density simulation sees an increase in the size of convective cells and enhanced turbulent transport, while H-mode conditions develop improved confinement, balanced E × B and ion diamagnetic drifts in the closed-flux region, and spontaneous generation of temperature pedestal with a density pedestal remaining absent. A statistical characterization of the turbulence both in the SOL and the closed-flux region is presented.
U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...
U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...
U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...
Risks predicting prolonged hospital discharge boarding in a regional acute care hospital.
Shaikh, Sajid A; Robinson, Richard D; Cheeti, Radhika; Rath, Shyamanand; Cowden, Chad D; Rosinia, Frank; Zenarosa, Nestor R; Wang, Hao
2018-01-30
Prolonged hospital discharge boarding can impact patient flow resulting in upstream Emergency Department crowding. We aim to determine the risks predicting prolonged hospital discharge boarding and their direct and indirect effects on patient flow. Retrospective review of a single hospital discharge database was conducted. Variables including type of disposition, disposition boarding time, case management consultation, discharge medications prescriptions, severity of illness, and patient homeless status were analyzed in a multivariate logistic regression model. Hospital charges, potential savings of hospital bed hours, and whether detailed discharge instructions provided adequate explanations to patients were also analyzed. A total of 11,527 admissions was entered into final analysis. The median discharge boarding time was approximately 2 h. Adjusted Odds Ratio (AOR) of patients transferring to other hospitals was 7.45 (95% CI 5.35-10.37), to court or law enforcement custody was 2.51 (95% CI 1.84-3.42), and to a skilled nursing facility was 2.48 (95% CI 2.10-2.93). AOR was 0.57 (95% CI 0.47-0.71) if the disposition order was placed during normal office hours (0800-1700). AOR of early case management consultation was 1.52 (95% CI 1.37-1.68) versus 1.73 (95% CI 1.03-2.89) for late consultation. Eighty-eight percent of patients experiencing discharge boarding times within 2 h of disposition expressed positive responses when questioned about the quality of explanations of discharge instructions and follow-up plans based on satisfaction surveys. Similar results (86% positive response) were noted among patients whose discharge boarding times were prolonged (> 2 h, p = 0.44). An average charge of $6/bed/h was noted in all hospital discharges. Maximizing early discharge boarding (≤ 2 h) would have resulted in 16,376 hospital bed hours saved thereby averting $98,256.00 in unnecessary dwell time charges in this study population alone. Type of disposition, case
High Risk Human Papilloma Virus Genotypes in Kurdistan Region in Patients with Vaginal Discharge.
Hussein, Nawfal R; Balatay, Amer A; Assafi, Mahde S; AlMufty, Tamara Abdulezel
2016-01-01
The human papilloma virus (HPV) is considered as the major risk factor for the development of cervical cancer. This virus is of different genotypes and generally can be classified into high and low risk types. To determine the rate of high risk HPV genotypes in women with vaginal discharge and lower abdominal pain in Kurdistan region, Iraq. Cervical swabs were taken from 104 women. DNA was extracted and the polymerase chain reaction (PCR) technique was used to determine the presence of high risk genotypes. It was found that 13/104 (12.5%) of the samples were positive for high risk HPV genotypes. Amongst those who were positive, 4/13 (30.7%) were typed as genotype 16 and 7/13 (53.8%) showed mixed genotyping. On the other hand, genotypes 53 and 56 were found in only one sample each. High risk HPV genotypes are not uncommon and further community based study is needed to determine the prevalence of HPV and its genotypes and plan for prevention of infection.
Ordinary High Flows and the Stage-Discharge Relationship in the Arid West Region
2011-07-01
20 Figure 12. Daily instantaneous peak discharge percent greater than the daily mean discharge at Agua Fria...45 Figure 35. Agua Fria...Moenkopi Wash, Dry Beaver Creek, Agua Fria River, and New River Semiarid; Potential evaporation exceeds precipitation; Temperature above
Continuous pile discharging machine
International Nuclear Information System (INIS)
Smith, P.P.
1976-01-01
A device for discharging cartridges from tubes under fluid pressure includes a cylindrical housing adapted to be seated in a leak-tight manner on the end of one of the tubes, a chute depending from the cylindrical housing near the end seated on the end of the tube, a rotatable piston having a wrench on the forward end thereof disposed in the cylindrical housing and adapted to manipulate a plug in the end of the tube, and a telescopic hydraulic ram adapted to move the piston toward the plug. In addition the wrench contains a magnet which prevents inadvertent uncoupling of the wrench and the plug. 7 claims, 10 drawing figures
Continuous pile discharging machine
Smith, Phillips P.
1976-05-11
A device for discharging cartridges from tubes under fluid pressure includes a cylindrical housing adapted to be seated in a leak-tight manner on the end of one of the tubes, a chute depending from the cylindrical housing near the end seated on the end of the tube, a rotatable piston having a wrench on the forward end thereof disposed in the cylindrical housing and adapted to manipulate a plug in the end of the tube, and a telescopic hydraulic ram adapted to move the piston toward the plug. In addition the wrench contains a magnet which prevents inadvertent uncoupling of the wrench and the plug.
DEFF Research Database (Denmark)
van As, Dirk; Langer Andersen, Morten; Petersen, Dorthe
2014-01-01
. However, comparison with lake discharge indicates that modelled regional runoff totals are more accurate. Model results show that melt and runoff in the Nuuk region have doubled over the past wo decades. Regional SMB attained negative values in recent high-melt years. Taking into account frontal ablation...... of the marine-terminating glaciers, the region lost 10-20km3w.e. a-1 in 2010-12. If 2010 melting prevails during the remainder of this century, a low-end estimate of sea-level rise of 5mm is expected by 2100 from this relatively small section (2.6%) of the ice sheet alone....
Broach, K. H.; Chapman, B. L.; Paytan, A.; Street, J.
2017-12-01
As climate change progresses, droughts are predicted to become more common in regions dominated by seasonal precipitation, a problem compounded where precipitation provides significant freshwater resources. The Yucatan Peninsula relies on rain-recharged groundwater for potable water, and regional development due to tourism will further strain supply. Historical and geochemical evidence suggest extensive droughts harmed Mayan Civilization and may again impact the Yucatan in the near future, but proxies around the Yucatan and Caribbean region are complicated by variability and even opposing interpretations. An integrated rainfall signal is needed to smooth variability and separate local aberrations from long-term regional trends that can be used for risk assessment. Here we present a 5,000 year record of rainfall sourced from a broad swath of the peninsula and recorded as trace metal ratios in the foram Ammonia parkinsoniana. Rainwater percolation across the western peninsula forms a groundwater lens that discharges as brackish springs in our field site Celestun Lagoon resulting in trace metal gradients (Li, B, Sr, Ba, Nd) along the lagoon that oscillate with discharge. Sr/Ca and Ba/Ca ratios in the forams suggest a long-term decrease in spring water discharge for the western Yucatan during the last 2,500 years with notable drops coinciding with known droughts (e.g. 800-950 CE) and more variability on a regional scale to 5,000 years. B/Ca ratios appear to depend on proximity to springs and may respond to low-pH discharge water while Nd/Ca ratios suggest sporadic incursions of seawater into the lagoon, possibly related to severely reduced spring water discharge or large hurricane events. We interpret these results to mean that periods of decreased rainfall broadly affect the western peninsula which may pose problems for large population centers like Merida. Future work will focus on periodicity of such rainfall changes and impact on the ecological environment of
Modeling the cathode region of noble gas mixture discharges using Monte Carlo simulation
International Nuclear Information System (INIS)
Donko, Z.; Janossy, M.
1992-10-01
A model of the cathode dark space of DC glow discharges was developed in order to study the effects caused by mixing small amounts (≤2%) of other noble gases (Ne, Ar, Kr and Xe) to He. The motion of charged particles was described by Monte Carlo simulation. Several discharge parameters (electron and ion energy distribution functions, electron and ion current densities, reduced ionization coefficients, and current density-voltage characteristics) were obtained. Small amounts of admixtures were found to modify significantly the discharge parameters. Current density-voltage characteristics obtained from the model showed good agreement with experimental data. (author) 40 refs.; 14 figs
EPA Region 2 Discharge Pipes for Facilites with NPDES Permits from the Permit Compliance GIS Layer
U.S. Environmental Protection Agency — The Permit and Compliance System (PCS) contains data on the National Pollution Discharge Elimination Systems (NPDES) permit-holding facilities. This includes...
Cylindrical-shaped nanotube field effect transistor
Hussain, Muhammad Mustafa
2015-12-29
A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.
Time dependent argon glow discharge treatment of Al-alloy samples
Indian Academy of Sciences (India)
Aluminium alloy ultra-high vacuum system provides a convenient tool to access the UHV region due to short pump down time, its reduced weight, low cost etc. For UHV systems, aluminium and its alloys are preferred materials to stainless steel. A cylindrical discharge chamger of SS 304 with various ports on it, evacuated by ...
Cylindrical geometry for proportional and drift chambers
International Nuclear Information System (INIS)
Sadoulet, B.
1975-06-01
For experiments performed around storage rings such as e + e - rings or the ISR pp rings, cylindrical wire chambers are very attractive. They surround the beam pipe completely without any dead region in the azimuth, and fit well with the geometry of events where particles are more or less spherically produced. Unfortunately, cylindrical proportional or drift chambers are difficult to make. Problems are discussed and two approaches to fabricating the cathodes are discussed. (WHK)
Döös, Kristofer; Engqvist, Anders
2007-09-01
Two different methods of estimating the water exchange through the Baltic coastal region of Laxemar have been used, consisting of particle trajectories and passive tracers. Water is traced from and to a small discharge region near the coast. The discharge material in this region is treated as zero-dimensional particles or tracers with neutral buoyancy. The real discharge material could be a leakage of radio-nuclides through the sea floor from an underground repository of nuclear waste. Water exchange rates between the discharge region and the model domain are estimated using both forward and backward trajectories as well as passive tracers. The Lagrangian trajectories can account for the time evolution of the water exchange while the tracers give one average age per model grid box. Water exchange times such as residence time, age and transient times have been calculated with trajectories but only the average age (AvA) for tracers. The trajectory calculations provide a more detailed time evolution than the tracers. On the other hand the tracers are integrated "on-line" simultaneously in the sea circulation model with the same time step while the Lagrangian trajectories are integrated "off-line" from the stored model velocities with its inherent temporal resolution, presently 1 h. The sub-grid turbulence is parameterised as the Laplacian diffusion for the passive tracers and with an extra stochastic velocity for trajectories. The importance of the parameterised sub-grid turbulence for the trajectories is estimated to give an extra diffusion of the same order as the Laplacian diffusion by comparing the Lagrangian dispersions with and without parameterisation. The results of the different methods are similar but depend on the chosen diffusivity coefficient with a slightly higher correlation between trajectories and tracers when integrated with a lower diffusivity coefficient.
Parametric Investigation of Miniaturized Cylindrical and Annular Hall Thrusters
International Nuclear Information System (INIS)
Smirnov, A.; Raitses, Y.; Fisch, N.J.
2002-01-01
Conventional annular Hall thrusters become inefficient when scaled to low power. An alternative approach, a 2.6-cm miniaturized cylindrical Hall thruster with a cusp-type magnetic field distribution, was developed and studied. Its performance was compared to that of a conventional annular thruster of the same dimensions. The cylindrical thruster exhibits discharge characteristics similar to those of the annular thruster, but it has a much higher propellant ionization efficiency. Significantly, a large fraction of multi-charged xenon ions might be present in the outgoing ion flux generated by the cylindrical thruster. The operation of the cylindrical thruster is quieter than that of the annular thruster. The characteristic peak in the discharge current fluctuation spectrum at 50-60 kHz appears to be due to ionization instabilities. In the power range 50-300 W, the cylindrical and annular thrusters have comparable efficiencies (15-32%) and thrusts (2.5-12 mN). For the annular configuration, a voltage less than 200 V was not sufficient to sustain the discharge at low propellant flow rates. The cylindrical thruster can operate at voltages lower than 200 V, which suggests that a cylindrical thruster can be designed to operate at even smaller power
Landscape controls on spatiotemporal variability of specific discharge in a boreal region
Karlsen, R.; Grabs, T.; Bishop, K. H.; Laudon, H.; Seibert, J.
2014-12-01
Spatial and temporal variability of specific discharge is rarely measured at the small-catchment-scale and is commonly ignored by most studies which instead assume spatially uniform specific discharge. This assumption is convenient but can lead to fundamentally wrong results, e.g., when calculating solute fluxes at the catchment scale. Pioneering work on 14, partly nested, sub-catchments in a boreal meso-scale (67 km2) catchment in Northern Sweden revealed substantial spatial and temporal variations in both the magnitude and timing of specific discharge. We explore the structure of this variability and its connection to the landscape characteristics using a 5-year gap filled time series of continuous flow records.For the long term (5 years) flow magnitudes for the various sub-catchments varied between 73 % and 132 % relative to the flow at the main outlet, with higher flows from wetland dominated catchments (Spearman rank correlation R=0.81). Looking at seasonal and short term flows, both more pronounced variability and stronger links to different landscape properties are seen. Spring flood magnitudes were correlated (R=0.61 to 0.80) with wet areas, while summer flows were negatively correlated to catchment tree volumes (R=-0.61 to -0.75) and potential evaporation (R=-0.48 to -0.78).On shorter timescales, from daily to monthly, also other catchment properties explained the observed spatial discharge variability. During dry periods of low summer baseflows, sub-catchments with deep fluvial deposits maintained a higher discharge than catchments with shallow soils. This pattern was reversed during summer stormflow events.The results show that there is a spatial structure in the specific discharge and that this structure is temporally variable. Different landscape characteristics influence the flows at different time scales, and the spatiotemporal discharge variability depends on seasonal climatic variability. The observed structure does not only influence mass balance
International Nuclear Information System (INIS)
Gettleson, D.A.
1993-01-01
Continental Shelf Associates, Inc. (CSA) was contracted to conduct a three-year study of the environmental and health related impacts of produced water and sand discharges from oil and gas operations. Data on naturally occurring radioactive materials (NORM), heavy metals, and hydrocarbons in water, sediment, and biota will be collected and evaluated. Health related impacts will be studied through field collections and analyses of commercially- and recreationally-important fish and shellfish tissues. Additionally, information on seafood catch, consumption, and use patterns for the Gulf of Mexico will be gathered and analyzed. The facilities to be studied will include both offshore and coastal facilities in the Gulf of Mexico. Coastal sites will be additionally studied to determine ecological recovery of impacted wetland and open bay areas. The economic impact of existing and proposed effluent federal and state regulations will also be evaluated. The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of four terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana and Texas; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. Accomplishments for this period are described
Shuaibov, A. K.; Grabovaya, I. A.
2006-09-01
The emission characteristics of a glow discharge in bromine vapor have been investigated in the spectral region 130-350 nm. The current-voltage characteristics and the emission spectra of the glow discharge with an interelectrode gap of 10 cm and a discharge tube 14 mm in inner diameter have been studied. The emission characteristics have been optimized as functions of the bromine vapor pressure and the power deposited into the plasma. It has been shown that, at a low pressure of the bromine vapor, the emission spectrum of the lamp is determined by the spectral lines of atomic bromine in the range 158-164 nm, which are analogous to the known lines (such as those at 206.2 nm) of atomic iodine in an iodine-containing glow discharge plasma. As the pressure of the bromine vapor increases above 100 Pa, the intensity of these emission lines of the bromine atom decreases and the lamp spectrum is formed by bromine molecular bands in the form of a continuum with sharp boundaries (λ = 165-300 nm).
Gao, Peng; Deng, Jingcheng; Chai, Xueke; Mu, Xingmin; Zhao, Guangju; Shao, Hongbo; Sun, Wenyi
2017-02-01
The middle reaches of the Yellow River Basin transport the vast majority of sediment (>85% of the basin's total available sediment load), which has had profound effects on the characteristics of the middle and lower reaches of the Yellow River. Since the late 1950s, soil and water conservation measures have been extensively implemented in the Loess Plateau, China, especially since the 1970s. This has resulted in sediment discharge changing significantly. In this study, data from 22 catchments in the region of the Loess Plateau from Hekou to Longmen in the middle reaches of the Yellow River were analyzed to investigate the responses of the sediment regime to climate change and human activities. The non-parametric Mann-Kendall test and the Pettitt test were used to identify trends and shifts in sediment discharge. All 22 catchments had a significantly decreasing trend (Psediment discharge. Change point years were detected between 1971 and 1994, and were concentrated between 1978 and 1984 in 17 catchments. Moreover, erosive rainfall exhibited a tendency to decrease, but this was not a significant trend. Compared to rainfall, human activities, primarily soil and water conservation and environmental rehabilitation campaigns, have played a more prominent role in the changes in sediment regimes. In order to reduce soil erosion and sediment yield, more attention should be paid to proper and rational soil and water conservation and eco-restoration in this region. Copyright © 2016 Elsevier B.V. All rights reserved.
Dorsey, Rebecca J.; O'Connell, Brennan; McDougall, Kristin; Homan, Mindy B.
2018-01-01
The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at 5.4-5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough. These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on punctuated sediment
Quantin, Catherine; Gouyon, Béatrice; Avillach, Paul; Ferdynus, Cyril; Sagot, Paul; Gouyon, Jean-Bernard
2009-01-01
To assess the Burgundy perinatal network (18 obstetrical units; 18 500 births per year), discharge abstracts and additional data were collected for all mothers and newborns. In accordance with French law, data were rendered anonymous before statistical analysis, and were linked to patients using a specific procedure. This procedure allowed data concerning each mother to be linked to those for her newborn(s). This study showed that all mothers and newborns were included in the regional database; the data for all mothers were linked to those for their infant(s) in all cases. Additional data (gestational age) were obtained for 99.9% of newborns. PMID:19125196
Directory of Open Access Journals (Sweden)
Catherine Quantin
2009-01-01
Full Text Available To assess the Burgundy perinatal network (18 obstetrical units; 18 500 births per year, discharge abstracts and additional data were collected for all mothers and newborns. In accordance with French law, data were rendered anonymous before statistical analysis, and were linked to patients using a specific procedure. This procedure allowed data concerning each mother to be linked to those for her newborn(s. This study showed that all mothers and newborns were included in the regional database; the data for all mothers were linked to those for their infant(s in all cases. Additional data (gestational age were obtained for 99.9% of newborns.
Medeiros, A M A; Barbosa, J E L; Medeiros, P R; Rocha, R M; Silva, L F
2010-08-01
The present study aimed at evaluating differences in rotifer distribution in three estuarine zones in an inverse estuary located in the Semiarid Region of Brazil. Zones were chosen based on their proximity to the ocean and river border as a means of reflecting a horizontal salinity gradient. High freshwater discharge during the rainy season was the major determinant of rotifer composition. On the other hand, due to higher salinity values during the dry season, very low values of species richness and abundance were observed in all zones. Therefore, the study highlights the constraints of salinity and the positive influence of seasonality and river proximity on rotifer species in a semiarid estuarine environment.
DEFF Research Database (Denmark)
Zhang, Jingjing; Mortensen, N. Asger
2011-01-01
We propose a cylindrical invisibility cloak achieved utilizing two dimensional split-ring resonator structured metamaterials at microwave frequencies. The cloak has spatially uniform parameters in the axial direction, and can work very well even when the cloak shell is very thin compared with the...
Jang, Cheng-Shin
2015-05-01
Accurately classifying the spatial features of the water temperatures and discharge rates of hot springs is crucial for environmental resources use and management. This study spatially characterized classifications of the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region of Northern Taiwan by using indicator kriging (IK). The water temperatures and discharge rates of the springs were first assigned to high, moderate, and low categories according to the two thresholds of the proposed spring classification criteria. IK was then used to model the occurrence probabilities of the water temperatures and discharge rates of the springs and probabilistically determine their categories. Finally, nine combinations were acquired from the probability-based classifications for the spatial features of the water temperatures and discharge rates of the springs. Moreover, various combinations of spring water features were examined according to seven subzones of spring use in the study region. The research results reveal that probability-based classifications using IK provide practicable insights related to propagating the uncertainty of classifications according to the spatial features of the water temperatures and discharge rates of the springs. The springs in the Beitou (BT), Xingyi Road (XYR), Zhongshanlou (ZSL), and Lengshuikeng (LSK) subzones are suitable for supplying tourism hotels with a sufficient quantity of spring water because they have high or moderate discharge rates. Furthermore, natural hot springs in riverbeds and valleys should be developed in the Dingbeitou (DBT), ZSL, Xiayoukeng (XYK), and Macao (MC) subzones because of low discharge rates and low or moderate water temperatures.
Luce, J.S.; Smith, L.P.
1960-11-22
A method and apparatus are given for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons will diffuse to the more positive arc from the negative arc, and positive ions will diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantage that ions which return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. Those discharges are useful in confining an ionized plasma between the discharges, and have the advantage of preventing impurities from the walls of the enclosure from entering ihe plasma area because of the arc barrier set up bv the cylindrical outer arc.
Cherukuru, Nagur; Brando, Vittorio E.; Blondeau-Patissier, David; Ford, Phillip W.; Clementson, Lesley A.; Robson, Barbara J.
2017-09-01
Light absorption due to particulate and dissolved material plays an important role in controlling the underwater light environment and the above water reflectance signature. Thorough understanding of absorption properties and their variability is important to estimate light propagation in the water column. However, knowledge of light absorption properties in flood impacted coastal waters is limited. To address this knowledge gap we investigated a bio-optical dataset collected during a flood (2008) in the southern Great Barrier Reef (GBR) region coastal waters. Results presented here show strong impact of river flood discharges on water column stratification, distribution of suspended substances and light absorption properties in the study area. Bio-optical analysis showed phytoplankton absorption efficiency to reduce in response to increased coloured dissolved organic matter presence in flood impacted coastal waters. Biogeophysical property ranges, relationships and parametrisation presented here will help model realistic underwater light environment and optical signature in flood impacted coastal waters.
Enhanced Performance of Cylindrical Hall Thrusters
International Nuclear Information System (INIS)
Raitses, Y.; Smirnov, A.; Fisch, N.J.
2007-01-01
The cylindrical thruster differs significantly in its underlying physical mechanisms from the conventional annular Hall thruster. It features high ionization efficiency, quiet operation, ion acceleration in a large volume-to-surface ratio channel, and performance comparable with the state-of-the-art conventional Hall thrusters. Very significant plume narrowing, accompanied by the increase of the energetic ion fraction and improvement of ion focusing, led to 50-60% increase of the thruster anode efficiency. These improvements were achieved by overrunning the discharge current in the magnetized thruster plasma
Acoustic propagation mode in a cylindrical plasma
International Nuclear Information System (INIS)
Ishida, Yoshio; Idehara, Toshitaka; Inada, Hideyo
1975-01-01
The sound velocity in a cylindrical plasma produced by a high frequency discharge is measured by an interferometer system. The result shows that the acoustic wave guide effect does exist in a neutral gas and in a plasma. It is found that the wave propagates in the mode m=2 in a rigid boundary above the cut-off frequency fsub(c) and in the mode m=0 below fsub(c). Because the mode m=0 is identical to a plane wave, the sound velocity in free space can be evaluated exactly. In the mode m=2, the sound velocity approaches the free space value, when the frequency increases sufficiently. (auth.)
A study of cylindrical Hall thruster for low power space applications
Energy Technology Data Exchange (ETDEWEB)
Y. Raitses; N.J. Fisch; K.M. Ertmer; C.A. Burlingame
2000-07-27
A 9 cm cylindrical thruster with a ceramic channel exhibited performance comparable to the state-of-the-art Hall thrusters at low and moderate power levels. Significantly, its operation is not accompanied by large amplitude discharge low frequency oscillations. Preliminary experiments on a 2 cm cylindrical thruster suggest the possibility of a high performance micro Hall thruster.
Cup Cylindrical Waveguide Antenna
Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.
2008-01-01
The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).
Design of steel cylindrical tanks
Hlastec, Jan
2012-01-01
The thesis deals with the area of steel shell structures. Presented is the design process of steel cylindrical tanks using Eurocode standards. I dealt with the plastic limit states and stability limit state of steel shell structures. A program for the calculation of cylindrical steel tanks for the limit state of strength and stability is made in Matlab. The focus of this work is on understanding the design process of cylindrical steel tanks and creating a computer program in Matlab. Create...
Dorsey, Rebecca J.; O’Connell, Brennan; McDougall-Reid, Kristin; Homan, Mindy B.
2018-01-01
The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between ~ 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at ~ 5.4–5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between ~ 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between ~ 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at ~ 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough.These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on
Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.
2017-12-01
Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.
Controlling the Plasma Flow in the Miniaturized Cylindrical Hall Thruster
International Nuclear Information System (INIS)
Smirnov, A.; Raitses, Y.; Fisch, N.J.
2008-01-01
A substantial narrowing of the plume of the cylindrical Hall thruster (CHT) was observed upon the enhancement of the electron emission from the hollow cathode discharge, which implies the possibility for the thruster efficiency increase due to the ion beam focusing. It is demonstrated that the miniaturized CHT can be operated in the non-self-sustained regime, with the discharge current limited by the cathode electron emission. The thruster operation in this mode greatly expands the range of the plasma and discharge parameters normally accessible for the CHT.
International Nuclear Information System (INIS)
Zambra, M.; Moreno, J.; Favre, H.
1995-01-01
Plasma formation processes taking place inside the Hollow Cathode Region (HCR) are known to play an essential role in assisting ionization growth in the interelectronic space of Transient Hollow Cathode Discharges (THCD). In the prebreakdown phase, electron beams originated in the HCR plasma are known to be responsible for the initial formation of a virtual anode close to the anode electrode, which then propagates towards the cathode. Over a certain pressure range, full electric breakdown takes place when the virtual anode reaches the cathode. Here, we present preliminary observations of HCR plasma light emission, which are time correlated with the evolution of the virtual anode and the high energy electron beam activity. Over the pressure range investigated, light emission from the HCR is seen to be enhanced during the prebreakdown phase. After breakdown in the interelectrode space, light emission is seen to decrease, thus indicating a decaying plasma. These results highlight the intimate coupling existing between HCR plasma processes and ionization growth in the main gap
International Nuclear Information System (INIS)
Larson, D.T.; Draper, H.L.
1983-01-01
Silver films are physically vapor deposited onto beryllium substrates using a hot hollow cathode discharge. To obtain high Be-Ag adhesion strengths, an atomically 'clean' surface is obtained by ion bombardment cleaning. In this investigation, the relationship of the ion cleaning parameters to contaminants in the Be-Ag interfacial region and their effect on adhesion strength were evaluated. Specimens were ion cleaned at various bombardment parameters and then flash coated with silver. In-depth film profiles were taken by sputter etching in argon and monitoring the Auger electron peak-to-peak heights. The interface was also analyzed by taking a complete spectrum at the edge of the sputter crater. Impurities found at the interface were tantalum, copper and oxygen. The results for adhesion strengths showed that a small amount of oxygen (about 2 at.%) left in the Be-Ag interface will reduce the adhesion strength of the coating. Silver films deposited in an air leak that was greater than a leak which is easily detectable by residual gas analysis contained only about 0.5 at.% O with no reduction in film adherence strengths. (Auth.)
Wooldridge, Scott A; Brodie, Jon E; Kroon, Frederieke J; Turner, Ryan D R
2015-08-15
A modelling framework is developed for the Wet Tropics region of the Great Barrier Reef that links a quantitative river discharge parameter (viz. dissolved inorganic nitrogen concentration, DIN) with an eutrophication indicator within the marine environment (viz. chlorophyll-a concentration, chl-a). The model predicts catchment-specific levels of reduction (%) in end-of-river DIN concentrations (as a proxy for total potentially reactive nitrogen, PRN) needed to ensure compliance with chl-a 'trigger' guidelines for the ecologically distinct, but PRN-related issues of crown-of-thorns starfish (COTS) outbreaks, reef biodiversity loss, and thermal bleaching sensitivity. The results indicate that even for river basins dominated by agricultural land uses, quite modest reductions in end-of-river PRN concentrations (∼20-40%) may assist in mitigating the risk of primary COTS outbreaks from the mid-shelf reefs of the Wet Tropics. However, more significant reductions (∼60-80%) are required to halt and reverse declines in reef biodiversity, and loss of thermal bleaching resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Xiao-ming; Cao, Wen-hong; Yu, Xin-xiao; Zhang, Man-liang; Wang, Xiang-dong; Zhu, Bi-sheng
2009-01-01
By using the measurement technique of dynamic hydrological process and the estimation method of landscape ecology, this paper studied the effects of 1986-2004 land use/cover change (LUCC) on the runoff sediment discharge in the Luoyugou watershed in Tianshui of Gansu Province in third sub-region of Loess Plateau. The results showed that the LUCC in Luoyugou watershed had significant effects on the annual sediment yield. In 1995-2004, the sediment discharge was reduced by approximately 63.0%, compared with that in 1986-1994, and the reduction effect was more significant with increasing annual precipitation. The effects of LUCC on sediment discharge demonstrated seasonal fluctuation characteristic. Relative to that in 1986-1994, the reduction effect of sediment discharge in 1995-2004 was more concentrated in the period from May to October, and, the more the monthly precipitation, the more the reduction of monthly average sediment discharge in 1995-2004 than in 1986-1994. The analysis on precipitation and flood peak discharge frequency indicated that under the same frequency distribution of precipitation intensity, the average sediment concentration in any recurrence period in Luoyugou watershed was smaller in 1995-2004 than in 1986-1994.
Abrignani, Maurizio Giuseppe; De Luca, Giovanni; Gabriele, Michele; Tourkmani, Nidal
2014-06-01
Mortality and rehospitalizations still remain high after discharge for an acute cardiologic event. In this context, hospital discharge represents a potential pitfall for heart disease patients. In the setting of care transitions, the discharge letter is the main instrument of communication between hospital and primary care. Communication, besides, is an integral part of high-quality, patient-centered interventions aimed at improving the discharge process. Inadequate information at discharge significantly affects the quality of treatment compliance and the adoption of lifestyle modifications for an effective secondary prevention. The Health Department of Sicily, in 2013, established a task force with the aim to elaborate "Regional recommendations for hospital discharge and communication with patients after admission due to a cardiologic event", inviting to participate GICR-IACPR and many other scientific societies of cardiology and primary care, as discharge letter and communication are fundamental junctions of care transitions in cardiology. These recommendations have been published as a specific decree and contain: a structured model of discharge letter, which includes all of the parameters characterizing patients at high clinical risk, high thrombotic risk and low risk according to the Consensus document ANMCO/GICR-IACPR/GISE; is thus possible to identify these patients, choosing consequently the most appropriate follow-up pathways. A particular attention has been given to the "Medication Reconciliation" and to the identification of therapeutic targets; an educational Kit, with different forms on cardiac diseases, risk factors, drugs and lifestyle; a check-list about information given to the patient and caregivers. The "Recommendations" represent, in conclusion, the practical realization of the fruitful cooperation between scientific societies and political-administrative institutions that has been realized in Sicily in the last years.
Electromagnetic Cylindrical Transparent Devices with Irregular Cross Section
Directory of Open Access Journals (Sweden)
C. Yang
2010-04-01
Full Text Available Electromagnetic transparent device is very important for antenna protection. In this paper, the material parameters for the cylindrical transparent devices with arbitrary cross section are developed based on the coordinate transformation. The equivalent two-dimensional (2D transparent devices under TE plane and cylindrical wave irradiation is designed and studied by full-wave simulation, respectively. It shows that although the incident waves are distorted in the transformation region apparently, they return to the original wavefronts when passing through the device. All theoretical and numerical results validate the material parameters for the cylindrical transparent devices with arbitrary cross section we developed.
Cardiac pacemaker implantation - discharge; Artificial pacemaker - discharge; Permanent pacemaker - discharge; Internal pacemaker - discharge; Cardiac resynchronization therapy - discharge; CRT - discharge; ...
Stage Cylindrical Immersive Display
Abramyan, Lucy; Norris, Jeffrey S.; Powell, Mark W.; Mittman, David S.; Shams, Khawaja S.
2011-01-01
Panoramic images with a wide field of view intend to provide a better understanding of an environment by placing objects of the environment on one seamless image. However, understanding the sizes and relative positions of the objects in a panorama is not intuitive and prone to errors because the field of view is unnatural to human perception. Scientists are often faced with the difficult task of interpreting the sizes and relative positions of objects in an environment when viewing an image of the environment on computer monitors or prints. A panorama can display an object that appears to be to the right of the viewer when it is, in fact, behind the viewer. This misinterpretation can be very costly, especially when the environment is remote and/or only accessible by unmanned vehicles. A 270 cylindrical display has been developed that surrounds the viewer with carefully calibrated panoramic imagery that correctly engages their natural kinesthetic senses and provides a more accurate awareness of the environment. The cylindrical immersive display offers a more natural window to the environment than a standard cubic CAVE (Cave Automatic Virtual Environment), and the geometry allows multiple collocated users to simultaneously view data and share important decision-making tasks. A CAVE is an immersive virtual reality environment that allows one or more users to absorb themselves in a virtual environment. A common CAVE setup is a room-sized cube where the cube sides act as projection planes. By nature, all cubic CAVEs face a problem with edge matching at edges and corners of the display. Modern immersive displays have found ways to minimize seams by creating very tight edges, and rely on the user to ignore the seam. One significant deficiency of flat-walled CAVEs is that the sense of orientation and perspective within the scene is broken across adjacent walls. On any single wall, parallel lines properly converge at their vanishing point as they should, and the sense of
Cylindrically converging blast waves in air
Matsuo, H.; Nakamura, Y.
1981-07-01
Cylindrically converging shock waves are produced by utilizing the detonation of cylindrical explosive shells. The production and the propagation of shock waves are observed by framing and streak camera photographs, and the trajectory of shock propagations is determined by using an electrical ionization probing system. The effect of the quantity of explosives on the stability, or the axial symmetry, of shock fronts and on the strength of shocks produced is investigated. It has been shown that, for practical purposes, the approximation of shock trajectories by Guderley's formulas would be sufficiently acceptable in an unexpectedly wide region near the implosion center, and that the axial symmetry of the shock front is improved by increasing the quantity of explosives, and thus, strong shocks are produced by merely increasing the quantity of explosives. The reflected diverging shock seems to be very stable. Piezoelectric elements have also been used to detect reflected diverging waves.
D'Agnese, F. A.; Faunt, C.C.; Turner, A.K.; ,
1996-01-01
The recharge and discharge components of the Death Valley regional groundwater flow system were defined by techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were used to calculate discharge volumes for these area. An empirical method of groundwater recharge estimation was modified to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter
International Nuclear Information System (INIS)
Gettleson, D.A.
1995-01-01
Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) work included analyses of samples. Task 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved the continued analyses of samples and field sampling at Bay de Chene. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) activities included preparing a draft final report. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) work also involved preparing a draft final report. Task 7 (Technology Transfer Plan) activities included a presentation at the Minerals Management Service Information Transfer Meeting for the Gulf of Mexico OCS Region. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management
Characteristics of the low power cylindrical anode layer ion source
International Nuclear Information System (INIS)
Zhao Jie; Tang Deli; Cheng Changming; Geng Shaofei
2009-01-01
A low power cylindrical anode layer ion source and its working characteristic, and the beam distribution are introduced. This ion source has two working states, emanative state and collimated state, and the normal parameters of this system are: working voltage 200-1200 V, discharge current 0.1-1.4A, air pressure 1.9 x 10 -2 -1.7 x 10 -1 Pa, gas flow 5-20 sccm. (authors)
Novel cylindrical probe for measuring ion temperature in magnetized plasmas
Czech Academy of Sciences Publication Activity Database
Tierens, W.; Komm, Michael; Stöckel, Jan; Van Oost, G.
2010-01-01
Roč. 50, č. 9 (2010), s. 841-846 ISSN 0863-1042 R&D Projects: GA ČR GA202/07/0044 Institutional research plan: CEZ:AV0Z20430508 Keywords : PIC * particle-in-cell * simulation * ion temperature * cylindrical probe * STP * segmented tunnel probe * non-thermal plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.006, year: 2010 http://onlinelibrary.wiley.com/doi/10.1002/ctpp.201010143/abstract
DEFF Research Database (Denmark)
Waechter, Janine; Madruga, Marina de Mattos; Carmo Filho, Luiz Carlos
2017-01-01
BACKGROUND: Companies affirm that tapered implants show adequate initial stability, while their installation in the lower arch is uncommon in clinical practice. PURPOSE: To compare the clinical outcomes of tapered and cylindrical implants and to study their effect on bone site characteristics and...... correlated with the PS only for the cylindrical dental implants. CONCLUSIONS: Tapered and cylindrical implants have similar biological behavior during the healing process. Bone site characteristics can influence insertion torque and implant stability.......BACKGROUND: Companies affirm that tapered implants show adequate initial stability, while their installation in the lower arch is uncommon in clinical practice. PURPOSE: To compare the clinical outcomes of tapered and cylindrical implants and to study their effect on bone site characteristics...... and peri-implant health during healing. MATERIALS AND METHODS: The implant site dimensions were assessed by linear measurements using CBCT prior to the installation of 40 implants in the posterior mandible (20 tapered and 20 cylindrical). The bone type was registered during drilling via the surgeon...
Tantawi, Sami G.; Dolgashev, Valery A.; Yeremian, Anahid D.
2016-03-15
A high-power microwave RF window is provided that includes a cylindrical waveguide, where the cylindrical waveguide includes a ceramic disk concentrically housed in a central region of the cylindrical waveguide, a first rectangular waveguide, where the first rectangular waveguide is connected by a first elliptical joint to a proximal end of the cylindrical waveguide, and a second rectangular waveguide, where the second rectangular waveguide is connected by a second elliptical joint to a distal end of the cylindrical waveguide.
Shih, David Ching-Fang
2018-04-01
Due to increasing population worldwide, there is an urgent need to manage these important but diminishing groundwater resources efficiently to ensure their continued availability. The major innovative design of this study is to provide a practical assessment process for groundwater discharge under a regional demand by characterizing the nature of leaky confined aquifers overlain on a Mesozoic granitic gneiss basement which involves the important groundwater system in the Kinmen region (Taiwan, ROC) and the assessment of adoptable groundwater discharge in aquifer is needed. The storage coefficient presents an order of one in a thousand and hydraulic conductivity is approximately at the order of 1-8 m/d and 0.4-0.9 m/d for aquifer and aquitard respectively. Groundwater discharge and admissible number of pumping well is suggested considering scheduled maximum groundwater volume and head decline change for eastern and western studied area respectively. The safety subjected to the conservative issue is then addressed by the use of scheduled maximum groundwater volume. It reveals that the safety can be ensured using the indicator as scheduled maximum groundwater volume with predefined scenarios. The result can be utilized practically for developing management strategy of groundwater resources due to the applicability and novel of method.
Milambo, Jean Paul Muambangu; Cho, KaWing; Okwundu, Charles; Olowoyeye, Abiola; Ndayisaba, Leonidas; Chand, Sanjay; Corden, Mark H
2018-01-01
Current practice in the Western Cape region of South Africa is to discharge newborns born in-hospital within 24 h following uncomplicated vaginal delivery and two days after caesarean section. Mothers are instructed to bring their newborn to a clinic after discharge for a health assessment. We sought to determine the rate of newborn follow-up visits and the potential barriers to timely follow-up. Mother-newborn dyads at Tygerberg Hospital in Cape Town, South Africa were enrolled from November 2014 to April 2015. Demographic data were obtained via questionnaire and medical records. Mothers were contacted one week after discharge to determine if they had brought their newborns for a follow-up visit, and if not, the barriers to follow-up. Factors associated with follow-up were analyzed using logistic regression. Of 972 newborns, 794 (82%) were seen at a clinic for a follow-up visit within one week of discharge. Mothers with a higher education level or whose newborns were less than 37 weeks were more likely to follow up. The follow-up rate did not differ based on hospital length of stay. Main reported barriers to follow-up included maternal illness, lack of money for transportation, and mother felt follow-up was unnecessary because newborn was healthy. Nearly 4 in 5 newborns were seen at a clinic within one week after hospital discharge, in keeping with local practice guidelines. Further research on the outcomes of this population and those who fail to follow up is needed to determine the impact of postnatal healthcare policy.
Energy corrections in pulsed neutron measurements for cylindrical geometry
International Nuclear Information System (INIS)
Drozdowicz, K.; Woznicka, U.
1982-01-01
A solution of the thermal neutron diffusion equation for a two-region concentric cylindrical system, with a constant neutron flux in the inner medium assumed, is given. The velocity-averaged dynamic parameters for thermal neutrons are used in the method. The corrections due to the diffusion cooling are introduced into the dynamic material buckling and into the velocity distribution of the thermal neutron flux. Detailed relations obtained for a hydrogenous moderator are given. Results of the measurements of the thermal neutron macroscopic absorption cross-sections for the samples in the two-region cylindrical systems are presented. (author)
One-dimensional hydrodynamical kinetics model of a cylindrical DBD reactor with N2
International Nuclear Information System (INIS)
Flores-Moreno, M; De la Piedad-Beneitez, A; Barocio-Delgado, S; Mercado-Cabrera, A; López-Callejas, R; Peña-Eguiluz, R; Rodríguez-Méndez, B; Muñoz-Castro, A
2012-01-01
A numerical 1-D model of the chemical kinetics related hydrodynamics of room pressure N 2 plasma at 25 degrees C is reported. This generic discharge is assumed to take place between two cylindrical concentric electrodes, coated in a dielectric material, biased between 1 kV and 10 kV at 60Hz - 3kHz. The model includes the integration of particles conservation and the momentum equations as well as the local field approximation and the Poisson equations for the sake of completeness. The outcome shows that an accumulation of electrons takes place in the close vicinity of the higher voltage electrode, due to the electric field convergence to the internal electrode. Thus, this is a region of intense ionization whereas the generation of free radicals would occur away from the internal electrode. The model predicts no significant influence of the electric field on the heavier particles whose density remains practically constant.
Energy Technology Data Exchange (ETDEWEB)
J.M. Fenelon; M.T. Moreo
2002-09-30
Ground-water level and discharge data from 1960 to 2000 were analyzed for the Yucca Mountain region of southern Nevada and eastern California. Included were water-level data from 37 wells and a fissure (Devils Hole) and discharge data from five springs and from a flowing well. Data were evaluated for variability and for upward, downward, or cyclic trends with an emphasis on the period 1992-2000. Potential factors causing trends in water levels and discharge include ground-water withdrawal, infiltration of precipitation, earthquakes, evapotranspiration, barometric pressure, and earth tides. Statistically significant trends in ground water levels or spring discharge from 1992 to 2000 were upward at 12 water-level sites and downward at 14 water-level sites and 1 spring-discharge site. In general, the magnitude of the change in water level from 1992 to 2000 was small (less than 2 feet), except where influenced by pumping or local effects such as possible equilibration from well construction or diversion of nearby surface water. Seasonal trends are superimposed on some of the long-term (1992-2000) trends in water levels and discharge. Factors causing seasonal trends include barometric pressure, evapotranpsiration, and pumping. The magnitude of seasonal change in water level can vary from as little as 0.05 foot in regional aquifers to greater than 5 feet in monitoring wells near large supply wells in the Amargosa Farms area. Three major episodes of earthquake activity affected water levels in wells in the Yucca Mountain region between 1992 and 2000: the Landers/Little Skull Mountain, Northridge, and Hector Mine earthquakes. The Landers/Little Skull Mountain earthquakes, in June 1992, had the largest observed effect on water levels and on discharge during the study period. Monthly measurements of wells in the study network show that earthquakes affected water levels from a few tenths of a foot to 3.5 feet. In the Ash Meadows area, water levels remained relatively stable
Filling of charged cylindrical capillaries
Das, S.; Chanda, Sourayon; Eijkel, Jan C.T.; Tas, Niels Roelof; Chakraborty, Suman; Mitra, Sushanta K.
2014-01-01
We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because
Optics Demonstrations Using Cylindrical Lenses
Ivanov, Dragia; Nikolov, Stefan
2015-01-01
In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…
Dismantling OPAL's cylindrical magnet core
Laurent Guiraud
2001-01-01
Lifting a handling device for dismounting the pressure bells, which are inside the cylindrical magnet coil on the central section of OPAL, on the right part of the photo. OPAL was a detector on the LEP accelerator, which ran from 1989 to 2000.
Waechter, Janine; Madruga, Marina de Matos; Carmo Filho, Luiz Carlos do; Leite, Fábio Renato Manzolli; Schinestsck, André Ribeiro; Faot, Fernanda
2017-08-01
Companies affirm that tapered implants show adequate initial stability, while their installation in the lower arch is uncommon in clinical practice. To compare the clinical outcomes of tapered and cylindrical implants and to study their effect on bone site characteristics and peri-implant health during healing. The implant site dimensions were assessed by linear measurements using CBCT prior to the installation of 40 implants in the posterior mandible (20 tapered and 20 cylindrical). The bone type was registered during drilling via the surgeon's tactile perception, following the classification of Lekholm and Zarb. Primary stability (PS) was determined by the insertion torque (IT) and the implant stability quotient (ISQ). Secondary stability (SS) and the peri-implant health was monitored for 3 months through the visible plaque index (VPI), the peri-implant inflammation (PI), the probing depth index (PDI), and the gingival bleeding index (GBI). Significant differences were investigated with t-tests for independent samples, chi-square tests or Fisher's exact test. Pearson's correlation test was used to investigate the relationship between the bone site characteristics and PS (IT and ISQ), as well as the relationships between IT and ISQ for each implant type. Tapered and cylindrical implants showed no significant differences for any outcome variable (P > .05). A significant decrease in ISQ was observed after 7 days of healing (P = .0002), followed by a gradual increase beginning at 21 days (P = .0010) until the last follow-up time at 90 days (P = .0319). The cortical height was correlated with IT; while medullary bone dimensions were correlated with the PS as evidenced by the ISQ values. The insertion torque was significantly correlated with the PS only for the cylindrical dental implants. Tapered and cylindrical implants have similar biological behavior during the healing process. Bone site characteristics can influence insertion torque and implant
Cinotto, Peter J.
2003-01-01
Stream-restoration projects utilizing natural stream designs frequently are based on the bankfull-channel characteristics of stream reaches that can accommodate streamflow and sediment transport without excessive erosion or deposition and lie within a watershed that has similar runoff characteristics. The bankfull channel at an ungaged impaired site or reference reach is identified by use of field indicators and is confirmed with tools such as regional curves. Channel dimensions were surveyed at 14 streamflow-measurement stations operated by the U.S. Geological Survey (USGS) in the Gettysburg-Newark Lowland Section, Piedmont Lowland Section, and the Piedmont Upland Section of the Piedmont Physiographic Province1 in Pennsylvania and Maryland. From the surveyed channel dimensions, regional curves were developed from regression analyses of the relations between drainage area and the cross-sectional area, mean depth, width, and streamflow of the bankfull channel at these sites. Bankfull cross-sectional area and bankfull discharge have the strongest relation to drainage area as evidenced by R2 values of 0.94 and 0.93, respectively. The relation between bankfull crosssectional area and drainage area has a p-value of less than 0.001; no p-value is presented for the relation between bankfull discharge and drainage area because of a non-normal residual distribution. The relation between bankfull width and drainage area has an R2 value of 0.80 and a p-value of less than 0.001 indicating a moderate linear relation between all stations. The relation between bankfull mean depth and drainage area, with an R2 value of 0.72 and a p-value of less than 0.001, also indicates a moderate linear relation between all stations. The concept of regional curves can be a valuable tool to support efforts in stream restoration. Practitioners of stream restoration need to recognize it as such and realize the limitations. The small number of USGS streamflow-measurement stations available for
Shoulder replacement - discharge
Total shoulder arthroplasty - discharge; Endoprosthetic shoulder replacement - discharge; Partial shoulder replacement - discharge; Partial shoulder arthroplasty - discharge; Replacement - shoulder - discharge; Arthroplasty - shoulder - discharge
Early discharge following birth
DEFF Research Database (Denmark)
Nilsson, Ingrid M. S.; Kronborg, Hanne; Knight, Christopher H.
2017-01-01
of discharge after birth. Results In total 34% mothers were discharged within 12 hours (very early) and 25% between 13 and 50 hours (early), respectively. Vaginal birth and multiparity were the most influential predictors, as Caesarean section compared to vaginal birth had an OR of 0.35 (CI 0....... Smoking, favourable social support and breastfeeding knowledge were significantly associated with discharge within 12 hours. Finally time of discharge varied significantly according to region and time of day of birth. Conclusions Parity and birth related factors were the strongest predictors of early...
Homotheties of cylindrically symmetric static spacetimes
International Nuclear Information System (INIS)
Qadir, A.; Ziad, M.; Sharif, M.
1998-08-01
In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)
Zonneveld, K.; Chen, L.; Möbius, J.; Mahmoud, M.
2009-04-01
Continuous marine high-resolution climate records with sufficient time resolution are needed to detect high-frequency variations in paleo-climate. Such records are rare but vital for our understanding of causes and consequences of climate and environmental change at decadal to millennial time scales. The eastern Mediterranean Sea is particularly sensitive to climate change and within the EuroMark fundet project MOCCHA (Multidisciplinary study Of Continental/ocean Climate dynamics using High-resolution records from the eastern mediterraneAn) we intent to obtain detailed information about short term climate perturbations in climate at annual to decadal time resolution. Recently unique sediment cores have been recovered from the Southern Italian Region that allow the reconstruction of climate in the region at this resolution. Pilot studies at these sites have revealed that these short term perturbations in climate involve either temperature or precipitation changes or a combination of both (Versteegh et al., 2007). A way to determine the precipitation and temperature history of the Italian climate is to establish reconstructions of past variations in Po-river discharge and sea surface temperatures in the region. Fossil dinoflagellate cyst associations are very suitable tools to achieve this information as they reflect in detail changes in surface water salinity concentrations and upper water productivity as well as temperature. However, to do this precise information about the relationship between present day upper ocean environmental conditions and cyst association in modern surface sediment samples has to be established. To obtain this information we have studied the association of 48 sites in the middle and distal part of the discharge plume. The dinoflagellate cyst association reflects both upper and bottom water circulation. Four associations can be distinguished that are characteristic for the major oceanographic settings in the region. (1) River discharge
Magnetization curves for non-elliptic cylindrical samples in a ...
Indian Academy of Sciences (India)
Using recent results for the surface current density on cylindrical surfaces of arbitrary cross-section producing ... The critical state model (CSM) involving just one parameter, the critical current density,. В, was proposed by Bean ..... 0 in the current-free region of the sample, using parallel flux-contours. However, in this case В ...
Sound Radiation of Cylindrical Shells
Directory of Open Access Journals (Sweden)
B Alzahabi
2016-09-01
Full Text Available The acoustic signature of submarines is very critical in such high performance structure. Submarines are not only required to sustain very high dynamic loadings at all time, but also being able maneuver and perform their functions under sea without being detected by sonar systems. Submarines rely on low acoustic signature level to remain undetected. Reduction of sound radiation is most efficiently achieved at the design stage. Acoustic signatures may be determined by considering operational scenarios, and modal characteristics. The acoustic signature of submarines is generally of two categories; broadband which has a continuous spectrum; and a tonal noise which has discrete frequencies. The nature of sound radiation of submarine is fiction of its speed. At low speed the acoustic signature is dominated by tonal noise, while at high speed, the acoustic signature is mainly dominated by broadband noise. Submarine hulls are mainly constructed of circular cylindrical shells. Unlike that of simpler structures such as beams and plates, the modal spectrum of cylindrical shell exhibits very unique characteristics. Mode crossing, the uniqueness of modal spectrum, and the redundancy of modal constraints are just to name a few. In cylindrical shells, the lowest natural frequency is not necessarily associated with the lowest wave index. In fact, the natural frequencies do not fall in ascending order of the wave index either. Solution of the vibration problem of cylindrical shells also indicates repeated natural frequencies. These modes are referred to as double peak frequencies. Mode shapes associated with each one of the natural frequencies are usually a combination of Radial (flexural, Longitudinal (axial, and Circumferential (torsional modes. In this paper, the wave equation will be set up in terms of the pressure fluctuations, p(x, t. It will be demonstrated that the noise radiation is a fluctuating pressure wave.
Cylindrical wormholes in DGP gravity
Richarte, Martín G.
2013-01-01
We construct traversable thin-shell wormholes in the Dvali-Gabadadze-Porrati theory with cylindrical symmetry applying the cut and paste procedure to a flat black string solution of the five-dimensional vacuum Einstein field equations. In contrast to general relativity case, where thin-shell wormholes violate both weak and null energy conditions, we show that static wormholes are supported by normal matter while vacuum wormholes do not exist.
Kozlovskij, K. I.; Shikanov, A. E.; Vovchenko, E. D.; Shatokhin, V. L.; Isaev, A. A.; Martynenko, A. S.
2016-09-01
The paper deals with magnetic discharge diode module with inertial electrostatic ions confinement for the gas-filled pulsed neutron generators. The basis of the design is geometry with the central hollow cathode surrounded by the outer cylindrical anode and electrodes made of permanent magnets. The induction magnitude about 0.1-0.4 T in the central region of the discharge volume ensures the confinement of electrons in the space of hollow (virtual) cathode and leads to space charge compensation of accelerated ions in the centre. The research results of different excitation modes in pulsed high-voltage discharge are presented. The stable form of the volume discharge preserveing the shape and amplitude of the pulse current in the pressure range of 10-3-10-1 Torr and at the accelerating voltage up to 200 kV was observed.
Directory of Open Access Journals (Sweden)
Minárik Stanislav
2015-08-01
Full Text Available While passing swift heavy ion through a material structure, it produces a region of radiation affected material which is known as a "latent track". Scattering motions of electrons interacting with a swift heavy ion are dominant in the latent track region. These phenomena include the electron impurity and phonon scattering processes modified by the interaction with the ion projectile as well as the Coulomb scattering between two electrons.
Cylindrical Piezoelectric Fiber Composite Actuators
Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.
2008-01-01
The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.
Modeling is a useful tool for quantifying ecosystem services and understanding their temporal dynamics. Here we describe a hybrid regional modeling approach for sub-basins of the Calapooia watershed that incorporates both a precipitation-runoff model and an indexed regression mo...
Cylindrical Hall Thrusters with Permanent Magnets
International Nuclear Information System (INIS)
Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.
2010-01-01
The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT.
Directory of Open Access Journals (Sweden)
T. N. Bukharova
2008-01-01
Full Text Available According to the data available in the literature, as high as 50% of women have benign breast tumors frequently accompanied by nip- ple discharge. Nipple discharge may be serous, bloody, purulent, and colostric. The most common causes are breast abscess, injury, drugs, prolactinoma, intraductal pappiloma, ductal ectasia, intraductal cancer (not more than 10%.
Absorption factor for cylindrical samples
International Nuclear Information System (INIS)
Sears, V.F.
1984-01-01
The absorption factor for the scattering of X-rays or neutrons in cylindrical samples is calculated by numerical integration for the case in which the absorption coefficients of the incident and scattered beams are not equal. An extensive table of values having an absolute accuracy of 10 -4 is given in a companion report [Sears (1983). Atomic Energy of Canada Limited, Report No. AECL-8176]. In the present paper an asymptotic expression is derived for the absorption factor which can be used with an error of less than 10 -3 for most cases of interest in both neutron inelastic scattering and neutron diffraction in crystals. (Auth.)
Resonance integral of cylindrical absorber
International Nuclear Information System (INIS)
Slipicevic, K.
1968-01-01
This paper presents the procedure for calculating effective resonance integral for cylindrical rod which enables derivation of improved spatial distribution of source neutron flux. Application of this new expression for penetration factor, simultaneously with Doppler broadening of Breight-Wigner line enabled derivation of new equation for resonance integral which is valid for the whole range of surface-volume ratio of the rod, has correct boundary conditions and gives as special, results same as Wigner and Pomeranchuk. Functions for correcting the effects of interference of potential and resonance dissipation are derived separately
Kim, M. H.; Lim, Y. J.; Kang, H. S.; Kim, B. J.; Cho, C.
2017-12-01
This study investigates the effects of freshwater from the Changiang river basin over the East Asian region for summer season. To do this, we simulated global seasonal forecasting system (GloSea5) of KMA (Korea Meteorology Administration). GloSea5 consists of atmosphere, ocean, sea ice and land model. Also, it has river routing model (TRIP), which links between land and ocean using freshwater. It is very important component in long-term forecast because of be able to change the air-sea interaction. To improve more the freshwater performance over the East Asian region, we realistically modified the river mouth, direction and storage around Changiang river basin of TRIP in GloSea5. Here, the comparison study among the no freshwater forcing experiment to ocean model (TRIP-OFF), the operated original file based freshwater coupled experiment (TRIP-ON) and the improved one (TRIP-MODI) has been carried out and the results are evaluated against the reanalysis data. As a result, the amount of fresh water to the Yellow Sea increase in TRIP-ON experiment and it attributes to the improvement of bias and RMSE of local SST over the East Asia. The implementation of the realistic river related ancillary files (TRIP-MODI) improves the abnormal salinity distribution around the Changjiang river gate and its related SST reduces cold bias about 0.37˚C for July over the East Sea. Warm SST over this region is caused by barrier layer (BL). Freshwater flux and salinity changes can create a pronounced salinity-induced mixed layer (ML) above the top of the thermocline. The layer between the base of the ML and the top of the thermocline is called a barrier layer (BL), because it isolates the warm surface water from cold deep water. In addition, the improved fresh water forcing can lead to the change in the local volume transport from the Kuroshio to the Strait of Korea and Changed the transport and SST over the Straits of Korea have correlation 0.57 at 95% confidence level. For the
Models of cylindrical bubble pulsation.
Ilinskii, Yurii A; Zabolotskaya, Evgenia A; Hay, Todd A; Hamilton, Mark F
2012-09-01
Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23-26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion.
CT doses in cylindrical phantoms
International Nuclear Information System (INIS)
Atherton, J.V.; Huda, W.
1995-01-01
A single CT scan of thickness T in a cylindrical phantom produces a three-dimensional dose distribution, which depends primarily on the photon energy spectrum, the x-ray beam shaping filter and the size and composition of the irradiated phantom. Monte Carlo simulations employing monoenergetic photons were employed to investigate the effect of each of these factors on phantom dose distributions. The fractional energies scattered, imparted and transmitted through the CT phantom were calculated. A dose index (D(r)), which is a function of phantom radius r, was computed. Phantom materials investigated included lung, fat, water, soft tissue, acrylic and bone with calculations performed for head (160 mm diameter) and body (320 mm diameter) phantoms. All dose and energy imparted data generated for CT phantoms were normalized using an 'in air' dose (D air ), which is defined as the axial dose (in acrylic) at the isocentre in the absence of any phantom. Results obtained show how CT parameters impact on doses in cylindrical phantoms. These dosimetry data are likely to be useful to estimate energy imparted to phantoms (and patients) undergoing CT examinations. (author)
International Nuclear Information System (INIS)
Bayanov, N.I.
1982-01-01
The 90 Sr and 137 Cs concentrations in trout cultivated in warm water from the Kola Atomic Power Station (APS) in the period 1974-1979 were 30-70 pCi/kg. This is one-quarter to one-third of the radionuclide concentrations in wild fish living in this region and one-tenth of that in commerical fishes from other waters on the Kola Peninsula. The low radionuclide concentrations can be attributed to the absence of pollution in the coolant reservoir of the Kola APS during this period of operation, and also to the fact that the main mode of entry of radionuclides into the fish's body is through food. The investigations lead to the very important conclusion that fish-farming based on the warm effluents of atomic power stations is a feasible proposition
... dried fruits (such as raisins), mushrooms, chunky relishes, coconut, and some Chinese vegetables. Tips for when no ... ask your doctor Living with your ileostomy Low-fiber diet Small bowel resection - discharge Total colectomy or ...
Cylindrical plasmas generated by an annular beam of ultraviolet light
Energy Technology Data Exchange (ETDEWEB)
Thomas, D. M., E-mail: dmt107@imperial.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Allen, J. E., E-mail: John.Allen@maths.ox.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); University College, University of Oxford, Oxford OX1 4BH, United Kingdom and OCIAM, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom)
2015-07-15
We investigate a cylindrical plasma system with ionization, by an annular beam of ultraviolet light, taking place only in the cylinder's outer region. In the steady state, both the outer and inner regions contain a plasma, with that in the inner region being uniform and field-free. At the interface between the two regions, there is an infinitesimal jump in ion density, the magnitude approaching zero in the quasi-neutral (λ{sub D} → 0) limit. The system offers the possibility of producing a uniform stationary plasma in the laboratory, hitherto obtained only with thermally produced alkali plasmas.
Exact anisotropic polytropic cylindrical solutions
Sharif, M.; Sadiq, Sobia
2018-03-01
In this paper, we study anisotropic compact stars with static cylindrically symmetric anisotropic matter distribution satisfying polytropic equation of state. We formulate the field equations as well as the corresponding mass function for the particular form of gravitational potential z(x)=(1+bx)^{η } (η =1, 2, 3) and explore exact solutions of the field equations for different values of the polytropic index. The values of arbitrary constants are determined by taking mass and radius of compact star (Her X-1). We find that resulting solutions show viable behavior of physical parameters (density, radial as well as tangential pressure, anisotropy) and satisfy the stability condition. It is concluded that physically acceptable solutions exist only for η =1, 2.
Properties of the positive column of a glow discharge in flowing hydrogen
International Nuclear Information System (INIS)
Brunet, H.; Rocca Serra, J.; Mabru, M.
1981-01-01
Results of a theoretical model for predicting the effects of gas flow on the properties of the positive column in a glow discharge are presented. A cylindrical discharge at low pressure ( 2 molecules and H atoms produced by the discharge are calculated. Comparison with available experimental data is made
International Nuclear Information System (INIS)
Valdivia-Barrientos, R; Pacheco-Sotelo, J; Pacheco-Pacheco, M; BenItez-Read, J S; Lopez-Callejas, R
2006-01-01
A dielectric barrier discharge generated by flowing inert gas (helium) ionized by a high-voltage source through a cylindrical reactor working at atmospheric pressure has been studied and an electrical model characterizing this discharge is proposed. A sinusoidal voltage of up to 2 kV peak to peak with frequencies from 10 to 125 kHz has been applied to the discharge electrodes. The proposed model considers the geometry of the reactor and dielectric materials. From experimental and analytical results, a semi-empirical relation of the breakdown voltage is presented as a function of the operating frequency. The microdischarge regime is characterized by a dynamic equivalent capacitance
On cylindrical near-field scanning techniques
DEFF Research Database (Denmark)
Appel-Hansen, Jørgen
1980-01-01
The agreement between the coupling equations obtained in the literature by using the reciprocity theorem and the scattering matrix formulation is demonstrated. The field is expanded in cylindrical vector wave functions and the addition theorem for these functions is used. The communication may...... serve as a tutorial introduction to the cylindrical scanning techniques....
Finite Amplitude Electron Plasma Waves in a Cylindrical Waveguide
DEFF Research Database (Denmark)
Juul Rasmussen, Jens
1978-01-01
The nonlinear behaviour of the electron plasma wave propagating in a cylindrical plasma waveguide immersed in an infinite axial magnetic field is investigated using the Krylov-Bogoliubov-Mitropolsky perturbation method, by means of which is deduced the nonlinear Schrodinger equation governing....... It is further shown that an oscillatory solution of the Korteweg-de Vries equation, which is derived in the small wavenumber region, satisfies the small wavenumber limit of the nonlinear Schrodinger equation...
Arbitrarily elliptical-cylindrical invisible cloaking
International Nuclear Information System (INIS)
Jiang Weixiang; Cui Tiejun; Yu Guanxia; Lin Xianqi; Cheng Qiang; Chin, J Y
2008-01-01
Based on the idea of coordinate transformation (Pendry, Schurig and Smith 2006 Science 312 1780), arbitrarily elliptical-cylindrical cloaks are proposed and designed. The elliptical cloak, which is composed of inhomogeneous anisotropic metamaterials in an elliptical-shell region, will deflect incoming electromagnetic (EM) waves and guide them to propagate around the inner elliptical region. Such EM waves will return to their original propagation directions without distorting the waves outside the elliptical cloak. General formulations of the inhomogeneous and anisotropic permittivity and permeability tensors are derived for arbitrarily elliptical axis ratio k, which can also be used for the circular cloak when k = 1. Hence the elliptical cloaks can make a large range of objects invisible, from round objects (when k approaches 1) to long and thin objects (when k is either very large or very small). We also show that the material parameters in elliptical cloaking are singular at only two points, instead of on the whole inner circle for circular cloaking, which are much easier to be realized in actual applications. Full-wave simulations are given to validate the arbitrarily elliptical cloaking
Numerical investigation of dielectric barrier discharges
Li, Jing
1997-12-01
A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in
... 000241.htm Esophagectomy - discharge To use the sharing features on this page, please enable JavaScript. You had ... up or down stairs, or ride in a car. Be sure to rest after being active. If it hurts when ... In the bathroom , install safety bars to help you get in and out ...
... had breast reconstruction surgery with implants or natural tissue . What to Expect at Home Full recovery may take ... lump removal Breast reconstruction - implants Breast reconstruction - natural ... breast surgery - discharge Mastectomy and breast reconstruction - what to ask your doctor Wet-to-dry dressing ...
Intrinsic cylindrical and spherical waves
International Nuclear Information System (INIS)
Ludlow, I K
2008-01-01
Intrinsic waveforms associated with cylindrical and spherical Bessel functions are obtained by eliminating the factors responsible for the inverse radius and inverse square radius laws of wave power per unit area of wavefront. The resulting expressions are Riccati-Bessel functions for both cases and these can be written in terms of amplitude and phase functions of order v and wave variable z. When z is real, it is shown that a spatial phase angle of the intrinsic wave can be defined and this, together with its amplitude function, is systematically investigated for a range of fixed orders and varying z. The derivatives of Riccati-Bessel functions are also examined. All the component functions exhibit different behaviour in the near field depending on the order being less than, equal to or greater than 1/2. Plots of the phase angle can be used to display the locations of the zeros of the general Riccati-Bessel functions and lead to new relations concerning the ordering of the real zeros of Bessel functions and the occurrence of multiple zeros when the argument of the Bessel function is fixed
Fem Formulation of Heat Transfer in Cylindrical Porous Medium
Azeem; Khaleed, H. M. T.; Soudagar, Manzoor Elahi M.
2017-08-01
Heat transfer in porous medium can be derived from the fundamental laws of flow in porous region ass given by Henry Darcy. The fluid flow and energy transport inside the porous medium can be described with the help of momentum and energy equations. The heat transfer in cylindrical porous medium differs from its counterpart in radial and axial coordinates. The present work is focused to discuss the finite element formulation of heat transfer in cylindrical porous medium. The basic partial differential equations are derived using Darcy law which is the converted into a set of algebraic equations with the help of finite element method. The resulting equations are solved by matrix method for two solution variables involved in the coupled equations.
International Nuclear Information System (INIS)
Woodliffe, J.
1990-01-01
Current practice of North Sea States on the discharge and disposal of liquid radioactive wastes to the North Sea are based on the declaration issued at the Second International Conference on the Protection of the North Sea, known as the London Declaration. This has three main points the first of which emphasises the application of the Best Available Technology to protect the North Sea, the second provides a framework on which future controls on radioactive discharges should be based. The third identifies two parts of the framework; to take into account the recommendations of international organizations and that any repositories of radioactive waste which are built should not pollute the North Sea. This chapter looks at how the concensus based on the London Declaration is working, gauges the progress made in the implementation of the policy goal, identifies existing and future areas for concern and proposes ways of strengthening the control of radioactive discharges. The emphasis is on the United Kingdom practice and regulations for liquid wastes, most of which comes from the Sellafield Reprocessing Plant. (author)
Radon progeny distribution in cylindrical diffusion chambers
International Nuclear Information System (INIS)
Pressyanov, Dobromir S.
2008-01-01
An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.
Magnetized target fusion in cylindrical geometry
Energy Technology Data Exchange (ETDEWEB)
Basko, M.M. E-mail: basko@vitep5.itep.ru; Churazov, M.D.; Kemp, A.; Meyer-ter-Vehn, J
2001-05-21
General ignition conditions for magnetized target fusion (MTF) in cylindrical geometry are formulated. To attain an MTF ignition state, the deuterium-tritium fuel must be compressed in the regime of self-sustained magnetized implosion (SSMI). We analyze the general conditions and optimal parameter values required for initiating such a regime, and demonstrate that the SSMI regime can already be realized in cylindrical implosions driven by {approx}100 kJ beams of fast ions.
Cylindrical spirals in human skeletal muscle.
Carpenter, S; Karpati, G; Robitaille, Y; Melmed, C
1979-01-01
Muscle biopsies from two patients revealed that numerous type 2 fibers contained large abnormal areas filled with cylindrical spirals. The cytochemical profile of these cylindrical spirals was sufficiently characteristic that they could be distinguished from tubular aggregates. Their electron microscopic appearance was unmistakable. Their origin and significance are uncertain. The diverse nature of the patients' conditions (cramps and malignancy, and an unusual form of spinocerebellar degeneration) indicate that these abnormal structures are not disease specific.
Shockwave Interaction with a Cylindrical Structure
Mulligan, Phillip
2017-06-01
An increased understanding of the shockwave interaction with a cylindrical structure is the foundation for developing a method to explosively seal a pipe similar to the Deepwater Horizon accident in the Gulf of Mexico. Shockwave interactions with a cylindrical structure have been a reoccurring focus of energetics research. Some of the most notable contributions of non-destructive tests are described in ``The Effects of Nuclear Weapons'' (Glasstone, 1962). The work presented by Glasstone examines shockwave interaction from a 20-megaton bomb with a cylindrical structure. However, the data is limited to a peak overpressure of less than 25 psi, requiring several miles between the structure and the charge. The research presented in the following paper expands on the work Glasstone described by examining the shockwaves from 90, 180, and 270-gram C-4 charges interacting with a 6-inch diameter cylindrical structure positioned 52-inches from the center of the charge. The three charge weights that were tested in this research generated a peak overpressures of approximately 15, 25, and 40 psi, respectively. This research examines the peak pressure and total impulse from each charge acting on the cylindrical structure as well as the formation of vortices on the ``backside'' of the cylinder surface. This paper describes the methodology and findings of this study as well as examines the causality and implications of its results on our understanding of the shockwave interaction with a cylindrical structure.
Yadav, Pramod Kumar
2018-01-01
The present problem is concerned with the flow of a viscous steady incompressible fluid through a non-homogeneous porous medium. Here, the non-homogeneous porous medium is a membrane built up by cylindrical particles. The flow outside the membrane is governed by the Stokes equation and the flow through the non-homogeneous porous membrane composed by cylindrical particles is governed by Darcy's law. In this work, we discussed the effect of various fluid parameters like permeability parameter k0, discontinuity coefficient at fluid-non homogeneous porous interface, viscosity ratio of viscous incompressible fluid region and non-homogeneous porous region, etc. on hydrodynamic permeability of a membrane, stress and on velocity profile. The comparative study for hydrodynamic permeability of membrane built up by non-homogeneous porous cylindrical particles and porous cylindrical shell enclosing a cylindrical cavity has been studied. The effects of various fluid parameters on the streamlines flow patterns are also discussed.
Directory of Open Access Journals (Sweden)
Zhenwei Mo
2016-01-01
Full Text Available We use the continuity equation and the Reynolds averaged Navier-Stokes equations to study the flow-pattern characteristics around a turbine runner for the small-opening cylindrical valve of a hydraulic turbine. For closure, we adopt the renormalization-group k-ε two-equation turbulence model and use the computational fluid dynamics (CFD software FLUENT to numerically simulate the three-dimensional unsteady turbulent flow through the entire passage of the hydraulic turbine. The results show that a low-pressure zone develops around the runner blades when the cylindrical valve is closed in a small opening; cavitation occurs at the blades, and a vortex appears at the outlet of the runner. As the cylindrical valve is gradually closed, the flow velocity over the runner area increases, and the pressure gradient becomes more significant as the discharge decreases. In addition, the fluid flow velocity is relatively high between the lower end of the cylindrical valve and the base, so that a high-velocity jet is easily induced. The calculation and analysis provide a theoretical basis for improving the performance of cylindrical-valve operating systems.
Coating of inner surface of cylindrical pipe for hydrogen entry prevention using plasma process
Kawasaki, Hiroharu; Nishiguchi, Hiroshi; Furutani, Takumi; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Shinohara, Masanori; Suda, Yoshiaki
2018-01-01
Aluminum alloy A6061, which is highly resistant to hydrogen entry, was prepared on a carbide steel cylindrical pipe using a magnetron sputtering deposition method. In this method, plasma was generated between the cylindrical pipe substrate and the cylindrical rod targets, and it moved toward the axial direction with the generation of a modulated magnetic field by a low-frequency alternating coil current. Uniform A6061 thin films were deposited inside the cylindrical pipe using the magnetron sputtering deposition method. The surface morphologies of the films were smooth, and the uniformity of the films was increased by the modulated magnetic field. Moreover, hydrogen content measurements revealed that the A6061 plasma coating is highly resistant to hydrogen entry in corrosive environments, suggesting that the coating was applicable to the elastic deformation region of the base material.
A binary electrolyte model of a cylindrical alkaline cell
Kriegsmann, J. J.; Cheh, H. Y.
A cylindrical alkaline cell is modeled as a binary electrolyte system by assuming the direct electrochemical formation of ZnO in the anode. Justifications for replacing the dissolution-precipitation mechanism are provided. Compared to the original model, the binary electrolyte model has a more understandable model formulation, more consistent physical property data, and greater flexibility in certain instances. The binary electrolyte model predicts a longer cell life and higher operating voltage than the ternary electrolyte model for the test case discharge rate. There are no numerical difficulties associated with the zincate ion in the binary electrolyte model, because this species is not considered. The characteristics and advantages of the simplified anode behavior are discussed. An application of the binary electrolyte model is included.
DEFF Research Database (Denmark)
Horsbøl, Anders
2012-01-01
less attention has been given to medical patients, who are often elderly and suffer from multiple diseases. This paper addresses the latter issue with a case study of a local initiative to improve transition from hospital to home (care) for medical patients at a Danish hospital, in which a discharge......For several years, efforts have been made to strengthen collaboration between health professionals with different specializations and to improve patient transition from hospital to home (care). In the Danish health care system, these efforts have concentrated on cancer and heart diseases, whereas...
The numerical simulation of plasma flow in cylindrical resonant cavity of microwave plasma thruster
International Nuclear Information System (INIS)
Tang, J.-L.; He, H.-Q; Mao, G.-W.
2004-01-01
Microwave Plasma Thruster (MPT) is an electro-thermal propulsive device. MPT consists of microwave generator, gas storing and supplying system, resonant cavity and accelerative nozzle. It generates free-floating plasma brought by the microwave discharge breakdown gas in the resonant cavity, and the plasma exhausted from nozzle produces thrust. MPT has prospective application in spacecraft because of its advantages of high thrust, moderate specific impulse and high efficiency. In this paper, the numerical simulation of the coupling flow field of microwave plasma in resonant cavity under different frequencies will be discussed. The results of numerical simulation are as follows: 1) When the resonant model TM 011 was used, the higher the microwave frequency was, the smaller the size of MPT. The distribution of the electromagnetic field in small cavity, however, remain unchanged. 2) When the resonant model was used, the distribution of the temperature, the pressure and the electronic density in the resonant cavity remained unchanged under different resonant frequencies. 3) When the resonant frequency was increased with a fixed pressure distribution in a small cavity, compare to the MPT with lower frequency, the gas flow rate, the microwave power and the nozzle throat diameter of MPT all decreased. 4) The electromagnetic field in the cylindrical resonant cavity for all MPT with different frequencies was disturbed by the plasma formation. The strong disturbance happened in the region close to the plasma. (author)
Gow, J.D.
1961-01-10
An extremely compact two-terminal gaseous discharge device is described that is capable of producing neutrons in copious quantities, relatively high energy ions, intense x rays, and the like. Principal novelty resides in the provision of a crossed electric-magnetic field region in the discharge envelope that traps electrons and accelerates them to very high energies to provide an intense ionizing medium adjacent the anode of the device for ionizing gas therein with extremely high efficiency. In addition, the crossed-field trapping region holds the electrons close to the anode whereby the acceleration of ions to the cathode is not materially effected by the electron sheath and the ions assume substantially the full energy of the anodecathode potential drop. (auth)
Signorini Cylindrical Waves and Shannon Wavelets
Directory of Open Access Journals (Sweden)
Carlo Cattani
2012-01-01
Full Text Available Hyperelastic materials based on Signorini’s strain energy density are studied by using Shannon wavelets. Cylindrical waves propagating in a nonlinear elastic material from the circular cylindrical cavity along the radius are analyzed in the following by focusing both on the main nonlinear effects and on the method of solution for the corresponding nonlinear differential equation. Cylindrical waves’ solution of the resulting equations can be easily represented in terms of this family of wavelets. It will be shown that Hankel functions can be linked with Shannon wavelets, so that wavelets can have some physical meaning being a good approximation of cylindrical waves. The nonlinearity is introduced by Signorini elastic energy density and corresponds to the quadratic nonlinearity relative to displacements. The configuration state of elastic medium is defined through cylindrical coordinates but the deformation is considered as functionally depending only on the radial coordinate. The physical and geometrical nonlinearities arising from the wave propagation are discussed from the point of view of wavelet analysis.
... Lung biopsy - discharge; Thoracoscopy - discharge; Video-assisted thoracoscopic surgery - discharge; VATS - discharge ... milk) for 2 weeks after video-assisted thoracoscopic surgery and 6 to 8 weeks after open surgery. ...
Hysterectomy - vaginal - discharge
Vaginal hysterectomy - discharge; Laparoscopically assisted vaginal hysterectomy - discharge; LAVH - discharge ... you are unable to urinate. You have a discharge from your vagina that has a bad odor. You have bleeding ...
Pediatric heart surgery - discharge
... discharge; Heart valve surgery - children - discharge; Heart surgery - pediatric - discharge; Heart transplant - pediatric - discharge ... Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016:chap 434. ...
... discharge; Total hip replacement - discharge; Hip hemiarthroplasty - discharge; Osteoarthritis - hip replacement discharge ... such as downhill skiing or contact sports like football and soccer. But you should be able to ...
Energy Technology Data Exchange (ETDEWEB)
Gettleson, D.A.
1994-04-21
The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of four terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana and Texas; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. The products of the effort will be a series of technical reports detailing the study procedures, results, and conclusions which contribute to the transfer of technology to the scientific community, petroleum industry, and state and federal programs.
Boosted cylindrical magnetized Kaluza-Klein wormhole
Hashemi, S. Sedigheh; Riazi, Nematollah
2018-02-01
In this work, we consider a vacuum solution of Kaluza-Klein theory with cylindrical symmetry. We investigate the physical properties of the solution as viewed in four dimensional spacetime, which turns out to be a stationary, cylindrical wormhole supported by a scalar field and a magnetic field oriented along the wormhole. We then apply a boost to the five dimensional solution along the extra dimension, and perform the Kaluza-Klein reduction. As a result, we show that the new solution is still a wormhole with a radial electric field and a magnetic field stretched along the wormhole throat.
Forced vibrations of rotating circular cylindrical shells
International Nuclear Information System (INIS)
Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru
1995-01-01
Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)
Cylindrical pressure vessel constructed of several layers
International Nuclear Information System (INIS)
Yamauchi, Takeshi.
1976-01-01
For a cylindrical pressure vessel constructed of several layers whose jacket has at least one circumferential weld joining the individual layers, it is proposed to provide this at least at the first bending line turning point (counting from the weld between the jacket and vessel floor), which the sinusoidally shaped jacket has. The section of the jacket extending in between should be made as a full wall section. The proposal is based on calculations of the bending stiffness of cylindrical jackets, which could not yet be confirmed for jackets having several layers. (UWI) [de
Scattering of spermatozoa off cylindrical pillars
Bukatin, Anton; Lushi, Enkeleida; Kantsler, Vasily
2017-11-01
The motion of micro-swimmers in structured environments, even though crucial in processes such as in vivo and in vitro egg fertilization, is still not completely understood. We combine microfluidic experiments with mathematical modeling of 3D swimming near convex surfaces to quantify the dynamics of individual sperm cells in the proximity of cylindrical pillars. Our results show that the hydrodynamic and contact forces that account for the shape asymmetry and flagellar motion, are crucial in correctly describing the dynamics observed in the experiments. Last, we discuss how the size of the cylindrical obstacles determines whether the swimmers scatter off or get trapped circling the pillar.
Micromagnetic simulations of cylindrical magnetic nanowires
Ivanov, Yurii P.
2015-05-27
This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain wall types, and state diagrams in cylindrical nanowires of different types and sizes. The results of the hysteresis process in individual nanowires and nanowire arrays also are presented. Modeling results are compared with experimental ones. The chapter also discusses future trends in nanowire applications in relation to simulations, such as current-driven dynamics, spintronics, and spincaloritronics. The main micromagnetic programs are presented and discussed, together with the corresponding links.
A torquing shearing interferometer for cylindrical wire array experiments.
Pikuz, S A; Schrafel, P C; Shelkovenko, T A; Kusse, B R
2008-10-01
In standard shearing interferometry, a single probing beam passes through a perturbing medium and is then split into two beams. A linear shift results in an overlap, an interference, and a fringe pattern yielding the perturbing medium density profile. The probing beam usually needs to be larger than the perturbing medium so that part of it passes through a well separated low density region. During early time axial (end-on) views of imploding cylindrical wire arrays low density regions lie in between the high density regions that are near the initial wire positions. In addition, for end-on viewing, the probing beam diameter is limited by electrodes and is comparable to the array diameter. In this case a linear translation will not work but the overlap can be accomplished by an azimuthal rotation of one beam with respect to the other. Such a torquing shearing interferometer has been set up on the COBRA experiment to give time resolved, radial, and azimuthal electron density profiles during early time cylindrical wire array implosions.
Dynamic generation of supercritical water fluid in a strong electrical discharge in a liquid
Antonov, V.; Kalinin, N.; Kovalenko, A.
2016-11-01
A new impetus for the development of electro physics is associated with using different types of electrical discharges in biology and medicine. These applications are based on their energetic and non-toxic factors affecting the medium on a cellular level. For the study of such processes, a mathematical model of a high-current low-temperature Z-discharge in a liquid, forming by the electrical explosion of a thin-walled metal shell, connected to a pulsed high-voltage generator, has been developed. High efficiency energy conversion, introduced into the plasma discharge to the energy of fluid motion, provides various bio chemical applications of such physical processes. The investigation is conducted through numerical solution of one-dimensional single-temperature non-stationary equations of radiation magneto hydrodynamics, one way describing the evolution of hydrodynamic, thermal and electrical characteristics of the medium throughout the area under consideration. The electrical approximation based on the assumption that the electric field in the discharge has a uniform distribution. The results are presented as a function of the electric current and the plasma channel length of time, as well as the temperature and pressure distributions at different time points along the radius of the cylindrical region in which the explosion occurs.
Non-storm water discharges technical report
Energy Technology Data Exchange (ETDEWEB)
Mathews, S.
1994-07-01
Lawrence Livermore National Laboratory (LLNL) submitted a Notice of Intent to the California State Water Resources Control Board (hereafter State Board) to discharge storm water associated with industrial activities under the California General Industrial Activity Storm Water National Pollutant Elimination System Discharge Permit (hereafter General Permit). As required by the General Permit, LLNL provided initial notification of non-storm water discharges to the Central Valley Regional Water Quality Control Board (hereafter Regional Board) on October 2, 1992. Additional findings and progress towards corrective actions were reported in subsequent annual monitoring reports. LLNL was granted until March 27, 1995, three years from the Notice of Intent submission date, to eliminate or permit the non-storm water discharges. On May 20, 1994, the Regional Board issued Waste Discharge Requirements (WDR Board Order No. 94-131, NPDES No. CA0081396) to LLNL for discharges of non-contact cooling tower wastewater and storm water related to industrial activities. As a result of the issuance of WDR 94-131, LLNL rescinded its coverage under the General Permit. WDR 94-131 allowed continued non-storm water discharges and requested a technical report describing the discharges LLNL seeks to permit. For the described discharges, LLNL anticipates the Regional Board will either waive Waste Discharge Requirements as allowed for in The Water Quality Control Plan for the California Regional Water Quality Control Board, Central Valley Region (hereafter Basin Plan) or amend Board Order 94-131 as appropriate.
Chvyreva, A.; Pancheshnyi, S.; Christen, T.; Pemen, A. J. M.
2018-03-01
Electrodeless streamer inception on an epoxy surface under AC voltage stress was investigated for different gas compositions and pressures, with a focus on the pressure region below 1 bar. For this purpose, we used a set-up with cylindrical electrodes embedded out-of-axis in a cylindrical epoxy rod. Experiments were performed in N2, SF6, ambient air, Ar and CO2. The discharge inception voltage was measured, from which the critical value K of the ionization integral was reconstructed assuming a non-disturbed Laplacian field distribution. We have validated that for electropositive gases Ar an N2 the generally assumed value of K = 10 is in good agreement with our measurements. For electronegative gases, however, the experimentally obtained values turned out to be considerably higher. We attribute this discrepancy mainly to the statistical time delay of the first electron; to increase the probability of discharge inception in a critical region, it was necessary to extend the critical area by means of applying an overvoltage to the system.
Energy Technology Data Exchange (ETDEWEB)
Winter, Joern
2009-12-04
In the present work the cathode region of a mercury-free helium-xenon low pressure discharge in spot mode was experimentally investigated. Due to the emission of electrons, the production of ions and metastable atoms as well as lifetime limiting processes the cathode region is of particular interest. To implement a discharge in spot mode a novel planar mesh electrode was developed and used as cathode. Applying the space resolved laser-atom-absorption-spectroscopy method (LAAS) the absolute particle densities of the two lowest excited xenon atoms and the gas temperature in the cathode region were determined, whereas the strong spot plasma inhomogeneity was considered. Both the excited xenon particle density and the gas temperature strongly decrease in radial and axial direction. Particularly the gas temperature has a value of about 650 K in a 1mm cathode distance and does clearly exceed room temperature. Furthermore the spectrum of the hot spot on the cathode surface was detected by means of optical emission spectroscopy. From this spectrum the temperature distribution of the cathode spot was obtained by fitting Planck's law. The temperature distribution shows a distinct maximum, which in dependence of the discharge current reaches values of 1414 K at 40 mA and 1524 K at 80 mA. From that maximum a steep direction-independent temperature decrease was obtained. A technological important aspect concerning the lifetime of a xenon based mercury-free discharge lamp is the problematic effect of the xenon gas consumption. In this work it is shown that in contrary to an industrial made standard cup electrode, which is broadly used in light advertising lamps, the gas consumption is negligible when applying the novel planar mesh electrode. This reduction of gas consumption is due to the generation of a hot spot along with high cathode temperature and low cathode fall voltage. (orig.)
A cylindrical furnace for absorption spectral studies
Indian Academy of Sciences (India)
A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material ...
A strong focussing cylindrical electrostatic quadrupole
International Nuclear Information System (INIS)
Sheng Yaochang
1986-01-01
The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator
The double explosive layer cylindrical compaction method
Stuivinga, M.E.C.; Verbeek, H.J.; Carton, E.P.
1999-01-01
The standard cylindrical configuration for shock compaction is useful for the compaction of composite materials which have some plastic behavior. It can also be used to densify hard ceramics up to about 85% of the theoretical density (TMD), when low detonation velocity explosives (2-4 km s-1) are
Cylindrical solar heater for low cost housing
Energy Technology Data Exchange (ETDEWEB)
Nahar, N.M.; Malhotra, K.S.
1981-07-01
A circular cylindrical type solar water heater has been designed, developed and tested. This heater can supply 50 litres of hot water at 50/sup 0/C in winter afternoon when tap water is 15/sup 0/C. The cost of manufacturing is only Rs. 150. It can be fabricated by any village carpenter blacksmith.
Magnetic guns with cylindrical permanent magnets
DEFF Research Database (Denmark)
Vokoun, David; Beleggia, Marco; Heller, Luděk
2012-01-01
The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...
An investigation on cylindrical imploding turbulent mixing
International Nuclear Information System (INIS)
Liao Haidong; Yang Libin; Zhang Xilin; Ouyang Kai; Li Jun
2001-01-01
The interfacial instability experiments in cylindrically convergent geometry are performed by imploding jelly liner with high pressure gases; and instability growth were observed with high-speed framing camera. The relevant 2D numerical simulation programs were developed and their results are in good agreement with those of experiments
Antibubbles and fine cylindrical sheets of air
Beilharz, D.
2015-08-14
Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.
Tomasevic, Danka; El Khoury, Carlos; Subtil, Fabien; Dubien, Pierre-Yves; Bochaton, Thomas; Serre, Patrice; Gueugniaud, Pierre-Yves; Bonnefoy-Cudraz, Eric; Mewton, Nathan
2018-02-15
Several classes of medication improve survival in patients with ST-segment elevation myocardial infarction (STEMI). We sought to assess the frequency and effect of an optimal therapy upon discharge according to current international guidelines on 1-year all-cause mortality in a prospective cohort of reperfused patients with STEMI. Using data from the French Reseau Cardiologie Urgence (RESCUe) Network, we studied all patients with STEMI admitted and discharged alive from hospital between 2009 and 2013. Class I and II level guidelines were used to define the optimal therapy (OT) group. The undertreatment (UT) group comprised patients in whom at least 1 drug with a class I recommendation was missing. Multivariable Cox regression analysis with propensity score for the prescription of OT was used. Of the 5,161 patients discharged alive, 2,991 (58%) had OT. The 1-year overall survival rate was 0.99 in the OT group (95% confidence interval [CI] 0.99 to 1.00) versus 0.90 (95% CI 0.88 to 0.92) in the UT group. Patient characteristics in the UT group were worse than those in the OT group. After multivariable adjustment, the association between the OT group and mortality remained significant, with a hazard ratio of 0.12 (95% CI 0.07 to 0.22; p<0.001). Optimal secondary prevention therapy in patients with STEMI discharged alive from hospital remains independently associated with lower 1-year mortality. Copyright © 2017 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Alves, L.L.; Gousset, G.; Ferreira, C.M. [Centro de Electrodinamica, Instituto Superior Tecnico, 1096 Lisboa Codex (Portugal)]|[Laboratoire de Physique des Gaz et des Plasmas, Universite de Paris-Sud, 91405 Orsay Cedex (France)
1997-01-01
In this paper we develop a {ital self-contained formulation} to solve the steady-state spatially inhomogeneous electron Boltzmann equation (EBE) in a plasma positive column, taking into account the spatial gradient and the space-charge field terms. The problem is solved in cylindrical geometry using the classical two-term approximation, with appropriate boundary conditions for the electron velocity distribution function, especially at the tube wall. A condition for the microscopic radial flux of electrons at the wall is deduced, and a detailed analysis of some limiting situations is carried out. The present formulation is {ital self-contained} in the sense that the electron particle balance equation is exactly satisfied, that is, the ionization rate exactly compensates for the electron loss rate to the wall. This condition yields a relationship between the applied maintaining field and the gas pressure, termed the {ital discharge characteristic}, which is obtained as an {ital eigenvalue solution} to the problem. By solving the EBE we directly obtain the isotropic and the anisotropic components of the electron distribution function (EDF), from which we deduce the radial distributions of all relevant macroscopic quantities: electron density, electron transport parameters and rate coefficients for excitation and ionization, and electron power transfer. The results show that the values of these quantities across the discharge are lower than those calculated for a homogeneous situation, due to the loss of electrons to the wall. The solutions for the EDF reveal that, for sufficiently low maintaining fields, the radial anisotropy at some radial positions can be negative, that is, directed toward the discharge axis, for energies above a {ital collisional barrier} around the inelastic thresholds. However, at the wall, the radial anisotropy always points to the wall, due to the strong electron drain occuring in this region. (Abstract Truncated)
Ballooning stability of JET discharges
International Nuclear Information System (INIS)
Huysmans, G.T.A.; Goedbloed, J.P.; Galvao, R.M.O.; Lazzaro, E.; Smeulders, P.
1989-01-01
Conditions under which ballooning modes are expected to be excited have recently been obtained in two different types of discharges in JET. In the first type, extremely large pressure gradients have been produced in the plasma core through pellet injections in the current rise phase followed by strong additional heating. In the second type, the total pressure of the discharge is approaching the Troyon limit. The stability of these discharges with respect to the ideal MHD ballooning modes has been studied with the stability code HBT. The equilibria are reconstructed with the IDENTC code using the external magnetic measurements and the experimental pressure profile. The results show that the evaluated high beta discharge is unstable in the central region of the plasma. This instability is related to the low shear and not to a large pressure gradient, as expected at the Troyon limit. In the pellet discharges the regions with the large pressure gradients are unstable to ballooning modes at the time of the beta decay, which ends the period of enhanced performance. The maximum pressure gradient in these discharges is limited by the boundary of the first region of stability. The observed phenomena at the beta decay are similar to those observed at the beta limit in DIII-D and TFTR. (author)
Robotic Hand with Flexible Fingers for Grasping Cylindrical Objects
柴田, 瑞穂
2015-01-01
In this manuscript, a robotic hand for grasping a cylindrical object is proposed. This robotic hand has flexible fingers that can hold a cylindrical object during moving. We introduce a grasping strategy for a cylindrical object in terms of state transition graph. In this strategy the robotic hand picks up the cylindrical object utilizing a suction device before the hand grasp the object. We also design the flexible fingers; then, we investigate the validity of this robotic hand via several e...
Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator
Energy Technology Data Exchange (ETDEWEB)
Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China); Fu, R. K. Y. [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)
2013-05-28
Breathing oscillations in the discharge of an enlarged cylindrical-anode-layer Hall plasma accelerator are investigated by three-dimensional particle-in-cell (PIC) simulation. Different from the traditional breathing mode in a circular Hall plasma accelerator, the bulk plasma oscillation here is trigged by the potential barrier generated by the concentrated ion beam and substantial enough to compete with the anode voltage. The electric field near the anode is suppressed by the potential barrier thereby decreasing the electron density by {approx}36%. The discharge is restored to the normal level after the concentrated beam explodes and then it completes one cycle of electro-driven breathing oscillation. The breathing mode identified by the PIC simulation has a frequency range of {approx}156 kHz-{approx}250 kHz and does not vary monotonically with the discharge voltage.
Cylindrical continuous martingales and stochastic integration in infinite dimensions
Veraar, M.C.; Yaroslavtsev, I.S.
2016-01-01
In this paper we define a new type of quadratic variation for cylindrical continuous local martingales on an infinite dimensional spaces. It is shown that a large class of cylindrical continuous local martingales has such a quadratic variation. For this new class of cylindrical continuous local
... total - discharge; Total ankle arthroplasty - discharge; Endoprosthetic ankle replacement - discharge; Osteoarthritis - ankle ... You had an ankle replacement. Your surgeon removed and reshaped ... an artificial ankle joint. You received pain medicine and were ...
Tennis elbow surgery - discharge
Lateral epicondylitis surgery - discharge; Lateral tendinosis surgery - discharge; Lateral tennis elbow surgery - discharge ... Soon after surgery, severe pain will decrease, but you may have mild soreness for 3 to 6 months.
Knee joint replacement - discharge
... Knee replacement - total - discharge; Tricompartmental knee replacement - discharge; Osteoarthritis - knee replacement discharge ... such as downhill skiing or contact sports like football and soccer. But, you should be able to ...
Buckling optimisation of sandwich cylindrical panels
Abouhamzeh, M.; Sadighi, M.
2016-06-01
In this paper, the buckling load optimisation is performed on sandwich cylindrical panels. A finite element program is developed in MATLAB to solve the governing differential equations of the global buckling of the structure. In order to find the optimal solution, the genetic algorithm Toolbox in MATLAB is implemented. Verifications are made for both the buckling finite element code and also the results from the genetic algorithm by comparisons to the results available in literature. Sandwich cylindrical panels are optimised for the buckling strength with isotropic or orthotropic cores with different boundary conditions. Results are presented in terms of stacking sequence of fibers in the face sheets and core to face sheet thickness ratio.
Nanolaminate Membranes as Cylindrical Telescope Reflectors
Dooley, Jennifer; Dragovan, Mark; Hickey, Gregory; Lih, Shyh-Shiu Lih
2010-01-01
A document discusses a proposal to use axially stretched metal nanolaminate membranes as lightweight parabolic cylindrical reflectors in the Dual Anamorphic Reflector Telescope (DART) - a planned spaceborne telescope in which the cylindrical reflectors would be arranged to obtain a point focus. The discussion brings together a combination of concepts reported separately in several prior NASA Tech Briefs articles, the most relevant being "Nanolaminate Mirrors With Integral Figure-Control Actuators" NPO -30221, Vol. 26, No. 5 (May 2002), page 90; and "Reflectors Made From Membranes Stretched Between Beams" NPO -30571, Vol. 33, No. 10 (October 2009), page 11a. The engineering issues receiving the greatest emphasis in the instant document are (1) the change in curvature associated with the Poisson contraction of a stretched nanolaminate reflector membrane and (2) the feasibility of using patches of poly(vinylidene fluoride) on the rear membrane surface as piezoelectric actuators to correct the surface figure for the effect of Poisson contraction and other shape errors.
Determination of Coil Inductances Cylindrical Iron Nucleus
Directory of Open Access Journals (Sweden)
Azeddine Mazouz
2014-03-01
Full Text Available The paper describes the investigation and development of a structure and performance characteristics of a coil iron nucleus cylindrical (C.I.N.C. The coil iron nucleus cylindrical is a nonlinear electro radio in which the moving of the nucleus in a sense or in other causes change in inductance and can reach extreme values at the superposition of nucleus and coil centers. The variation of the inductance and the degree of freedom of movement of the nucleus can lead to a device with electromechanical conversion The aim of this paper is the determination and visualization of self inductance and mutual of the (C.I.N.C based on geometric dimensions and the displacement of the nucleus.
Effect of Anode Magnetic Shield on Magnetic Field and Ion Beam in Cylindrical Hall Thruster
International Nuclear Information System (INIS)
Zhao Jie; Wang Shiqing; Liu Jian; Xu Li; Tang Deli; Geng Shaofei
2010-01-01
Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.
Influence of magnetic field on the electrical breakdown characteristics in cylindrical diode
International Nuclear Information System (INIS)
Li Shouzhe; Uhm, Han S.
2004-01-01
The influence of magnetic field on the electrical breakdown properties is investigated by applying a magnetic field along the longitudinal direction in a cylindrical diode for two electrical polarities. Breakdown characteristics in a crossed magnetic field are analyzed with the equivalentreduced-electric-field concept and Townsend criterion. The discharge experiment at reduced pressure is carried out in the moderate magnetic field. Experimental investigation is concentrated on the magnetic dependent behavior of the electrical breakdown in the lower pressure side of Paschen's minimum. It is found that the electrical breakdown characteristics with respect to the magnetic field depend on electrical polarity of the cylindrical diode, which is interpreted by taking the gyromotion of the individual electrons in the diode into accounts under the moderate magnetic field in the lower pressure side of Paschen's minimum
Magnetic guns with cylindrical permanent magnets
Czech Academy of Sciences Publication Activity Database
Vokoun, David; Beleggia, M.; Heller, Luděk
2012-01-01
Roč. 324, č. 9 (2012), s. 1715-1719 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GAP107/11/0391; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : permanent magnet * cylindrical magnet * Earnshaw's theorem * magnet ic gun * magnet ostatic interaction Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 1.826, year: 2012 http://www.sciencedirect.com/science/article/pii/S0304885311008997
Machining Thin-Walled Cylindrical Parts
Cimbak, Joe; Spagnolo, Jim; Kraus, Dan
1988-01-01
Cylindrical walls only few thousandths of inch thick machined accurately and without tears or punctures with aid of beryllium copper mandrel. Chilled so it contracts, then inserted in cylinder. As comes to room temperature, mandrel expands and fits snugly inside cylinder. Will not allow part to slide and provides solid backup to prevent deflection when part machined by grinding wheel. When machining finished, cylinder-and-mandrel assembly inserted in dry ice, mandrel contracts and removed from part.
The large cylindrical drift chamber of TASSO
International Nuclear Information System (INIS)
Boerner, H.; Fischer, H.M.; Hartmann, H.; Loehr, B.; Wollstadt, M.; Fohrmann, R.; Schmueser, P.; Cassel, D.G.; Koetz, U.; Kowalski, H.
1980-03-01
We have built and operated a large cylindrical drift chamber for the TASSO experiment at the DESY storage ring, PETRA. The chamber has a length of 3.5 m, a diameter of 2.5 m, and a total of 2340 drift cells. The cells are arranged in 15 concentric layers such that tracks can be reconstructed in three dimensions. A spatial resolution of 220 μm has been achieved for tracks of normal incidence on the drift cells. (orig.)
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Time-dependent patterns in quasivertical cylindrical binary convection
Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol
2018-02-01
This paper reports on numerical investigations of the effect of a slight inclination α on pattern formation in a shallow vertical cylindrical cell heated from below for binary mixtures with a positive value of the Soret coefficient. By using direct numerical simulation of the three-dimensional Boussinesq equations with Soret effect in cylindrical geometry, we show that a slight inclination of the cell in the range α ≈0.036 rad =2∘ strongly influences pattern selection. The large-scale shear flow (LSSF) induced by the small tilt of gravity overcomes the squarelike arrangements observed in noninclined cylinders in the Soret regime, stratifies the fluid along the direction of inclination, and produces an enhanced separation of the two components of the mixture. The competition between shear effects and horizontal and vertical buoyancy alters significantly the dynamics observed in noninclined convection. Additional unexpected time-dependent patterns coexist with the basic LSSF. We focus on an unsual periodic state recently discovered in an experiment, the so-called superhighway convection state (SHC), in which ascending and descending regions of fluid move in opposite directions. We provide numerical confirmation that Boussinesq Navier-Stokes equations with standard boundary conditions contain the essential ingredients that allow for the existence of such a state. Also, we obtain a persistent heteroclinic structure where regular oscillations between a SHC pattern and a state of nearly stationary longitudinal rolls take place. We characterize numerically these time-dependent patterns and investigate the dynamics around the threshold of convection.
Senior, Lisa A.; Goode, Daniel J.
2017-06-06
A previously developed regional groundwater flow model was used to simulate the effects of changes in pumping rates on groundwater-flow paths and extent of recharge discharging to wells for a contaminated fractured bedrock aquifer in southeastern Pennsylvania. Groundwater in the vicinity of the North Penn Area 7 Superfund site, Montgomery County, Pennsylvania, was found to be contaminated with organic compounds, such as trichloroethylene (TCE), in 1979. At the time contamination was discovered, groundwater from the underlying fractured bedrock (shale) aquifer was the main source of supply for public drinking water and industrial use. As part of technical support to the U.S. Environmental Protection Agency (EPA) during the Remedial Investigation of the North Penn Area 7 Superfund site from 2000 to 2005, the U.S. Geological Survey (USGS) developed a model of regional groundwater flow to describe changes in groundwater flow and contaminant directions as a result of changes in pumping. Subsequently, large decreases in TCE concentrations (as much as 400 micrograms per liter) were measured in groundwater samples collected by the EPA from selected wells in 2010 compared to 2005‒06 concentrations.To provide insight on the fate of potentially contaminated groundwater during the period of generally decreasing pumping rates from 1990 to 2010, steady-state simulations were run using the previously developed groundwater-flow model for two conditions prior to extensive remediation, 1990 and 2000, two conditions subsequent to some remediation 2005 and 2010, and a No Pumping case, representing pre-development or cessation of pumping conditions. The model was used to (1) quantify the amount of recharge, including potentially contaminated recharge from sources near the land surface, that discharged to wells or streams and (2) delineate the areas contributing recharge that discharged to wells or streams for the five conditions.In all simulations, groundwater divides differed from
Simulating streamer discharges in 3D with the parallel adaptive Afivo framework
Teunissen, Jannis; Ebert, Ute
2017-11-01
We present an open-source plasma fluid code for 2D, cylindrical and 3D simulations of streamer discharges. The code is based on the Afivo framework, which features adaptive mesh refinement on quadtree/octree grids, geometric multigrid methods for Poisson’s equation, and OpenMP parallelism. We describe the numerical implementation of a fluid model of the drift-diffusion-reaction type, combined with the local field approximation. Then we demonstrate its functionality with 3D simulations of long positive streamers in nitrogen in undervolted gaps. Three examples are presented. The first one shows how a stochastic background density affects streamer propagation and branching. The second one focuses on the interaction of a streamer with preionized regions, and the third one investigates the interaction between two streamers. The simulations use up to 108 grid cells and run in less than a day; without mesh refinement they would require more than 1012 grid cells.
Expansion of a nitrogen discharge by sound
International Nuclear Information System (INIS)
Antinyan, M.A.; Galechyan, G.A.; Tavakalyan, L.B.
1992-01-01
When the background pressure and the discharge current in a gas discharge are raised the plasma column is tightened up into a filament. Then the discharge occupies a region of the discharge tube whose transverse dimensions are substantially less than those of the tube. This contraction phenomenon in discharges restricts the range of parameters used in various devices to the range of relatively low discharge currents and low gas pressures. This contraction interferes with creating high-power gas lasers, since it acts destructively on the lasing process. In order to suppress filamentation of discharges the working gas has been pumped through the system at high speed, with considerable success. The turbulent mixing in the stream plays an important role in creating an uncontracted discharge at high pressures. The purpose of the present work is to study the possibility of undoing the contraction of a nitrogen discharge, which is one of the main components in the operation of a CO 2 laser, by introducing an intense sound wave in the discharge tube. Discharge contraction and the effect of a sound wave propagating along the plasma column have been investigated experimentally in nitrogen by studying the current-voltage characteristics of a contracted discharge. 6 refs., 3 figs
Motion parallax in immersive cylindrical display systems
Filliard, N.; Reymond, G.; Kemeny, A.; Berthoz, A.
2012-03-01
Motion parallax is a crucial visual cue produced by translations of the observer for the perception of depth and selfmotion. Therefore, tracking the observer viewpoint has become inevitable in immersive virtual (VR) reality systems (cylindrical screens, CAVE, head mounted displays) used e.g. in automotive industry (style reviews, architecture design, ergonomics studies) or in scientific studies of visual perception. The perception of a stable and rigid world requires that this visual cue be coherent with other extra-retinal (e.g. vestibular, kinesthetic) cues signaling ego-motion. Although world stability is never questioned in real world, rendering head coupled viewpoint in VR can lead to the perception of an illusory perception of unstable environments, unless a non-unity scale factor is applied on recorded head movements. Besides, cylindrical screens are usually used with static observers due to image distortions when rendering image for viewpoints different from a sweet spot. We developed a technique to compensate in real-time these non-linear visual distortions, in an industrial VR setup, based on a cylindrical screen projection system. Additionally, to evaluate the amount of discrepancies tolerated without perceptual distortions between visual and extraretinal cues, a "motion parallax gain" between the velocity of the observer's head and that of the virtual camera was introduced in this system. The influence of this artificial gain was measured on the gait stability of free-standing participants. Results indicate that, below unity, gains significantly alter postural control. Conversely, the influence of higher gains remains limited, suggesting a certain tolerance of observers to these conditions. Parallax gain amplification is therefore proposed as a possible solution to provide a wider exploration of space to users of immersive virtual reality systems.
Energy Technology Data Exchange (ETDEWEB)
Smith, David A. [Univ. of Colorado, Boulder, CO (United States)
1998-11-01
In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackboard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackboard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackboard observations. On two occasions, the ground-based systems and Blackboard even recorded emissions that were produced by the same exact events. From the ground based observations, it has been determined that TIPP events areproduced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDS, an acronym for compact intracloud discharges. During the summer of 1996, ground-based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDS. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDS were recorded from three
International Nuclear Information System (INIS)
Zhu, H P; Yu, A B
2004-01-01
Granular flow in a cylindrical hopper with flat bottom is investigated based on the results generated by the discrete element method. The dependence of flow behaviour on the geometric and physical parameters of the hopper and particles, such as the orifice size and wall roughness of hoppers, and frictional and damping coefficients between particles, is analysed to establish the spatial and statistical distributions of microdynamic variables related to flow and force structures such as velocity, porosity, coordination number, and interaction forces between particles and between particles and walls. It is shown from the velocity field that there are four different zones in the hopper flow: a stagnant zone, a plug flow zone, a converging flow zone, and a transition zone from plug flow to converging flow. The Beverloo equation can describe the relationship between discharge rate and orifice size; however, the constants in the equation may vary with the wall friction coefficient, particle friction and damping coefficients. The flow and force structures of particles in the hopper are spatially non-uniform. In particular, porosity is high in the region near the orifice and low in the upper part and around the bottom corner of the hopper, whilst the coordination number has an opposite distribution. Large contact forces are experienced by particles around the bottom corner whereas small forces are experienced by particles in the upper part and the region near the orifice. However, there is a region above the orifice where particles experience the maximum total interaction forces between particles; the forces gradually propagate from this region into the bed and have a minimum value in the central upper part. The velocity distribution, flow and force structures are affected by the geometric and physical parameters of the hopper and particles
Retaining Walls Made of Precast Cylindrical Valuts
Directory of Open Access Journals (Sweden)
N. Ungureanu
2005-01-01
Full Text Available Retaining walls are large category of engineering structures of multiple uses, having an essential safety ensuring role. The structural systems are varied because the situations and requirements derived from both site conditions and other criteria are varied. The paper enlarges upon retaining walls systems that use an outstanding amount of precast units and multiple cylindrical vault type structural systems supported by abutments [1], [2]. The paper proposes extending the structural system to retaining walls and develops certain specific issues. Some considerations regarding structural design are made.
Cullet Manufacture Using the Cylindrical Induction Melter
International Nuclear Information System (INIS)
Miller, D. H.
2000-01-01
The base process for vitrification of the Am/Cm solution stored in F-canyon uses 25SrABS cullet as the glass former. A small portion of the cullet used in the SRTC development work was purchased from Corning while the majority was made in the 5 inch Cylindrical Induction Melter (CIM5). Task 1.01 of TTR-NMSS/SE-006, Additional Am-Cm Process Development Studies, requested that a process for the glass former (cullet) fabrication be specified. This report provides the process details for 25SrAB cullet production thereby satisfying Task 1.01
Acoustically Driven Vibrations in Cylindrical Structures
Energy Technology Data Exchange (ETDEWEB)
Chambers, David H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2013-10-11
The purpose of this investigation is to explore the interaction of acoustics and vibration in fluid-filled cylindrical structures. Our emphasis is on describing longitudinal (axial) propagation within the structure for acoustic signals that enter externally. This paper reviews the historical and theoretical treatments of the relevant phenomenon important to the propagation of these signals along pipe structures. Our specific contribution is a detailed analysis of how external acoustic signals are coupled to a free standing pipe. There have been numerous phenomena for which these analyses are applicable. They have ranged from physical property measurements, to indoor environmental noise abatement, and onto quite significant explorations of active and passive submerged structures.
Stability analysis of cylindrical Vlasov equilibria
International Nuclear Information System (INIS)
Short, R.W.
1979-01-01
A general method of stability analysis is described which may be applied to a large class of such problems, namely those which are described dynamically by the Vlasov equation, and geometrically by cylindrical symmetry. The method is presented for the simple case of the Vlasov-Poisson (electrostatic) equations, and the results are applied to a calculation of the lower-hybrid-drift instability in a plasma with a rigid rotor distribution function. The method is extended to the full Vlasov-Maxwell (electromagnetic) equations. These results are applied to a calculation of the instability of the extraordinary electromagnetic mode in a relativistic E-layer interacting with a background plasma
Fast, inexpensive, diffraction limited cylindrical microlenses
International Nuclear Information System (INIS)
Synder, J.J.; Reichert, P.
1991-01-01
We have developed a technique for fabricating fast, well corrected cylindrical microlenses. With this technique we have made a number of different microlenses with dimensions and focal lengths in the range of few hundred μm, and diffraction limited numerical apertures as high as 0.9. The microlenses are specifically designed for applications where they can increase the radiance or otherwise enhance the optical characteristics of laser diode light. The fabrication method we use is very versatile, and the microlenses produced this way would be very inexpensive in production quantities. 6 refs., 4 figs
Cylindrical metamaterial-based subwavelength antenna
DEFF Research Database (Denmark)
Erentok, Aycan; Kim, Oleksiy S.; Arslanagic, Samel
2009-01-01
A subwavelength monopole antenna radiating in the presence of a truncated cylindrical shell, which has a capped top face and is made of a negative permittivity metamaterial, is analyzed numerically by a method of moments for the volume-surface integral equation oil the one hand, and a finite...... element method on the other hand. It is shown that a center-fed truncated cylinder, in contrast to an infinite cylinder, provides subwavelength resonances, thus suggesting the possibility, of having a subwavelength antenna system....
History of the small cylindrical melter
International Nuclear Information System (INIS)
Allen, T.L.; Iverson, D.C.; Plodinec, M.J.
1985-08-01
The small cylindrical melter (SCM) was designed to provide engineering data useful for operation and design of full-scale glass melters for vitrification of high-level radioactive waste. This melter was part of the research and development program for the Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Extensive corrosion testing of melter materials of construction (Monofrax K3, Inconel 690), simulated radioactive waste glass characterization, and melter component development were conducted in support of the DWPF full-scale melter design. 66 figs., 14 tabs
Waves in inhomogeneous plasma of cylindrical geometry
International Nuclear Information System (INIS)
Rebut, P.H.
1966-01-01
The conductivity tensor of a hot and inhomogeneous plasma has been calculated for a cylindrical geometry using Vlasov equations. The method used consists in a perturbation method involving the first integrals of the unperturbed movement. The conductivity tensor will be particularly useful for dealing with stability problems. In the case of a cold plasma the wave equation giving the electric fields as a function of the radius is obtained. This equation shows the existence of resonant layers which lead to an absorption analogous to the Landau absorption in a hot plasma. (author) [fr
A 55 cm{sup 2} cylindrical silicon drift detector
Energy Technology Data Exchange (ETDEWEB)
Holl, P. [Brookhaven National Lab., Upton, NY (United States); Rehak, P. [Brookhaven National Lab., Upton, NY (United States); Ceretto, F. [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Faschingbauer, U. [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Wurm, J.P. [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Castoldi, A. [Universita degli Studi di Milano, Departimento di Fisica, Via Celoria 16, 20133 Milano (Italy); Gatti, E. [Politecnico di Milano, Piazza L. da Vinci, I-20133 Milano (Italy)
1996-08-01
AZTEC, a large area cylindrical silicon drift detector was designed, produced and tested. AZTEC will be the building block of the NA45 and WA98 micro vertex detectors at CERN. Two AZTEC detectors are placed down stream from the target to measure trajectories of charged particles produced in the forward direction. The active area of AZTEC is practically the full usable surface of a 100 mm diameter wafer. The electrons drift radially from the center towards the outside. The sensing anodes are located at a radius of 42 mm. The center of the wafer is cut out and forms a passage for the noninteracting beam. With a minimal radius for this hole the active region of the drift detector starts at an inner radius of 3.1 mm. Any larger radius can be selected if necessary. With this geometry and a typical operating voltage the maximum drift time is less than 4 {mu}s. Due to constrains in the mask layout the readout region and field electrodes are designed along the 360 sides of a symmetric polygon. All structures on one surface of the wafer are rotated by 0.5 with respect to the other surface. In the middle plane of the detector, where the electrons are mostly transported, the effective geometry is close to a smoothed polygon with 720 sides, cancelling practically all effects of the non-perfect cylindrical symmetry. The radial position of fast charged particles is measured by the electron drift time within the detector. The drift velocity can be monitored by 48 injection points at three different radii. The azimuthal angle is measured by the 360 readout anodes. Each anode is subdivided into five segments, which are interlaced with the neighbouring anodes. By this methode the azimuthal resolution is improved and corresponds to a 720 channel read out. (orig.).
Forced Vibration Analysis for a FGPM Cylindrical Shell
Directory of Open Access Journals (Sweden)
Hong-Liang Dai
2013-01-01
Full Text Available This article presents an analytical study for forced vibration of a cylindrical shell which is composed of a functionally graded piezoelectric material (FGPM. The cylindrical shell is assumed to have two-constituent material distributions through the thickness of the structure, and material properties of the cylindrical shell are assumed to vary according to a power-law distribution in terms of the volume fractions for constituent materials, the exact solution for the forced vibration problem is presented. Numerical results are presented to show the effect of electric excitation, thermal load, mechanical load and volume exponent on the static and force vibration of the FGPM cylindrical shell. The goal of this investigation is to optimize the FGPM cylindrical shell in engineering, also the present solution can be used in the forced vibration analysis of cylindrical smart elements.
Functional evolution of quantum cylindrical waves
International Nuclear Information System (INIS)
Cho, Demian H J; Varadarajan, Madhavan
2006-01-01
Kuchar showed that the quantum dynamics of (one polarization) cylindrical wave solutions to vacuum general relativity is determined by those of a free axially symmetric scalar field along arbitrary axially symmetric foliations of a fixed flat (2 + 1)-dimensional spacetime. We investigate if such a dynamics can be defined unitarily within the standard Fock space quantization of the scalar field. Evolution between two arbitrary slices of an arbitrary foliation of the flat spacetime can be built out of a restricted class of evolutions (and their inverses). The restricted evolution is from an initial flat slice to an arbitrary (in general, curved) slice of the flat spacetime and can be decomposed into (i) 'time' evolution in which the spatial Minkowskian coordinates serve as spatial coordinates on the initial and the final slice, followed by (ii) the action of a spatial diffeomorphism of the final slice on the data obtained from (i). We show that although the functional evolution of (i) is unitarily implemented in the quantum theory, generic spatial diffeomorphisms of (ii) are not. Our results imply that a Tomanaga-Schwinger type functional evolution of quantum cylindrical waves is not a viable concept even though, remarkably, the more limited notion of functional evolution in Kuchar's 'half-parametrized formalism' is well defined
Site selection for effluent discharge along the coast using GIS
Digital Repository Service at National Institute of Oceanography (India)
Suryanarayana, A.; Hiteshkumar, V.; Om, P.D.
Geographical Information System (GIS) is used to select a site for industrial effluent discharge along the coastal region. The system is developed to deal with the behavior of the discharged effluent in the coastal waters and it affects on coastal...
Note: Electrochemical etching of cylindrical nanoprobes using a vibrating electrolyte
International Nuclear Information System (INIS)
Wang, Yufeng; Zeng, Yongbin; Qu, Ningsong; Zhu, Di
2015-01-01
An electrochemical etching process using a vibrating electrolyte of potassium hydroxide to prepare tungsten cylindrical nanotips is developed. The vibrating electrolyte eases the effects of a diffusion layer and extends the etching area, which aid in the production of cylindrical nanotips. Larger amplitudes and a vibration frequency of 35 Hz are recommended for producing cylindrical nanotips. Nanotips with a tip radius of approximately 43 nm and a conical angle of arctan 0.0216 are obtained
Software For Design And Analysis Of Tanks And Cylindrical Shells
Luz, Paul L.; Graham, Jerry B.
1995-01-01
Skin-stringer Tank Analysis Spreadsheet System (STASS) computer program developed for use as preliminary design software tool that enables quick-turnaround design and analysis of structural domes and cylindrical barrel sections in propellant tanks or other cylindrical shells. Determines minimum required skin thicknesses for domes and cylindrical shells to withstand material failure due to applied pressures (ullage and/or hydrostatic) and runs buckling analyses on cylindrical shells and skin-stringers. Implemented as workbook program, using Microsoft Excel v4.0 on Macintosh II. Also implemented using Microsoft Excel v4.0 for Microsoft Windows v3.1 IBM PC.
Energy Technology Data Exchange (ETDEWEB)
Price, Matthew A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)
2005-05-01
An understanding of the detonation phenomenon and airblast behavior for cylindrical high-explosive charges is essential in developing predictive capabilities for tests and scenarios involving these charge geometries. Internal tests on reinforced concrete structures allowed for the analysis of cylindrical charges and the effect of secondary reactions occurring in confined structures. The pressure profiles that occur close to a cylindrical explosive charge are strongly dependent on the length-to-diameter ratio (L/D) of the charge. This study presents a comparison of finite-element code models (i.e., AUTODYN) to empirical methods for predicting airblast behavior from cylindrical charges. Current finite element analysis (FEA) and blast prediction codes fail to account for the effects of secondary reactions (fireballs) that occur with underoxidized explosives. Theoretical models were developed for TNT and validated against literature. These models were then applied to PBX 9501 for predictions of the spherical fireball diameter and time duration. The following relationships for PBX 9501 were derived from this analysis (units of ft, lb, s). Comparison of centrally located equivalent weight charges using cylindrical and spherical geometries showed that the average impulse on the interior of the structure is ~3%–5% higher for the spherical charge. Circular regions of high impulse that occur along the axial direction of the cylindrical charge must be considered when analyzing structural response.
Vessel sewage discharges are regulated under Section 312 of the Clean Water Act, which is jointly implemented by the EPA and Coast Guard. This homepage links to information on marine sanitation devices and no discharge zones.
Amputation - foot - discharge; Trans-metatarsal amputation - discharge ... You have had a foot amputation. You may have had an accident, or your foot may have had an infection or disease and doctors could ...
Total elbow arthroplasty - discharge; Endoprosthetic elbow replacement - discharge ... Pain is normal after elbow replacement surgery. It should get better over time. Your doctor will give you a prescription for pain medicine. Get it filled when ...
Pregnancy - discharge after vaginal delivery ... return in: 4 to 9 weeks after your delivery if you're not breastfeeding 3 to 12 ... can start sexual activity around 6 weeks after delivery, if the discharge or lochia has stopped. Women ...
Secondary extinction and diffraction behaviors in cylindrical crystals.
Hu, Hua-Chen
2003-07-01
The X-ray and neutron diffraction properties in absorbing cylindrical crystals are systematically explored within the framework of transfer equations and the kinematic diffraction approximation. The calculated power ratio distribution, the integrated reflection power ratio and the secondary-extinction factor y( micro ) are expressed as functions of the Bragg angle theta(B), the reduced radius sigma(0)rho = tau(0) and the ratio of absorption coefficient to diffraction cross section micro /sigma(0) = xi(0). Numerical solutions were obtained for all theta(B) (0-90 degrees ) and samples with tau(0) from 0 to 30, and xi(0) from 0 to 25. The relationship between the power ratio distribution curves, the integrated reflection power ratio and the diffraction geometry of cylindrical crystals is obtained for the first time and analyzed in detail. A dip was found in the curve of the extinction factor y( micro ) against tau(0) for given theta(B) and xi(0), and the position of this minimum shifts toward smaller tau(0) with increasing xi(0) or theta(B). A large decrease of y( micro ) with decreasing theta(B) at low angle appears when micro rho > 3.5 and 25 > xi(0) > 0.2. The rate of change of y( micro ) in this region increases with tau(0). All of this will be important for the refinement of diffraction data. The influence of different kinds of mosaic distributions on the integrated reflection power ratio and the extinction factor was also studied. The transmission coefficients A(*) were calculated using two different methods, and an inaccuracy of these numbers in Vol. II of International Tables for X-ray Crystallography (1972) in the range theta(B) or = 15 was found by comparison.
Diffusion of graphite. The effect of cylindrical canals
International Nuclear Information System (INIS)
Carle, R.; Clouet d'Orval, C.; Martelly, J.; Mazancourt, T. de; Sagot, M.; Lattes, R.; Teste du Bailler, A.
1957-01-01
Experiments on thermal neutron diffusion in the graphite used as moderator in the pile G1 have been carried out. The object of these experiments is to determine: - the intrinsic quality of this graphite, characterised by its diffusion length L or its Laplacian 1/L 2 - the effect of the canals, which modifies anisotropically the macroscopic diffusion equation and is characterized by two principal diffusion regions (or two principal Laplacian), valid respectively for the diffusion in the direction of the canals and in a perpendicular direction. In order to determine them two experiments are necessary, in which the second derivatives of the flux in relation to the space coordinates are very different. These experiments form the object of the first two parts. Part 1: Diffusion along the axis of a flux coming from the pile source, and limited radially by a quasi cylindrical screen of cadmium bars. This screen, or Faraday cage is designed to give to the thermal flux produced the same radius of extrapolation to zero as that of the pile source. The determination of L (with the graphite full) has been made under the same conditions. The measurements have been interpreted in two ways. The influence of the brackets holding the detectors is discussed. Part 2: Radial diffusion in the graphite surrounding the 'long' cylindrical pile. This is well described by a sum of Bessel functions. Part 3: Results (valid for d = 1.61 t = 17 deg. C). For the graphite without cavity L = 52.7 ± 0.4 cm. The effect of the canals on the diffusion area and its anisotropy are in excellent agreement with the theory of Behrens: L(parallel) = 64.6 cm and L(perpendicular) 62.2 cm. Appendix: Theory of the Faraday cage. (author) [fr
Emissivity of the pulsed capacitive discharge in helium-iodine and neon-iodine mixtures
Shuaibov, A. K.; Minya, A. I.; Gomoki, Z. T.; Laslov, G. E.
2009-01-01
The emission parameters of a pulsed capacitive discharge initiated in helium-iodine and neon-iodine mixtures are reported. The discharge plasma emits at wavelengths of 183.0 and 206.2 nm, which correspond to iodine atom spectral lines. The capacitive discharge is initiated in a cylindrical quartz tube with an electrode distance of 10 cm. The discharge radiation is optimized in exciting pulse repetition rate and helium and neon pressures in He(Ne)-I2 mixtures. The optimal pressures of helium, neon, and iodine vapor fall into the ranges 0.8-2.0 kPa, 0.5-1.0 Pa, and ≤60 Pa, respectively.
... and lifestyle Cholesterol - drug treatment Controlling your high blood pressure Deep vein thrombosis - discharge Dietary fats explained Fast food tips Heart attack - discharge Heart attack - what to ask your doctor Heart bypass ... pacemaker - discharge High blood pressure - what to ask your doctor How to read ...
Plasmonic oligomers in cylindrical vector light beams
Directory of Open Access Journals (Sweden)
Mario Hentschel
2013-01-01
Full Text Available We investigate the excitation as well as propagation of magnetic modes in plasmonic nanostructures. Such structures are particularly suited for excitation with cylindrical vector beams. We study magneto-inductive coupling between adjacent nanostructures. We utilize high-resolution lithographic techniques for the preparation of complex nanostructures consisting of gold as well as aluminium. These structures are subsequently characterized by linear optical spectroscopy. The well characterized and designed structures are afterwards studied in depth by exciting them with radial and azimuthally polarized light and simultaneously measuring their plasmonic near-field behavior. Additionally, we attempt to model and simulate our results, a project which has, to the best of our knowledge, not been attempted so far.
Study of Cylindrical Honeycomb Solar Collector
Directory of Open Access Journals (Sweden)
Atish Mozumder
2014-01-01
Full Text Available We present the results of our investigation on cylindrical honeycomb solar collector. The honeycomb has been fabricated with transparent cellulose triacetate polymer sheets. Insulation characteristics of the honeycomb were studied by varying the separation between the honeycomb and the absorber plate. The optimal value of the separation was found to be 3.3 mm for which the heat transfer coefficient is 3.06 W m−2 K−1. This supports result of previous similar experiments. Further we test the honeycomb through a field experiment conducted in Delhi (28.6°N, 77°E and found that when the incident angle of the solar radiation is within 20° then the performance of the system with the honeycomb is better than the one without the honeycomb.
HOLOGRAPHIC VISUALIZATION OF CYLINDRICAL PIEZOCERAMIC TRANSDUCERS VIBRATIONS
Directory of Open Access Journals (Sweden)
R. Vasiliauskas
2013-01-01
Full Text Available The piezomaterial used in cylindrical piezoceramic transducers vibrations requiring high precision displacements indicates that accuracy depends on design and technological factors. The analyzed criteria have made possible to choose the piezomaterial for optimal mechatronic system having a maximal displacement. The experimental investigation of precision vibrosystems by means of 3D holographic visualization enables one to obtain appreciably larger amount of information about the vibrating surface in comparison with traditional methods. On the basis of the developed methodology of analyzing the experimental data derived from 3D holographic visualization and by using the experimental holography stand, we have obtained results making it possible to optimize the design of operation of the piezoceramic mechatronic system or its separate elements.
Unbalanced Cylindrical Magnetron for Accelerating Cavities Coating
Rosaz, Guillaume; Calatroni, Sergio; Sublet, Alban; Tobarelli, Mauro
2016-01-01
We report in this paper the design and qualification of a cylindrical unbalanced magnetron source. The dedicated magnetic assemblies were simulated using a finite element model. A hall-effect magnetic probe was then used to characterize those assemblies and compared to the theoretical magnet profiles. These show a good agreement between the expected and actual values. the qualification of the different magnetic assemblies was then performed by measuring the ion flux density reaching the surface of the sample to be coated using a commercial retarding field energy analyzer. The strongest unbalanced configuration shows an increase from 0.016A.cm^-2 to 0.074A.cm^-2 of the ion flux density reaching the sample surface compared to the standard balanced configuration for a pressure 5.10^-3 mbar and a plasma source power of 300W.
Cylindrically Symmetric Solution in Teleparallel Theory
Gamal, G. L. Nashed
2010-10-01
The field equations of a special class of teleparallel theory of gravitation and electromagnetic fields are applied to tetrad space having cylindrical symmetry with four unknown functions of radial coordinate r and azimuth angle θ. The vacuum stress-energy momentum tensor with one assumption concerning its specific form generates one non-trivial exact analytic solution. This solution is characterized by a constant magnetic field parameter B0. If B0 = 0, then the solution will reduce to the flat spacetime. The energy content is calculated using the superpotential given by Møller in the framework of teleparallel geometry. The energy contained in a sphere is found to be different from the pervious results.
Experimental approach for measuring cylindrical flexoelectric coefficients
Zhang, Shuwen; Liu, Kaiyuan; Wu, Tonghui; Xu, Minglong; Shen, Shengping
2017-10-01
Flexoelectricity is a property of dielectric materials by which applied strain gradients induce electric polarizations within dielectric materials. Experimental research into the tensor components of the flexoelectric coefficient is essential. In this work, an experimental approach for measurement of the flexoelectric coefficient tensor components in cylindrical coordinates is developed. Two different experimental methods are designed to obtain the two related unknown flexoelectric coefficient tensor components. Theoretical and finite element analyses are developed and simplified for each experiment, and the related designs are then tested to obtain the coupled electric polarization charges. The two unknown flexoelectric coefficient tensor components of polyvinylidene fluoride are then decoupled. This work provides an experimental method that can be used to obtain multiple unknown flexoelectric coefficient tensor components in solid dielectric materials.
Indentation of Ellipsoidal and Cylindrical Elastic Shells
Vella, Dominic
2012-10-01
Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.
Long trace profile measurements on cylindrical aspheres
International Nuclear Information System (INIS)
Takacs, P.Z.; Feng, S.C.K.; Qian, S.N.; Liu, W.M.
1988-01-01
A new long-trace optical profiling instrument is now in operation at Brookhaven National Laboratory measuring surface figure and macro-roughness on large optical components, principally long cylindrical mirrors for use in synchrotron radiation beam lines. The non-contact measurement technique is based upon a pencil-beam interferometer system The optical head is mounted on a linear air bearing slide and has a free travel range of nearly one meter. The authors are able to sample surface spatial periods between 1 mm (the laser beam diameter) and 1 m. The input slope data is converted to surface height by a Fourier filtering technique. A number of optical components have been measured with the instrument. Results are presented for fused silica cylinders 900 mm and 600 mm in length and for a fused silica toroid and several electrodes nickel-plated paraboloids
Neutron refraction by cylindrical metal wires
International Nuclear Information System (INIS)
Plomp, J.; Barker, J.G.; Haan, V.O. de; Bouwman, W.G.; Well, A.A. van
2007-01-01
Undesired Small-Angle Neutron Scattering (SANS) from interior features of an object can be minimised by reducing the sample thickness. However, refraction effects produced by the exterior shape of the object depend upon the scattering cross-section and not on the thickness of the object. In the field of polarised neutrons a wire coil is often used to manipulate the polarisation vector of the neutron. In this paper, we show that the cylindrical shape of the wire together with the refractive index introduces an angular distribution in the neutron beam. This can be observed in instrumentation sensitive to SANS. We show results measured on three different SANS instruments: Ultra Small-Angle Neutrons Scattering (USANS), Spin-Echo Small-Angle Neutron Scattering (SESANS) and a Time-of-Flight (TOF) SESANS. These results are all in good agreement with the theory of refraction
Neutron refraction by cylindrical metal wires
Energy Technology Data Exchange (ETDEWEB)
Plomp, J. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)]. E-mail: j.plomp@tudelft.nl; Barker, J.G. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Haan, V.O. de [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Bouwman, W.G. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Well, A.A. van [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)
2007-05-01
Undesired Small-Angle Neutron Scattering (SANS) from interior features of an object can be minimised by reducing the sample thickness. However, refraction effects produced by the exterior shape of the object depend upon the scattering cross-section and not on the thickness of the object. In the field of polarised neutrons a wire coil is often used to manipulate the polarisation vector of the neutron. In this paper, we show that the cylindrical shape of the wire together with the refractive index introduces an angular distribution in the neutron beam. This can be observed in instrumentation sensitive to SANS. We show results measured on three different SANS instruments: Ultra Small-Angle Neutrons Scattering (USANS), Spin-Echo Small-Angle Neutron Scattering (SESANS) and a Time-of-Flight (TOF) SESANS. These results are all in good agreement with the theory of refraction.
Confined detonations with cylindrical and spherical symmetry
International Nuclear Information System (INIS)
Linan, A.; Lecuona, A.
1979-01-01
An imploding spherical or cylindrical detonation, starting in the interface of the detonantion with an external inert media, used as a reflector, creates on it a strong shock wave moving outward from the interface. An initially weak shock wave appears in the detonated media that travels toward the center, and it could reach the detonation wave, enforcing it in its process of implosion. To describe the fluid field, the Euler s equations are solved by means of expansions valid for the early stages of the process. Isentropic of the type P/pγ-K for the detonated and compressed inert media are used. For liquid or solid reflectors a more appropriate equation is used. (Author) 8 refs
International Nuclear Information System (INIS)
Bondeson, A.; Xie, H.X.
1996-01-01
The stabilization of cylindrical plasmas by resistive walls combined with plasma rotation is analyzed. Perturbations with a single mode rational surface q=m/n in a finitely conducting plasma are treated by the resistive kink dispersion relation of Coppi. The possibilities for stabilization of ideal and resistive instabilities are explored systematically in different regions of parameter space. The study confirms that an ideal instability can be stabilized by a close-fitting wall and a rotation velocity of the order of resistive growth rate. However, the region in parameter space where such stabilization occurs is very small and appears to be difficult to exploit in experiments. The overall conclusion from the cylindrical plasma model is that resistive modes can readily be wall stabilized, whereas complete wall stabilization is hard to achieve for plasmas that are ideally unstable with the wall at infinity. 26 refs, 5 figs
Modeling of cylindrical surrounding gate MOSFETs including the fringing field effects
International Nuclear Information System (INIS)
Gupta, Santosh K.; Baishya, Srimanta
2013-01-01
A physically based analytical model for surface potential and threshold voltage including the fringing gate capacitances in cylindrical surround gate (CSG) MOSFETs has been developed. Based on this a subthreshold drain current model has also been derived. This model first computes the charge induced in the drain/source region due to the fringing capacitances and considers an effective charge distribution in the cylindrically extended source/drain region for the development of a simple and compact model. The fringing gate capacitances taken into account are outer fringe capacitance, inner fringe capacitance, overlap capacitance, and sidewall capacitance. The model has been verified with the data extracted from 3D TCAD simulations of CSG MOSFETs and was found to be working satisfactorily. (semiconductor devices)
Coupled dilaton and electromagnetic field in cylindrically symmetric ...
Indian Academy of Sciences (India)
Nature of circular geodesics is also studied in the presence of dilaton field in the cylindrically symmetric spacetime. Keywords. Dilaton field; general relativity; cylindrically symmetric spacetime. PACS Nos 04.50+h; .... For economy of space we skip all details of the intermediate steps and give the final expressions of the ...
Magnetization curves for non-elliptic cylindrical samples in a ...
Indian Academy of Sciences (India)
Using recent results for the surface current density on cylindrical surfaces of arbitrary cross-section producing uniform interior magnetic ﬁeld and an assumed set of ﬂux-fronts, solutions of Bean's critical state model for cylindrical samples with non-elliptic cross-section are presented. Magnetization hysteresis loops for two ...
Magnetization curves for general cylindrical samples in a transverse ...
Indian Academy of Sciences (India)
Using the recent results for the surface current density on cylindrical surfaces of arbitrary cross-section producing uniform interior magnetic ﬁeld we propose a method for obtaining solutions of Bean's critical state model for general cylindrical samples. The method uses the technique of conformal mapping to express the ...
Settling of a cylindrical particle in a stagnant fluid
DEFF Research Database (Denmark)
Sørensen, Henrik; Rosendahl, Lasse; Yin, Chungen
The objective of this work is to collect data and develop models for cylindrical particles which could be used in numerical multiphase flow modeling. Trajectories of cylindrical particles settling in stagnant water are filmed from two directions in order to derive detailed information on their mo...
Magnetization curves for non-elliptic cylindrical samples in a ...
Indian Academy of Sciences (India)
Abstract. Using recent results for the surface current density on cylindrical surfaces of arbitrary cross-section producing uniform interior magnetic field and an assumed set of flux-fronts, solutions of Bean's critical state model for cylindrical samples with non-elliptic cross-section are presented. Magnetization hysteresis loops ...
Cylindrical and spherical dust-acoustic wave modulations in dusty ...
Indian Academy of Sciences (India)
The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distributions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified nonlinear ...
Cylindrical and spherical dust-acoustic wave modulations in dusty ...
Indian Academy of Sciences (India)
Abstract. The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distribu- tions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified ...
Phase transition properties of a cylindrical ferroelectric nanowire
Indian Academy of Sciences (India)
Wang Ying and Yang Xiong cylindrical ferroelectric nanowire, one problem with the ... [25–28]. Wang et al used the effective-field theory with correlations for studying the dynamic properties of phase diagrams in a cylindrical ..... [10] D R Tilly and B Zekš, Solid State Commun. 49, 823 (1984). [11] D Schwenk, F Fishman and F ...
Analysis of radial vibrations of poroelastic circular cylindrical shells ...
African Journals Online (AJOL)
DR OKE
vanished, the considered problem reduces to the problem of radial vibrations of fluid-filled poroelastic circular cylindrical shell. (2). When the .... the volume change of the solid to that of liquid. ..... When the outer fluid density is zero, that is, ρof = 0 then the poroelastic cylindrical shell immersed in an acoustic medium will.
Ingestion of six cylindrical and four button batteries
DEFF Research Database (Denmark)
Nielsen, Simon U; Rasmussen, Morten; Hoegberg, Lotte C G
2010-01-01
We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis.......We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis....
Theoretical insight into ArO2 surface-wave microwave discharges
2010-01-01
Abstract A zero-dimensional kinetic model has been developed to investigate the coupled electron and heavy-particle kinetics in Ar-O 2 surface-wave microwave discharges generated in long cylindrical tubes, such as those launched with a surfatron or a surfaguide. The model has been validated by comparing the calculated electron temperature and species densities with experimental data available in the literature for different discharge conditions. Systematic studies have been carried out for...
(U) Influence of Compaction Model Form on Planar and Cylindrical Compaction Geometries
Energy Technology Data Exchange (ETDEWEB)
Fredenburg, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carney, Theodore Clayton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fichtl, Christopher Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-05
The dynamic compaction response of CeO_{2} is examined within the frameworks of the Ramp and P-a compaction models. Hydrocode calculations simulating the dynamic response of CeO_{2} at several distinct pressures within the compaction region are investigated in both planar and cylindrically convergent geometries. Findings suggest additional validation of the compaction models is warranted under complex loading configurations.
Cylindrical acoustic levitator/concentrator having non-circular cross-section
Kaduchak, Gregory; Sinha, Dipen N.
2003-11-11
A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow piezoelectric crystal which has been formed with a cylindrical cross-section to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. By deforming the circular cross-section of the transducer, the acoustic force is concentrated along axial regions parallel to the axis of the transducer. The cylinder does not require accurate alignment of a resonant cavity. The concentrated regions of acoustic force cause particles in the fluid to concentrate within the regions of acoustic force for separation from the fluid.
A STUDY OF THE DISCHARGE OF COHESIVE POWDERS UNDER SIMULTANEOUS AERATION AND VIBRATION
Marring, E.; Hoffmann, A.C; Janssen, L.P.B.M.
1995-01-01
The influence of applying simultaneous aeration and vibration on the discharge of cohesive powders from a laboratory scale cylindrical silo has been studied experimentally. The powders investigated were batches of potato starch powder of different moisture contents and therefore different degrees of
Simulating streamer discharges in 3D with the parallel adaptive Afivo framework
H.J. Teunissen (Jannis); U. M. Ebert (Ute)
2017-01-01
htmlabstractWe present an open-source plasma fluid code for 2D, cylindrical and 3D simulations of streamer discharges, based on the Afivo framework that features adaptive mesh refinement, geometric multigrid methods for Poisson's equation, and OpenMP parallelism. We describe the numerical
Converging cylindrical shocks in ideal magnetohydrodynamics
International Nuclear Information System (INIS)
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-01-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ 0 /p 0 ) I/(2 π) where I is the current, μ 0 is the permeability, and p 0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then
Plasma mixing glow discharge device for analytical applications
Pinnaduwage, L.A.
1999-04-20
An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission. 3 figs.
International Nuclear Information System (INIS)
Bogado Leite, S.Q.
1997-01-01
Escape and transmission probabilities, defined in terms of both the region the neutron originates from and the region it penetrates, are used to develop new interface-current relations for unit-cells with an arbitrary number of annular regions in cylindrical and spherical geometries. Comparisons with currents, obtained in terms of standard transmission and escape probabilities, as well as with accurate results reported in the literature, are presented for selected situations, showing significant discrepancies between the two models. (author)
Cylindrical isentropic compression by ultrahigh magnetic field
Gu, Zhuowei; Luo, Hao; Zhang, Hengdi; Zhao, Shichao; Tang, Xiaosong; Tong, Yanjin; Song, Zhenfei; Tan, Fuli; Zhao, Jianheng; Sun, Chengwei
2014-05-01
The cylindrical isentropic compression by ultrahigh magnetic field (MC-1) is a kind of unique high energy density technique. It has characters like ultrahigh pressure and low temperature rising, and would have widely used in areas like high pressure physics, new material synthesis and ultrahigh magnetic field physics. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) has begun the experiment since 2011 and a primary experimental device had been set-up. In the experiments, a seed magnetic field of 5 Tesla were set-up first and compressed by a stainless steel liner which is driven by high explosive initiated synchronously. The internal diameter of the liner is 97 mm, and its thickness is 1.5 mm. The movement of liner was recorded optically and a typical turnaround phenomenon was observed. From the photography results the liner was compressed smoothly and evenly and its average velocity was about 5-6 km/s. In the experiment a axial magnetic field of over 1400 Tesla has been recorded. The MC-1 process was numerical simulated by 1D MHD code MC11D and the simulations are in accord with the experiments.
Technology Selections for Cylindrical Compact Fabrication
Energy Technology Data Exchange (ETDEWEB)
Jeffrey A. Phillips
2010-10-01
A variety of process approaches are available and have been used historically for manufacture of cylindrical fuel compacts. The jet milling, fluid bed overcoating, and hot press compacting approach being adopted in the U.S. AGR Fuel Development Program for scale-up of the compacting process involves significant paradigm shifts from historical approaches. New methods are being pursued because of distinct advantages in simplicity, yield, and elimination of process mixed waste. Recent advances in jet milling technology allow simplified dry matrix powder preparation. The matrix preparation method is well matched with patented fluid bed powder overcoating technology recently developed for the pharmaceutical industry and directly usable for high density fuel particle matrix overcoating. High density overcoating places fuel particles as close as possible to their final position in the compact and is matched with hot press compacting which fully fluidizes matrix resin to achieve die fill at low compacting pressures and without matrix end caps. Overall the revised methodology provides a simpler process that should provide very high yields, improve homogeneity, further reduce defect fractions, eliminate intermediate grading and QC steps, and allow further increases in fuel packing fractions.
On Hydrodynamic Instabilities in Cylindrical Geometry
Proano, Erik; Rollin, Bertrand
2017-11-01
Recent research has suggested that hydrodynamic instabilities induced mixing is one of the last major hurdles toward achieving optimum conditions for ignition in confined fusion approaches for energy production. We leave aside the complexities of multiple interacting physics that lead to a fusion target ignition to be able to focus on understanding the development of these hydrodynamic instabilities, namely Richtmyer-Meshkov and Rayleigh-Taylor, in the context of a converging geometry. The problem is reformulated into the cleaner case of a cylindrical shock wave imploding onto a pocket of Sulfur Hexafluoride immersed in air. This numerical experiment aims at characterizing qualitatively and quantitatively the relation between the instabilities initial conditions and their development until late time. Starting from carefully designed single- and multimode disturbances at the initial density interface, our simulations track the evolution of the mixing layer through successive occurrences of the Richtmyer-Meshkov and Rayleigh-Taylor instabilities. Evolution of the mixing zone width and growth rate are presented for selected initial conditions, along with a quantification of mixing. Also, the effect of the converging shock strength is discussed.
Buckling localization in a cylindrical panel under axial compression
DEFF Research Database (Denmark)
Tvergaard, Viggo; Needleman, A.
2000-01-01
Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum...
Vibrational analysis of submerged cylindrical shells based on elastic foundations
International Nuclear Information System (INIS)
Shah, A.G.; Naeem, M.N.
2014-01-01
In this study a vibration analysis was performed of an isotropic cylindrical shell submerged in fluid, resting on Winkler and Pasternak elastic foundations for simply supported boundary condition. Love's thin shell theory was exploited for strain- and curvature- displacement relationship. Shell problem was solved by using wave propagation approach. Influence of fluid and Winkler as well as Pasternak elastic foundations were studied on the natural frequencies of submerged isotropic cylindrical shells. Results were validated by comparing with the existing results in literature. Vibration, Submerged cylindrical shell, Love's thin shell theory, Wave propagation method, Winkler and Pasternak foundations. (author)
Narrow gap electronegative capacitive discharges
Energy Technology Data Exchange (ETDEWEB)
Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J. [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)
2013-10-15
Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage V{sub rf}=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density n{sub e0} is depressed below the density n{sub esh} at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at V{sub rf}=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.
Graywater Discharges from Vessels
2011-11-01
both sewage and graywater, or sewage collected from “ honey dipper” trucks, which may contain far less graywater, depending on the source (See... crystal clean effluent discharge. As a reference, Cruiseliners equipped with Scanship AWP systems has obtained continous discharge permits in Hawaii and
African Journals Online (AJOL)
Vaginal discharge in the prepubertal patient is a common symptom, and can be a source of distress for the caregiver and con- cern for the healthcare worker. Several factors predispose these patients to the development of recurrent vaginal discharge. Unless noticed by the caregiver, this problem can persist for long periods ...
Prostate brachytherapy - discharge
... nausea or vomiting Any new or unusual symptoms Alternative Names Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge References D'Amico AV, Nguyen PL, Crook JM, et al. Radiation therapy for prostate cancer. In: Wein AJ, Kavoussi LR, Partin AW, Peters CA, ...
Dipole radiation from a cylindrical hole in the earth.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Johnson, William Arthur; Basilio, Lorena I.
2005-08-01
This report examines the problem of an antenna radiating from a cylindrical hole in the earth and the subsequent far-zone field produced in the upper air half space. The approach used for this analysis was to first examine propagation characteristics along the hole for surrounding geologic material properties. Three cases of sand with various levels of moisture content were considered as the surrounding material to the hole. For the hole diameters and sand cases examined, the radiation through the earth medium was found to be the dominant contribution to the radiation transmitted through to the upper half-space. In the analysis presented, the radiation from a vertical and a horizontal dipole source within the hole is used to determine a closed-form expression for the radiation in the earth medium which represents a modified element factor for the source and hole combination. As the final step, the well-known results for a dipole below a half space, in conjunction with the use of Snell's law to transform the modified element factor to the upper half space, determine closed-form expressions for the far-zone radiated fields in the air region above the earth.
Acceleration of diffraction calculations in cylindrically symmetrical optics.
Rubin, Jeremy S; Shirley, Eric L; Levine, Zachary H
2018-02-01
We have significantly accelerated diffraction calculations using three independent acceleration devices. These innovations are restricted to cylindrically symmetrical systems. In the first case, we consider Wolf's formula for integrated flux in a circular region following diffraction of light from a point source by a circular aperture or a circular lens. Although the formula involves a double sum, we evaluate it with the effort of a single sum by use of fast Fourier transforms (FFTs) to perform convolutions. In the second case, we exploit properties of the Fresnel-Kirchhoff propagator in the Gaussian, paraxial optics approximation to achieve the propagation of a partial wave from one optical element to the next. Ordinarily, this would involve a double loop over the radial variables on each element, but we have reduced the computational cost by a factor approximately equal to the smaller number of radius values. In the third case, we reduce the number of partial waves, for which the propagation needs to be calculated, to determine the throughput of an optical system of interest in radiometry when at least one element is very small, such as a pinhole aperture. As a demonstration of the benefits of the second case, we analyze intricate diffraction effects that occur in a satellite-based solar radiometry instrument.
Phonon-assisted Zener tunneling in a cylindrical nanowire transistor
Carrillo-Nuñez, H.; Magnus, Wim; Vandenberghe, William G.; Sorée, Bart; Peeters, François M.
2013-05-01
The tunneling current has been computed for a cylindrical nanowire tunneling field-effect transistor (TFET) with an all-round gate that covers the source region. Being the underlying mechanism, band-to-band tunneling, mediated by electron-phonon interaction, is pronouncedly affected by carrier confinement in the radial direction and, therefore, involves the self-consistent solution of the Schrödinger and Poisson equations. The latter has been accomplished by exploiting a non-linear variational principle within the framework of the modified local density approximation taking into account the nonparabolicity of both the valence band and conduction band in relatively thick wires. Moreover, while the effective-mass approximation might still provide a reasonable description of the conduction band in relatively thick wires, we have found that the nonparabolicity of the valence band needs to be included. As a major conclusion, it is observed that confinement effects in nanowire tunneling field-effect transistors have a stronger impact on the onset voltage of the tunneling current in comparison with planar TFETs. On the other hand, the value of the onset voltage is found to be overestimated when the valence band nonparabolicity is ignored.
Straight cylindrical seal for high-performance turbomachines
Hendricks, Robert C.
1987-01-01
A straight cylindrical seal configuration representing the seal for a high-performance turbopump (e.g., the space shuttle main engine fuel pump) was tested under static (nonrotating) conditions. The test data included critical mass flux and pressure profiles over a wide range of inlet temperatures and pressures for fluid nitrogen and fluid hydrogen with the seal in concentric and fully eccentric positions. The critical mass fluxes (or leakage rates) for the concentric and fully eccentric configurations were nearly the same when based on stagnation conditions upstream of the seal. The fully eccentric configuration pressure profiles of the gas and liquid were different. Further, the pressure differences between the maximum and the minimum clearance positions were highly dependent on the geometric conditions, the temperature, and the absolute pressure at both the inlet and the exit. The pressure differences were greatest in the inlet region. The results, although complex, tend to follow the corresponding-states principles for critical flows. Gaseous injection near the seal exit plane significantly altered the pressure profiles and could be used to control turbomachine instabilities.
Emission and formation of electromagnetic pulses in cylindrical systems
International Nuclear Information System (INIS)
Lomize, L.G.; Sveshnikova, N.N.; Kuz'min, V.A.
1983-01-01
During the passage of a charged particle bunch through a cylindrical resonator after the process of field formation has been over the radiation, having separated from the intrinsic field, freely propagates over the resonator volume while undergoing multiple reflections from the resonator walls. As the numerical experiments have shown not only localized reflections from the resonator walls but the distributed reflections from the near-axial region take place; they result in the formation of a short intense pulse of the accelerating field along the resonator axis. The pulse runs in the direction of the bunch motion and is responsible for the process of particle autoacceleration. Transformations of the electromagnetic pUlse shape at subsequent reflections are rather of a regular character and repeated almost periodically in a certain period of time during which the light in the vacuum covers eight radii of the resonator. Conservation of the pulse shape from a period to another proceeds the more precisely, the shorter the range of the electromagnetic pulse is as compared with the resonator radius. If the resonator is permeated by successive bunches, then at a pulse frequency, for which the wave length is equal to eight radii of the resonator, a pulse resonance should arise, while at the wave length eqUal to four resonator radii a pulse antiresonance should arise
External Cylindrical Nozzle with Controlled Vacuum
Directory of Open Access Journals (Sweden)
V. N. Pil'gunov
2015-01-01
Full Text Available There is a developed design of the external cylindrical nozzle with a vacuum camera. The paper studies the nozzle controllability of flow rate via regulated connection of the evacuated chamber to the atmosphere through an air throttle. Working capacity of the nozzle with inlet round or triangular orifice are researched. The gap is provided in the nozzle design between the external wall of the inlet orifice and the end face of the straight case in the nozzle case. The presented mathematical model of the nozzle with the evacuated chamber allows us to estimate the expected vacuum amount in the compressed section of a stream and maximum permissible absolute pressure at the inlet orifice. The paper gives experimental characteristics of the fluid flow process through the nozzle for different values of internal diameter of a straight case and an extent of its end face remoteness from an external wall of the inlet orifice. It estimates how geometry of nozzle constructive elements influences on the volume flow rate. It is established that the nozzle capacity significantly depends on the shape of inlet orifice. Triangular orifice nozzles steadily work in the mode of completely filled flow area of the straight case at much more amounts of the limit pressure of the flow. Vacuum depth in the evacuated chamber also depends on the shape of inlet orifice: the greatest vacuum is reached in a nozzle with the triangular orifice which 1.5 times exceeds the greatest vacuum with the round orifice. Possibility to control nozzle capacity through the regulated connection of the evacuated chamber to the atmosphere was experimentally estimated, thus depth of flow rate regulation of the nozzle with a triangular orifice was 45% in comparison with 10% regulation depth of the nozzle with a round orifice. Depth of regulation calculated by a mathematical model appeared to be much more. The paper presents experimental dependences of the flow coefficients of nozzle input orifice
Predicting tile drainage discharge
DEFF Research Database (Denmark)
Iversen, Bo Vangsø; Kjærgaard, Charlotte; Petersen, Rasmus Jes
More than 50 % of Danish agricultural areas are expected to be artificial tile drained. Transport of water and nutrients through the tile drain system to the aquatic environment is expected to be significant. For different mitigation strategies such as constructed wetlands an exact knowledge...... of the water load coming from the tile drainage system is therefore essential. This work aims at predicting tile drainage discharge using dynamic as well as a statistical predictive models. A large dataset of historical tile drain discharge data, daily discharge values as well as yearly average values were...... used in the analysis. For the dynamic modelling, a simple linear reservoir model was used where different outlets in the model represented tile drain as well as groundwater discharge outputs. This modelling was based on daily measured tile drain discharge values. The statistical predictive model...
Modelling electric discharge chemistry
International Nuclear Information System (INIS)
McFarlane, J.; Wren, J.C.
1991-07-01
The chemistry occurring in a electric discharge was modelled to predict how it would be influenced by discharge conditions. The discharge was characterized by a calculated Boltzmann electron-energy distribution, from which rate constants for electron-molecule processes in air were determined. These rate constants were used in a chemical kinetics calculation that also included reactions between neutral molecules, ions, free radicals and electronically excited species. The model describes how the discharge chemistry was influenced by humidity, electric field, electron number density, and concentrations of key reagents identified in the study. The use of an electric discharge to destroy airborne contaminant molecules was appraised, the targeted contaminants being CF 2 Cl 2 , HCN, and SO 2 . The modelling results indicate that an electric discharge should be able to remove HCN and CF 2 Cl 2 effectively, especially if the discharge conditions have been optimized. Effective destruction is achieved with a moderate electric field (over 1 x 10 -15 V.cm 2 ), a substantial electron number density (over 1 x 10 12 cm -3 ), and the presence of H 2 0 in the process air. The residence time in the discharge was also shown to be important in contaminant destruction. An attempt was made to explain the results of the electric discharge abatement of SO 2 , a component of a simulated flue-gas mixture. Results from the model indicate that the discharge parameters that increase the concentration of hydroxyl radical also increase the rate of decomposition of SO 2 . An objective of the study was to explain the apparent enhancement of SO 2 destruction by the presence of a small amount of NO 2 . It was thought that a likely explanation would be the stabilization of HOSO 2 , an important intermediate in the oxidation of SO 2 by NO 2 . (49 figs., 14 tabs., 75 refs.)
Stationary Cylindrically Symmetric Solution Approaching Einstein's Cosmological Solution
Iftime, M. D.
2001-01-01
Here we describe a stationary cylindrically symmetric solution of Einstein's equation with matter consisting of a positive cosmological and rotating dust term. The solution approaches Einstein static universe solution.
Friction Compensation in the Upsetting of Cylindrical Test Specimens
DEFF Research Database (Denmark)
Christiansen, Peter; Martins, P. A. F.; Bay, Niels Oluf
2016-01-01
This manuscript presents a combined numerical andexperimental methodology for determining the stress-straincurve of metallic materials from the measurements of forceand displacement obtained in the axial compression of cylindrical test specimens with friction between the specimens and the platens...... model or combined friction models are utilized .Experimental results obtained from cylindrical and Rastegaev test specimens with different lubricants combined with the experimental determination of friction by means of ring compression tests allows compensating the effect of friction...
On cylindrically converging shock waves shaped by obstacles
Energy Technology Data Exchange (ETDEWEB)
Eliasson, V; Henshaw, W D; Appelo, D
2007-07-16
Motivated by recent experiments, numerical simulations were performed of cylindrically converging shock waves. The converging shocks impinged upon a set of zero to sixteen regularly space obstacles. For more than two obstacles the resulting diffracted shock fronts formed polygonal shaped patterns near the point of focus. The maximum pressure and temperature as a function of number of obstacles were studied. The self-similar behavior of cylindrical, triangular and square-shaped shocks were also investigated.
The magnetic properties of the hollow cylindrical ideal remanence magnet
Bjørk, R.
2016-01-01
We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach ...
Micropatterning on cylindrical surfaces via electrochemical etching using laser masking
International Nuclear Information System (INIS)
Cho, Chull Hee; Shin, Hong Shik; Chu, Chong Nam
2014-01-01
Highlights: • Various micropatterns were fabricated on the cylindrical surface of a stainless steel shaft. • Selective electrochemical dissolution was achieved via a series process of laser masking and electrochemical etching. • Laser masking characteristics on the non-planar surface were investigated. • A uniform mask layer was formed on the cylindrical surface via synchronized laser line scanning with a rotary system. • The characteristics of electrochemical etching on the non-planar surface were investigated. - Abstract: This paper proposes a method of selective electrochemical dissolution on the cylindrical surfaces of stainless steel shafts. Selective electrochemical dissolution was achieved via electrochemical etching using laser masking. A micropatterned recast layer was formed on the surface via ytterbium-doped pulsed fiber laser irradiation. The micropatterned recast layer could be used as a mask layer during the electrochemical etching process. Laser masking condition to form adequate mask layer on the planar surface for etching cannot be used directly on the non-planar surface. Laser masking condition changes depending on the morphological surface. The laser masking characteristics were investigated in order to form a uniform mask layer on the cylindrical surface. To minimize factors causing non-uniformity in the mask layer on the cylindrical surface, synchronized laser line scanning with a rotary system was applied during the laser masking process. Electrochemical etching characteristics were also investigated to achieve deeper etched depth, without collapsing the recast layer. Consequently, through a series process of laser masking and electrochemical etching, various micropatternings were successfully performed on the cylindrical surfaces
Theory and modeling of cylindrical thermo-acoustic transduction
Energy Technology Data Exchange (ETDEWEB)
Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)
2016-06-03
Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.
Capacitor discharge engineering
Früngel, Frank B A
1976-01-01
High Speed Pulse Technology, Volume III: Capacitor Discharge Engineering covers the production and practical application of capacitor dischargers for the generation and utilization of high speed pulsed of energy in different forms. This nine-chapter volume discusses the principles of electric current, voltage, X-rays, gamma rays, heat, beams of electrons, neutrons and ions, magnetic fields, sound, and shock waves in gases and liquids. Considerable chapters consider the applications of capacitor discharges, such as impulse hardening of steel, ultrapulse welding of precision parts, X-ray flash t
Plasma return current discharge
International Nuclear Information System (INIS)
Mangano, J.A.; Hsia, J.; Jacob, J.H.; Srivastava, B.N.
1978-01-01
A discharge technique based on the use of an electron-beam-induced plasma return current to produce and heat large-volume plasmas is described. The results of discharge studies using this technique in attachment-dominated mixtures are presented. The results are found to be adequately described by a simple theory. The electron attachment rate by F 2 inferred from these measurements agrees well with those of other workers. KrF laser action at 248 nm is reported in return-current discharge-excited mixtures of F 2 /Kr/He
Filament Discharge Phenomena in Fingerprint Acquisition by Dielectric Barrier Discharge
International Nuclear Information System (INIS)
Weng Ming; Xu Weijun; Liu Qiang
2007-01-01
In this paper, the dielectric barrier discharge fingerprint acquisition technique is introduced. The filament discharge phenomena were observed in the process of fingerprint acquisition. The filament discharge reduced the quality of fingerprint images. Obviously, it was necessary to eliminate streamer discharges in order to get good fingerprint images. The streamer discharge was considered to be the cause of the filament discharge in the experiment. The relationship between the critical electric field and the discharge gap was calculated with the Raether's model of streamer discharge. The calculated results and our experiment proved that it would be difficult for the streamer discharge to occur when the discharge gap was narrow. With a narrow discharge gap, the discharge was homogeneous, and the fingerprint images were clear and large in area. The images obtained in the experiment are very suitable for fingerprint identification as they contain more information
Surface waves in a cylindrical borehole through partially-saturated porous solid
Sharma, M. D.
2018-02-01
Propagation of surface waves is discussed in a cylindrical borehole through a liquid-saturated porous solid of infinite extent. The porous medium is assumed to be a continuum consisting of a solid skeletal with connected void space occupied by a mixture of two immiscible inviscid fluids. This model also represents the partial saturation when liquid fills only a part of the pore space and gas bubbles span the remaining void space. In this isotropic medium, potential functions identify the existence of three dilatational waves coupled with a shear wave. For propagation of plane harmonic waves along the axially-symmetric borehole, these potentials decay into the porous medium. Boundary conditions are chosen to disallow the discharge of liquid into the borehole through its impervious porous walls. A dispersion equation is derived for the propagation of surface waves along the curved walls of no-liquid (all gas) borehole. A numerical example is studied to explore the existence of cylindrical waves in a particular model of the porous sandstone. True surface waves do not propagate along the walls of borehole when the supporting medium is partially saturated. Such waves propagate only beyond a certain frequency when the medium is fully-saturated porous or an elastic one. Dispersion in the velocity of pseudo surface waves is analysed through the changes in consolidation, saturation degree, capillary pressure or porosity.
Discharge gauging without a hydrologist (Invited)
Weiler, M.; Grether, M.; Blattmann, E.
2009-12-01
Discharge data are still the core variable for any hydrological research. Sensors to continuously observe water level in streams have become cheap and their set-up without any hydraulic gauging structure is fast and relative easy. Thus it should be possible in the future to gauge and observe a large variety of watersheds, to learn from the collected datasets, and consequently to overcome the problem of ungauged watersheds. However, the major challenge remaining is to develop a reliable stage-discharge relationship that does not require manual discharge measurements over many years at high costs to the hydrological services. This challenges in particular concerns remote areas and turbulent and flashy streams, where hydraulic gauging structures cannot be constructed due to ecological or financial constrains. The stage-discharge relationship in these streams is often poorly defined since the cross-section or hydraulic properties are changing continuously. Especially at high flows a large error has to be assumed since discharge could not be continuously observed. We developed and tested a new instrument for continuous discharge monitoring in turbulent streams. This tool is designed to reliably observe discharge in these streams and to obtain hundreds of discharge measurements to construct a stage-discharge relationship within a couple of weeks. The Automatic Dilution Gauging System (ADiGS) is a self-controlled instrument for dilution gauging using florescent dyes as a tracer. Because of its technical setup with low power consumption, automatic tracer injection, effective data storage and the possibility to transfer or receive data by wireless communication, ADiGS can be used as a stand-alone tool. It can therefore be easily deployed to establish time- and cost-effectively stage-discharge relations in low accessible regions or under financial constraints.
Optimization methods of the net emission computation applied to cylindrical sodium vapor plasma
International Nuclear Information System (INIS)
Hadj Salah, S.; Hajji, S.; Ben Hamida, M. B.; Charrada, K.
2015-01-01
An optimization method based on a physical analysis of the temperature profile and different terms in the radiative transfer equation is developed to reduce the time computation of the net emission. This method has been applied for the cylindrical discharge in sodium vapor. Numerical results show a relative error of spectral flux density values lower than 5% with an exact solution, whereas the computation time is about 10 orders of magnitude less. This method is followed by a spectral method based on the rearrangement of the lines profile. Results are shown for Lorentzian profile and they demonstrated a relative error lower than 10% with the reference method and gain in computation time about 20 orders of magnitude
Energy Technology Data Exchange (ETDEWEB)
Bryant, P M [University of Liverpool, Department of Electrical Engineering and Electronics, Brownlow Hill, Liverpool L69 3GJ (United Kingdom)], E-mail: p.m.bryant@liv.ac.uk
2009-02-01
A finite length cylindrical Langmuir probe is modelled as an ellipsoid of revolution with spheroidal equipotential surfaces and confocal orthogonal hyperboloidal electric field lines. The theory is applicable in the transition regime of probe operation between the collisionless and fully collisional limits. The plasma is assumed to be weakly ionized, non-thermal and stationary, being characterized by frozen reactions and constant temperatures. It is further assumed that in an isotropic plasma the cold ions follow the field lines, as a result of ion-neutral collisions, in the presheath and sheath regions with collisionless Maxwellian electrons. The governing system of equations is derived and solved numerically with the results presented of the presheath and sheath solutions in collisionless and collisional regimes. These show convergence to the respective collisionless and collisional radial motion limits for spherical and cylindrical probes. Analytical approximations are also obtained for the sheath width (defined as the point where the ions reach the Bohm speed) and the Bohm potential over a wide range of collisionality. The collisional presheath drop according to the perturbation theory of Shih and Levi, as applied to cylindrical probes, is shown to significantly underestimate the numerical results. These are in better agreement with the collisional presheath drop for spheres even for long probes. Application of the theory to experimentally derived probe characteristics is also discussed.
Implantable cardioverter defibrillator - discharge
... medlineplus.gov/ency/patientinstructions/000108.htm Implantable cardioverter defibrillator - discharge To use the sharing features on this page, please enable JavaScript. An implantable cardioverter-defibrillator (ICD) is a device that detects a life- ...
Hypospadias repair - discharge
... this page: //medlineplus.gov/ency/patientinstructions/000158.htm Hypospadias repair - discharge To use the sharing features on this page, please enable JavaScript. Your child had hypospadias repair to fix a birth defect in which ...
Concussion - child - discharge
... this page: //medlineplus.gov/ency/patientinstructions/000125.htm Concussion in children - discharge To use the sharing features ... enable JavaScript. Your child was treated for a concussion . This is a mild brain injury that can ...
... Genital exudate culture; Culture - genital discharge or exudate; Urethritis - culture ... Augenbraun MH, McCormack WM. Urethritis. In: Bennett JE, Dolin R, Blaser MJ, eds. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases . 8th ed. ...
Thyroid gland removal - discharge
... this page: //medlineplus.gov/ency/patientinstructions/000293.htm Thyroid gland removal - discharge To use the sharing features ... surgery. This will make your scar show less. Thyroid Hormone Replacement You may need to take thyroid ...
Atrial fibrillation - discharge
... this page: //medlineplus.gov/ency/patientinstructions/000237.htm Atrial fibrillation - discharge To use the sharing features on this ... have been in the hospital because you have atrial fibrillation . This condition occurs when your heart beats faster ...
... this page: //medlineplus.gov/ency/patientinstructions/000001.htm Asthma - child - discharge To use the sharing features on this ... care for your child. Take Charge of Your Child's Asthma at Home Make sure you know the asthma ...
Small bowel resection - discharge
... Ileostomy and your diet Ileostomy - caring for your stoma Ileostomy - changing your pouch Ileostomy - discharge Ileostomy - what to ask your doctor Low-fiber diet Surgical wound care - open Types of ileostomy Wet-to-dry dressing ...
Kidney stones - lithotripsy - discharge
... this page: //medlineplus.gov/ency/patientinstructions/000136.htm Kidney stones and lithotripsy - discharge To use the sharing features on this page, please enable JavaScript. A kidney stone is a solid mass made up of tiny ...
Radiation - chest - discharge; Cancer - chest radiation; Lymphoma - chest radiation ... When you have radiation treatment for cancer, your body goes through changes. About 2 weeks after your first treatment: It may be hard ...
Radiation - breast - discharge ... away around 4 to 6 weeks after the radiation treatment is over. You may notice changes in ... breast looks or feels (if you are getting radiation after a lumpectomy). These changes include: Soreness or ...
Radiation - brain - discharge; Cancer-brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...
Epilepsy - children - discharge
... this page: //medlineplus.gov/ency/patientinstructions/000127.htm Epilepsy in children - discharge To use the sharing features ... this page, please enable JavaScript. Your child has epilepsy . People with epilepsy have seizures. A seizure is ...
Epilepsy or seizures - discharge
... this page: //medlineplus.gov/ency/patientinstructions/000128.htm Epilepsy or seizures - discharge To use the sharing features on this page, please enable JavaScript. You have epilepsy . People with epilepsy have seizures. A seizure is ...
Multiple sclerosis - discharge
... this page: //medlineplus.gov/ency/patientinstructions/000129.htm Multiple sclerosis - discharge To use the sharing features on this ... Your doctor has told you that you have multiple sclerosis (MS). This disease affects the brain and spinal ...
Pneumonia - adults - discharge
... this page: //medlineplus.gov/ency/patientinstructions/000017.htm Pneumonia in adults - discharge To use the sharing features on this page, please enable JavaScript. You have pneumonia, which is an infection in your lungs. In ...
Pneumonia - children - discharge
... this page: //medlineplus.gov/ency/patientinstructions/000011.htm Pneumonia in children - discharge To use the sharing features ... this page, please enable JavaScript. Your child has pneumonia, which is an infection in the lungs. In ...
... Philadelphia, PA: Elsevier; 2017:chap 55. Read More Broken bone Hip fracture surgery Hip pain Leg MRI scan Osteoporosis - overview Patient Instructions Getting your home ready - knee or hip surgery Osteomyelitis - discharge Review ...
Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes.
Anderson, Daria Nesterovich; Osting, Braxton; Vorwerk, Johannes; Dorval, Alan D; Butson, Christopher R
2018-04-01
Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs. Magnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts). The optimization algorithm returns patient-specific contact configurations in near real-time-less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN. This DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements.
Energy Technology Data Exchange (ETDEWEB)
Dakin, J. [GE Lighting, Cleveland, OH (United States)
1994-12-31
This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advance. A general overview of discharge lighting technology can be found in the book of Waymouth (1971). A recent review of low pressure lighting discharge science is found in Dakin (1991). The pioneering paper of Reiling (1964) provides a good introduction to metal halide discharges. Particularly relevant to lighting for plant growth, a recent and thorough treatment of high pressure Na lamps is found in the book by deGroot and vanVliet (1986). Broad practical aspects of lighting application are thoroughly covered in the IES Lighting Handbook edited by Kaufman (1984).
International Nuclear Information System (INIS)
Piel, A.
1993-01-01
Many gas discharges exhibit natural oscillations which undergo a transition from regular to chaotic behavior by changing an experimental parameter or by applying external modulation. Besides several isolated investigations, two classes of discharge phenomena have been studied in more detail: ionization waves in medium pressure discharges and potential relaxation oscillations in filament cathode discharges at very low pressure. The latter phenomenon will be discussed by comparing experimental results from different discharge arrangements with particle-in-cell simulations and with a model based on the van-der-Pol equation. The filament cathode discharge has two stable modes of operation: the low current anode-glow-mode and the high current temperature-limited-mode, which form the hysteresis curve in the I(U) characteristics. Close to the hysteresis point of the AGM periodic relaxation oscillations occur. The authors demonstrate that the AGM can be understood by ion production in the anode layer, stopping of ions by charge exchange, and trapping in the virtual cathode around the filament. The relaxation oscillations consist of a slow filling phase and a rapid phase that invokes formation of an unstable double-layer, current-spiking, and ion depletion from the cathodic plasma. The relaxation oscillations can be mode-locked by external modulation. Inside a mode-locked state, a period doubling cascade is observed at high modulation degree
Surgical discharge summaries: improving the record.
Adams, D C; Bristol, J B; Poskitt, K R
1993-03-01
The problem area of communication between hospital and general practitioners may potentially be improved by the advent of new information technology. The introduction of a regional computer database for general surgery allows the rapid automated production of discharge summaries and has provided us with the opportunity for auditing the quality of old and new styles of discharge communication. A total of 118 general practitioners were sent a postal questionnaire to establish their views on the relative importance of various aspects of patient information and management after discharge. A high response rate (97%) indicated the interest of general practitioners in this topic. The majority (73%) believed that summaries should be delayed no more than 3 days. The structured and shortened new format was preferred to the older style of discharge summary. The older format rarely arrived within an appropriate time and its content was often felt to be either inadequate (35%) or excessive (7%) compared with the new format (8% and 1%, respectively). The diagnosis, information given to the patient, clinic date, list of medications and investigations were considered the more important details in the summary. Improvements in the discharge information were suggested and have subsequently been incorporated in our discharge policy. The use of new information technology, intended to facilitate clinical audit, has improved our ability to generate prompt, well-structured discharge summaries which are accepted by the general practitioners.
Identifying discharge practice training needs.
Lees, L; Emmerson, K
A training needs analysis tool was developed to identify nurses' discharge training needs and to improve discharge practice. The tool includes 49 elements of discharge practice subdivided into four areas: corporate, operational, clinical and nurse-led discharge. The tool was disseminated to 15 wards on two hospital sites with assistance from the practice development team. Analysis of discharge training is important to assess discharge training needs and to identify staff who may assist with training.
Novel spherical hohlraum with cylindrical laser entrance holes and shields
Lan, Ke; Zheng, Wudi
2014-09-01
Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.
The decrease of cylindrical pempek quality during boiling
Karneta, R.; Gultom, N. F.
2017-09-01
The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.
Novel spherical hohlraum with cylindrical laser entrance holes and shields
International Nuclear Information System (INIS)
Lan, Ke; Zheng, Wudi
2014-01-01
Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums
Novel spherical hohlraum with cylindrical laser entrance holes and shields
Energy Technology Data Exchange (ETDEWEB)
Lan, Ke [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zheng, Wudi [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)
2014-09-15
Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.
Sensitivity optimization in whispering gallery mode optical cylindrical biosensors
Khozeymeh, F.; Razaghi, M.
2018-01-01
Whispering-gallery-mode resonances propagated in cylindrical resonators have two angular and radial orders of l and i. In this work, the higher radial order whispering-gallery-mode resonances, (i = 1 ‑ 4), at a fixed l are examined. The sensitivity of theses resonances is analysed as a function of the structural parameters of the cylindrical resonator like different radii and refractive index of composed material of the resonator. A practical application where cylindrical resonators are used for the measurement of glucose concentration in water is presented as a biosensor demonstrator. We calculate the wavelength shifts of the WG1-4, in several glucose/water solutions, with concentrations spanning from 0.0% to 9.0.% (weight/weight). Improved sensitivity can be achieved using multi-WGM cylindrical resonators with radius of R = 100 μm and resonator composed material of MgF 2 with refractive index of nc = 1.38. Also the effect of polarization on sensitivity is considered for all four WGMs. The best sensitivity of 83.07 nm/RIU for the fourth WGM with transverse magnetic polarization, is reported. These results propose optimized parameters aimed to fast designing of cylindrical resonators as optical biosensors, where both the sensitivity and the geometries can be optimized.
Avksentev, Alexey; Negrobova, Elena; Kramareva, Tatiana; Moiseeva, Evgenya
2016-04-01
The dependence of the discharge of nitrous oxide by ordinary chernozem steppe of the Central-Chernozem Region of Russia from the content of humus, nitrogen and enzymatic activity Alexey Avksentev, Elena Negrobova, Tatiana Kramareva, Evgenya Moiseeva 394000 Voronezh, Universitetskaya square, 1 Voronezh State University Nitrous oxide is emitted by soil as a result of microbiological processes, ranks third in the list of aggressive greenhouse gas after carbon dioxide and methane. Nitrous oxide is formed during nitrification and denitrification of ammonia that enters the soil during microbial decomposition of complex organic compounds. Denitrification can be direct and indirect. In the microbiological process of recovery of nitrates involved of the organic substance. In aerobic conditions microorganisms denitrificator behave like normal saprotrophs and oxidize organic matter in the act of breathing oxygen. Thus, they operate at different times two enzyme systems: the electron transport chain with an oxygen acceptor in aerobic and restoration of nitrates under anaerobic conditions. Investigation of the emission of nitrous oxide by ordinary Chernozem steppe of the Central-Chernozem Region showed that it depends on the type of cenosis and the content of available forms of nitrogen. Natural ecosystems emit nitrous oxide more than the soil of arable land. The dependence of the emission of nitrous oxide from the humus content shows positive trend, but the aggregation of data, significant differences are not detected. Research shows that nitrous oxide emissions are seasonal. So the autumn season is characterized by nitrous oxide emissions than spring. Enzymatic processes are an important link in the biological cycle of elements and, consequently, participate in the process of decomposition of organic matter, nitrification and other processes. Analysis of the data on enzyme activity of ordinary Chernozem and the intensity of emission of N20 shows a clear relationship between
Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J.
2008-01-01
The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic configurations. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying a higher thrust efficiency. Preliminary thruster performance measurements on this configuration were obtained over a power range of 100-250 W. The thrust levels over this power range were 3.5-6.5 mN, with anode efficiencies and specific impulses spanning 14-19% and 875- 1425 s, respectively. The magnetic field in the thruster was lower for the thrust measurements than the plasma probe measurements due to heating and weakening of the permanent magnets, reducing the maximum field strength from 2 kG to roughly 750-800 G. The discharge current levels observed during thrust stand testing were anomalously high compared to those levels measured in previous experiments with this thruster.
Experiments of cylindrical isentropic compression by ultrahigh magnetic field
Gu, Zhuowei; Zhou, Zhongyu; Zhang, Chunbo; Tang, Xiaosong; Tong, Yanjin; Zhao, Jianheng; Sun, Chengwei
2015-09-01
The high Explosive Magnetic Flux Implosion Compression Generator (EMFICG) is a kind of unique high energy density dynamic technique with characters like ultrahigh pressure and low temperature rising and could be suitable as a tool of cylindrical isentropic compression. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) have developed EMFICG technique and realized cylindrical isentropic compression. In the experiments, a seed magnetic field of 5-6 Tesla were built first and compressed by a stainless steel liner which is driven by high explosive. The inner free surface velocity of sample was measured by PDV. The isentropic compression of a copper sample was verified and the isentropic pressure is over 100 GPa. The cylindrical isentropic compression process has been numerical simulated by 1D MHD code and the simulation results were compared with the experiments. Compared with the transitional X-ray flash radiograph measurement, this method will probably promote the data accuracy.
Experiments of cylindrical isentropic compression by ultrahigh magnetic field
Directory of Open Access Journals (Sweden)
Gu Zhuowei
2015-01-01
Full Text Available The high Explosive Magnetic Flux Implosion Compression Generator (EMFICG is a kind of unique high energy density dynamic technique with characters like ultrahigh pressure and low temperature rising and could be suitable as a tool of cylindrical isentropic compression. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP have developed EMFICG technique and realized cylindrical isentropic compression. In the experiments, a seed magnetic field of 5–6 Tesla were built first and compressed by a stainless steel liner which is driven by high explosive. The inner free surface velocity of sample was measured by PDV. The isentropic compression of a copper sample was verified and the isentropic pressure is over 100 GPa. The cylindrical isentropic compression process has been numerical simulated by 1D MHD code and the simulation results were compared with the experiments. Compared with the transitional X-ray flash radiograph measurement, this method will probably promote the data accuracy.
Magnetostatic interactions in cylindrical nanostructures with non-uniform magnetization
Energy Technology Data Exchange (ETDEWEB)
Suarez, O.J. [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso (Chile); Perez, L.M. [Departamento de Fisica y Matematica Aplicada, Universidad de Navarra, 31080 Pamplona (Spain); Laroze, D., E-mail: david.laroze@gmail.com [Max Planck Institute for Polymer Research, D 55021 Mainz (Germany); Instituto de Alta Investigacion, Universidad de Tarapaca, Casilla 7D, Arica (Chile); Altbir, D. [Departamento de Fisica and Center for the Development of Nanoscience and Nanotechnology, Universidad de Santiago de Chile, Av. Ecuador 3493, Santiago (Chile)
2012-05-15
Cylindrical magnetic nanostructures, like nanowires or nanotubes, should be used for the new generation of magnetic devices. Therefore, the investigation of inter-element interaction is an intense area of research. In this paper we investigated cylindrical nanostructures with non-uniform magnetization field. We focus on particles with a periodic magnetization function and using Fourier series we reduced the problem to a single integral expression. Analytical expressions for both, the self and the interaction magnetostatic energy, are given. These expressions are used to analyze multisegmented tubes, as a function of the number of segments and the distance between particles. - Highlights: Black-Right-Pointing-Pointer Magnetic cylindrical nanoparticles like nanowires or nanotubes. Black-Right-Pointing-Pointer Magnetostatic interaction between particles. Black-Right-Pointing-Pointer Non-uniform magnetization states.
Evanescent channels and scattering in cylindrical nanowire heterostructures
Racec, P. N.; Racec, E. R.; Neidhardt, H.
2009-04-01
We investigate the scattering phenomena produced by a general finite-range nonseparable potential in a multichannel two-probe cylindrical nanowire heterostructure. The multichannel current scattering matrix is efficiently computed using the R -matrix formalism extended for cylindrical coordinates. Considering the contribution of the evanescent channels to the scattering matrix, we are able to put in evidence the specific dips in the tunneling coefficient in the case of an attractive potential. The cylindrical symmetry cancels the “selection rules” known for Cartesian coordinates. If the attractive potential is superposed over a nonuniform potential along the nanowire then resonant transmission peaks appear. We can characterize them quantitatively through the poles of the current scattering matrix. Detailed maps of the localization probability density sustain the physical interpretation of the resonances (dips and peaks). Our formalism is applied to a variety of model systems such as a quantum dot, a core/shell quantum ring, or a double barrier embedded into the nanocylinder.
Komar fluxes of circularly polarized light beams and cylindrical metrics
Lynden-Bell, D.; Bičák, J.
2017-11-01
The mass per unit length of a cylindrical system can be found from its external metric as can its angular momentum. Can the fluxes of energy, momentum, and angular momentum along the cylinder also be so found? We derive the metric of a beam of circularly polarized electromagnetic radiation from the Einstein-Maxwell equations. We show how the uniform plane wave solutions miss the angular momentum carried by the wave. We study the energy, momentum, angular momentum, and their fluxes along the cylinder both for this beam and in general. The three Killing vectors of any stationary cylindrical system give three Komar flux vectors which in turn give six conserved fluxes. We elucidate Komar's mysterious factor 2 by evaluating Komar integrals for systems that have no trace to their stress tensors. The Tolman-Komar formula gives twice the energy for such systems which also have twice the gravity. For other cylindrical systems their formula gives correct results.
Buckling localization in a cylindrical panel under axial compression
DEFF Research Database (Denmark)
Tvergaard, Viggo; Needleman, A.
2000-01-01
Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum......, but where subsequently the load starts to increase again, it is found that near the local load minimum, the buckling pattern switches back to a periodic type of pattern. The inelastic material behavior of the panel is described in terms of J(2) corner theory, which avoids the sometimes unrealistically high...
Numerical solution of linearized resistive MHD equations in a cylindrical geometry
Energy Technology Data Exchange (ETDEWEB)
Li, Jin
1995-06-01
Linearized resistive MHD eigenequations in a cylindrical geometry are derived and numerical methods are presented. The eigenequations are solved in a global manner such that there is no need to distinguish inner resistive layer and outer ideal region analytically. Resistive layer is numerically treated by using non-uniform mesh grid technique and high accuracy discretization scheme. Lundquist number S up to 10{sup 9} can be easily achieved. Numerical results are benchmarked by known analytical solutions and other numerical methods. 6 refs, 5 figs.
Heat transfer of phase-change materials in two-dimensional cylindrical coordinates
Labdon, M. B.; Guceri, S. I.
1981-01-01
Two-dimensional phase-change problem is numerically solved in cylindrical coordinates (r and z) by utilizing two Taylor series expansions for the temperature distributions in the neighborhood of the interface location. These two expansions form two polynomials in r and z directions. For the regions sufficiently away from the interface the temperature field equations are numerically solved in the usual way and the results are coupled with the polynomials. The main advantages of this efficient approach include ability to accept arbitrarily time dependent boundary conditions of all types and arbitrarily specified initial temperature distributions. A modified approach using a single Taylor series expansion in two variables is also suggested.
The magnetic properties of the hollow cylindrical ideal remanence magnet
DEFF Research Database (Denmark)
Bjørk, Rasmus
2016-01-01
We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...... and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown...... to generate a field exactly twice as large as the equivalent ideal remanence magnet....
A novel design for a small retractable cylindrical mirror analyzer
International Nuclear Information System (INIS)
McIlroy, D.N.; Dowben, P.A.; Knop, A.; Ruehl, E.
1995-01-01
In this paper we will review the performance of a ''miniature'' single pass cylindrical mirror analyzer (CMA) which we have used successfully in a variety of experiments. The underlying premise behind this CMA design was to minimize spatial requirements while maintaining an acceptable level of instrumental resolution. While we are presenting the results of a single pass cylindrical mirror analyzer, improvements on the present design, such as going to a double pass design, will undoubtedly improve the instrumental resolution. copyright 1995 American Vacuum Society
The Levitating Buddha: Constructing a Realistic Cylindrical Mirror Pseudo Image
Caussat, María Alicia; Rabal, Héctor; Muramatsu, Mikiya
2006-10-01
There are several interesting experiments involving image formation that can be easily implemented using mirrored foil, a very inexpensive material. When the foil is somewhat bent by holding its opposite edges and slightly pulling them together, cylindrical surfaces are generated. They behave as cylindrical mirrors, and circular or elliptical cross sections can be made. A project that can be easily built with the mirror foil is the generation of a pseudo image that is so compelling in its apparent reality that it can easily be taken to be the object itself.
Two-dimensional collapse calculations of cylindrical clouds
International Nuclear Information System (INIS)
Bastien, P.; Mitalas, R.
1979-01-01
A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)
Confined and interface phonons in combined cylindrical nanoheterosystem
Directory of Open Access Journals (Sweden)
O.M.Makhanets
2006-01-01
Full Text Available The spectra of all types of phonons existing in a complicated combined nanoheterosystem consisting of three cylindrical quantum dots embedded into the cylindrical quantum wire placed into vacuum are studied within the dielectric continuum model. It is shown that there are confined optical (LO and interface phonons of two types: top surface optical (TSO and side surface optical (SSO modes of vibration in such a nanosystem. The dependences of phonon energies on the quasiwave numbers and geometrical parameters of quantum dots are investigated and analysed.
Orbital trajectory of an acoustic bubble in a cylindrical resonator.
Desjouy, Cyril; Labelle, Pauline; Gilles, Bruno; Bera, Jean-Christophe; Inserra, Claude
2013-09-01
Acoustic cavitation-induced microbubbles in a cylindrical resonator filled with water tend to concentrate into ring patterns due to the cylindrical geometry of the system. The shape of these ring patterns is directly linked to the Bjerknes force distribution in the resonator. Experimental observations showed that cavitation bubbles located in the vicinity of this ring may exhibit a spiraling behavior around the pressure nodal line. This spiraling phenomenon is numerically studied, the conditions for which a single cavitation bubble follows an orbital trajectory are established, and the influences of the acoustic pressure amplitude and the initial bubble radius are investigated.
Gravitational collapse of a cylindrical null shell in vacuum
Directory of Open Access Journals (Sweden)
S. Khakshournia
2008-03-01
Full Text Available Barrabès-Israel null shell formalism is used to study the gravitational collapse of a thin cylindrical null shell in vacuum. In general the lightlike matter shell whose history coincides with a null hypersurface is characterized by a surface energy density. In addition, a gravitational impulsive wave is present on this null hypersurface whose generators admit both the shear and expansion. In the case of imposing the cylindrical flatness the surface energy-momentum tensor of the matter shell on the null hypersurface vanishes and the null hyper- surface is just the history of the gravitational wave .
A winning strategy for 3 x n Cylindrical Hex
DEFF Research Database (Denmark)
Huneke, S. C.; Hayward, R.; Toft, Bjarne
2014-01-01
For Cylindrical Hex on a board with circumference 3, we give a winning strategy for the end-to-end player. This is the first known winning strategy for odd circumference at least 3, answering a question of David Gale. (C) 2014 Elsevier B.V. All rights reserved.......For Cylindrical Hex on a board with circumference 3, we give a winning strategy for the end-to-end player. This is the first known winning strategy for odd circumference at least 3, answering a question of David Gale. (C) 2014 Elsevier B.V. All rights reserved....
Experiments on cylindrically converging blast waves in atmospheric air
Matsuo, Hideo; Nakamura, Yuichi
1980-06-01
Cylindrically converging blast waves have been produced in normal atmospheric conditions by the detonation of the explosives, pentaerythritoltetranitrate, (PETN), over cylindrical surfaces. The shocks generated in this way are so strong that the fronts propagating through the air become luminous of themselves. The production and the propagation of the shocks have been monitored with a framing camera and a streak camera, and the time-space relations of the shock propagations have been determined using an electrical ionization probing system. The results have shown that the trajectory of the shock fronts near the axis of the cylinder can be approximately represented by the Guderley's formula.
International Nuclear Information System (INIS)
Tiesma, R.
1996-01-01
The intensive use of oil based muds by the offshore oil and gas industry during the 1980s has caused considerable contamination around drilling sites. A recent investigation on the Norwegian continental shelf indicates that the situation is much worse than previously thought. This material suggests that oil pollution of this kind could be damaging the North Sea's endangered fish stocks, including cod, haddock and plaice. The amount of oil discharged in the UK sector is many times higher than in the other sectors, suggesting that the problem there may be even more serious. The amount discharged in the Dutch and Norwegian sectors are comparable. (author)
[Diagnosis of vaginal discharge].
Böcher, Sidsel; Helmig, Rikke Bek; Arpi, Magnus; Bjerrum, Lars
2018-01-15
Changes in vaginal discharge are often caused by imbalance in the vaginal microflora, and laboratory testing is usually of little use, as most microbes detected are commensals. In-office diagnosis in general practice using wet mount microscopy and Amsel criteria is helpful and often sufficient to ensure correct diagnosis and treatment. Laboratory testing of vaginal discharge should only be performed, if sexually transmitted disease is suspected, if there is treatment failure or inconclusive wet mount prior to gynaecological surgery, and in pregnant women with recurrent miscarriage or preterm birth.
Red herring vaginal discharge.
Lee, Jun Hee; Pringle, Kirsty; Rajimwale, Ashok
2013-09-18
Labial hair tourniquet syndrome is a rare condition that can be easily misdiagnosed and ultimately lead to irreversible damage. An 11-year-old premenarche girl presented with a 5-day history of pain and swelling in the labia with associated vaginal discharge. The general practitioner treated her with clotrimazole without improvement. On examination, there was an oedematous swelling of the right labia with a proximal hair tourniquet. Local anaesthetic was applied and the hair removed with forceps. There was instant relief of pain and the discharge stopped within 24 h. The patient was sent home with a course of antibiotics.
Nonlinear analysis of dynamic stability for the thin cylindrical shells of supercavitating vehicles
Directory of Open Access Journals (Sweden)
Hai An
2016-12-01
Full Text Available The dynamic stability of supercavitating vehicles under periodic axial loading is investigated in this article. The supercavitating vehicle is simulated as a long and thin cylindrical shell subjected to periodic axial loading and simply supported boundary conditions. The nonlinear transverse vibration differential equation is obtained in terms of nonlinear geometric equations, physical equations, and balance equations of cylindrical shells. Mathieu equation with periodic coefficients and nonlinear term is derived by employing Galerkin variational method and Bolotin method. The analytical expressions of the steady-state amplitudes of vibrations in the first- and second-order instable regions are obtained by solving nonlinear Mathieu equation derived in this article. Numerical results are presented to analyze the influence of the sailing speed, ratio of loads, the frequency of axial loads, and the mode of vibration on parametric resonance curves and to show the nonlinear parametric resonance curves incline toward the side where it is greater than the excitation frequency, which significantly extends the range of the exciting region. The presented results indicate the enlargement of the exciting region will cause shrinkage of the safe frequency range of external loads and decrease in dynamic stability of supercavitating vehicle.
Magnetic-field control of low-pressure diffuse discharges
International Nuclear Information System (INIS)
Cooper, J.R.
1986-01-01
Application of a magnetic field in a direction transverse to the electric field in a diffuse discharge can have a strong effect on the transport parameters in the discharge medium and on the external characteristics of the discharge as a whole. Deviations in these transport parameters were investigated in this work by means of Monte Carlo calculations, and the electrical characteristics of the total discharge were observed experimentally. Results of the theoretical investigation show that, in attaching gas mixtures, both the ionization and attachment-rate coefficients in the positive column of the discharge are changed such that the combined effect results in an increase in resistivity. Experimentally, it is seen that application of a crossed magnetic field to an abnormal glow discharge in attaching gases in a certain parameter range causes the discharge voltage to increase significantly. The effect seems to be most strongly influenced by processes in the cathode-fall region
Study of the discharge characteristics of lead-acid batteries
Energy Technology Data Exchange (ETDEWEB)
Horvath, P.; Jedlovszky, P.; Benedek, M.
1982-07-01
A theoretical analysis of the electrolyte concentration distribution and current distribution in the porous lead dioxide electrode has been made by application of Fick's second law which was combined with approximate mass balances. The macrohomogeneous model for porous electrodes was used. The parameters in the models were determined experimentally for the lead dioxide battery plates and the special experimental cylindrical electrodes investigated. Numerical solutions for special cases are discussed. Theoretical results are in good agreement with experimental determinations. According to laser interferometry analysis the assumption of convectionless diffusion is, in practice, a good approximation in most cases. Theoretical studies of the local overpotential show that the utilizable capacity is determined by the decreasing ionic concentration of the electrolyte because the electrode reaction takes place mainly in the outer layers of the electrode, if the discharge current has a high value, e.g. full discharge times is less than 10 min.
Discharges from nuclear power stations
International Nuclear Information System (INIS)
1991-02-01
HM Inspectorate of Pollution commissioned, with authorising responsibilities in England and Wales, a study into the discharges of radioactive effluents from Nuclear Power Stations. The study considered arisings from nuclear power stations in Europe and the USA and the technologies to treat and control the radioactive discharges. This report contains details of the technologies used at many nuclear power stations to treat and control radioactive discharges and gives, where information was available, details of discharges and authorised discharge limits. (author)
Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters
Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.
2010-01-01
Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.
Controlled emptying with whole-area dischargers
Directory of Open Access Journals (Sweden)
Georg Franke
2016-11-01
Full Text Available While emptying complex bulk solids apparatuses and silos, the discharger at container bottom can significantly affect the energy demand of the process and the product quality. At practice, a variety of discharge devices has been developed which differ in the closing mechanism and the design of their fixed inserts. Experimental studies with wheat have shown that some whole-area dischargers cause a distinctive flow profile. Due to their design, these systems offer an unexploited potential to locally influence the bulk solids motion and to realize a controlled emptying. Based on a prototype, a new type of discharge device has been developed at the Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB. First results show that fixed baffles at the walls lead to a decelerated emptying at the sides of the discharge device. On the other hand, a complete renunciation of these installations results in a significant acceleration in the same regions. In future, it is intended to locally control the bulk solids movement by using an optimized design of the fixed inserts of the closing mechanism. Furthermore, it is intended to investigate how the drying process in mixed-flow grain dryers can be influenced and homogenized by using the newly developed discharge device.
Heart bypass surgery - discharge
... trouble with short-term memory or feel confused ("fuzzy-headed") Be tired or not have much energy ... or a fever over 101°F (38.3°C). Alternative Names Off-pump coronary artery bypass - discharge; ...
Electrical Discharge Machining.
Montgomery, C. M.
The manual is for use by students learning electrical discharge machining (EDM). It consists of eight units divided into several lessons, each designed to meet one of the stated objectives for the unit. The units deal with: introduction to and advantages of EDM, the EDM process, basic components of EDM, reaction between forming tool and workpiece,…
MANAGEMENT OF VAGINAL DISCHARGE
African Journals Online (AJOL)
Enrique
, an oral antifungal should be used weekly, e.g. 100 mg flucona- zole.7. The discharge of candidiasis is curd- like and adherent due to direct hyphal invasion of epithelial tissues resulting in erythema of the vaginal epithelium. Clinical diagnosis ...
Ulcerative colitis - discharge
... doctor - child Diarrhea - what to ask your health care provider - adult Enteral nutrition - child - managing problems Gastrostomy feeding tube - bolus Ileostomy and your child Ileostomy and your diet Ileostomy - caring for your stoma Ileostomy - discharge Jejunostomy feeding tube Living with your ...
... doctor - child Diarrhea - what to ask your health care provider - adult Enteral nutrition - child - managing problems Gastrostomy feeding tube - bolus Ileostomy and your child Ileostomy and your diet Ileostomy - caring for your stoma Ileostomy - discharge Jejunostomy feeding tube Living with your ...
Cosmetic breast surgery - discharge
... this page: //medlineplus.gov/ency/patientinstructions/000273.htm Cosmetic breast surgery - discharge To use the sharing features on this ... Editorial team. Related MedlinePlus Health Topics Plastic and Cosmetic Surgery Browse the Encyclopedia A.D.A.M., Inc. ...
Plastic collapse pressure of cylindrical vessels containing longitudinal surface cracks
Energy Technology Data Exchange (ETDEWEB)
Zarrabi, K. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.; Zhang, H. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.; Nhim, K. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.
1997-05-01
Based on nonlinear finite element analysis, the plastic collapse pressures of cylindrical vessels with longitudinal surface cracks are computed. A general formula of plastic collapse pressure of such structures are given and compared with the literature solutions. The results of the present study could be applied for the integrity assessments, failure analyses, remanent life assessment, and licence extensions of the vessels. (orig.)
Flow-induced vibrations of circular cylindrical structures
International Nuclear Information System (INIS)
Chen, S.
1977-06-01
The problems of flow-induced vibrations of circular cylindrical structures are reviewed. First, the general method of analysis and classification of structural responses are presented. Then, the presentation is broken up along the lines with stationary fluid, parallel flow, and cross flow. Finally, design considerations and future research needs are pointed out. 234 references
Magnetic forces between arrays of cylindrical permanent magnets
DEFF Research Database (Denmark)
Vokoun, D.; Tomassetti, G.; Beleggia, Marco
2011-01-01
procedures. Here, we introduce analytical expressions for calculating the attraction force between two arrays of cylindrical permanent magnets and compare the predictions with experimental data obtained from force measurements with NdFeB magnets. We show that the difference between predicted and measured...
Formation of vortex breakdown in conical–cylindrical cavities
International Nuclear Information System (INIS)
Martins, Diego Alves de Moro; Souza, Francisco José de; Salvo, Ricardo de Vasconcelos
2014-01-01
Highlights: • Rotating flows in conical–cylindrical cavities were simulated via an in-house code using unstructured meshes. • The vortex breakdown phenomenon was verified in the geometries analyzed. • The influence of Stewartson and Bödewadt layers was observed in the vortex breakdown formation. • A curve of stability and number of breakdowns was obtained as a function of Reynolds number. • Spiral vortex breakdown was observed in some situations. - Abstract: Numerical simulations in confined rotating flows were performed in this work, in order to verify and characterize the formation of the vortex breakdown phenomenon. Cylindrical and conical–cylindrical geometries, both closed, were used in the simulations. The rotating flow is induced by the bottom wall, which rotates at constant angular velocity. Firstly the numerical results were compared to experimental results available in references, with the purpose to verify the capacity of the computational code to predict the vortex breakdown phenomenon. Further, several simulations varying the parameters which govern the characteristics of the flows analyzed in this work, i.e., the Reynolds number and the aspect ratio, were performed. In these simulations, the limits for the transitional regime and the vortex breakdown formation were verified. Steady and transient cases, with and without turbulence modeling, were simulated. In general, some aspects of the process of vortex breakdown in conical–cylindrical geometries were observed to be different from that in cylinders
static analysis of circular cylindrical shell under hydrostatic and ring ...
African Journals Online (AJOL)
DEPT OF AGRICULTURAL ENGINEERING
University of Nigeria, Nsukka. ABSTRACT. Analysis of circular cylindrical shell under the action of hydrostatic and stiffening ring forces is ... The economy or feasibility of many modern constructions necessitates lightweight, thin- ... concerned with the analysis of circular cylindri- cal shell subjected to hydrostatic pressure in.
A cylindrical drift chamber with azimuthal and axial position readout
Energy Technology Data Exchange (ETDEWEB)
Bar-Yam, Z.; Cummings, J.P.; Dowd, J.P.; Eugenio, P.; Hayek, M.; Kern, W.; King, E.; Shenhav, N.; Chung, S.U.; Hackenburg, R.W.; Olchanski, C.; Weygand, D.P.; Willutzki, H.J.; Brabson, B.B.; Crittenden, R.R.; Dzierba, A.R.; Gunter, J.; Lindenbusch, R.; Rust, D.R.; Scott, E.; Smith, P.T.; Sulanke, T.; Teige, S.; Denisov, S.; Dushkin, A.; Kochetkov, V.; Lipaev, V.; Popov, A.; Shein, I.; Soldatov, A.; Anoshina, E.V.; Bodyagin, V.A.; Demianov, A.I.; Gribushin, A.M.; Kodolova, O.L.; Korotkikh, V.L.; Kostin, M.A.; Ostrovidov, A.I.; Sarycheva, L.I.; Sinev, N.B.; Vardanyan, I.N.; Yershov, A.A.; Adams, T.; Bishop, J.M.; Cason, N.M.; Sanjari, A.H.; LoSecco, J.M.; Manak, J.J.; Shephard, W.D.; Stienike, D.L.; Taegar, S.A.; Thompson, D.R.; Brown, D.S.; Pedlar, T.; Seth, K.K.; Wise, J.; Zhao, D.; Adams, G.S.; Napolitano, J.; Nozar, M.; Smith, J.A.; Witkowski, M. [Massachusetts Univ., North Dartmouth, MA (United States)]|[Brookhaven National Laboratory, Upton, L.I., NY 11973 (United States)]|[Indiana University, Bloomington, IN 47405 (United States)]|[Institute for High Energy Physics, Protvino (Russian Federation)]|[Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)]|[University of Notre Dame, Notre Dame, IN 46556 (United States)]|[Northwestern University, Evanston, IL 60208 (United States)]|[Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)
1997-02-21
A cylindrical multiwire drift chamber with axial charge-division has been constructed and used in experiment E852 at Brookhaven National Laboratory. It serves as a trigger element and as a tracking device for recoil protons in {pi}{sup -}p interactions. We describe the chamber`s design considerations, details of its construction, electronics, and performance characteristics. (orig.).
Theory of precipitation effects on dead cylindrical fuels
Michael A. Fosberg
1972-01-01
Numerical and analytical solutions of the Fickian diffusion equation were used to determine the effects of precipitation on dead cylindrical forest fuels. The analytical solution provided a physical framework. The numerical solutions were then used to refine the analytical solution through a similarity argument. The theoretical solutions predicted realistic rates of...
Damping analysis of cylindrical composite structures with enhanced viscoelastic properties
DEFF Research Database (Denmark)
Kliem, Mathias; Høgsberg, Jan Becker; Vanwalleghem, Joachim
2018-01-01
is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the eﬃciency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass ﬁbre-reinforced plastics. Diﬀerent cross...
3D impurity inspection of cylindrical transparent containers
DEFF Research Database (Denmark)
Kragh, Mikkel Fly; Bjerge, Kim; Ahrendt, Peter
2016-01-01
This paper presents a method for automatically detecting and three-dimensionally positioning particles based on sequences of 2D images of rotating cylindrical transparent containers. The method can be used in the manufacturing industry by distinguishing between particles residing inside or outsid...
Rotating cylindrically symmetric Kaluza-Klein fluid model
Indian Academy of Sciences (India)
Several relativistic cylindrically symmetric, non-static, inhomogeneous KK fluid models admitting dimensional reduction have been reported by Patel and Dadhich [2,3]. After Godel [4] gave relativistic model of a rotating dust universe, the study of rotating fluids in the context of general relativity received considerable attention ...
Effect of bimodularity on frequency response of cylindrical panels ...
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
time domain approach is successfully used for the forced vibration analysis of bimodular cylindrical panels. The effect of ... The transient response of bimodular rectangular plates is studied by ... been proposed to find frequency response of bimodular material laminated panels by Khan et al (2009b). The application of the ...
Multigroup calculation of antisymmetric neutron distributions in a cylindrical cell
International Nuclear Information System (INIS)
Boyarinov, V.F.
1987-01-01
The authors construct a model for the neutron distribution in a multizone cylindrical reactor lattice with coaxial zones using the neutron diffusion equation and multigroup theory. The operator-splitting method is used to separate the spatial and energy variables and the surface-pseudosource method is used to solve the spatial aspects of the problem
Sloshing effect on the dynamic behavior of horizontal cylindrical shells
International Nuclear Information System (INIS)
Lakis, A.A.; Bursuc, G.; Toorani, M.H.
2009-01-01
The present study investigates the effect of free surface motion of a fluid on the dynamic behavior of thin-walled cylindrical shells. This paper outlines a semi-analytical approach to dynamic analysis of a fluid-filled horizontal cylindrical shell taking into account free surface motion; sloshing. The aim of the method is to provide a general approach that can be used for both analysis and synthesis of fluid/structure interaction problems in horizontal cylindrical shells focusing on the dynamic interaction between a flexible structure and incompressible and inviscid flow. The approach is very general; it allows dynamic analysis of both uniform and non-uniform cylindrical shells and considers the fluid forces and includes the sloshing effect exerted on the structure. The hybrid method developed in this work incorporates a combination of the classic finite element approach and thin shell theory to determine the specific displacement functions. Mass and stiffness matrices of the shell are determined by precise analytical integration. A potential function is applied to develop the dynamic pressure due to the fluid. The kinetic and potential energies are evaluated for a range of fluid heights to find the influence of the fluid on the dynamic responses of the structure. The influence of physical and geometrical parameters on the fluid-structure system has been considered in the numerical solutions. When these results are compared with corresponding results available in the literature, both theoretical and experimental, very good agreement is obtained.
Cylindrically symmetric cosmological model in the presence of bulk ...
Indian Academy of Sciences (India)
Cylindrically symmetric non-static space–time is investigated in the presence of bulk stress given by Landau and Lifshitz. To get a solution, a supplementary condition between metric potentials is used. The viscosity coefficient of the bulk viscous fluid is assumed to be a power function of mass density whereas the coefficient ...
Static Solutions of Einstein's Equations with Cylindrical Symmetry
Trendafilova, C. S.; Fulling, S. A.
2011-01-01
In analogy with the standard derivation of the Schwarzschild solution, we find all static, cylindrically symmetric solutions of the Einstein field equations for vacuum. These include not only the well-known cone solution, which is locally flat, but others in which the metric coefficients are powers of the radial coordinate and the spacetime is…
Rotating cylindrically symmetric Kaluza-Klein fluid model
Indian Academy of Sciences (India)
Kaluza-Klein ﬁeld equations for stationary cylindrically symmetric ﬂuid models in standard Einstein theory are formulated and a set of physically viable solutions is reported. This set is believed to be the ﬁrst such Kaluza-Klein solutions and it includes the Kaluza-Klein counterpart of Davidson's solution describing spacetime ...
Rotating cylindrically symmetric Kaluza-Klein fluid model
Indian Academy of Sciences (India)
Abstract. Kaluza-Klein field equations for stationary cylindrically symmetric fluid models in stan- dard Einstein theory are formulated and a set of physically viable solutions is reported. This set is believed to be the first such Kaluza-Klein solutions and it includes the Kaluza-Klein counterpart of. Davidson's solution describing ...
Analysis of radial vibrations of poroelastic circular cylindrical shells ...
African Journals Online (AJOL)
Waves propagating in radial direction of a poroelastic circular cylinder are termed as radial vibrations. Radial vibrations of poroelastic circular cylindrical shell of infinite extent immersed in an inviscid elastic fluid are examined employing Biot's theory. Biot's model consists of an elastic matrix permeated by a network of ...
Simulation of cylindrical Pierce diodes with radial flow
International Nuclear Information System (INIS)
Alves, M.V.; Gnavi, G.; Gratton, F.T.; Buenos Aires Univ.
1996-01-01
In this paper we study the electron instability and the non linear behaviour of cylindrical Pierce's diodes by particle simulation. We ignore here the ion contribution (ions are fixed at a 1/r density and given a very large mass) to give perspicuity to the electron dynamics, and to facilitate comparison with existing theory. (author). 8 refs., 10 figs
Cylindrical and spherical dust-acoustic wave modulations in dusty ...
Indian Academy of Sciences (India)
Cylindrical and dust-acoustic wave modulations in dusty plasmas. PQ is required for wave amplitude (modulational) stability. On the other hand, a positive sign of PQ allows for a random perturbation to grow and may thus lead to wave collapse or blow-up. To investigate the stability profile, we have determined in various ...
Coupled dilaton and electromagnetic field in cylindrically symmetric ...
Indian Academy of Sciences (India)
An exact solution is obtained for coupled dilaton and electromagnetic ﬁeld in a cylindrically symmetric spacetime where an axial magnetic ﬁeld as well as a radial electric ﬁeld both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric ﬁeld or to that ...
Effect of bimodularity on frequency response of cylindrical panels ...
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
Doong J L, Fung C P 1988 Vibration and buckling of bimodulus laminated plates according to a higher-order plate theory. J. Sound Vib. 125: 325–339. Khan K, Patel B P, Nath Y 2007 Free vibration of bimodulus laminated angle-ply cylindrical panels,. Proceedings of the 4th International Conference on Theoritical, Applied, ...
An approximate solution for spherical and cylindrical piston problem
Indian Academy of Sciences (India)
the growth and decay of shock strengths for spherical and cylindrical pistons starting from a non-zero ... conditions at an appropriate level, a new theory of shock dynamics (NTSD) has been proposed (Ravindran and ..... sive, its packing density etc. which are not included in our mathematical formulation, it may explain the ...
Cylindrically symmetric cosmological model in the presence of bulk ...
Indian Academy of Sciences (India)
2016-09-06
Sep 6, 2016 ... coefficient of shear viscosity is considered as proportional to the scale of expansion in the model. Also some physical and geometrical properties of the model are discussed. Keywords. Cylindrically symmetric space–time; viscous fluid; variable cosmological constant. PACS Nos 98.80.Es; 04.20.jb; 04.20.−q.
Surface waves in a cylindrical borehole through partially-saturated ...
Indian Academy of Sciences (India)
M D Sharma
published online 14 February 2018. Propagation of surface waves is discussed in a cylindrical borehole through a liquid-saturated porous solid of infinite extent. ...... 1992). In the dictionary of exploration geophysics, pseudo-Rayleigh waves are identified as the ground roll, which is a particular type of surface wave that.
Magnetoresistance of cylindrical nanowires with artificial pinning site
Vidal, Enrique Vilanova
2015-05-01
New concepts of magnetic memory devices are exploiting the movement of data bits by current induced domain wall motion. This concept has been widely explored with rectangular nanowires (NWs) or stripes both theoretically and experimentally [1]. In the case of cylindrical NWs not much progress has been made on the experimental side, despite its promising advantages like the absence of Walker breakdown [2].
Electron cyclotron resonance heating in a short cylindrical plasma ...
Indian Academy of Sciences (India)
Abstract. Electron cyclotron resonance (ECR) plasma is produced and studied in a small cylindrical system. Microwave power is delivered by a CW magnetron at 2.45 GHz in TE10 mode and launched radially to have extraordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the ...
Magnetization curves for general cylindrical samples in a transverse ...
Indian Academy of Sciences (India)
complexity associated with the task of determining and studying the movement of the flux- front as the flux ... a volume current density causing the flux-front to move by an appropriate amount. Since the flux-front does ... Let us consider an infinite cylindrical sample with its axis along the z-axis and its cross- section bounded ...
Electron cyclotron resonance heating in a short cylindrical plasma ...
Indian Academy of Sciences (India)
Electron cyclotron resonance (ECR) plasma is produced and studied in a small cylindrical system. Microwave power is delivered by a CW magnetron at 2.45 GHz in TE10 mode and launched radially to have extraordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the first two ...
Development of a cylindrical gas-fired furnace for reycling ...
African Journals Online (AJOL)
This study presents the development of a cylindrical gas-fired furnace, which could be used for recycling aluminum in small-scale foundries in Nigeria. The crucible, combustion chamber, suspension shaft and bearings were appropriately sized. The furnace chamber was 410 mm high and 510 mm diameter and had a ...
On the dynamic buckling of stochastically imperfect finite cylindrical ...
African Journals Online (AJOL)
The dynamic buckling load of stochastically imperfect finite right circular cylindrical shells subjected to step loading is determined by means of regular perturbation procedures .The imperfection is assumed to be a Gaussian random function of position and consequently is homogeneous. The result obtained is implicit in the ...
Experimental investigations on buckling of cylindrical shells under ...
Indian Academy of Sciences (India)
This paper presents experimental studies on buckling of cylindrical shell models under axial and transverse shear loads. Tests are carried out using an experimental facility specially designed, fabricated and installed, with provision for in-situ measurement of the initial geometric imperfections. The shell models are made by ...
On the dynamic buckling of lightly damped cylindrical shells ...
African Journals Online (AJOL)
The dynamic buckling load of finite imperfect, lightly but viscously damped cylindrical shells subjected to a periodic load, is determined using the technique of multiple scaling (two-timing) regular perturbation analysis. The geometric imperfection, assumed deterministic, are also assumed small and are expanded in a double ...
Assessment of the level of chromium species in the discharged ...
African Journals Online (AJOL)
The purpose of this study was to assess the level of chromium species in the discharged effluents of selected tanneries in the Amhara Region; Haik and Debre Berhan tanneries. The level of total chromium, and hexavalent chromium in the discharged effluent of the studied tanneries were determined using the ICP-OES, and ...
Groundwater flow and heterogeneous discharge into a seepage lake
DEFF Research Database (Denmark)
Kazmierczak, Jolanta; Müller, Sascha; Nilsson, B.
2016-01-01
Groundwater discharge into a seepage lake was investigated by combining flux measurements, hydrochemical tracers, geological information, and a telescopic modeling approach using first two-dimensional (2-D) regional then 2-D local flow and flow path models. Discharge measurements and hydrochemica...
Vessel Sewage Discharges: No-Discharge Zones (NDZs)
States may petition the EPA to establish areas, called no discharge zones (NDZs), where vessel sewage discharges are prohibited. This page describes how NDZs are designated, the types of designations, who enforces them, and how to comply.
Wire chamber radiation detector with discharge control
International Nuclear Information System (INIS)
Perez-Mendez, V.; Mulera, T.A.
1984-01-01
A wire chamber radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced
Resistive stability of the cylindrical spheromak
International Nuclear Information System (INIS)
DeLucia, J.; Jardin, S.C.; Glasser, A.H.
1983-11-01
The growth rates for resistive instabilities in a straight circular cylinder with spheromak profiles are computed by using two complementary methods. The first method employs boundary layer analysis and asymptotic matching, most valid for values of the magnetic Reynolds number S greater than or equal to 10 5 . The second method solved the full linearized resistive MHD equations as an initial value problem, utilizing zone packing around the mode rational surface. Resolution requirements limit this to S less than or equal to 10 7 . The results from these two methods agree to better than 1 in 10 3 in the overlap region 10 7 greater than or equal to S greater than or equal to 10 5 . A scan of parameter space reveals that for parabolic q-profiles, the least unstable configurations have q 0 R/a approx. 0.67. The Hall term in Ohm's Law is easily incorporated into both methods. Recalculating the resistive MHD growth rates in the presence of this term shows that the resistive interchange mode is completely stabilized for a large enough value of the ion cyclotron time
Frederickson, A. R.
1985-01-01
A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.
Monitoring of lightning discharge
International Nuclear Information System (INIS)
Grigor'ev, V.A.
2001-01-01
The paper presents a brief description of a lightning discharge recording system developed at the NPO 'Monitoring Techniques' under the direction of V.M. Moskolenko (Moscow). The system provides information about dangerous environmental occurrences such as tornados and hurricanes, making the forecast of extreme situations possible, especially in the areas of dangerous industries and objects. The created automatic system can be useful in solving the tasks relating to nuclear test monitoring. (author)
Dudley, Scott C.; Heerema, Bret D.; Haaland, Ryan K.
1997-06-01
The common classroom demonstration of a human chain, charged by a Van de Graaff generator, and then discharged via the person at the end of the chain touching ground, is analyzed as a capacitor and resistor circuit model. The energy deposited in each person in the chain is determined. Further, the effect of increasing energy deposited in the person who touched ground, as the number of people in the chain is increased, is shown and quantified.
Chen, F. F.; Jiang, X.; Evans, J. D.; Tynan, G.; Arnush, D.
1997-05-01
Operation of helicon discharges at magnetic fields B0 below 100 G is of interest for plasma etching and deposition reactors if high ion flux can be maintained with reduced field requirements. The theory of coupled helicon and Trivelpiece - Gould modes is summarized for uniform B0. Initial results from two experiments are reported. The first has a single 5 cm diameter tube with B0=0-100G injecting plasma into a field-free region. The second contains a two-dimensional array of seven such tubes covering a large area. Densities and density profiles are measured for various fields, RF powers and gas pressures. The highest density generally occurs at zero field. Because of the non-uniformity in B0, direct comparison with theory cannot yet be made.
Solutions of diffusion equations in two-dimensional cylindrical geometry by series expansions
International Nuclear Information System (INIS)
Ohtani, Nobuo
1976-01-01
A solution of the multi-group multi-regional diffusion equation in two-dimensional cylindrical (rho-z) geometry is obtained in the form of a regionwise double series composed of Bessel and trigonometrical functions. The diffusion equation is multiplied by weighting functions, which satisfy the homogeneous part of the diffusion equation, and the products are integrated over the region for obtaining the equations to determine the fluxes and their normal derivatives at the region boundaries. Multiplying the diffusion equation by each function of the set used for the flux expansion, then integrating the products, the coefficients of the double series of the flux inside each region are calculated using the boundary values obtained above. Since the convergence of the series thus obtained is slow especially near the region boundaries, a method for improving the convergence has been developed. The double series of the flux is separated into two parts. The normal derivative at the region boundary of the first part is zero, and that of the second part takes the value which is obtained in the first stage of this method. The second part is replaced by a continuous function, and the flux is represented by the sum of the continuous function and the double series. A sample critical problem of a two-group two-region system is numerically studied. The results show that the present method yields very accurately the flux integrals in each region with only a small number of expansion terms. (auth.)
Spectroscopy and probe diagnostics of dc spherical glow discharge
International Nuclear Information System (INIS)
Zhovtyansky, V.A.; Nazarenko, V.G.; Syrotyuk, R.P.
2016-01-01
Probe and spectroscopic investigations of a spherical glow discharge (GD) were done in nitrogen and argon plasma. There were obtained the distributions of electron temperature and electron density in a discharge gap as well as plasma potential distribution. These results were compared with theoretical ones and the conclusion about their convergence was done in the present study. Particular attention was paid to the anode processes role in the formation of self-organized structure in a spherical glow discharge. It was shown the necessity of taking into account the possibility of the anode potential drop forming in this discharge region
Application of dielectric surface barrier discharge for food storage
Directory of Open Access Journals (Sweden)
Yassine BELLEBNA
2015-12-01
Full Text Available Ozone (O3 is a powerful oxidizer and has much higher disinfection potential than chlorine and other disinfectants. Ozone finds its application mainly in water treatment and air purification Dielectric barrier discharge (DBD method has proved to be the best method to produce ozone. Dried air or oxygen is forced to pass through a 1-2 mm gap. The aim of this study was to show that disinfection system using ozone generated by dielectric barrier discharge (DBD is an effective alternative to be used in food industry and ensures a safe quality of air for optimum preservation of fruits and vegetables. The DBDs are specific kind of discharges because one (or sometimes both electrodes is covered by a dielectric material, thereby preventing the discharge to move towards electrical breakdown. A succession of microdischarges occurs rapidly; their "lifetime" is in the range of a few nanoseconds. One of their most important applications is the production of ozone for air treatment, used mainly in the area of food industry, for extending the storage life of foods. After the achievement of a surface DBD reactor of cylindrical shape and its electrical characterization, it was then used as an ozone generator for air disinfection. Obtained results have shown that this reactor used as an ozone generator is effective for disinfection of air by removing viruses, bacteria and pathogens, causing the slowdown of the ripening process of fruits and vegetables.
Tight connection between fission gas discharge channels
International Nuclear Information System (INIS)
Jung, W.; Peehs, M.; Rau, P.; Krug, W.; Stechemesser, H.
1978-01-01
The invention is concerned with the tight connection between the fission gas discharge channel, leading away from the support plate of a gas-cooled reactor, and the top of the fuel element suspended from this support plate. The closure is designed to be gas-tight for the suspended as well as for the released fuel element. The tight connection has got an annular body resting on the core support plate in the mouth region of the fission gas discharge channel. This body is connected with the fission gas discharge channel in the fuel element top fitting via a gas-tight part and supported by a compression spring. Care is taken for sealing if the fuel element is removal. (RW) [de
Vaginal itching and discharge - child
... this page: //medlineplus.gov/ency/article/003159.htm Vaginal itching and discharge - child To use the sharing features on this ... problem in girls before the age of puberty. Vaginal discharge may also be present. The color, smell, and ...
Spleen removal - open - adults - discharge
... discharge; Spleen removal - adult - discharge References Poulose BK, Holzman MD. The spleen. In: Townsend CM, Beauchamp RD, ... provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, Medical Director, Brenda Conaway, Editorial ...
Experimental study of negative corona discharge in pure carbon dioxide and its mixtures with oxygen
International Nuclear Information System (INIS)
Mikoviny, T; Kocan, M; Matejcik, S; Mason, N J; Skalny, J D
2004-01-01
The products of a negative corona discharge in both pure CO 2 and mixtures of CO 2 + O 2 have been studied using a coaxial cylindrical electrode geometry with particular emphasis on the production of ozone. The discharge current in pure CO 2 was found to be highly sensitive to the presence of trace concentrations of molecular oxygen and to changes in the flow speed through the discharge. The effect of dissociative electron attachment to ozone on the discharge current was studied by measurements of ozone and CO production. The ozone concentration increases monotonically with increasing content of oxygen in the mixture with carbon dioxide, whereas the CO concentration exhibits a flat maximum for oxygen concentrations of around 4%. A simple kinetic model of the dominant chemical processes is described and compared with the experimental results
Neilson, D. G.; Incropera, F. D.; Bennon, W. D.
1990-01-01
A computational study of solidification of a binary Na2CO3 solution in a horizontal cylindrical annulus is performed using a continuum formulation with a control-volume based, finite-difference scheme. The initial conditions were selected to facilitate the study of counter thermal and solutal convection, accompanied by extensive mushy region growth. Numerical results are compared with experimental data with mixed success. Qualitative agreement is obtained for the overall solidification process and associated physical phenomena. However, the plume thickness calculated for the solutally-driven convective upflow is substantially smaller than the observed value. Evolution of double-diffusive layers is predicted, but over a time scale much smaller than that observed experimentally. Good agreement is obtained between predicted and measured results for solid growth, but the mushy region thickness is significantly overpredicted.
International Nuclear Information System (INIS)
Tavoularis, S.; Madrane, A.; Vaillancourt, R.
2002-01-01
Exploratory RANS and LES computations of turbulent flow in a rectangular channel containing a single cylindrical rod have been performed, with particular interest in the flow structure near the gap between the rod and the channel wall. The Reynolds number for the channel flow was 108,000. The computations document the formation of a sequence of large-scale, quasi-periodic pairs of counter-rotating vortices that dominate the flow in the gap region and whose effects extend far beyond the gap region. The unsteady RANS computation predict a transient state of such structures giving way to steady axial flow, while the LES computations reproduce a continuing sequence of similar structures. The simulations arc compared to recent experimental results in the same configuration. (author)
Plasma Discharge Process in a Pulsed Diaphragm Discharge System
Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu
2014-12-01
As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.
Malagón-Romero, A.; Luque, A.
2018-04-01
At high pressure electric discharges typically grow as thin, elongated filaments. In a numerical simulation this large aspect ratio should ideally translate into a narrow, cylindrical computational domain that envelops the discharge as closely as possible. However, the development of the discharge is driven by electrostatic interactions and, if the computational domain is not wide enough, the boundary conditions imposed to the electrostatic potential on the external boundary have a strong effect on the discharge. Most numerical codes circumvent this problem by either using a wide computational domain or by calculating the boundary conditions by integrating the Green's function of an infinite domain. Here we describe an accurate and efficient method to impose free boundary conditions in the radial direction for an elongated electric discharge. To facilitate the use of our method we provide a sample implementation. Finally, we apply the method to solve Poisson's equation in cylindrical coordinates with free boundary conditions in both radial and longitudinal directions. This case is of particular interest for the initial stages of discharges in long gaps or natural discharges in the atmosphere, where it is not practical to extend the simulation volume to be bounded by two electrodes.
Convergence models for cylindrical caverns and the resulting ground subsidence
Energy Technology Data Exchange (ETDEWEB)
Haupt, W.; Sroka, A.; Schober, F.
1983-02-01
The authors studied the effects of different convergence characteristics on surface soil response for the case of narrow, cylindrical caverns. Maximum ground subsidence - a parameter of major importance in this type of cavern - was calculated for different convergence models. The models were established without considering the laws of rock mechanics and rheology. As a result, two limiting convergence models were obtained that describe an interval of expectation into which all other models fit. This means that ground movements over cylindrical caverns can be calculated ''on the safe side'', correlating the trough resulting on the surface with the convergence characterisitcs of the cavern. Among other applications, the method thus permits monitoring of caverns.
Acoustic length correction of closed cylindrical side-branched tube
Ji, Z. L.
2005-05-01
A numerical approach based on the three-dimensional boundary element method (BEM) is developed to determine the acoustic length correction of closed cylindrical side-branched tube mounted perpendicular to a cylindrical main pipe. The effects of Helmholtz number and finite length of side-branched tube on the acoustic length correction are examined, and a curve-fitting expression is provided for the acoustically long side-branched tube. For a pipe-mounted concentric Helmholtz resonator, the transmission loss and resonance frequency are predicted by using the 3-D BEM and the corrected 1-D analytical approach to assess the accuracy and applicability of the latter, as well as to illustrate the importance of acoustic length correction for an accurate prediction of resonance frequency of the pipe-mounted resonator.
Response of cylindrical steel shell under seismic loading
International Nuclear Information System (INIS)
Tariq, M.; Amin, K.M.
2003-01-01
The seismic response of a cylindrical shell is simulated using the finite element method, and by spectral analysis. For this purpose the fundamental frequency of the cylinder is first calculated and compared with a published result. The mode shapes are also calculated which are later used for spectral analysis. The boundary nodes of the shell are displaced periodically according to a predetermined function of time by employing the acceleration time history of the El Centro earthquake to simulate the seismic loading. However, to conduct spectral analysis, the displacements are first transformed from the time domain to frequency domain using the Fast Fourier transformation. This spectral data is then used to obtain the actual displacement in the first mode under the given seismic loading. The techniques employed here can be used for cylindrical shell structures like rotor of a gas centrifuge, besides other structures that are subjected to seismic loading, besides in other time dependent loading conditions, for example rocket motor vibrations. (author)
Microinstabilities in a radially contracting inhomogeneous cylindrical plasma slab
International Nuclear Information System (INIS)
Deutsch, R.; Kaeppeler, H.J.
1980-07-01
In order to study the development of microinstabilities in a collapsing cylindrical plasma sheath, corresponding to the situations in a z-pinch or a plasma focus, the dispersion relation for electromagnetic perturbations is derived with the aid of a newly established slab-model for an inhomogeneous, radially contracting plasma. In contrast to previously used slab-models, the orientation of the electric field is in direction of the cylinder axis and the azimuthal magnetic field is induced by the current flowing through the cylindrical plasma slab. The Vlasov equation is used together with the Krook collision term in order to include the influence of collisions. The results of this theory presented in this report will be used to calculate the growth of drift instabilities in the compression phase of a plasma focus, and shall serve as a basis for further development of a more general dispersion relation including runaway-effects. (orig.)
The transmission probability method in one-dimensional cylindrical geometry
International Nuclear Information System (INIS)
Rubin, I.E.
1983-01-01
The collision probability method widely used in solving the problems of neutron transpopt in a reactor cell is reliable for simple cells with small number of zones. The increase of the number of zones and also taking into account the anisotropy of scattering greatly increase the scope of calculations. In order to reduce the time of calculation the transmission probability method is suggested to be used for flux calculation in one-dimensional cylindrical geometry taking into account the scattering anisotropy. The efficiency of the suggested method is verified using the one-group calculations for cylindrical cells. The use of the transmission probability method allows to present completely angular and spatial dependences is neutrons distributions without the increase in the scope of calculations. The method is especially effective in solving the multi-group problems
On the dynamics of cylindrical z-pinch
International Nuclear Information System (INIS)
Solov'ev, L.S.
1984-01-01
The stationary configurations of cylindrical plasma flow in the framework of two-liquid relativistic electromagnetic gas dynamics (REMG)) and nonlinear radial oscillations of the plasma cylinder with longitudinal current in the framework of classical monoliquid MGD are considered. It is shown that at sufficiently high conductivity Z-pinch is stable relative to one-dimensional radial perturbations and its motion represents respectively nonlinear radial oscillations. In case of a rather low conductivity or low particle concentration there is in cross section a stability also in relation to the development of sausage type instability. The performed investigations of cylindrical equilibrium and radial oscillations give a qualitative representation on plasma behaviour in Z-pinch at the initial stage of it compression and expansion as well as on motion in an average plane of the developing sausage type instability
A Multi-Dimensional Magnetohydrodynamic Code in Cylindrical Geometry
Ryu, Dongsu; Yun, Hong Sik; Cheo, Seung-Urn
1995-10-01
We describe the implementation of a multi-dimensional numerical code to solve the equations for ideal magnetohydrodynamics(MHD) in cylindrical geometry. It is based on an explicit finite difference scheme on an Eulerian grid, calld the Total Variation Diminishing (TVD) scheme, which is a second-order accurate extension of the Roe-type upwind scheme. Multiple spatial dimensions are treated through a Strang-type operator splitting. Curvature and source terms are included in a way to insure the formal accuracy of the code to be second order. The constraint of a divergence-free magnetic field is enforced exactly by adding a correction, which involves solving a Poisson equation. The Fourier Analysis and Cyclic Reduction (FACR) method is employed to solve it. Results from a set of tests show that the code handles flows in cylindrical geometry successfully and resolves strong shocks within two to four computational cells. The advantages and limitations of the code are discussed.
Gamma ray absorption of cylindrical fissile material with dual shields
International Nuclear Information System (INIS)
Wu Chenyan; Cheng Yiying; Huang Yongyi; Lu Fuquan; Yang Fujia
2005-01-01
This work analyzed the gamma ray attenuation effect from the self-absorption and shield attenuation perspectively. An exact mathematical equation was given for the geometric factor of the cylindrical fissile material with dual shields. In addition, several approximation approaches suitable for real situation were discussed, especially in the radial and axial directions of the cylinders, since the G-factors have simple forms. Then the space distribution patterns of the G-factor were analyzed based on numerical result and effective ways to solved the geometric information of the cylindrical fissile material, the radii and the heights, were deduced. This method was checked and verified by numerical calculation. Because of the efficiency of the method, it is ideal for application in real situations, such as nuclear safeguards, which demands speed of detection and accuracy of geometric analysis. (authors)
Design algorithm for generatrix profile of cylindrical crowned rollers
Directory of Open Access Journals (Sweden)
Creţu Spiridon
2017-01-01
Full Text Available The cross-section of roller profile controls the pressure distribution in the contact area and radically affects the roller bearings basic dynamic load rating and rating lives. Today the most used roller profiles are the logarithmic profile and cylindrical-crowned (ZB profile. The logarithmic profile has a continuous evolution with no discontinuities till the intersection with the end fillet while ZB profile has two more discontinuities at the intersections points between the crowning circle and straight line generatrix. Using a semianalytical method, a numerical study has been carried out to find the optimum ZB profile for rollers incorporated in cylindrical rollers bearings. The basic reference rating life (L10_r has been used as optimization criterion.
Dynamics of cylindrical domain walls in smectic C liquid crystals
International Nuclear Information System (INIS)
Stewart, I W; Wigham, E J
2009-01-01
An analysis of the dynamics of cylindrical domain walls in planar aligned samples of smectic C liquid crystals is presented. A circular magnetic field, induced by an electric current, drives a time-dependent reorientation of the corresponding radially dependent director field. Nonlinear approximations to the relevant nonlinear dynamic equation, derived from smectic continuum theory, are solved in a comoving coordinated frame: exact solutions are found for a π-wall and numerical solutions are calculated for π/2-walls. Each calculation begins with an assumed initial state for the director that is a prescribed cylindrical domain wall. Such an initial wall will proceed to expand or contract as its central core propagates radially inwards or outwards, depending on the boundary conditions for the director, the elastic constants, the magnitude of the field and the sign of the magnetic anisotropy of the liquid crystal
Shielding and Radiation Characteristics of Cylindrical Layered Bianisotropic Structures
Directory of Open Access Journals (Sweden)
A. Toscano
2005-12-01
Full Text Available In this paper we propose an analytical study in the spectral domainof cylindrical layered structures filled with general bianisotropicmedia and fed by a 3D electric source. The integrated structure ischaracterized in terms of transmission matrices leading to anequivalent circuit representation of the whole multilayered structure.Within the framework of this two-port formalism, we present a newcontribution to the computation of the Green's function arising in theanalysis of multilayered conformal integrated antennas loaded withgeneral bianisotropic materials. We also propose an analytical study ofthe shielding effectiveness of general bianisotropic materials locatedin multilayered, cylindrical configuration. The expression of theshielded fields sustained both by plane wave and arbitrary sources isobtained in a closed analytical form. Numerical results are alsopresented showing effects of electromagnetic parameters on radiationpattern, matching properties and radar cross section of the integratedstructure.
Cylindrization of a PWR core for neutronic calculations
International Nuclear Information System (INIS)
Santos, Rubens Souza dos
2005-01-01
In this work we propose a core cylindrization, starting from a PWR core configuration, through the use of an algorithm that becomes the process automated in the program, independent of the discretization. This approach overcomes the problem stemmed from the use of the neutron transport theory on the core boundary, in addition with the singularities associated with the presence of corners on the outer fuel element core of, existents in the light water reactors (LWR). The algorithm was implemented in a computational program used to identification of the control rod drop accident in a typical PWR core. The results showed that the algorithm presented consistent results comparing with an production code, for a problem with uniform properties. In our conclusions, we suggest, for future works, for analyzing the effect on mesh sizes for the Cylindrical geometry, and to compare the transport theory calculations versus diffusion theory, for the boundary conditions with corners, for typical PWR cores. (author)
Evolution of bulk strain solitons in cylindrical inhomogeneous shells
Energy Technology Data Exchange (ETDEWEB)
Shvartz, A., E-mail: andrew.shvartz@mail.ioffe.ru; Samsonov, A.; Dreiden, G.; Semenova, I. [Ioffe Institute, 26 Politekhnicheskaya, St Petersburg 194021 (Russian Federation)
2015-10-28
Bulk strain solitary waves in nonlinearly elastic thin-walled cylindrical shells with variable geometrical and physical parameters are studied, and equation for the longitudinal strain component with the variable coefficients is derived. A conservative finite difference scheme is proposed, and the results of numerical simulation of the strain soliton evolution in a shell with the abrupt variations of cross section and physical properties of the material are presented.
Analytic, high β, flux conserving equilibria for cylindrical tokamaks
International Nuclear Information System (INIS)
Sigmar, D.J.; Vahala, G.
1978-01-01
Using Grad's theory of generalized differential equations, the temporal evolution from low to high β due to ''adiabatic'' and nonadiabatic (i.e., neutral beam injection) heating of a cylindrical tokamak plasma with circular cross section and peaked current profiles is calculated analytically. The influence of shaping the initial safety factor profile and the beam deposition profile and the effect of minor radius compression on the equilibrium is analyzed
Effective thermoelastic properties of composites with periodicity in cylindrical coordinates
Chatzigeorgiou, George
2012-09-01
The aim of this work is to study composites that present cylindrical periodicity in the microstructure. The effective thermomechanical properties of these composites are identified using a modified version of the asymptotic expansion homogenization method, which accounts for unit cells with shell shape. The microscale response is also shown. Several numerical examples demonstrate the use of the proposed approach, which is validated by other micromechanics methods. © 2012 Elsevier Ltd. All rights reserved.
Theory of semicollisional drift-interchange modes in cylindrical plasmas
International Nuclear Information System (INIS)
Hahm, T.S.; Chen, L.
1985-01-01
Resistive interchange instabilities in cylindrical plasmas are studied, including the effects of electron diamagnetic drift, perpendicular resistivity, and plasma compression. The analyses are pertinent to the semicollisional regime where the effective ion gyro-radius is larger than the resistive layer width. Both analytical and numerical results show that the modes can be completely stabilized by the perpendicular plasma transport. Ion sound effects, meanwhile, are found to be negligible in the semicollisional regime
Charged cylindrical polytropes with generalized polytropic equation of state
Energy Technology Data Exchange (ETDEWEB)
Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan); Mardan, S.A.; Noureen, I.; Rehman, M.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan)
2016-09-15
We study the general formalism of polytropes in the relativistic regime with generalized polytropic equations of state in the vicinity of cylindrical symmetry. We take a charged anisotropic fluid distribution of matter with a conformally flat condition for the development of a general framework of the polytropes. We discuss the stability of the model by the Whittaker formula and conclude that one of the models developed is physically viable. (orig.)
Fiber Optic Magnetometers Using Planar And Cylindrical Magnetostrictive Transducers
Bucholtz, F.; Yurek, A. M.; Koo, K. P.; Dandridge, A.
1987-04-01
Fiber optic magnetometers which require high sensitivity at low frequencies (dc-10 Hz) rely on the nonlinear magnetostriction of materials such as amorphous metallic glass alloys. Typically, fiber is bonded to a magnetostrictive sample to convert strain in the sample to phase shift in a fiber interferometer. We present the results of measurements of the frequency dependence and dc and ac magnetic field sensitivity of both planar and cylindrical transducing elements, and discuss the practical advantages and disadvan-tages of each configuration.
Analytic, high β, flux conserving equilibria for cylindrical tokamaks
International Nuclear Information System (INIS)
Sigmar, D.J.; Vahala, G.
1978-09-01
Using Grad's theory of generalized differential equations, the temporal evolution from low to high β due to ''adiabatic'' and nonadiabatic (i.e., neutral beam injection) heating of a cylindrical tokamak plasma with circular cross section and peaked current profiles is calculated analytically. The influence of shaping the initial safety factor profile and the beam deposition profile and the effect of minor radius compression on the equilibrium is analyzed
Determining the Temperature Profile in a Cylindrical Sample
Clayton, J. C.
1986-01-01
Power-series solution extrapolates from axial temperature profile. Thermal profile in homogeneous axisymmetric body determined throughout body if axial temperature profile known at any radius. New theory developed as aid in research on growth of mercury cadmium telluride for infrared detectors. In particular, applicable to Bridgman-Stockbarger growth, in which round cylindrical ampoule of molten ternary semiconductor is solidified directionally, from one end to other.
Stability of cylindrical plasma in the Bessel function model
International Nuclear Information System (INIS)
Yamagishi, T.; Gimblett, C.G.
1988-01-01
The stability of free boundary ideal and tearing modes in a cylindrical plasma is studied by examining the discontinuity (Δ') of the helical flux function given by the force free Bessel function model at the singular surface. The m = O and m = 1 free boundary tearing modes become strongly unstable when the singular surface is just inside the plasma boundary for a wide range of longitudinal wave numbers. (author)
An approximate solution for spherical and cylindrical piston problem
Indian Academy of Sciences (India)
presents an example of a flow field in which the flow behind the shock front is highly non-uniform due to ... The unsteady flow of an ideal gas with constant specific heats for spherical or cylindrical symmetry is given ... where &Y uY p are the density, velocity and the pressure of the gas, is the ratio of specific heats; tY r are the ...
DEVELOPMENT OF DEFORMATION STRIPS WHILE STRETCHING OF CYLINDRICAL SAMPLES
Directory of Open Access Journals (Sweden)
Y. V. Vasilevich
2011-01-01
Full Text Available Deformation strips have been experimentally revealed and described while stretching of cylindrical samples by means of computer thermography. It has been established that temperature of shift strip surface grows smoothly up to the stage of crack origin in material defect. Sharp growth of surface temperature occurs when tensile stresses reach tensile strength. Change in surface temperature occurs wavy after destruction (while cooling the sample. Processes of material destruction origin and development characterize temperature changes in deformation strips.
Chain-Based Communication in Cylindrical Underwater Wireless Sensor Networks
Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios
2015-01-01
Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate. PMID:25658394
Research on cylindrical indexing cam’s unilateral machining
Directory of Open Access Journals (Sweden)
Junhua Chen
2015-08-01
Full Text Available The cylindrical cam ridge of the indexer is a spatial curved surface, which is difficult to design and machine. The cylindrical cam has some defects after machining because conventional machining methods have inaccuracies. This article aims at proposing a precise way to machine an indexing cam, using basic motion analysis and analytic geometry approach. Analytical methodology is first applied in the cam’s motion analysis, to obtain an error-free cam follower’s trajectory formula, and then separate the continuous trajectory curve by thousandth resolution, to create a three-dimensional discrete trajectory curve. Planar formulae and spherical formulae can be built on the loci. Based on the machine principle, the cutting cutter’s position and orientation will be taken into account. This article calculates the formula set as presented previously and obtains the ultimate cutter path coordinate value. The new error-free cutter path trajectory is called the unilateral machining trajectory. The earned results will compile into numerical control processing schedule. This processing methodology gives a convenient and precision way to manufacture a cylindrical indexing cam. Experimental results are also well supported.
Chain-based communication in cylindrical underwater wireless sensor networks.
Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios
2015-02-04
Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.
A mathematical model of microalgae growth in cylindrical photobioreactor
Bakeri, Noorhadila Mohd; Jamaian, Siti Suhana
2017-08-01
Microalgae are unicellular organisms, which exist individually or in chains or groups but can be utilized in many applications. Researchers have done various efforts in order to increase the growth rate of microalgae. Microalgae have a potential as an effective tool for wastewater treatment, besides as a replacement for natural fuel such as coal and biodiesel. The growth of microalgae can be estimated by using Geider model, which this model is based on photosynthesis irradiance curve (PI-curve) and focused on flat panel photobioreactor. Therefore, in this study a mathematical model for microalgae growth in cylindrical photobioreactor is proposed based on the Geider model. The light irradiance is the crucial part that affects the growth rate of microalgae. The absorbed photon flux will be determined by calculating the average light irradiance in a cylindrical system illuminated by unidirectional parallel flux and considering the cylinder as a collection of differential parallelepipeds. Results from this study showed that the specific growth rate of microalgae increases until the constant level is achieved. Therefore, the proposed mathematical model can be used to estimate the rate of microalgae growth in cylindrical photobioreactor.
The magnetic properties of the hollow cylindrical ideal remanence magnet
Energy Technology Data Exchange (ETDEWEB)
Bjørk, R., E-mail: rabj@dtu.dk
2016-10-15
We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown to generate a field exactly twice as large as the equivalent ideal remanence magnet. - Highlights: • The ideal cylindrical magnet that produces a uniform field in the bore is examined in detail. • An ideal magnet is one that utilizes the magnets most efficiently. • The ideal magnet always produce a field lower than half of its maximum remanence. • The ideal magnet is compared to the Halbach cylinder. • The Halbach cylinder always produce a larger field than an equivalently sized ideal magnet.
The magnetic properties of the hollow cylindrical ideal remanence magnet
International Nuclear Information System (INIS)
Bjørk, R.
2016-01-01
We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown to generate a field exactly twice as large as the equivalent ideal remanence magnet. - Highlights: • The ideal cylindrical magnet that produces a uniform field in the bore is examined in detail. • An ideal magnet is one that utilizes the magnets most efficiently. • The ideal magnet always produce a field lower than half of its maximum remanence. • The ideal magnet is compared to the Halbach cylinder. • The Halbach cylinder always produce a larger field than an equivalently sized ideal magnet.
Edwards, G. D.; Shepson, P. B.; Grossenbacher, J. W.; Wells, J. M.; Patterson, G.; Barkett, D. J.
2005-12-01
Volatile organic compounds (VOCs) released from the biosphere have been shown to substantially influence both ozone and aerosol chemistry. However, field instruments for the detection of these trace gases are often limited by instrument portability and the ability to distinguish compounds of interest from background or other interfering compounds. We have developed an automated sampling system that is coupled to a lightweight, low power cylindrical ion trap mass spectrometer. This instrument was used for high frequency isoprene measurements at a recent field campaign at the University of Michigan Biological Station PROPHET lab. The inlet uses a sample loop and 6-port valves to trap ambient air samples without the aid of cryogens. VOCs are preconcentrated by sampling directly into a pre-cooled capillary column that is then heated by moving the column to a pre-heated region to obtain rapid separation of isoprene from other species. Isoprene eluting from the end of the column is then introduced to the mass spectrometer. The commercially available cylindrical ion trap (Minotaur 400) interfaced with our preconcentrator yields limits of detection of <80 ppt. The data obtained during the PROPHET 2005 campaign suggest the new inlet system, when coupled with the Minotaur 400 detector provides a feasible field instrument for the fast and accurate evaluation of trace gases over a variety of atmospheric conditions.
Huang, Tao; Zhou, Lulu; Tao, Junjun; Liu, Longfei
2018-01-01
The paper discusses enhancement and efficiency of removing spiked heavy metal (HM) contaminants from the municipal solid waste incineration (MSWI) fly ashes in the cylindrical electrolyser device. The characterization parameters of the electrolyte solution pH, electric current, electrical conductivity, voltage gradient were discussed after the experiment. The chemical speciation of HMs was analysed between the original samples and remediated ones by BCR sequential extraction. The detoxification efficiencies of Zn, Pb, Cu and Cd in the column-uniform device were compared with that in the traditional rectangular apparatus. The pH value changed smoothly with small amplitude of oscillation in general in cathode and anode compartments except the initial break. The electrical current rapidly increased on the first day of the experiment and steadily declined after that and the electrical conductivity presented a clear rising trend. The residual partition of detoxified samples were obviously lifted which was much higher than the analysis data of the raw materials. The pH and the electrical conductivity in sample region were distributed more uniformly and the blind area was effectively eliminated in the electrolytic cells which was indirectly validated by the contrastive detoxification result of the spiked HMs between the rectangular and cylindrical devices.
Sub-aperture stitching test of a cylindrical mirror with large aperture
Xue, Shuai; Chen, Shanyong; Shi, Feng; Lu, Jinfeng
2016-09-01
Cylindrical mirrors are key optics of high-end equipment of national defense and scientific research such as high energy laser weapons, synchrotron radiation system, etc. However, its surface error test technology develops slowly. As a result, its optical processing quality can not meet the requirements, and the developing of the associated equipment is hindered. Computer Generated-Hologram (CGH) is commonly utilized as null for testing cylindrical optics. However, since the fabrication process of CGH with large aperture is not sophisticated yet, the null test of cylindrical optics with large aperture is limited by the aperture of the CGH. Hence CGH null test combined with sub-aperture stitching method is proposed to break the limit of the aperture of CGH for testing cylindrical optics, and the design of CGH for testing cylindrical surfaces is analyzed. Besides, the misalignment aberration of cylindrical surfaces is different from that of the rotational symmetric surfaces since the special shape of cylindrical surfaces, and the existing stitching algorithm of rotational symmetric surfaces can not meet the requirements of stitching cylindrical surfaces. We therefore analyze the misalignment aberrations of cylindrical surfaces, and study the stitching algorithm for measuring cylindrical optics with large aperture. Finally we test a cylindrical mirror with large aperture to verify the validity of the proposed method.
Sidabras, Jason W; Reijerse, Edward J; Lubitz, Wolfgang
2017-01-01
Uniform field (UF) resonators create a region-of-interest, where the sample volume receives a homogeneous microwave magnetic field ([Formula: see text]) excitation. However, as the region-of-interest is increased, resonator efficiency is reduced. In this work, a new class of uniform field resonators is introduced: the uniform field re-entrant cylindrical TE[Formula: see text] cavity. Here, a UF cylindrical TE[Formula: see text] cavity is designed with re-entrant fins to increase the overall resonator efficiency to match the resonator efficiency maximum of a typical cylindrical TE[Formula: see text] cavity. The new UF re-entrant cylindrical TE[Formula: see text] cavity is designed for Q-band (34 GHz) and is calculated to have the same electron paramagnetic resonance (EPR) signal intensity as a TE[Formula: see text] cavity, a 60% increase in average resonator efficiency [Formula: see text] over the sample, and has a [Formula: see text] profile that is 79.8% uniform over the entire sample volume (98% uniform over the region-of-interest). A new H-type T-junction waveguide coupler with inductive obstacles is introduced that increases the dynamic range of a movable short coupler while reducing the frequency shift by 43% during over-coupling. The resonator assembly is fabricated and tested both on the bench and with EPR experiments. This resonator provides a template to improve EPR spectroscopy for pulse experiments at high frequencies.
Localized bedrock aquifer distribution explains discharge from a headwater catchment
Kosugi, Ken'ichirou; Fujimoto, Masamitsu; Katsura, Shin'ya; Kato, Hiroyuki; Sando, Yoshiki; Mizuyama, Takahisa
2011-07-01
Understanding a discharge hydrograph is one of the leading interests in catchment hydrology. Recent research has provided credible information on the importance of bedrock groundwater on discharge hydrographs from headwater catchments. However, intensive monitoring of bedrock groundwater is rare in mountains with steep topography. Hence, how bedrock groundwater controls discharge from a steep headwater catchment is in dispute. In this study, we conducted long-term hydrological observations using densely located bedrock wells in a headwater catchment underlain by granitic bedrock. The catchment has steep topography affected by diastrophic activities. Results showed a fairly regionalized distribution of bedrock aquifers within a scale of tens of meters, consisting of upper, middle, and lower aquifers, instead of a gradual and continuous decline in water level from ridge to valley bottom. This was presumably attributable to the unique bedrock structure; fault lines developed in the watershed worked to form divides between the bedrock aquifers. Spatial expanse of each aquifer and the interaction among aquifers were key factors to explain gentle and considerable variations in the base flow discharge and triple-peak discharge responses of the observed hydrograph. A simple model was developed to simulate the discharge hydrograph, which computed each of the contributions from the soil mantle groundwater, from the lower aquifer, and from the middle aquifer to the discharge. The modeling results generally succeeded in reproducing the observed hydrograph. Thus, this study demonstrated that understanding regionalized bedrock aquifer distribution is pivotal for explaining discharge hydrograph from headwater catchments that have been affected by diastrophic activities.
Groundwater Discharge along a Channelized Coastal Plain Stream
Energy Technology Data Exchange (ETDEWEB)
LaSage, Danita M [Ky Dept for natural resources, Div of Mine Permits; Sexton, Joshua L [JL Sexton and Son; Mukherjee, Abhijit [Univ of Tx, Jackson School of Geosciences, Bur of Econ. Geology; Fryar, Alan E [Univ of KY, Dept of Earth and Geoligical Sciences; Greb, Stephen F [Univ of KY, KY Geological Survey
2015-10-01
In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.
Performance of a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets
Polzin, Kurt A.; Raitses, Yevgeny; Fisch, Nathaniel J.
2008-01-01
While Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope down to 100W while maintaining an efficiency of 45- 55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from the order of 50 Watts up to 1 kW. These thrusters exhibit performance characteristics which are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHT has a lower insulator surface area to discharge chamber volume ratio. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion. This makes the CHT geometry promising for low-power applications. Recently, a CHT that uses permanent magnets to produce the magnetic field topology was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed electromagnets. Data are presented for two purposes: to expose the effect different controllable parameters have on the discharge and to summarize performance measurements (thrust, Isp, efficiency) obtained using a thrust stand. These data are used to gain insight into the thruster's operation and to allow for quantitative comparisons between the permanent magnet CHT and the electromagnet CHT.
Influence of Climate Change on River Discharge in Austria
Directory of Open Access Journals (Sweden)
Robert A. Goler
2016-10-01
Full Text Available The effect of climate change on the river discharge characteristics in four catchment basins within Austria is investigated using a hydrological model. Input for the model are daily climate data generated from three regional climate models (RCMs over the time period 1951–2100 using the A1B emission scenario. Due to the complex terrain of the basins, the climate data has been downscaled to a resolution of 1km×1km$1\\,\\text{km}\\times1\\,\\text{km}$. The hydrological model includes processes such as meltwater from snow and glaciers; surface, subsurface, and groundwater flows; and evapotranspiration. The modelling results show that, although only one RCM exhibits a significant reduction in the mean annual discharge towards the end of the 21st century, all RCMs exhibit significant changes in the seasonal distribution of the discharge. In particular, for basins whose discharge is dependent on water stored as snow, there will be a shift in the time of maximum river discharge to earlier in the year as the snow and ice melt earlier. During the winter months the discharge is forecasted to be higher than at present, which would lead to the number of days of low discharge being reduced. However, the earlier snow melt means that the available water for the summer months will be reduced, leading to lower discharges than present, and thus an increase in the number of low discharge days.
Analysis of Multipactor Discharge
International Nuclear Information System (INIS)
Lau, Y. Y.
2005-01-01
Several comprehensive studies of radio frequency (rf) breakdown and rf heating are reported. They are of general interest to magnetic confinement fusion, rf linac, and high power microwave source development. The major results include: (1) a ground-breaking theory of multipactor discharge on dielectric, including a successful proof-of-principle experiment that verified the newly developed scaling laws, (2) an in depth investigation of the failure mechanisms of diamond windows and ceramic windows, and of the roles of graphitization, thin films of coating and contaminants, and (3) a most comprehensive theory, to date, on the heating of particulates by an electromagnetic pulse, and on the roles of rf magnetic field heating and of rf electric field heating, including the construction of new scaling laws that govern them. The above form a valuable knowledge base for the general problem of heating phenomenology
Heart bypass surgery - minimally invasive - discharge
... invasive direct coronary artery bypass - discharge; MIDCAB - discharge; Robot assisted coronary artery bypass - discharge; RACAB - discharge; Keyhole ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...
Lazović, Saša; Puač, Nevena; Spasić, Kosta; Malović, Gordana; Cvelbar, Uroš; Mozetič, Miran; Radetić, Maja; Petrović, Zoran Lj
2013-02-01
We have developed a large-volume low-pressure cylindrical plasma reactor with a size that matches industrial reactors for treatment of textiles. It was shown that it efficiently produces plasmas with only a small increase in power as compared with a similar reactor with 50 times smaller volume. Plasma generated at 13.56 MHz was stable from transition to streamers and capable of long-term continuous operation. An industrial-scale asymmetric cylindrical reactor of simple design and construction enabled good control over a wide range of active plasma species and ion concentrations. Detailed characterization of the discharge was performed using derivative, Langmuir and catalytic probes which enabled determination of the optimal sets of plasma parameters necessary for successful industry implementation and process control. Since neutral atomic oxygen plays a major role in many of the material processing applications, its spatial profile was measured using nickel catalytic probe over a wide range of plasma parameters. The spatial profiles show diffusion profiles with particle production close to the powered electrode and significant wall losses due to surface recombination. Oxygen atom densities range from 1019 m-3 near the powered electrode to 1017 m-3 near the wall. The concentrations of ions at the same time are changing from 1016 to the 1015 m-3 at the grounded chamber wall.
Thermal modeling of a cylindrical LiFePO{sub 4}/graphite lithium-ion battery
Energy Technology Data Exchange (ETDEWEB)
Forgez, Christophe; Vinh Do, Dinh; Friedrich, Guy [Universite de Technologie de Compiegne, EA 1006, Laboratoire d' Electromecanique de Compiegne, BP 20529, 60205 Compiegne Cedex (France); Morcrette, Mathieu; Delacourt, Charles [Laboratoire de Reactivite et de Chimie des Solides, UMR 6007, Universite de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens (France)
2010-05-01
A lumped-parameter thermal model of a cylindrical LiFePO{sub 4}/graphite lithium-ion battery is developed. Heat transfer coefficients and heat capacity are determined from simultaneous measurements of the surface temperature and the internal temperature of the battery while applying 2 Hz current pulses of different magnitudes. For internal temperature measurements, a thermocouple is introduced into the battery under inert atmosphere. Heat transfer coefficients (thermal resistances in the model) inside and outside the battery are obtained from thermal steady state temperature measurements, whereas the heat capacity (thermal capacitance in the model) is determined from the transient part. The accuracy of the estimation of internal temperature from surface temperature measurements using the model is validated on current-pulse experiments and a complete charge/discharge of the battery and is within 1.5 C. Furthermore, the model allows for simulating the internal temperature directly from the measured current and voltage of the battery. The model is simple enough to be implemented in battery management systems for electric vehicles. (author)
Discharge Coefficient Measurements for Flow Through Compound-Angle Conical Holes with Cross-Flow
Directory of Open Access Journals (Sweden)
M. E. Taslim
2004-01-01
Full Text Available Diffusion-shaped film holes with compound angles are currently being investigated for high temperature gas turbine airfoil film cooling. An accurate prediction of the coolant blowing rate through these film holes is essential in determining the film effectiveness. Therefore, the discharge coefficients associated with these film holes for a range of hole pressure ratios is essential in designing airfoil cooling circuits. Most of the available discharge coefficient data in open literature has been for cylindrical holes. The main objective of this experimental investigation was to measure the discharge coefficients for subsonic as well as supersonic pressure ratios through a single conical-diffusion hole. The conical hole has an exit-to-inlet area ratio of 4, a nominal flow length-to-inlet diameter ratio of 4, and an angle with respect to the exit plane (inclination angle of 0°, 30°, 45°, and 60°. Measurements were performed with and without a cross-flow. For the cases with a cross-flow, discharge coefficients were measured for each of the hole geometries and 5 angles between the projected conical hole axis and the cross-flow direction of 0°, 45°, 90°, 135°, and 180°. Results are compared with available data in open literature for cylindrical film holes as well as limited data for conical film holes.
Large-aperture discharges in E-beam sustained CO2 amplifiers
International Nuclear Information System (INIS)
Leland, W.T.; Ganley, J.T.; Kircher, M.; York, G.W. Jr.
1977-01-01
The very large energy fluxes required for the attainment of scientific breakeven in laser-fusion experiments can only be obtained by the construction of multiple-beam, large-aperture lasers. Accordingly, the next generation CO 2 laser currently being designed at LASL consists of six electron-beam sustained amplifier modules, each module containing 12 large-aperture (approximately 30 x 30 cm) laser discharges sustained by (and surrounding) a single, cylindrical cold-cathode electron gun. The large scale and cylindrical geometry combine to generate substantial electric and magnetic field effects which can affect the uniformity of the electron-beam distribution, causing a number of difficulties including discharge and gain nonuniformities and potential arcing. In an effort to learn the magnitude of the associated difficulties and test various solutions for reducing the effects, a prototype module was constructed. This prototype was constructed full scale in the dimensions which will produce the discharge nonuniformities and measurements were made of the electron beam uniformity, discharge uniformity, and gain uniformity under a wide range of experimental conditions. These results indicate that under worse case conditions and nonuniformities, while severe, are within acceptable limits and can be reduced even further by minor design changes. Perhaps more importantly, calculational models have been developed which agree adequately enough with the data so that they can be used with reasonable confidence as a data base for predicting the performance of the final design of the amplifier modules and the effects of any changes which may be required
Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.
2015-11-01
In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ˜600 kA with ˜200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.
Lee, Min Jin; Hong, Helen; Chung, Jin Wook
2014-03-01
We propose an automatic vessel segmentation method of vertebral arteries in CT angiography using combined circular and cylindrical model fitting. First, to generate multi-segmented volumes, whole volume is automatically divided into four segments by anatomical properties of bone structures along z-axis of head and neck. To define an optimal volume circumscribing vertebral arteries, anterior-posterior bounding and side boundaries are defined as initial extracted vessel region. Second, the initial vessel candidates are tracked using circular model fitting. Since boundaries of the vertebral arteries are ambiguous in case the arteries pass through the transverse foramen in the cervical vertebra, the circle model is extended along z-axis to cylinder model for considering additional vessel information of neighboring slices. Finally, the boundaries of the vertebral arteries are detected using graph-cut optimization. From the experiments, the proposed method provides accurate results without bone artifacts and eroded vessels in the cervical vertebra.
Structural Health Monitoring in Cylindrical Structures Using Helical Guided Wave Propagation
Baltazar, A.; Rojas, E.; Mijarez, R.
Defect detection and characterization are critical tasks for structural health monitoring of pipe-like engineering structures. Propagation and detection of ultrasonic helical Lamb waves using macro fiber composite (MFC) sensors is studied. Experiments for defect detection and characterization on an aluminum hollow cylinder (114 mm in outer-diameter and 6 mm of wall thickness) were carried out. An experimental setup using MFC sensors coupled to the cylinder's surface in a pitch-catch configuration is presented. Time-frequency representation (TFR) using wavelets is employed to accurately perform mode identification of the ultrasonic captured signals. The initial results indicate that the use of helical waves could allow the monitoring of damage in difficult to access critical areas by locating the sensors only on a small region of the periphery of the cylindrical structure under inspection.
Realization of low-scattering metamaterial shell based on cylindrical wave expanding theory.
Wu, Xiaoyu; Hu, Chenggang; Wang, Min; Pu, Mingbo; Luo, Xiangang
2015-04-20
In this paper, we demonstrate the design of a low-scattering metamaterial shell with strong backward scattering reduction and a wide bandwidth at microwave frequencies. Low echo is achieved through cylindrical wave expanding theory, and such shell only contains one metamaterial layer with simultaneous low permittivity and permeability. Cut-wire structure is selected to realize the low electromagnetic (EM) parameters and low loss on the resonance brim region. The full-model simulations show good agreement with theoretical calculations, and illustrate that near -20dB reduction is achieved and the -10 dB bandwidth can reach up to 0.6 GHz. Compared with the cloak based on transformation electromagnetics, the design possesses advantage of simpler requirement of EM parameters and is much easier to be implemented when only backward scattering field is cared.
Moslem, W. M.; Sabry, R.; Shukla, P. K.
2010-03-01
By using the hydrodynamic equations of ions, Thomas-Fermi electron/positron density distribution, and Poisson equation, a three-dimensional cylindrical Kadomtsev-Petviashvili (CKP) equation is derived for small but finite amplitude ion-acoustic waves. The generalized expansion method is used to analytically solve the CKP equation. New class of solutions admits a train of well-separated bell-shaped periodic pulses is obtained. At certain condition, the latter degenerates to solitary wave solution. The effects of physical parameters on the solitary pulse structures are examined. Furthermore, the energy integral equation is used to study the existence regions of the localized pulses. The present study might be helpful to understand the excitation of nonlinear ion-acoustic waves in a very dense astrophysical objects such as white dwarfs.
Integral-equation formulation for drift eigenmodes in cylindrically symmetric systems
International Nuclear Information System (INIS)
Linsker, R.
1980-12-01
A method for solving the integral eigenmode equation for drift waves in cylindrical (or slab) geometry is presented. A leading-order kinematic effect that has been noted in the past, but incorrectly ignored in recent integral-equation calculations, is incorporated. The present method also allows electrons to be treated with a physical mass ratio (unlike earlier work that is restricted to artificially small m/sub i//m/sub e/ owing to resolution limitations). Results for the universal mode and for the ion-temperature-gradient driven mode are presented. The kinematic effect qualitatively changes the spectrum of the ion mode, and a new second region of instability for k/sub perpendicular to/rho/sub i/greater than or equal to 1 is found
Spectroscopic study of ohmically heated Tokamak discharges
International Nuclear Information System (INIS)
Breton, C.; Michelis, C. de; Mattioli, M.
1980-07-01
Tokamak discharges interact strongly with the wall and/or the current aperture limiter producing recycling particles, which penetrate into the discharge and which can be studied spectroscopically. Working gas (hydrogen or deuterium) is usually studied observing visible Balmer lines at several toroidal locations. Absolute measurements allow to obtain both the recycling flux and the global particle confinement time. With sufficiently high resolution the isotopic plasma composition can be obtained. The impurity elements can be divided into desorbed elements (mainly oxygen) and eroded elements (metals from both walls and limiter) according to the plasma-wall interaction processes originating them. Space-and time-resolved emission in the VUV region down to about 20 A will be reviewed for ohmically-heated discharges. The time evolution can be divided into four phases, not always clearly separated in a particular discharge: a) the initial phase, lasting less than 10 ms (the so-called burn-out phase), b) the period of increasing plasma current and electron temperature, lasting typically 10 - 100 ms, c) an eventual steady state (plateau of the plasma current with almost constant density and temperature), d) the increase of the electron density up to or just below the maximum value attainable in a given device. For all these phases the results reported from different devices will be described and compared
Cylindrical Taylor states conserving total absolute magnetic helicity
Low, B. C.; Fang, F.
2014-09-01
The Taylor state of a three-dimensional (3D) magnetic field in an upright cylindrical domain V is derived from first principles as an extremum of the total magnetic energy subject to a conserved, total absolute helicity Habs. This new helicity [Low, Phys. Plasmas 18, 052901 (2011)] is distinct from the well known classical total helicity and relative total helicity in common use to describe wholly-contained and anchored fields, respectively. A given field B, tangential along the cylindrical side of V, may be represented as a unique linear superposition of two flux systems, an axially extended system along V and a strictly transverse system carrying information on field-circulation. This specialized Chandrasekhar-Kendall representation defines Habs and permits a neat formulation of the boundary-value problem (BVP) for the Taylor state as a constant-α force-free field, treating 3D wholly-contained and anchored fields on the same conceptual basis. In this formulation, the governing equation is a scalar integro-partial differential equation (PDE). A family of series solutions for an anchored field is presented as an illustration of this class of BVPs. Past treatments of the constant-α field in 3D cylindrical geometry are based on a scalar Helmholtz PDE as the governing equation, with issues of inconsistency in the published field solutions discussed over time in the journal literature. The constant-α force-free equation reduces to a scalar Helmholtz PDE only as special cases of the 3D integro-PDE derived here. In contrast, the constant-α force-free equation and the scalar Helmholtz PDE are absolutely equivalent in the spherical domain as discussed in Appendix. This theoretical study is motivated by the investigation of the Sun's corona but the results are also relevant to laboratory plasmas.
Three-dimensional global fluid simulations of cylindrical magnetized plasmas
DEFF Research Database (Denmark)
Naulin, Volker; Windisch, T.; Grulke, O.
2008-01-01
and sinks. The traditional scale separation paradigm is not applied in the simulation model to account for the important evolution of the background profiles due to the dynamics of turbulent fluctuations. Furthermore, the fluid modeling of sheath boundary conditions, which determine the plasma conditions......Plasma dynamics in cylindrical geometry, with many well diagnosed experiments in operation worldwide, is of fundamental interest. These linear machines can provide an unique testing ground for direct and detailed comparisons of numerical simulations of nonlinear plasma dynamics with experiments...
Self shielding in cylindrical fissile sources in the APNea system
International Nuclear Information System (INIS)
Hensley, D.
1997-01-01
In order for a source of fissile material to be useful as a calibration instrument, it is necessary to know not only how much fissile material is in the source but also what the effective fissile content is. Because uranium and plutonium absorb thermal neutrons so Efficiently, material in the center of a sample is shielded from the external thermal flux by the surface layers of the material. Differential dieaway measurements in the APNea System of five different sets of cylindrical fissile sources show the various self shielding effects that are routinely encountered. A method for calculating the self shielding effect is presented and its predictions are compared with the experimental results
3D Rigid Registration by Cylindrical Phase Correlation Method
Czech Academy of Sciences Publication Activity Database
Bican, Jakub; Flusser, Jan
2009-01-01
Roč. 30, č. 10 (2009), s. 914-921 ISSN 0167-8655 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/1593 Grant - others:GAUK(CZ) 48908 Institutional research plan: CEZ:AV0Z10750506 Keywords : 3D registration * correlation methods * Image registration Subject RIV: BD - Theory of Information Impact factor: 1.303, year: 2009 http://library.utia.cas.cz/separaty/2009/ZOI/bican-3d digit registration by cylindrical phase correlation method.pdf
Nonaxisymmetric radiative transfer in inhomogeneous cylindrical media with anisotropic scattering
International Nuclear Information System (INIS)
Grissa, H.; Askri, F.; Ben Salah, M.; Ben Nasrallah, S.
2008-01-01
In this paper, the control volume finite element method (CVFEM) is applied for the first time to solve nonaxisymmetric radiative transfer in inhomogeneous, emitting, absorbing and anisotropic scattering cylindrical media. Mathematical formulations as well as numerical implementation are given and the final discretized equations are based on similar meshes used for convective and conductive heat transfer in computational fluid dynamic analysis. In order to test the efficiency of the developed method, four nonaxisymmetric problems have been examined. Also, the grid dependence and the false scattering of the CVFEM are investigated and compared with the finite volume method and the discrete ordinates interpolation method
Dynamic plastic buckling of rings and cylindrical shells
International Nuclear Information System (INIS)
Jones, N.; Okawa, D.M.
1975-01-01
A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell. This theoretical work is used to examine various features of plastic buckling and to assess the importance of several approximations which previous authors have introduced in dynamic plastic buckling studies. In particular, the influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. (Auth.)
Relaxation rates studies in an argon cylindrical plasma
International Nuclear Information System (INIS)
Hernandez, M.A.; Dengra, A.; Colomer, V.
1986-01-01
The single Langmuir probe method has been used to determine the relaxation rates of the electron density and temperature in an argon afterglow dc cylindrical plasma. The ion-electron recombination was found to be the fundamental mechanism of density decay during the early afterglow while the ambipolar diffusion controlles the density decay for later afterglow. Electron temperature cooling curves have been interpreted via electron-neutral collisons. Measurements of the electron-ion recombination and the ambipolar diffusion coefficients have been made, as well as of the electron-neutral collision frequency and the momentum transfer cross sections. Good agreement is obtained with previously published data. (author)
Cylindrical Three-Dimensional Porous Anodic Alumina Networks
Directory of Open Access Journals (Sweden)
Pedro M. Resende
2016-11-01
Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.
Biomedical Optoacoustic Tomograph Based on a Cylindrical Focusing PVDF Antenna
Subochev, P. V.; Postnikova, A. S.; Koval'chuk, A. V.; Turchin, I. V.
2017-08-01
We developed an optoacoustic tomograph with hand-held probe designed for optoacoustic imaging of biological tissues. The hand-held probe consists of a fiber-optic bundle for delivery of pulsed laser radiation to the studied object and a cylindrical focusing 64-element antenna for the detection of optoacoustic pulses. The capabilities of the tomograph to visualize the model blood vessels were studied experimentally using electronic and electronic-mechanical scanning. The achieved axial/lateral spatial resolution is 200/400 μm, the imaging depth is 18 mm, and the maximum B-scan acquisition rate is 10 Hz.
Dynamic characteristics of cylindrical shells considering Fluid-structure interaction
International Nuclear Information System (INIS)
Jhung, Myung Jo; Kim, Wal Tae; Ryu, Yong Ho
2009-01-01
To assure the reliability of cylinders or shells with fluid-filled annulus, it is necessary to investigate the modal characteristics considering fluid-structure interaction effect. In this study, theoretical background and several finite element models are developed for cylindrical shells with fluid-filled annulus considering fluid-structure interaction. The effect of the inclusion of the fluid-filled annulus on the natural frequencies is investigated, which frequencies are used for typical dynamic analyses such as responses spectrum, power spectral density and unit load excitation. Their response characteristics are addressed with respect to the various representations of the fluid-structure interaction effect
Solidification of subcooled gallium poured into a vertical cylindrical mold
Dubovsky, Vadim; Harary, Itay; Assis, Eli; Ziskind, Gennady; Letan, Ruth
2016-01-01
The present investigation is aimed at the solidification of subcooled liquid gallium. The gallium, in its liquid state, is contained in a cylindrical shell of copper or polypropylene, and poured into the shell, which is immersed in a cold bath. The experimental degree of subcooling varied between 5°C and 45°C. The phenomena empirically observed have been simulated in four stages: subcooling of the liquid gallium down to its nucleation temperature, a rapid transfer from nucleation to the stabl...
Cylindrical prestressed concrete pressure vessel for a nuclear power plant
International Nuclear Information System (INIS)
Horner, M.; Hodzic, A.; Haferkamp, D.
1976-01-01
A prestressed concrete pressure vessel for a HTGR is proposed which encloses, in addition to the reactor core, not only the heat-exchanging facilities but also the turbine unit. The reinforcement of the cylindrical concrete body is to be carried out with special care, it is provided for horizontal tendons, the prestressed concrete pressure vessel has a wire-winding device, while the longitudinal reinforcement is achieved by tendous guided in parallel to the vesses axes through the interspaces between the pods. (UWI) [de
Christiansen filter realized by an odd smooth cylindrical lens.
Li, Jian; Goddard, N; Xie, Kang
2010-01-01
The Christiansen filter that is realized by odd smooth cylindrical lenses is analyzed in detail. Several popular filtering functions are discussed. The corresponding lens profile functions are obtained by an inverse scattering theory, which enables the filter to synthesize a desired prescribed response function. This kind of Christiansen filter has a passband narrower than that of the traditional Christiansen filter. Three Christiansen filters centered at 545 nm with full width at half-maximum of 2 nm are synthesized, and the approach to a better suppression of halos from the main transmission peak of the filters is presented in a systematic way.
Plasticity around an Axial Surface Crack in a Cylindrical Shell
DEFF Research Database (Denmark)
Krenk, Steen
1979-01-01
field in an axially cracked cylindrical shell arising from use of classical eighth order shallow shell theory is removed when use is made of a tenth order shell theory which accounts for transverse shear deformations. Although the membrane stresses are only moderately affected, the influence...... and Ratwani,3–5 it generalises Dugdale's assumption of a concentrated yield zone in the plane of the crack but, contrary to that model, transverse shear effects are included and a continuous stress distribution is assumed in the yield zone. The inherent difficulties arising from the use of shell theory...
Cathode degradation and erosion in high pressure arc discharges
Hardy, T. L.; Nakanishi, S.
1984-01-01
The various processes which control cathode erosion and degradation were identified and evaluated. A direct current arc discharge was established between electrodes in a pressure-controlled gas flow environment. The cathode holder was designed for easy testing of various cathode materials. The anode was a water cooled copper collector electrode. The arc was powered by a dc power supply with current and voltage regulated cross-over control. Nitrogen and argon were used as propellants and the materials used were two percent thoriated tungsten, barium oxide impregnated porous tungsten, pure tungsten and lanthanum hexaboride. The configurations used were cylindrical solid rods, wire bundles supported by hollow molybdenum tubes, cylindrical hollow tubes, and hollow cathodes of the type used in ion thrusters. The results of the mass loss tests in nitrogen indicated that pure tungsten eroded at a rate more than 10 times faster than the rates of the impregnated tungsten materials. It was found that oxygen impurities of less than 0.5 percent in the nitrogen increased the mass loss rate by a factor of 4 over high purity nitrogen. At power levels less than 1 kW, cathode size and current level did not significantly affect the mass loss rate. The hollow cathode was found to be operable in argon and in nitrogen only at pressures below 400 and 200 torr, respectively.
High-current discharge channel contraction in high density gas
International Nuclear Information System (INIS)
Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.; Budin, A. V.; Leks, A. G.; Pozubenkov, A. A.
2011-01-01
Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of ∼10 10 A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 μs. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where the channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.
Experimental investigation of surface roughness in electrical discharge turning process
Gohil, Vikas; Puri, Y. M.
2016-10-01
In the present study the effects of machining parameters on the average surface roughness (Ra) in electrical discharge turning (EDT) is investigated. EDT is a new machining process in which a rotary spindle is added to a conventional die-sinking EDM machine in order to produce cylindrical components. In this method a new process parameter (spindle rotation) along with pulse on time and current is introduced to study its effect on Ra. This has been done by means of full factorial design (21 × 32) of experiments. A mathematical model has been developed for Ra by regression analysis and factor effects were analyzed using analysis of variance (ANOVA). Signal-to-noise ratio analysis is used to find the optimal condition.
Directory of Open Access Journals (Sweden)
Prateek Benhal
2015-07-01
Full Text Available Lab-on-a-chip micro-devices utilizing electric field-mediated particle movement provide advantages over current cell rotation techniques due to the flexibility in configuring micro-electrodes. Recent technological advances in micro-milling, three-dimensional (3D printing and photolithography have facilitated fabrication of complex micro-electrode shapes. Using the finite-element method to simulate and optimize electric field induced particle movement systems can save time and cost by simplifying the analysis of electric fields within complex 3D structures. Here we investigated different 3D electrode structures to obtain and analyse rotational electric field vectors. Finite-element analysis was conducted by an electric current stationary solver based on charge relaxation theory. High-resolution data were obtained for three-, four-, six- and eight-cylindrical electrode arrangements to characterize the rotational fields. The results show that increasing the number of electrodes within a fixed circular boundary provides larger regions of constant amplitude rotational electric field. This is a very important finding in practice, as larger rotational regions with constant electric field amplitude make placement of cells into these regions, where cell rotation occurs, a simple task – enhancing flexibility in cell manipulation. Rotation of biological particles over the extended region would be useful for biotechnology applications which require guiding cells to a desired location, such as automation of nuclear transfer cloning.
Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties
Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian
2018-04-01
Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.
Cylindrical diffractive lenses recorded on PVA/AA photopolymers
Fernández, R.; Gallego, S.; Márquez, A.; Navarro-Fuster, V.; Francés, J.; Neipp, C.; Beléndez, A.; Pascual, I.
2016-04-01
Photopolymers are optical recording materials appealing for many different applications such as holography, data storage, interconnectors, solar concentrations, or wave-guides fabrication. Recently the capacity of photopolymers to record diffractive optical elements (DOE's) has been investigated. Different authors have reported proposes to record DOE like fork gratings, photonics structures, lenses, sinusoidal, blazed or fork gratings. In these experiments there are different experimental set-ups and different photopolymers. In this work due to the improvement in the spatial light modulation technology together with the photopolymer science we propose a recording experimental system of DOE using a Liquid Cristal based on Silicon (LCoS) display as a master to store complex DOE like cylindrical lenses. This technology permits us an accurate control of the phase and the amplitude of the recording beam, with a very small pixel size. The main advantage of this display is that permit us to modify the DOE automatically, we use the software of the LCoS to send the voltage to each pixel In this work we use a photopolymer composed by acrylamide (AA) as polymerizable monomer and polyvinyl alcohol (PVA). We use a coverplated and index matched photopolymer to avoid the influence of the thickness variation on the transmitted light. In order to reproduce the material behaviour during polymerization, we have designed our model to simulate cylindrical lenses and used Fresnel propagation to simulate the light propagation through the DOE and analyze the focal plane and the properties of the recorded lenses.
Research on a lubricating grease print process for cylindrical cylinder
Yang, Liu; Zhang, Xuan; Wang, XianYan; Tan, XiaoYan
2017-09-01
In vehicle braking system and clutch system of transmission, there is always a kind of cylindrical component dose reciprocating motion. The main working method is the reciprocating motion between the rubber sealing parts and cylindrical parts, the main factor affects the service life of the product is the lubricating performance of the moving parts. So the lubricating performance between cylinders and rubber sealing rings is particularly important, same as the quality of the grease applies on the surface of the surface of cylinder. Traditional method of manually applying grease has some defects such as applying unevenly, applying tools like brush and cloth easily falls off and affect the cleanness of products, contact skin easily cause allergy, waste grease due to the uncontrollable of grease quantity using in applying, low efficiency of manual operation. An automatic, quantitative and high pressure applying equipment is introduced in this document to replace the traditional manually applying method, which can guarantee the applying quality of the grease which are painted on the surface of cylinder and bring economic benefits to the company.
Ultrasound cylindrical phased array for transoesophageal thermal therapy: initial studies
Energy Technology Data Exchange (ETDEWEB)
Melodelima, David [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Lafon, Cyril [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Prat, Frederic [Centre Hospitalier Bicetre, 78 Avenue General Leclerc, 94275 Le Kremlin Bicetre (France); Birer, Alain [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Cathignol, Dominique [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France)
2002-12-07
This work was undertaken to investigate the feasibility of constructing a cylindrical phased array composed of 64 elements spread around the periphery (OD 10.6 mm) for transoesophageal ultrasound thermotherapy. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were successively excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. For these feasibility studies, we used a cylindrical prototype (OD 10.6 mm) composed of 16 elementary transducers distributed over a quarter of the cylinder, all operating at 4.55 MHz. The active part was mechanically reinforced by a rigid damper structure behind the transducers. It was shown that an ultrasound field similar to that emitted by a plane transducer could be generated. Ex vivo experiments on pig's liver demonstrated that the ultrasound beam could be accurately rotated to generate sector-based lesions to a suitable depth (up to 19 mm). Throughout these experiments, exposures lasting 20 s were delivered at an acoustic intensity of 17 W cm{sup -2}. By varying the power from exposure to exposure, the depth of the lesion at different angles could be controlled.
Micro-photonic cylindrical waveguide based protein biosensor
International Nuclear Information System (INIS)
Padigi, Sudhaprasanna Kumar; Asante, Kofi; Kovvuri, Vijay Sekhar Reddy; Reddy, Ravi Kiran Kondama; Rosa, Andres La; Prasad, Shalini
2006-01-01
In this paper we experimentally demonstrate the fabrication and operation of a rapidly prototyped optical cylindrical micro-waveguide based biosensor. This device works on the principle of variation to the light intensity and path of coupled input light due to the binding of protein bio-molecules onto the micro-waveguide surface as a method of physical transduction. The variation to the coupled light intensity and path is dependent on the nature of the bio-molecule and the density of the bio-molecules. This technique has been used to identify protein biomarkers for inflammation and thrombosis, namely myeloperoxidase (MPO) and C-reactive protein (CRP). The detection limit that has been demonstrated is pg ml -1 . The detection speed is of the order of seconds from the time of injection of the bio-molecule. The optical signature that is obtained to identify a protein bio-molecule is entirely dependent on the nature of adsorption of the bio-molecule on to the cylindrical cavity surfaces. This in turn is dependent on the protein conformation and the surface charge of the bio-molecules. Hence a specific protein bio-molecule generates a unique optical identifier based on the nature of binding/adsorption to the cavity surface. This physical phenomenon is exploited to identify individual proteins. This technique is a demonstration of detection of nano-scale protein bio-molecules using the optical biosensor technique with unprecedented sensitivity
Transurethral canine prostatectomy with a cylindrically diffusing fiber
Cromeens, Douglas M.; Johnson, Douglas E.; Price, Roger E.
1994-09-01
In this study, visual laser ablation of the prostate (VLAP) was performed on eight mongrel dogs utilizing a cylindrically diffusing fiber attached to a 1.06 neodymium:YAG (Nd:YAG) laser. All dogs received one continuous dose totaling 15,000 J (25 W for 10 min) applied from the vesical neck to the colliculus seminalis. There was no visible hemorrhage from the lasing intraoperatively in any dog. Postoperative recovery was uneventful with no dog experiencing urinary incontinence and only one incident of dysuria with urinary retention during their observation period. Gross and histopathologic examinations of serial sections of the prostate were performed from 2 hours to 7 weeks postoperatively and demonstrated a consistent spherical zone of destruction 2.9 cm (average) in diameter. We believe the simplified fiber placement and complete lack of postoperative complications in this small group of dogs suggest that the cylindrically diffusing fiber offers significant advantage over laterally deflecting fibers for transurethral prostatectomies in the dog.
An Analytical Solution for Cylindrical Concrete Tank on Deformable Soil
Directory of Open Access Journals (Sweden)
Shirish Vichare
2010-07-01
Full Text Available Cylindrical concrete tanks are commonly used in wastewater treatment plants. These are usually clarifier tanks. Design codes of practice provide methods to calculate design forces in the wall and raft of such tanks. These methods neglect self-weight of tank material and assume extreme, namely ‘fixed’ and ‘hinged’ conditions for the wall bottom. However, when founded on deformable soil, the actual condition at the wall bottom is neither fixed nor hinged. Further, the self-weight of the tank wall does affect the design forces. Thus, it is required to offer better insight of the combined effect of deformable soil and bottom raft stiffness on the design forces induced in such cylindrical concrete tanks. A systematic analytical method based on fundamental equations of shells is presented in this paper. Important observations on variation of design forces across the wall and the raft with different soil conditions are given. Set of commonly used tanks, are analysed using equations developed in the paper and are appended at the end.
Nanoparticle-wall collision in a laminar cylindrical liquid jet.
Xu, Xuefeng; Luo, Jianbin; Guo, Dan
2011-07-15
Although nanoparticle impacts on a solid surface always occur in natural or engineering processes and cause extensive investigations, less works have been reported on the nanoparticle-wall collisions in a liquid. In present paper, by considering the inertial effect and the Brownian motion of nanoparticles, a theoretical model was established for calculating the collision frequency between the nanoparticles and the solid surface in a laminar cylindrical liquid jet impacting normally on the solid surface. The analysis showed that the collision frequency grows as the square root of the impacting speed for low impacting speed regime in which the Brownian motion is predominant, whereas increases as the second power of the impacting speed for high impacting speed regime in which the inertial effect is predominant. Meanwhile, an observation system for nanoparticle-wall collisions in a laminar cylindrical liquid jet has been developed. The adsorption of the nanoparticles on the solid surface after collision has also been observed. Because of their lower attractive energy with the solid surface, these adsorbed nanoparticles are easier to be removed by the hydrodynamic force of the impacting liquid than that deposited on a dry surface. Copyright © 2011 Elsevier Inc. All rights reserved.
Free vibration of finite cylindrical shells by the variational method
International Nuclear Information System (INIS)
Campen, D.H. van; Huetink, J.
1975-01-01
The calculation of the free vibrations of circular cylindrical shells of finite length has been of engineer's interest for a long time. The motive for the present calculations originates from a particular type of construction at the inlet of a sodium heated superheater with helix heating bundle for SNR-Kalkar. The variational analysis is based on a modified energy functional for cylindrical shells, proposed by Koiter and resulting in Morley's equilibrium equations. As usual, the dispacement amplitude is assumed to be distributed harmonically in the circumferential direction of the shell. Following the method of Gontkevich, the dependence between the displacements of the shell middle surface and the axial shell co-ordinate is expressed approximately by a set of eigenfunctions of a free vibrating beam satisfying the desired boundary conditions. Substitution of this displacement expression into the virtual work equation for the complete shell leads to a characteristic equation determining the natural frequencies. The calculations are carried out for a clamped-clamped and a clamped-free cylinder. A comparison is given between the above numerical results and experimental and theoretical results from literature. In addition, the influence of surrounding fluid mass on the above frequencies is analysed for a clamped-clamped shell. The solution for the velocity potential used in this case differs from the solutions used in literature until now in that not only travelling waves in the axial direction are considered. (Auth.)
Nonlinear Vibration and Mode Shapes of FG Cylindrical Shells
Directory of Open Access Journals (Sweden)
Saeed Mahmoudkhani
Full Text Available Abstract The nonlinear vibration and normal mode shapes of FG cylindrical shells are investigated using an efficient analytical method. The equations of motion of the shell are based on the Donnell’s non-linear shallow-shell, and the material is assumed to be gradually changed across the thickness according to the simple power law. The solution is provided by first discretizing the equations of motion using the multi-mode Galerkin’s method. The nonlinear normal mode of the system is then extracted using the invariant manifold approach and employed to decouple the discretized equations. The homotopy analysis method is finally used to determine the nonlinear frequency. Numerical results are presented for the backbone curves of FG cylindrical shells, nonlinear mode shapes and also the nonlinear invariant modal surfaces. The volume fraction index and the geometric properties of the shell are found to be effective on the type of nonlinear behavior and also the nonlinear mode shapes of the shell. The circumferential half-wave numbers of the nonlinear mode shapes are found to change with time especially in a thinner cylinder.
Induced Charge Fluctuations in Semiconductor Detectors with a Cylindrical Geometry
Samedov, Victor V.
2018-01-01
Now, compound semiconductors are very appealing for hard X-ray room-temperature detectors for medical and astrophysical applications. Despite the attractive properties of compound semiconductors, such as high atomic number, high density, wide band gap, low chemical reactivity and long-term stability, poor hole and electron mobility-lifetime products degrade the energy resolution of these detectors. The main objective of the present study is in development of a mathematical model of the process of the charge induction in a cylindrical geometry with accounting for the charge carrier trapping. The formulae for the moments of the distribution function of the induced charge and the formulae for the mean amplitude and the variance of the signal at the output of the semiconductor detector with a cylindrical geometry were derived. It was shown that the power series expansions of the detector amplitude and the variance in terms of the inverse bias voltage allow determining the Fano factor, electron mobility lifetime product, and the nonuniformity level of the trap density of the semiconductor material.
The ASDEX Upgrade discharge schedule
International Nuclear Information System (INIS)
Neu, G.; Engelhardt, K.; Raupp, G.; Treutterer, W.; Zasche, D.; Zehetbauer, T.
2007-01-01
ASDEX Upgrade's recently commissioned discharge control system (DCS) marks the transition from a traditional programmed system to a highly flexible 'data driven' one. The allocation of application processes (APs) to controllers, the interconnection of APs through uniquely named signals, and AP control parameter values are all defined as data, and can easily be adapted to the requirements of a particular discharge. The data is laid down in a set of XML documents which APs request via HTTP from a configuration server before a discharge. The use of XML allows for easy parsing, and structural validation through (XSD) schemas. The central input to the configuration process is the discharge schedule (DS), which embodies the dynamic behaviour of a planned discharge as reference trajectories grouped in segments, concatenated through transition conditions. Editing, generation and validation tools, and version control through CVS allow for efficient management of DSs
Underwater Ship Husbandry Discharges
2011-11-01
fittings, and corrosion control equipment. While certain hull husbandry activities such as inspection, cleaning and application of antifouling...2000 dollars) (GISP, 2008). Hull husbandry controls biofouling and microbial induced corrosion of the ships’ propulsion and seawater cooling...Control Board, Los Angeles Region. 2005. Draft Total Maximum Daily Load for Toxic Pollutants in Marina del Rey Harbor. Retrieved from: http