WorldWideScience

Sample records for cylindrical annular ring

  1. Common pass decentered annular ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, D. A.; Waite, T. R.

    1985-04-30

    An optical resonator having an annular cylindrical gain region for use in a chemical laser or the like in which two ring-shaped mirrors having substantially conical reflecting surfaces are spaced apart along a common axis of revolution of the respective conical surfaces. A central conical mirror reflects incident light directed along said axis radially outwardly to the reflecting surface of a first one of the ring-shaped mirrors. The radial light rays are reflected by the first ring mirror to the second ring mirror within an annular cylindrical volume concentric with said common axis and forming a gain region. Light rays impinging on the second ring mirror are reflected to diametrically opposite points on the same conical mirror surfaces and back to the first ring mirror through the same annular cylindrical volume. The return rays are then reflected by the conical mirror surface of the first ring mirror back to the central conical mirror. The mirror surfaces are angled such that the return rays are reflected back along the common axis by the central mirror in a concentric annular cylindrical volume. A scraper mirror having a central opening centered on said axis and an offset opening reflects all but the rays passing through the two openings in an output beam. The rays passing through the second opening are reflected back through the first opening to provide feedback.

  2. Parametric Investigation of Miniaturized Cylindrical and Annular Hall Thrusters

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. An alternative approach, a 2.6-cm miniaturized cylindrical Hall thruster with a cusp-type magnetic field distribution, was developed and studied. Its performance was compared to that of a conventional annular thruster of the same dimensions. The cylindrical thruster exhibits discharge characteristics similar to those of the annular thruster, but it has a much higher propellant ionization efficiency. Significantly, a large fraction of multi-charged xenon ions might be present in the outgoing ion flux generated by the cylindrical thruster. The operation of the cylindrical thruster is quieter than that of the annular thruster. The characteristic peak in the discharge current fluctuation spectrum at 50-60 kHz appears to be due to ionization instabilities. In the power range 50-300 W, the cylindrical and annular thrusters have comparable efficiencies (15-32%) and thrusts (2.5-12 mN). For the annular configuration, a voltage less than 200 V was not sufficient to sustain the discharge at low propellant flow rates. The cylindrical thruster can operate at voltages lower than 200 V, which suggests that a cylindrical thruster can be designed to operate at even smaller power

  3. Response of an annular electrostatic probe for a right cylindrical spacer

    DEFF Research Database (Denmark)

    Johansson, Torben; MacAllister, I. W.

    2002-01-01

    The response of an annular electrostatic probe mounted in an electrode is examined with reference to a right cylindrical spacer. The study involves using the probe λ function to derive characteristic parameters. These parameters enable the response of the probe to different charge distributions...

  4. Ring with changeable radiation dosimeter

    International Nuclear Information System (INIS)

    Collica, C.; Epifano, L.; Farella, R.

    1976-01-01

    A ring for housing a disc of radiation measuring material is described comprising a band having a circular shape and a housing integral with the band. The housing comprises a hollow cylindrical section substantially normal to the band surface and terminating in an inwardly disposed annular flange which defines a substantially circular aperture. In a preferred embodiment of the invention a retaining protrusion formed on the inside of the cylindrical section and spaced from the annular flange is provided to retain a plurality of discs mounted in the housing in layered fashion

  5. Spectroscopy of annular drums and quantum rings: Perturbative and nonperturbative results

    International Nuclear Information System (INIS)

    Alvarado, Carlos; Amore, Paolo

    2011-01-01

    We obtain systematic approximations to the states (energies and wave functions) of quantum rings (annular drums) of arbitrary shape by conformally mapping the annular domain to a simply connected domain. Extending the general results of Amore [J. Math. Phys. 51, 052105 (2010)], we obtain an analytical formula for the spectrum of quantum ring of arbitrary shape: for the cases of a circular annulus and of an asymmetric annulus considered here this formula is remarkably simple and precise. We also obtain precise variational bounds for the ground state of different quantum rings. Finally, we extend the conformal collocation method of Amore [J. Math. Phys. 51, 052105 (2010); J. Phys. A 41, 265206 (2008)] to the class of problems considered here and calculate precise numerical solutions for a large number of states (≅2000).

  6. Criticality experiments with annular cylinders containing plutonium solutions; Experiences de criticite sur des cylindres annulaires contenant des solutions de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Molbert, M; Sauve, A; Houelle, M; Deilgat, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The criticality station of Dijon involves three cells, shielded by concrete walls of 1.46 meter thickness. Those cells are designed to contain the criticality experiment apparatus. The engineering building is also involving: one chemical laboratory where plutonium solutions are prepared, one analysis laboratory, several activated solutions storages, several control rooms, One cell contains the B system, which is designed to study: annular cylindrical geometries, slab of 10 cm thickness, interaction between annular cylinders. This report includes the first results given by experiments on annular cylinders defined by their own geometry (outer and inner diameter of ring containing plutonium solutions). Those results have been plotted in curves, for several concentrations and for different reflection conditions (outer or inner light water reflector, cadmium screen), H{sub c} and M{sub c} = f (c) (where H{sub c} is the critical height of solution, M{sub c} is the critical mass, c is the plutonium concentration: 42,3 g/lannular cylinders 500 x 300 -- an insulated cylinder --interaction between two annular cylinders. In this last case, the curves have been plotted for three concentrations in plutonium and give H{sub c} and M{sub c} versus the distance between the two solutions. - an insulated annular cylinder 500 x 200: incomplete results are published the experiments on this cylinder being unfinished to the date of this present report publication. On this miscellaneous results, we have following informations know: - Screen effect of light water in central hole. Strengthened effect by cadmium foil on the inside wall. - Normalized interaction curves ( {alpha}*H{sub c}/H{sub c{infinity}} ) versus the distance between the two vessels, where H{sub c{infinity}} critical height of an insulated cylinder, shows that: 1) In light water, two cylinders set aside from 15 cm, can be considers like separated. 2) For some configurations, {alpha} vary

  7. Annular dynamics of memo3D annuloplasty ring evaluated by 3D transesophageal echocardiography.

    Science.gov (United States)

    Nishi, Hiroyuki; Toda, Koichi; Miyagawa, Shigeru; Yoshikawa, Yasushi; Fukushima, Satsuki; Yoshioka, Daisuke; Sawa, Yoshiki

    2018-04-01

    We assessed the mitral annular motion after mitral valve repair with the Sorin Memo 3D® (Sorin Group Italia S.r.L., Saluggia, Italy), which is a unique complete semirigid annuloplasty ring intended to restore the systolic profile of the mitral annulus while adapting to the physiologic dynamism of the annulus, using transesophageal real-time three-dimensional echocardiography. 17 patients (12 male; mean age 60.4 ± 14.9 years) who underwent mitral annuloplasty using the Memo 3D ring were investigated. Mitral annular motion was assessed using QLAB®version8 allowing for a full evaluation of the mitral annulus dynamics. The mitral annular dimensions were measured throughout the cardiac cycle using 4D MV assessment2® while saddle shape was assessed through sequential measurements by RealView®. Saddle shape configuration of the mitral annulus and posterior and anterior leaflet motion could be observed during systole and diastole. The mitral annular area changed during the cardiac cycle by 5.7 ± 1.8%.The circumference length and diameter also changed throughout the cardiac cycle. The annular height was significantly higher in mid-systole than in mid-diastole (p 3D ring maintained a physiological saddle-shape configuration throughout the cardiac cycle. Real-time three-dimensional echocardiography analysis confirmed the motion and flexibility of the Memo 3D ring upon implantation.

  8. A Compact Annular Ring Microstrip Antenna for WSN Applications

    Directory of Open Access Journals (Sweden)

    Daihua Wang

    2012-06-01

    Full Text Available A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna’s performance of a steel installation base. By using a chip resistor of large resistance (120 Ω the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  9. Active Control of Fan Noise: Feasibility Study. Volume 6; Theoretical Analysis for Coupling of Active Noise Control Actuator Ring Sources to an Annular Duct with Flow

    Science.gov (United States)

    Kraft, R. E.

    1996-01-01

    The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the

  10. Remodeling Mitral Annuloplasty Ring Concept with Preserved Dynamics of Annular Height

    DEFF Research Database (Denmark)

    Skov, Søren N; Røpcke, Diana M; Tjørnild, Marcell J

    2017-01-01

    BACKGROUND: The configuration of the native annulus changes from nearly flat in the diastolic phase to saddle-shaped in the systolic phase. The present study was conducted to test a novel remodeling annuloplasty ring with built-in septal-lateral fixation and commissural axial flexibility so...... as to maintain the change in annular saddle shape. The study aim was to evaluate the in-vivo biomechanical performance of the novel annuloplasty ring, compared with the native valve and a semi-rigid and rigid annuloplasty ring. METHODS: All measurements were performed in vivo using a porcine model. A total of 28...... pigs (bodyweight ca. 80 kg) were randomized to four groups: (i) with no ring; (ii) with a novel remodeling ring; (iii) with a semi-rigid ring (Physio I Ring, Edwards Lifesciences); and (iv) with a rigid ring (Classic Annuloplasty Ring, Edwards Lifesciences). Force measurements were performed using...

  11. Annular pancreas

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001142.htm Annular pancreas To use the sharing features on this page, please enable JavaScript. An annular pancreas is a ring of pancreatic tissue that encircles ...

  12. Annular dynamics after mitral valve repair with different prosthetic rings: A real-time three-dimensional transesophageal echocardiography study.

    Science.gov (United States)

    Nishi, Hiroyuki; Toda, Koichi; Miyagawa, Shigeru; Yoshikawa, Yasushi; Fukushima, Satsuki; Kawamura, Masashi; Yoshioka, Daisuke; Saito, Tetsuya; Ueno, Takayoshi; Kuratani, Toru; Sawa, Yoshiki

    2016-09-01

    We assessed the effects of different types of prosthetic rings on mitral annular dynamics using real-time three-dimensional echocardiography (RT3DE). RT3DE was performed in 44 patients, including patients undergoing mitral annuloplasty using the Cosgrove-Edwards flexible band (Group A, n = 10), the semi-rigid Sorin Memo 3D ring (Group B, n = 17), the semi-rigid Edwards Physio II ring (Group C, n = 7) and ten control subjects. Various annular diameters were measured throughout the cardiac cycle. We observed flexible anterior annulus motion in all of the groups except Group C. A flexible posterior annulus was only observed in Group B and the Control group. The mitral annular area changed during the cardiac cycle by 8.4 ± 3.2, 6.3 ± 2.0, 3.2 ± 1.3, and 11.6 ± 5.0 % in Group A, Group B, Group C, and the Control group, respectively. The dynamic diastolic to systolic change in mitral annular diameters was lost in Group C, while it was maintained in Group A, and to a good degree in Group B. In comparison to the Control group, the mitral annulus shape was more ellipsoid in Group B and Group C, and more circular in Group A. Although mitral regurgitation was well controlled by all of the types of rings that were utilized in the present study, we demonstrated that the annulus motion and annulus shape differed according to the type of prosthetic ring that was used, which might provide important information for the selection of an appropriate prosthetic ring.

  13. Annular pulse column development studies

    International Nuclear Information System (INIS)

    Benedict, G.E.

    1980-01-01

    The capacity of critically safe cylindrical pulse columns limits the size of nuclear fuel solvent extraction plants because of the limited cross-sectional area of plutonium, U-235, or U-233 processing columns. Thus, there is a need to increase the cross-sectional area of these columns. This can be accomplished through the use of a column having an annular cross section. The preliminary testing of a pilot-plant-scale annular column has been completed and is reported herein. The column is made from 152.4-mm (6-in.) glass pipe sections with an 89-mm (3.5-in.) o.d. internal tube, giving an annular width of 32-mm (1.25-in.). Louver plates are used to swirl the column contents to prevent channeling of the phases. The data from this testing indicate that this approach can successfully provide larger-cross-section critically safe pulse columns. While the capacity is only 70% of that of a cylindrical column of similar cross section, the efficiency is almost identical to that of a cylindrical column. No evidence was seen of any non-uniform pulsing action from one side of the column to the other

  14. Self-regulating characteristics of cold neutron source with annular cylindrical moderator cell

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Lee Chien-Hsiung; Chan Yea-Kuang; Guung Tai-Cheng; Yoshino, Hirofumi; Kawabata, Yuji; Hino, Masahiro

    2001-01-01

    The conditions, in which the ORPHEE type cold neutron source with an annular cylindrical moderator cell could have self-regulating characteristics, were obtained through thermodynamic considerations. From a viewpoint of engineering, it is not easy to establish these conditions because three parameters are involved even in an idealized system without the effect of the mass transfer resistance in the moderator transfer tube between the condenser and the moderator cell. The inner shell of the ORPHEE moderator cell is open in the bottom, but it is expected that only hydrogen vapor is contained in the inner shell and liquid hydrogen in the outer shell. The thermodynamic considerations show that such a state is maintained only when a liquefaction capacity of the condenser is large compared to heat lead and three parameters are optimized with a good balance. We proposed another type of a moderator cell, which has an inner cylindrical cavity with no hole in the bottom but a vapor inlet opening at the uppermost part of the cavity. In this structure, a self-regulating characteristic is established easily and the liquid level in the outer shell is maintained almost constant against thermal disturbances. Therefore it is enough to control one parameter, that is, the reservoir tank pressure corresponding to the liquefaction capacity of the condenser given by the refrigeration power of the helium refrigerator. (author)

  15. Effect of annular secondary conductor in a linear electromagnetic ...

    Indian Academy of Sciences (India)

    This paper presents the variation of average axial force density in the annular secondary conductor of a linear electromagnetic stirrer. Different geometries of secondaries are considered for numerical and experimental validation namely, 1. hollow annular ring, 2. annular ring with a solid cylinder and 3. solid cylinder.

  16. Second harmonic generation by a relativistic annular electron beam propagating through a cylindrical waveguide

    International Nuclear Information System (INIS)

    Yasumoto, Kiyotoshi; Abe, Hiroshi

    1983-01-01

    The second harmonic generated by a relativistic annular electron beam propagating through a cylindrical waveguide immersed in a strong axial magnetic field is investigated on the basis of the relativistic hydrodynamic equations for cold electrons. The efficiency of second harmonic generation is calculated separately for the pump by the TM electromagnetic wave and for the pump by the slow space-charge wave, by assuming that the electron beam is thin and of low density and the pump wave is azimuthally symmetric. It is shown that, in the case of slow space-charge wave pump, an appreciably large efficiency of second harmonic generation is achieved in the high frequency region, whereas the efficiency by the TM electromagnetic wave pump is relatively small over the whole frequency range.(author)

  17. First high-power model of the annular-ring coupled structure for use in the Japan Proton Accelerator Research Complex linac

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ao

    2012-01-01

    Full Text Available A prototype cavity for the annular-ring coupled structure (ACS for use in the Japan Proton Accelerator Research Complex (J-PARC linac has been developed to confirm the feasibility of achieving the required performance. This prototype cavity is a buncher module, which includes ten accelerating cells in total. The ACS cavity is formed by the silver brazing of ACS half-cell pieces stacked in a vacuum furnace. The accelerating cell of the ACS is surrounded by a coupling cell. We, therefore, tuned the frequencies of the accelerating and coupling cells by an ultraprecision lathe before brazing, taking into account the frequency shift due to brazing. The prototype buncher module was successfully conditioned up to 600 kW, which corresponds to an accelerating field that is higher than the designed field of 4.1  MV/m by 30%. We describe the frequency-tuning results for the prototype buncher module and its high-power conditioning.

  18. The influence of thickness and viscosity of liquid annular layer on dynamic behavior of cylindrical shell

    International Nuclear Information System (INIS)

    Kuzelka, V.; Neuman, F.; Pecinka, L.

    1983-01-01

    This paper presents the results of experiments concerning the influence of thickness and viscosity of inner and outer annular layers of a liquid on the dynamic behaviour of a cylindrical shell, and a mathematical model of the problem based on acoustic approach is formulated to compare experimental and theoretical results. The measurements of natural frequencies and of damping ratios of a cylindrical shell were carried out with water and with two kinds of mineral oils of different viscosities. The results point towards the fact that with a decreasing thickness of the liquid layer the influence of the added liquid mass increases and the frequency drop is higher. On the other hand there is a certain relative magnitude of the surrounding medium at which the system behaves as an unlimited one. This magnitude depends on the mode order. The statement that the lesser is the thickness of the annular liquid layer the more important is its influence and the larger is the added liquid mass holds up to a certain thickness of the gap, comparable with the thickness of the thin liquid layer on the surface of the shell in which there has not yet been formed a transverse wave. The flowing in this layer is not potential. The governing equation for the description of this problem then is not Euler equation but Stokes's and Helmholtz's theorems for whirling motion. The thickness of the surface layer depends on the viscosity of the liquid. The frequencies measured for the least gap for water were well identified, while for both the mineral oils were chaotical, without any conspicuous resonances. (orig./GL)

  19. Measurement of Quasi-periodic Oscillating Flow Motion in Simulated Dual-cooled Annular Fuel Bundle

    International Nuclear Information System (INIS)

    Lee, Chi Young; Shin, Chang Hwan; Park, Ju Yong; Oh, Dong Seok; Chun, Tae Hyun; In, Wang Kee

    2012-01-01

    In order to increase a significant amount of reactor power in OPR1000, KAERI (Korea Atomic Energy Research Institute) has been developing a dual-cooled annular fuel. The dual-cooled annular fuel is simultaneously cooled by the water flow through the inner and the outer channels. KAERI proposed the 12x12 dual-cooled annular fuel array which was designed to be structurally compatible with the 16x16 cylindrical solid fuel array by maintaining the same array size and the guide tubes in the same locations, as shown in Fig. 1. In such a case, due to larger outer diameter of dual-cooled annular fuel than conventional solid fuel, a P/D (Pitch-to-Diameter ratio) of dual cooled annular fuel assembly becomes smaller than that of cylindrical solid fuel. A change in P/D of fuel bundle can cause a difference in the flow mixing phenomena between the dual-cooled annular and conventional cylindrical solid fuel assemblies. In this study, the rod bundle flow motion appearing in a small P/D case is investigated preliminarily using PIV (Particle Image Velocimetry) for dual-cooled annular fuel application

  20. Mixing and NOx Emission Calculations of Confined Reacting Jet Flows in Cylindrical and Annular Ducts

    Science.gov (United States)

    Oechsle, Victor L.; Connor, Christopher H.; Holdeman, James D. (Technical Monitor)

    2000-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A three-dimensional computational fluid dynamics (CFD) code has been used to predict the mixing flow field characteristics and NOx emission in a quench section of a rich-burn/quick-mix/lean-burn (RQL) combustor. Sixty configurations have been analyzed in both circular and annular geometries in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying the number of orifices per row and orifice shape. Other parameters such as J (momentum-flux ratio), MR (mass flowrate ratio), DR (density ratio), and mixer sector orifice ACd (effective orifice area) were maintained constant throughout the entire study. The results indicate that the mixing flow field can be correlated with the NOx production if they are referenced with the stoichiometric equivalence ratio value and not the equilibrium value. The mixing flowfields in both circular and annular mixers are different. The penetration of equal jets in both annular and circular geometries is vastly different which significantly affects the performance of the mixing section. In the computational results with the circular mixer, most of the NOx formation occurred behind the orifice starting at the orifice wake region. General trends have been observed in the NOx production as the number of orifices is changed and this appears to be

  1. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    Science.gov (United States)

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  2. Annular pancreas (image)

    Science.gov (United States)

    Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...

  3. Design report for an annular fuel element for accommodation of a carbide test bundle on the ring position of the KNK II/2 test zone

    International Nuclear Information System (INIS)

    Haefner, H.E.

    1982-03-01

    This report describes an annular oxide element with Mark II rods for accommodation of a 19-pin carbide test bundle on position 201 in the test zone of the second core of KNK II as well as its behavior during the period of operation. The ring element comprises within a driver wrapper in three rows of pins 102 fuel pins of 7.6 mm diameter and six structural rods for fixing the spark eroded spacers. The report deals with the ring element with its individual components fuel rod, bundle, wrappers, head and foot and describes methods, criteria and results concerning the design. The carbide test bundle to be accommodated by the annular carrier element will be treated in a separate report. The loadability of the annular element with its components is demonstrated by generally valid standards for strength criteria

  4. Improvement of vacuum pressure in the annular-ring coupled structures for the J-PARC linac

    International Nuclear Information System (INIS)

    Ao, Hiroyuki; Nemoto, Yasuo; Oozone, Akira; Tamura, Jun

    2015-01-01

    The accelerating cavities of the J-PARC linac, additionally comprising an annular-ring-coupled structure (ACS), went into operation in 2014. To further improve the vacuum pressure of the ACS, an additional nonevaporable getter (NEG) pump was designed so that it could be installed independent of the vacuum chamber of the ACS cavity. We confirmed that the NEG pump can be appropriately activated by using a small pumping station and that purging with noble gases reduces the saturation of the NEG surface. In the evacuation test of the prototype ACS cavity with the NEG pump, the partial pressure of H_2 and the total pressure were reduced from 4.8 × 10"-"7 and 6.8 × 10"-"7 Pa to 2.5 × 10"-"7 and 4.5 × 10"-"7 Pa, respectively. The additional NEG pump will be installed in the ACS cavity in the fall of 2014, after which any decrease in pressure and NEG-pump lifetime will be confirmed by long-term-operation experiments. (author)

  5. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fisch, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  6. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fi, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation

  7. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Smith, Casey E.; Rojas, Jhonathan Prieto

    2015-01-01

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  8. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-12-29

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  9. Radiologic findings of annular pancreas divisum : a case report

    International Nuclear Information System (INIS)

    Choi, Dong Sik; Lee, Dong Ho; Ko, Young Tae; Han, Tae Il; Yoon, Youp; Dong, Suk Ho

    1996-01-01

    Annular pancreas divisum is a very rare congenital anomaly involving the coexistence of an annular pancreas and pancreatic divisum in one pancreas, and showing characteristic radiologic findings of ring-like pancreatic tissue surrounding the second portion of the duodenum and no evidence of connection between ventral and dorsal ductal systems. We described the radiologic findings of annular pancreas divisum, diagnosed by hypotonic duodenography, CT and ERCP

  10. Influence of Segmentation of Ring-Shaped NdFeB Magnets with Parallel Magnetization on Cylindrical Actuators

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Eckert

    2014-07-01

    Full Text Available This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines.

  11. Influence of segmentation of ring-shaped NdFeB magnets with parallel magnetization on cylindrical actuators.

    Science.gov (United States)

    Eckert, Paulo Roberto; Goltz, Evandro Claiton; Flores Filho, Aly Ferreira

    2014-07-21

    This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines.

  12. Topological optimization of opening fence brackets on ring-stiffened cylindrical shell

    Directory of Open Access Journals (Sweden)

    SONG Xiaofei

    2018-02-01

    Full Text Available [Objectives] Stress concentration is prone to take place at connections between the opening fence and ring ribs of a ring-stiffened cylindrical shell under external pressure. [Methods] In this paper, a topological optimization method for the brackets that connect the fence to the ring ribs is proposed in order to effectively reduce the local high stress in the brackets. The sub-model technique is used to analyze the stress of the connecting brackets. In the design, the connection brackets are used as design variables and the stress of the shell, fence and ribs are used as constraints. The maximum stress of the bracket is minimized as the objective function. The topology optimization results are engineered to obtain the final form of the brackets. [Results] The calculation results show that brackets of which the panel is partially widened can effectively reduce the stress concentration position of the opening fence transverse offset if the side of the bracket away from the longitudinal section is longer; the opening fence is offset relative to the brackets, and the symmetrical design of the brackets is feasible. [Conclusions] This research provides a reference for similar structural design.

  13. Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster

    Science.gov (United States)

    Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.

  14. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  15. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2012-12-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  16. Radial dynamics of an annular REB plasma

    International Nuclear Information System (INIS)

    Wilson, A.; Steen, P.G.; Waisman, E.M.

    1983-01-01

    The authors have examined the dynamics of annular plasma formed by a ring REB. A current is carried by an annular plasma shell and the current returns on two conducting concentric sleeves. The magnetic forces acting on the plasma tend to prevent it from pinching as the unperturbed magnetic field has a different sign on the two free surfaces (sides) of the plasma. Current flows through the plasma from cathode to anode and returns through the concentric inner and outer conductors

  17. Inverted annular flow experimental study

    International Nuclear Information System (INIS)

    De Jarlais, G.; Ishii, M.

    1985-04-01

    Steady-state inverted annular flow of Freon 113 in up flow was established in a transparent test section. Using a special inlet configuration consisting of long aspect-ratio liquid nozzles coaxially centered within a heated quartz tube, idealized inverted annular flow initial geometry (cylindrical liquid core surrounded by coaxial annulus of gas) could be established. Inlet liquid and gas flowrates, liquid subcooling, and gas density (using various gas species) were measured and varied systematically. The hydrodynamic behavior of the liquid core, and the subsequent downstream break-up of this core into slugs, ligaments and/or droplets of various sizes, was observed. In general, for low inlet liquid velocities it was observed that after the initial formation of roll waves on the liquid core surface, an agitated region of high surface area, with attendant high momentum and energy transfers, occurs. This agitated region appears to propagate downsteam in a quasi-periodic pattern. Increased inlet liquid flow rates, and high gas annulus flow rates tend to diminish the significance of this agitated region. Observed inverted annular flow (and subsequent downstream flow pattern) hydrodynamic behavior is reported, and comparisons are drawn to data generated by previous experimenters studying post-CHF flow

  18. Cylindrical geometry for proportional and drift chambers

    International Nuclear Information System (INIS)

    Sadoulet, B.

    1975-06-01

    For experiments performed around storage rings such as e + e - rings or the ISR pp rings, cylindrical wire chambers are very attractive. They surround the beam pipe completely without any dead region in the azimuth, and fit well with the geometry of events where particles are more or less spherically produced. Unfortunately, cylindrical proportional or drift chambers are difficult to make. Problems are discussed and two approaches to fabricating the cathodes are discussed. (WHK)

  19. Annular tautomerism: experimental observations and quantum mechanics calculations

    Science.gov (United States)

    Cruz-Cabeza, Aurora J.; Schreyer, Adrian; Pitt, William R.

    2010-06-01

    The use of MP2 level quantum mechanical (QM) calculations on isolated heteroaromatic ring systems for the prediction of the tautomeric propensities of whole molecules in a crystalline environment was examined. A Polarisable Continuum Model was used in the calculations to account for environment effects on the tautomeric relative stabilities. The calculated relative energies of tautomers were compared to relative abundances within the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB). The work was focussed on 84 annular tautomeric forms of 34 common ring systems. Good agreement was found between the calculations and the experimental data even if the quantity of these data was limited in many cases. The QM results were compared to those produced by much faster semiempirical calculations. In a search for other sources of the useful experimental data, the relative numbers of known compounds in which prototropic positions were often substituted by heavy atoms were also analysed. A scheme which groups all annular tautomeric transformations into 10 classes was developed. The scheme was designed to encompass a comprehensive set of known and theoretically possible tautomeric ring systems generated as part of a previous study. General trends across analogous ring systems were detected as a result. The calculations and statistics collected on crystallographic data as well as the general trends observed should be useful for the better modelling of annular tautomerism in the applications such as computer-aided drug design, small molecule crystal structure prediction, the naming of compounds and the interpretation of protein—small molecule crystal structures.

  20. Mechanical seal with textured sidewall

    Energy Technology Data Exchange (ETDEWEB)

    Khonsari, Michael M.; Xiao, Nian

    2017-02-14

    The present invention discloses a mating ring, a primary ring, and associated mechanical seal having superior heat transfer and wear characteristics. According to an exemplary embodiment of the present invention, one or more dimples are formed onto the cylindrical outer surface of a mating ring sidewall and/or a primary ring sidewall. A stationary mating ring for a mechanical seal assembly is disclosed. Such a mating ring comprises an annular body having a central axis and a sealing face, wherein a plurality of dimples are formed into the outer circumferential surface of the annular body such that the exposed circumferential surface area of the annular body is increased. The texture added to the sidewall of the mating ring yields superior heat transfer and wear characteristics.

  1. Behavior of instantaneous lateral velocity and flow pulsation in duct flow with cylindrical rod

    International Nuclear Information System (INIS)

    Lee, Chi Young; Shin, Chang Hwan; Park, Ju Yong; Oh, Dong Seok; Chun, Tae Hyun; In, Wang Kee

    2012-01-01

    Recently, KAERI (Korea Atomic Energy Research Institute) has examined and developed a dual cooled annular fuel. Dual cooled annular fuel allows the coolant to flow through the inner channel as well as the outer channel. Due to inner channel, the outer diameter of dual cooled annular fuel (15.9 mm) is larger than that of conventional cylindrical solid fuel (9.5 mm). Hence, dual cooled annular fuel assembly becomes a tight lattice fuel bundle configuration to maintain the same array size and guide tube locations as cylindrical solid fuel assembly. P/Ds (pitch between rods to rod diameter ratio) of dual cooled annular and cylindrical solid fuel assemblies are 1.08 and 1.35, respectively. This difference of P/D could change the behavior of turbulent flow in rod bundle. Our research group has investigated a turbulent flow parallel to the fuel rods using two kinds of simulated 3x3 rod bundles. To measure the turbulent rod bundle flow, PIV (Particle Image Velocimetry) and MIR (Matching Index of Refraction) techniques were used. In a simulated dual cooled annular fuel bundle (i.e., P/D=1.08), the quasi periodic oscillating flow motion in the lateral direction, called the flow pulsation, was observed, which significantly increased the lateral turbulence intensity at the rod gap center. The flow pulsation was visualized and measured clearly and successfully by PIV and MIR techniques. Such a flow motion may have influence on the fluid induced vibration, heat transfer, CHF (Critical Heat Flux), and flow mixing between subchannels in rod bundle flow. On the other hand, in a simulated cylindrical solid fuel bundle (i.e., P/D=1.35), the peak of turbulence intensity at the gap center was not measured due to an irregular motion of the lateral flow. This study implies that the behavior of lateral velocity in rod bundle flow is greatly influenced by the P/D (i.e., gap distance). In this work, the influence of gap distance on behavior of instantaneous lateral velocity and flow

  2. Some optical properties of one dimensional annular photonic crystal with plasma frequency

    Science.gov (United States)

    Pandeya, G. N.; Thapa, Khem B.

    2018-05-01

    This paper presents the reflection bands, photonic band gaps, of the one-dimensional annul photonic crystal (APC) containing double negative (DNG) metamaterials and air. The proposed annular structure consists of the alternate layers of dispersive DNG material and air immersed in free space. The reflectance properties of the APC by employing the transfer matrix method (TMM) in the cylindrical waves for TE polarization is studied theoretically. In addition of this, we have also studied the effect of plasma frequency on the reflection behavior of the considered annular structure.

  3. Electron Raman scattering in semiconductor quantum well wire of cylindrical ring geometry

    International Nuclear Information System (INIS)

    Betancourt-Riera, Re.; Betancourt-Riera, Ri.; Nieto Jalil, J. M.; Riera, R.

    2015-01-01

    We study the electron states and the differential cross section for an electron Raman scattering process in a semiconductor quantum well wire of cylindrical ring geometry. The electron Raman scattering developed here can be used to provide direct information about the electron band structures of these confinement systems. We assume that the system grows in a GaAs/Al 0.35 Ga 0.65 As matrix. The system is modeled by considering T = 0 K and also a single parabolic conduction band, which is split into a sub-band system due to the confinement. The emission spectra are discussed for different scattering configurations, and the selection rules for the processes are also studied. Singularities in the spectra are found and interpreted. (paper)

  4. Variable area manifolds for ring mirror heat exchangers

    Science.gov (United States)

    Eng, Albert; Senterfitt, Donald R.

    1988-05-01

    A laser ring mirror assembly is disclosed which supports and cools an annular ring mirror of a high powered laser with a cooling manifold which has a coolant flow design which is intended to reduce thermal distortions of the ring mirror by minimizing azimuthal variations in temperature around its circumference. The cooling manifold has complementary pairs of cooling passages each of which conduct coolant in opposite flow directions. The manifold also houses adjusters which vary the depth between the annular ring mirror and each cooling, and which vary the flow area of the cooling passage to produce a control over the cooling characteristics of the cooling manifold.

  5. Electron Cross-field Transport in a Miniaturized Cylindrical Hall Thruster

    International Nuclear Information System (INIS)

    Smirnov Artem; Raitses Yevgeny; Fisch Nathaniel J

    2005-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. The present paper gives a review of the experimental and numerical investigations of electron crossfield transport in the 2.6 cm miniaturized cylindrical Hall thruster (100 W power level). We show that, in order to explain the discharge current observed for the typical operating conditions, the electron anomalous collision frequency ν b has to be on the order of the Bohm value, ν B ∼ ω c /16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The optimal regimes of thruster operation at low background pressure (below 10 -5 Torr) in the vacuum tank appear to be different from those at higher pressure (∼ 10 -4 Torr)

  6. The nonlinear evolution of ring dark solitons in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Xue Jukui

    2004-01-01

    The dynamics of the ring dark soliton in a Bose-Einstein condensate (BEC) with thin disc-shaped potential is investigated analytically and numerically. Analytical investigation shows that the ring dark soliton in the radial non-symmetric cylindrical BEC is governed by a cylindrical Kadomtsev-Petviashvili equation, while the ring dark soliton in the radial symmetric cylindrical BEC is governed by a cylindrical Korteweg-de Vries equation. The reduction to the cylindrical KP or KdV equation may be useful to understand the dynamics of a ring dark soliton. The numerical results show that the evolution properties and the snaking of a ring dark soliton are modified significantly by the trapping

  7. Damping of cylindrical structures subject to annular flow

    International Nuclear Information System (INIS)

    Hobson, D.E.; Dolding, M.

    1989-01-01

    In previous reports theoretical methods have been described for estimating the aerodynamic forces acting on cylinders vibrating laterally when surrounded by an annulus carrying high velocity gas. For a certain restricted set of geometries it is possible to predict whether a particular structure is stable or unstable and to determine the level of aerodynamic damping positive or negative due to the presence of the gas. This report describes experimental work which validates the computer program in which the theoretical methods are embodied; in particular the damping, inertial and decentralising forces acting on a cylinder in an annulus are measured and compared with theory over a range of frequencies from 0 to 25 Hz, and of Reynolds numbers from zero to 10 4 . In addition a summary of simple relationships is provided which can be used to provide credible initial estimates of both the positive and negative damping of cylinders in a range of annular geometries. (author)

  8. Subcutaneous granuloma annulare: radiologic appearance

    International Nuclear Information System (INIS)

    Kransdorf, M.J.; Murphey, M.D.; Temple, H.T.

    1998-01-01

    Objective. Granuloma annulare is an uncommon benign inflammatory dermatosis characterized by the formation of dermal papules with a tendency to form rings. There are several clinically distinct forms. The subcutaneous form is the most frequently encountered by radiologists, with the lesion presenting as a superficial mass. There are only a few scattered reports of the imaging appearance of this entity in the literature. We report the radiologic appearance of five cases of subcutaneous granuloma annulare. Design and patients. The radiologic images of five patients (three male, two female) with subcutaneous granuloma annulare were retrospectively studied. Mean patient age was 6.4 years (range, 2-13 years). The lesions occurred in the lower leg (two), foot, forearm, and hand. MR images were available for all lesions, gadolinium-enhanced imaging in three cases, radiographs in four, and bone scintigraphy in one. Results. Radiographs showed unmineralized nodular masses localized to the subcutaneous adipose tissue. The size range, in greatest dimension on imaging studies, was 1-4 cm. MR images show a mass with relatively decreased signal intensity on all pulse sequences, with variable but generally relatively well defined margins. There was extensive diffuse enhancement following gadolinium administration. Conclusion. The radiologic appearance of subcutaneous granuloma annulare is characteristic, typically demonstrating a nodular soft-tissue mass involving the subcutaneous adipose tissue. MR images show a mass with relatively decreased signal intensity on all pulse sequences and variable but generally well defined margins. There is extensive diffuse enhancement following gadolinium administration. Radiographs show a soft-tissue mass or soft-tissue swelling without evidence of bone involvement or mineralization. This radiologic appearance in a young individual is highly suggestive of subcutaneous granuloma annulare. (orig.)

  9. Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores

    Science.gov (United States)

    Sentker, Kathrin; Zantop, Arne W.; Lippmann, Milena; Hofmann, Tommy; Seeck, Oliver H.; Kityk, Andriy V.; Yildirim, Arda; Schönhals, Andreas; Mazza, Marco G.; Huber, Patrick

    2018-02-01

    Disklike molecules with aromatic cores spontaneously stack up in linear columns with high, one-dimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter. We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations. By establishing a Gibbs free energy phase diagram we trace the phase transition quantization to the discreteness of the layers' excess bend deformation energies in comparison to the thermal energy, even for this near room-temperature system. Monte Carlo simulations yielding spatially resolved nematic order parameters, density maps, and bond-orientational order parameters corroborate the universality and robustness of the confinement-induced columnar ring formation as well as its quantized nature.

  10. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology—ETC, Santa Fe, New Mexico 87508 (United States)

    2016-02-14

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  11. Enhanced Performance of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Y.; Smirnov, A.; Fisch, N.J.

    2007-01-01

    The cylindrical thruster differs significantly in its underlying physical mechanisms from the conventional annular Hall thruster. It features high ionization efficiency, quiet operation, ion acceleration in a large volume-to-surface ratio channel, and performance comparable with the state-of-the-art conventional Hall thrusters. Very significant plume narrowing, accompanied by the increase of the energetic ion fraction and improvement of ion focusing, led to 50-60% increase of the thruster anode efficiency. These improvements were achieved by overrunning the discharge current in the magnetized thruster plasma

  12. Experimental Observation of Densification Behavior of UO2 Annular Pellet

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Rhee, Young-Woo; Kim, Jong-Hun; Yang, Jae-Ho; Kang, Ki-Won; Kim, Keon-Sik

    2007-01-01

    Recently, in the nuclear industry, one of the major issues is the improvement of a fuel economy. And many efforts have been made to develop a nuclear fuel for a high burnup and extended cycle. In the development of a high performance fuel, in-reactor fuel behavior (fission gas release, pellet-clad interaction, stress corrosion cracking, cladding corrosion, etc.) must be seriously reconsidered. Also, fuel fabrication (high enriched UO 2 powder handling, fuel rod and assembly manufacturing, fabricated fuel rod and assembly storage and transport, etc.) and an enrichment process (5 w/o criticality limit, etc.) must be discussed. A modification and an improvement of the nuclear fuel system will be also required. The typical fuel geometry of a PWR (Pressurized Water Reactor) is composed of a cylindrical pellet with a tubular cladding. And the outer surface of the cladding is cooled with water. However, to allow a substantial increase in the power density, an additional cooling is needed. One of the best ways is the application of the new fuel geometry that is of annular shape and has both internal and external cooling. From this point of view, the double cooled fuel is being developed by KAERI (Korea Atomic Energy Research Institute), and as a part of the project, the development of a fabrication process of a UO 2 annular pellet is now in progress. The dimensional behavior of UO 2 fuel is an important parameter in an irradiation performance. Various investigations (resintering test, model calculation, in-pile dimensional change measuring, etc.) had been performed. In designing a double cooled fuel, the importance of the dimensional behavior of a fuel pellet is higher, because the gap distance between a pellet and cladding can considerably affect on the in reactor fuel performance (gap conductance). And the dimensional behavior of an inner/outer gap is different with a cylindrical pellet, when the pellet shrinks (densification), the inner gap distance decreases and the

  13. De Vega Annuloplasty for Functional Tricupsid Regurgitation: Concept of Tricuspid Valve Orifice Index to Optimize Tricuspid Valve Annular Reduction

    Science.gov (United States)

    Hwang, Ho Young; Chang, Hyoung Woo; Jeong, Dong Seop

    2013-01-01

    We evaluated long-term results of De Vega annuloplasty measured by cylindrical sizers for functional tricuspid regurgitation (FTR) and analyzed the impact of measured annular size on the late recurrence of tricuspid valve regurgitation. Between 2001 and 2011, 177 patients (57.9±10.5 yr) underwent De Vega annuloplasty for FTR. Three cylindrical sizers (actual diameters of 29.5, 31.5, and 33.5 mm) were used to reproducibly reduce the tricuspid annulus. Long-term outcomes were evaluated and risk factor analyses for the recurrence of FTR ≥3+ were performed. Measured annular diameter indexed by patient's body surface area was included in the analyses as a possible risk factor. Operative mortality occurred in 8 patients (4.5%). Ten-year overall and cardiac death-free survivals were 80.5% and 90.8%, respectively. Five and 10-yr freedom rates from recurrent FTR were 96.5% and 93.1%, respectively. Cox proportional hazard model revealed that higher indexed annular size was the only risk factor for the recurrence of FTR (P=0.006). A minimal P value approach demonstrated that indexed annular diameter of 22.5 mm/m2 was a cut-off value predicting the recurrence of FTR. De Vega annuloplasty for FTR results in low rates of recurrent FTR in the long-term. Tricuspid annulus should be reduced appropriately considering patients' body size to prevent recurrent FTR. PMID:24339705

  14. Effect of Granule Size on Diametric Tolerance of Annular Fuel Pellet

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho; Kim, Keon Sik; Kang, Ki Won; Song, Kun Woo

    2008-01-01

    A dual cooled annular fuel has been seriously considered as a favorable option for an extended power uprate of a Pressurized Water Reactor fuel assembly. An annular fuel shows a lot of advantages from the point of a fuel safety and its economy due to its unique configurational merit such as an increased heat transfer area and a thin pellet thickness. From the viewpoint of the fuel pellet fabrication, however, the unique shape of annular fuel pellet causes challenging difficulties to satisfy a diametric tolerance. A sintered cylindrical PWR fuel pellet fabricated by a conventional double-acting press has an hour-glass shape due to an inhomogeneous green density distribution in a powder compact. Thus, a sintered pellet usually undergoes a centerless grinding process in order to secure diametric tolerance specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. An inhomogeneous green density distribution in a powder compact is attributed to granule-granule frictions and granule to pressing mold wall frictions. Frictions result in an irregular pressing load distribution in a powder compact. In order to mitigate the frictions, a lot of process variables should be considered such as pre-compaction pressure, lubricant content, granule size and compaction pressure. The purpose of this study is to investigate the effect of a granule size on the amount of deformation after sintering, in other words, the amount of an hour-glassing. The granules with classified size ranges were made to green annular pellets with the same height and diameters. The hour-glassing amounts of the sintered annular pellets were measured and compared with that of the annular pellet made by unclassified granule

  15. Tricuspid annuloplasty with the MC3 ring and septal plication technique.

    Science.gov (United States)

    Isomura, Tadashi; Hirota, Masanori; Hoshino, Joji; Fukada, Yasuhisa; Kondo, Taichi; Takahashi, Yu

    2015-01-01

    Functional tricuspid regurgitation is caused by annular dilation mainly in the posterior annulus. However, ring annuloplasty does not always prevent the recurrence of tricuspid regurgitation due to dilation of the septal annulus. We developed a septal plication technique with a 3-dimensional MC3 ring. Between 2006 and 2011, 76 patients (male/female 30/46; mean age 68 ± 11 years) with functional tricuspid regurgitation received tricuspid ring annuloplasty. After placement of the annular sutures, the 3 commissural ring portions were fixed on the equivalent commissures to plicate the anterior and posterior annulus. The end of the septal ring portion was fixed at the optimal annular position to obtain minimal tricuspid regurgitation. All patients were followed-up for a mean of 47 ± 18 months; the longest duration was 79 months. Although there was no operative death, one patient died of sepsis during hospitalization (hospital mortality 1.3%). After implantation of the MC3 ring (mean size 31.0 ± 3.3 mm), additional edge-to-edge sutures were required for minor leakage in 5 (7%) patients. The degree of tricuspid regurgitation was significantly reduced at discharge (0.5 ± 0.6) and midterm (0.6 ± 0.6) compared to 2.5 ± 0.7 before the operation (p tricuspid ring annuloplasty with a 3-dimensional MC3 ring. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Implosion of Cylindrical Cavities via Short Duration Impulsive Loading

    Science.gov (United States)

    Huneault, Justin; Higgins, Andrew

    2014-11-01

    An apparatus has been developed to study the collapse of a cylindrical cavity in gelatin subjected to a symmetric impact-driven impulsive loading. A gas-driven annular projectile is accelerated to approximately 50 m/s, at which point it impacts a gelatin casting confined by curved steel surfaces that allow a transition from an annular geometry to a cylindrically imploding motion. The implosion is visualized by a high-speed camera through a window which forms the top confining wall of the implosion cavity. The initial size of the cavity is such that the gelatin wall is two to five times thicker than the impacting projectile. Thus, during impact the compression wave which travels towards the cavity is closely followed by a rarefaction resulting from the free surface reflection of the compression wave in the projectile. As the compression wave in the gelatin reaches the inner surface, it will also reflect as a rarefaction wave. The interaction between the rarefaction waves from the gelatin and projectile free surfaces leads to large tensile stresses resulting in the spallation of a relatively thin shell. The study focuses on the effect of impact parameters on the thickness and uniformity of the imploding shell formed by the cavitation in the imploding gelatin cylinder.

  17. Design and simulation of double annular illumination mode for microlithography

    Science.gov (United States)

    Song, Qiang; Zhu, Jing; Yang, Baoxi; Liu, Lei; Wang, Jun; Huang, Huijie

    2013-08-01

    Methods of generating various illumination patterns remain as an attractive and important micro-optics research area for the development of resolution enhancement in advanced lithography system. In the current illumination system of lithography machine, off-axis illumination is widely used as an effective approach to enhance the resolution and increase the depth of focus (DOF). This paper proposes a novel illumination mode generation unit, which transform conventional mode to double annular shaped radial polarized (DARP) mode for improving the resolution of micro-lithography. Through LightToolsTM software simulation, double annular shaped mode is obtained from the proposed generation unit. The mathematical expressions of the radius variation of inner and outer rings are deduced. The impacts of conventional and dual concentric annular illumination pattern on critical dimension uniformity were simulated on an isolated line, square hole and corner. Lithography performance was compared between DARP illumination mode and corresponding single annular modes under critical dimension of 45nm. As a result, DARP illumination mode can improve the uniformity of aerial image at 45nm node through pitch varied in 300-500 nm to a certain extent.

  18. Target design for the cylindrical compression of matter driven by heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A.R. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)]. E-mail: roberto.piriz@uclm.es; Temporal, M. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Lopez Cela, J.J. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Grandjouan, N. [LULI, UMR 7605, Ecole Polytechnique-CNRS-CEA-Universite Paris VI, Palaiseau (France); Tahir, N.A. [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany); Serna Moreno, M.C. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Portugues, R.F. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Hoffmann, D.H.H. [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2005-05-21

    The compression of a cylindrical sample of hydrogen contained in a hollow shell of Pb or Au has been analyzed in the framework of the experiments to be performed in the heavy ion synchrotron SIS100 to be constructed at the Gesellschaft fuer Schwerionenforschung (GSI) Darmstadt. The target implosion is driven by an intense beam of heavy ions with a ring-shaped focal spot. We report the results of a parametric study of the final state of the compressed hydrogen in terms of the target and beam parameters. We consider the generation of the annular heated region by means of a radio-frequency wobbler that rotates the beam at extremely high frequencies in order to accommodate symmetry constraints. We have also studied the hydrogen conditions that can be achieved with a non-rotating beam with Gaussian focal spot and the possibility to use a beam stopper as an alternative way to avoid the direct heating of the sample. Finally, we report the analysis of the hydrodynamic instabilities that affect the implosion and the mitigating effects of the elastoplastic properties of the shell.

  19. Target design for the cylindrical compression of matter driven by heavy ion beams

    International Nuclear Information System (INIS)

    Piriz, A.R.; Temporal, M.; Lopez Cela, J.J.; Grandjouan, N.; Tahir, N.A.; Serna Moreno, M.C.; Portugues, R.F.; Hoffmann, D.H.H.

    2005-01-01

    The compression of a cylindrical sample of hydrogen contained in a hollow shell of Pb or Au has been analyzed in the framework of the experiments to be performed in the heavy ion synchrotron SIS100 to be constructed at the Gesellschaft fuer Schwerionenforschung (GSI) Darmstadt. The target implosion is driven by an intense beam of heavy ions with a ring-shaped focal spot. We report the results of a parametric study of the final state of the compressed hydrogen in terms of the target and beam parameters. We consider the generation of the annular heated region by means of a radio-frequency wobbler that rotates the beam at extremely high frequencies in order to accommodate symmetry constraints. We have also studied the hydrogen conditions that can be achieved with a non-rotating beam with Gaussian focal spot and the possibility to use a beam stopper as an alternative way to avoid the direct heating of the sample. Finally, we report the analysis of the hydrodynamic instabilities that affect the implosion and the mitigating effects of the elastoplastic properties of the shell

  20. From stationary annular rings to rotating Bessel beams

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-04-01

    Full Text Available contributions from the two ring-slits completely overlap (evident in Fig. 1), the angular rotation is non-zero and the entire field at P3 experiences the rotation. 3. EXPERIMENTAL METHODOLOGY The experimental setup used to generate superpositions of higher...) as a ?petal?-field. The field at the ring-slit hologram (i.e., the field at plane P1), we will term the ?singularity?-field and that formed at plane P2 (a distance of 2f from lens L4) will be termed as the ?spiral?-field. 4. RESULTS AND DISCUSSION...

  1. Theoretical examination of the slot channel waveguide configured in a cylindrically symmetric dielectric ring profile

    Science.gov (United States)

    Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed

    2014-10-01

    It has recently been experimentally demonstrated that slot channel waveguides, configured in cylindrical space, can support high azimuthal order modes similar to whispering-gallery modes. This paper presents a mode solver based on Maxwell's vector wave equation for the electric field cast into an eigenvalue problem using a Fourier-Bessel basis function space. The modal frequencies and field profiles of the high azimuthal order slot-channel-whispering-gallery (SCWG) modes are computed for a set of nanometer spaced silicon rings supported by oxide. The computations show, that in addition to the traditionally observed, lowest order mode, the structure may support higher order SCWG modes. We complete the analysis by computing structures response as an ambient medium index of refraction sensor which achieves over 400 nm per RIU sensitivity.

  2. An Experimental Study Of The Stability Of Vessel-Spanning Bubbles In Cylindrical, Annular, Obround and Conical Containers

    International Nuclear Information System (INIS)

    Dhaliwal, T.K.

    2010-01-01

    This report provides a summary of experiments that were performed by Fauske and Associates on the stability of vessel-spanning bubbles. The report by Fauske and Associates, An Experimental Study of the Stability of Vessel-Spanning Bubbles in Cylindrical, Annular, Obround and Conical Containers, is included in Appendix A. Results from the experiments confirm that the gravity yield parameter, Y G , correctly includes container size and can be applied to full-scale containers to predict the possibility of the formation of a stable vessel spanning bubble. The results also indicate that a vessel spanning bubble will likely form inside the STSC for KE, KW, and Settler sludges if the shear strengths of these sludges exceed 1820, 2080, and 2120 Pa, respectively. A passive mechanism installed in the STSC is effective at disrupting a rising sludge plug and preventing the sludge from plugging the vent filter or being forced out of the container. The Sludge Treatment Project for Engineered Container and Settler Sludge (EC/ST) Disposition Subproject is being conducted in two phases. Phase 1 of the EC/ST Disposition Subproject will retrieve the radioactive sludge currently stored in the K West (KW) Basin into Sludge Transport and Storage Containers (STSCs) and transport the STSCs to T-Plant for interim storage. Phase 2 of the EC/ST Disposition Subproject will retrieve the sludge from interim storage, treat and package sludge for disposal at the Waste Isolation Pilot Plant. The STSC is a cylindrical container; similar to previously used large diameter containers. A STSC (Figure 1) with a diameter of 58 inches will be used to transport KE and KW originating sludge (located in Engineered Containers 210, 220, 240, 250, and 260) to T-Plant. A STSC with an annulus (Figure 2) will be used to transport Settler Tank sludge, located in Engineered Container 230. An obround small canister design was previously considered to retrieve sludge from the basin. The obround design was selected in

  3. Pre-conceptual core design of SCWR with annular fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chuanqi [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Cao, Liangzhi, E-mail: caolz@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Hongchun; Zheng, Youqi [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2014-02-15

    Highlights: • Annular fuel with both internal and external cooling is used in supercritical light water reactor (SCWR). • The geometry of the annular fuel has been optimized to achieve better performance for the SCWR. • Based on the annular fuel assembly, an equilibrium core has been designed. • The results show that the equilibrium core has satisfied all the objectives and design criteria. - Abstract: The new design of supercritical light water reactor was proposed using annular fuel assemblies. Annular fuel consists of several concentric rings. Feed water flows through the center and outside of the fuel to give both internal and external cooling. Thanks to this feature, the fuel center temperature and the cladding temperature can be reduced and high power density can be achieved. The water flowing through the center also provides moderation, so there is no need for extra water rods in the assembly. The power distribution can be easily flattened by use of this design. The geometry of the annular fuel has been optimized to achieve better performance for the SCWR. There are 19 fuel pins in an assembly. Burnable poison is utilized to reduce the initial excess reactivity. The fuel reloading pattern and water flow scheme were optimized to achieve more uniform power distribution and lower cladding temperature. An equilibrium core has been designed and analyzed using three dimensional neutronics and thermal-hydraulics coupling calculations. The void reactivity, Doppler coefficient and cold shut down margin were calculated for safety consideration. The present results show that this concept is a promising design for the SCWR.

  4. Familial Granuloma Annulare

    Directory of Open Access Journals (Sweden)

    Zennure Takci

    2015-09-01

    Full Text Available Granuloma annulare is a benign, asymptomatic, relatively common, often self-limited chronic granulomatos disorder of the skin that can affect both children and adults. The primary skin lesion usually is grouped papules in an enlarging annular shape, with color ranging from flesh-colored to erythematous. The two most common types of granuloma annulare are localized, which typically is found on the lateral or dorsal surfaces of the hands and feet; and disseminated, which is widespread. Rarely, familial cases of granuloma annulare has been reported. Herein, we report two sisters with annular papules and plaques diagnosed as granuloma annulare with the clinical and pathological findings. [J Contemp Med 2015; 5(3.000: 189-191

  5. Permanent cavity seal ring for a nuclear reactor containment arrangement

    International Nuclear Information System (INIS)

    Swidwa, K.J.; Salton, R.B.; Marshall, J.R.

    1990-01-01

    This patent describes a nuclear reactor containment arrangement. It comprises: a reactor pressure vessel which thermally expands and contracts during cyclic operation of the reactor, the vessel having a peripheral wall and a horizontally outwardly extending flange thereon; a containment wall having a shelf, the wall spaced from and surrounding the peripheral wall of the reactor pressure vessel defining an annular expansion gap therebetween, and an annular ring seal extending across the annular expansion gap to provide a water-tight seal therebetween

  6. One group neutron flux at a point in a cylindrical reactor cell calculated by Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Kocic, A [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1974-01-15

    Mean values of the neutron flux over material regions and the neutron flux at space points in a cylindrical annular cell (one group model) have been calculated by Monte Carlo. The results are compared with those obtained by an improved collision probability method (author)

  7. IBEX - annular beam propagation experiment

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Miller, R.B.; Shope, S.L.; Poukey, J.W.; Ramirez, J.J.; Ekdahl, C.A.; Adler, R.J.

    1983-01-01

    IBEX is a 4-MV, 100-kA, 20-ns cylindrical isolated Blumlein accelerator. In the experiments reported here, the accelerator is fitted with a specially designed foilless diode which is completely immersed in a uniform magnetic field. Several diode geometries have been studied as a function of magnetic field strength. The beam propagates a distance of 50 cm (approx. 10 cyclotron wavelengths) in vacuum before either striking a beam stop or being extracted through a thin foil. The extracted beam was successfully transported 60 cm downstream into a drift pipe filled either with 80 or 640 torr air. The main objectives of this experiment were to establish the proper parameters for the most quiescent 4 MV, 20 to 40 kA annular beam, and to compare the results with available theory and numerical code simulations

  8. Optical properties of helical cylindrical molecular aggregates : the homogeneous limit

    NARCIS (Netherlands)

    Didraga, C.; Klugkist, J.A.; Knoester, J.

    2002-01-01

    Using a Frenkel exciton model, we study the optical absorption spectrum and linear and circular dichroism (CD) spectra of cylindrical molecular aggregates. We demonstrate that such aggregates can always be described as a stack of molecular rings with nearest-neighbor rings rotated relative to each

  9. Optical Properties of Helical Cylindrical Molecular Aggregates : The Homogeneous Limit

    NARCIS (Netherlands)

    Didraga, Cătălin; Klugkist, Joost A.; Knoester, Jasper

    2002-01-01

    Using a Frenkel exciton model, we study the optical absorption spectrum and linear and circular dichroism (CD) spectra of cylindrical molecular aggregates. We demonstrate that such aggregates can always be described as a stack of molecular rings with nearest-neighbor rings rotated relative to each

  10. Annular electron beam production on gamble II using a magnetically insulated splitter

    International Nuclear Information System (INIS)

    Oliphant, W.F.; Barker, R.J.; Boller, J.R.; Cooperstein, G.; Goldstein, S.A.; Stephanakis, S.J.

    1983-01-01

    Annular electron beams have been tested using a post-hole convolute or magnetically insulated splitter (MIS) to feed current to both sides of a ring cathode. Beams were produced on the BLACKJACK 3 generator using a coaxial feed and from BLACKJACK 5 with a triplate feed. On BLACKJACK 3, annular cathodes with 5 cm and 10 cm mean diameters were tested. The cathodes were fed in four places by a MIS. The cathodes were 1.2 cm wide made from stainless steel or brass. Typical anode/cathode gap spacings were 0.6 cm. Experiments were performed at power levels of about 0.6 TW and energies of 30-40 kJ. Typical voltages were 0:6-1 MV with currents of about 0.8 MA. Diagnostics were diode voltage, diode current, and an X-ray pinhole camera. For the 10 cm cathode, current was measured before and after the MIS. The current on each side of the ring was measured separately. The beam voltage was determined from the diode voltage by an inductive correction. The annular beams had a linear current density of about 30 kA/cm and about 60 kA/cm for the 10 cm and 5 cm, respectively. The beam diameter at the cathode could be varied by changing the inductance on each side of the ring cathode and thereby the current balance. The impedance behavior could be modeled using the critical current formulation with a closure velocity of 3.5-4.5 cm/us. The BLACKJACK 5 geometry was a triplate feed. The ring cathode was fed by generators of 0.5 and 0.75 Ω, respectively. The MIS was used to combine the power before the cathode. The cathode had a mean diameter of 25 cm and width of 1.5-3 cm. Experiments were performed at power levels up to about6 TW and energies greater than or equal to200 kJ. Typical operating parameters were about 2 MV and 3 MA

  11. Mathematical simulation of stressed-deformed state in rod cylindrical fuel elemnts KONDOR program

    International Nuclear Information System (INIS)

    Khmelevskij, M.Ya.; Malakhova, E.I.; Dolmatov, P.S.

    1987-01-01

    A mathematical model for numerical computation of stressed-deformed stae in a rod cylindrical fuel element is developed. The model is based on preliminary discretization of the design scheme and linearization of radial parameters as radius functions. The formulation generality enables to calculate strength parameter kinetics in any circular cylindrical fuel element (e.g. annular fuel element; solid or tubular core; ceramic, metallic or dispersion fuel) for arbitrary transient operating conditions and taking into account all possible loading factors. The method is realized in the KONDOR programm (FORTRAN, ES-1061 computer). An example illustrating computation of stress kinetics in a fast reactor fuel element during transient operation is given

  12. Mathematical simulation of bearing ring grinding process

    Science.gov (United States)

    Koltunov, I. I.; Gorbunova, T. N.; Tumanova, M. B.

    2018-03-01

    The paper suggests the method of forming a solid finite element model of the bearing ring. Implementation of the model allowed one to evaluate the influence of the inner cylindrical surface grinding scheme on the ring shape error.

  13. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  14. New proposal of mechanical reinforcement structures to annular REBaCuO bulk magnet for compact and cryogen-free NMR spectrometer

    Science.gov (United States)

    Fujishiro, H.; Takahashi, K.; Naito, T.; Yanagi, Y.; Itoh, Y.; Nakamura, T.

    2018-07-01

    We have proposed new reinforcement structures using an aluminum alloy ring to the annular REBaCuO bulks applicable to compact and cryogen-free 400 MHz (9.4 T) nuclear magnetic resonance (NMR) spectrometer using a numerical simulation of mechanical stress. The thermal compressive stress, σθcool, which was applied to the annular bulks during cooling due to the difference of thermal expansion coefficient between bulk and aluminum alloy, became fairly enhanced at the surface of the uppermost bulk for the new reinforcement structures, compared to the conventional reinforcement with the same height as the annular bulk, in which the compressive σθcool value was reduced. During field-cooled magnetization (FCM), the electromagnetic hoop stress, σθFCM, became the maximum at the innermost edge of the uppermost ring bulk at intermediate time step. The actual total hoop stress, σθ (= σθcool + σθFCM), due to both cooling and FCM processes was also analyzed and the new ring structures are fairly effective to reduce the σθ value and became lower than the fracture strength of the bulk. The new reinforcement structures have a possibility to avoid the fracture of the bulks and to realize a 400 MHz NMR spectrometer.

  15. Early results after implantation of a new geometric annuloplasty ring for aortic valve repair.

    Science.gov (United States)

    Mazzitelli, Domenico; Nöbauer, Christian; Rankin, J Scott; Badiu, Catalin C; Krane, Markus; Crooke, Philip S; Cohn, William E; Opitz, Anke; Schreiber, Christian; Lange, Rüdiger

    2013-01-01

    Aortic valve repair is associated with fewer long-term valve-related complications as compared with valve replacement, and repair is being performed increasingly. A current problem is the lack of a geometric annuloplasty ring to facilitate reconstruction. This paper describes the first clinical application of such a device designed to permanently restore physiologic annular size and geometry during aortic valve repair. Based on mathematical studies of human cadaver valves, as well as computed tomography angiographic analyses of awake patients with normal valves, a three-dimensional annuloplasty ring has been developed, consisting of low-profile, one-piece titanium construction and Dacron cloth covering. The ring design incorporates 2:3 elliptical base geometry and 10-degree outwardly flaring subcommissural posts. Appropriately sized rings were implanted in 5 patients with severe aortic insufficiency due to annular dilation and anatomic leaflet defects. The rings restored annular geometry and facilitated leaflet repairs in all patients. Each recovered excellent valve function with minimal residual leak. All patients convalesced uneventfully, were discharged within 7 days after surgery, and continue with stable valve function as long as 6 months after implantation. Initial clinical application of a geometric aortic annuloplasty ring was associated with excellent device performance and perhaps better repairs. Further clinical series and patient follow-up should identify potential benefits of the device, including improved applicability and stability of aortic valve repair. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Permanent seal ring for a nuclear reactor cavity

    International Nuclear Information System (INIS)

    Hankinson, M.F.; Marshall, J.R.

    1988-01-01

    A nuclear reactor containment arrangement is described including: a. a reactor vessel which thermally expands and contracts during cyclic operation of the reactor and which has a peripheral wall; b. a containment wall spaced apart from and surrounding the peripheral wall of the reactor vessel and defining an annular thermal expansion gap therebetween for accommodating thermal expansion; and c. an annular ring seal which sealingly engages and is affixed to and extends between the peripheral wall of the reactor vessel and the containment wall

  17. High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors

    DEFF Research Database (Denmark)

    Duun, Sune Bro; Haahr, Rasmus Grønbek; Hansen, Ole

    2010-01-01

    The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized...

  18. Physically elastic analysis of a cylindrical ring as a unit cell of a complete composite under applied stress in the complex plane using cubic polynomials

    Science.gov (United States)

    Monfared, Vahid

    2018-03-01

    Elastic analysis is analytically presented to predict the behaviors of the stress and displacement components in the cylindrical ring as a unit cell of a complete composite under applied stress in the complex plane using cubic polynomials. This analysis is based on the complex computation of the stress functions in the complex plane and polar coordinates. Also, suitable boundary conditions are considered and assumed to analyze along with the equilibrium equations and bi-harmonic equation. This method has some important applications in many fields of engineering such as mechanical, civil and material engineering generally. One of the applications of this research work is in composite design and designing the cylindrical devices under various loadings. Finally, it is founded that the convergence and accuracy of the results are suitable and acceptable through comparing the results.

  19. Experimental and theoretical studies of cylindrical Hall thrusters

    International Nuclear Information System (INIS)

    Smirnov, Artem; Raitses, Yegeny; Fisch, Nathaniel J.

    2007-01-01

    The Hall thruster is a mature electric propulsion device that holds considerable promise in terms of the propellant saving potential. The annular design of the conventional Hall thruster, however, does not naturally scale to low power. The efficiency tends to be lower and the lifetime issues are more aggravated. Cylindrical geometry Hall thrusters have lower surface-to-volume ratio than conventional thrusters and, thus, seem to be more promising for scaling down. The cylindrical Hall thruster (CHT) is fundamentally different from the conventional design in the way the electrons are confined and the ion space charge is neutralized. The performances of both the large (9-cm channel diameter, 600-1000 W) and miniaturized (2.6-cm channel diameter, 50-300 W) CHTs are comparable with those of the state-of-the-art conventional (annular) design Hall thrusters of similar sizes. A comprehensive experimental and theoretical study of the CHT physics has been conducted, addressing the questions of electron cross-field transport, propellant ionization, plasma-wall interaction, and formation of the electron distribution function. Probe measurements in the harsh plasma environment of the microthruster were performed. Several interesting effects, such as the unusually high ionization efficiency and enhanced electron transport, were observed. Kinetic simulations suggest the existence of the strong fluctuation-enhanced electron diffusion and predict the non-Maxwellian shape of the electron distribution function. Through the acquired understanding of the new physics, ways for further optimization of this means for low-power space propulsion are suggested. Substantial flexibility in the magnetic field configuration of the CHT is the key tool in achieving the high-efficiency operation

  20. Diffusion coefficient calculations for cylindrical cells

    International Nuclear Information System (INIS)

    Lam-Hime, M.

    1983-03-01

    An accurate and general diffusion coefficient calculation for cylindrical cells is described using isotropic scattering integral transport theory. This method has been particularly applied to large regular lattices of graphite-moderated reactors with annular coolant channels. The cells are divided into homogeneous zones, and a zone-wise flux expansion is used to formulate a collision probability problem. The reflection of neutrons at the cell boundary is accounted for by the conservation of the neutron momentum. The uncorrected diffusion coefficient Benoist's definition is used, and the described formulation does not neglect any effect. Angular correlation terms, energy coupling non-uniformity and anisotropy of the classical flux are exactly taken into account. Results for gas-graphite typical cells are given showing the importance of these approximations

  1. Nonparaxial propagation and focusing properties of azimuthal-variant vector fields diffracted by an annular aperture.

    Science.gov (United States)

    Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping

    2014-07-01

    Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.

  2. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2017-12-01

    Full Text Available Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer.

  3. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1982-01-01

    We have completed a design of the Prototype Moving-Ring Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma (Compact Toroids). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three burn stations. Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for 1/3 of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power

  4. Dynamic plastic buckling of cylindrical and spherical shells

    International Nuclear Information System (INIS)

    Jones, N.; Okawa, D.M.

    1975-01-01

    A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell in order to examine various features of plastic buckling and to assess the importance of several approximations with previous authors have introduced in dynamic plastic buckling studies. The influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. A summary of all previously published theoretical investigations known to the authors is undertaken for the dynamic plastic behavior of cylindrical shells and rings which are made from rigid-plastic, rigid-visco-plastic, elastic-plastic and elastic-visco-plastic materials and subjected to initial axisymmetric impulsive velocity fields. The theoretical predictions of the dominant motions, critical mode numbers, and threshold impulses are compared and critically reviewed. An experimental investigation was also undertaken into the dynamic plastic buckling of circular rings subjected to uniformly distributed external impulsive velocities. It appears that no experiments have been reported previously on mild steel cylindrical shells with an axial length (L) less than four times the shell radius (R). The experimental values of the average final radial deflections, critical mode numbers and dimensions of the permanent wrinkles in the mild steel and some aliminium 6,061 T6 specimens are compared with all the previously published theoretical predictions and experimental results on cylindrical shells with various axial lengths. (orig./HP) [de

  5. A novel method of support vector machine to compute the resonant frequency of annular ring compact microstrip antennas

    Directory of Open Access Journals (Sweden)

    Ahmet Kayabasi

    2015-12-01

    Full Text Available An application of support vector machine (SVM to compute the resonant frequency at dominant mode TM11 of annular ring compact microstrip antennas (ARCMAs is presented in this paper. ARCMAs have some useful features; resonant modes can be adjusted by controlling the ratio of the outer radius to the inner radius. The resonant frequencies of 100 ARCMAs with varied dimensions and electrical parameters in accordance with UHF band covering GSM, LTE, WLAN, and WiMAX applications were simulated with IE3D™ which is a robust numerical electromagnetic computational tool. Then, the SVM model was built with simulation data and 88 simulated ARCMAs were operated for training and the remaining 12 ARCMAs were used for testing this model. The proposed model has been confirmed by comparing with the suggestions reported elsewhere via measurement data published earlier in the literature, and it has further validated on an ARCMA operating at 3 GHz fabricated in this study. The obtained results show that this technique can be successfully used to compute the resonant frequency of ARCMAs without involving any sophisticated methods. The novelty of the approach described here is to offer ease of designing the process using this method.

  6. Dynamic plastic buckling of rings and cylindrical shells

    International Nuclear Information System (INIS)

    Jones, N.; Okawa, D.M.

    1975-01-01

    A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell. This theoretical work is used to examine various features of plastic buckling and to assess the importance of several approximations which previous authors have introduced in dynamic plastic buckling studies. In particular, the influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. (Auth.)

  7. Subcutaneous granuloma annulare

    Directory of Open Access Journals (Sweden)

    Dhar Sandipan

    1994-01-01

    Full Text Available Two cases of subcutaneos granuloma annulare are reported. Clinical presentation was in the form of hard subcutaneous nodules; histopathology confirmed the clinical diagnosis. The cases were unique because of onset in adult hood, occurrence over unusual sites and absence of classical lesions of granuloma annulare elsewhere.

  8. Subcutaneous granuloma annulare

    Directory of Open Access Journals (Sweden)

    Dhar Sandipan

    1993-01-01

    Full Text Available Two cases of subcutaneous granuloma annulare are reported. Clinical presentation was in the form of hard subcutaneous nodules, histopathology confirmed the clinical diagnosis. The cases were unique because of onset in adult age, occurrence over unusual sites and absence of classical lesions of granuloma annulare elsewhere.

  9. Fluid-elastic instability in a confined annular flow: an experimental and analytical approach

    Energy Technology Data Exchange (ETDEWEB)

    Porcher, G.; Langre, E. de

    1996-12-31

    Self excitation of slender structures under axial flow have been reported in a large variety of local flow configurations. This paper reports the result of a research program, both experimental and analytical, aimed at the result of the basic phenomena leading to such instabilities. A cylindrical body with a diffuser is put in a confined annular flow of water. A case of flutter is observed and analysed with a classical potential flow method and with a friction based model. Closed-form solutions are proposed and the origin of the flutter instability is discussed. (authors). 25 refs., 6 figs., 5 tabs.

  10. static analysis of circular cylindrical shell under hydrostatic and ring

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    (Golzan et al, 2008). Circular cylindrical shells are used in a large variety of civil engineering structures, e.g. off-shore platforms, chimneys, silos, pipelines, bridge arches or wind turbine towers (Winterstetter et al, 2002). This work is concerned with the analysis of circular cylindri- cal shell subjected to hydrostatic pressure in.

  11. EXPLOSION OF ANNULAR CHARGE ON DUSTY SURFASE

    Directory of Open Access Journals (Sweden)

    A. Levin Vladimir

    2017-01-01

    Full Text Available This problem is related to the safety problem in the area of forest fires. It is well known that is possible to extinguish a fire, for example, by means of a powerful air stream. Such flow arises from the explosive shock wave. To enhance the im- pact of the blast wave can be used an explosive charge of annular shape. The shock wave, produced by the explosion, in- creased during moves to the center and can serve as a means of transportation dust in the seat of the fire. In addition, emerging after the collapse of a converging shock wave strong updraft can raise dust on a greater height and facilitate fire extinguishing, precipitating dust over a large area. This updraft can be dangerous for aircraft that are in the sky above the fire. To determine the width and height of the danger zone performed the numerical simulation of the ring of the explosion and the subsequent movement of dust and gas mixtures. The gas is considered ideal and perfect. The explosion is modeled as an instantaneous increase in the specific internal energy in an annular zone on the value of the specific heat of explosives. The flow is consid- ered as two-dimensional, and axisymmetric. The axis of symmetry perpendicular to the Earth surface. This surface is considered to be absolutely rigid and is considered as the boundary of the computational domain. On this surface is exhibited the condition of no motion. For the numerical method S. K. Godunov is used a movable grid. One system of lines of this grid is moved in accordance with movement of the shock wave. Others lines of this grid are stationary. The calculations were per- formed for different values of the radii of the annular field and for different sizes of rectangular cross-sectional of the annular field. Numerical results show that a very strong flow is occurring near the axis of symmetry and the particles rise high above the surface. These calculations allow us to estimate the sizes of the zone of danger in specific

  12. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    Science.gov (United States)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2015-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  13. Connecting ring and process to fix heaters in a pressure vessel by means of these rings

    International Nuclear Information System (INIS)

    Bailleul, G.; Caloine, P.; Coville, P.

    1984-01-01

    The invention can applies to the installation of heaters for nuclear reactor pressurizer or to the installation of any kind of reheaters by means of electric resistances when these reheaters have to work under important pressures. The connecting ring is made of a single metallic piece, two coaxial tubes joined each other by a skirt nearly radial; the skirt joins an end of the outer cylindrical tube and an intermediate zone of the inner cylindrical tube. The invention concerns also a heater provided with such a connecting ring, substituted for a part of its metallic envelope, and a process of fastening of these heaters on a pressure vessel. The description given in the frame of a pressurizer applies to the case of a gas reheater or to a reheater for liquid under pressure such as liquid sodium in a tank [fr

  14. Zurek–Kibble Symmetry Breaking Process in Superconducting Rings; Spontaneous Fluxon Formation in Annular Josephson Tunnel Junctions

    DEFF Research Database (Denmark)

    Aarøe, Morten; Monaco, Roberto; Dmitriev, P

    2007-01-01

    We report on new investigations of spontaneous symmetry breaking in non-adiabatic phase transitions. This Zurek-Kibble (ZK) process is mimicked in solid state systems by trapping of magnetic flux quanta, fluxons, in a long annular Josephson tunnel junction quenched through the normal-superconducting...

  15. Influence of a flow obstacle on the occurrence of burnout in boiling two-phase upward flow within a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, S.; Fukano, T. [Kyushu Univ., Fukuoka (Japan)

    2003-07-01

    When a flow obstruction such as a cylindrical spacer is set in a boiling two-phase flow with-in an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heating tube is severely affected by its existence. In some cases the cylindrical spacer has a cooling effect, and in the other cases it causes the dryout of the cooling water film on the heating surface resulting in the burnout of the heating tube. In the present paper we have focused our attention on the influence of a flow obstacle on the occurrence of burnout of the heating tube in boiling two-phase flow.

  16. Flow visualization study of post critical heat flux region for inverted bubbly, slug and annular flow regimes

    International Nuclear Information System (INIS)

    Denten, J.G.; Ishii, M.

    1988-11-01

    A visual study of film boiling using still photographic and high- speed motion picture methods was carried out in order to analyze the post-CHF hydrodynamics for steady-state inlet pre-CHF two-phase flow regimes. Pre-CHF two-phase flow regimes were established by introducing Freon 113 liquid and nitrogen gas into a jet core injection nozzle. An idealized, post-CHF two-phase core initial flow geometry (cylindrical multiphase jet core surrounded by a coaxial annulus of gas) was established at the nozzle exit by introducing nitrogen gas into the annular gap between the jet nozzle two-phase effluent and the heated test section inlet. For the present study three basic post-CHF flow regimes have been observed: the rough wavy regime (inverted annular flow preliminary break down), the agitated regime (transition between inverted annular and dispersed droplet flow), and the dispersed ligament/droplet regime. For pre-CHF bubbly flow in the jet nozzle, the post-CHF flow (beginning from jet nozzle exit/heated test section inlet) consists of the rough wavy regime, followed by the agitated and then the dispersed ligament/droplet regime. In the same way, for pre-CHF slug flow in the jet core, the post-CHF flow is comprised of the agitated regime at the nozzle exit, followed by the dispersed regime. Pre-CHF annular jet core flow results in a small, depleted post-CHF agitated flow regime at the nozzle exit, immediately followed by the dispersed ligament/droplet regime. Observed post dryout hydrodynamic behavior is reported, with particular attention given to the transition flow pattern between inverted annular and dispersed droplet flow. 43 refs., 20 figs., 5 tabs

  17. Study on the combustion behavior of radiolytically generated hydrogen explosion in small scale annular vessels at the reprocessing plant

    International Nuclear Information System (INIS)

    Kudo, Tatsuya; Tamauchi, Yoshikazu; Arai, Nobuyuki; Dai, Wenbin; Sakaihara, Motohiro; Kanehira, Osamu

    2017-01-01

    Hydrogen is generated by radiolysis of water, etc. in process vessels in reprocessing plant. Usually, the hydrogen is scavenged by compressed air into vessels to prevent hydrogen explosion. When an earthquake beyond design based occurs, for example, the compressed air may stop and the hydrogen starts accumulating in the vessels, and under this condition, an ignition source might set off hydrogen explosion. Therefore, the explosion derived by the radiolytically generated hydrogen is designated as one of severe accidents on Rokkasho Reprocessing Plant in new regulatory requirements. It is important to understand the combustion behavior of hydrogen explosion inside a vessel for consideration of safety measures against the severe accident, because the influences of detonation are not considered in the design basis of vessels. Especially, the investigations about the combustion behavior which considered influence of interior obstacles inside the vessel are not performed yet. In order to investigate the combustion behavior comprehensively, explosion experiment, combustion analysis and structural analysis are carried out using the representative vessels (small scale annular vessel, small scale plate vessel, large scale annular vessel and large scale cylindrical vessel) selected from Rokkasho Reprocessing Plant. In this paper, the results of experiments and analysis of small scale annular vessel (as one of representative vessel, imitated a pulsed column in the reprocessing plant) are reported. As imitated vessels, three vessels are manufactured with different interior obstacle arrangements as follows, A) cylindrical obstacles are faithfully reproduced and are arranged based on the actual vessel, B) cylindrical obstacles are arranged more densely than the actual vessel, and C) there are no obstacles inside the vessel. Experiments of hydrogen explosion are performed under condition of stoichiometric hydrogen-air ratio (premixed hydrogen-air is used). As a result of

  18. Ring-shaped functions and Wigner 6j-symbols

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Erevanskij Gosudarstvennyj Univ., Erevan

    2006-01-01

    The explicit expression for the ring-shaped matrix connecting the ring-shaped functions relating to different values of the axial parameter is obtained. The connection of this matrix with Wigner 6j-symbols is found out. The motion of quantum particle in the ring-shaped model with the zero priming potential is investigated. The bases of this model, which are factored in spherical cylindrical coordinates, are obtained. The formula generalizing the Rayleigh expansion of a plane wave with respect to spherical waves in the ring-shaped model is deduced [ru

  19. Radiation pattern of open ended waveguide in air core surrounded by annular plasma column

    International Nuclear Information System (INIS)

    Sharma, D.R.; Verma, J.S.

    1977-01-01

    Radiation pattern of open ended waveguide excited in circular symmetric mode (TM 01 ) in an air core having central conductor and surrounded by an annular plasma column is studied. The field distribution at the open end of the waveguide is considered to be equivalent to the vector sum of magnetic current rings of various radii, ranging from the outer radius of the inner conductor to the inner radius of the outer conductor of the waveguide at the open end. The radiation field is obtained as a vector sum of field components due to individual rings of current. Such a configuration gives rise to multiple narrow radiation beams away from the critical angle. (author)

  20. The Cornell field-reversed ion ring experiment FIREX: experimental design and first results

    International Nuclear Information System (INIS)

    Podulka, W.J.; Greenly, J.B.; Anderson, D.E.; Glidden, S.C.; Hammer, D.A.; Omelchenko, Yu.A.; Sudan, R.N.

    1996-01-01

    The goal of FIREX (Field-reversed Ion Ring EXperiment) is to produce a fully field-reversed ring with 1 MeV protons. Such a ring requires about (2-3) x 10 17 protons, or 30-50 mC of charge. This charge is to be injected as an annular proton beam through a suitable magnetic cusp configuration to produce a compact ring. The critical design issues for the ion beam accelerator are described. First experimental results of ion diode operation indicate that the design is capable of producing the required beam parameters. (author). 4 figs., 4 refs

  1. The Cornell field-reversed ion ring experiment FIREX: experimental design and first results

    Energy Technology Data Exchange (ETDEWEB)

    Podulka, W J; Greenly, J B; Anderson, D E; Glidden, S C; Hammer, D A; Omelchenko, Yu A; Sudan, R N [Cornell Univ., Ithaca, NY (United States). Laboratory of Plasma Studies

    1997-12-31

    The goal of FIREX (Field-reversed Ion Ring EXperiment) is to produce a fully field-reversed ring with 1 MeV protons. Such a ring requires about (2-3) x 10{sup 17} protons, or 30-50 mC of charge. This charge is to be injected as an annular proton beam through a suitable magnetic cusp configuration to produce a compact ring. The critical design issues for the ion beam accelerator are described. First experimental results of ion diode operation indicate that the design is capable of producing the required beam parameters. (author). 4 figs., 4 refs.

  2. Heat and mass transfer for turbulent flow of chemically reacting gas in eccentric annular channels

    International Nuclear Information System (INIS)

    Besedina, T.V.; Tverkovkin, B.E.; Udot, A.V.; Yakushev, A.P.

    1988-01-01

    Because of the possibility of using dissociating gases as coolants and working bodies of nuclear power plants, it is necessary to develop computational algorithms for calculating heat and mass transfer processes under conditions of nonequilibrium flow of chemically reacting gases not only in axisymmetric channels, but also in channels with a complex transverse cross section (including also in eccentric annular channels). An algorithm is proposed for calculating the velocity, temperature, and concentration fields under conditions of cooling of a cylindrical heat-releasing rod, placed off-center in a circular casing pipe, by a longitudinal flow of chemically reacting gas [N 2 O 4

  3. Enhancement of Condensation Heat Transfer Rate of the Air-Steam Mixture on a Passive Condenser System Using Annular Fins

    Directory of Open Access Journals (Sweden)

    Yeong-Jun Jang

    2017-11-01

    Full Text Available This paper presents an experimental investigation on the enhancement of the heat transfer rate of steam condensation on the external surfaces of a vertical tube with annular fins. A cylindrical condenser tube, which is 40 mm in outer diameter and 1000 mm in length, with annular disks of uniform cross-sectional area is fabricated in the manner of ensuring perfect contact between the base surface and fins. A total of 13 annular fins of 80 mm diameter were installed along the tube height in order to increase the effective heat transfer area by 85%. Through a series of condensation tests for the air-steam mixture under natural convection conditions, the heat transfer data was measured in the pressure range of between 2 and 5 bar, and the air mass fraction from 0.3 to 0.7. The rates of heat transfer of the finned tube are compared to those that are measured on a bare tube to demonstrate the enhanced performance by extended surfaces. In addition, based on the experimental results and the characteristics of steam condensation, the applicability of finned tubes to a large condenser system with a bundle layout is evaluated.

  4. Plasma confinement in a magnetic field of the internal ring current

    International Nuclear Information System (INIS)

    Shafranov, Vitaly; Popovich, Paul; Samitov, Marat

    2000-01-01

    Plasma confinement in compact region surrounding an internal ring current is considered. As the limiting case of large aspect ratio system the cylindrical plasma is considered initially. Analysis of the cylindrical tubular plasma equilibrium and stability against the most dangerous flute (m=0) and kink (m=1) modes revealed the possibility of the MHD stable plasma confined by magnetic field of the internal rod current, with rather peaked plasma pressure and maximal local beta β(γ)=0.4. In case of the toroidal internal ring system an additional external magnetic field creates the boundary separatrix witch limits the plasma volume. The dependence of the plasma pressure profiles, marginally stable with respect to the flute modes, from the shape of the external plasma boundary (separatrix) in such kind closed toroidal systems is investigated. The internal ring system with circular poloidal magnetic mirror, where the ring supports could be placed, is proposed. (author)

  5. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of

  6. Elliptic annular Josephson tunnel junctions in an external magnetic field: the statics

    DEFF Research Database (Denmark)

    Monaco, Roberto; Granata, Carmine; Vettoliere, Antonio

    2015-01-01

    We have investigated the static properties of one-dimensional planar Josephson tunnel junctions (JTJs) in the most general case of elliptic annuli. We have analyzed the dependence of the critical current in the presence of an external magnetic field applied either in the junction plane...... symmetric electrodes a transverse magnetic field is equivalent to an in-plane field applied in the direction of the current flow. Varying the ellipse eccentricity we reproduce all known results for linear and ring-shaped JTJs. Experimental data on high-quality Nb/Al-AlOx/Nb elliptic annular junctions...

  7. High-power, high-frequency, annular-beam free-electron maser

    International Nuclear Information System (INIS)

    Fazio, M.V.; Carlsten, B.E.; Earley, L.M.; Fortgang, C.M.; Haynes, W.B.; Haddock, P.C.

    1998-01-01

    The authors have developed a 15--17 GHz free electron maser (FEM) capable of producing high power pulses with a phase stability appropriate for linear collider applications. The electron beam source is a 1 micros, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacts with the TM 02 mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. They studied the phase stability by analyzing the dispersion relation for an axial FEL, in which the rf field was transversely wiggled and the electron trajectories were purely longitudinal. Detailed particle-in-cell simulations demonstrated the transverse wiggling of the rf mode and the axial FEL interaction and explicit calculations of the growing root of the dispersion relation are included to verify the phase stability

  8. Critical heat fluxes and liquid distribution in annular channels in the dispersion-annular flow

    International Nuclear Information System (INIS)

    Boltenko, Eh.A.; Pomet'ko, R.S.

    1984-01-01

    On the basis of using the dependence of intensity of total mass transfer between the flux nucleus and wall film obtained for tubes with uniform heat release and taking into account the peculiarities of mass transfer between the flux nucleus and wall film in annular channels the technique for calculating the liquid distribution and critical capacity of annular channels with internal, external and bilateral heating at uniform and non-uniform heat release over the length is proposed. The calculation of annular channels critical capacity according to the suggested technique is performed. A satisfactory agreement of calculation results with the experimental data is attained

  9. High accuracy electromagnetic field solvers for cylindrical waveguides and axisymmetric structures using the finite element method

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1993-12-01

    Some two-dimensional finite element electromagnetic field solvers are described and tested. For TE and TM modes in homogeneous cylindrical waveguides and monopole modes in homogeneous axisymmetric structures, the solvers find approximate solutions to a weak formulation of the wave equation. Second-order isoparametric lagrangian triangular elements represent the field. For multipole modes in axisymmetric structures, the solver finds approximate solutions to a weak form of the curl-curl formulation of Maxwell's equations. Second-order triangular edge elements represent the radial (ρ) and axial (z) components of the field, while a second-order lagrangian basis represents the azimuthal (φ) component of the field weighted by the radius ρ. A reduced set of basis functions is employed for elements touching the axis. With this basis the spurious modes of the curl-curl formulation have zero frequency, so spurious modes are easily distinguished from non-static physical modes. Tests on an annular ring, a pillbox and a sphere indicate the solutions converge rapidly as the mesh is refined. Computed eigenvalues with relative errors of less than a few parts per million are obtained. Boundary conditions for symmetric, periodic and symmetric-periodic structures are discussed and included in the field solver. Boundary conditions for structures with inversion symmetry are also discussed. Special corner elements are described and employed to improve the accuracy of cylindrical waveguide and monopole modes with singular fields at sharp corners. The field solver is applied to three problems: (1) cross-field amplifier slow-wave circuits, (2) a detuned disk-loaded waveguide linear accelerator structure and (3) a 90 degrees overmoded waveguide bend. The detuned accelerator structure is a critical application of this high accuracy field solver. To maintain low long-range wakefields, tight design and manufacturing tolerances are required

  10. Turbulent Motion of Liquids in Hydraulic Resistances with a Linear Cylindrical Slide-Valve

    Directory of Open Access Journals (Sweden)

    C. Velescu

    2015-01-01

    Full Text Available We analyze the motion of viscous and incompressible liquids in the annular space of controllable hydraulic resistances with a cylindrical linear slide-valve. This theoretical study focuses on the turbulent and steady-state motion regimes. The hydraulic resistances mentioned above are the most frequent type of hydraulic resistances used in hydraulic actuators and automation systems. To study the liquids’ motion in the controllable hydraulic resistances with a linear cylindrical slide-valve, the report proposes an original analytic method. This study can similarly be applied to any other type of hydraulic resistance. Another purpose of this study is to determine certain mathematical relationships useful to approach the theoretical functionality of hydraulic resistances with magnetic controllable fluids as incompressible fluids in the presence of a controllable magnetic field. In this report, we established general analytic equations to calculate (i velocity and pressure distributions, (ii average velocity, (iii volume flow rate of the liquid, (iv pressures difference, and (v radial clearance.

  11. Study on two phase flow characteristics in annular pulsed extraction column with different ratio of annular width to column diameter

    International Nuclear Information System (INIS)

    Qin Wei; Dai Youyuan; Wang Jiading

    1994-01-01

    Annular pulsed extraction column can successfully provide large throughput and can be made critically safe for fuel reprocessing. This investigation is to study the two phase flow characteristics in annular pulsed extraction column with four different annular width. 30% TBP (in kerosene)-water is used (water as continuous phase). Results show that modified Pratt correlation is valid under the experimental operation conditions for the annular pulsed extraction column. The characteristic velocity U K decreased with the increase of energy input and increased with the increase of the ratio of annular width to column diameter. Flooding velocity correlation is suggested. The deviation of the calculated values from the experimental data is within +20% for four annular width in a pulsed extraction column

  12. The large cylindrical drift chamber of TASSO

    International Nuclear Information System (INIS)

    Boerner, H.; Fischer, H.M.; Hartmann, H.; Loehr, B.; Wollstadt, M.; Fohrmann, R.; Schmueser, P.; Cassel, D.G.; Koetz, U.; Kowalski, H.

    1980-03-01

    We have built and operated a large cylindrical drift chamber for the TASSO experiment at the DESY storage ring, PETRA. The chamber has a length of 3.5 m, a diameter of 2.5 m, and a total of 2340 drift cells. The cells are arranged in 15 concentric layers such that tracks can be reconstructed in three dimensions. A spatial resolution of 220 μm has been achieved for tracks of normal incidence on the drift cells. (orig.)

  13. Reciprocating linear motor

    Science.gov (United States)

    Goldowsky, Michael P. (Inventor)

    1987-01-01

    A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.

  14. Volumetric Real-Time Imaging Using a CMUT Ring Array

    OpenAIRE

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J.; Khuri-Yakub, Butrus T.

    2012-01-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device.

  15. CT diagnosis of annular pancreas

    International Nuclear Information System (INIS)

    Ueno, Eiko; Isobe, Yoshinori; Niimi, Akiko; Shimizu, Yasushi; Yamada, Akiyoshi; Hanyu, Fujio

    1987-01-01

    CT scan was performed in two cases of annular pancreas which could be found in one case preoperatively and in the other case retrospectively. CT scan demonstrated secondary changes of annular pancreas such as medial displacement and dilatation of the duodenal bulb in the former case and stenosis of the duodenal loop and thickened soft tissue density around the narrow segment of the duodenal loop in the latter case, although it failed to demonstrate the peninsular protrusion of the parenchyma of the pancreas head. These findings suggest high possibility of diagnosing annular pancreas by CT scan. (author)

  16. Axisymmetric buckling analysis of laterally restrained thick annular plates using a hybrid numerical method

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P. [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir; Ouji, A. [Department of Civil Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Islamic Azad University, Larestan Branch, Larestan (Iran, Islamic Republic of)

    2008-11-15

    The buckling analysis of annular thick plates with lateral supports such as two-parameter elastic foundations or ring supports is investigated using an elasticity based hybrid numerical method. For this purpose, firstly, the displacement components are perturbed around the pre-buckling state, which is located using the elasticity theory. Then, by decomposing the plate into a set of sub-domain in the form of co-axial annular plates, the buckling equations are discretized through the radial direction using global interpolation functions in conjunction with the principle of virtual work. The resulting differential equations are solved using the differential quadrature method. The method has the capability of modeling the arbitrary boundary conditions either at the inner and outer edges of thin-to-thick plates and with different types of lateral restraints. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its accuracy and versatility for thin-to-thick plates.

  17. Experimental study of intense radiation in terahertz region based on cylindrical surface wave resonator

    International Nuclear Information System (INIS)

    Gong, Shaoyan; Ogura, Kazuo; Yambe, Kiyoyuki; Nomizu, Shintaro; Shirai, Akihiro; Yamazaki, Kosuke; Kawamura, Jun; Miura, Takuro; Takanashi, Sho; San, Min Thu

    2015-01-01

    Periodical corrugations structured on a cylindrical conductor have cylindrical surface waves (CSWs), which are reflected at the corrugation ends and form a CSW-resonator. In this paper, intense radiations in terahertz region based on the CSW-resonator are reported. The CSW-resonators with upper cut off frequencies in the modern IEEE G-band (110–300 GHz) are excited by a coaxially injected annular beam in a weakly relativistic region less than 100 kV. It is shown that there exists an oscillation starting energy for the CSW-resonator. Above the starting energy, very intense terahertz radiations on the order of kW are obtained. The operation frequencies in the range of 166–173 GHz and 182–200 GHz are obtained using two types of CSW-resonator with the different corrugation amplitude. Electromagnetic properties of the CSW-resonator can be controlled by the artificial structure and may play an important role in high-intensity terahertz generations and applications

  18. Vortex Ring Dynamics in Radially Confined Domains

    Science.gov (United States)

    Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos

    2010-11-01

    Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.

  19. Friction Compensation in the Upsetting of Cylindrical Test Specimens

    DEFF Research Database (Denmark)

    Christiansen, Peter; Martins, P. A. F.; Bay, Niels Oluf

    2016-01-01

    This manuscript presents a combined numerical andexperimental methodology for determining the stress-straincurve of metallic materials from the measurements of forceand displacement obtained in the axial compression of cylindrical test specimens with friction between the specimens and the platens....... The methodology is based on minimizing the errorbetween the average surface pressure obtained from the experimental measurements of the force and displacement and thatobtained from the slab method of analysis of metal plasticity.Three different friction models based on Coulomb friction, the constant friction...... model or combined friction models are utilized .Experimental results obtained from cylindrical and Rastegaev test specimens with different lubricants combined with the experimental determination of friction by means of ring compression tests allows compensating the effect of friction...

  20. Numerical simulation of random stresses on an annular turbulent flow

    International Nuclear Information System (INIS)

    Marti-Moreno, Marta

    2000-01-01

    The flow along a circular cylinder may induce structural vibrations. For the predictive analysis of such vibrations, the turbulent forcing spectrum needs to be characterized. The aim of this work is to study the turbulent fluid forces acting on a single tube in axial flow. More precisely we have performed numerical simulations of an annular flow. These simulations were carried out on a cylindrical staggered mesh by a finite difference method. We consider turbulent flow with Reynolds number up to 10 6 . The Large Eddy Simulation Method has been used. A survey of existent experiments showed that hydraulic diameter acts as an important parameter. We first showed the accuracy of the numerical code by reproducing the experiments of Mulcahy. The agreement between pressure spectra from computations and from experiments is good. Then, we applied this code to simulate new numerical experiments varying the hydraulic diameter and the flow velocity. (author) [fr

  1. Improved nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding liquid metal coolant and housing the core within the pool. A generally cylindrical concrete containment structure surrounds the reactor vessel and a central support pedestal is anchored to the containment structure base mat and supports the bottom wall of the reactor vessel and the reactor core. The periphery of the reactor vessel bore is supported by an annular structure which allows thermal expansion but not seismic motion of the vessel, and a bed of thermally insulating material uniformly supports the vessel base whilst allowing expansion thereof. A guard ring prevents lateral seismic motion of the upper end of the reactor vessel. The periphery of the core is supported by an annular structure supported by the vessel base and keyed to the vessel wall so as to be able to expand but not undergo seismic motion. A deck is supported on the containment structure above the reactor vessel open top by annular bellows, the deck carrying the reactor control rods such that heating of the reactor vessel results in upward expansion against the control rods. (author)

  2. Spatial structure of radio frequency ring-shaped magnetized discharge sputtering plasma using two facing ZnO/Al2O3 cylindrical targets for Al-doped ZnO thin film preparation

    Directory of Open Access Journals (Sweden)

    Takashi Sumiyama

    2017-05-01

    Full Text Available Spatial structure of high-density radio frequency ring-shaped magnetized discharge plasma sputtering with two facing ZnO/Al2O3 cylindrical targets mounted in ring-shaped hollow cathode has been measured and Al-doped ZnO (AZO thin film is deposited without substrate heating. The plasma density has a peak at ring-shaped hollow trench near the cathode. The radial profile becomes uniform with increasing the distance from the target cathode. A low ion current flowing to the substrate of 0.19 mA/cm2 is attained. Large area AZO films with a resistivity of 4.1 – 6.7×10-4 Ω cm can be prepared at a substrate room temperature. The transmittance is 84.5 % in a visible region. The surface roughnesses of AZO films are 0.86, 0.68, 0.64, 1.7 nm at radial positions of r = 0, 15, 30, 40 mm, respectively, while diffraction peak of AZO films is 34.26°. The grains exhibit a preferential orientation along (002 axis.

  3. Functional Tricuspid Regurgitation and Ring Annuloplasty Repair

    Directory of Open Access Journals (Sweden)

    William B. Weir, MD

    2018-01-01

    Full Text Available Functional tricuspid regurgitation (TR primarily arises from asymmetric dilation of the tricuspid annulus in the setting of right ventricular dysfunction and enlargement in response to left-sided myocardial and valvular abnormalities. Even if the TR is not severe at the time of mitral valve surgery, it can worsen and even appear late after successful mitral valve surgery, which portends a poor prognosis. Despite data demonstrating inferior outcomes in the presence of residual TR, surgical repair for functional TR remains underused. Acceptance of TR, in the presence of tricuspid annular dilation, may be unacceptable. Surgical repair should consist of placement of a rigid or semirigid annular ring, which has been shown to provide superior durability as compared with suture and flexible band techniques. Finally, percutaneous annuloplasty for correction of functional TR may allow treatment of patients with recurrent TR at high risk of reoperation.

  4. Development of new cylindrical magnetrons for industrial use

    International Nuclear Information System (INIS)

    Clayton, B.

    2000-09-01

    A number of alternative techniques were considered and tested with a view to the construction of a cylindrical sputtering device. This device was required to be capable of depositing tribological coatings inside approximately cylindrical substrates of diameters less than 100mm, in an industrial situation. A cylindrical magnetron device was designed, and constructed as a prototype, using a magnetic assembly inside a cylindrical target with outside diameter (o.d.) 40mm. Two alternative magnetic assemblies were tested, and found to have complimentary advantages. The magnetron characteristics of the device were tested, as were key properties (such as adhesion level and hardness) of the coatings deposited. In all cases good results were obtained. A 22mm o.d. device based on the same design was shown to operate, but with less satisfactory characteristics. In an attempt to improve the miniaturised design, the feasibility of gas cooling (rather than water cooling) the cylindrical magnetron was demonstrated. A system incorporating four 40mm o.d. cylindrical magnetrons was designed, constructed and briefly tested. This was intended to prove the feasibility of using a multi-magnetron system to reduce the cost to coat. Its dimensions and design were tailored to an industrially specified engine block. In use the plasma rings formed on the 40mm magnetron target surfaces during operation were found to be of unequal intensities, especially on the shorter magnetron design used in the four-fold system. In an attempt to tackle this problem, a finite element model of the magnetic field generated by the magnetic assembly was built, run and verified. Changes were made to this model, and a new .magnet assembly was built and tested based on the results obtained. This did not lead to a final solution of the problem, but has set bounds within which the solution must lie. (author)

  5. Annular subvalvular left ventricular aneurysm in Bahia, Brazil.

    Science.gov (United States)

    Guimarães, A C; Filho, A S; Esteves, J P; Abreu, W N; Vinhaes, L A; de Almeida Souza, J A; Machado, A

    1976-10-01

    Two cases of left ventricular aneurysm, a 16-year-old black boy and a 23-year-old white girl, from Bahia, Brazil, are presented. In both patients there was enlargement of the cardiac silhouette and a prominent bulge of the left inferior border. On the right oblique view a ring of calcium at the ventricular opening of the aneurysms was visualized. A left ventriculogram showed a huge aneurysm in the first case and a bulge on the lateral wall of the left ventricle in the other. Cardiac catheterization showed a rise in left and right ventricular end-diastolic pressures and in the mean pulmonary artery pressure. In the first case the contour of the right ventricular pressure curve showed a restrictive pattern. The similarities of these aneurysms with the annular submitral type described in young black Africans are stressed.

  6. Optimization of geometry of annular seat valves suitable for Digital Displacement fluid power pumps/motors

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    Digital Displacement Fluid Power is an upcoming technology setting new standards for the achievable efficiency of fluid power pumps and motors. The core element of the Digital Displacement technology is high performance electronically controlled seat valves, which must exhibit very low flow...... work an annular seat valve suitable for use in Digital Displacement units is considered, and the ring geometry is optimized using finite element analysis including non-linear material behaviour, contact elements and fluid pressure penetrating load, closely reflecting the actual load of the seat valve...

  7. Conceptual design of a moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C.; Carlson, G.A.; Ashworth, C.P.

    1986-01-01

    A design of a prototype moving-ring reactor was completed, and a development plan for a pilot reactor is outlined. The fusion fuel is confined in current-carrying rings of magnetically field-reversed plasma (''compact toroids''). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three ''burn stations.'' Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for one-third of the total burn time at each station. Deuterium-tritium- 3 He ice pellets refuel the rings at a rate that maintains constant radiated power. The fusion power per ring is approx. =105.5 MW. The burn time to reach a fusion energy gain of Q = 30 is 5.9 s

  8. Aceclofenac-induced erythema annulare centrifugum

    Directory of Open Access Journals (Sweden)

    Dilip Meena

    2018-01-01

    Full Text Available Erythema annulare centrifugum (EAC is characterised by slowly enlarging annular erythematous lesions and is thought to represent a clinical reaction pattern to infections, medications, and rarely, underlying malignancy. Causative drugs include chloroquine, cimetidine, gold sodium thiomalate, amitriptyline, finasteride, etizolam etc. We present a case of 40-year-old woman who presented to us with a 10 days history of nonpruritic, peripherally growing annular erythematous eruption. She had a history of recent onset of joint pain, for which she was taking aceclofenac 90 mg once a day for 5 days prior to the onset of the rash. This was confirmed on biopsy as EAC. The rash promptly subsided after stopping the drug. We report this case as there was no previous report of aceclofenac induced EAC.

  9. Interfacial friction in low flowrate vertical annular flow

    International Nuclear Information System (INIS)

    Kelly, J.M.; Freitas, R.L.

    1993-01-01

    During boil-off and reflood transients in nuclear reactors, the core liquid inventory and inlet flowrate are largely determined by the interfacial friction in the reactor core. For these transients, annular flow occurs at relatively modest liquid flowrates and at the low heat fluxes typical of decay heat conditions. The resulting low vapor Reynolds numbers, are out of the data range used to develop the generally accepted interfacial friction relations for annular flow. In addition, most existing annular flow data comes from air/liquid adiabatic experiments with fully developed flows. By contrast, in a reactor core, the flow is continuously developing along the heated length as the vapor flowrate increases and the flow regimes evolve from bubbly to annular flow. Indeed, the entire annular flow regime may exist only over tens of L/D's. Despite these limitations, many of the advanced reactor safety analysis codes employ the Wallis model for interfacial friction in annular flow. Our analyses of the conditions existing at the end-of-reflood in the PERICLES tests have indicated that the Wallis model seriously underestimates the interfacial shear for low vapor velocity cocurrent upflow. To extend the annular flow data base to diabatic low flowrate conditions, the DADINE tests were re-analyzed. In these tests, both pressure drop and local cross-section averaged void fractions were measured. Thus, both the wall and interfacial shear can be deduced. Based on the results of this analysis, a new correlation is proposed for interfacial friction in annular flow. (authors). 5 figs., 12 refs

  10. Dynamics of Newtonian annular jets

    International Nuclear Information System (INIS)

    Paul, D.D.

    1978-12-01

    The main objectives of this investigation are to identify the significant parameters affecting the dynamics of Newtonian annular jets, and to develop theoretical models for jet break-up and collapse. This study has been motivated by recent developments in laser-fusion reactor designs; one proposed cavity design involves the use of an annular lithium jet to protect the cavity wall from the pellet debris emanating from the microexplosion

  11. Correction of aortic insufficiency with an external adjustable prosthetic aortic ring.

    Science.gov (United States)

    Gogbashian, Andrew; Ghanta, Ravi K; Umakanthan, Ramanan; Rangaraj, Aravind T; Laurence, Rita G; Fox, John A; Cohn, Lawrence H; Chen, Frederick Y

    2007-09-01

    Less invasive, valve-sparing options are needed for patients with aortic insufficiency (AI). We sought to evaluate the feasibility of reducing AI with an external adjustable aortic ring in an ovine model. To create AI, five sheep underwent patch plasty enlargement of the aortic annulus and root by placement of a 10 x 15 mm pericardial patch between the right and noncoronary cusps. An adjustable external ring composed of a nylon band was fabricated and placed around the aortic root. Aortic flow, aortic pressure, and left ventricular pressures were measured with the ring loose (off) and tightened (on). Mean regurgitant orifice area decreased by 86%, from 0.07 +/- 0.03 cm2 (ring loose, off) to 0.01 +/- 0.00 cm2 (ring tightened, on) [p < 0.01]. The regurgitant fraction decreased from 18 +/- 4% to 2 +/- 1% [p < 0.01]. The ring did not significantly affect stroke volume and aortic pressure. An ovine model of aortic root dilatation resulting in acute AI has been developed. In this model, application of an external, adjustable constricting aortic ring eliminated AI. An aortic ring may be a useful adjunct in reducing AI secondary to annular dilatation.

  12. Plasma rotation in plasma centrifuge with an annular gap

    International Nuclear Information System (INIS)

    Lee, H.Y.; Hong, S.H.

    1982-01-01

    The steady-state rotation of plasma centrifuge is theoretically analyzed to understand the physics of rotating plasma and its feasibility for isotope separation. The centriguge system under consideration consists of an annular gap between coaxial cylindrical anode and cathod in the presence of an externally-applied axial magnetic field. A problem for coupled partial differential equations describing centrifuge fields is formulated on the basis of the magnetohydrodynamic equations. Two-dimensional solutions are found analytically in the form of Fourier-Bessel series. The current density and velocity distributions are discussed in terms of the Hartmann number and the geometrical parameter of the system. At typical conditions, rotational speeds of the plasma up to the order of 10 4 m/sec are achievable, and increase either with increasing Hartmann number, or with increasing ratio of the axial length to the inner radius of the cylinder. In view of much higher speeds of rotation which can be achieved in plasma centrifuge, it is expected that its efficiency is superior to mechanically driven gas centrifuges. (Author)

  13. Thermal–hydraulic calculation and analysis of a 600 MW supercritical circulating fluidized bed boiler with annular furnace

    International Nuclear Information System (INIS)

    Wang, Long; Yang, Dong; Shen, Zhi; Mao, Kaiyuan; Long, Jun

    2016-01-01

    Highlights: • Non-linear model of supercritical CFB boiler with annular furnace is developed. • Many empirical correlations are used to solve the model. • The thermal–hydraulic characteristics of boiler are analyzed. • The results show that the design of the annular furnace is reasonable. - Abstract: The development of supercritical Circulating Fluidized Bed (CFB) boiler has great economic and environmental value. An entirely new annular furnace structure with outer and inner ring sidewalls for supercritical CFB boiler has been put forward by Institute of Engineering Thermophysics (IET), Chinese Academy of Sciences and Dongfang Boiler Group Co., Ltd. (DBC). Its outer and inner ring furnace structure makes more water walls arranged and reduces furnace height availably. In addition, compared with other additional evaporating heating surface structures such as mid-partition and water-cooled panels, the integrative structure can effectively avoid the bed-inventory overturn and improve the penetrability of secondary air. The conditions of the 600 MW supercritical CFB boiler including capability, pressure and mass flux are harsh. In order to insure the safety of boiler operation, it is very necessary to analyze the thermal–hydraulic characteristics of water-wall system. The water-wall system with complicated pipe arrangement is regarded as a network consisting of series-parallel circuits, pressure nodes and linking circuits, which represent vertical water-wall tubes, different headers and linking tubes, respectively. Based on the mass, momentum and energy conservation, a mathematical model is built, which consists of some simultaneous nonlinear equations. The mass flux in circuits, pressure drop between headers, outer vapor temperature of water-wall system and metal temperature data of tubes at the boiler maximum continuous rating (BMCR), 75% BMCR and 30% BMCR loads are obtained by solving the mathematical model. The results show that the vertical water

  14. A case of annular pancreas with Wirsung's duct encircling the duodenum: embryological hypothesis based on cholangiopancreatographic and immunohistochemical findings.

    Science.gov (United States)

    Fukai, Manami; Kamisawa, Terumi; Horiguchi, Shin-Ichirou; Hishima, Tsunekazu; Kuruma, Sawako; Chiba, Kazuro; Koizumi, Satomi; Tabata, Taku; Nagao, Sayaka; Kikuyama, Masataka; Honda, Goro; Kurata, Masanao

    2017-06-01

    We present a resected case of annular pancreas in which Wirsung's duct encircled the duodenum and continued directly to the main pancreatic duct in the body and tail. Furthermore, Wirsung's duct coursed along the right side of the lower bile duct near the major duodenal papilla. Histologically, the islets of Langerhans in the annular pancreas were irregular in shape and were characterized by a striking abundance of pancreatic polypeptide (PP)-positive cells. The PP-rich area that encircled the duodenum was fused with the PP-poor area in the head of the pancreas. The following embryological hypothesis is proposed. The tip of the ventral pancreatic anlage adhered to the duodenal wall and stretched to form a ring during clockwise rotation. The rotation was incomplete, and the pancreatic duct did not cross over the lower bile duct. Since there was adequate ventral anlage in the lower part of the head of the pancreas, fusion between the ducts of the ventral and dorsal anlagen did not occur. The tip of the ventral anlage overgrew and adhered to the dorsal anlage, and the annular duct fused with the main duct of the dorsal anlage.

  15. Manufacture of annular cermet articles

    Science.gov (United States)

    Forsberg, Charles W.; Sikka, Vinod K.

    2004-11-02

    A method to produce annular-shaped, metal-clad cermet components directly produces the form and avoids multiple fabrication steps such as rolling and welding. The method includes the steps of: providing an annular hollow form with inner and outer side walls; filling the form with a particulate mixture of ceramic and metal; closing, evacuating, and hermetically sealing the form; heating the form to an appropriate temperature; and applying force to consolidate the particulate mixture into solid cermet.

  16. Granuloma annulare localized to the shaft of the penis

    DEFF Research Database (Denmark)

    Trap, R; Wiebe, B

    1993-01-01

    A case of granuloma annulare localized to the shaft of the penis is reported. The differential diagnoses are discussed. Penile granuloma annulare is a rare disorder and it is concluded that biopsies of penile lesions are recommended to verify the correct diagnosis.......A case of granuloma annulare localized to the shaft of the penis is reported. The differential diagnoses are discussed. Penile granuloma annulare is a rare disorder and it is concluded that biopsies of penile lesions are recommended to verify the correct diagnosis....

  17. Analytical solution of neutron transport equation in an annular reactor with a rotating pulsed source; Resolucao analitica da equacao de transporte de neutrons em um reator anelar com fonte pulsada rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Paulo Cleber Mendonca

    2002-12-01

    In this study, an analytical solution of the neutron transport equation in an annular reactor is presented with a short and rotating neutron source of the type S(x) {delta} (x- Vt), where V is the speed of annular pulsed reactor. The study is an extension of a previous study by Williams [12] carried out with a pulsed source of the type S(x) {delta} (t). In the new concept of annular pulsed reactor designed to produce continuous high flux, the core consists of a subcritical annular geometry pulsed by a rotating modulator, producing local super prompt critical condition, thereby giving origin to a rotating neutron pulse. An analytical solution is obtained by opening up of the annular geometry and applying one energy group transport theory in one dimension using applied mathematical techniques of Laplace transform and Complex Variables. The general solution for the flux consists of a fundamental mode, a finite number of harmonics and a transient integral. A condition which limits the number of harmonics depending upon the circumference of the annular geometry has been obtained. Inverse Laplace transform technique is used to analyse instability condition in annular reactor core. A regenerator parameter in conjunction with perimeter of the ring and nuclear properties is used to obtain stable and unstable harmonics and to verify if these exist. It is found that the solution does not present instability in the conditions stated in the new concept of annular pulsed reactor. (author)

  18. Cylindrical polymer brushes with dendritic side chains by iterative anionic reactions

    KAUST Repository

    Zhang, Hefeng

    2015-05-01

    We report in this paper an easy method for the synthesis of cylindrical polymer brushes with dendritic side chains through anionic reaction. The synthesis is accomplished by iteratively grafting a living block copolymer, polyisoprene-. b-polystyrenyllithium (PI-. b-PSLi), to the main chain and subsequently to the branches in a divergent way. PI segment is short and serves as a precursor for multifunctional branching unit. The grafting reaction involves two successive steps: i) epoxidation of internal double bonds of PI segments, either in main chain or side chains; ii) ring-opening addition to the resulting epoxy group by the living PI-. b-PSLi. Repeating the two steps affords a series of cylindrical polymer brushes with up to 3rd generation and extremely high molecular weight. The branching multiplicity depends on the average number of oxirane groups per PI segment, usually ca. 8 in the present work. The high branching multiplicity leads to tremendous increase in molecular weights of the cylindrical products with generation growth. Several series of cylindrical polymer brushes with tunable aspect ratios are prepared using backbones and branches with controlled lengths. Shape anisotropy is investigated in dilute solution using light scattering technique. Worm-like single molecular morphology with large persistence length is observed on different substrates by atomic force microscopy.

  19. Pressure loss coefficient and flow rate of side hole in a lower end plug for dual-cooled annular nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang-Hwan, E-mail: shinch@kaeri.re.kr; Park, Ju-Yong, E-mail: juyong@kaeri.re.kr; In, Wang-Kee, E-mail: wkin@kaeri.re.kr

    2013-12-15

    Highlights: • A lower end plug with side flow holes is suggested to provide alternative flow paths of the inner channel. • The inlet loss coefficient of the lower end plug is estimated from the experiment. • The flow rate through the side holes is estimated in a complete entrance blockage of inner channel. • The consequence in the reactor core condition is evaluated with a subchannel analysis code. - Abstract: Dual-cooled annular nuclear fuel for a pressurized water reactor (PWR) has been introduced for a significant increase in reactor power. KAERI has been developing a dual-cooled annular fuel for a power uprate of 20% in an optimized PWR in Korea, the OPR1000. This annular fuel can help decrease the fuel temperature substantially relative to conventional cylindrical fuel at a power uprate. Annular fuel has dual flow channels around itself; however, the inner flow channel has a weakness in that it is isolated unlike the outer flow channel, which is open to other neighbouring outer channels for a coolant exchange in the reactor core. If the entrance of the inner channel is, as a hypothetical event, completely blocked by debris, the inner channel will then experience a rapid increase in coolant temperature such that a departure from nucleate boiling (DNB) may occur. Therefore, a remedy to avoid such a postulated accident is indispensable for the safety of annular fuel. A lower end plug with side flow holes was suggested to provide alternative flow paths in addition to the central entrance of the inner channel. In this paper, the inlet loss coefficient of the lower end plug and the flow rate through the side holes were estimated from the experimental results even in a complete entrance blockage of the inner channel. An optimization for the side hole was also performed, and the results are applied to a subchannel analysis to evaluate the consequence in the reactor core condition.

  20. Heat Flow In Cylindrical Bodies During Laser Surface Transformation Hardening

    Science.gov (United States)

    Sandven, Ole A.

    1980-01-01

    A mathematical model for the transient heat flow in cylindrical specimens is presented. The model predicts the temperature distribution in the vicinity of a moving ring-shaped laser spot around the periphery of the outer surface of a cylinder, or the inner surface of a hollow cylinder. It can be used to predict the depth of case in laser surface transformation hardening. The validity of the model is tested against experimental results obtained on SAE 4140 steel.

  1. Research support for plasma diagnostics on Elmo Bumpy Torus: investigation of diamagnetic diagnostics for the electron rings

    International Nuclear Information System (INIS)

    Carpenter, K.H.

    1981-02-01

    Diamagnetic diagnostics for the EBT electron rings are fundamental to the experiment. The diamagnetic flux pickup loops on each cavity output signals proportional to ring perpendicular energy. A data analysis technique is described, which in its simplest form is subtracting 1/4 the signal from each neighboring cavity pickup loop from the central one's, which provides a signal proportional to the energy in a single ring. The calibration factor relating absolute perpendicular energy to diamagnetic signal depends weakly on the geometrical model for the ring. Calculations with a bumpy cylinder MHD equilibrium code give calibration factors in reasonable agreement (20%) to the values obtained using a simple, concentric cylindrical current sheet model. The cylindrical current sheet model is used to show that diamagnetic field components measured external to the plasma require high precision or correlation with other diagnostics in order to fix model parameters. A computer simulation shows an assumption of constant ring thickness and energy density with increasing length (and energy) is compatible to diamagnetic field observations on NBT

  2. Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass

    International Nuclear Information System (INIS)

    Ma Fengxu; Yang Jianjun; Xiaonong Zhu; Liang Chunyong; Wang Hongshui

    2010-01-01

    Surface morphological evolution of Zr-based metallic glass ablated by femtosecond lasers is investigated in atmosphere condition. Three types of permanent ring structures with micro-level spacing are observed for different laser shots and fluences. In the case of low laser fluences, the generation of annular patterns with nonthermal features is observed on the rippled structure with the subwavelength scale, and the ring spacing shows a decrease tendency from the center to the margin. While in the case of high laser fluences, the concentric rings formation within the laser spot is found to have evident molten traces and display the increasing ring spacing along the radial direction. Moreover, when the laser shots accumulation becomes large, the above two types of ring microstructures begin to develop into the common ablation craters. Analysis and discussion suggests that the stress-induced condensation of ablation vapors and the frozen thermocapillary waves on the molten surfaces should be responsible for the formation of two different types of concentric ring structures, respectively. Eventually, a processing window for each resulting surface microstructure type is obtained experimentally and indicates the possibility to control the morphological transitions among different types.

  3. High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors

    International Nuclear Information System (INIS)

    Duun, Sune; Haahr, Rasmus G; Hansen, Ole; Birkelund, Karen; Thomsen, Erik V

    2010-01-01

    The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized for minimizing the optical power needed in reflectance pulse oximetry. To simplify packaging, backside photodiodes are made which are compatible with assembly using surface mounting technology without pre-packaging. Quantum efficiencies up to 95% and area-specific noise equivalent powers down to 30 fW Hz -1/2 cm -1 are achieved. The photodiodes are incorporated into a wireless pulse oximetry sensor system embedded in an adhesive patch presented elsewhere as 'The Electronic Patch'. The annular photodiodes are fabricated using two masked diffusions of first boron and subsequently phosphor. The surface is passivated with a layer of silicon nitride also serving as an optical filter. As the final process, after metallization, a hole in the center of the photodiode is etched using deep reactive ion etch.

  4. Performance of a Cylindrical Hall-Effect Thruster Using Permanent Magnets

    Science.gov (United States)

    Polzin, Kurt A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    While annular Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope from 1 kW down to 100 W while maintaining an efficiency of 45-55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. In addition, the central magnetic pole piece defining the interior wall of the annular channel can experience excessive heat loads in a miniaturized Hall thruster, with the temperature eventually exceeding the Curie temperature of the material and in extreme circumstances leading to accelerated erosion of the channel wall. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from 50 W up to 1 kW. These thrusters exhibit performance characteristics that are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHTs insulator surface area to discharge chamber volume ratio is lower. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion, making the CHT geometry promising for low-power applications. This potential for high performance in the low-power regime has served as the impetus for research and development efforts aimed at understanding and improving CHT performance. Recently, a 2.6 cm channel diameter permanent magnet CHT (shown in Fig. 1) was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed

  5. Sediment particle entrainment in an obstructed annular

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Bruno Venturini; Siqueira, Renato do Nascimento [Faculdade do Centro Leste (UCL), Serra, ES (Brazil). Lab. de Fenomenos de Transporte], e-mail: brunovl@ucl.br, e-mail: renatons@ucl.br

    2006-07-01

    Flow in an annular region with internal cylinder rotation is a classic problem in fluid mechanics and has been widely studied. Besides its importance as a fundamental problem, flow in annular regions has several practical applications. This project was motivated by an application of this kind of flow to the drilling of oil and gas wells. In this work, an erosion apparatus was constructed in order to study the effect of the internal cylinder rotation on particle entrainment in an obstructed annular space and bed package as well. The study also analyzed the influence of height of the particles bed on the process performance. The experiment was designed so that the internal cylinder rotation could be measured by an encoder. The fluid temperature was measured by a thermocouple and the experiments were carried out at the temperature of 25 deg C. The study revealed that the particle entrainment for the height of the bed that is close to the center of the cylinders is negligible and the internal cylinder rotation provokes the movement and packing of the bed. For lower height of the bed, with same dimension of the annular gap, the particle entrainment process was satisfactory and the bed compaction was smaller than in the previous case, leading to a more efficient cleaning process in the annular space. (author)

  6. Fabrication of lithium ceramic pellets, rings and single crystals for irradiation in BEATRIX-II

    International Nuclear Information System (INIS)

    Slagle, O.D.; Noda, K.; Takahashi, T.

    1989-04-01

    BEATRIX-II is an IEA sponsored experiment of lithium ceramic solid breeder materials in the FFTF/MOTA. Li 2 O solid pellets and annular ring specimens were fabricated for in-situ tritium release tests. In addition, a series of single crystal and polycrystalline lithium ceramic samples were fabricated to determine the irradiation behavior and beryllium compatibility. 6 refs., 10 figs., 4 tabs

  7. Study on nonstationary convective heat transfer in annular channels and rod bundles in conditions of arbitrary variation of heat duty in time and length

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.N.; Kalinin, E.I.; Naumov, M.A.

    1980-01-01

    The effect of variability of heat duty on the characteristics of heat exchange in ring channels and rod bundles is investigated with analytical methods. The plotting of calculation formulae for non-stationary heat exchange in an annular channel at a jump of heat duty is carried out on the basis of the method of the effect function. The formulae obtained permit to accomplish technical calculations of the processes of non-stationary heat exchange in annular channels in the case of any alterations of thermal duty in time, at any moment of time, for any channel cross section (including the entrance heat section) in a wide range of geometric and regime parameters of the turbulent current of a coolant. According to preliminary estimates, calculation results differ from the results oi a numerical solution less than 5%. The approach considered permits to transfer the data on the non-stationary heat exchange in annular channels in the case of changing the heat duty in time, in the case of a non-stationary heat exchange in longitudinally flown not very dense and infinite rod bundles

  8. Study on natural convection characteristics in a narrow annular gap, 2

    International Nuclear Information System (INIS)

    Naohara, Nobuyuki; Uotani, Masaki; Kinoshita, Izumi; Arazeki, Hideo

    1987-01-01

    To clarify the characteristics of natural convection in a narrow annular gap at the roof-slab penetration in pool-type LMFBR, experimental study was carried out. Experiment is to investigate the effect of annular gap width. The results are summarized as follows. (1) A chart showing the presence of natural convection was drawn, and it was showed that the natural convection in an annular gap was influenced by gap width. (2) Dimensionless circumferential temperature in annular wall could be rearranged by new parameter taking account of the annular gap width and a characteristics curve was obtained. (author)

  9. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J.; Hamilton, H.; Hyland, B. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  10. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    International Nuclear Information System (INIS)

    Armstrong, J.; Hamilton, H.; Hyland, B.

    2013-01-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  11. Evaluation of tank thermal expansion data in CALDEX

    International Nuclear Information System (INIS)

    Suda, S.; Weh, R.

    1991-01-01

    A thermal expansion test involving a large annular input reprocessing tank was carried out as a part of the CALDEX Project at the TEKO test facility in Karlsruhe, FRG. The objective of this test was to investigate thermal expansion properties of the tank and effects on various pressure and level measurement instruments used in the determination of liquid volume. In the thermal expansion test, a weak nitric acid solution was heated internally to a temperature of 60 degrees C by means of steam injection through the sparge ring. After heating, the annular tank took about one hour to thermally equilibrate, and it took another hour for the sparge ring and pulsator pipes to fill before thermal effects could be followed. The temperature at the end of the test, after tank and its contents had cooled undisturbed for fifty hours, was 29.9 degrees C. Thirteen instrument readings were obtained during each measurement cycle of roughly 70 seconds for a total of over 2800 readings per instrument. Thermal expansion effects for the CALDEX annular tank were consistent with that reported for cylindrical tanks. Temperature variations effect each type of probe in a way that depends on the properties of the probe and the characteristics of the measurement system. 3 refs., 4 figs., 3 tabs

  12. Method of producing the arched surfaces of diaphragm rings for large containers, especially for prestressed-concrete pressure vessels of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1976-01-01

    In producing arched surfaces of diaphragm rings for large containers, especially for prestressed-concrete pressure vessels for nuclear power plants, it is of advantage to manufacture these directly on the construction site. According to the invention the, at first level, diaphragm ring is put on the predetermined place, sectionally pressed against and shaped by a shaping tool - with a profiled supporting ring as a counter-acting tool - and afterwards welded together with the annular wall sections of the large container along the shaped parts. The manufacture of single and double configurations of diaphragm rings is described. It is of advantage if shaping and mounting position coincide. (UWI) [de

  13. Novel annular flow electromagnetic measurement system for drilling engineering.

    OpenAIRE

    Ge, L.; Wei, G. H.; Wang, Q.; Hu, Z.; Li, J. L.

    2017-01-01

    Downhole micro-flux control drilling technology can effectively solve drilling accidents, such as kick and loss in narrow density window drilling scenarios. Using a downhole annular flow measurement system to obtain real-time information of downhole annular flow is the core and foundation of downhole micro-flux control drilling technology. The research work of electromagnetic flowmeters in recent years creates a challenge for downhole annular flow measurement. This paper proposes a new method...

  14. Mitigation of sliding motion of a cask-canister by fluid-structure interaction in an annular region - 59208

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Fujiwara, Yoshihiro; Shintani, Atsuhiko; Nakagaw, Chihiro; Furuta, Kazuhisa

    2012-01-01

    The cask-canister system is a coaxial circular cylindrical structure in which several spent fuels are installed. This system is a free-standing structure thus, it is very important to reduce sliding motion for very large seismic excitations. In this study, we propose a mitigation method for sliding motion. Water is installed in an annular region between a cask and a canister. The equations of motion are derived taking fluid-structure interaction into consideration for nonlinear sliding motion analyses. Based on these equations, mitigation effects of sliding motions are studied analytically. Furthermore, a fundamental test model of a cask-canister system is fabricated and shaking table tests are conducted. From the analytical and test results, sliding motion mitigation effects are investigated. In this paper, the sliding motion of the cask-canister system subjected to a horizontal base excitation is studied and the effectiveness of water filled in the annular region between the cask and the canister is evaluated. This water brings inertia force coupling effect which is proportional to acceleration of the cask and the canister. Therefore, due to this fluid coupling, the cask and canister system couples through 3 types of forces, i.e., spring force, damping force and inertia force of the liquid. Equations of motion for the sliding motion are derived based on the fluid-structure coupling effects formulated by Fritz. Based on these equations of motion, nonlinear sliding motion of the cask-canister system is analyzed and the sliding suppression effects are investigated numerically. Furthermore, a fundamental test model of a cask-canister system is fabricated and the shaking table tests are conducted. From these analytical and test results, the sliding motion suppression effects due to fluid-structure coupling effects are investigated. As a result, it is confirmed that the inertia coupling effects due to water filled in the annular region are relatively large, and the

  15. Experimental buckling investigation of ring-stiffened cylindrical shells under unsymmetrical axial loads

    International Nuclear Information System (INIS)

    Baker, W.E.; Babock, C.D.; Bennett, J.G.

    1983-01-01

    Six steel shells having nuclear containment-like features were fabricated and loaded to failure with an offset axial load. The shells of R/t = 500 buckled plastically. Four of the shells had reinforced circular cutouts. These penetrations were sized to cut no ring-stiffener, a single, two- or three-ring stiffeners. Reinforcing and framing around the penetrations were based upon the area-replacement rule of the applicable portion of the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code and were of a design to stimulate actual practice for nuclear steel containments. Prior to testing, imperfections were measured and strain gages were applied to determine information on load distribution at the ends of the cylinder and strain fields at areas likely to buckle. Buckling loads were determined for an axial load applied with an eccentricity of R/2 where R is the cylinder radius. The results showed that the buckling load and mode for the shell having a penetration that did not cut a ring stiffener were essentially the same as those for the unpenetrated shell. The buckling loads for the penetrated shells in which stiffeners were interrupted were less than that for the unpenetrated shells. Results of all tests are compared to numerical solutions carried out using a nonlinear collapse analysis and to the predictions of ASME Code Case N-284

  16. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    DEFF Research Database (Denmark)

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained...

  17. Numerical investigation of a vortex ring impinging on a coaxial aperture

    Science.gov (United States)

    Hu, Jiacheng; Peterson, Sean D.

    2017-11-01

    Recent advancements in smart materials have sparked an interest in the development of small scale fluidic energy harvesters for powering distributed applications in aquatic environments, where coherent vortex structures are prevalent. Thus, it is crucial to investigate the interaction of viscous vortices in the proximity of a thin plate (a common harvester configuration). Hence, the present study systematically examines the interaction of a vortex ring impinging on an infinitesimally thin wall with a coaxially aligned annular aperture. The rigid aperture serves as an axisymmetric counterpart of the thin plate, and the vortex ring represents a typical coherent vortex structure. The results indicate that the vortex dynamics can be categorized into two regimes based on the aperture to ring radius ratio (Rr). The rebound regime (Rr = 0.9 , and an increase in the vortex ring impulse is observed for 1.0 energy harvesting strategy in vortex impact configurations. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-05778) and Alexander Graham Bell Canada Graduate Scholarship (CGS-D).

  18. TUNNEL POINT CLOUD FILTERING METHOD BASED ON ELLIPTIC CYLINDRICAL MODEL

    Directory of Open Access Journals (Sweden)

    N. Zhu

    2016-06-01

    Full Text Available The large number of bolts and screws that attached to the subway shield ring plates, along with the great amount of accessories of metal stents and electrical equipments mounted on the tunnel walls, make the laser point cloud data include lots of non-tunnel section points (hereinafter referred to as non-points, therefore affecting the accuracy for modeling and deformation monitoring. This paper proposed a filtering method for the point cloud based on the elliptic cylindrical model. The original laser point cloud data was firstly projected onto a horizontal plane, and a searching algorithm was given to extract the edging points of both sides, which were used further to fit the tunnel central axis. Along the axis the point cloud was segmented regionally, and then fitted as smooth elliptic cylindrical surface by means of iteration. This processing enabled the automatic filtering of those inner wall non-points. Experiments of two groups showed coincident results, that the elliptic cylindrical model based method could effectively filter out the non-points, and meet the accuracy requirements for subway deformation monitoring. The method provides a new mode for the periodic monitoring of tunnel sections all-around deformation in subways routine operation and maintenance.

  19. Domain-adaptive finite difference methods for collapsing annular liquid jets

    Science.gov (United States)

    Ramos, J. I.

    1993-01-01

    A domain-adaptive technique which maps a time-dependent, curvilinear geometry into a unit square is used to determine the steady state mass absorption rate and the collapse of annular liquid jets. A method of lines is used to solve the one-dimensional fluid dynamics equations written in weak conservation-law form, and upwind differences are employed to evaluate the axial convective fluxes. The unknown, time-dependent, axial location of the downstream boundary is determined from the solution of an ordinary differential equation which is nonlinearly coupled to the fluid dynamics and gas concentration equations. The equation for the gas concentration in the annular liquid jet is written in strong conservation-law form and solved by means of a method of lines at high Peclet numbers and a line Gauss-Seidel method at low Peclet numbers. The effects of the number of grid points along and across the annular jet, time step, and discretization of the radial convective fluxes on both the steady state mass absorption rate and the jet's collapse rate have been analyzed on staggered and non-staggered grids. The steady state mass absorption rate and the collapse of annular liquid jets are determined as a function of the Froude, Peclet and Weber numbers, annular jet's thickness-to-radius ratio at the nozzle exit, initial pressure difference across the annular jet, nozzle exit angle, temperature of the gas enclosed by the annular jet, pressure of the gas surrounding the jet, solubilities at the inner and outer interfaces of the annular jet, and gas concentration at the nozzle exit. It is shown that the steady state mass absorption rate is proportional to the inverse square root of the Peclet number except for low values of this parameter, and that the possible mathematical incompatibilities in the concentration field at the nozzle exit exert a great influence on the steady state mass absorption rate and on the jet collapse. It is also shown that the steady state mass absorption

  20. Creation and revival of ring dark solitons in an annular Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Toikka, L A; Kärki, O; Suominen, K-A

    2014-01-01

    We propose a protocol for the simultaneous controlled creation of multiple concentric ring dark solitons in a toroidally trapped flat Bose–Einstein condensate. The decay of these solitons into a vortex–antivortex necklace shows revivals of the soliton structure, but eventually becomes an example of quantum turbulence. (fast track communications)

  1. Absolute photonic band gap in 2D honeycomb annular photonic crystals

    International Nuclear Information System (INIS)

    Liu, Dan; Gao, Yihua; Tong, Aihong; Hu, Sen

    2015-01-01

    Highlights: • A two-dimensional honeycomb annular photonic crystal (PC) is proposed. • The absolute photonic band gap (PBG) is studied. • Annular PCs show larger PBGs than usual air-hole PCs for high refractive index. • Annular PCs with anisotropic rods show large PBGs for low refractive index. • There exist optimal parameters to open largest band gaps. - Abstract: Using the plane wave expansion method, we investigate the effects of structural parameters on absolute photonic band gap (PBG) in two-dimensional honeycomb annular photonic crystals (PCs). The results reveal that the annular PCs possess absolute PBGs that are larger than those of the conventional air-hole PCs only when the refractive index of the material from which the PC is made is equal to 4.5 or larger. If the refractive index is smaller than 4.5, utilization of anisotropic inner rods in honeycomb annular PCs can lead to the formation of larger PBGs. The optimal structural parameters that yield the largest absolute PBGs are obtained

  2. Experimental analysis of heat transfer between a heated wire and a rarefied gas in an annular gap with high diameter ratio

    International Nuclear Information System (INIS)

    Chalabi, H; Lorenzini, M; Morini, G L; Buchina, O; Valougeorgis, D; Saraceno, L

    2012-01-01

    In this paper a first experimental attempt is performed to measure heat conduction through rarefied air at rest contained between two concentric cylinders. The heat transfer between a heated platinum wire having a diameter (d) of 0.15 mm, disposed along the axis of a cylindrical shell in stainless steel having an inner diameter (D) of 100 mm, and a surrounded rarefied gas has been studied experimentally and numerically. The ratio between the outer and inner diameter of the annular region filled by the gas is large (D/d=667). In the annular region filled with air the pressure was varied by using a vacuum pump from atmospheric value down to 10 −3 mbar. Temperature differences between the wire and the external stainless steel wall in the range 50-125 K were imposed and the heat power transferred from the wire to the surround was measured as a function of the gas pressure starting from air at atmospheric conditions down to 10 −3 mbar. The experimental results obtained in these tests were compared with the numerical results obtained by using the linear and nonlinear Shakhov kinetic models.

  3. 3-D studies of the formation and stability of strong ion rings

    International Nuclear Information System (INIS)

    Omelchenko, Yu.A.; Sudan, R.N.

    1996-01-01

    Complex 3-D simulations were conducted in support of the on-going experimental program, FIREX( (Field-Reversed Ion Ring Experiment) launched at the Cornell University to produce an ion ring magnetic field-reversed configuration by injecting an intense annular proton beam across a plasma-filled magnetic cusp region into a neutral gas immersed in a ramped solenoidal magnetic field. Previous axisymmetric PIC simulations performed with the FIRE code have demonstrated that strong ion rings (with a self-magnetic field large enough to reverse the applied field on axis) can be created using this technique on the equipment designed and assembled at Cornell. A new parallel object-oriented 3-D hybrid PIC code FLAME has been created to study questions of extreme importance to the success of the FIREX program, namely, the 3-D injection of a powerful ion beam into a strongly magnetized plasma, formation of a field-reversed ring, and the stability and equilibrium of such rings to toroidal perturbations. Using FLAME, the stability was studied of the ring formation during the injection phase and at later times when the ring is virtually stopped and the applied magnetic field is nearly reversed. The simulations revealed the effect of toroidal aberrations in the axially ramped magnetic field on the ion ring formation. (author). 4 figs., 4 refs

  4. 3-D studies of the formation and stability of strong ion rings

    Energy Technology Data Exchange (ETDEWEB)

    Omelchenko, Yu A; Sudan, R N [Cornell Univ., Ithaca, NY (United States). Laboratory of Plasma Studies

    1997-12-31

    Complex 3-D simulations were conducted in support of the on-going experimental program, FIREX( (Field-Reversed Ion Ring Experiment) launched at the Cornell University to produce an ion ring magnetic field-reversed configuration by injecting an intense annular proton beam across a plasma-filled magnetic cusp region into a neutral gas immersed in a ramped solenoidal magnetic field. Previous axisymmetric PIC simulations performed with the FIRE code have demonstrated that strong ion rings (with a self-magnetic field large enough to reverse the applied field on axis) can be created using this technique on the equipment designed and assembled at Cornell. A new parallel object-oriented 3-D hybrid PIC code FLAME has been created to study questions of extreme importance to the success of the FIREX program, namely, the 3-D injection of a powerful ion beam into a strongly magnetized plasma, formation of a field-reversed ring, and the stability and equilibrium of such rings to toroidal perturbations. Using FLAME, the stability was studied of the ring formation during the injection phase and at later times when the ring is virtually stopped and the applied magnetic field is nearly reversed. The simulations revealed the effect of toroidal aberrations in the axially ramped magnetic field on the ion ring formation. (author). 4 figs., 4 refs.

  5. Annular pancreas in adult: a case report

    International Nuclear Information System (INIS)

    Moreira Neto, M.

    1992-01-01

    A case of a patient complaining of recurrent symptomatology of the upper abdomen and sub occlusion of the gastrointestinal tract with stenosis of the second portion of duodenum and mass evolving the head of pancreas at echographic study, confirmed by CT is presented. Contrasted oral studies confirmed that the mass evolved the stenotic segment, suggesting annular pancreas. Surgery confirmed the presence of annular pancreas surrounding the second portion of duodenum. (author)

  6. Obtention of an empirical equation for annular channels

    International Nuclear Information System (INIS)

    Diaz H, C.; Salinas R, G.A.

    1996-01-01

    Using a trial circuit, the experimental heat transfer coefficient is determined, in forced convection at one phase only within an annular channel in which water flows ascendantly and for this reason an empirical equation is determined. This work tries to contribute to the understanding of the forced convection phenomena in non tubular geometries like the annular channels. (Author)

  7. A multiple-orbit time-of-flight mass spectrometer based on a low energy electrostatic storage ring

    Science.gov (United States)

    Sullivan, M. R.; Spanjers, T. L.; Thorn, P. A.; Reddish, T. J.; Hammond, P.

    2012-11-01

    The results are presented for an electrostatic storage ring, consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses, used as a time-of-flight mass spectrometer. Based on the results of charged particle simulations and formal matrix model, the Ion Storage Ring is capable of operating with multiple stable orbits, for both single and multiply charged ions simultaneously.

  8. Steam generator of the forced circulation type

    International Nuclear Information System (INIS)

    Forestier, Jean; Leblanc, Bernard; Monteil, Marcel; Monteil, Pierre

    1977-01-01

    The steam generator described is of the forced circulation single passage type comprising an outer casing including a vertical generally cylindrical side ring, an internal skirt coaxial with the outer casing, the bottom of this skirt having a free edge separated from a bottom end closing the outer casing, a central tube plate extending horizontally near a top end, in opposition to the bottom end, a peripheral tube plate, parallel to the central plate and located in the annular space under this central plate, a bundle of J shaped tubes [fr

  9. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  10. Visualization of large waves in churn and annular two-phase flow

    International Nuclear Information System (INIS)

    Dasgupta, Arnab; Chandraker, D.K.; Nayak, A.K.; Vijayan, P.K.; Kshirasagar, S.; Reddy, B.R.; Walker, S.P.

    2015-01-01

    The study of churn and annular two-phase flow regimes is important for boiling systems like nuclear reactors, U-tube steam generators etc. In this paper, visualization studies on air-water churn and annular two-phase flow regimes are reported. Though there are differences between air-water and boiling steam water systems, the major flow-pattern characteristics are similar (if not same).The specific object of study is the large waves which exist in both churn and annular regimes. These waves are responsible for majority of the momentum and mass dispersion across the phases. The differentiating characteristics of these waves in the chum and annular flow regimes are reported. The visualization also leads to a more quantitative representation of the transition from churn to annular flow. A new interpretation of the criterion for onset of entrainment is also evolved from the studies. (author)

  11. Analysis of Experimental Research on Cyclones with Cylindrical and Spiral Shells

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2012-12-01

    Full Text Available The conducted investigation is aimed at providing information on air flow parameters in the cylindrical and spiral shell (devices are designed for separating solid particles from air flow having tangent flow inlet. Experimental research has employed multi-cyclones created by the Department of Environmental Protection at Vilnius Gediminas Technical University. The study is focused on investigating and comparing the distribution of the dynamic pressure of the airflow in six-channel cyclones inside the structures of devices. The paper establishes and estimates the efficiency of air cleaning changing air phase parameters using different particulate matters. The efficiency of the cyclone has been defined applying the weighted method based on LAND 28-98/M-08 methodology. The article presents the results of experimental research on the air cleaning efficiency of cylindrical and spiral shells using 20 µm glass and clay particulate matter under the initial concentration that may vary from 500 mg/m3 to 15 g/m3 using semi-rings with windows at different positions. The obtained results has shown that the maximum efficiency of the cylindrical shell increases up to 87,3 % while the initial concentration of glass makes 15 g/m3.Article in Lithuanian

  12. Optimal Thrust Vectoring for an Annular Aerospike Nozzle, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  13. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo

    Science.gov (United States)

    Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  14. Buckling behaviour of imperfect ring-stiffened cone-cylinder intersections under internal pressure

    International Nuclear Information System (INIS)

    Zhao, Y.

    2005-01-01

    Cone-cylinder intersections are used commonly in pressure vessels and piping. In the case of a cone large end-to-cylinder intersection under internal pressure, the intersection is subject to a large circumferential compressive force. While both the cone and the cylinder may be locally thickened to strengthen the intersection, it is often desirable and convenient to provide an annular plate ring at the cone-to-cylinder joint to supplement local thickening or as an alternative strengthening measure, leading to a ring-stiffened cone-cylinder intersection. Only limited work has been carried out specifically on ring-stiffened cone-cylinder intersections under internal pressure. This paper presents the first experimental study on such intersections. In addition to the presentation of test results including geometric imperfections, failure behaviour and the determination of buckling mode and load based on displacement measurements, results from nonlinear bifurcation analysis using the perfect shape and nonlinear analysis using the measured imperfect shape are presented and compared with the experimental results

  15. Glove port retrofit assembly and method of replacing components

    Science.gov (United States)

    Giesen, Isaac M; Cournoyer, Michael E; Rael, David G

    2014-11-18

    What is disclosed is a system for retrofitting a sealed enclosure for performing work therein having an outer enclosure assembly configured to be clamped to the outer annular face of a port ring and form a sealed engagement with the outer annular surface of the port ring, a change assembly having an inner ring and an access element wherein the inner ring has a first annular cylinder body that is sized to be slidably received by the port ring and the access element is configured to be sealably and slidably positioned within the first annular cylinder body of the inner ring.

  16. Design and Optimization of Annular Flow Electromagnetic Measurement System for Drilling Engineering

    Directory of Open Access Journals (Sweden)

    Liang Ge

    2018-01-01

    Full Text Available Using the downhole annular flow measurement system to get real-time information of downhole annular flow is the core and foundation of downhole microflux control drilling technology. The research work of electromagnetic flowmeter in recent years creates a challenge to the design of downhole annular flow measurement. This paper proposes a design and optimization of annular flow electromagnetic measurement system for drilling engineering based on the finite element method. Firstly, the annular flow measuring and optimization principle are described. Secondly, a simulation model of an annular flow electromagnetic measurement system with two pairs of coil is built based on the fundamental equation of electromagnetic flowmeter by COMSOL. Thirdly, simulations of the structure of excitation system of the measurement system are carried out, and simulations of the size of the electrode’s radius are also carried out based on the optimized structure, and then all the simulation results are analyzed to evaluate the optimization effect based on the evaluation indexes. The simulation results show that optimized shapes of the excitation system and electrode size can yield a better performance in the annular flow measurement.

  17. A coaxial-output capacitor-loaded annular pulse forming line.

    Science.gov (United States)

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the

  18. A coaxial-output capacitor-loaded annular pulse forming line

    Science.gov (United States)

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the

  19. Near-limit propagation of gaseous detonations in narrow annular channels

    Science.gov (United States)

    Gao, Y.; Ng, H. D.; Lee, J. H. S.

    2017-03-01

    New results on the near-limit behaviors of gaseous detonations in narrow annular channels are reported in this paper. Annular channels of widths 3.2 and 5.9 mm were made using circular inserts in a 50.8 mm-diameter external tube. The length of each annular channel was 1.8 m. Detonations were initiated in a steel driver tube where a small volume of a sensitive C2H2+ 2.5O2 mixture was injected to facilitate detonation initiation. A 2 m length of circular tube with a 50.8 mm diameter preceded the annular channel so that a steady Chapman-Jouguet (CJ) detonation was established prior to entering the annular channel. Four detonable mixtures of C2H2 {+} 2.5O2 {+} 85 % Ar, C2H2 {+} 2.5O2 {+} 70 % Ar, C3H8 {+} 5O2, and CH4 {+} 2O2 were used in the present study. Photodiodes spaced 10 cm throughout the length of both the annular channel and circular tube were used to measure the detonation velocity. In addition, smoked foils were inserted into the annular channel to monitor the cellular structure of the detonation wave. The results show that, well within the detonability limits, the detonation wave propagates along the channel with a small local velocity fluctuation and an average global velocity can be deduced. The average detonation velocity has a small deficit of 5-15 % far from the limits and the velocity rapidly decreases to 0.7V_{CJ}-0.8V_{CJ} when the detonation propagates near the limit. Subsequently, the fluctuation of local velocity also increases as the decreasing initial pressure approaches the limit. In the two annular channels used in this work, no galloping detonations were observed for both the stable and unstable mixtures tested. The present study also confirms that single-headed spinning detonation occurs at the limit, as in a circular tube, rather than the up and down "zig zag" mode in a two-dimensional, rectangular channel.

  20. An Unusual Presentation of Annular Pancreas: A Case Report

    Directory of Open Access Journals (Sweden)

    Saleheh Ala

    2015-01-01

    Full Text Available Abstract Annular pancreas (AP is a rare congenital malformation resulting from failure of pancreas ventral anlage rotation with the duodenum. This leads to a ring of pancreatic tissue that envelops the duodenum. Clinical manifestations of AP most commonly develop in infancy or early childhood but can present at any age. The diagnosis of AP, usually suggested by an upper GI series or abdominal CT scan, but surgery is considered the gold standard diagnostic method. Surgical bypass of the annulus in all patients with symptomatic AP is recommended. We report a one year old girl who presented with intermittent, non projectile, non bilious vomiting that occurred 1h to 2h after feeding since neonatal period. Upper GI contrast study demonstrates, a dilated duodenal bulb associated with narrowing of post bulbar area. The patient underwent surgical correction of the obstruction. A bypass of the ectopic pancreas tissue was performed by duodenoduodenostomy. Considering the rarity of this congenital abnormality, presenting with chronic partial duodenal obstruction, and its successful correction by surgical means have prompted us to report the case.

  1. Imaging characteristics of Zernike and annular polynomial aberrations.

    Science.gov (United States)

    Mahajan, Virendra N; Díaz, José Antonio

    2013-04-01

    The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.

  2. Hydrostatic Pressure and Built-In Electric Field Effects on the Donor Impurity States in Cylindrical Wurtzite GaN/AlxGa1−xN Quantum Rings

    Directory of Open Access Journals (Sweden)

    Guangxin Wang

    2015-01-01

    Full Text Available Within the framework of the effective mass approximation, the ground-state binding energy of a hydrogenic impurity is investigated in cylindrical wurtzite GaN/AlxGa1-xN strained quantum ring (QR by means of a variational approach, considering the influence of the applied hydrostatic pressure along the QR growth direction and the strong built-in electric field (BEF due to the piezoelectricity and spontaneous polarization. Numerical results show that the donor binding energy for a central impurity increases inchmeal firstly as the QR radial thickness (ΔR decreases gradually and then begins to drop quickly. In addition, the donor binding energy is an increasing (a decreasing function of the inner radius (height. It is also found that the donor binding energy increases almost linearly with the increment of the applied hydrostatic pressure. Moreover, we also found that impurity positions have an important influence on the donor binding energy. The physical reasons have been analyzed in detail.

  3. Research on a lubricating grease print process for cylindrical cylinder

    Science.gov (United States)

    Yang, Liu; Zhang, Xuan; Wang, XianYan; Tan, XiaoYan

    2017-09-01

    In vehicle braking system and clutch system of transmission, there is always a kind of cylindrical component dose reciprocating motion. The main working method is the reciprocating motion between the rubber sealing parts and cylindrical parts, the main factor affects the service life of the product is the lubricating performance of the moving parts. So the lubricating performance between cylinders and rubber sealing rings is particularly important, same as the quality of the grease applies on the surface of the surface of cylinder. Traditional method of manually applying grease has some defects such as applying unevenly, applying tools like brush and cloth easily falls off and affect the cleanness of products, contact skin easily cause allergy, waste grease due to the uncontrollable of grease quantity using in applying, low efficiency of manual operation. An automatic, quantitative and high pressure applying equipment is introduced in this document to replace the traditional manually applying method, which can guarantee the applying quality of the grease which are painted on the surface of cylinder and bring economic benefits to the company.

  4. Residual stresses measurement by using ring-core method and 3D digital image correlation technique

    International Nuclear Information System (INIS)

    Hu, Zhenxing; Xie, Huimin; Zhu, Jianguo; Wang, Huaixi; Lu, Jian

    2013-01-01

    Ring-core method/three-dimensional digital image correlation (3D DIC) residual stresses measurement is proposed. Ring-core cutting is a mechanical stress relief method, and combining with 3D DIC system the deformation of the specimen surface can be measured. An optimization iteration method is proposed to obtain the residual stress and rigid-body motion. The method has the ability to cut an annular trench at a different location out of the field of view. A compression test is carried out to demonstrate how residual stress is determined by using 3D DIC system and outfield measurement. The results determined by the approach are in good agreement with the theoretical value. Ring-core/3D DIC has shown its robustness to determine residual stress and can be extended to application in the engineering field. (paper)

  5. Filtering peripheral high temperature electrons in a cylindrical rf-driven plasmas by an axisymmetric radial magnetic field

    Science.gov (United States)

    Akahoshi, Hikaru; Takahashi, Kazunori; Ando, Akira

    2018-03-01

    High temperature electrons generated near a radial wall of a cylindrical source tube in a radiofrequency (rf) inductively-coupled plasma is filtered by an axisymmetric radial magnetic field formed near the source exit by locating annular permanent magnets, where the axial magnetic field strength in the radially central region is fairly uniform inside the source tube and is close to zero near the source exit. The source is operated at 3 mTorr in argon and the rf antenna is powered by a 13.56 MHz and 400 W rf generator. Measurement of electron energy probability functions shows the presence of the peripheral high temperature electrons inside the source, while the temperature of the peripheral electrons downstream of the source is observed to be reduced.

  6. Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters

    Science.gov (United States)

    Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.

    2010-01-01

    Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.

  7. Integral transport multiregion geometrical shadowing factor for the approximate collision probability matrix calculation of infinite closely packed lattices

    International Nuclear Information System (INIS)

    Jowzani-Moghaddam, A.

    1981-01-01

    An integral transport method of calculating the geometrical shadowing factor in multiregion annular cells for infinite closely packed lattices in cylindrical geometry is developed. This analytical method has been programmed in the TPGS code. This method is based upon a consideration of the properties of the integral transport method for a nonuniform body, which together with Bonalumi's approximations allows the determination of the approximate multiregion collision probability matrix for infinite closely packed lattices with sufficient accuracy. The multiregion geometrical shadowing factors have been calculated for variations in fuel pin annular segment rings in a geometry of annular cells. These shadowing factors can then be used in the calculation of neutron transport from one annulus to another in an infinite lattice. The result of this new geometrical shadowing and collision probability matrix are compared with the Dancoff-Ginsburg correction and the probability matrix using constant shadowing on Yankee fuel elements in an infinite lattice. In these cases the Dancoff-Ginsburg correction factor and collision probability matrix using constant shadowing are in difference by at most 6.2% and 6%, respectively

  8. Boundary vapor contentsin an annular channel

    International Nuclear Information System (INIS)

    Remizov, O.V.; Shurkin, N.G.; Podgornyj, K.K.; Gal'chenko, Eh.F.; Bukhteev, I.S.

    1978-01-01

    The work is aimed at the experimental investigation of the worsening of the heat transfer in an annular channel. The experiments have been carried out on the annular channel 32x28x3000 mm with the even distribution of the heat flux along the length at pressures of 6.9-19.6 MPa, flow rate of 350-1000 kg/m 2 s, and specific heat fluxes from 0.18 up to 0.6 MW/m 2 . Heating is external, oneside. Water monodistillate of the following composition has been used as a coolant: pH 9; dry residue - 0.8-1.2 mg/kg, oxygen -10-15 mg/kg. It is found out that the change character of the temperature field of the heating surface of the annular channel at the regime with the worsen of heat emission depends on the ratio of regime parameters. At pressures of 6.9-13.7 MPa and flow rate of 350-500 kg/m 2 s the channel wall temperature rises monotoneously, never reaching its maximum. With pressure rise > 13.7 MPa and mass velocity > 500 kg/m 2 s the temperature of the heat emitting surface reaches its maximum, and then slowly falls. At pressures of 6.9-11.8 MPa the boundary vapor content value within the whole range of mass velocities does not depend on the specific heat flux q. At pressures higher than 13.7 MPa and mass velocities of 350-1000 kg/m 2 s the boundary vapor content depends on q. The heating of the external or internal surface of the annular channel affects the value of the boundary vapor content within the whole range of regime parameters' change under investigation

  9. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  10. Cylindrical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  11. Portal Annular Pancreas

    Science.gov (United States)

    Harnoss, Jonathan M.; Harnoss, Julian C.; Diener, Markus K.; Contin, Pietro; Ulrich, Alexis B.; Büchler, Markus W.; Schmitz-Winnenthal, Friedrich H.

    2014-01-01

    Abstract Portal annular pancreas (PAP) is an asymptomatic congenital pancreas anomaly, in which portal and/or mesenteric veins are encased by pancreas tissue. The aim of the study was to determine the role of PAP in pancreatic surgery as well as its management and potential complication, specifically, postoperative pancreatic fistula (POPF). On the basis of a case report, the MEDLINE and ISI Web of Science databases were systematically reviewed up to September 2012. All articles describing a case of PAP were considered. In summary, 21 studies with 59 cases were included. The overall prevalence of PAP was 2.4% and the patients' mean (SD) age was 55.9 (16.2) years. The POPF rate in patients with PAP (12 pancreaticoduodenectomies and 3 distal pancreatectomies) was 46.7% (in accordance with the definition of the International Study Group of Pancreatic Surgery). Portal annular pancreas is a quite unattended pancreatic variant with high prevalence and therefore still remains a clinical challenge to avoid postoperative complications. To decrease the risk for POPF, attentive preoperative diagnostics should also focus on PAP. In pancreaticoduodenectomy, a shift of the resection plane to the pancreas tail should be considered; in extensive pancreatectomy, coverage of the pancreatic remnant by the falciform ligament could be a treatment option. PMID:25207658

  12. Coexistence of morphea and granuloma annulare: a rare case report

    Directory of Open Access Journals (Sweden)

    Şenay Ağırgöl

    2017-11-01

    Full Text Available ABSTRACT CONTEXT: Localized scleroderma (morphea is characterized by fibrosis of skin and subcutaneous tissue. Granuloma annulare is a relatively common disease that is characterized by dermal papules and arciform plaques. CASE REPORT: Here, we present the case of a 42-year-old woman who developed granuloma annulare on the dorsum of her feet and abdominal region, and morphea on the anterior side of her lower limbs. We also discuss the etiological and pathogenetic processes that may cause the rare coexistence of these two diseases. CONCLUSION: Only a few cases in the literature have described coexistence of morphea and granuloma annulare.

  13. Thermocapillary and shear driven flows in gas/liquid system in annular duct

    International Nuclear Information System (INIS)

    Gaponenko, Yu; Shevtsova, V; Nepomnyashchy, A

    2011-01-01

    We report the results of numerical study of two-phase flows in annulus for different aspect ratios obtained in the frame of the JEREMI experiment preparation. The geometry of the physical problem is a cylindrical and non-deformable liquid bridge concentrically surrounded by an annular gas channel under conditions of zero gravity. Thermocapillary (Marangoni) convection in liquid bridge of Pr = 68 is analyzed in the case when the interface is subjected to an axial gas stream. The gas flow is counter-directed with respect to the Marangoni flow. The inlet gas velocity U 0 g , temperature difference ΔT between end rods of the liquid bridge and aspect ratio are the control parameters of the system. In the case when the gas stream comes from the cold side, it cools down the interface to a temperature lower than that of the liquid beneath, and in a certain region of the parameter space that cooling causes instability due to a temperature difference in the direction, perpendicular to the interface. The present study is focused on the influence of the aspect ratio on the existence and characteristic features of the oscillatory regime.

  14. Thermal Hydraulic Analysis Of Thorium-Based Annular Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyu Hyun [Korea Institute of Nuclear Safety, 19, Guseong-dong, Yuseong-gu, Daejeon, 305-338 (Korea, Republic of)

    2008-07-01

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal sub-channels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner sub-channels of the seed pins, mass fluxes were high due to the grid form losses in the outer sub-channels. About 43% of the heat generated from the seed pin flowed into the inner sub-channel and the rest into the outer sub-channel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner sub-channels, temperatures and enthalpies were higher in the inner sub-channels. (author)

  15. A bi-annular-gap magnetorheological energy absorber for shock and vibration mitigation

    Science.gov (United States)

    Bai, Xian-Xu; Wereley, Norman M.; Choi, Young-Tai; Wang, Dai-Hua

    2012-04-01

    For semi-active shock and vibration mitigation systems using magnetorheological energy absorbers (MREAs), the minimization of the field-off damper force of the MREA at high speed is of particular significance because the damper force due to the viscous damping at high speed becomes too excessive and thus the controllable dynamic force range that is defined by the ratio of the field-on damper force to the field-off damper force is significantly reduced. In this paper, a bi-annular-gap MREA with an inner-set permanent magnet is proposed to decrease the field-off damper force at high speed while keeping appropriate dynamic force range for improving shock and vibration mitigation performance. In the bi-annular-gap MREA, two concentric annular gaps are configured in parallel so as to decrease the baseline damper force and both magnetic activation methods using the electromagnetic coil winding and the permanent magnet are used to keep holding appropriate magnetic intensity in these two concentric annular gaps in the consideration of failure of the electric power supply. An initial field-on damper force is produced by the magnetic field bias generated from the inner-set permanent magnet. The initial damper force of the MREA can be increased (or decreased) through applying positive (or negative) current to the electromagnetic coil winding inside the bi-annular-gap MREA. After establishing the analytical damper force model of the bi-annular-gap MREA using a Bingham-plastic nonlinear fluid model, the principle and magnetic properties of the MREA are analytically validated and analyzed via electromagnetic finite element analysis (FEA). The performance of the bi-annular-gap MREA is also theoretically compared with that of a traditional single-annular- gap MREA with the constraints of an identical volume by the performance matrix, such as the damper force, dynamic force range, and Bingham number with respect to different excitation velocities.

  16. Finite-size and asymptotic behaviors of the gyration radius of knotted cylindrical self-avoiding polygons.

    Science.gov (United States)

    Shimamura, Miyuki K; Deguchi, Tetsuo

    2002-05-01

    Several nontrivial properties are shown for the mean-square radius of gyration R2(K) of ring polymers with a fixed knot type K. Through computer simulation, we discuss both finite size and asymptotic behaviors of the gyration radius under the topological constraint for self-avoiding polygons consisting of N cylindrical segments with radius r. We find that the average size of ring polymers with the knot K can be much larger than that of no topological constraint. The effective expansion due to the topological constraint depends strongly on the parameter r that is related to the excluded volume. The topological expansion is particularly significant for the small r case, where the simulation result is associated with that of random polygons with the knot K.

  17. Filtering peripheral high temperature electrons in a cylindrical rf-driven plasmas by an axisymmetric radial magnetic field

    Directory of Open Access Journals (Sweden)

    Hikaru Akahoshi

    2018-03-01

    Full Text Available High temperature electrons generated near a radial wall of a cylindrical source tube in a radiofrequency (rf inductively-coupled plasma is filtered by an axisymmetric radial magnetic field formed near the source exit by locating annular permanent magnets, where the axial magnetic field strength in the radially central region is fairly uniform inside the source tube and is close to zero near the source exit. The source is operated at 3 mTorr in argon and the rf antenna is powered by a 13.56 MHz and 400 W rf generator. Measurement of electron energy probability functions shows the presence of the peripheral high temperature electrons inside the source, while the temperature of the peripheral electrons downstream of the source is observed to be reduced.

  18. Burst protection device for largely cylindrical steam raising units, preferably of pressurized water nuclear power stations

    International Nuclear Information System (INIS)

    Mutzl, J.

    1978-01-01

    This burst protection device controls forces to be expected in an accident by resolving them into axial (vertical) and radial (horizontal) components, which are taken by a large number of elements stressed in tension. The steam raising unit is surrounded by a containment, but remains easily accessible. The containment consists of a steel jacket, lid and floor. Several cylindrical sections above one another form the steel jacket, which surrounds the steam raising unit with an intermediate insulating layer of concrete. The insulating concrete cylinder is of several times the thickness of the steel jacket, and also consists of cylindrical sections. An outer supporting ring for the lid and floor of the containment have outside diameters which project beyond the jacket. Prestressed circumferential vertical tension ropes between the supporting ring and floor take any additional tensional forces. The lid is domed with downward curvature towards the upper boiler dome. Internal bursting forces produce compressive stresses in the lid, which thus pass along its outside diameter into the surrounding ring. The lid, which is devided along one diameter, makes dismantling and access to the boiler easy even with a central steam pipe going upwards. The floor of the burst protection is also the floor of the steam raising unit. It is of several times the thickness of the tube floor, which, with its spacing above the floor forms the usual inlet and outlet space for the reactor cooling water. The main coolant pump installed there is driven by an external motor through a floor penetration. (HP) [de

  19. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Danni; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang; Qi, Zumin [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2015-11-15

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.

  20. A subchannel based annular flow dryout model

    International Nuclear Information System (INIS)

    Hammouda, Najmeddine; Cheng, Zhong; Rao, Yanfei F.

    2016-01-01

    Highlights: • A modified annular flow dryout model for subchannel thermalhydraulic analysis. • Implementation of the model in Canadian subchannel code ASSERT-PV. • Assessment of the model against tube CHF experiments. • Assessment of the model against CANDU-bundle CHF experiments. - Abstract: This paper assesses a popular tube-based mechanistic critical heat flux model (Hewitt and Govan’s annular flow model (based on the model of Whalley et al.), and modifies and implements the model for bundle geometries. It describes the results of the ASSERT subchannel code predictions using the modified model, as applied to a single tube and the 28-element, 37-element and 43-element (CANFLEX) CANDU bundles. A quantitative comparison between the model predictions and experimental data indicates good agreement for a wide range of flow conditions. The comparison has resulted in an overall average error of −0.15% and an overall root-mean-square error of 5.46% with tube data representing annular film dryout type critical heat flux, and in an overall average error of −0.9% and an overall RMS error of 9.9% with Stern Laboratories’ CANDU-bundle data.

  1. Volumetric real-time imaging using a CMUT ring array.

    Science.gov (United States)

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T

    2012-06-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.

  2. Heat transfer coefficient for flow boiling in an annular mini gap

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2016-01-01

    Full Text Available The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the number of experimentally determined constants. Known temperature distributions in the enhanced surface and in the fluid helped to determine, from the Robin condition, the local heat transfer coefficients at the enhanced surface – fluid contact. The Trefftz method was used to find two-dimensional temperature distributions for the thermal conductive filler layer, enhanced surface and flowing fluid. The method of temperature calculation depended on whether the area of single-phase convection ended with boiling incipience in the gap or the two-phase flow region prevailed, with either fully developed bubbly flow or bubbly-slug flow. In the two–phase flow, the fluid temperature was calculated by Trefftz method. Trefftz functions for the Laplace equation and for the energy equation were used in the calculations.

  3. Conceptual design of a moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1983-01-01

    A design of a prototype Moving-Ring Reactor has been completed. The fusion fuel is confined in current-carrying rings of magnetically field-reversed plasma (''compact toroids''). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three ''burn stations''. Separator coils and a slight axial guide-field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for one third of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power. The first wall and tritium breeding blanket designs make credible use of helium cooling, SiC and Li 2 O to minimize structural radioactivity. ''Hands-on'' maintenance is possible on all reactor components outside the blanket. The first wall and blanket are designed to shut the reactor down passively in the event of a loss-of-coolant or loss-of-flow accident. Helium removes heat from the first wall, blanket and shield, and is used in a closed-cycle gas turbine to produce electricity. Energy residing in the plasma ring at the end of the burn is recovered via magnetic expansion. Electrostatic direct conversion is not used in this design. The reactor produces a constant net power of 99 MW(e). (author)

  4. Annular pancreas causing extrahepatic biliary obstruction

    International Nuclear Information System (INIS)

    Ogulin, M.; Jamar, B.

    2004-01-01

    Background. Annular pancreas is an uncommon congenital abnormality, consisting of a flat band of pancreatic tissue, which encircles duodenum or extrahepatic biliary duct. We present a case of obstructive jaundice, caused by annular pancreas. Case report. A 46 years old female was admitted because of a sudden onset of abdominal pain, vomiting and jaundice. For the last six years she occasionally noticed her skin was light yellow, in the last year she felt distension in the upper abdomen, especially after fatty meals. Conclusions. Two US examinations, the first one six months before the admission, showed dilated hepatic ducts. The reason of dilatation was unclear, even after the endoscopic US examination. At operation an almost complete obstruction of the common hepatic duct was found, caused by a narrow band of pancreatic tissue. (author)

  5. Influence of a flow obstacle on the occurrence of burnout in boiling two-phase upward flow within a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, S.; Fukano, T. E-mail: fukanot@mech.kyushu-u.ac.jp

    2003-10-01

    When a flow obstruction such as a cylindrical spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heating tube is severely affected by its existence. In some cases, the cylindrical spacer has a cooling effect, and in the other cases it causes the dryout of the cooling water film on the heating surface resulting in the burnout of the heating tube. In the present paper, we have focused our attention on the influence of a flow obstacle on the occurrence of burnout of the heating tube in boiling two-phase flow. The results are summarized as follows: - When the heat flux approaches the burnout condition, the wall temperature on the heating tube fluctuates with a large amplitude. And once the wall temperature exceeds the Leidenfrost temperature, the burnout occurs without exception. - The trigger of dryout of the water film which causes the burnout is not the nucleate boiling but the evaporation of the base film between disturbance waves. - The burnout never occurs at the downstream side of the spacer. This is because the dryout area downstream of the spacer is rewetted easily by the disturbance waves.

  6. Influence of a flow obstacle on the occurrence of burnout in boiling two-phase upward flow within a vertical annular channel

    International Nuclear Information System (INIS)

    Mori, S.; Fukano, T.

    2003-01-01

    When a flow obstruction such as a cylindrical spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heating tube is severely affected by its existence. In some cases, the cylindrical spacer has a cooling effect, and in the other cases it causes the dryout of the cooling water film on the heating surface resulting in the burnout of the heating tube. In the present paper, we have focused our attention on the influence of a flow obstacle on the occurrence of burnout of the heating tube in boiling two-phase flow. The results are summarized as follows: - When the heat flux approaches the burnout condition, the wall temperature on the heating tube fluctuates with a large amplitude. And once the wall temperature exceeds the Leidenfrost temperature, the burnout occurs without exception. - The trigger of dryout of the water film which causes the burnout is not the nucleate boiling but the evaporation of the base film between disturbance waves. - The burnout never occurs at the downstream side of the spacer. This is because the dryout area downstream of the spacer is rewetted easily by the disturbance waves

  7. Mitral-aortic annular enlargement: modification of Manouguian's technique

    Directory of Open Access Journals (Sweden)

    Costa Mario Gesteira

    2002-01-01

    Full Text Available We hereby present a technical modification for mitral-aortic annular enlargement. The mitral valve is replaced through the retro-septal approach, avoiding patches for left atrial roof closure. We report a mitral-aortic valve replacement in a patient whose original annuli would preclude adequate prostheses. The simultaneous annular enlargement may be necessary for avoiding patient-prosthesis mismatch and for reconstructing destroyed mitral and aortic annuli. The technique may minimize the risk of bleeding and of paravalvular leakage, using an approach well known to cardiac surgeons.

  8. Thermo-acoustic cross-talk between cans in a can-annular combustor

    NARCIS (Netherlands)

    Farisco, Federica; Panek, Lukasz; Kok, Jim B.W.

    2017-01-01

    Thermo-acoustic instabilities in gas turbine engines are studied to avoid engine failure. Compared to the engines with annular combustors, the can-annular combustor design should be less vulnerable to acoustic burner-to-burner interaction, since the burners are acoustically coupled only by the

  9. Numerical modeling of the plasma ring acceleration experiment

    International Nuclear Information System (INIS)

    Eddleman, J.L.; Hammer, J.H.; Hartman, C.W.

    1987-01-01

    Modeling of the LLNL RACE experiment and its many applications has necessitated the development and use of a wide array of computational tools. The two-dimensional MHD code, HAM, has been used to model the formation of a compact torus plasma ring in a magnetized coaxial gun and its subsequent acceleration by an additional applied toroidal field. Features included in the 2-D calculations are self-consistent models for (1) the time-dependent poloidal field produced by a capacitor bank discharge through a solenoid field coil (located either inside the gun inner electrode or outside the outer gun electrode) and the associated diffusion of magnetic flux through neighboring conductors, (2) gas flow into the gun annular region from a simulated puffed gas valve plenum, (3) formation and motion of a current sheet produced by J x B forces resulting from discharge of the gun capacitor bank through the plasma load between the coaxial gun electrodes, (4) the subsequent stretching and reconnection of the poloidal field lines to form a compact torus plasma ring, and (5) finally the discharge of the accelerator capacitor bank producing an additional toroidal field for acceleration of the plasma ring. The code has been extended to include various models for gas breakdown, plasma anomalous resistivity, and mass entrainment from ablation of electrode material

  10. A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap

    Directory of Open Access Journals (Sweden)

    Musiał Tomasz

    2017-01-01

    Full Text Available In this paper the research on flow boiling heat transfer in an annular mini gap was discussed. A one- dimensional mathematical approach was proposed to describe stationary heat transfer in the gap. The mini gap 1 mm wide was created between a metal pipe with enhanced exterior surface and an external tempered glass pipe positioned along the same axis. The experimental test stand consists of several systems: the test loop in which distilled water circulates, the data and image acquisition system and the supply and control system. Known temperature distributions of the metal pipe with enhanced surface and of the working fluid helped to determine, from the Robin boundary condition, the local heat transfer coefficients at the fluid - heated surface contact. In the proposed mathematical model it is assumed that the cylindrical wall is a planar multilayer wall. The numerical results are presented on a chart as function of the heat transfer coefficient along the length of the mini gap.

  11. Dismantling the activated annular water tank of the Rheinsberg nuclear power plant

    International Nuclear Information System (INIS)

    Klietz, Maik; Konitzer, Arnold; Luedeke, Michael

    2010-01-01

    Acting on behalf of Energiewerke Nord GmbH Lubmin, Anlagen- und Kraftwerksrohrleitungsbau Greifswald GmbH (AKB) planned and built a station for disassembly of the activated annular water tank (RWB) of the decommissioned Rheinsberg nuclear power plant. As part of this demolition step, the annular water tank must be conditioned and disposed of as a component of the reactor facility. This required planning, manufacturing, testing and construction on site of suitable disassembly and handling techniques and the necessary plant and equipment. The client opted for disassembly by means of a diamond cable saw for conditioning the annular water tank into segments fit for shipping, and defined the basic components for the disassembly station in a specification of deliveries and services. The disassembly station serves to divide the annular water tank by means of diamond cable saws into 2 sections in such a way that segment pieces for transport are produced. The existing activation of the annular water tank also entailed the need to plan for the shortest possible time to be spent on handling near the annular water tank, providing radiological protection to the personnel, and performing the sawing steps from a separate operating console assisted by camera surveillance. After works acceptance tests at the manufacturer's, AKB, in October 2009 and February 2010, the disassembly station was delivered to the customer at Rheinsberg KKR free from defects in June 2010. (orig.)

  12. Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian

    2007-01-01

    In this Letter, for the dust-ion-acoustic waves with azimuthal perturbation in a dusty plasma, a cylindrical modified Kadomtsev-Petviashvili (CMKP) model is constructed by virtue of symbolic computation, with three families of exact analytic solutions obtained as well. Dark and bright CMKP nebulons are investigated with pictures and related to such dusty-plasma environments as the supernova shells and Saturn's F-ring. Difference of the CMKP nebulons from other known nebulons is also analyzed, and possibly-observable CMKP-nebulonic effects for the future plasma experiments are proposed, especially those on the possible notch/slot and dark-bright bi-existence

  13. Inhomogeneous distribution of Chlamydomonas in a cylindrical container with a bubble plume

    Science.gov (United States)

    Nonaka, Yuki; Kikuchi, Kenji; Numayama-Tsuruta, Keiko; Kage, Azusa; Ueno, Hironori; Ishikawa, Takuji

    2016-01-01

    ABSTRACT Swimming microalgae show various taxes, such as phototaxis and gravitaxis, which sometimes result in the formation of a cell-rich layer or a patch in a suspension. Despite intensive studies on the effects of shear flow and turbulence on the inhomogeneous distribution of microalgae, the effect of a bubble plume has remained unclear. In this study, we used Chlamydomonas as model microalgae, and investigated the spatial distribution of cells in a cylindrical container with a bubble plume. The results illustrate that cells become inhomogeneously distributed in the suspension due to their motility and photo-responses. A vortical ring distribution was observed below the free surface when the bubble flow rate was sufficiently small. We performed a scaling analysis on the length scale of the vortical ring, which captured the main features of the experimental results. These findings are important in understanding transport phenomena in a microalgae suspension with a bubble plume. PMID:26787679

  14. Behaviour of large cylindrical drift chambers in a superconducting solenoid

    International Nuclear Information System (INIS)

    Boer, W. de; Fues, W.; Grindhammer, G.; Kotthaus, R.; Lierl, H.; Moss, L.

    1980-04-01

    We describe the construction and behaviour of a set of cylindrical drift chambers operating inside a superconducting solenoid with a central magnetic field of 1.3 T. The chambers are part of the 4 π detector CELLO at the e + e - storage ring PETRA in Hamburg. The chambers were designed without field shaping to keep them as simple as possible. In order to parametrize accurately the nonlinear space-time relation, we used a computer simulation of the drift process in inhomogenous electric and magnetic fields. With such a parametrization we achieved a resolution of 210 μm, averaged over the whole drift cell and angles of incidence up to 30 0 . (orig.)

  15. Flow Characteristics and Sizing of Annular Seat Valves for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Bech, Michael Møller; Andersen, Torben O.

    2018-01-01

    operating range. To achieve high machine efficiency, the valve flow losses and the required electrical power needed for valve switching should be low. The annular valve plunger geometry, of a valve prototype developed for digital displacement machines, is parametrized by three parameters: stroke length......This paper investigates the steady-state flow characteristics and power losses of annular seat valves for digital displacement machines. Annular seat valves are promising candidates for active check-valves used in digital displacement fluid power machinery which excels in efficiency in a broad...... a valve prototype. Using the simulated maps to estimate the flow power losses and a simple generic model to estimate the electric power losses, both during digital displacement operation, optimal designs of annular seat valves, with respect to valve power losses, are derived under several different...

  16. Standing wave acoustic levitation on an annular plate

    Science.gov (United States)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  17. Experimental investigation of the trapping and energy loss mechanisms of intense relativistic electron rings in hydrogen gas and plasma

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.

    1977-01-01

    The results of an experimental study on the trapping and energy loss mechanisms of intense, relativistic electron rings confined in Astron-like magnetic field geometries are presented. The work is subdivided into four sections: gas trapping; average ring electron energetics; plasma trapping, and hollow-beam cusp-injection into gas and plasma. The mechanisms by which the injected beam coalesces into a current ring in the existing Cornell RECE-Berta facility are considered. To investigate the nature of ring electron energy loss mechanisms following completion of the trapping process, a diagnostic was developed utilizing multi-foil X-ray absorption spectroscopy to analyze the Bremsstrahlung generated by the electrons as they impinge upon a thin tungsten wire target suspended in the circulating current. Finally, a set of preliminary experimental results is presented in which an annular electron beam was passed through a coaxial, non-adiabatic magnetic cusp located at one end of a magnetic mirror well

  18. Impact of Annular Size on Outcomes After Surgical or Transcatheter Aortic Valve Replacement.

    Science.gov (United States)

    Deeb, G Michael; Chetcuti, Stanley J; Yakubov, Steven J; Patel, Himanshu J; Grossman, P Michael; Kleiman, Neal S; Heiser, John; Merhi, William; Zorn, George L; Tadros, Peter N; Petrossian, George; Robinson, Newell; Mumtaz, Mubashir; Gleason, Thomas G; Huang, Jian; Conte, John V; Popma, Jeffrey J; Reardon, Michael J

    2018-04-01

    This analysis evaluates the relationship of annular size to hemodynamics and the incidence of prosthesis-patient mismatch (PPM) in surgical aortic valve replacement (SAVR) and transcatheter aortic valve replacement (TAVR) patients. The CoreValve US Pivotal High Risk Trial, described previously, compared TAVR using a self-expanding valve with SAVR. Multislice computed tomography was used to categorize TAVR and SAVR subjects according to annular perimeter-derived diameter: large (≥26 mm), medium (23 to <26 mm), and small (<23 mm). Hemodynamics, PPM, and clinical outcomes were assessed. At all postprocedure visits, mean gradients were significantly lower for TAVR compared with SAVR in small and medium size annuli (p < 0.001). Annular size was significantly associated with mean gradient after SAVR, with small annuli having the highest gradients (p < 0.05 at all timepoints); gradients were similar across all annular sizes after TAVR. In subjects receiving SAVR, the frequency of PPM was significantly associated with annular size, with small annuli having the greatest incidence. No difference in PPM incidence by annular sizing was observed with TAVR. In addition, TAVR subjects had significantly less PPM than SAVR subjects in small and medium annuli (p < 0.001), with no difference in the incidence of PPM between TAVR and SAVR in large annuli (p = 0.10). Annular size has a significant effect on hemodynamics and the incidence of PPM in SAVR subjects, not observed in TAVR subjects. With respect to annular size, TAVR results in better hemodynamics and less PPM for annuli less than 26 mm and should be strongly considered when choosing a tissue valve for small and medium size annuli. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Supra-annular Valve-in-Valve implantation reduces blood stasis on the transcatheter aortic valve leaflets.

    Science.gov (United States)

    Vahidkhah, Koohyar; Azadani, Ali N

    2017-06-14

    Leaflet thrombosis following transcatheter aortic valve replacement (TAVR) and Valve-in-Valve (ViV) procedures has been increasingly recognized. This study aimed to investigate the effect of positioning of the transcatheter aortic valve (TAV) in ViV setting on the flow dynamics aspect of post-ViV thrombosis by quantifying the blood stasis in the intra-annular and supra-annular settings. To that end, two idealized computational models, representing ViV intra-annular and supra-annular positioning of a TAV were developed in a patient-specific geometry. Three-dimensional flow fields were then obtained via fluid-solid interaction modeling to study the difference in blood residence time (BRT) on the TAV leaflets in the two settings. At the end of diastole, a strip of high BRT (⩾1.2s) region was observed on the TAV leaflets in the ViV intra-annular positioning at the fixed boundary where the leaflets are attached to the frame. Such a high BRT region was absent on the TAV leaflets in the supra-annular positioning. The maximum value of BRT on the surface of non-, right, and left coronary leaflets of the TAV in the supra-annular positioning were 53%, 11%, and 27% smaller compared to the intra-annular positioning, respectively. It was concluded that the geometric confinement of TAV by the leaflets of the failed bioprosthetic valve in ViV intra-annular positioning increases the BRT on the leaflets and may act as a permissive factor in valvular thrombosis. The absence of such a geometric confinement in the ViV supra-annular positioning leads to smaller BRT and subsequently less likelihood of leaflet thrombosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Monthly rifampicin, ofloxacin, and minocycline therapy for generalized and localized granuloma annulare

    Directory of Open Access Journals (Sweden)

    Shilpa Garg

    2015-01-01

    Full Text Available Background: The localized form of granuloma annulare is usually self-limiting, resolving within 2 years. Generalized granuloma annulare, on the other hand, runs a protracted course, with spontaneous resolution being rare. It is also characterized by a later age of onset, an increased incidence of diabetes mellitus, poor response to therapy, and an increased prevalence of HLA Bw35. Objective: To assess the efficacy of monthly pulsed rifampicin, ofloxacin, and minocycline (ROM therapy in the management of granuloma annulare. Methods : Six biopsy proven patients of granuloma annulare were included in the study, five of the generalized variety, and one localized. Three of these patients were resistant to standard modalities of treatment. All six patients were treated with pulses of once monthly ROM till complete resolution of all lesions. Results were analyzed in terms of complete resolution of lesions and side effects. Presence of comorbid conditions was noted. Result: All six patients were successfully treated with 4-8 pulses of monthly ROM. None of the patients reported any adverse effects. Limitations: Small sample size and the lack of a control group are limitations. Conclusion: Treatment with pulses of once monthly ROM caused complete resolution of lesions in both localized and generalized granuloma annulare, even in cases recalcitrant to conventional therapy. There were no side effects in any of the patients. Larger trials are needed to substantiate the efficacy of monthly ROM in granuloma annulare.

  1. Method and system for installing a layered vessel on location

    International Nuclear Information System (INIS)

    Pechacek, R.E.; Clay, E.J.

    1982-01-01

    A method and system for installing a layered vessel wherein the method includes the steps of constructing the bottom vessel head section in an inverted position mounting the bottom head section on the vessel foundation, erecting a generally cylindrical construction frame having a plurality of annular work stations; substantially simultaneously with the erection of the cylindrical construction frame, constructing onto the bottom head a cylindrical inside shell liner and a hemispherical upper head inside liner and adding layers to the inside shell from the bottom upwardly with the addition of such layers occurring substantially simultaneously at various of the annular work stations. A system for accomplishing these steps is provided, including particular method for constructing the bottom head, and further, an annularly movable crane assembly is provided for the work stations. (author)

  2. Ultrasonographic assessment of the proximal digital annular ligament in the equine forelimb

    International Nuclear Information System (INIS)

    Dik, K.J.; Boroffka, S.; Stolk, P.

    1994-01-01

    Ultrasonography was used with 6 normal cadaver forelimbs of Dutch Warmblood horses to delineate the ultrasonographic anatomy of the palmar pastern region, with emphasis on the proximal digital annular ligament. Using a 5.5 MHz sector scanner, the thin proximal digital annular ligament was not visible on offset sonograms. Only if the digital sheath in the normal limb was distended was the distal border of this ligament outlined. In all normal limbs the palmarodistal thickness of the combined skin-proximal digital annular ligament layer in the mid-pastern region was 2 mm. The flexor tendons and distal sesamoidean ligaments were easily identified as hyperechoic structures. Distension of the digital sheath in the normal limbs clearly outlined the anechoic digital sheath pouches. In 4 lame horses ultrasonography aided the diagnosis of functional proximal digital annular ligament constriction. In all 4 diseased forelimbs ultrasonography demonstrated thickening of the skin-proximal digital annular ligament layer and distension of the digital sheath. In one of these limbs the distended digital sheath was also thickened. The flexor tendons and distal sesamoidean ligaments were normal. There was no radiographic evidence of additional bone or joint lesions

  3. Ultrasonographic assessment of the proximal digital annular ligament in the equine forelimb.

    Science.gov (United States)

    Dik, K J; Boroffka, S; Stolk, P

    1994-01-01

    Ultrasonography was used with 6 normal cadaver forelimbs of Dutch Warmblood horses to delineate the ultrasonographic anatomy of the palmar pastern region, with emphasis on the proximal digital annular ligament. Using a 5.5 MHz sector scanner, the thin proximal digital annular ligament was not visible on offset sonograms. Only if the digital sheath in the normal limb was distended was the distal border of this ligament outlined. In all normal limbs the palmarodistal thickness of the combined skin-proximal digital annular ligament layer in the mid-pastern region was 2 mm. The flexor tendons and distal sesamoidean ligaments were easily identified as hyperechoic structures. Distension of the digital sheath in the normal limbs clearly outlined the anechoic digital sheath pouches. In 4 lame horses ultrasonography aided the diagnosis of functional proximal digital annular ligament constriction. In all 4 diseased forelimbs ultrasonography demonstrated thickening of the skin-proximal digital annular ligament layer and distension of the digital sheath. In one of these limbs the distended digital sheath was also thickened. The flexor tendons and distal sesamoidean ligaments were normal. There was no radiographic evidence of additional bone or joint lesions.

  4. Maximizing prosthetic valve size with the Top Hat supra-annular aortic valve

    DEFF Research Database (Denmark)

    Aagaard, Jan; Geha, Alexander S.

    2007-01-01

    BACKGROUND AND AIM OF THE STUDY: The CarboMedics Top Hat supra-annular aortic valve allows a one-size (and often two-size) increase over the standard intra-annular valve. This advantage should minimize the risk of patient-prosthesis mismatch, where the effective prosthetic valve orifice area....... This study evaluates the authors' clinical experience with Top Hat supra-annular aortic valve size selection, and the technical aspects of implantation. METHODS: Between January 1999 and October 2005, a total of 251 consecutive patients underwent 252 aortic valve replacements with Top Hat supra...... required unplanned coronary bypass, and 30-day mortality was 2.0% (5/251), indicating a good safety profile for the valves implanted in this series. CONCLUSION: The general distribution of implant sizes in the US indicates that cardiac surgeons may be under-sizing the Top Hat supra-annular aortic valve...

  5. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  6. Fluid-structure coupling between a vibrating cylinder and a narrow annular flow

    International Nuclear Information System (INIS)

    Perotin, L.

    1994-01-01

    This paper presents an analytical investigation of the fluidelastic coupling between an axial annular flow and a flexible vibrating axisymmetrical structure. The model presented is suited to single-phase, incompressible, viscous fluids and to annular flows of variable cross-section, axially symmetrical when the structure is motionless.An experimental validation of this model is presented at the end of the paper: the results obtained with the numerical model are compared with experimental data for an oscillating cylinder free to vibrate under the effect of a variable-cross-section annular flow. ((orig.))

  7. An electrostatic storage ring for low kinetic energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Reddish, T J; Tessier, D R; Sullivan, M R; Thorn, P A [Department of Physics, University of Windsor, Windsor, N9B 3P4 (Canada); Hammond, P; Alderman, A J [School of Physics, CAMSP, University of Western Australia, Perth WA 6009 (Australia); Read, F H [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

    2009-11-01

    The criteria are presented for stable multiple orbits of charged particles in a race-track shaped storage ring and applied to an electrostatic system consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses. The results of charged particle simulations and the formal matrix theory, including aberrations in the energy-dispersive electrostatic 'prisms', are in good agreement with the observed experimental operating conditions for this Electron Recycling Spectrometer (ERS).

  8. Vibration Analysis of Annular Sector Plates under Different Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Dongyan Shi

    2014-01-01

    Full Text Available An analytical framework is developed for the vibration analysis of annular sector plates with general elastic restraints along each edge of plates. Regardless of boundary conditions, the displacement solution is invariably expressed as a new form of trigonometric expansion with accelerated convergence. The expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. This work allows a capability of modeling annular sector plates under a variety of boundary conditions and changing the boundary conditions as easily as modifying the material properties or dimensions of the plates. Of equal importance, the proposed approach is universally applicable to annular sector plates of any inclusion angles up to 2π. The reliability and accuracy of the current method are adequately validated through numerical examples.

  9. The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives.

    Science.gov (United States)

    Nesci, Salvatore; Trombetti, Fabiana; Ventrella, Vittoria; Pagliarani, Alessandra

    2016-04-01

    The F1FO-ATP synthase is the only enzyme in nature endowed with bi-functional catalytic mechanism of synthesis and hydrolysis of ATP. The enzyme functions, not only confined to energy transduction, are tied to three intrinsic features of the annular arrangement of c subunits which constitutes the so-called c-ring, the core of the membrane-embedded FO domain: (i) the c-ring constitution is linked to the number of ions (H(+) or Na(+)) channeled across the membrane during the dissipation of the transmembrane electrochemical gradient, which in turn determines the species-specific bioenergetic cost of ATP, the "molecular currency unit" of energy transfer in all living beings; (ii) the c-ring is increasingly involved in the mitochondrial permeability transition, an event linked to cell death and to most mitochondrial dysfunctions; (iii) the c subunit species-specific amino acid sequence and susceptibility to post-translational modifications can address antibacterial drug design according to the model of enzyme inhibitors which target the c subunits. Therefore, the simple c-ring structure not only allows the F1FO-ATP synthase to perform the two opposite tasks of molecular machine of cell life and death, but it also amplifies the enzyme's potential role as a drug target.

  10. Periduodenal Tuberculosis masquerading as Annular Pancreas ...

    African Journals Online (AJOL)

    We report a patient who succumbed to an isolated mid duodenal tuberculosis, diagnosed at laparatomy, whose clinical presentation, endoscopy and computerised tomography scans resembled annular pancreas. The limitations of clinical evaluation, endoscopy and radiology are highlighted as the importance of diagnostic ...

  11. Frequency Equations for the In-Plane Vibration of Circular Annular Disks

    Directory of Open Access Journals (Sweden)

    S. Bashmal

    2010-01-01

    Full Text Available This paper deals with the in-plane vibration of circular annular disks under combinations of different boundary conditions at the inner and outer edges. The in-plane free vibration of an elastic and isotropic disk is studied on the basis of the two-dimensional linear plane stress theory of elasticity. The exact solution of the in-plane equation of equilibrium of annular disk is attainable, in terms of Bessel functions, for uniform boundary conditions. The frequency equations for different modes can be obtained from the general solutions by applying the appropriate boundary conditions at the inner and outer edges. The presented frequency equations provide the frequency parameters for the required number of modes for a wide range of radius ratios and Poisson's ratios of annular disks under clamped, free, or flexible boundary conditions. Simplified forms of frequency equations are presented for solid disks and axisymmetric modes of annular disks. Frequency parameters are computed and compared with those available in literature. The frequency equations can be used as a reference to assess the accuracy of approximate methods.

  12. Laser material processing with tightly focused cylindrical vector beams

    Energy Technology Data Exchange (ETDEWEB)

    Drevinskas, Rokas, E-mail: rd1c12@soton.ac.uk; Zhang, Jingyu; Beresna, Martynas; Gecevičius, Mindaugas; Kazansky, Peter G. [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Kazanskii, Andrey G. [Physics Department, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Svirko, Yuri P. [Physics Department, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Institute of Photonics, University of Eastern Finland, P.O.BOX 111, FI-80101 Joensuu (Finland)

    2016-05-30

    We demonstrate a comprehensive modification study of silica glass, crystalline silicon, and amorphous silicon film, irradiated by tightly focused cylindrical vector beams with azimuthal and radial polarizations. The evidence of the longitudinal field associated with radial polarization is revealed by second harmonic generation in z-cut lithium niobate crystal. Despite the lower threshold of ring-shaped modification of silicon materials, the modification in the center of single pulse radially polarized beam is not observed. The phenomenon is interpreted in terms of the enhanced reflection of longitudinal component at the interface with high-index contrast, demonstrating that the longitudinal component is inefficient for the flat surface modification. Enhanced interaction of the longitudinal light field with silicon nanopillar structures produced by the first pulse of double-pulse irradiation is also demonstrated.

  13. Visualizing the effect of dynamin inhibition on annular gap vesicle formation and fission.

    Science.gov (United States)

    Nickel, Beth; Boller, Marie; Schneider, Kimberly; Shakespeare, Teresa; Gay, Vernon; Murray, Sandra A

    2013-06-15

    Although gap junction plaque assembly has been extensively studied, mechanisms involved in plaque disassembly are not well understood. Disassembly involves an internalization process in which annular gap junction vesicles are formed. These vesicles undergo fission, but the molecular machinery needed for these fissions has not been described. The mechanoenzyme dynamin has been previously demonstrated to play a role in gap junction plaque internalization. To investigate the role of dynamin in annular gap junction vesicle fission, immunocytochemical, time-lapse and transmission electron microscopy were used to analyze SW-13 adrenocortical cells in culture. Dynamin was demonstrated to colocalize with gap junction plaques and vesicles. Dynamin inhibition, by siRNA knockdown or treatment with the dynamin GTPase inhibitor dynasore, increased the number and size of gap junction 'buds' suspended from the gap junction plaques. Buds, in control populations, were frequently released to form annular gap junction vesicles. In dynamin-inhibited populations, the buds were larger and infrequently released and thus fewer annular gap junction vesicles were formed. In addition, the number of annular gap junction vesicle fissions per hour was reduced in the dynamin-inhibited populations. We believe this to be the first report addressing the details of annular gap junction vesicle fissions and demonstrating a role of dynamin in this process. This information is crucial for elucidating the relationship between gap junctions, membrane regulation and cell behavior.

  14. Thermohydraulic analysis of smooth and finned annular ducts

    International Nuclear Information System (INIS)

    Braga, C.V.M.

    1987-01-01

    The present work is concerned with the turbulent heat transfer and pressure drop in smooth and finned annular ducts overage heat transfer coefficients have been obtained by means of the heat exchanger theory. In addition, friction factors have also been determined. The experiments were performed by utilizing four double-pipe heat exchangers. The flowing fluids, in the heat exchangers, were air and water. The average heat transfer coefficients, for air flowing in the annular section, were determined by measuring the overall heat transfer coefficients of the heat exchangers. In order to attain fully developed conditions, the heat exchangers had a starting length of 30 hydraulic diameters. The thermal boundary conditions consisted of uniform temperature on the inner surface, the outer surface being insulated. The heat transfer coefficients and friction factors are presented in dimensionaless forms, as functions of the Reynolds number of the flow. The results for the smooth and finned annular ducts were compared. The purpose of such comparison was to study the influence of the fins on the pressure drop and heat transfer rate. In the case of the finned nular ducts, it is shown that the fin efficiency has some fluence on the heat transfer rates. The, a two-dimensional at transfer analysis was performed in order to obtain the n efficiency and the annular region efficiency. It is also shown that the overall thermal performance of finned surfaces epends mainly on the Nusselt number and on the region eficiency. These parameters are presented as functions of the Reynolds number of the flow and the geometry of the problem. (author) [pt

  15. Divergent Field Annular Ion Engine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work investigates an approach that would allow an annular ion engine geometry to achieve ion beam currents approaching the Child-Langmuir limit. In this...

  16. The construction and performance of a large cylindrical wire chamber with cathode readout

    International Nuclear Information System (INIS)

    Deiters, K.; Donat, A.; Friebel, W.; Heller, R.; Kirsch, S.; Krankenhagen, R.; Lange, W.; Leiste, R.; Lohmann, W.; Lustermann, W.; Peng, Y.; Roeser, U.; Tonisch, F.; Trowitzsch, G.; Vogt, H.; Wilhelmi, M.

    1991-12-01

    The construction and performance of two large coaxial cylindrical multiwire proportional chambers with cathode readout, denoted as Z-Detector, forming the outer part of the L3 central tracking detector, are described. Three self supporting cylinders of about 1 m length and 1 m diameter, constructed as a sandwich of Kapton foil and foam, form the mechanical frame. It represents 2% of a radiation length. In each chamber one cathode layer is subdivided in helical strips and the other one in rings. The readout of the charges induced on the cathode strips and the other one in rings. The readout of the charges induced on the cathode strips provides the avalanche position along the beam (z-) direction. The detector has been running in the L3 experiment at LEP for nearly two years. The resolution of the z-measurement is 320 μm, the double track resolution is about 10 mm. The efficiency of each chamber is 96%. (orig.)

  17. Modeling approach for annular-fuel elements using the ASSERT-PV subchannel code

    International Nuclear Information System (INIS)

    Dominguez, A.N.; Rao, Y.

    2012-01-01

    The internally and externally cooled annular fuel (hereafter called annular fuel) is under consideration for a new high burn-up fuel bundle design in Atomic Energy of Canada Limited (AECL) for its current, and its Generation IV reactor. An assessment of different options to model a bundle fuelled with annular fuel elements is presented. Two options are discussed: 1) Modify the subchannel code ASSERT-PV to handle multiple types of elements in the same bundle, and 2) coupling ASSERT-PV with an external application. Based on this assessment, the selected option is to couple ASSERT-PV with the thermalhydraulic system code CATHENA. (author)

  18. Annular Internal-External-Expansion Rocket Nozzles for Large Booster Applications

    Science.gov (United States)

    Connors, James F.; Cubbison, Robert W.; Mitchell, Glenn A.

    1961-01-01

    For large-thrust booster applications, annular rocket nozzles employing both internal and external expansion are investigated. In these nozzles, free-stream air flows through the center as well as around the outside of the exiting jet. Flaps for deflecting the rocket exhaust are incorporated on the external-expansion surface for thrust-vector control. In order to define nozzle off-design performance, thrust vectoring effectiveness, and external stream effects, an experimental investigation was conducted on two annular nozzles with area ratios of 15 and 25 at Mach 0, 2, and 3 in the Lewis 10- by 10-foot wind tunnel. Air, pressurized to 600 pounds per square inch absolute, was used to simulate the exhaust flow. For a nozzle-pressure-ratio range of 40 to 1000, the ratio of actual to ideal thrust was essentially constant at 0.98 for both nozzles. Compared with conventional convergent-divergent configurations on hypothetical boost missions, the performance gains of the annular nozzle could yield significant orbital payload increases (possibly 8 to 17 percent). A single flap on the external-expansion surface of the area-ratio-25 annular nozzle produced a side force equal to 4 percent of the axial force with no measurable loss in axial thrust.

  19. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    Science.gov (United States)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  20. Quantitative experiments on thermal hydraulic characteristics of an annular tube with twisted fins

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Dairaku, Masayuki; Taniguchi, Masaki; Sato, Kazuyoshi; Suzuki, Satoshi; Akiba, Masato

    2003-11-01

    Thermal hydraulic experiments measuring critical heat flux (CHF) and pressure drop of an annular tube with twisted fins, ''annular swirl tube'', has been performed to examine its applicability to the ITER divertor cooling structure. The annular swirl tube consists of two concentric circular tubes, the outer and inner tubes. The outer tube with outer and inner diameters (OD and ID) of 21 mm and 15 mm is made of Cu-alloy that is CuCrZr and oe of candidate materials of the ITER divertor cooling tube. The inner tube with OD of 11 mm and ID of 9 mm is made of stainless steal. It has an external swirl fin with twist ratio (y) of three to enhance its heat transfer performance. In this tube, cooling water flows inside of the inner tube first, and then returns into an annulus between the outer and inner tubes with a swirl flow at an end-return of the cooling tube. The CHF experiments show that no degradation of CHF of the annular swirl tube in comparison with the conventional swirl tube whose dimensions are similar to those of the outer tube of the annular swirl tube. A minimum axial velocity of 7.1 m/s is required to remove the incident heat flux of 28MW/m 2 , the ITER design value. Applicability of the JAERI's correlation for the heat transfer to the annular swirl tube is also demonstrated by comparing the experimental results with those of the numerical analysis. The friction factor correlation for the annular flow with the twisted fins is also proposed for the hydrodynamic design of the ITER vertical target. The least pressure drop at the end-return is obtained by using the hemispherical end-plug. Its radius is the same as that of ID of the outer cooling tube. These results show that thermal-hydraulic performance of the annular swirl tube is promising in application to the cooling structure for the ITER vertical target. (author)

  1. Evaluation of tricuspid annular plane systolic excursion measured with cardiac MRI in children with tetralogy of Fallot.

    Science.gov (United States)

    Soslow, Jonathan H; Usoro, Emem; Wang, Li; Parra, David A

    2016-04-01

    Aneurysmal dilation of the right ventricular outflow tract complicates assessment of right ventricular function in patients with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion is commonly used to estimate ejection fraction. We hypothesised that tricuspid annular plane systolic excursion measured by cardiac MRI approximates global and segmental right ventricular function, specifically right ventricular sinus ejection fraction, in children with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion was measured retrospectively on cardiac MRIs in 54 patients with repaired tetralogy of Fallot. Values were compared with right ventricular global, sinus, and infundibular ejection fractions. Tricuspid annular plane systolic excursion was indexed to body surface area, converted into a fractional value, and converted into published paediatric Z-scores. Tricuspid annular plane systolic excursion measurements had good agreement between observers. Right ventricular ejection fraction did not correlate with the absolute or indexed tricuspid annular plane systolic excursion and correlated weakly with fractional tricuspid annular plane systolic excursion (r=0.41 and p=0.002). Segmental right ventricular function did not appreciably improve correlation with any of the tricuspid annular plane systolic excursion measures. Paediatric Z-scores were unable to differentiate patients with normal and abnormal right ventricular function. Tricuspid annular plane systolic excursion measured by cardiac MRI correlates poorly with global and segmental right ventricular ejection fraction in children with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion is an unreliable approximation of right ventricular function in this patient population.

  2. Annular centrifugal contactors for TRPO process test

    International Nuclear Information System (INIS)

    Duan, W.H.; Wang, J.C.; Chen, J.; Zhou, X.Z.; Zhou, J.Z.; Song, C.L.

    2005-01-01

    The TRPO process has been developed in China for removing TRU elements from high-level liquid waste (HLLW) since 1980s. Centrifugal contactors have several advantages such as low hold-up volume, short residence time, low solvent degradation, small space requirements and short start-up time. Therefore, they are favored for both the reprocessing of spent fuel and the treatment of HLLW. In order to meet study on the TRPO test, a series of annular centrifugal contactors have been developed in Institute of Nuclear and -New Energy Technology, Tsinghua University, China (INET). In particular, the 10-mm annular centrifugal contactor for the laboratory-scale test has been applied successfully in the cold and hot tests of the TRPO process. The 70-mm annular centrifugal contactor for the industry-scale test has two new design characteristics, namely a modular design and an overflow structure. The modular design makes the contactor to be disassembled and assembled fast by simply moving the modules up and down. With the overflow structure, even though one stage or non-adjacent stages of the multi-stage cascade in operation are ceased to work, the cascade can continue to operate. Both the hydraulic performance and the mass-transfer efficiency of these contactors are excellent, and the extraction stage efficiency is greater than 95% at suitable operating conditions.

  3. Entrainment in vertical annular two-phase flow

    International Nuclear Information System (INIS)

    Sawant, Pravin; Ishii, Mamoru; Mori, Michitsugu

    2009-01-01

    Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air-water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam-water annular flow conditions. In each of the experiments, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using a liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant et al. (2008a) for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible. Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air-water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air-water, helium-water and air-genklene experimental data measured by Willetts (1987). (author)

  4. Patch Type Granuloma Annulare Imitating Cutaneous T-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Şeval Doğruk Kaçar

    2015-03-01

    Full Text Available Granuloma annulare (GA is a benign inflammatory skin disease with distinct clinical and histopathological findings. Patch type GA is described with erythematous patches beyond the classical clinical appearance and an interstitial pattern is observed without histopathologically granulomas with disseminated histiocytes among collagen bundles and vessels. Here we report 46 year old woman diagnosed as patch type GA after a punch biopsy performed from the annular bordered patches in belly area, which is a classical area for mycosis fungoides (MF evolution, and lesions increasingly spreading out within a 2 year period.

  5. Study on gas-liquid loop reactors with annular bubbling

    International Nuclear Information System (INIS)

    Fei, L.M.; Wang, S.X.; Wu, X.Q.; Lu, D.W.

    1987-01-01

    Bubbling column with draft tube is one of nearly developed reactor. On the background of hydrocarbon oxidations and biochemical engineerings, it has been widely used in chemical industry due to the well characteristics of mass and heat transfer. In this paper, the characteristics of fluid flow, such as gas hold-up, backmixing and mass transfer referred to the liquid volume were measured in a gas-liquid loop reactor with annular bubbling. Different materials - water, alcohol and oi l- were used in the study in measuring the gas hold-up in the annular of the reactor

  6. A void fraction model for annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, T.N.; Gupta, C.P.; Varma, H.K.

    1985-01-01

    An analytical model has been developed for predicting void fraction in two-phase annular flow. In the analysis, the Lockhart-Martinelli method has been used to calculate two-phase frictional pressure drop and von Karman's universal velocity profile is used to represent the velocity distribution in the annular liquid film. Void fractions predicted by the proposed model are generally in good agreement with a available experimental data. This model appears to be as good as Smith's correlation and better than the Wallis and Zivi correlations for computing void fraction.

  7. A woman with juxta-articular nodules—An uncommon form of subcutaneous granuloma annulare

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2014-06-01

    Full Text Available Granuloma annulare is a benign inflammatory dermatosis that is most common in children and young adults. The subcutaneous form of granuloma annulare, which occurs mainly on the extremities in children, is rare. Lesions usually occur as painless subcutaneous nodules without inflammation of the cutaneous surface; the most frequent sites are the legs, buttocks, and scalp. Nevertheless, we present a case of subcutaneous granuloma annulare confined to the dorsa of the hand joints and right knee in a 51-year-old woman.

  8. Thermal Deformation Analysis of the Annular Fuel

    International Nuclear Information System (INIS)

    Kim, Ju Seong; Kim, Yong Soo; Yang, Yong Sik; Bang, Je Geon

    2009-01-01

    Recently Korea Atomic Energy Research Institute suggested 12 by 12 annular fuel assembly, claiming that this new design can be applied to PWR reactor of OPR-1000 that are using 16 by 16 assembly, Compared to current fuel system, heat transfer area is enlarged, and thus heat flux is diminished. This design demonstrates that CHF(critical heat flux) restricting the operation power condition. This advanced fuel is believed to many advantages such as lowered fuel temperature, reduced fission gas release, and so forth. Nevertheless, annular geometry has some difficulties in predicting fuel performance behavior. This new design, heat transfer takes place in two directions through inner and outer gap. This heat split ultimately determines the inner and outer gap conductances that are key variables governing the fuel performance

  9. Annular beam shaping and optical trepanning

    Science.gov (United States)

    Zeng, Danyong

    Percussion drilling and trepanning are two laser drilling methods. Percussion drilling is accomplished by focusing the laser beam to approximately the required diameter of the hole, exposing the material to one or a series of laser pulses at the same spot to melt and vaporize the material. Drilling by trepanning involves cutting a hole by rotating a laser beam with an optical element or an x-y galvo-scanner. Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. Heating depth is important for drilling application. Since there are no good ways to measure the temperature inside substrate during the drilling process, an analytical model for optical trepanning has been developed by considering an axisymmetric, transient heat conduction equation, and the evolutions of the melting temperature isotherm, which is referred to as the melt boundary in this study, are calculated to investigate the influences of the laser pulse shapes and intensity profiles on the hole geometry. This mathematical model provides a means of understanding the thermal effect of laser irradiation with different annular beam shapes. To take account of conduction in the solid, vaporization and convection due to the melt flow caused by an assist gas, an analytical two-dimensional model is developed for optical trepanning. The influences of pulse duration, laser pulse length, pulse repetition rate, intensity profiles and beam radius are investigated to examine their effects on the recast layer thickness, hole depth and taper. The ray tracing technique of geometrical optics is employed to design the necessary optics to transform a Gaussian laser beam into an annular beam of different intensity profiles. Such profiles include half Gaussian with maximum intensities at the inner and outer

  10. Effect of electric field on the oscillator strength and cross-section for intersubband transition in a semiconductor quantum ring

    International Nuclear Information System (INIS)

    Bhattacharyya, S; Das, N R

    2012-01-01

    In this paper, we study the oscillator strength and cross-section for intersubband optical transition in an n-type semiconductor quantum ring of cylindrical symmetry in the presence of an electric field perpendicular to the plane of the ring. The analysis is done considering Kane-type band non-parabolicity of the semiconductor and assuming that the polarization of the incident radiation is along the axis of the ring. The results show that the oscillator strength decreases and the transition energy increases with the electric field. The assumption of a parabolic band leads to an overestimation of the oscillator strength. The effects of the electric field, band non-parabolicity and relaxation time on absorption cross-section for intersubband transition in a semiconductor quantum ring are also shown. (paper)

  11. Thermal performance of annular-coated and sphere-pac LWR fuel rod designs

    International Nuclear Information System (INIS)

    Guenther, R.J.; Hsieh, K.A.; Barner, J.O.; Freshley, M.D.

    1980-01-01

    Two FCI-resistant UO 2 fuel rod designs are being compared to a reference design in irradiation tests in the Halden Boiling Water Reactor (HBWR) as part of the DOE-sponsored Fuel Performance Improvement Program (FPIP). The primary fuel design (annular-coated-pressurized) incorporates annular pellets, a graphite coating on the inner surface of the Zircaloy cladding, and pressurized helium fill gas. Also being investigated is an 87% smear density sphere-pac design with pressurized helium fill gas. The solid pellet (reference) and annular-coated designs described had helium fill gas at approx. 100 kPa and the sphere-pac rods were pressurized at approx. 455 kPa

  12. A Case of Erythema Annulare Centrifigum with Sjögren Syndrome

    Directory of Open Access Journals (Sweden)

    İlgen Ertam

    2010-03-01

    Full Text Available Erythema annulare centrifigum is a dermatose which is frequently seen in adults. It is characterized by erythematous lesions which spread asymmetrically to periphery and have a collarette desquamation. Although infection, tumor, food allergy, drug reaction can play a role in the aetiology, most of the cases are idiopathic. A forty-nine years old, female patient presented to our clinic with erythematous lesions on both of her lower extremities. Six weeks prior to her referral, she treated with quinine for Sjogren syndrome. She had a diagnosis of granuloma annulare in her personal history. There was no significance in her family history. In dermatologic examination; annular erythematous plaques and collarette desquamation were detected on lower extremities. Histopathologic examination of the lesional biopsy specimen revealed focal spongiosis in the epidermis, dermal oedema, vascular proliferation and perivascular infiltration of lymphocytes, eosinophils and histiocytes. In the laboratory examination; blood count, liver and kidney function tests, sedimentation, C-reactive protein was normal. Rheumatoid factor was 30. Antinuclear antibody was 1/640 granular pattern. A case of erythema annulare centrifigum with Sjögren Syndrome is discussed with the other skin findings of the disease.

  13. CYBPET: a cylindrical PET system for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Karimian, A. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) and Nuclear Research Center for Agriculture and Medicine (NRCAM-AEOI), P.O. BOX. (31485-498), Karaj, Iran, Islamic Republic of and Department of Experimental Medicine and Pathology, University of Rome, La Sapienza, Rome (Italy)]. E-mail: akarimian@nrcam.org; Thompson, C.J. [Montreal Neurological Institute, McGill University, Montreal QC (Canada); Sarkar, S. [Medical physics Department of Tehran University of Medical Sciences and (RCSTIM), Tehran (Iran, Islamic Republic of); Raisali, G. [Nuclear Research Center for Agriculture and Medicine (NRCAM-AEOI), P.O. BOX. (31485-498), Karaj (Iran, Islamic Republic of); Pani, R. [Department of Experimental Medicine and Pathology, University of Rome La Sapienza, Rome (Italy); Davilu, H. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sardari, D. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2005-06-11

    We propose a Cylindrical Breast PET (CYBPET) system for breast imaging with patients in the prone position. An individual pendulous breast is covered by thin plastic to provide reduced pressure fixation and surrounded by the crystals inside the CYBPET ring. Each breast is imaged separately. The rest of the body is shielded properly to minimize the contribution of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET (WB-PET) the simulations of CYBPET and a WB-PET (GE-Advance) for a 10 mm tumor inside the breast with a lesion to background (breast) activity concentration of 6 to 1 were made. The noise effective count rate (NECR) of CYBPET is about twice that of WB-PET at activity concentrations less than 3.1 {mu}Ci/cc. The spatial resolution of CYBPET is better by 25% than the WB-PET.

  14. CYBPET: a cylindrical PET system for breast imaging

    International Nuclear Information System (INIS)

    Karimian, A.; Thompson, C.J.; Sarkar, S.; Raisali, G.; Pani, R.; Davilu, H.; Sardari, D.

    2005-01-01

    We propose a Cylindrical Breast PET (CYBPET) system for breast imaging with patients in the prone position. An individual pendulous breast is covered by thin plastic to provide reduced pressure fixation and surrounded by the crystals inside the CYBPET ring. Each breast is imaged separately. The rest of the body is shielded properly to minimize the contribution of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET (WB-PET) the simulations of CYBPET and a WB-PET (GE-Advance) for a 10 mm tumor inside the breast with a lesion to background (breast) activity concentration of 6 to 1 were made. The noise effective count rate (NECR) of CYBPET is about twice that of WB-PET at activity concentrations less than 3.1 μCi/cc. The spatial resolution of CYBPET is better by 25% than the WB-PET

  15. Cylindrical and spherical space equivalents to the plane wave expansion technique of Maxwell's wave equations

    Science.gov (United States)

    Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed

    2015-02-01

    The plane wave expansion (PWM) technique applied to Maxwell's wave equations provides researchers with a supply of information regarding the optical properties of dielectric structures. The technique is well suited for structures that display a linear periodicity. When the focus is directed towards optical resonators and structures that lack linear periodicity the eigen-process can easily exceed computational resources and time constraints. In the case of dielectric structures which display cylindrical or spherical symmetry, a coordinate system specific set of basis functions have been employed to cast Maxwell's wave equations into an eigen-matrix formulation from which the resonator states associated with the dielectric profile can be obtained. As for PWM, the inverse of the dielectric and field components are expanded in the basis functions (Fourier-Fourier-Bessel, FFB, in cylindrical and Fourier- Bessel-Legendre, BLF, in spherical) and orthogonality is employed to form the matrix expressions. The theoretical development details will be presented indicating how certain mathematical complications in the process have been overcome and how the eigen-matrix can be tuned to a specific mode type. The similarities and differences in PWM, FFB and BLF are presented. In the case of structures possessing axial cylindrical symmetry, the inclusion of the z axis component of propagation constant makes the technique applicable to photonic crystal fibers and other waveguide structures. Computational results will be presented for a number of different dielectric geometries including Bragg ring resonators, cylindrical space slot channel waveguides and bottle resonators. Steps to further enhance the computation process will be reported.

  16. Discharge Oscillations in a Permanent Magnet Cylindrical Hall-Effect Thruster

    Science.gov (United States)

    Polzin, K. A.; Sooby, E. S.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    Measurements of the discharge current in a cylindrical Hall thruster are presented to quantify plasma oscillations and instabilities without introducing an intrusive probe into the plasma. The time-varying component of the discharge current is measured using a current monitor that possesses a wide frequency bandwidth and the signal is Fourier transformed to yield the frequency spectra present, allowing for the identification of plasma oscillations. The data show that the discharge current oscillations become generally greater in amplitude and complexity as the voltage is increased, and are reduced in severity with increasing flow rate. The breathing mode ionization instability is identified, with frequency as a function of discharge voltage not increasing with discharge voltage as has been observed in some traditional Hall thruster geometries, but instead following a scaling similar to a large-amplitude, nonlinear oscillation mode recently predicted in for annular Hall thrusters. A transition from lower amplitude oscillations to large relative fluctuations in the oscillating discharge current is observed at low flow rates and is suppressed as the mass flow rate is increased. A second set of peaks in the frequency spectra are observed at the highest propellant flow rate tested. Possible mechanisms that might give rise to these peaks include ionization instabilities and interactions between various oscillatory modes.

  17. Cylindrical fabric-confined soil structures

    Science.gov (United States)

    Harrison, Richard A.

    A cylindrical fabric-soil structural concept for implementation on the moon and Mars which provides many advantages is proposed. The most efficient use of fabric is to fashion it into cylindrical tubes, creating cylindrical fabric-confined soil structures. The length, diameter, and curvature of the tubes will depend on the intended application. The cylindrical hoop forces provide radial confinement while end caps provide axial confinement. One of the ends is designed to allow passage of the soil into the fabric tube before sealing. Transportation requirements are reduced due to the low mass and volume of the fabric. Construction requirements are reduced due to the self-erection capability via the pneumatic exoskeleton. Maintenance requirements are reduced due to the passive nature of the concept. The structure's natural ductility is well suited for any seismic activity.

  18. Manufacturing process for cylindrical ceramic tubes with localized imprints and device for application of this process

    International Nuclear Information System (INIS)

    1985-01-01

    This invention involves a process for manufacturing permeable cylindrical ceramic tubes with localized relief such as annular, spiral or simple coiled or double crossed coils or even stipple imprints on their internal face. It is known that one of the techniques for the separation of the mixture of gases with close molecular masses is gaseous diffusion. According to this technique, the gas mixture is circulated under pressure inside tubes constituted by a microporous wall. These tubes, according to a known technique, are constituted by a macroporous ceramic tube, generally called a support, covered on the inside with a microporous layer deposited on this interior wall. The unit constituted by the tube itself or the ''support'' and the microporous layer makes it possible to adapt the total porosity of the covered tube or ''barrier'' in order to obtain an optimal coefficient of gas separation. This technique is used specifically for separation of two gases corresponding to various isotopes of the same simple body. 6 figs

  19. Percutaneous endoscopic intra-annular subligamentous herniotomy for large central disc herniation: a technical case report.

    Science.gov (United States)

    Lee, Sang-Ho; Choi, Kyung-Chul; Baek, Oon Ki; Kim, Ho Jin; Yoo, Seung-Hwa

    2014-04-01

    Technical case report. To describe the novel technique of percutaneous endoscopic herniotomy using a unilateral intra-annular subligamentous approach for the treatment of large centrally herniated discs. Open discectomy for large central disc herniations may have poor long-term prognosis due to heavy loss of intervertebral disc tissue, segmental instability, and recurrence of pain. Six consecutive patients who presented with back and leg pain, and/or weakness due to a large central disc herniation were treated using percutaneous endoscopic herniotomy with a unilateral intra-annular subligamentous approach. The patients experienced relief of symptoms and intervertebral disc spaces were well maintained. The annular defects were noted to be in the process of healing and recovery. Percutaneous endoscopic unilateral intra-annular subligamentous herniotomy was an effective and affordable minimally invasive procedure for patients with large central disc herniations, allowing preservation of nonpathological intradiscal tissue through a concentric outer-layer annular approach.

  20. High Thrust-to-Power Annular Engine Technology

    Science.gov (United States)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  1. Modelling and Simulation of the Radiant Field in an Annular Heterogeneous Photoreactor Using a Four-Flux Model

    Directory of Open Access Journals (Sweden)

    O. Alvarado-Rolon

    2018-01-01

    Full Text Available This work focuses on modeling and simulating the absorption and scattering of radiation in a photocatalytic annular reactor. To achieve so, a model based on four fluxes (FFM of radiation in cylindrical coordinates to describe the radiant field is assessed. This model allows calculating the local volumetric rate energy absorption (LVREA profiles when the reaction space of the reactors is not a thin film. The obtained results were compared to radiation experimental data from other authors and with the results obtained by discrete ordinate method (DOM carried out with the Heat Transfer Module of Comsol Multiphysics® 4.4. The FFM showed a good agreement with the results of Monte Carlo method (MC and the six-flux model (SFM. Through this model, the LVREA is obtained, which is an important parameter to establish the reaction rate equation. In this study, the photocatalytic oxidation of benzyl alcohol to benzaldehyde was carried out, and the kinetic equation for this process was obtained. To perform the simulation, the commercial software COMSOL Multiphysics v. 4.4 was employed.

  2. Fluid-structure interaction analysis of annular seals and rotor systems in multi-stage pumps

    International Nuclear Information System (INIS)

    Jiang, Qinglei; Zhai, Lulu; Wang, Leqin; Wu, Dazhuan

    2013-01-01

    Annular seals play an important role in determining the vibrational behavior of rotors in multi-stage pumps. To determine the critical speeds and unbalanced responses of rotor systems which consider annular seals, a fluid-structure interaction (FSI) method was developed, and the numerical method was verified by experiments conducted on a model rotor. In a typical FSI process, rotor systems are modeled based on a node-element method, and the motion equations are expressed in a type of matrix. To consider the influence of annular seals, dynamic coefficients of annular seals were introduced into the motion equations through matrix transformation. The test results of the model rotor showed good agreement with the calculated results. Based on the FSI method proposed here, the governing equations of annular seals were solved in two different ways. The results showed that the Childs method is more accurate in predicting a rotor's critical speed. The critical speeds of the model rotor were calculated at different clearance sizes and length/diameter ratios. Tilting coefficients of long seals were added to the dynamic coefficients to consider the influence of tilting. The critical speeds reached their maximum value when the L/D ratio was around 1.25, and tilting enhanced the rotor's stability when long annular seals were located in either end of the shaft.

  3. Flow Characteristics and Sizing of Annular Seat Valves for Digital Displacement Machines

    Directory of Open Access Journals (Sweden)

    Christian Nørgård

    2018-01-01

    Full Text Available This paper investigates the steady-state flow characteristics and power losses of annular seat valves for digital displacement machines. Annular seat valves are promising candidates for active check-valves used in digital displacement fluid power machinery which excels in efficiency in a broad operating range. To achieve high machine efficiency, the valve flow losses and the required electrical power needed for valve switching should be low. The annular valve plunger geometry, of a valve prototype developed for digital displacement machines, is parametrized by three parameters: stroke length, seat radius and seat width. The steady-state flow characteristics are analyzed using static axi-symmetric computational fluid dynamics. The pressure drops and flow forces are mapped in the valve design space for several different flow rates. The simulated results are compared against measurements using a valve prototype. Using the simulated maps to estimate the flow power losses and a simple generic model to estimate the electric power losses, both during digital displacement operation, optimal designs of annular seat valves, with respect to valve power losses, are derived under several different operating conditions.

  4. Reactor cavity seal ring

    International Nuclear Information System (INIS)

    Hankinson, M.F.

    1986-01-01

    A hydrostatic seal is described for sealing an annular gap between two flat substantially horizontal coplanar surfaces comprising, in combination: a generally flat annular plate of a width sufficient to span a gap between two surfaces: compressible annular sealing means disposed on the bottom surface of the flat annular plate for sealingly engaging the two flat surfaces in response to a downward force exerted on the plate; and fastening means, distributed along the center line of the plate, for releasably fastening the plate in a position to span the gap to be sealed and exert a downward force on the plate, each fastening means including a pair of elongated members of a size to fit into the gap to be sealed, means for mounting the members on the bottom surface of the plate so that at least a portion of each member is radially moveable in a direction toward a respective one of the vertical side surfaces defining the gap to be sealed to engage same and so that the plate is moveable relative to the members in a downward direction in response to hydrostatic pressure applied to the upper surface of the plate when the members are engaging the vertical side surfaces of an annular gap, and an actuating means, mounted on the plate for movement therewith in response to hydrostatic pressure, for radially moving the members, the actuating means extending through a bore in the plate to the upper surface of the plate

  5. Ballistic impulse gauge

    Science.gov (United States)

    Ault, Stanley K.

    1993-01-01

    A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring.

  6. The Pulsed Cylindrical Magnetron for Deposition

    Science.gov (United States)

    Korenev, Sergey

    2012-10-01

    The magnetron sputtering deposition of films and coatings broadly uses in microelectronics, material science, environmental applications and etc. The rate of target evaporation and time for deposition of films and coatings depends on magnetic field. These parameters link with efficiency of gas molecules ionization by electrons. The cylindrical magnetrons use for deposition of films and coatings on inside of pipes for different protective films and coatings in oil, chemical, environmental applications. The classical forming of magnetic field by permanent magnets or coils for big and long cylindrical magnetrons is complicated. The new concept of pulsed cylindrical magnetron for high rate deposition of films and coating for big and long pipes is presented in this paper. The proposed cylindrical magnetron has azimuthally pulsed high magnetic field, which allows forming the high ionized plasma and receiving high rate of evaporation material of target (central electrode). The structure of proposed pulsed cylindrical magnetron sputtering system is given. The main requirements to deposition system are presented. The preliminary data for forming of plasma and deposition of Ta films and coatings on the metal pipers are discussed. The comparison of classical and proposed cylindrical magnetrons is given. The analysis of potential applications is considered.

  7. Development of annular targets for 99Mo production

    International Nuclear Information System (INIS)

    Conner, C.; Lewandowski, E.F.; Snelgrove, J.L.; Liberatore, M.W.; Walker, D.E.; Wiencek, T.C.; McGann, D.J.; Hofman, G.L.; Vandegrift, G.F.

    1999-01-01

    During 1999, significant progress was made in the development of a low-enriched uranium (LEU) target for production of 99 Mo. Successful conversion requires an inexpensive, reliable target. To keep the target geometry the same when changing from high-enriched uranium (HEU) to LEU targets, a denser form of uranium is required in order to increase the amount of uranium per target by a factor of approximately five. Targets containing LEU in the form of a metal foil are being developed for producing 99 Mo from the fissioning of 235 U. A new annular target was developed this year, and seven targets were irradiated in the Indonesian RSG-GAS reactor. Results of development of this annular target and its performance during irradiation are described. (author)

  8. Velocity and phase distribution measurements in vertical air-water annular flows

    International Nuclear Information System (INIS)

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film

  9. Removable cruciform for ice condenser ice basket

    International Nuclear Information System (INIS)

    Scrabis, C.M.; Mazza, G.E.; Golick, L.R.; Pomaibo, P.

    1987-01-01

    A removable cruciform for use in an ice basket having a generally cylindrical sidewall defining a central, vertical axis of the ice basket and plural, generally annular retaining rings secured to the interior of the cylindrical sidewall of the ice basket at predetermined, spaced elevations throughout the axial height of the ice basket is described comprising: a pair of brackets, each comprising a central, base portion having parallel longitudinal edges and a pair of integral legs extending at corresponding angles relative to the base portion from the perspective parallel longitudinal edges thereof; a pair of support plate assemblies secured to and extending in parallel, spaced relationship from one of the pair of brackets; a pair of slide support plates secured to the other of the pair of brackets and extending therefrom in spaced, parallel relationship; and spring means received within the housing and engaging the base portions of the brackets and applying a resilient biasing force thereto for maintaining the spaced relationship thereof

  10. Experimental Investigation and Analysis of an Annular Pogo Accumulator

    Science.gov (United States)

    Peugeot, John; Schwarz, Jordan; Yang, H. Q.; Zoladz, Tom

    2011-01-01

    An experimental investigation was conducted on a scaled annular pogo accumulator for the Ares I Upper Stage. The test article was representative of the LO2 feedline and preliminary accumulator design, and included multiple designs of a perforated ring connecting the accumulator to the core feedline flow. The system was pulse tested in water over a range of pulse frequency and flow rates. Time dependent measurements of pressure at various locations in the test article were used to extract system compliance, inertance, and resistance. Preliminary results indicated a significant deviation from standard orifice flow theory and suggest a strong dependence on feedline average velocity. In addition, several CFD analyses were conducted to investigate the details of the time variant flow field. Both two-dimensional and three-dimensional simulations were performed with time varying boundary conditions used to represent system pulsing. The CFD results compared well with the sub-scale results and demonstrated the influence of feedline average velocity on the flow into and out of the accumulator. This paper presents updated results of the investigation including a parametric design space for determining resistance characteristics. Using the updated experimental results a new scaling relationship has been defined for shear flow over a cavity. A comparison of sub-scale and full scale CFD simulations provided early verification of the scaling of the fluid flowfield and resistance characteristics.

  11. Experimental study on flow pattern and heat transfer of inverted annular flow

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki; Akagawa, Koji; Fujii, Terushige; Nishida, Koji

    1990-01-01

    Experimental results are presented on flow pattern and heat transfer in the regions from inverted annular flow to dispersed flow in a vertical tube using freon R-113 as a working fluid at atmospheric pressure to discuss the correspondence between them. Axial distributions of heat transfer coefficient are measured and flow patterns are observed. The heat transfer characteristics are divided into three regions and a heat transfer characteristics map is proposed. The flow pattern changes from inverted annular flow (IAF) to dispersed flow (DF) through inverted slug flow (ISF) for lower inlet velocities and through agitated inverted annular flow (AIAF) for higher inlet velocities. A flow pattern map is obtained which corresponds well with the heat transfer characteristic map. (orig.)

  12. [A rare form of granuloma annulare].

    Science.gov (United States)

    Bogdanowski, T; Wygledowska-Kania, M

    1995-01-01

    We present a four-year-old girl with a doubly rare form of granuloma annulare with non-typical localisation of superficial nodules on the palms and predisposition to ulceration which is very rare in this type of superficial nodules. The diagnosis was proved by histological examination. After the local cryotherapy (ethyl chloride) the lesions almost completely disappeared.

  13. Burnout in the boiling of water and freon-113 on tubes with annular fins

    International Nuclear Information System (INIS)

    Rubin, I.R.; Pul'kin, I.N.; Roizen, L.I.

    1986-01-01

    This paper presents the results of numerical calculations of burnout heat flux associated with the boiling of Freon-113 and water on an annular fin of constant thickness which have been approximated by simple analytical relations. These are used to calculate the critical burnout parameters of tubes with an annular fin assembly. The calculated data may be used for the analysis of tubes with an annular fin assembly over a wide range of variation of the thermophysical properties of the material and geometrical parameters of the fin assembly

  14. Experimental study on dryout point of flow boiling in bilaterally heated narrow annular channel

    International Nuclear Information System (INIS)

    Wu Geping; Wu Aimin; Tian Wenxi; Li Hao; Jia Dounan; Su Guanghui; Qiu Suizheng

    2003-01-01

    This paper presents and experimental study of the dryout point of flow boiling in bilaterally heated narrow annular channel with 1.5 mm and 2 mm annular gap, respectively. The range of pressure is 2.0-4.0 MPa and that of mass flux is 40-80 kg/m 2 ·s. Kutajilagi equation which is adaptable to tubes is used to deal with the experimental data and an empirical equation is obtained. Again this empirical equation is amended, then an empirical equation of the dryout point suitable for narrow annular channel is obtained

  15. An analytical model for annular flow boiling heat transfer in microchannel heat sinks

    International Nuclear Information System (INIS)

    Megahed, A.; Hassan, I.

    2009-01-01

    An analytical model has been developed to predict flow boiling heat transfer coefficient in microchannel heat sinks. The new analytical model is proposed to predict the two-phase heat transfer coefficient during annular flow regime based on the separated model. Opposing to the majority of annular flow heat transfer models, the model is based on fundamental conservation principles. The model considers the characteristics of microchannel heat sink during annular flow and eliminates using any empirical closure relations. Comparison with limited experimental data was found to validate the usefulness of this analytical model. The model predicts the experimental data with a mean absolute error 8%. (author)

  16. Study of natural convection characteristics in a narrow annular gap in (Part 1)

    International Nuclear Information System (INIS)

    Narahara, Nobuyuki; Uotani, Masaki; Kinoshita, Izumi

    1986-01-01

    To clarify the characteristics of natural convection in a narrow annular gap at the roof-slab penetrations in pool-type LMFBR, preliminary and visualization experiments were carried out. The results are summarized as follows. (1) In the preliminary experiment having the upper and bottom closed annular space nondimensional circumferential temperature difference increases with gap width decreasing, and decreses with Rayleigh number increasing at the range of rayleigh number 10 10 to 10 11 . (2) In the visualization experiment, which consists the upper and bottom closed annular space type apparatus and the upper-closed bottom-open type apparatus, flow pattern and its effect at temperature distribution are clarified. (author)

  17. Multiperiodic accelerator structures for linear particle accelerators

    International Nuclear Information System (INIS)

    Tran, D.T.

    1975-01-01

    High efficiency linear accelerator structures, comprised of a succession of cylindrical resonant cavities for acceleration, are described. Coupling annular cavities are located at the periphery, each being coupled to two adjacent cylindrical cavities. (auth)

  18. Ring-element analysis of layered orthotropic bodies

    DEFF Research Database (Denmark)

    Jørgensen, O.

    1993-01-01

    For the analysis of arbitrarily laminated circular bodies, a displacement-based ring-element is presented. The analysis is performed in a cylindrical coordinate system. The method of analysis requires the boundary conditions as well as the external forces to be pi-periodic. The element formulation...... accounts for a desired degree of approximation of the displacement field in the direction of the circumference. This is done by a truncated Fourier expansion of the angular dependence of the displacements in terms of trigonometric functions. Thus the Fourier expansion coefficients are the unknowns...... to that of solutions obtained by traditional 3D elements. A scheme for analytical integration of the angular dependence of the stiffness matrix is given....

  19. Experimental critical parameters of enriched uranium solution in annular tank geometries

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant's Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all

  20. Experimental critical parameters of enriched uranium solution in annular tank geometries

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all.

  1. Spark igniter having precious metal ground electrode inserts

    International Nuclear Information System (INIS)

    Ryan, N.A.

    1988-01-01

    This patent describes an igniter comprising a shell of a shell metal alloy which is resistant to spark erosion and corrosion, the shell having a firing end which terminates at its lower end in an annular ring, an insulator sealed within the metal shell and having a central bore and a surface extending inwardly toward the bore from the annular ring, a center electrode sealed within the bore of the insulator and having a firing end which is in spark gap relation with the annular ring of the shell and so positioned that a spark discharge between the firing end and the annular ring occurs along the inwardly extending surface of the insulator, and a plurality of oxidation and erosion resistant inserts, each of the inserts comprising a body of a metal selected from the group consisting of iridium, osmium, ruthenium, rhodium, platinum, and tungsten or an alloy or a ductile alloy of one of the foregoing metals, each of the bodies being embedded within a matching opening which extends from the exterior of the shell through the annular ring, being bonded to the shell

  2. Multi-slice CT features of annular pancreas in neonates

    International Nuclear Information System (INIS)

    He Mingqing; Zhu Youzhi; Hu Kefei; Yin Chuangao; Hu Jun; Wang Song; Li Xu; Lu Zhongbin; Wang Yue; Liu Xiang

    2013-01-01

    Objective: To investigate the MSCT manifestations and their values in the diagnosis of annular pancreas in neonates. Methods: Retrospective analysis of clinical and CT findings in 27 cases with surgery-proved annular pancreas in neonates was made. The unenhanced and contrast-enhanced CT images were obtained in 20 patients. Two experienced radiologists determined the site and degree of obstruction, the relationship between the head of the pancreas and the obstruction point, and the surrounding tissue structure. Results: The direct signs included the fluid-filled or gas-filled bowel in the head of pancreas in 4 cases, the enhancement of surrounding soft tissue as enhanced pancreas in 17 cases, disappearance of the fat gap between the intestinal wall and the annular pancreas in 17 cases. The indirect signs included intestinal obstruction in 20 cases, 'single-bubble sign' in 2 cases, 'double-bubble sign' in 18 cases, the distal bowel without gas in 5 cases, small amount of gas in the distal bowel in 15 cases. In 12 of 18 cases showing 'double-bubble sign', the ratio of duodenal bubble diameter (Dd) to stomach bubble diameter (Ds)was over 1.0. The site of obstruction was located in the descending duodenum in 20 cases. The form of obstructed point presented with 'nipple sign' in 15 cases, with 'the mouse tail' in 5 cases. The expansion bowel was located in the head of pancreas in 1 case. Gas was found in the pancreatic duct in 1 case, and 'swirl sign' was shown in 2 cases. Conclusions: MSCT combined with three-dimensional reconstruction techniques can clearly demonstrate the annular pancreas' s shape, the site and degree of obstruction and other malformations. It can provide important information for clinical treatment. (authors)

  3. Experimental and numerical investigation on heat transfer augmentation in a circular tube under forced convection with annular differential blockages/inserts

    Science.gov (United States)

    Waghole, D. R.

    2018-01-01

    Investigation on heat transfer by generating turbulence in the fluid stream inside the circular tube is an innovative area of research for researchers. Hence, many techniques are been investigated and adopted for enhancement of heat transfer rate to reduce the size and the cost of the heat exchanger/circular tube. In the present study the effect of differential solid ring inserts /turbulators on heat transfer, friction factor of heat exchanger/circular tube was evaluated through experimentally and numerically. The experiments were conducted in range of 3000 ≤Re≤ 6500 and annular blockages 0 ≤ɸ≤50 %. The heat transfer rate was higher for differential combination of inserts as compared to tube fitted with uniform inserts. The maximum heat transfer was obtained by the use of differential metal circular ring inserts/blockages. From this study, Nusselt number, friction factor and enhancement factor are found as 2.5-3.5 times, 12% - 50.5% and 155% - 195%, respectively with water. Finally new possible correlations for predicting heat transfer and friction factor in the flow of water through the circular tube with differential blockages/inserts are proposed.

  4. Analysis of a cylindrical shell vibrating in a cylindrical fluid region

    International Nuclear Information System (INIS)

    Chung, H.; Turula, P.; Mulcahy, T.M.; Jendrzejczyk, J.A.

    1976-08-01

    Analytical and experimental methods are presented for evaluating the vibration characteristics of cylindrical shells such as the thermal liner of the Fast Flux Test Facility (FFTF) reactor vessel. The NASTRAN computer program is used to calculate the natural frequencies, mode shapes, and response to a harmonic loading of a thin, circular cylindrical shell situated inside a fluid-filled rigid circular cylinder. Solutions in a vacuum are verified with an exact solution method and the SAP IV computer code. Comparisons between analysis and experiment are made, and the accuracy and utility of the fluid-solid interaction package of NASTRAN is assessed

  5. A thermal insulation system intended for a prestressed concrete vessel

    International Nuclear Information System (INIS)

    Aubert, Gilles; Petit, Guy.

    1975-01-01

    The description is given of a thermal insulation system withstanding the pressure of a vaporisable fluid for a prestressed concrete vessel, particularly the vessel of a boiling water nuclear reactor. The ring in the lower part of the vessel has, between the fluid inlet pipes and the bottom of the vessel, an annular opening of which the bottom edge is integral with an annular part rising inside the ring and parallel to it. This ring is hermetically connected to the bottom of the vessel and is coated with a metal lagging, at least facing the annular opening. This annular opening is made in the ring half-way up between the fluid inlet pipes and the bottom of the vessel. It is connected to the bottom of the vessel through the internal structure enveloping the reactor core [fr

  6. Modelling of Zirconium and Hafnium separation using continuous annular chromatography

    International Nuclear Information System (INIS)

    Moch-Setyadji; Endang Susiantini

    2014-01-01

    Nuclear degrees of zirconium in the form of a metal alloy is the main material for fuel cladding of NPP. Zirconium is also used as sheathing UO 2 kernel in the form of ZrC as a substitute of SiC in the fuel elements of High Temperature Reactor (HTR). Difficulty separating hafnium from zirconium because it has a lot of similarities in the chemical properties of Zr and Hf. Annular chromatography is a device that can be used for separating of zirconium and hafnium to obtain zirconium nuclear grade. Therefore, it is necessary to construct the mathematical modelling that can describe the separation of zirconium and hafnium in the annular chromatography containing anion resin dowex-1X8. The aim of research is to perform separation simulation by using the equilibrium model and mass transfer coefficient resulted from research. Zr and Hf feed used in this research were 26 and 1 g/l, respectively. Height of resin (L), angular velocity (ω) and the superficial flow rate (uz) was varied to determine the effect of each parameter on the separation of Zr and Hf. By using Kd and Dv values resulted previous research. Simulation results showed that zirconium and hafnium can be separated using a continuous annular chromatography with high resin (long bed) 50 cm, superficial flow rate of 0.001 cm/s, the rotation speed of 0.006 rad/min and 20 cm diameter annular. In these conditions the results obtained zirconium concentration of 10,303.226 g/m 3 and hafnium concentration of 12.324 g/m 3 (ppm). (author)

  7. Sheet Fluorescence and Annular Analysis of Ultracold Neutral Plasmas

    International Nuclear Information System (INIS)

    Castro, J.; Gao, H.; Killian, T. C.

    2009-01-01

    Annular analysis of fluorescence imaging measurements on Ultracold Neutral Plasmas (UNPs) is demonstrated. Spatially-resolved fluorescence imaging of the strontium ions produces a spectrum that is Doppler-broadened due to the thermal ion velocity and shifted due to the ion expansion velocity. The fluorescence excitation beam is spatially narrowed into a sheet, allowing for localized analysis of ion temperatures within a volume of the plasma with small density variation. Annular analysis of fluorescence images permits an enhanced signal-to-noise ratio compared to previous fluorescence measurements done in strontium UNPs. Using this technique and analysis, plasma ion temperatures are measured and shown to display characteristics of plasmas with strong coupling such as disorder induced heating and kinetic energy oscillations.

  8. The analysis of the annular fuel performance in steady state condition by using AFPAC code

    International Nuclear Information System (INIS)

    He Xiaojun; Ji Songtao; Zhang Yingchao

    2012-01-01

    The fuel performance code AFPAC v1.0 is used to analyze annular fuel's behavior under steady state conditions, including neutronics, thermal hydraulic, rod deformation, fission gas release and rod internal pressure. The calculation results show that: 1) Annular fuel has a good steady irradiation performance at 150% power level as current LWRs' with burnup up to 50 GWd/t, and all parameters, such as temperature, rod internal pressure and rod deformation, are meet the rod design criteria for current fuel of PWRs: 2) Compared to the solid fuel under the same irradiation condition. annular fuel has lower temperature, smaller deformation, lower fission gas release and lower pressure at EOL. From the point of view of steady irradiation performance, the safety of reactors can significantly improved by u sing the annular fuel. (authors)

  9. Mechanisms of valve competency after mitral valve annuloplasty for ischaemic mitral regurgitation using the Geoform ring: insights from three-dimensional echocardiography.

    Science.gov (United States)

    Armen, Todd A; Vandse, Rashmi; Crestanello, Juan A; Raman, Subha V; Bickle, Katherine M; Nathan, Nadia S

    2009-01-01

    Left ventricular remodelling leads to functional mitral regurgitation resulting from annular dilatation, leaflet tethering, tenting, and decreased leaflet coaptation. Mitral valve annuloplasty restores valve competency, improving the patient's functional status and ventricular function. This study was designed to evaluate the mechanisms underlying mitral valve competency after the implantation of a Geoform annuloplasty ring using three-dimensional (3D) echocardiography. Seven patients (mean age of 65 years) with ischaemic mitral regurgitation underwent mitral valve annuloplasty with the Geoform ring and coronary artery bypass surgery. Pre- and post-operative 3D echocardiograms were performed. Following mitral annuloplasty, mitral regurgitation decreased from 3.4+/-0.2 to 0.9+/-0.3 (P-value<0.0001), mitral valve tenting volume from 13+/-1.7 to 3.2+/-0.3 mL (P-value<0.001), annulus area from 12.6+/-1.0 to 3.3+/-0.2 cm2 (P-value<0.0001), valve circumference from 13+/-0.5 to 7.3+/-0.3 cm (P-value<0.0001), septolateral distance from 2.1+/-0.1 to 1.4+/-0.06 cm (P-value<0.01) and intercommissural distance from 3.4+/-0.1 to 2.7+/-0.03 cm (P-value<0.03). There was significant decrease in the septolateral distance at the level of A2-P2 with respect to other regions. These geometric changes were associated with the improvement in the NYHA class from 3.1+/-0.3 to 1.3+/-0.3 (P-value<0.002). The mitral valve annuloplasty with the Geoform ring restores leaflet coaptation and eliminates mitral regurgitation by effectively modifying the mitral annular geometry.

  10. Experimental study of inverted-annular-flow hydrodynamics utilizing an adiabatic simulation

    International Nuclear Information System (INIS)

    De Jarlais, G.

    1983-03-01

    In experiments, inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from long aspect nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, break-up mode, and dispersed-core droplet sizes were recorded at approximately 750 data points. Inverted annular flow was observed to develop into inverted slug flow at low relative velocities, and into dispersed droplet flow at high relative velocities. For both of the above transitions from inverted annular flow, correlations for core jet length were developed by extending work done on free liquid jets to include this new, coaxial, jet disintegration phenomenon. Jet break-up length is correlated as a function of jet diameter, jet Reynolds number, jet Weber number, void fraction, and gas Weber number. Correlations for core shape, break-up mechanisms and dispersed core droplet size for the case of transition to inverted slug flow were developed

  11. Cylindrical acoustic levitator/concentrator

    Science.gov (United States)

    Kaduchak, Gregory; Sinha, Dipen N.

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  12. The electrostatic cylindrical sheath in a plasma

    International Nuclear Information System (INIS)

    Wang Chunhua; Sun Xiaoxia; Bai Dongxue

    2004-01-01

    The electrostatic sheath with a cylindrical geometry in an ion-electron plasma is investigated. Assuming a Boltzmann response to electrons and cold ions with bulk flow, it is shown that the radius of the cylindrical geometry do not affect the sheath potential significantly. The authors also found that the sheath potential profile is steeper in the cylindrical sheath compared to the slab sheath. The distinct feature of the cylindrical sheath is that the ion density distribution is not monotonous. The sheath region can be divided into three regions, two ascendant regions and one descendant region. (author)

  13. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  14. Criticality safety calculations of 'poison tube tank' compared with annular tanks for storing fissile solutions

    International Nuclear Information System (INIS)

    Gopalakrishnan, C.R.; Joseph, G.

    1995-01-01

    A comparative study of the shielded area space required for storing fissile solution by the conventional annular tank and by poison tube tank is made. Poison tube tank is similar to commercial heat exchanger. The neutron poisons studied are gadolinium oxide and borax. Variation of multiplication factor for an array of annular tanks containing uranium nitrate or plutonium nitrate solutions are presented for annular widths of 10, 7.5 and 5 cm. It is concluded that for the given concentration, 5 cm annular width tanks are safe at a pitch distance of 120 and 90 cm for uranium and plutonium solutions respectively. Using these, as reference values, it is found that the shielded area saving for the poison tube tank is a factor of 12 and 8 for the given concentration of uranium and plutonium solutions respectively. (author)

  15. Experimental investigation of heat transfer for supercritical pressure water flowing in vertical annular channels

    International Nuclear Information System (INIS)

    Gang Wu; Bi Qincheng; Yang Zhendong; Wang Han; Zhu Xiaojing; Hao Hou; Leung, L.K.H.

    2011-01-01

    Highlights: → Two annular test sections were constructed with annular gaps of 4 and 6 mm. → Two heat transfer regions have been observed: normal and deteriorated heat transfer. → The spacer enhances the heat transfer at downstream locations. → The Jackson correlation agrees quite closely with the experimental data. - Abstract: An experiment has recently been completed at Xi'an Jiaotong University (XJTU) to obtain wall-temperature measurements at supercritical pressures with upward flow of water inside vertical annuli. Two annular test sections were constructed with annular gaps of 4 and 6 mm, respectively, and an internal heater of 8 mm outer diameter. Experimental-parameter ranges covered pressures of 23-28 MPa, mass fluxes of 350-1000 kg/m 2 /s, heat fluxes of 200-1000 kW/m 2 , and bulk inlet temperatures up to 400 deg. C. Depending on the flow conditions and heat fluxes, two distinctive heat transfer regimes, referring to as the normal heat transfer and deteriorated heat transfer, have been observed. At similar flow conditions, the heat transfer coefficients for the 6 mm gap annular channel are larger than those for the 4 mm gap annular channel. A strong effect of spiral spacer on heat transfer has been observed with a drastic reduction in wall temperature at locations downstream of the device in the annuli. Two tube-data-based correlations have been assessed against the experimental heat transfer results. The Jackson correlation agrees with the experimental trends and overpredicts slightly the heat transfer coefficients. The Dittus-Boelter correlation is applicable only for the normal heat transfer region but not for the deteriorated heat transfer region.

  16. Forced Vibration Analysis for a FGPM Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    Hong-Liang Dai

    2013-01-01

    Full Text Available This article presents an analytical study for forced vibration of a cylindrical shell which is composed of a functionally graded piezoelectric material (FGPM. The cylindrical shell is assumed to have two-constituent material distributions through the thickness of the structure, and material properties of the cylindrical shell are assumed to vary according to a power-law distribution in terms of the volume fractions for constituent materials, the exact solution for the forced vibration problem is presented. Numerical results are presented to show the effect of electric excitation, thermal load, mechanical load and volume exponent on the static and force vibration of the FGPM cylindrical shell. The goal of this investigation is to optimize the FGPM cylindrical shell in engineering, also the present solution can be used in the forced vibration analysis of cylindrical smart elements.

  17. Deep Granuloma Annulare Mimicking Inflamed Cysts in a Teenager.

    Science.gov (United States)

    Guo, Emily L; Degesys, Catherine A; Jahan-Tigh, Richard; Chan, Audrey

    2017-07-01

    We describe deep granuloma annulare (DGA) of the forehead mimicking inflamed cysts. Reactive inflammation and sterile purulent drainage may be an underrecognized feature of DGA. © 2017 Wiley Periodicals, Inc.

  18. Automated setup for non-tactile high-precision measurements of roundness and cylindricity using two laser interferometers

    International Nuclear Information System (INIS)

    Kühnel, M; Ullmann, V; Gerhardt, U; Manske, E

    2012-01-01

    An automated setup for non-tactile high-precision measurements of roundness and cylindricity of ring gauges is presented. The aim is to minimize classical problems of tactile and radial roundness measurements such as the error influences of the used rotary table and the work piece alignment and thus to increase the accuracy and reduce the measurement time. To achieve those aims, a double interferometer concept was chosen and combined with a measurement system for the work piece alignment, a high-precision rotary table and an automated four-axis adjustment unit. The main alignment errors of the work pieces (e.g. ring gauges) such as eccentricity and tilting are either suppressed or directly detected and consequently reduced by the automated four-axis adjustment unit. Due to the non-tactile measurement concept, higher measurement velocities are achievable and surface destruction is prevented. In combination with the contactless energy supply of the four-axis adjustment unit, the radial run of the rotary table is not affected. (paper)

  19. Core-annular flow through a horizontal pipe : Hydrodynamic counterbalancing of buoyancy force on core

    NARCIS (Netherlands)

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference

  20. Evaluation of Tricuspid Annular Plane Systolic Excursion Measured with Cardiac Magnetic Resonance Imaging in Pediatric Patients with Tetralogy of Fallot

    Science.gov (United States)

    Soslow, Jonathan H.; Usoro, Emem; Wang, Li; Parra, David A.

    2015-01-01

    Background Aneurysmal dilation of the right ventricular outflow tract complicates assessment of right ventricular function in patients with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion is commonly used to estimate ejection fraction. We hypothesized that tricuspid annular plane systolic excursion measured by cardiac magnetic resonance imaging approximates global and segmental right ventricular function, specifically right ventricular sinus ejection fraction, in pediatric patients with repaired tetralogy of Fallot. Methods Tricuspid annular plane systolic excursion was measured retrospectively on cardiac magnetic resonance images in 54 patients with repaired tetralogy of Fallot. Values were compared with right ventricular global, sinus, and infundibular ejection fractions. Tricuspid annular plane systolic excursion was: 1) indexed to body surface area, 2) converted into a fractional value, and 3) converted into published pediatric Z-scores. Results Tricuspid annular plane systolic excursion measurements had good agreement between observers. Right ventricular ejection fraction did not correlate with the absolute or indexed tricuspid annular plane systolic excursion and correlated weakly with fractional tricuspid annular plane systolic excursion (r=0.41 and p=0.002). Segmental right ventricular function did not appreciably improve correlation with any of the tricuspid annular plane systolic excursion measures. Pediatric Z-scores were unable to differentiate patients with normal and abnormal right ventricular function. Conclusions Tricuspid annular plane systolic excursion measured on cardiac magnetic resonance imaging correlates poorly with global and segmental right ventricular ejection fraction in pediatric patients with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion is an unreliable approximation of right ventricular function in this patient population. PMID:26279488

  1. Structured cylindrical targets

    International Nuclear Information System (INIS)

    Arnold, R.

    1986-01-01

    A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogeneous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous 1-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)

  2. Structured cylindrical targets

    International Nuclear Information System (INIS)

    Arnold, R.; Lackner-Russo, D.; Meyer-ter-Vehn, J.; Hoffmann, I.

    1986-01-01

    A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogenous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous l-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)

  3. Localized granuloma annulare and autoimmune thyroiditis in a ...

    African Journals Online (AJOL)

    The association of granuloma annulare (GA) and autoimmune thyroiditis has been documented in the literature in 13 previous cases. However, the pathogenesis of GA remains obscure. Possible pathogenetic factors suggested include: humoral and delayed type hypersensitivity, vascular damage, metabolic disorder, or, ...

  4. Experiment study of the onset of nucleate boiling in narrow annular channel

    International Nuclear Information System (INIS)

    Wang Jiaqiang; Jia Dounan; Guo Yun

    2004-01-01

    The onset of nucleate boiling (ONB) was investigated for water flowing in the annular duct which clearance is 1.2 mm at the pressure range from 1.0 to 4.5 MPa. The effect on ONB of some thermodynamics parameters was also analyzed. The available data dealing with sub-cooled boiling initial point of water in narrow annular clearance duct are analyzed by using regression method. The new developed correlation was obtained by considering the bilateral heating factor

  5. Experimental study of neutron streaming through steel-walled annular ducts in reactor shields

    International Nuclear Information System (INIS)

    Toshimas, M.; Nobuo, S.

    1983-01-01

    For the purpose of providing experimental data to assess neutron streaming calculations, neutron flux measurements were performed along the axes of the steel-walled annular ducts set up in a water shield of the pool-type reactor JRR-4. An annular duct simulated the air gap around the main coolant pipe. Another duct simulated the streaming path around the primary circulating pump of the integrated-type marine reactor. A 90-deg bend annular duct was also studied. In a set of measurements, the distance Z between the core center and the duct axis and the annular gap width delta were taken as parameters, that is, Z = 0, 80, and 160 cm and delta = 2.2, 4.7, and 10.1 cm. The reaction rates and the fluxes measured by the activation method are given in terms of absolute magnitude within an accuracy of + or - 30%. An empirical formula is derived based on those measured data, which describes the axial distribution of the neutron flux in the steel-walled annular duct in reactor shields. It is expressed by a simple function of the axial distance in units of the square root of the line-of-sight area, S /SUB l/ . The accuracy of the formula is examined by taking into account the duct location with respect to the reactor core, the neutron energy, the steel wall thickness, and the media outside of the steel wall. The accuracy of the formula is, in general, <30% in the axial distance between 3√S /SUB l/ and 30√S /SUB l/

  6. Design Report for a 19-pin carbide test-bundle in a ring-subassembly of the test zone of KNK II/2

    International Nuclear Information System (INIS)

    Haefner, H.E.

    1982-03-01

    This report describes a 19-rod carbide test bundle in an annular oxide ring element placed at the position 201 of the test zone in the second core of KNK II as well as its behavior during the period of operation. The selected fuel rod concept includes low pellet density and a relatively large gap width as well as helium bonding between fuel and cladding. Characteristic design and operation data are: rod diameter 8.5 mm, pellet diameter 7.0 mm, maximum nominal linear rating 800 W/cm, maximum nominal burnup 70 MWd/kgHM. This report exclusively deals with the carbide test bundle and its individual components; it describes methods, criteria and results concerning the design. The annular carrier element with its head and foot is treated in a separate report. The loadability of the test bundle and its individual components is demonstrated by generally valid standards for strength criteria [de

  7. Augmented of turbulent heat transfer in an annular pipe with abrupt expansion

    Directory of Open Access Journals (Sweden)

    Togun Hussein

    2016-01-01

    Full Text Available This paper presents a study of heat transfer to turbulent air flow in the abrupt axisymmetric expansion of an annular pipe. The experimental investigations were performed in the Reynolds number range from 5000 to 30000, the heat flux varied from 1000 to 4000 W/m2, and the expansion ratio was maintained at D/d=1, 1.25, 1.67 and 2. The sudden expansion was created by changing the inner diameter of the entrance pipe to an annular passage. The outer diameter of the inner pipe and the inner diameter of the outer pipe are 2.5 and 10 cm, respectively, where both of the pipes are subjected to uniform heat flux. The distribution of the surface temperature of the test pipe and the local Nusselt number are presented in this investigation. Due to sudden expansion in the cross section of the annular pipe, a separation flow was created, which enhanced the heat transfer. The reduction of the surface temperature on the outer and inner pipes increased with the increase of the expansion ratio and the Reynolds number, and increased with the decrease of the heat flux to the annular pipe. The peak of the local Nusselt number was between 1.64 and 1.7 of the outer and inner pipes for Reynolds numbers varied from 5000 to 30000, and the increase of the local Nusselt number represented the augmentation of the heat transfer rate in the sudden expansion of the annular pipe. This research also showed a maximum heat transfer enhancement of 63-78% for the outer and inner pipes at an expansion ratio of D/d=2 at a Re=30000 and a heat flux of 4000W/m2.

  8. Magneto-elastic dynamics and bifurcation of rotating annular plate*

    International Nuclear Information System (INIS)

    Hu Yu-Da; Piao Jiang-Min; Li Wen-Qiang

    2017-01-01

    In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the magneto-elastic dynamic equations of rotating annular plate are derived by means of Hamilton’s principle. Bessel function as a mode shape function and the Galerkin method are used to achieve the transverse vibration differential equation of the rotating annular plate with different boundary conditions. By numerical analysis, the bifurcation diagrams with magnetic induction, amplitude and frequency of transverse excitation force as the control parameters are respectively plotted under different boundary conditions such as clamped supported sides, simply supported sides, and clamped-one-side combined with simply-anotherside. Poincaré maps, time history charts, power spectrum charts, and phase diagrams are obtained under certain conditions, and the influence of the bifurcation parameters on the bifurcation and chaos of the system is discussed. The results show that the motion of the system is a complicated and repeated process from multi-periodic motion to quasi-period motion to chaotic motion, which is accompanied by intermittent chaos, when the bifurcation parameters change. If the amplitude of transverse excitation force is bigger or magnetic induction intensity is smaller or boundary constraints level is lower, the system can be more prone to chaos. (paper)

  9. On the achievable field sensitivity of a segmented annular detector for differential phase contrast measurements

    International Nuclear Information System (INIS)

    Schwarzhuber, Felix; Melzl, Peter; Zweck, Josef

    2017-01-01

    Highlights: • Practical guide to calibrate a DPC setup considering geometrical parameters. • Optimizing the field sensitivity of a segmented annular DPC detector. • Determination of maximum electric and magnetic field sensitivity of a DPC setup. - Abstract: Differential phase contrast microscopy measures minute deflections of the electron probe due to electric and/or magnetic fields, using a position sensitive device. Although recently, pixelated detectors have become available which also serve as a position sensitive device, the most frequently used detector is a four-segmented annular semiconducting detector ring (or variations thereof), where the difference signals of opposing detector elements represent the components of the deflection vector. This deflection vector can be used directly to quantitatively determine the deflecting field, provided the specimen’s thickness is known. While there exist many measurements of both electric and magnetic fields, even at an atomic level, until now the question of the smallest clearly resolvable field value for this detector has not yet been answered. This paper treats the problem theoretically first, leading to a calibration factor κ which depends solely on simple, experimentally accessible parameters and relates the deflecting field to the measured deflection vector. In a second step, the calibration factor for our combination of microscope and detector is determined experimentally for various combinations of camera length, condenser aperture and spot size to determine the optimum setup. From this optimized condition we determine the minimum change in field which leads to a clearly measurable signal change for both HMSTEM and LMSTEM operation. A strategy is described which allows the experimenter to choose the setup giving the highest field sensitivity. Quantification problems due to scattering processes in the specimen are addressed and ways are shown to choose a setup which is less sensitive to these artefacts.

  10. On the achievable field sensitivity of a segmented annular detector for differential phase contrast measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzhuber, Felix, E-mail: felix.schwarzhuber@ur.de; Melzl, Peter; Zweck, Josef

    2017-06-15

    Highlights: • Practical guide to calibrate a DPC setup considering geometrical parameters. • Optimizing the field sensitivity of a segmented annular DPC detector. • Determination of maximum electric and magnetic field sensitivity of a DPC setup. - Abstract: Differential phase contrast microscopy measures minute deflections of the electron probe due to electric and/or magnetic fields, using a position sensitive device. Although recently, pixelated detectors have become available which also serve as a position sensitive device, the most frequently used detector is a four-segmented annular semiconducting detector ring (or variations thereof), where the difference signals of opposing detector elements represent the components of the deflection vector. This deflection vector can be used directly to quantitatively determine the deflecting field, provided the specimen’s thickness is known. While there exist many measurements of both electric and magnetic fields, even at an atomic level, until now the question of the smallest clearly resolvable field value for this detector has not yet been answered. This paper treats the problem theoretically first, leading to a calibration factor κ which depends solely on simple, experimentally accessible parameters and relates the deflecting field to the measured deflection vector. In a second step, the calibration factor for our combination of microscope and detector is determined experimentally for various combinations of camera length, condenser aperture and spot size to determine the optimum setup. From this optimized condition we determine the minimum change in field which leads to a clearly measurable signal change for both HMSTEM and LMSTEM operation. A strategy is described which allows the experimenter to choose the setup giving the highest field sensitivity. Quantification problems due to scattering processes in the specimen are addressed and ways are shown to choose a setup which is less sensitive to these artefacts.

  11. Effects of roll waves on annular flow heat transfer at horizontal condenser tube

    International Nuclear Information System (INIS)

    Kondo, Masaya; Nakamura, Hideo; Anoda, Yoshinari; Sakashita, Akihiro

    2002-01-01

    Heat removal characteristic of a horizontal in-tube condensation heat exchanger is under investigation to be used for a passive containment cooling system (PCCS) of a next generation-type BWR. Flow regime observed at the inlet of the condenser tube was annular flow, and the local heat transfer rate was ∼20% larger than the prediction by the Dobson-Chato correlation. Roll waves were found to appear on the liquid film in the annular flow. The measured local condensation heat transfer rate was being closely related to the roll waves frequency. Based on these observations, a model is proposed which predicts the condensation heat transfer coefficient for annular flows around the tube inlet. The proposed model predicts well the influences of pressure, local gas-phase velocity and film thickness. (author)

  12. The effect of acute mechanical left ventricular unloading on ovine tricuspid annular size and geometry.

    Science.gov (United States)

    Malinowski, Marcin; Wilton, Penny; Khaghani, Asghar; Brown, Michael; Langholz, David; Hooker, Victoria; Eberhart, Lenora; Hooker, Robert L; Timek, Tomasz A

    2016-09-01

    Left ventricular assist device (LVAD) implantation may alter right ventricular shape and function and lead to tricuspid regurgitation. This in turn has been reported to be a determinant of right ventricular (RV) failure after LVAD implantation, but the effect of mechanical left ventricular (LV) unloading on the tricuspid annulus is unknown. The aim of the study was to provide insight into the effect of LVAD support on tricuspid annular geometry and dynamics that may help to optimize LV unloading with the least deleterious effect on the right-sided geometry. In seven open-chest anaesthetized sheep, nine sonomicrometry crystals were implanted on the right ventricle. Additional nine crystals were implanted around the tricuspid annulus, with one crystal at each commissure defining three separate annular regions: anterior, posterior and septal. Left ventricular unloading was achieved by connecting a cannula in the left atrium and the aorta to a continuous-flow pump. The pump was used for 15 min at a full flow of 3.8 ± 0.3 l/min. Epicardial echocardiography was used to assess the degree of tricuspid insufficiency. Haemodynamic, echocardiographic and sonomicrometry data were collected before and during full unloading. Tricuspid annular area, and the regional and total perimeter were calculated from crystal coordinates, while 3D annular geometry was expressed as the orthogonal distance of each annular crystal to the least squares plane of all annular crystals. There was no significant tricuspid regurgitation observed either before or during LV unloading. Right ventricular free wall to septum diameter increased significantly at end-diastole during unloading from 23.6 ± 5.8 to 26.3 ± 6.5 mm (P = 0.009), but the right ventricular volume, tricuspid annular area and total perimeter did not change from baseline. However, the septal part of the annulus significantly decreased its maximal length (38.6 ± 8.1 to 37.9 ± 8.2 mm, P = 0.03). Annular contraction was not altered. The

  13. Magnetostatic interactions and forces between cylindrical permanent magnets

    International Nuclear Information System (INIS)

    Vokoun, David; Beleggia, Marco; Heller, Ludek; Sittner, Petr

    2009-01-01

    Permanent magnets of various shapes are often utilized in magnetic actuators, sensors or releasable magnetic fasteners. Knowledge of the magnetic force is required to control devices reliably. Here, we introduce an analytical expression for calculating the attraction force between two cylindrical permanent magnets on the assumption of uniform magnetization. Although the assumption is not fulfilled exactly in cylindrical magnets, we obtain a very good agreement between the calculated and measured forces between two identical cylindrical magnets and within an array of NdFeB cylindrical magnets.

  14. Study of the diffraction in the microscope: Annular condenser

    International Nuclear Information System (INIS)

    Ciocci, L; Echarri, R M; Simon, J M

    2011-01-01

    In this work we study the diffraction in the microscope when an annular condenser is used to illuminate the object. We calculate the point spread function (PSF) for a pinhole in an opaque screen illuminated with an annular condenser, consisting in an 1D array of incoherent point sources. We compare it with the PSF for a self-luminous point object, finding that the central disk of the diffraction pattern is narrower and the first intensity minimum is deeper for illuminated objects. We also analyze the resolution of the system by means of the intensity profile produced by two points objects, finding that two self luminous point objects are better resolved than two illuminated objects at the same distance. This suggests that the correlation introduced in the object diminishes the resolution in the former case.

  15. Simulation of magnetization and levitation properties of arrays of ring-shaped type-II superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun, E-mail: linxj8686@163.com; Huang, Chenguang; Yong, Huadong; Zhou, Youhe, E-mail: zhouyh@lzu.edu.cn

    2017-03-15

    Highlights: • A strong magnetic coupling appears if the gap between the superconducting rings is small. • The saturation magnetization of superconducting rings is related to the radial gap but independent of the vertical gap. • The array of rings in a non-uniform field experiences a levitation force, which increases with increasing height or thickness of the rings. - Abstract: This paper presents an analysis of the magnetic and mechanical properties of arrays of superconducting rings arranged in axial, radial, and matrix configurations under different magnetic fields. In terms of the Bean's critical state model and the minimum magnetic energy method, the dependences of the magnetization and levitation behaviors on the geometry, number, and gap of the superconducting rings are obtained. The results show that when the applied field is spatially uniform, the magnetic property of the superconducting array is associated with the gaps between the rings. For the case of small gaps, the entire array becomes not easy to be fully penetrated by the induced currents, and the magnetic field profiles of which are almost the same as ones in a single large ring. If the superconducting array is fully penetrated, its saturation magnetization value is affected by the radial interval and, however, is almost independent of the vertical separation. When the applied field produced by a cylindrical permanent magnet is nonuniform, the superconducting array will be subjected to a levitation force. The levitation force increases monotonically and finally reaches a saturation value with increasing height or thickness of the rings, and such saturation value is closely related to the inner radius of the array.

  16. Annular linear induction pump with an externally supported duct

    International Nuclear Information System (INIS)

    1980-01-01

    An annular linear induction pump of increased efficiency is described, capable of being readily disassembled for repair or replacement of parts, and having one pass flow of the liquid metal through the pump. (U.K.)

  17. Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells

    Science.gov (United States)

    Sun, Yao; Yang, Tiejun; Chen, Yuehua

    2018-06-01

    In this paper, sound radiation modes of baffled cylinders have been derived by constructing the radiation resistance matrix analytically. By examining the characteristics of sound radiation modes, it is found that radiation coefficient of each radiation mode increases gradually with the increase of frequency while modal shapes of sound radiation modes of cylindrical shells show a weak dependence upon frequency. Based on understandings on sound radiation modes, vibro-acoustics behaviors of cylindrical shells have been analyzed. The vibration responses of cylindrical shells are described by modified Fourier series expansions and solved by Rayleigh-Ritz method involving Flügge shell theory. Then radiation efficiency of a resonance has been determined by examining whether the vibration pattern is in correspondence with a sound radiation mode possessing great radiation efficiency. Furthermore, effects of thickness and boundary conditions on sound radiation of cylindrical shells have been investigated. It is found that radiation efficiency of thicker shells is greater than thinner shells while shells with a clamped boundary constraint radiate sound more efficiently than simply supported shells under thin shell assumption.

  18. All optical detection of picosecond spin-wave dynamics in 2D annular antidot lattice

    Science.gov (United States)

    Porwal, Nikita; Mondal, Sucheta; Choudhury, Samiran; De, Anulekha; Sinha, Jaivardhan; Barman, Anjan; Datta, Prasanta Kumar

    2018-02-01

    Novel magnetic structures with precisely controlled dimensions and shapes at the nanoscale have potential applications in spin logic, spintronics and other spin-based communication devices. We report the fabrication of 2D bi-structure magnonic crystal in the form of embedded nanodots in a periodic Ni80Fe20 antidot lattice structure (annular antidot) by focused ion-beam lithography. The spin-wave spectra of the annular antidot sample, studied for the first time by a time-resolved magneto-optic Kerr effect microscopy show a remarkable variation with bias field, which is important for the above device applications. The optically induced spin-wave spectra show multiple modes in the frequency range 14.7 GHz-3.5 GHz due to collective interactions between the dots and antidots as well as the annular elements within the whole array. Numerical simulations qualitatively reproduce the experimental results, and simulated mode profiles reveal the spatial distribution of the spin-wave modes and internal magnetic fields responsible for these observations. It is observed that the internal field strength increases by about 200 Oe inside each dot embedded within the hole of annular antidot lattice as compared to pure antidot lattice and pure dot lattice. The stray field for the annular antidot lattice is found to be significant (0.8 kOe) as opposed to the negligible values of the same for the pure dot lattice and pure antidot lattice. Our findings open up new possibilities for development of novel artificial crystals.

  19. Strain distribution and band structure of InAs/GaAs quantum ring superlattice

    Science.gov (United States)

    Mughnetsyan, Vram; Kirakosyan, Albert

    2017-12-01

    The elastic strain distribution and the band structure of InAs/GaAs one-layer quantum ring superlattice with square symmetry has been considered in this work. The Green's function formalism based on the method of inclusions has been implied to calculate the components of the strain tensor, while the combination of Green's function method with the Fourier transformation to momentum space in Pikus-Bir Hamiltonian has been used for obtaining the miniband energy dispersion surfaces via the exact diagonalization procedure. The dependencies of the strain tensor components on spatial coordinates are compared with ones for single quantum ring and are in good agreement with previously obtained results for cylindrical quantum disks. It is shown that strain significantly affects the miniband structure of the superlattice and has contribution to the degeneracy lifting effect due to heavy hole-light hole coupling. The demonstrated method is simple and provides reasonable results for comparatively small Hamiltonian matrix. The obtained results may be useful for further investigation and construction of novel devices based on quantum ring superlattices.

  20. Critical experiments for large scale enriched uranium solution handling

    International Nuclear Information System (INIS)

    Tanner, J.E.; Forehand, H.M.

    1985-01-01

    The authors have performed 17 critical experiments with a concentrated aqueous uranyl nitrate solution contained in an annular cylindrical tank, with annular cylindrical absorbers of stainless steel and/or polyethylene inside. k/sub eff/ calculated by KENO IV, employing 16-group Hansen-Roach cross sections, average 0.977. There is a variation of the calculational bias among the separate experiments, but it is too small to allow assigning it to specific components of the equipment. They are now performing critical experiments with a more concentrated uranyl nitrate solution in pairs of very squat cylindrical tanks with disc shaped absorbers and reflectors of carbon steel, stainless steel, nitronic-50, plain and borated polyethylene. These experiments are in support of upgrading fuel reprocessing at the Idaho Chemical Processing Plant

  1. Dynamics of annular bright field imaging in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Findlay, S.D.; Shibata, N.; Sawada, H.; Okunishi, E.; Kondo, Y.; Ikuhara, Y.

    2010-01-01

    We explore the dynamics of image formation in the so-called annular bright field mode in scanning transmission electron microscopy, whereby an annular detector is used with detector collection range lying within the cone of illumination, i.e. the bright field region. We show that this imaging mode allows us to reliably image both light and heavy columns over a range of thickness and defocus values, and we explain the contrast mechanisms involved. The role of probe and detector aperture sizes is considered, as is the sensitivity of the method to intercolumn spacing and local disorder.

  2. Flow of viscoplastic fluids in eccentric annular geometries

    DEFF Research Database (Denmark)

    Szabo, Peter; Hassager, Ole

    1992-01-01

    A classification of flowfields for the flow of a Bingham fluid in general eccentric annular geometries is presented. Simple arguments show that a singularity can exist in the stress gradient on boundaries between zones with yielded and un-yielded fluid respectively. A Finite Element code is used...

  3. Structure of the gas-liquid annular two-phase flow in a nozzle section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Kataoka, Isao; Ohmori, Syuichi; Mori, Michitsugu

    2006-01-01

    Experimental studies on the flow behavior of gas-liquid annular two-phase flow passing through a nozzle section were carried out. This study is concerned with the central steam jet injector for a next generation nuclear reactor. In the central steam jet injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design and to establish the high-performance steam injector system, it is very important to accumulate the fundamental data of the thermo-hydro dynamic characteristics of annular flow passing through a nozzle section. On the other hand, the transient behavior of multiphase flow, in which the interactions between two-phases occur, is one of the most interesting scientific issues and has attracted research attention. In this study, the transient gas-phase turbulence modification in annular flow due to the gas-liquid phase interaction is experimentally investigated. The annular flow passing through a throat section is under the transient state due to the changing cross sectional area of the channel and resultantly the superficial velocities of both phases are changed compared with a fully developed flow in a straight pipe. The measurements for the gas-phase turbulence were precisely performed by using a constant temperature hot-wire anemometer, and made clear the turbulence structure such as velocity profiles, fluctuation velocity profiles. The behavior of the interfacial waves in the liquid film flow such as the ripple or disturbance waves was also observed. The measurements for the liquid film thickness by the electrode needle method were also performed to measure the base film thickness, mean film thickness, maximum film thickness and wave height of the ripple or the disturbance waves. (author)

  4. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)

    2016-06-03

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  5. Axisymmetric annular curtain stability

    International Nuclear Information System (INIS)

    Ahmed, Zahir U; Khayat, Roger E; Maissa, Philippe; Mathis, Christian

    2012-01-01

    A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect. (paper)

  6. Supra-annular valve strategy for an early degenerated transcatheter balloon-expandable heart valve.

    Science.gov (United States)

    Kamioka, Norihiko; Caughron, Hope; Corrigan, Frank; Block, Peter; Babaliaros, Vasilis

    2018-01-23

    Currently, there are no recommendations regarding the selection of valve type for a transcatheter heart valve (THV)-in-THV procedure. A supra-annular valve design may be superior in that it results in a larger effective orifice area and may have a lower chance of valve thrombosis after THV-in-THV. In this report, we describe the use of a supra-annular valve strategy for an early degenerated THV. © 2018 Wiley Periodicals, Inc.

  7. Droplets in annular-dispersed gas-liquid pipe-flows

    NARCIS (Netherlands)

    Van 't Westende, J.M.C.

    2008-01-01

    Annular-dispersed gas-liquid pipe-flows are commonly encountered in many industrial applications, and have already been studied for many decades. However, due to the great complexity of this type of flow, there are still many phenomena that are poorly understood. The aim of this thesis is to shed

  8. Droplet sizes, dynamics and deposition in vertical annular flow

    International Nuclear Information System (INIS)

    Lopes, J.C.B.; Dukler, A.E.

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data

  9. Radiation Effects on the Thermodiffusive Instability of Premixed Flames on a Cylindrical Porous Flame Holder

    Science.gov (United States)

    Du, Minglong; Yang, Lijun

    2017-10-01

    A linear analysis method was used to investigate the mechanics of radiation heat loss and mass transfer in the porous wall of premixed annular flames and their effect on thermodiffusive instability. The dispersion relation between the disturbance wave growth rate and wavenumber was calculated numerically. Results showed that radiation heat loss elevated the annular flame slightly away from the porous wall. In the annular flame with small Lewis numbers, radiation heat loss changed the thermodiffusive instability from a pulsating to a cellular state, while for the large Lewis numbers, only the pulsating instability was represented. Increasing radiation heat loss and the radius of the porous wall enhanced the instability of the annular flames. Heat losses decreased with the continued increase in thickness of the porous wall and the decrease in porosity. Annular flames with long-wave mode along the angular direction were more unstable than the shortwave mode.

  10. Geometric size optimization and behavior analysis of a dual-cooled annular fuel

    International Nuclear Information System (INIS)

    Deng Yangbin; Wu Yingwei; Zhang Dalin; Tian Wenxi; Qiu Suizheng; Su Guanghui; Zhang Weixu; Wu Junmei

    2014-01-01

    The dual-cooled annular fuel is one of the innovative fuel concepts, which allows substantial power density increase while maintaining safety margins comparing with that used in currently operating PWRs. In this study, a thermal-hydraulic calculation code, on the basis of inner and outer cooling balance theory, was independently developed to optimize the geometric size of dual-cooled annular fuel elements. The optimization results show that the fuel element with the optimal geometric sizes presents fantastic symmetry in temperature distribution. The optimized geometric sizes agree well with the sizes obtained by MIT (Massachusetts Institute of Technology), which on the other side validates the code reliability and accuracy as well. In addition, a thermo-mechanical-burnup coupling code was developed to study the thermodynamic and mechanical characteristics of fuel elements with considering the irradiation and burnup effects. This coupling program was applied to perform the behavior analysis of annular fuels. The calculation results show that, when the power density increases on the order of up to 50%, the dual-cooled annular fuel elements have much lower fuel temperature and much less fission gas release comparing with conventional fuel rods. Furthermore, the results indicate that the thicknesses of inner and outer gas gap cannot remain the same with the burnup increasing due to the mechanical deformations of fuel pellets and claddings, which results in significantly asymmetric temperature distribution especially at the last phase of burnup. (author)

  11. On isotropic cylindrically symmetric stellar models

    International Nuclear Information System (INIS)

    Nolan, Brien C; Nolan, Louise V

    2004-01-01

    We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model

  12. Bio-Inspired Wide-Angle Broad-Spectrum Cylindrical Lens Based on Reflections from Micro-Mirror Array on a Cylindrical Elastomeric Membrane

    Directory of Open Access Journals (Sweden)

    Chi-Chieh Huang

    2014-06-01

    Full Text Available We present a wide-angle, broad-spectrum cylindrical lens based on reflections from an array of three-dimensional, high-aspect-ratio micro-mirrors fabricated on a cylindrical elastomeric substrate, functionally inspired by natural reflecting superposition compound eyes. Our device can perform one-dimensional focusing and beam-shaping comparable to conventional refraction-based cylindrical lenses, while avoiding chromatic aberration. The focal length of our cylindrical lens is 1.035 mm, suitable for micro-optical systems. Moreover, it demonstrates a wide field of view of 152° without distortion, as well as modest spherical aberrations. Our work could be applied to diverse applications including laser diode collimation, barcode scanning, holography, digital projection display, microlens arrays, and optical microscopy.

  13. Shut-down margin study for the next generation VVER-1000 reactor including 13 x 13 hexagonal annular assemblies

    International Nuclear Information System (INIS)

    Faghihi, Farshad; Mirvakili, S. Mohammad

    2011-01-01

    Highlights: → Shut-Down Margin (SDM) for the next generation annular fuel core of typical VVER-1000, 13 x 13 assemblies are calculated. → The MCNP-5 code is run for many cases with different core burn up at various core temperatures. → There is a substantial drop in SDM in the case of annular fuel for the same power level. → SDM for our proposed VVER-1000 annular pins is calculated for specific average fuel burn up values at the BOC, MOC, and EOC. - Abstract: Shut-Down Margin (SDM) for the next generation annular fuel core of typical VVER-1000, 13 x 13 assemblies are calculated as the main aim of the present research. We have applied the MCNP-5 code for many cases with different values of core burn up at various core temperatures, and therefore their corresponding coolant densities and boric acid concentrations. There is a substantial drop in SDM in the case of annular fuel for the same power level. Specifically, SDM for our proposed VVER-1000 annular pins is calculated when the average fuel burn up values at the BOC, MOC, and EOC are 0.531, 11.5, and 43 MW-days/kg-U, respectively.

  14. Supercritical heat transfer in an annular channel with external heating

    International Nuclear Information System (INIS)

    Remizov, O.V.; Gal'chenko, Eh.F.; Shurkin, N.G.; Sergeev, V.V.

    1980-01-01

    Results are presented of experimental studies of the burnout heat transfer in a 32x28x3000 mm annular channel with a uniform distribution of a heat flow at pressures of 6.9-19.6 MPa and mass rates of 350-1000 kg/m 2 xs. The heating is electrical, external, one-sided. It is shown that dependencies of the heat-transfer coefficient on rated parameters in the annular channel and tube are similar. An empirical equation has been obtained for the calculation of the burnout heat transfer in the annual channels with external heating in the following range: pressure, 6.9 -13.7 MPa; mass rate 350-700 kg/m 2 xs, and steam content ranging from Xsub(crit) to 1

  15. Southern Annular Mode drives multicentury wildfire activity in southern South America.

    Science.gov (United States)

    Holz, Andrés; Paritsis, Juan; Mundo, Ignacio A; Veblen, Thomas T; Kitzberger, Thomas; Williamson, Grant J; Aráoz, Ezequiel; Bustos-Schindler, Carlos; González, Mauro E; Grau, H Ricardo; Quezada, Juan M

    2017-09-05

    The Southern Annular Mode (SAM) is the main driver of climate variability at mid to high latitudes in the Southern Hemisphere, affecting wildfire activity, which in turn pollutes the air and contributes to human health problems and mortality, and potentially provides strong feedback to the climate system through emissions and land cover changes. Here we report the largest Southern Hemisphere network of annually resolved tree ring fire histories, consisting of 1,767 fire-scarred trees from 97 sites (from 22 °S to 54 °S) in southern South America (SAS), to quantify the coupling of SAM and regional wildfire variability using recently created multicentury proxy indices of SAM for the years 1531-2010 AD. We show that at interannual time scales, as well as at multidecadal time scales across 37-54 °S, latitudinal gradient elevated wildfire activity is synchronous with positive phases of the SAM over the years 1665-1995. Positive phases of the SAM are associated primarily with warm conditions in these biomass-rich forests, in which widespread fire activity depends on fuel desiccation. Climate modeling studies indicate that greenhouse gases will force SAM into its positive phase even if stratospheric ozone returns to normal levels, so that climate conditions conducive to widespread fire activity in SAS will continue throughout the 21st century.

  16. Spiral modes in cold cylindrical systems

    International Nuclear Information System (INIS)

    Robe, H.

    1975-01-01

    The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de

  17. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding

    International Nuclear Information System (INIS)

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2013-01-01

    We have explored here a hollow cylindrical laser plasma multifilament waveguide with discontinuous finite thickness cladding, in which the separation between individual filaments is in the range of several millimeters and the waveguide cladding thickness is in the order of the microwave penetration depth. Such parameters give a closer representation of a realistic laser filament waveguide sustained by a long stable propagation of femtosecond (fs) laser pulses. We report how the waveguide losses depend on structural parameters like normalized plasma filament spacing, filament to filament distance or pitch, normal spatial frequency, and radius of the plasma filament. We found that for typical plasma parameters, the proposed waveguide can support guided modes of microwaves in extremely high frequency even with a cladding consisting of only one ring of plasma filaments. The loss of the microwave radiation is mainly caused by tunneling through the discontinuous finite cladding, i.e., confinement loss, and is weakly dependent on the plasma absorption. In addition, the analysis indicates that the propagation loss is fairly large compared with the loss of a plasma waveguide with a continuous infinite thickness cladding, while they are comparable when using a cladding contains more than one ring. Compared to free space propagation, this waveguide still presents a superior microwave transmission to some distance in the order of the filamentation length; thus, the laser plasma filaments waveguide may be a potential channel for transporting pulsed-modulated microwaves if ensuring a long and stable propagation of fs laser pulses.

  18. Annular pigment band on the posterior capsule following blunt ocular trauma: a case report

    Directory of Open Access Journals (Sweden)

    Harrison Rosalind J

    2005-06-01

    Full Text Available Abstract Background To report an unusual case of annular pigment band on the posterior capsule following blunt ocular trauma. Case presentation We describe an annular pigment band on the posterior capsule following blunt ocular trauma in a 28-year old male patient. Repeat examinations revealed no evidence of other signs of blunt ocular trauma or pigment dispersion syndrome in either eye. Conclusion The annular pigment band in this case corresponds to the adherence of the hyaloideocapsulare ligament to the posterior capsule and reconfirms its rare visualization in the living eye. This finding may be an isolated sign of blunt ocular trauma and a compromised integrity of the vitreolenticular interface should be strongly suspected. We recommend careful documentation in context of future cataract surgery in these eyes.

  19. Numerical and experimental study of disturbance wave development in vertical two-phase annular flow

    Science.gov (United States)

    Hewitt, Geoffrey; Yang, Junfeng; Zhao, Yujie; Markides, Christos; Matar, Omar

    2013-11-01

    The annular flow regime is characterized by the presence of a thin, wavy liquid film driven along the wall by the shear stress exerted by the gas phase. Under certain liquid film Reynolds numbers, large disturbance waves are observed to traverse the interface, whose length is typically on the order of 20 mm and whose height is typically on the order of 5 times the thickness of the thin (substrate) layer between the waves. Experimental wok has been conducted to study the disturbance wave onset by probing the local film thickness for different Reynolds numbers. It is observed the disturbance waves grow gradually from wavy initiation and form the ring-like structure. To predict the wavy flow field observed in the experiment, 3D CFD simulations are performed using different low Reynolds number turbulence models and Large Eddy Simulation. Modeling results confirm that there is recirculation within the waves, and that they as a packet of turbulence traveling over a laminar substrate film. We also predict the coalescence and the break-up of waves leading to liquid droplet entrainment into the gas core. Skolkovo Foundation, UNIHEAT project.

  20. Propagating annular modes

    Science.gov (United States)

    Sheshadri, A.; Plumb, R. A.

    2017-12-01

    The leading "annular mode", defined as the dominant EOF of surface pressure or of zonal mean zonal wind variability, appears as a dipolar structure straddling the mean midlatitude jet and thus seems to describe north-south wobbling of the jet latitude. However, extratropical zonal wind anomalies frequently tend to migrate poleward. This behavior can be described by the first two EOFs, the first (AM1) being the dipolar structure, and the second (AM2) having a tripolar structure centered on the mean jet. Taken in isolation, AM1 thus describes a north-south wobbling of the jet position, while AM2 describes a strengthening and narrowing of the jet. However, despite the fact that they are spatially orthogonal, and their corresponding time series temporally orthogonal, AM1 and AM2 are not independent, but show significant lag-correlations which reveal the propagation. The EOFs are not modes of the underlying dynamical system governing the zonal flow evolution. The true modes can be estimated using principal oscillation pattern (POP) analysis. In the troposphere, the leading POPs manifest themselves as a pair of complex conjugate structures with conjugate eigenvalues thus, in reality, constituting a single, complex, mode that describes propagating anomalies. Even though the principal components associated with the two leading EOFs decay at different rates, each decays faster than the true mode. These facts have implications for eddy feedback and the susceptibility of the mode to external perturbations. If one interprets the annular modes as the modes of the system, then simple theory predicts that the response to steady forcing will usually be dominated by AM1 (with the longest time scale). However, such arguments should really be applied to the true modes. Experiments with a simplified GCM show that climate response to perturbations do not necessarily have AM1 structures. Implications of these results for stratosphere-troposphere interactions are explored. The POP

  1. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

    Energy Technology Data Exchange (ETDEWEB)

    Myers, N.J. [Univ. of Durham (United Kingdom)

    1994-12-31

    The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

  2. Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method

    Energy Technology Data Exchange (ETDEWEB)

    Alashti, R. Akbari, E-mail: raalashti@nit.ac.ir [Mechanical Engineering Department, Babol University of Technology, P.O. Box 484, Shariati Avenue, Babol (Iran, Islamic Republic of); Khorsand, M. [Mechanical Engineering Department, Babol University of Technology, P.O. Box 484, Shariati Avenue, Babol (Iran, Islamic Republic of)

    2011-05-15

    Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers under the effect of asymmetric thermo-electro-mechanical loads is carried out. Numerical results of displacement, stress and thermal fields are obtained using two versions of the differential quadrature methods, namely polynomial and Fourier quadrature methods. Material properties of the shell are assumed to be graded in the radial direction according to a power law but the Poisson's ratio is assumed to be constant. Shells are considered to be under the effect of the pressure loading in the form of cosine and ring pressure loads, electric potentials and temperature fields. Numerical results for various boundary conditions are obtained and the effects of the thickness of piezoelectric layers, grading index of material properties and the ratio of the thickness to the radius of the shell on these results is presented. - Highlights: > A numerical study of an FGM cylindrical shell with piezoelectric layers is made. > Governing equations are solved by two versions of differential quadrature methods. > The effect of layers thickness, grading index and geometrical ratios is presented.

  3. Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method

    International Nuclear Information System (INIS)

    Alashti, R. Akbari; Khorsand, M.

    2011-01-01

    Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers under the effect of asymmetric thermo-electro-mechanical loads is carried out. Numerical results of displacement, stress and thermal fields are obtained using two versions of the differential quadrature methods, namely polynomial and Fourier quadrature methods. Material properties of the shell are assumed to be graded in the radial direction according to a power law but the Poisson's ratio is assumed to be constant. Shells are considered to be under the effect of the pressure loading in the form of cosine and ring pressure loads, electric potentials and temperature fields. Numerical results for various boundary conditions are obtained and the effects of the thickness of piezoelectric layers, grading index of material properties and the ratio of the thickness to the radius of the shell on these results is presented. - Highlights: → A numerical study of an FGM cylindrical shell with piezoelectric layers is made. → Governing equations are solved by two versions of differential quadrature methods. → The effect of layers thickness, grading index and geometrical ratios is presented.

  4. Robotic Hand with Flexible Fingers for Grasping Cylindrical Objects

    OpenAIRE

    柴田, 瑞穂

    2015-01-01

    In this manuscript, a robotic hand for grasping a cylindrical object is proposed. This robotic hand has flexible fingers that can hold a cylindrical object during moving. We introduce a grasping strategy for a cylindrical object in terms of state transition graph. In this strategy the robotic hand picks up the cylindrical object utilizing a suction device before the hand grasp the object. We also design the flexible fingers; then, we investigate the validity of this robotic hand via several e...

  5. Equilibrium and stability properties of relativistic electron rings and E-layers

    International Nuclear Information System (INIS)

    Uhm, H.

    1976-01-01

    Equilibrium and stability properties of magnetically confined partially-neutralized thin electron ring and E-layer are investigated using the Vlasov-Maxwell equations. The analysis is carried out within the context of the assumption that the minor dimensions (a,b) of the system are much less than the collisionless skin depth (c/antiω/sub p/). The equilibrium configuration of the E-layer is assumed to be an infinitely long, azimuthally symmetric hollow electron beam which is aligned parallel to a uniform axial magnetic field. On the other hand, the electron ring is located at the midplane of an externally imposed mirror field which acts to confine the ring both axially and radially. The equilibrium properties of the E-layer and electron ring are obtained self-consistently for several choices of equilibrium electron distribution function. The negative-mass instability analysis is carried out for the relativistic E-layer equilibrium in which all of the electrons have the same transverse energy and a spread in canonical angular momentum, assuming a fixed ion background. The ion resonance instability properties are investigated for a relativistic nonneutral E-layer aligned parallel to a uniform magnetic field and located between two ground coaxial cylindrical conductors. The stability properties of a nonrelativistic electron ring is investigated within the framework of the linearized Vlasov-Poisson equations. The dispersion relation is obtained for the self-consistent electron distribution function in which all electrons have the same value of energy an the same value of canonical angular momentum. The positive ions in the electron ring are assumed to form an immobile partially neutralizing background. The stability criteria as well as the instability growth rates are derived and discussed including the effect of geometrical configuration of the system. Equilibrium space-charge effects play a significant role in stability behavior

  6. Cylindrical continuous martingales and stochastic integration in infinite dimensions

    NARCIS (Netherlands)

    Veraar, M.C.; Yaroslavtsev, I.S.

    2016-01-01

    In this paper we define a new type of quadratic variation for cylindrical continuous local martingales on an infinite dimensional spaces. It is shown that a large class of cylindrical continuous local martingales has such a quadratic variation. For this new class of cylindrical continuous local

  7. Hydrodynamics of adiabatic inverted annular flow: an experimental study

    International Nuclear Information System (INIS)

    De Jarlais, G.; Ishii, M.

    1983-01-01

    For low-quality film boiling in tubes or rod bundles, the flow pattern may consist of a liquid jet-like core surrounded by a vapor annulus, i.e., inverted annular flow. The stability, shape, and break-up mechanisms of this liquid core must be understood in order to model correctly this regime and to develop appropriate interfacial transfer correlations. This paper reports on a study in which inverted annular flow was simulated in an adiabatic system. Turbulent water jets, issuing downward from long-aspect nozzles were enclosed within cocurrent gas annuli. Jet-core diameter and velocity, and gas-annulus diameter, velocity, and species were varied, yielding liquid Reynolds numbers up to 33,000, void fractions from 0.29 to 0.95, and relative velocities from near zero to over 80 m/s. Jet-core break-up lengths and secondarily, core break-up mechanisms, were observed visually, using strobe lighting

  8. Fast calculation method for computer-generated cylindrical holograms.

    Science.gov (United States)

    Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi

    2008-07-01

    Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.

  9. Modeling of Focused Acoustic Field of a Concave Multi-annular Phased Array Using Spheroidal Beam Equation

    Science.gov (United States)

    Yu, Li-Li; Shou, Wen-De; Hui, Chun

    2012-02-01

    A theoretical model of focused acoustic field for a multi-annular phased array on concave spherical surface is proposed. In this model, the source boundary conditions of the spheroidal beam equation (SBE) for multi-annular phased elements are studied. Acoustic field calculated by the dynamic focusing model of SBE is compared with numerical results of the O'Neil and Khokhlov—Zabolotskaya—Kuznetsov (KZK) model, respectively. Axial dynamic focusing and the harmonic effects are presented. The results demonstrate that the dynamic focusing model of SBE is good valid for a concave multi-annular phased array with a large aperture angle in the linear or nonlinear field.

  10. Laser Doppler velocimeter measurements and laser sheet imaging in an annular combustor model. M.S. Thesis, Final Report

    Science.gov (United States)

    Dwenger, Richard Dale

    1995-01-01

    An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.

  11. Numerical simulation and experimental research for the natural convection in an annular space in LMFBR

    International Nuclear Information System (INIS)

    Wang Zhou; Luo Rui; Yang Xianyong; Liang Taofeng

    1999-01-01

    In a pool fast reactor, the roof structure is penetrated by a number of pumps and heat exchanger units to form some annular spaces with various sizes. The natural convection of argon gas happens in the pool sky and the small annular gaps between those components and the roof containment due to thermosiphonic effects. The natural convection is studied experimentally and numerically to predict the temperature distributions inside the annular space and its surrounding structure. Numerical simulation is performed by using LVEL turbulence model and extending computational domain to the entire pool sky. The predicted results are in fair agreement with the experimental data. In comparison with commonly used k-ε model, LVEL model has better accuracy for the turbulent flow in a gap space

  12. Study on application of two-fluid model in narrow annular channel

    International Nuclear Information System (INIS)

    Chen Jun; Yang Yanhua; Zhao Hua

    2007-01-01

    The Chexal-Harrison two-phase wall and inter-phase friction models developed by EPRI newly and the simple two-phase wall and inter-phase heat transfer models put forward by the paper are used to set up the two-fluid model which is fitted for boiling heat transfer and flow in narrow annular channel. On the base of the two-fluid model, a thermal hydraulic code-THYME is accomplished. Then the thermal hydraulic characteristic of narrow annular channel is analyzed by RELAP5/MOD3.2 code and THYME code. Compared with experimental data, RELAP5/MOD3.2 underestimates the outlet steam, and the results of THYME is agreed with the experimental data. (authors)

  13. Propagation and collision of soliton rings in quantum semiconductor plasmas

    International Nuclear Information System (INIS)

    El-Shamy, E.F.; Gohman, F.S.

    2014-01-01

    The intrinsic localization of electrostatic wave energies in quantum semiconductor plasmas can be described by solitary pulses. The collision properties of these pulses are investigated. In the present study, the fundamental model includes the quantum term, degenerate pressure of the plasma species, and the electron/hole exchange–correlation effects. In cylindrical geometry, using the extended Poincaré–Lighthill–Kuo (PLK) method, the Korteweg–de Vries (KdV) equations and the analytical phase shifts after the collision of two soliton rings are derived. Typical values for GaSb and GaN semiconductors are used to estimate the basic features of soliton rings. It is found that the pulses of GaSb semiconductor carry more energies than the pulses of GaN semiconductor. In addition, the degenerate pressure terms of electrons and holes have strong impact on the phase shift. The present theory may be useful to analyze the collision of localized coherent electrostatic waves in quantum semiconductor plasmas. - Highlights: • The propagation and the collision of pulses in quantum semiconductor plasmas are studied. • Numerical calculations reveal that pulses may exist only in dark soliton rings for electron–hole quantum plasmas. • Typical values for GaSb and GaN semiconductors are used to estimate the basic features of soliton rings. • It is found that the pulses of GaSb semiconductor carry more energies than the pulses of GaN semiconductor. • The degenerate pressure terms of electrons and holes have strong impact on the phase shift

  14. Heat-Induced, Pressure-Induced and Centrifugal-Force-Induced Exact Axisymmetric Thermo-Mechanical Analyses in a Thick-Walled Spherical Vessel, an Infinite Cylindrical Vessel, and a Uniform Disk Made of an Isotropic and Homogeneous Material

    Directory of Open Access Journals (Sweden)

    Vebil Yıldırım

    2017-07-01

    Full Text Available Heat-induced, pressure-induced, and centrifugal force-induced axisymmetric exact deformation and stresses in a thick-walled spherical vessel, a cylindrical vessel, and a uniform disk are all determined analytically at a specified constant surface temperature and at a constant angular velocity. The inner and outer pressures are both included in the formulation of annular structures made of an isotropic and homogeneous linear elastic material. Governing equations in the form of Euler-Cauchy differential equation with constant coefficients are solved and results are presented in compact forms. For disks, three different boundary conditions are taken into account to consider mechanical engineering applications. The present study is also peppered with numerical results in graphical forms.

  15. Investigations on post-dryout heat transfer in bilaterally heated annular channels

    International Nuclear Information System (INIS)

    Tian, W.X.; Qiu, S.Z.; Jia, D.N.

    2006-01-01

    Post-dryout heat transfer in bilaterally heated vertical narrow annular channels with 1.0, 1.5 and 2.0 mm gap size has been experimentally investigated with deionized water under the condition of pressure ranging from 1.38 to 5.9 MPa and low mass flow rate from 42.9 to 150.2 kg/m 2 s. The experimental data was compared with well known empirical correlations including Groeneveld, Mattson, etc., and none of them gave an ideal prediction. Theoretical investigations were also carried out on post-dryout heat transfer in annular channels. Based on analysis of heat exchange processes arising among the droplets, the vapor and two tube walls of annular channel, a non-equilibrium mechanistic heat transfer model was developed. Comparison indicated that the present model prediction showed a good agreement with our experimental data. Theoretical calculation result showed that the forced convective heat transfer between the heated wall and vapor dominate the overall heat transfer. The heat transfer caused by the droplets direct contact to the wall and the interfacial convection/evaporation of droplets in superheated vapors also had an indispensable contribution. The radiation heat transfer would be neglected because of its small contribution (less than 0.11%) to the total heat transfer

  16. Deep local and regional hyperthermia with annular phased array

    International Nuclear Information System (INIS)

    Uehara, S.; Omagari, J.; Hata, K.

    1989-01-01

    33 refractory tumors mainly located in the pelvic cavity after definitive treatment were treated by loco-regional hyperthermia alone (n = 11) or by heat in combination with radiotherapy (n = 22) by annular phased array (APA) manufactured by BSD Corp. Tumors were heated up to more than 42 0 C in 78% of 347 total heat sessions with induction time 22 ± 1 (S.D.) minutes during which those of intra-pelvic organs were elevated up to between 41 and 42 0 C. Tumor response was CR 18%, PR 50% by heat (11.2 ± 1.5 S.D. fractions) combined with radiotherapy (43.8 ± 12.5 S.D. Gy) and by heat alone (8.6 ± 1.3 S.D. fractions) CR 18%, PR 9%. In all heat sessions superficial pain 36%, skin burn (grade 1-2) 12% inside annular array and slight to moderate systemic heat stress 100% were the main adverse reactions we experienced. (orig.)

  17. Modeling of Focused Acoustic Field of a Concave Multi-annular Phased Array Using Spheroidal Beam Equation

    International Nuclear Information System (INIS)

    Yu Lili; Shou Wende; Hui Chun

    2012-01-01

    A theoretical model of focused acoustic field for a multi-annular phased array on concave spherical surface is proposed. In this model, the source boundary conditions of the spheroidal beam equation (SBE) for multi-annular phased elements are studied. Acoustic field calculated by the dynamic focusing model of SBE is compared with numerical results of the O'Neil and Khokhlov-Zabolotskaya-Kuznetsov (KZK) model, respectively. Axial dynamic focusing and the harmonic effects are presented. The results demonstrate that the dynamic focusing model of SBE is good valid for a concave multi-annular phased array with a large aperture angle in the linear or nonlinear field. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Read/write performance of perpendicular double-layered cylindrical media

    International Nuclear Information System (INIS)

    Yamada, H.; Shimatsu, T.; Watanabe, I.; Tsuchiyama, R.; Aoi, H.; Muraoka, H.; Nakamura, Y.

    2005-01-01

    A cylindrical magnetic storage system using perpendicular double-layered media has been developed. CoCrTa/CoZrNb deposited on a rotating cylindrical substrate shows perpendicular anisotropy and magnetic properties, which have almost the same characteristics as conventional disk-media. The fundamental read/write characteristics of perpendicular double-layered cylindrical media were measured using a single-pole-type (SPT) writer with a sliding-contact-type slider and a merged giant magneto-resistive (GMR) reader with a one-pad-type slider designed for use with cylindrical media. Preliminary studies for improving the characteristics of the recording layer are also described

  19. Axicon-based annular laser trap for studies on sperm activity

    Science.gov (United States)

    Shao, Bing; Vinson, Jaclyn M.; Botvinick, Elliot L.; Esener, Sadik C.; Berns, Michael W.

    2005-08-01

    As a powerful and noninvasive tool, laser trapping has been widely applied for the confinement and physiological study of biological cells and organelles. Researchers have used the single spot laser trap to hold individual sperm and quantitatively evaluated the motile force generated by a sperm. Early studies revealed the relationship between sperm motility and swimming behavior and helped the investigations in medical aspects of sperm activity. As sperm chemotaxis draws more and more interest in fertilization research, the studies on sperm-egg communication may help to explain male or female infertility and provide exciting new approaches to contraception. However, single spot laser trapping can only be used to investigate an individual target, which has limits in efficiency and throughput. To study the chemotactic response of sperm to eggs and to characterize sperm motility, an annular laser trap with a diameter of several hundred microns is designed, simulated with ray tracing tool, and implemented. An axicon transforms the wavefront such that the laser beam is incident on the microscope objective from all directions while filling the back aperture completely for high efficiency trapping. A trapping experiment with microspheres is carried out to evaluate the system performance. The power requirement for annular sperm trapping is determined experimentally and compared with theoretical calculations. With a chemo-attractant located in the center and sperm approaching from all directions, the annular laser trapping could serve as a speed bump for sperm so that motility characterization and fertility sorting can be performed efficiently.

  20. Neutronic evaluation of annular fuel rods to assemblies 13 x 13, 14 x 14 and 15 x 15

    International Nuclear Information System (INIS)

    Silva, Raphael H.M.; Ramos, Mario C.; Velasquez, Carlos E.; Silva, Clarysson A.M. da; Pereira, Cláubia; Costa, Antonella L.

    2017-01-01

    Research and development in nuclear reactor field has been proposed a new concept of fuel rod such as annular shape. The design of the annular fuel rods allows the coolant flow through the inner and outer side of it. Such project was proposed as an alternative to the traditional fuel rods used in LWR reactors. This new geometry allows an increase in power density in the reactor core with greater heat transfer from the fuel to the coolant which reduces the temperature in central region of the rod, in which a better configuration and dimension of fuel elements are aimed due to improvement of cooling in possible replacement of PWR traditional rods for annular rods. The aim of this work is to evaluate the neutronic parameters of fuel element with annular fuel rods where three configurations were studied: 13 x 13, 14 x 14 and 15 x 15. The goal is compare the neutronic between the advanced and the standard fuel assembly 16 x 16. In these studies, the external dimension and the moderator to fuel volume ratio (V M /V F ) of standard 16 x 16 is the same in all annular fuels assemblies. The MCNPX 2.6.0 (Monte Carlo N-Particle eXtended – version 2.6.0) code was used in all simulations. After all procedures, the annular fuel assemblies 13 have obtained greater neutronics parameters and were selected to more neutronics simulations. (author)

  1. Neutronic evaluation of annular fuel rods to assemblies 13 x 13, 14 x 14 and 15 x 15

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Raphael H.M.; Ramos, Mario C.; Velasquez, Carlos E.; Silva, Clarysson A.M. da; Pereira, Cláubia; Costa, Antonella L., E-mail: rapha.galo@hotmail.com, E-mail: marc5663@gmail.com, E-mail: carlosvelcab@hotmail.com, E-mail: clarysson@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: antonella@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Research and development in nuclear reactor field has been proposed a new concept of fuel rod such as annular shape. The design of the annular fuel rods allows the coolant flow through the inner and outer side of it. Such project was proposed as an alternative to the traditional fuel rods used in LWR reactors. This new geometry allows an increase in power density in the reactor core with greater heat transfer from the fuel to the coolant which reduces the temperature in central region of the rod, in which a better configuration and dimension of fuel elements are aimed due to improvement of cooling in possible replacement of PWR traditional rods for annular rods. The aim of this work is to evaluate the neutronic parameters of fuel element with annular fuel rods where three configurations were studied: 13 x 13, 14 x 14 and 15 x 15. The goal is compare the neutronic between the advanced and the standard fuel assembly 16 x 16. In these studies, the external dimension and the moderator to fuel volume ratio (V{sub M}/V{sub F}) of standard 16 x 16 is the same in all annular fuels assemblies. The MCNPX 2.6.0 (Monte Carlo N-Particle eXtended – version 2.6.0) code was used in all simulations. After all procedures, the annular fuel assemblies 13 have obtained greater neutronics parameters and were selected to more neutronics simulations. (author)

  2. Prevalence of annular tears and disc herniations on MR images of the cervical spine in symptom free volunteers

    International Nuclear Information System (INIS)

    Ernst, C.W.; Stadnik, T.W.; Peeters, E.; Breucq, C.; Osteaux, M.J.C.

    2005-01-01

    Study design: Prospective MR analysis of the cervical spine of 30 asymptomatic volunteers. Objectives: To evaluate the prevalence of annular tears, bulging discs, disc herniations and medullary compression on T2-weighted and gadolinium-enhanced T1-weighted magnetic resonance (MR) images of the cervical spine in symptom free volunteers. Summary of background data: Few studies have reported the prevalence of cervical disc herniations in asymptomatic people, none have reported the prevalence of cervical annular tears on MR images of symptom free volunteers. Materials and methods: Thirty symptom-free volunteers (no history or symptoms related to the cervical spine) were examined using sagittal T2-weighted fast spin-echo (SE), sagittal gadolinium-enhanced T1-weighted SE imaging and axial T2 * -weighted gradient echo (GRE). The prevalence of bulging discs, focal protrusions, extrusions, nonenhancing or enhancing annular tears and medullary compression were assessed. Results: The prevalence of bulging disk and focal disk protrusions was 73% (22 volunteers) and 50% (15 volunteers), respectively. There was one extrusion (3%). Eleven volunteers had annular tears at one or more levels (37%) and 94% of the annular tears enhanced after contrast injection. Asymptomatic medullary compression was found in four patients (13%). Conclusion: Annular tears and focal disk protrusions are frequently found on MR imaging of the cervical spine, with or without contrast enhancement, in asymptomatic population. The extruded disk herniation and medullary compression are unusual findings in a symptom-free population

  3. Numerical Investigation of Effect of Parameters on Hovering Efficiency of an Annular Lift Fan Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2016-10-01

    Full Text Available The effects of various parameters on the hovering performance of an annular lift fan aircraft are investigated by using numerical scheme. The pitch angle, thickness, aspect ratio (chord length, number of blades, and radius of duct inlet lip are explored to optimize the figure of merit. The annular lift fan is also compared with a conventional circular lift fan of the same features with the same disc loading and similar geometry. The simulation results show that the pitch angle of 27°, the thickness of 4% chord length, the aspect ratio of 3.5~4.0, 32 blades, and the radius of inlet lip of 4.7% generate the maximum figure of merit of 0.733. The optimized configuration can be used for further studies of the annular lift fan aircraft.

  4. CFD Study of an Annular-Ducted Fan Lift System for VTOL Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2015-09-01

    Full Text Available The present study aimed at assessing a novel annular-ducted fan lift system for VTOL aircraft through computational fluid dynamics (CFD simulations. The power and lift efficiency of the lift fan system in hover mode, the lift and drag in transition mode, the drag and flight speed of the aircraft in cruise mode and the pneumatic coupling of the tip turbine and jet exhaust were studied. The results show that the annular-ducted fan lift system can have higher lift efficiency compared to the rotor of the Apache helicopter; the smooth transition from vertical takeoff to cruise flight needs some extra forward thrust to overcome a low peak of drag; the aircraft with the lift fan system enclosed during cruise flight theoretically may fly faster than helicopters and tiltrotors based on aerodynamic drag prediction, due to the elimination of rotor drag and compressibility effects on the rotor blade tips; and pneumatic coupling of the tip turbine and jet exhaust of a 300 m/s velocity can provide enough moment to spin the lift fan. The CFD results provide insight for future experimental study of the annular-ducted lift fan VTOL aircraft.

  5. Hydrodynamic stability of inverted annular flow in an adiabatic simulation

    International Nuclear Information System (INIS)

    De Jarlais, G.; Ishii, M.; Linehan, J.

    1986-01-01

    Inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from large aspect ratio nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, breakup mode, and dispersed core droplet sizes were recorded at approximately 750 data points. Inverted annular flow destabilization led to inverted slug flow at low relative velocities, and to dispersed droplet flow, core breakup length correlations were developed by extending work on free liquid jets to include this coaxial, jet disintegration phenomenon. The results show length dependence upon D/sub J/, Re/sub J/, We/sub J/, α, and We/sub G/,rel. Correlations for core shape, breakup mechanisms, and dispersed core droplet size were also developed, by extending the results of free jet stability, roll wave entrainment, and churn turbulent droplet stability studies

  6. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Sloshing in any type of container may invite instability to it. If some part of the free liquid surface in the annular region of a specially designed circular cylindrical container is covered with an annular baffle, the natural frequencies and the response of the liquid in the container undergo a drastic change. A partly covered free ...

  7. A New Annular Shear Piezoelectric Accelerometer

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    This paper describes the construction and performance of a recently introduced Annular Shear piezoelectric accelerometer, Type 4511. The design has insulated and double-shielded case. The accelerometer housing is made of stainless steel, AISI 316L. Piezoceramic PZ23 is used. The seismic mass...... prototype. Reasonable agreement between the experimental results of the physical prototype and the simulation results is achieved. The design becomes more efficient. In addition, Type 4511 has a built in DeltaTronâ charge amplifier with ID and complies with IEEE-P1451.4 standard, which is a smart transducer...

  8. ZONAL TOROIDAL HARMONIC EXPANSIONS OF EXTERNAL GRAVITATIONAL FIELDS FOR RING-LIKE OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-08-01

    We present an expression of the external gravitational field of a general ring-like object with axial and plane symmetries such as oval toroids or annular disks with an arbitrary density distribution. The main term is the gravitational field of a uniform, infinitely thin ring representing the limit of zero radial width and zero vertical height of the object. The additional term is derived from a zonal toroidal harmonic expansion of a general solution of Laplace’s equation outside the Brillouin toroid of the object. The special functions required are the point value and the first-order derivative of the zonal toroidal harmonics of the first kind, namely, the Legendre function of the first kind of half integer degree and an argument that is not less than unity. We developed a recursive method to compute them from two pairs of seed values explicitly expressed by some complete elliptic integrals. Numerical experiments show that appropriately truncated expansions converge rapidly outside the Brillouin toroid. The truncated expansion can be evaluated so efficiently that, for an oval toroid with an exponentially damping density profile, it is 3000–10,000 times faster than the two-dimensional numerical quadrature. A group of the Fortran 90 programs required in the new method and their sample outputs are available electronically.

  9. [Reconstructive surgery of the mitral and tricuspid valves with a Cosgrove-Edwards flexible ring].

    Science.gov (United States)

    Pugliese, P; Pantani, P; Lusa, A M; Nuti, R; Bongiovanni, M; Conti, F; Biasi, C; Pigini, F; Palmisano, D

    2000-04-01

    Mitral and tricuspid valve asymmetric annular dilation represents the most important mechanism which produces insufficiency. Recent computerized in vitro and in vivo three-dimensional models have been developed in order to better understand the competing factors (annular dilation, displacement of papillary muscles, left and right ventricular geometry). The leading cause of mitral and tricuspid competence is a sphincteric action of both annuli, during systole and diastole, the loss of which produces asymmetric dilation and therefore the absence of cusp coaptation. The Cosgrove-Edwards dynamic ring corrects, alone or in combination with other procedures on the valves, this patho-anatomic feature in a physiological way by restoring the normal annular dimensions and the sphincteric movements during the cardiac cycle. Between June 1998 and May 1999, 30 adult patients underwent mitral (n = 20, Group I) or tricuspid valve repair (n = 10, Group II). Regurgitation was due to a degenerative disease in 13 Group I patients and to ischemic (n = 3), congenital (n = 2) or dilated cardiomyopathy (n = 2) in the others. In Group II the leading cause of insufficiency was functional regurgitation in 7 patients and organic in 3. Associated procedures were carried out in 4 Group I patients and in all Group II patients. Regurgitation was evaluated by transesophageal echocardiography before, during and 3 months after operation. The maximal regurgitant area (MRA) and the grade of insufficiency were evaluated using the equation: MRA 2 4 7 10 cm2 = 4+. The operative mortality was 0%. One Group I patient died 3 months after operation due to bronchopneumonia. No patient was reoperated on for plasty failure in both groups during the follow-up. Mitral insufficiency was absent (grade 0) in 17 Group I patients and mild (grade 1+) in 3 at the end of operation. At 3-month postoperative transesophageal echocardiographic control mitral insufficiency was absent in 14 patients, mild (1+) in 4 and

  10. Investigation of free vibration analysis of functionally graded annular piezoelectric plate using COMSOL

    Science.gov (United States)

    Sharma, Trivendra Kumar; Parashar, Sandeep Kumar

    2018-05-01

    In the present age functionally graded piezoelectric materials (FGPM) are increasingly being used as actuators and sensors. In spite of the fact that the piezoelectric coupling coefficient for shear d15 has much higher value in comparison to d31 or d33, it is far less utilized for the applications due to complex nature of the shear induced vibrations. In this work three dimensional free vibration analysis of functionally graded piezoelectric material annular plates with free-free boundary conditions is presented. The annular FGPM plate is polarized along the radial direction while the electric field is applied along the thickness direction inducing flexural vibrations of the plate due to d15 effect of functionally graded piezoelectric materials. The material properties are assumed to have a power law variation along the thickness. COMSOL Multiphysics is used to obtain the natural frequencies and modeshapes. Detailed numerical study is performed to ascertain the effect of variation in power law index and various geometrical parameters. The results presented shall be helpful in optimizing the existing applications and developing the new ones utilizing the FGPM annular plates.

  11. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1987-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs are used. The inlet section consists of specially designed coaxial nozzles for gas and liquid such that the ideal inverted annular flow can be generated. The roll wave formation, droplet entrainment from wave crests, agitated sections with large interfacial areas, classical sinuous jet instability, jet break-up into multiple liquid ligaments and drop formation from liquid ligaments have been observed in detail. (orig.)

  12. Auxiliary reactor for a hydrocarbon reforming system

    Science.gov (United States)

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  13. The decrease of cylindrical pempek quality during boiling

    Science.gov (United States)

    Karneta, R.; Gultom, N. F.

    2017-09-01

    The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.

  14. Annular gap measurement between pressure tube and calandria tube by eddy current technique

    International Nuclear Information System (INIS)

    Bhole, V.M.; Rastogi, P.K.; Kulkarni, P.G.

    1992-01-01

    In pressurised heavy water reactor (PHWR) major distinguishing feature is that there are number of identical fuel channels in the reactor core. Each channel consists of pressure tube of Zr-2.5 Nb or zircaloy-2 through which high temperature, high pressure primary coolant is passing. The pressure tube contains fuel. Surrounding the pressure tube there is low pressure, cool heavy water (moderator). The moderator is thermally separated from coolant by the tube which is nominally concentric with pressure tube called calandria tube. There are four garter springs in the annular gap between pressure tube and calandria tube. During the life of the reactor there are number of factors by which the pressure tube sags, most important factors are irradiation creep, thermal creep, fuel load etc. Because of the sag of pressure tube it can touch the calandria tube resulting in formation of cold spot. This leads to hydrogen concentration at that spot by which the material at that place becomes brittle and can lead to catastrophic failure of pressure tube. There is no useful access for measurement of annular gap either through the gas annular space or from exterior of calandria tube. So the annular gap was measured from inside surface of pressure tube which is accessible. Eddy current technique was used for finding the gap. The paper describe the details of split coil design of bobbin probe, selection of operating point on normalised impedance diagram by choosing frequency. Experimental results on full scale mock up, and actual gap measurement in reactor channel, are also given. (author). 7 figs

  15. Modeling of annular two-phase flow using a unified CFD approach

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haipeng, E-mail: haipengl@kth.se; Anglart, Henryk, E-mail: henryk@kth.se

    2016-07-15

    Highlights: • Annular two-phase flow has been modeled using a unified CFD approach. • Liquid film was modeled based on a two-dimensional thin film assumption. • Both Eulerian and Lagrangian methods were employed for the gas core flow modeling. - Abstract: A mechanistic model of annular flow with evaporating liquid film has been developed using computational fluid dynamics (CFD). The model is employing a separate solver with two-dimensional conservation equations to predict propagation of a thin boiling liquid film on solid walls. The liquid film model is coupled to a solver of three-dimensional conservation equations describing the gas core, which is assumed to contain a saturated mixture of vapor and liquid droplets. Both the Eulerian–Eulerian and the Eulerian–Lagrangian approach are used to describe the droplet and vapor motion in the gas core. All the major interaction phenomena between the liquid film and the gas core flow have been accounted for, including the liquid film evaporation as well as the droplet deposition and entrainment. The resultant unified framework for annular flow has been applied to the steam-water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show good agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate.

  16. Modeling of annular two-phase flow using a unified CFD approach

    International Nuclear Information System (INIS)

    Li, Haipeng; Anglart, Henryk

    2016-01-01

    Highlights: • Annular two-phase flow has been modeled using a unified CFD approach. • Liquid film was modeled based on a two-dimensional thin film assumption. • Both Eulerian and Lagrangian methods were employed for the gas core flow modeling. - Abstract: A mechanistic model of annular flow with evaporating liquid film has been developed using computational fluid dynamics (CFD). The model is employing a separate solver with two-dimensional conservation equations to predict propagation of a thin boiling liquid film on solid walls. The liquid film model is coupled to a solver of three-dimensional conservation equations describing the gas core, which is assumed to contain a saturated mixture of vapor and liquid droplets. Both the Eulerian–Eulerian and the Eulerian–Lagrangian approach are used to describe the droplet and vapor motion in the gas core. All the major interaction phenomena between the liquid film and the gas core flow have been accounted for, including the liquid film evaporation as well as the droplet deposition and entrainment. The resultant unified framework for annular flow has been applied to the steam-water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show good agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate.

  17. Cylindrical solitons in shallow water of variable depth

    International Nuclear Information System (INIS)

    Carbonaro, P.; Floris, R.; Pantano, P.

    1983-01-01

    The propagation and the interaction of cylindrical solitons in shallow water of variable depth are studied. Starting from the cylindrically symmetric version of the equations describing long waves in a beach, a Korteweg-de Vries equation is derived. Since no exact analytical solution has been found to date for this equation, some remarkable cases in which the equation takes up a tractable form are analyzed. Finally the intercation between cylindrical imploding and expanding waves is considered and the phase shifts caused by the head-on collision are given

  18. The Hydraulic Test Report for Non-instrumented Irradiation Test Rig of DUO-Cooled Annular Pellet

    International Nuclear Information System (INIS)

    Kim, Dae Ho; Lee, Kang Hee; Shin, Chang Hwan; Yang, Yong Sik; Kim, Sun Ki; Bang, Je Geon; Song, Kun Woo

    2007-08-01

    This report presents the results of pressure drop test and vibration test for non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet which were designed and fabricated by KAERI. From the pressure drop test results, it is noted that the flow velocity across the non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet corresponding to the pressure drop of 200 kPa is measured to be about 8.30 kg/sec. Vibration frequency results for the non-instrumented rig at the pump spin frequency ranges from 19.0 to 32.0 Hz, RMS(Root Mean Square) displacement for the non-instrumented rig of Advanced PWR DUO-Fuel Annular Pellet is less than 7.25 m, and the maximum displacement is less than 31.27 μm. This test was performed at the FIVPET facility

  19. Ring Theory

    CERN Document Server

    Jara, Pascual; Torrecillas, Blas

    1988-01-01

    The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.

  20. Tube coupling device

    Science.gov (United States)

    Myers, William N. (Inventor); Hein, Leopold A. (Inventor)

    1987-01-01

    A first annular ring of a tube coupling device has a keyed opening sized to fit around the nut region of a male coupling, and a second annular ring has a keyed opening sized to fit around the nut of a female coupling. Each ring has mating ratchet teeth and these rings are biased together, thereby engaging these teeth and preventing rotation of these rings. This in turn prevents the rotation of the male nut region with respect to the female nut. For tube-to-bulkhead locking, one facet of one ring is notched, and a pin is pressed into an opening in the bulkhead. This pin is sized to fit within one of the notches in the ring, thereby preventing rotation of this ring with respect to the bulkhead.

  1. On sound transmission through double-walled cylindrical shells lined with poroelastic material: Comparison with Zhou's results and further effect of external mean flow

    Science.gov (United States)

    Liu, Yu; He, Chuanbo

    2015-12-01

    In this discussion, the corrections to the errors found in the derivations and the numerical code of a recent analytical study (Zhou et al. Journal of Sound and Vibration 333 (7) (2014) 1972-1990) on sound transmission through double-walled cylindrical shells lined with poroelastic material are presented and discussed, as well as the further effect of the external mean flow on the transmission loss. After applying the corrections, the locations of the characteristic frequencies of thin shells remain unchanged, as well as the TL results above the ring frequency where BU and UU remain the best configurations in sound insulation performance. In the low-frequency region below the ring frequency, however, the corrections attenuate the TL amplitude significantly for BU and UU, and hence the BB configuration exhibits the best performance which is consistent with previous observations for flat sandwich panels.

  2. Eigensolutions of Annular-Like Elastic Disks with Intentionally Removed or Added Material

    Science.gov (United States)

    Vinayak, H.; Singh, R.

    1996-05-01

    Many examples of elastic, isotropic, stationary annular-like disks are studied analytically and experimentally for free-free and clamped-free boundary conditions. Natural frequencies and deformation shapes of the first few flexural modes including repeated roots are examined and tabulated. Disks with large circular holes or annular holes or annular slots within the disk body with a volume or mass ratio Γ of 5 to 15% are studied with particular emphasis on mode shapes as they deviate from the regular annular plate modes. Material removal cases via incisions or minor cuts at the disk rim, hub or within the body are not considered in this investigation. Material addition cases are simulated by thickening the outer rim or inner hub regions, for Γvalues up to 60%. The final example considers a gear from a helicopter tail rotor gearbox; it has 8 holes and thick rim and hub. A bi-orthogonal polynomial-trigonometrical shape function series is proposed in the Ritz minimization scheme that employs both classical thin and Mindlin's thick plate theories. The effect of number of terms is evaluated by examining an expansion of the linearly independent basis function and by calculating an overall root mean square (rms) error associated with the prediction of a mode shape. The clamped inner edge is described by 4 alternate models and the impedance boundary condition described was found to be the most satisfactory. Predictions of the semi-analytical Ritz method closely match with measured eigensolutions and results yielded by finite element models. The Ritz method is especially attractive because of significant computational savings in addition to the ease with which it can be integrated within a component mode synthesis or multi-body dynamics framework for forced response or system design studies.

  3. Sodium flow rate measurement method of annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo

    2011-01-01

    This report describes a method for measuring sodium flow rate of annular linear induction pumps arranged in parallel and its verification result obtained through an experiment and a numerical analysis. In the method, the leaked magnetic field is measured with measuring coils at the stator end on the outlet side and is correlated with the sodium flow rate. The experimental data and the numerical result indicate that the leaked magnetic field at the stator edge keeps almost constant when the sodium flow rate changes and that the leaked magnetic field change arising from the flow rate change is small compared with the overall leaked magnetic field. It is shown that the correlation between the leaked magnetic field and the sodium flow rate is almost linear due to this feature of the leaked magnetic field, which indicates the applicability of the method to small-scale annular linear induction pumps. (author)

  4. Temperature Calculation of Annular Fuel Pellet by Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Sik; Bang, Je Geon; Kim, Dae Ho; Kim, Sun Ki; Lim, Ik Sung; Song, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    KAERI has started an innovative fuel development project for applying dual-cooled annular fuel to existing PWR reactor. In fuel design, fuel temperature is the most important factor which can affect nuclear fuel integrity and safety. Many models and methodologies, which can calculate temperature distribution in a fuel pellet have been proposed. However, due to the geometrical characteristics and cooling condition differences between existing solid type fuel and dual-cooled annular fuel, current fuel temperature calculation models can not be applied directly. Therefore, the new heat conduction model of fuel pellet was established. In general, fuel pellet temperature is calculated by FDM(Finite Difference Method) or FEM(Finite Element Method), because, temperature dependency of fuel thermal conductivity and spatial dependency heat generation in the pellet due to the self-shielding should be considered. In our study, FDM is adopted due to high exactness and short calculation time.

  5. Effect of Mitral Annular Calcium on Left Ventricular Diastolic Parameters.

    Science.gov (United States)

    Codolosa, Jose N; Koshkelashvili, Nikoloz; Alnabelsi, Talal; Goykhman, Igor; Romero-Corral, Abel; Pressman, Gregg S

    2016-03-01

    Assessment of left ventricular (LV) diastolic function by Doppler flow imaging and tissue Doppler is an integral part of the echocardiographic examination. Mitral annular calcium (MAC) is frequently encountered on echocardiography. The aim of this study was to assess the impact of MAC, quantitatively measured by computed tomography scan, on echocardiographic LV diastolic parameters. We included 155 patients aged ≥65 years. Computed tomography reconstructions of the mitral annulus were created, and calcium identified and quantified by Agatston technique. Calcium locations were assigned using an overlaid template depicting the annular segments in relation to surrounding anatomic structures. Echocardiographic assessment of diastolic function was performed in standard fashion. Mean age was 77 years; 49% were men; and 43% were black. Patients with MAC had lower septal e' (p = 0.003), lateral e' (p = 0.04), and average e' (p = 0.01) compared with those without MAC. They also had a higher E-wave velocity (p = 0.01) and E/e' ratio (p <0.001). When evaluated by severity of MAC, and after adjustment for multiple clinical factors, there was a graded (inverse) relation between MAC severity and septal e' (p = 0.01), lateral e' (p = 0.01), and average e' (p = 0.01). In conclusion, LV diastolic parameters, as measured by Doppler echocardiography, are altered in the presence of MAC. This could be due to direct effects of MAC on annular function or might reflect truly reduced diastolic function. Interpretation of diastolic parameters in patients with MAC should be performed with caution. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Measurement of aspheric surfaces using an improved annular subaperture stitching interferometry (IASSI)

    International Nuclear Information System (INIS)

    Wen, Yongfu; Cheng, Haobo

    2014-01-01

    An improved annular subaperture stitching interferometry (IASSI) is proposed for testing aspheric surfaces in the stage of precision polishing. It includes a reasonable stitching model and an automatic positioning operation. In the testing process, a series of optical path difference (OPD) data of annular subapertures is obtained as the interferometer is gradually shifted relative to the tested aspheric surface. Then these OPD data can be analyzed by the automatic positioning operation to get the key stitching parameters, and can be stitched together based on a reasonable mathematical model. To verify its validity, we study the applicability of the method to subaperture stitching tests of two conic aspheric surfaces. The stitching results agreed with the full-aperture test results. (paper)

  7. Semi-analytic flux formulas for shielding calculations

    International Nuclear Information System (INIS)

    Wallace, O.J.

    1976-06-01

    A special coordinate system based on the work of H. Ono and A. Tsuro has been used to derive exact semi-analytic formulas for the flux from cylindrical, spherical, toroidal, rectangular, annular and truncated cone volume sources; from cylindrical, spherical, truncated cone, disk and rectangular surface sources; and from curved and tilted line sources. In most of the cases where the source is curved, shields of the same curvature are allowed in addition to the standard slab shields; cylindrical shields are also allowed in the rectangular volume source flux formula. An especially complete treatment of a cylindrical volume source is given, in which dose points may be arbitrarily located both within and outside the source, and a finite cylindrical shield may be considered. Detector points may also be specified as lying within spherical and annular source volumes. The integral functions encountered in these formulas require at most two-dimensional numeric integration in order to evaluate the flux values. The classic flux formulas involving only slab shields and slab, disk, line, sphere and truncated cone sources become some of the many special cases which are given in addition to the more general formulas mentioned above

  8. The quantum spectral analysis of the two-dimensional annular billiard system

    International Nuclear Information System (INIS)

    Yan-Hui, Zhang; Ji-Quan, Zhang; Xue-You, Xu; Sheng-Lu, Lin

    2009-01-01

    Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimensional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system. (general)

  9. Plastic buckling of cylindrical shells

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.

    1994-01-01

    Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads

  10. Cylindrical Piezoelectric Fiber Composite Actuators

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  11. The impacts of the atmospheric annular mode on the AMOC and its feedback in an idealized experiment

    Science.gov (United States)

    Santis, Wlademir; Aimola, Luis; Campos, Edmo J. D.; Castellanos, Paola

    2018-03-01

    The interdecadal variability of the atmospheric and oceanic meridional overturning circulation is studied, using a coupled model with two narrow meridional barriers representing the land and a flat bottomed Aquaplanet. Empirical orthogonal function (EOF) analysis are used in the atmospheric and oceanic meridional overturning cells, revealing the atmospheric interdecadal variability is dominated by an annular mode, in both hemispheres, which introduces in the ocean a set of patterns of variability. The most energetic EOFs in the ocean are the barotropic responses from the annular mode. The interaction between the heat anomalies, due to the barotropic response, and the thermohaline circulation of each basin leads to a resonance mechanism that feeds back to the atmospheric forcing, modulating the annular mode spectrum. Besides the barotropic response, the annular mode introduces anomalies of salinity and temperature in the subtropical Atlantic that affects its upper buoyancy. These anomalies are incorporated within the ocean circulation and advected until the areas of deep sinking in the northern Atlantic, impacting on its overturning circulation as well.

  12. Dismantling the activated annular water tank of the Rheinsberg nuclear power plant; Zerlegung des aktivierten Ringwasserbehaelters des Kernkraftwerks Rheinsberg

    Energy Technology Data Exchange (ETDEWEB)

    Klietz, Maik; Konitzer, Arnold; Luedeke, Michael [Anlagen- und Kraftwerksrohrleitungsbau GmbH, Greifswald (Germany)

    2010-10-15

    Acting on behalf of Energiewerke Nord GmbH Lubmin, Anlagen- und Kraftwerksrohrleitungsbau Greifswald GmbH (AKB) planned and built a station for disassembly of the activated annular water tank (RWB) of the decommissioned Rheinsberg nuclear power plant. As part of this demolition step, the annular water tank must be conditioned and disposed of as a component of the reactor facility. This required planning, manufacturing, testing and construction on site of suitable disassembly and handling techniques and the necessary plant and equipment. The client opted for disassembly by means of a diamond cable saw for conditioning the annular water tank into segments fit for shipping, and defined the basic components for the disassembly station in a specification of deliveries and services. The disassembly station serves to divide the annular water tank by means of diamond cable saws into 2 sections in such a way that segment pieces for transport are produced. The existing activation of the annular water tank also entailed the need to plan for the shortest possible time to be spent on handling near the annular water tank, providing radiological protection to the personnel, and performing the sawing steps from a separate operating console assisted by camera surveillance. After works acceptance tests at the manufacturer's, AKB, in October 2009 and February 2010, the disassembly station was delivered to the customer at Rheinsberg KKR free from defects in June 2010. (orig.)

  13. Report of the eRHIC Ring-Ring Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Parker, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Willeke, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the other hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.

  14. Thermo-acoustic coupling in can-annular combustors : A numerical investigation

    NARCIS (Netherlands)

    Farisco, Federica; Panek, Lukasz; Kok, Jim B.W.; Pent, Jared; Rajaram, Rajesh

    2015-01-01

    Thermo-acoustic instabilities in modern, high power density gas turbines need to be predicted and understood in order to avoid unexpected damage and engine failure. While the annular combustor design is expected to suffer from the occurrence of transverse waves and burner-to-burner acoustic

  15. Electrostatic Analysis of Annular Holes Penetrated by Shorted-Cable

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jae Yul; Kim, Hyung Tae; Park, Hyun Shin; Cho, Young Sik [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    The cabinet has an important role to protect the contained cables and digital modules for the safety function from the external electromagnetic (EM) source. Thus the immunity of an open cabinet against electromagnetic interference (EMI) numerically has been investigated using mode-matching method in. Another path for the external EM source to impinge on inner cables and digital modules is the bottom hole of the cabinet that is penetrated by various cables. Especially the EMI can detrimentally influence on the digital modules through annular space caused by sealing the bottom hole of the cabinet incompletely. Thus it is recently required that the electromagnetic interpretation in the annular hole is performed to remedy electromagnetic problems. Based on the mode-matching method, we solved the electrostatic boundary-value problem for holes penetrating shorted-cable at the bottom of a digital I and C cabinet. The Weber transform and the Hankel transform were applied to formulate the electrostatic potential. The capacitance and potential distribution generated near the penetrating shorted-cable were computed and compared with the result from the previous study.

  16. A structural design of the multi-ringed seismic support for PCPV

    International Nuclear Information System (INIS)

    Muto, Kiyoshi; Ujiie, Koji.

    1979-01-01

    This report describes the multi-ringed cylindrical support newly developed as the supporting structure for a Prestressed Concrete Pressure Vessel. This support is composed of several thin cylinders of concentric circles, which are made of reinforced concrete or steel reinforced concrete. The characteristics of the support is such that it can allow two contradictory conditions to occur. That is, it can follow smoothly the radial displacement of PCPV induced by inner pressure, inner heat and etc. At the same time, it has enough rigidity to bear the earthquake forces from PCPV and to transmit them to the ground with certainty. The shape, characteristics and structural design of the support are described hereunder. (author)

  17. Ingestion of six cylindrical and four button batteries

    DEFF Research Database (Denmark)

    Nielsen, Simon U; Rasmussen, Morten; Hoegberg, Lotte C G

    2010-01-01

    We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis.......We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis....

  18. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  19. CFD model of diabatic annular two-phase flow using the Eulerian–Lagrangian approach

    International Nuclear Information System (INIS)

    Li, Haipeng; Anglart, Henryk

    2015-01-01

    Highlights: • A CFD model of annular two-phase flow with evaporating liquid film has been developed. • A two-dimensional liquid film model is developed assuming that the liquid film is sufficiently thin. • The liquid film model is coupled to the gas core flow, which is represented using the Eulerian–Lagrangian approach. - Abstract: A computational fluid dynamics (CFD) model of annular two-phase flow with evaporating liquid film has been developed based on the Eulerian–Lagrangian approach, with the objective to predict the dryout occurrence. Due to the fact that the liquid film is sufficiently thin in the diabatic annular flow and at the pre-dryout conditions, it is assumed that the flow in the wall normal direction can be neglected, and the spatial gradients of the dependent variables tangential to the wall are negligible compared to those in the wall normal direction. Subsequently the transport equations of mass, momentum and energy for liquid film are integrated in the wall normal direction to obtain two-dimensional equations, with all the liquid film properties depth-averaged. The liquid film model is coupled to the gas core flow, which currently is represented using the Eulerian–Lagrangian technique. The mass, momentum and energy transfers between the liquid film, gas, and entrained droplets have been taken into account. The resultant unified model for annular flow has been applied to the steam–water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show favorable agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate

  20. Adjoint Optimisation of the Turbulent Flow in an Annular Diffuser

    DEFF Research Database (Denmark)

    Gotfredsen, Erik; Agular Knudsen, Christian; Kunoy, Jens Dahl

    2017-01-01

    In the present study, a numerical optimisation of guide vanes in an annular diffuser, is performed. The optimisation is preformed for the purpose of improving the following two parameters simultaneously; the first parameter is the uniformity perpen-dicular to the flow direction, a 1/3 diameter do...

  1. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1985-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. The review of existing data indicates further research is needed in the areas of basic hydrodynamics related to liquid core disintegration mechanisms, slug and droplet formation, entrainment, and droplet size distributions. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. The test section consists of two coaxial quartz tubes. The annular gap between these two tubes is filled with a hot, clear fluid (syltherm 800) so as to maintain film boiling temperatures and heat transfer rates at the inner quartz tube wall. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs (3 μsec) are used

  2. Device for sealing a rotating plug in a nuclear reactor

    International Nuclear Information System (INIS)

    Brandstetter, R.

    1975-01-01

    The invention relates to the sealing of a rotating plug in a nuclear reactor. The sealing arrangement comprises a friction track which is formed along the periphery of the top of a ring mounted on a stationary element. An annular base coaxial with the plug is secured in sealing-tight manner to the stationary bearing around the ring and the track by means of a seal which rests on the annular base and also on the friction track of the ring and which comprises at least one friction ring and a clamping spring ring. The seal is clamped against the friction track to retractable clamping means when the plug is stationary, the retractable clamping means being carried by a ring secured to the first-mentioned ring. (U.S.)

  3. Colorectal signet ring cell carcinoma: Influence of EGFR, E-cadherin and MMP-13 expression on clinicopathological features and prognosis.

    Science.gov (United States)

    Foda, Abd Al-Rahman Mohammad; Aziz, Azza Abdel; Mohamed, Mie Ali

    2018-02-01

    Signet ring cell carcinoma (SRCC) is unique rare subtype of mucin-producing colorectal adenocarcinoma characterized by presence of signet ring cells, in >50% of the tumor tissue. This study aims to investigate expression of EGFR, E-cadherin and MMP-13 expression on clinicopathological features of signet ring cell type and its prognostic effect using manual tissue microarray technique. In this work, we studied tumor tissue specimens from 150 patients with colorectal cancer cases among which 19 cases of SRCC. High density manual tissue microarrays were constructed using modified mechanical pencil tips technique and immunohistochemistry for EGFR, E-cadherin and MMP-13 expression was done. We found that SRCC was significantly associated with younger age and more frequency of LN metastasis than all other groups. SRCC was also significantly associated with annular gross picture, more depth of invasion, advanced stage, more lymphovascular emboli, more perineural invasion and less arousal from an overlying adenoma. In conclusion, colorectal SRCC has distinctive clinicopathological and histological features with different unique mechanisms of carcinogenesis and more aggressive biologic behavior than other colorectal carcinoma subtypes. Negative/low expressions of EGFR and E-cadherin and MMP-13 were found in SRCC with no effect on the prognosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Optical description and design method with annularly stitched aspheric surface.

    Science.gov (United States)

    Cheng, De-Wen; Chen, Xue-Jiao; Xu, Chen; Hu, Yuan; Wang, Yong-Tian

    2015-12-01

    The relentless pressure for designs with new optical functions, small volume, and light weight has greatly increased the importance of aspheric surfaces. In this paper, we propose an annularly stitched aspheric surface (ASAS) description method to increase the freedom and flexibility of imaging system design. The rotationally symmetric ASAS consists of a circular central zone and one or more annular zones. Two neighboring zones are constrained to have the same derivatives on their joint curve, and this means the ASAS is C1 continuous. This finding is proved and verified by the mathematical deduction of the surface formulas. Two optimization strategies and two design methods with the C1 continuous constraints are also discussed. This surface can greatly facilitate the design and even achieve some previously impossible designs without increasing the fabrication difficulty. Two different systems with the proposed ASAS are optimized and the results are presented. The design results verified the practicability of the ASAS.

  5. Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.

    Science.gov (United States)

    Laskowski, René; Bart, Hans-Jörg

    2015-09-01

    An openFOAM "computational fluid dynamic" simulation model was developed for the description of local interaction of hydrodynamics and Joule heating in annular electrochromatography. A local decline of electrical conductivity of the background eluent is caused by an electrokinetic migration of ions resulting in higher Joule heat generation. The model equations consider the Navier-Stokes equation for incompressible fluids, the energy equation for stationary temperature fields, and the mass transfer equation for the electrokinetic flow. The simulations were embedded in commercial ANSYS Fluent software and in open-source environment openFOAM. The annular gap (1 mm width) contained an inorganic C8 reverse-phase monolith as stationary phase prepared by an in situ sol-gel process. The process temperature generated by Joule heating was determined by thermal camera system. The local hydrodynamics in the prototype was detected by a gravimetric contact-free measurement method and experimental and simulated values matched quite well. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    The dilaton black hole solutions have attracted considerable attention for the ... theory and study the corresponding cylindrically symmetric spacetime, where .... where Йm and Йe are integration constants to be interpreted later as the ..... feature is apparent for the cylindrically symmetric spacetime in the presence of the dila-.

  7. Studies on turbulence structure and liquid film behavior in annular two-phase flow flowing in a throat section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Miyabe, Masaya; Matsumoto, Tadayoshi; Kataoka, Isao; Ohmori, Shuichi; Mori, Michitsugu

    2004-01-01

    Experimental studies on turbulence structure and liquid film behavior in annular two-phase flow were carried out concerned with the steam injector systems for a next-generation nuclear reactor. In the steam injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design for high-performance steam injector system, it is very important to accumulate the fundamental data of thermo-hydro dynamic characteristics of annular flow in the steam injector. Especially, the turbulence modification in multi-phase flow due to the phase interaction is one of the most important phenomena and has attracted research attention. In this study, the liquid film behavior and the resultant turbulence modification due to the phase interaction were investigated. The behavior of the interfacial waves on liquid film flow such as the ripple or disturbance waves were observed to make clear the interfacial velocity and the special structure of the interfacial waves by using the high-speed video camera and the digital camera. The measurements for gas-phase velocity profiles and turbulent intensity in annular flow passing through the throat section were precisely performed to investigate quantitatively the turbulent modification in annular flow by using the constant temperature hot-wire anemometer. The measurements for liquid film thickness by the electrode needle method were also carried out. (author)

  8. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  9. Hydrodynamic model experiments for stabilized liquid liners with annular piston drive

    International Nuclear Information System (INIS)

    Burton, R.L.; Turchi, P.J.; Jenkins, D.J.; Cooper, A.L.

    1977-01-01

    The achievement of megagauss-level magnetic fields by flux compression using controlled liquid liner implosions will be studied in the LINUS-O experiments. This paper reports on experimental studies of the rotating liquid liner at lower energy density, using a one-third scale model with water as the liner material. Radial implosion of the free inside surface of the liquid is achieved by axial displacement of an annular piston, driven by helium. Azimuthally symmetric, repetitive implosion-reexpansion cycles have been demonstrated, with area compressions of over a hundred. The apparatus has also been used to investigate other problems inherent in the annular piston geometry, including piston guidance, seals, z-dependence of the imploding free surface trajectory, and Rayleigh-Taylor instability of the free surface. Methods for r-z plane tailoring of the free surface to provide three-dimensional payload compression are considered

  10. Annular flow of cement slurries; Escoamento anular de pastas de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria das Gracas Pena; Martins, Andre Leibsohn; Oliveira, Antonio Augusto J. de [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Setor de Tecnologia de Perfuracao

    1990-12-31

    This paper considers the analysis of laminar, transitory and turbulent flow regimes of cement slurries of various compositions flowing in annular sections. It is an experimental study to evaluate the performance of dozens of equations found in the literature that reflect the rheological behavior of non-Newtonian fluids, the dimensioning of annular sections, the delimitation of the transitory zone and the estimative of friction losses in the turbulent flow regime. A large-scale physical simulator (SHS-Surface Hydraulic Simulator), was designed and constructed at the PETROBRAS Research Center in order to obtain flow parameters. A computer program capable of analysing and drawing conclusions from the behavior of non-Newtonian fluids flowing in different geometries and energetic conditions was also developed. These were considered as essential stages for the development of the project. (author) 17 refs., 9 figs., 18 tabs.

  11. Annular electromagnetic pumps-construction and testing-theory, and comparison with experimental results

    International Nuclear Information System (INIS)

    Cambillard, E.P.; Schwab, B.L.

    1964-01-01

    This report consists of three sections. The first is concerned with the description of different pumps which have been constructed, tests on these which have been completed and the results obtained. The second section presents a theoretical method for the determination of the coefficients, taking in account the break of the magnetic circuit. It is shown that the preliminary design calculations of the annular pumps can be made, neglecting the break of the magnetic circuit, by further assigning essential magnitudes (pressure, losses) with easily calculated coefficients. The third section of this report uses the theoretical bases exposed in the second section, and develop a new annular pump calculation method which takes-into account both the current out of balance and any type of winding. (authors) [fr

  12. Improved annular centrifugal contactor for solvent extraction reprocessing of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Bernstein, G.J.; Leonard, R.A.; Ziegler, A.A.; Steindler, M.J.

    1978-01-01

    An improved annular centrifugal contactor has been developed for solvent extraction reprocessing of spent nuclear reactor fuel. The design is an extension of a contactor developed several years ago at Argonne National Laboratory. Its distinguishing features are high throughput, high stage efficiency and the ability to handle a broad range of aqueous-to-organic phase flow ratios and density ratios. Direct coupling of the mixing and separating rotor to a motorized spindle simplifies the design and makes the contactor particularly suitable for remote maintenance. A unit that is critically safe by geometry is under test and a larger unit is being fabricated. Multi-stage miniature contactors operating on the annular mixing principle are being used for laboratory flow sheet studies. 8 figures

  13. Tearing instability in cylindrical plasma configuration

    International Nuclear Information System (INIS)

    Zelenyj, L.M.

    1979-01-01

    The effect of the neutral-layer cylindrical geometry on the development of the tearing instability has been investigated in detail. The increments of the instability for all the regimes have been found. The influence of cylindrical effects becomes manifesting itself at small, as compared to the layer characteristic thickness, distances from the axis, and, finally, the electron regime of the instability development transforms into an ion one. The results obtained are of interest for studying the plasma stability in the devices of the ''Astron'' type and in magnetospheres of cosmic objects

  14. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...... of the magnetostatic interaction energy. For comparison, the forces involved are also calculated numerically using finite elements methods. Based on the conservation of the magnetostatic and kinetic energies, the exit and asymptotic velocities are determined. The derived formulas can be used to optimize the generated...... forces and motion of the inner cylindrical magnet....

  15. Cylindrical dust acoustic waves with transverse perturbation

    International Nuclear Information System (INIS)

    Xue Jukui

    2003-01-01

    The nonlinear dust acoustic waves in dusty plasmas with the combined effects of bounded cylindrical geometry and the transverse perturbation are studied. Using the perturbation method, a cylindrical Kadomtsev-Petviashvili (CKP) equation that describes the dust acoustic waves is deduced for the first time. A particular solution of this CKP equation is also obtained. It is shown that the dust acoustic solitary waves can exist in the CKP equation

  16. Droplet behavior analysis in consideration of droplet entrainment from liquid film in annular dispersed flow

    International Nuclear Information System (INIS)

    Matsuura, Keizo; Otake, Hiroshi; Kataoka, Isao; Serizawa, Akimi

    2000-01-01

    A method of droplet behavior simulation in an annular dispersed flow has been developed. In this method, both droplet deposition and entrainment from liquid film are considered. The Lagrangian method and stochastic model are used to analyze droplet diffusion and deposition behavior in a turbulent flow, and droplet entrainment from liquid film is calculated by an entrainment correlation. For the verification of this method, Gill's experiment is analyzed, in which the transition from annular flow with no entrainment to equilibrium annular dispersed flow was observed. Analysis results can also show the similar transition tendency. The experimental results of radial distribution of droplet mass flux are compared with analysis results. The agreement is good for low liquid flow rate, but entrainment rate must be adjusted for high liquid flow rate, in which gas turbulence is thought to be modified by high droplet density. In future work the effect of high droplet density on turbulence should be considered. (author)

  17. Elastic Stress Analysis of Rotating Functionally Graded Annular Disk of Variable Thickness Using Finite Difference Method

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Jalali

    2018-01-01

    Full Text Available Elastic stress analysis of rotating variable thickness annular disk made of functionally graded material (FGM is presented. Elasticity modulus, density, and thickness of the disk are assumed to vary radially according to a power-law function. Radial stress, circumferential stress, and radial deformation of the rotating FG annular disk of variable thickness with clamped-clamped (C-C, clamped-free (C-F, and free-free (F-F boundary conditions are obtained using the numerical finite difference method, and the effects of the graded index, thickness variation, and rotating speed on the stresses and deformation are evaluated. It is shown that using FG material could decrease the value of radial stress and increase the radial displacement in a rotating thin disk. It is also demonstrated that increasing the rotating speed can strongly increase the stress in the FG annular disk.

  18. A phenomenological prediction of dryout based on the churn-to-annular flow transition criterion in uniformly heated vertical tubes

    International Nuclear Information System (INIS)

    Hong, Sung-Deok; Chun, Se-Young; Yang, Sun-Kyu; Chung, Moon-Ki; Lashgari, Farbod

    2000-01-01

    A phenomenological model is proposed to predict dryout in uniformly heated vertical tubes. The major point of the study was refining the initial conditions at the onset of annular flow location that starts the liquid film dryout process. The void fraction at the onset of the annular flow location has been derived from the vapor superficial velocity obtained by the churn-to-annular flow criterion with the help of the void-quality relationship. The thermodynamic equilibrium quality calculated through the iteration of flow quality using the profile-fit model to find the accurate starting point of the annular-flow in a tube. The present method was validated by worldwide data covering wide parametric ranges, a diameter of 5.1-37.5, exit quality over 10%, a flow rate of 183-5261 kg/m 2 -s and a system pressure of 0.5-17.7 MPa. The churn-to-annular flow transition criterion of Taitel et al.'s shows better prediction results than the other transition criteria. The present model improved the CHF prediction capability as a mean of 0.97 and root mean square error of 11% for the 3883 experimental data and extended the applicable range to the relatively low quality region. (author)

  19. NWIS Measurements for uranium metal annular castings

    International Nuclear Information System (INIS)

    Mattingly, J.K.; Valentine, T.E.; Mihalczo, J.T.

    1998-01-01

    This report describes measurements performed with annular uranium metal castings of different enrichments to investigate the use of 252 Cf-source-driven noise analysis measurements as a means to quantify the amount of special nuclear material (SNM) in the casting. This work in FY 97 was sponsored by the Oak Ridge Y-12 Plant and the DOE Office of Technology Development Programs. Previous measurements and calculational studies have shown that many of the signatures obtained from the source-driven measurement are very sensitive to fissile mass. Measurements were performed to assess the applicability of this method to standard annular uranium metal castings at the Oak Ridge Y-12 plant under verification by the International Atomic Energy Agency (IAEA) using the Nuclear Weapons Identification System (NWIS) processor. Before the measurements with different enrichments, a limited study of source-detector-casting moderator configurations was performed to enhance the correlated information. These configurations consisted of a casting with no reflector and with various thicknesses of polyethylene reflectors up to 10.16 cm in 2.54 cm steps. The polyethylene moderator thickness of 7.62 cm was used for measurements with castings of different enrichments reported here. The sensitivity of the measured parameters to fissile mass was investigated using four castings each with a different enrichment. The high sensitivity of this measurement method to fissile mass and to other material and configurations provides some advantages over existing safeguards methods

  20. ASSOCIATIVE RINGS SOLVED AS LIE RINGS

    Directory of Open Access Journals (Sweden)

    M. B. Smirnov

    2011-01-01

    Full Text Available The paper has proved that an associative ring which is solvable of a n- class as a Lie ring has a nilpotent ideal of the nilpotent class not more than 3×10n–2  and a corresponding quotient ring satisfies an identity [[x1, x2, [x3, x4

  1. Numerical Investigation of Effect of Parameters on Hovering Efficiency of an Annular Lift Fan Aircraft

    OpenAIRE

    Yun Jiang; Bo Zhang

    2016-01-01

    The effects of various parameters on the hovering performance of an annular lift fan aircraft are investigated by using numerical scheme. The pitch angle, thickness, aspect ratio (chord length), number of blades, and radius of duct inlet lip are explored to optimize the figure of merit. The annular lift fan is also compared with a conventional circular lift fan of the same features with the same disc loading and similar geometry. The simulation results show that the pitch angle of 27°, the th...

  2. An annular laser for penetrating radiations

    International Nuclear Information System (INIS)

    Marie, G.R.P.

    1974-01-01

    Description is given of an annular laser generating an emission of X rays or gamma rays, from a pumping beam provided by a light wave or infra-red laser and applied to an active substance. Said laser essentially comprises a semi toroidal metal groove wherein is placed said active substance. That substance is illuminated by the pumping beam after reflection of the latter on a mirror provided with an opening through which pass X rays or gamma rays after several reflections on the groove bottom. The pumping-beam uses a revolution symmetry mode, the electric field lines of which are circles coaxial with said beam [fr

  3. Subchannel analysis of sodium-cooled reactor fuel assemblies with annular fuel pins

    International Nuclear Information System (INIS)

    Memmott, Matthew; Buongiorno, Jacopo; Hejzlar, Pavel

    2009-01-01

    Using a RELAP5-3D subchannel analysis model, the thermal-hydraulic behavior of sodium-cooled fuel assemblies with internally and externally cooled annular fuel rods was investigated, in an effort to enhance the economic performance of sodium-fast reactors by increasing the core power density, decreasing the core pressure drop, and extending the fuel discharge burnup. Both metal and oxide fuels at high and low conversion ratios (CR=0.25 and CR=1.00) were investigated. The externally and internally cooled annular fuel design is most beneficial when applied to the low CR core, as clad temperatures are reduced by up to 62.3degC for the oxide fuel, and up to 18.5degC for the metal fuel. This could result in a power uprates of up to ∼44% for the oxide fuel, and up to ∼43% for the metal fuel. The use of duct ribs was explored to flatten the temperature distribution at the core outlet. Subchannel analyses revealed that no fuel melting would occur in the case of complete blockage of the hot interior-annular channel for both metal and oxide fuels. Also, clad damage would not occur for the metal fuel if the power uprate is 38% or less, but would indeed occur for the oxide fuel. (author)

  4. Moving ring field-reversed mirror blanket design considerations

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, L.; Kessel, C.; Norman, J.; Schultz, K.R.

    1981-01-01

    A blanket design for the Moving Ring Field-Reversed Mirror Reactor (MRFRM) is presented in this paper. The design emphasis is placed on minimizing the induced radioactivities in the first-wall, blanket and shield. To this end, aluminum-alloy was selected as the reference structural material, giving dose rates two weeks after shutdown that are 3 to 4 orders of magnitude lower than comparable steel structures. The aluminum first-wall is water-cooled and thermally insulated from the high temperature SiC-clad Li 2 O tritium breeding zone. A local tritium breeding ratio of 1.05 was obtained for the design. The tritium is extracted from the Li 2 O by the use of a small dry helium purge stream through the SiC tubes. About 1 ppM hydrogen is added to the helium purge stream to enhance the tritium recovery rate. Helium at 28 atmospheres pressure is circulated through the blanket and shield, with an outlet temperature of 850 0 C, which is coupled with an existing small size closed-cycle gas turbine (CCGT) power conversion system. The spatial and temporal variations of the first-wall temperature caused by the translational movement of the plasma rings along the axis of the cylindrical reactor were evaluated. The after-heat cooling problems of the first-wall were also considered

  5. The Ring Counter (RCo): A high resolution IC-Si-CsI(Tl) device for heavy ion reaction studies at 10-30 MeV/A

    International Nuclear Information System (INIS)

    Moroni, A.; Bruno, M.; Bardelli, L.; Barlini, S.; Brambilla, S.; Casini, G.; Cavaletti, R.; Chiari, M.; Cortesi, A.; D'Agostino, M.; De Sanctis, J.; Geraci, E.; Giordano, G.; Giussani, A.; Gramegna, F.; Guiot, B.; Kravchuk, V.; Lanchais, A.; Margagliotti, G.V.; Nannini, A.; Ordine, A.; Piantelli, S.; Vannini, G.; Vannucci, L.

    2006-01-01

    An annular detector (Ring Counter, RCo) is presented, which has been designed and built to detect and identify in mass and charge light charged particles and fragments with very low energy thresholds and high energy resolution. It complements the GARFIELD apparatus, operating at INFN Laboratori Nazionali di Legnaro, to detect the forward emitted products of nuclear heavy ion reactions. It consists of eight sectors of a three-stage telescope, each one formed by an ionization chamber followed by eight strips of a silicon detector and by two CsI(Tl) scintillators. Construction features and performances are described and discussed in details

  6. Radon progeny distribution in cylindrical diffusion chambers

    International Nuclear Information System (INIS)

    Pressyanov, Dobromir S.

    2008-01-01

    An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.

  7. A Clustering Method for Data in Cylindrical Coordinates

    Directory of Open Access Journals (Sweden)

    Kazuhisa Fujita

    2017-01-01

    Full Text Available We propose a new clustering method for data in cylindrical coordinates based on the k-means. The goal of the k-means family is to maximize an optimization function, which requires a similarity. Thus, we need a new similarity to obtain the new clustering method for data in cylindrical coordinates. In this study, we first derive a new similarity for the new clustering method by assuming a particular probabilistic model. A data point in cylindrical coordinates has radius, azimuth, and height. We assume that the azimuth is sampled from a von Mises distribution and the radius and the height are independently generated from isotropic Gaussian distributions. We derive the new similarity from the log likelihood of the assumed probability distribution. Our experiments demonstrate that the proposed method using the new similarity can appropriately partition synthetic data defined in cylindrical coordinates. Furthermore, we apply the proposed method to color image quantization and show that the methods successfully quantize a color image with respect to the hue element.

  8. Improved lumped parameter for annular fuel element thermohydraulic analysis

    International Nuclear Information System (INIS)

    Duarte, Juliana Pacheco; Su, Jian; Alvim, Antonio Carlos Marques

    2011-01-01

    Annular fuel elements have been intensively studied for the purpose of increasing power density in light water reactors (LWR). This paper presents an improved lumped parameter model for the dynamics of a LWR core with annular fuel elements, composed of three sub-models: the fuel dynamics model, the neutronics model, and the coolant energy balance model. The transient heat conduction in radial direction is analyzed through an improved lumped parameter formulation. The Hermite approximation for integration is used to obtain the average temperature of the fuel and cladding and also to obtain the average heat flux. The volumetric heat generation in fuel rods was obtained with the point kinetics equations with six delayed neutron groups. The equations for average temperature of fuel and cladding are solved along with the point kinetic equations, assuming linear reactivity and coolant temperature in cases of reactivity insertion. The analytical development of the model and the numeric solution of the ordinary differential equation system were obtained by using Mathematica 7.0. The dynamic behaviors for average temperatures of fuel, cladding and coolant in transient events as well as the reactor power were analyzed. (author)

  9. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1985-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs are used

  10. Micromagnetic simulations of cylindrical magnetic nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2015-05-27

    This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain wall types, and state diagrams in cylindrical nanowires of different types and sizes. The results of the hysteresis process in individual nanowires and nanowire arrays also are presented. Modeling results are compared with experimental ones. The chapter also discusses future trends in nanowire applications in relation to simulations, such as current-driven dynamics, spintronics, and spincaloritronics. The main micromagnetic programs are presented and discussed, together with the corresponding links.

  11. A cylindrical specimen holder for electron cryo-tomography

    International Nuclear Information System (INIS)

    Palmer, Colin M.; Löwe, Jan

    2014-01-01

    The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the “missing wedge” problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. - Highlights: • The missing wedge is a serious problem for electron cryo-tomography. • Cylindrical specimens allow the missing wedge to be eliminated. • Carbon nanopipettes can be used as cylindrical holders for tomography of frozen-hydrated specimens. • Cryo-tomography of cylindrical biological samples demonstrates a reduction of deleterious effects associated with the missing wedge

  12. Mapping Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, Shawn M.; Spilker, L. J.; Edgington, S. G.; Pilorz, S. H.; Deau, E.

    2010-10-01

    Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and quick temperature responses are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid, coherent particles can be expected to have higher thermal inertias (Ferrari et al. 2005). Cassini's Composite Infrared Spectrometer has recorded millions of spectra of Saturn's rings since its arrival at Saturn in 2004 (personal communication, M. Segura). CIRS records far infrared radiation between 10 and 600 cm-1 (16.7 and 1000 µm) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn's rings peaks in this wavelength range. FP1 spectra can be used to infer ring temperatures. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The thermal budget of the rings is dominated by the solar radiation absorbed by its constituent particles. When ring particles enter Saturn's shadow this source of energy is abruptly cut off. As a result, ring particles cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  13. An experimental study of heat transfer characteristics of single and two-phase flows in an annular tube with external vibrations

    International Nuclear Information System (INIS)

    Zaki, Adel M.; Abou El-Kassem, S.K.; Abdalla Hanafi

    2003-01-01

    An experimental study of the external vibration effect on the heat transfer characteristics of single and two-phase flows in an annular tube is carried out. An experimental set-up was constructed to study the heat transfer in a stationary, as well as, in oscillating annular tube. The annular tube was heated electrically through the inner surface, which is a stainless steel tube (St 304) 13 mm outer diameter, while the outer tube, of 3.7 cm inner diameter, made from a glass. The experimental set-up was equipped with a vibrating system to excite the annular tube in the frequency range of 0 up to 134 Hz. Several sensors for measuring wall and fluid temperatures, heat fluxes and volume flow rates of both phases were used. The obtained results show that the heat transfer coefficient can be significantly increased by vibration of the test section. (author)

  14. Flow-Field Characteristics of High-Temperature Annular Buoyant Jets and Their Development Laws Influenced by Ventilation System

    OpenAIRE

    Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and veloc...

  15. Femtosecond-assisted intrastromal corneal ring implantation for keratoconus treatment: a comparison with crosslinking combination

    Directory of Open Access Journals (Sweden)

    Peter Alexander von Harbach Ferenczy

    2015-04-01

    Full Text Available Purpose: To compare visual outcomes, corneal astigmatism, and keratometric readings in patients with keratoconus who underwent intrastromal corneal ring implantation (ICRSI alone with those who underwent ICRSI combined with ultraviolet A riboflavin-mediated corneal collagen crosslinking (CXL. Methods: Pre- and post-operative best-corrected distance visual acuity (BCDVA, spherical error, cylindrical error, and mean keratometry were retrospectively compared over a period of 2 years in patients with keratoconus who underwent only ICRSI (group 1 versus those in patients who underwent combined ICRSI-CXL (group 2. Results: Thirty-two eyes of 31 patients were evaluated. CXL was performed in 10 cases (31%, and there were no complications or need for ring repositioning. BCDVA improved from 0.54 to 0.18 in the group 1 and from 0.56 to 0.17 in the group 2. Spherical and cylindrical errors and mean keratometry values significantly decreased in both groups. No patient postoperatively had visual acuity (VA of less than 20/60 on refraction, and 78% exhibited VA better than or equal to 20/40 with spectacles (72% of group 1 and 90% of group 2. Improvement in the spherical equivalent (SE value was observed in the group 1 (from -5.89 ± 3.37 preoperatively to -2.65 ± 2.65 postoperatively; p<0.05 and group 2 (from -6.91 ± 1.93 preoperatively to -2.11 ± 3.01 postoperatively; p<0.05. Conclusion: Both techniques can be considered safe and effective in improving VA and refractive SE values, in decreasing the curvature of the cone apex in the topographical analysis, and in decreasing corrected diopters postoperatively in patients with keratoconus.

  16. Upgrade of the Annular Core Pulse Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reuscher, J A [Sandia Laboratories, Albuquerque, NM (United States)

    1976-07-01

    The Annular Core Pulse Reactor (ACPR) is a TRIGA type reactor which has been in operation at Sandia Laboratories since 1967. The reactor is utilized in a wide variety of experimental programs which include radiation effects, neutron radiography, activation analysis, and fast reactor safety. During the past two years, the ACPR has become an important experimental facility for the United States Fast Reactor Safety Research Program and questions of interest to the safety of the LMFBR are being addressed. In order to enhance the capabilities of the ACPR for reactor safety experiments, a project to improve the performance of the reactor was initiated. It is anticipated that the pulse fluence can be increased by a factor of 2.0 to 2.5 by utilizing a two-region core concept with high heat capacity fuel elements around the central irradiation cavity. In addition, the steady-state power of the reactor will be increased by about a factor of two. Preliminary studies have identified several potential approaches to the ACPR performance improvement. The most promising approach appears to be the two-region core concept. The inner region, surrounding the irradiation cavity, would consist of a high-heat capacity fuel capable of absorbing the fission energy associated with a large nuclear pulse. The number of fissions occurring near the cavity would be greatly increased which, in turn, would significantly increase the fluence in the cavity. The outer region would consist of a U-ZrH fuel to provide an overall negative temperature coefficient for the two region core. Two candidate high heat capacity fuels [(BeO-UO{sub 2} and UC-ZrC) - graphite] are under consideration. Since this reactor upgrade represents a modification to an existing facility, it can be achieved in a relatively short time. It is anticipated that most of the existing reactor structure can be used for the upgrade. The present core occupies about one-half of the location in the grid plate. The high-heat capacity fuel

  17. Low-energy impact of adaptive cylindrical piezoelectric-composite shells

    Energy Technology Data Exchange (ETDEWEB)

    Saravanos, D.A. [University of Patras (United Kingdom). Dept. of Mechanical Engineering and Aeronautics; Christoforou, A.P. [Kuwait Univ. (Kuwait). Dept. of Mechanical Engineering

    2002-04-01

    A theoretical framework for analyzing low-energy impacts of laminated shells with active and sensory piezoelectric layers is presented, including impactor dynamics and contact law. The formulation encompasses a coupled piezoelectric shell theory mixing first order shear displacement assumptions and layerwise variation of electric potential. An exact in-plane Ritz solution for the impact of open cylindrical piezoelectric-composite shells is developed and solved numerically using an explicit time integration scheme. The active impact control problem of adaptive cylindrical shells with distributed curved piezoelectric actuators is addressed. The cases of optimized state feedback controllers and output feedback controllers using piezoelectric sensors are analyzed. Numerical results quantify the impact response of cylindrical shells of various curvatures including the signal of curved piezoelectric sensors. Additional numerical studies quantify the impact response of adaptive cylindrical panels and investigate the feasibility of actively reducing the impact force. (author)

  18. Note: Electrochemical etching of cylindrical nanoprobes using a vibrating electrolyte

    International Nuclear Information System (INIS)

    Wang, Yufeng; Zeng, Yongbin; Qu, Ningsong; Zhu, Di

    2015-01-01

    An electrochemical etching process using a vibrating electrolyte of potassium hydroxide to prepare tungsten cylindrical nanotips is developed. The vibrating electrolyte eases the effects of a diffusion layer and extends the etching area, which aid in the production of cylindrical nanotips. Larger amplitudes and a vibration frequency of 35 Hz are recommended for producing cylindrical nanotips. Nanotips with a tip radius of approximately 43 nm and a conical angle of arctan 0.0216 are obtained

  19. Experimental investigation of three-dimensional flow structures in annular swirling jets

    NARCIS (Netherlands)

    Percin, M.; Vanierschot, M.; Van Oudheusden, B.W.

    2015-01-01

    Annular jet flows are of practical interest in view of their occurrence in many industrial applications in the context of bluff-body combustors [1]. They feature different complex flow characteristics despite their simple geometry: a central recirculation zone (CRZ) as a result of flow separation

  20. Analysis of the pressure fields in a swirling annular jet flow

    NARCIS (Netherlands)

    Perçin, M.; Vanierschot, M.; van Oudheusden, B.W.

    2017-01-01

    In this paper, we investigate the flow structures and pressure fields of a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved tomographic particle image velocimetry measurements, which enable the reconstruction of the three-dimensional

  1. Geometry optimization of linear and annular plasma synthetic jet actuators

    International Nuclear Information System (INIS)

    Neretti, G; Seri, P; Taglioli, M; Borghi, C A; Shaw, A; Iza, F

    2017-01-01

    The electrohydrodynamic (EHD) interaction induced in atmospheric air pressure by a surface dielectric barrier discharge (DBD) actuator has been experimentally investigated. Plasma synthetic jet actuators (PSJAs) are DBD actuators able to induce an air stream perpendicular to the actuator surface. These devices can be used in the field of aerodynamics to prevent or induce flow separation, modify the laminar to turbulent transition inside the boundary layer, and stabilize or mix air flows. They can also be used to enhance indirect plasma treatment effects, increasing the reactive species delivery rate onto surfaces and liquids. This can play a major role in plasma processing and chemical kinetics modelling, where often only diffusive mechanisms are considered. This paper reports on the importance that different electrode geometries can have on the performance of different PSJAs. A series of DBD aerodynamic actuators designed to produce perpendicular jets has been fabricated on two-layer printed circuit boards (PCBs). Both linear and annular geometries were considered, testing different upper electrode distances in the linear case and different diameters in the annular one. An AC voltage supplied at a peak of 11.5 kV and a frequency of 5 kHz was used. Lower electrodes were connected to the ground and buried in epoxy resin to avoid undesired plasma generation on the lower actuator surface. Voltage and current measurements were carried out to evaluate the active power delivered to the discharges. Schlieren imaging allowed the induced jets to be visualized and gave an estimate of their evolution and geometry. Pitot tube measurements were performed to obtain the velocity profiles of the PSJAs and to estimate the mechanical power delivered to the fluid. The optimal values of the inter-electrode distance and diameter were found in order to maximize jet velocity, mechanical power or efficiency. Annular geometries were found to achieve the best performance. (paper)

  2. Far-field potentials in cylindrical and rectangular volume conductors.

    Science.gov (United States)

    Dumitru, D; King, J C; Rogers, W E

    1993-07-01

    The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.

  3. Cooling system for the connecting rings of a fast neutron reactor vessel

    International Nuclear Information System (INIS)

    Martin, J.-P.; Malaval, Claude

    1974-01-01

    A description is given of a cooling system for the vessel connecting rings of a fast neutron nuclear reactor, particularly of a main vessel containing the core of the reactor and a volume of liquid metal coolant at high temperature and a safety vessel around the main vessel, both vessels being suspended to a rigid upper slab kept at a lower temperature. It is mounted in the annular space between the two vessels and includes a neutral gas circuit set up between the wall of the main vessel to be cooled and that of the safety vessel itself cooled from outer. The neutral gas system comprises a plurality of ventilators fitted in holes made through the thickness of the upper slab and opening on to the space between the two vessels. It also includes two envelopes lining the walls of these vessels, establishing with them small section channels for the circulation of the neutral gas cooled against the safety vessel and heated against the main vessel [fr

  4. Sodium flow rate measurement method of annular linear induction pumps

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.

    2012-01-01

    Highlights: ► We found a new method of flow rate monitoring of electromagnetic pump. ► The method is very simple and does not require a large space. ► The method was verified with an experiment and a numerical analysis. ► The experimental data and the numerical results are in good agreement. - Abstract: The present paper proposes a method for measuring sodium flow rate of annular linear induction pumps. The feature of the method lies in measuring the leaked magnetic field with measuring coils near the stator end on the outlet side and in correlating it with the sodium flow rate. This method is verified through an experiment and a numerical analysis. The data obtained in the experiment reveals that the correlation between the leaked magnetic field and the sodium flow rate is almost linear. The result of the numerical analysis agrees with the experimental data. The present method will be particularly effective to sodium flow rate monitoring of each one of plural annular linear induction pumps arranged in parallel in a vessel which forms a large-scale pump unit.

  5. Linear and nonlinear stability of periodic orbits in annular billiards

    Science.gov (United States)

    Dettmann, Carl P.; Fain, Vitaly

    2017-04-01

    An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.

  6. Sensitivity optimization in whispering gallery mode optical cylindrical biosensors

    Science.gov (United States)

    Khozeymeh, F.; Razaghi, M.

    2018-01-01

    Whispering-gallery-mode resonances propagated in cylindrical resonators have two angular and radial orders of l and i. In this work, the higher radial order whispering-gallery-mode resonances, (i = 1 - 4), at a fixed l are examined. The sensitivity of theses resonances is analysed as a function of the structural parameters of the cylindrical resonator like different radii and refractive index of composed material of the resonator. A practical application where cylindrical resonators are used for the measurement of glucose concentration in water is presented as a biosensor demonstrator. We calculate the wavelength shifts of the WG1-4, in several glucose/water solutions, with concentrations spanning from 0.0% to 9.0.% (weight/weight). Improved sensitivity can be achieved using multi-WGM cylindrical resonators with radius of R = 100 μm and resonator composed material of MgF 2 with refractive index of nc = 1.38. Also the effect of polarization on sensitivity is considered for all four WGMs. The best sensitivity of 83.07 nm/RIU for the fourth WGM with transverse magnetic polarization, is reported. These results propose optimized parameters aimed to fast designing of cylindrical resonators as optical biosensors, where both the sensitivity and the geometries can be optimized.

  7. DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

    Directory of Open Access Journals (Sweden)

    Davood Domairry Ganji

    2011-01-01

    Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.

  8. Electrostatic/magnetic ion acceleration through a slowly diverging magnetic nozzle between a ring anode and an on-axis hollow cathode

    Directory of Open Access Journals (Sweden)

    A. Sasoh

    2017-06-01

    Full Text Available Ion acceleration through a slowly diverging magnetic nozzle between a ring anode and a hollow cathode set on the axis of symmetry has been realized. Xenon was supplied as the propellant gas from an annular slit along the inner surface of the ring anode so that it was ionized near the anode, and the applied electric potential was efficiently transformed to an ion kinetic energy. As an electrostatic thruster, within the examined operation conditions, the thrust, F, almost scaled with the propellant mass flow rate; the discharge current, Jd, increased with the discharge voltage, Vd. An important characteristic was that the thrust also exhibited electromagnetic acceleration performance, i.e., the so-called “swirl acceleration,” in which F≅JdBRa ∕2, where B and Ra were a magnetic field and an anode inner radius, respectively. Such a unique thruster performance combining both electrostatic and electromagnetic accelerations is expected to be useful as another option for in-space electric propulsion in its broad functional diversity.

  9. Tricuspid annular plane systolic excursion and response to cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Kjaergaard, Jesper; Ghio, Stefano; St John Sutton, Martin

    2011-01-01

    The aims of this study were to evaluate tricuspid annular plane systolic excursion (TAPSE) as a predictor of left ventricular (LV) reverse remodeling and clinical benefit of cardiac synchronization therapy (CRT) and to evaluate the effect of CRT on TAPSE in patients with mildly symptomatic systol...

  10. Bifurcation and chaos in a dc-driven long annular Josephson junction

    DEFF Research Database (Denmark)

    Grnbech-Jensen, N.; Lomdahl, Peter S.; Samuelsen, Mogens Rugholm

    1991-01-01

    Simulations of long annular Josephson junctions in a static magnetic field show that in large regions of bias current the system can exhibit a period-doubling bifurcation route to chaos. This is in contrast to previously studied Josephson-junction systems where chaotic behavior has primarily been...

  11. Annular MHD Physics for Turbojet Energy Bypass

    Science.gov (United States)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  12. Cylindrical and spherical dust-acoustic wave modulations in dusty ...

    Indian Academy of Sciences (India)

    Abstract. The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distribu- tions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified ...

  13. Settling of a cylindrical particle in a stagnant fluid

    DEFF Research Database (Denmark)

    Sørensen, Henrik; Rosendahl, Lasse; Yin, Chungen

    The objective of this work is to collect data and develop models for cylindrical particles which could be used in numerical multiphase flow modeling. Trajectories of cylindrical particles settling in stagnant water are filmed from two directions in order to derive detailed information on their mo...

  14. Power deposition in a cylindrical geometry using B-10 coatings

    International Nuclear Information System (INIS)

    Chung, A.K.; Prelas, M.A.

    1983-01-01

    The transport of charged particles produced by 10 B (n, α) Li and 235 U (n, νn) ff nuclear reactions in a two region cylindrical geometry is predicted. We employed a mean-range straight-flight approximation to calculate the power deposition by the charged particles in a gaseous medium. Our model demonstrated some features in a cylindrical experiment which were suspected but not proven. In the common slab model used by Guyot et al 1 and Romero 2 , the spatial distribution of power deposition is much flatter than it would be in a cylindrical model. A steeper gradient in the power deposition is expected in a cylindrical geometry than in a slab geometry. We also found that for a standard thickness of Boron-10 coating (1.73 μm) used in NPLs, the expected efficiency of a cylindrical geometry (7.5%) is much lower than the 12% efficiency predicted by the slab model. Indeed the use of slab geometry in modeling current NPL experimental devices is not accurate

  15. Tight multilattices calculated by extended-cell cylindrization

    Energy Technology Data Exchange (ETDEWEB)

    Segev, M; Carmona, S

    1983-01-01

    Among the common features of advanced LWR concepts are the tightness of lattices and the symbiotic setting of different fuels. Such symbioses often come in the form of multilattices, whose numerically-repeated unit is a configuration of several pins, typically with one pin type at the center and pins of a second type surrounding the center pin. If this extended-cell (EC) unit is cylindricized, then a simple transport calculation of the unit will be possible. If the lattice of such units is tight, there is further an a priori reason to expect the cylindrization to introduce only a small distortion of the true neutron fluxes in the lattice. A strict numerical validation of the EC cylindrization approximation is impractical, but similar validations can be carried out for regular lattices, viewed as being made up of multicell units whose centers are moderators and whose peripheries are fuel pins. In these comparisons the EC cylindrization approximation gives good results.

  16. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    International Nuclear Information System (INIS)

    Dighe, P.M.; Das, D.

    2015-01-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×10 4 neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors

  17. Scattering of spermatozoa off cylindrical pillars

    Science.gov (United States)

    Bukatin, Anton; Lushi, Enkeleida; Kantsler, Vasily

    2017-11-01

    The motion of micro-swimmers in structured environments, even though crucial in processes such as in vivo and in vitro egg fertilization, is still not completely understood. We combine microfluidic experiments with mathematical modeling of 3D swimming near convex surfaces to quantify the dynamics of individual sperm cells in the proximity of cylindrical pillars. Our results show that the hydrodynamic and contact forces that account for the shape asymmetry and flagellar motion, are crucial in correctly describing the dynamics observed in the experiments. Last, we discuss how the size of the cylindrical obstacles determines whether the swimmers scatter off or get trapped circling the pillar.

  18. Unusual Physical Properties of the Chicxulub Crater Peak Ring: Results from IODP/ICDP Expedition 364

    Science.gov (United States)

    Christeson, G. L.; Gebhardt, C.; Gulick, S. P. S.; Le Ber, E.; Lofi, J.; Morgan, J. V.; Nixon, C.; Rae, A.; Schmitt, D. R.

    2017-12-01

    IODP/ICDP Expedition 364 Hole M0077A drilled into the peak ring of the Chicxulub impact crater, recovering core between 505.7 and 1334.7 m below the seafloor (mbsf). Physical property measurements include wireline logging data, a vertical seismic profile (VSP), Multi-Sensor Core Logger (MSCL) measurements, and discrete sample measurements. The Hole M0077A peak ring rocks have unusual physical properties. Across the boundary between post-impact sediment and crater breccia we measure a sharp decrease in velocities and densities, and an increase in porosity. Mean crater breccia values are 3000-3300 m/s, 2.14-2.15 g/cm3, and 31% for velocity, density, and porosity, respectively. This zone is also associated with a low-frequency reflector package on MCS profiles and a low-velocity layer in FWI images, both confirmed from the VSP dataset. The thin (24 m) crater melt unit has mean velocity measurements of 3800-4150 m/s, density measurements of 2.32-2.34 g/cm3, and porosity measurements of 20%; density and porosity values are intermediate between the overlying impact breccia and underlying granitic basement, while the velocity values are similar to those for the underlying basement. The Hole M0077A crater melt unit velocities and densities are considerably less than values of 5800 m/s and 2.68 g/cm3 measured at an onshore well located in the annular trough. The uplifted granitic peak ring materials have mean values of 4100-4200 m/s, 2.39-2.44 g/cm3, and 11% for compressional wave velocity, density, and porosity, respectively; these values differ significantly from typical granite which has higher velocities (5400-6000 m/s) and densities (2.62-2.67 g/cm3), and lower porosities (<1%). All Hole M0077A peak-ring velocity, density, and porosity measurements indicate considerable fracturing, and are consistent with numerical models for peak-ring formation.

  19. Supra-annular structure assessment for self-expanding transcatheter heart valve size selection in patients with bicuspid aortic valve.

    Science.gov (United States)

    Liu, Xianbao; He, Yuxin; Zhu, Qifeng; Gao, Feng; He, Wei; Yu, Lei; Zhou, Qijing; Kong, Minjian; Wang, Jian'an

    2018-04-01

    To explore assessment of supra-annular structure for self-expanding transcatheter heart valve (THV) size selection in patients with bicuspid aortic stenosis (AS). Annulus-based device selection from CT measurement is the standard sizing strategy for tricuspid aortic valve before transcatheter aortic valve replacement (TAVR). Because of supra-annular deformity, device selection for bicuspid AS has not been systemically studied. Twelve patients with bicuspid AS who underwent TAVR with self-expanding THVs were included in this study. To assess supra-annular structure, sequential balloon aortic valvuloplasty was performed in every 2 mm increments until waist sign occurred with less than mild regurgitation. Procedural results and 30 day follow-up outcomes were analyzed. Seven patients (58.3%) with 18 mm; three patients (25%) with sequential 18 mm, 20 mm; and only two patients (16.7%) with sequential 18 mm, 20 mm, and 22 mm balloon sizing were performed, respectively. According to the results of supra-annular assessment, a smaller device size (91.7%) was selected in all but one patient compared with annulus based sizing strategy, and the outcomes were satisfactory with 100% procedural success. No mortality and 1 minor stroke were observed at 30 d follow-up. The percentage of NYHA III/IV decreased from 83.3% (9/12) to 16.7% (2/12). No new permanent pacemaker implantation and no moderate or severe paravalvular leakage were found. A supra-annular structure based sizing strategy is feasible for TAVR in patients with bicuspid AS. © 2018 The Authors Catheterization and Cardiovascular Interventions Published by Wiley Periodicals, Inc.

  20. Transformation dynamics of Ni clusters into NiO rings under electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Knez, Daniel, E-mail: daniel.knez@felmi-zfe.at [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria); Thaler, Philipp; Volk, Alexander [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Kothleitner, Gerald [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria); Ernst, Wolfgang E. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Hofer, Ferdinand [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria)

    2017-05-15

    We report the transformation of nickel clusters into NiO rings by an electron beam induced nanoscale Kirkendall effect. High-purity nickel clusters consisting of a few thousand atoms have been used as precursors and were synthesized with the superfluid helium droplet technique. Aberration-corrected, analytical scanning transmission electron microscopy was applied to oxidise and simultaneously analyse the nanostructures. The transient dynamics of the oxidation could be documented by time lapse series using high-angle annular dark-field imaging and electron energy-loss spectroscopy. A two-step Cabrera-Mott oxidation mechanism was identified. It was found that water adsorbed adjacent to the clusters acts as oxygen source for the electron beam induced oxidation. The size-dependent oxidation rate was estimated by quantitative EELS measurements combined with molecular dynamics simulations. Our findings could serve to better control sample changes during examination in an electron microscope, and might provide a methodology to generate other metal oxide nanostructures. - Highlights: • Beam induced conversion of Ni clusters into crystalline NiO rings has been observed. • Ni clusters were grown with the superfluid He-droplet technique. • oxidizeSTEM was utilized to investigate and simultaneously oxidize these clusters. • Oxidation dynamics was captured in real-time. • Cluster sizes and the oxidation rate were estimated via EELS and molecular dynamics.

  1. Double-well potential in annular Josephson junction

    International Nuclear Information System (INIS)

    Shaju, P.D.; Kuriakose, V.C.

    2004-01-01

    A double-well potential suitable for quantum-coherent vortex tunnelling can be created in an annular Josephson junction by inserting a microshort in the junction and by applying an in-plane dc magnetic field. Analysis shows that the intensity of the magnetic field determines the depth of the potential well and the strength of the microshort controls the potential barrier height while a dc bias across the junction tilts the potential well. At milli-Kelvin temperatures, the system is expected to behave as a quantum two-level system and may be useful in designing vortex qubits

  2. Two-dimensional collapse calculations of cylindrical clouds

    International Nuclear Information System (INIS)

    Bastien, P.; Mitalas, R.

    1979-01-01

    A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)

  3. Pressure loss of the annular air-liquid flow in vertical tufes

    Energy Technology Data Exchange (ETDEWEB)

    Schmal, M [Rio de Janeiro Univ. (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Cantalino, A [Rio de Janeiro Univ. (Brazil). Dept. de Engenharia Quimica

    1976-01-01

    In this work the pressure loss of the annular air-liquid flow in vertical tubes has been determined. Correlations are presented for the frictional pressure drop. The dimensional analysis and the following fluid systems were used for this determination: air-water, air-alcohol solutions and air-water and surfactants.

  4. Double helix vortex breakdown in a turbulent swirling annular jet flow

    NARCIS (Netherlands)

    Vanierschot, M.; Perçin, M.; van Oudheusden, B.W.

    2018-01-01

    In this paper, we report on the structure and dynamics of double helix vortex breakdown in a turbulent annular swirling jet. Double helix breakdown has been reported previously for the laminar flow regime, but this structure has rarely been observed in turbulent flow. The flow field is

  5. Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes

    KAUST Repository

    Goriely, A.

    2013-03-06

    Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells reinforced by one or two families of fibres. We consider both small and large deformations and the reduction from thick cylindrical shells (tubes) to thin shells (cylindrical membranes). In particular, a number of universal parameter regimes can be identified where the response behaviour of the cylinder is qualitatively different. This include the possibility of inversion of twist or axial strain when the cylinder is subject to internal pressure. Copyright © The Royal Society 2013.

  6. The influence of Thomson effect in the energy and exergy efficiency of an annular thermoelectric generator

    International Nuclear Information System (INIS)

    Kaushik, S.C.; Manikandan, S.

    2015-01-01

    Highlights: • Exergy analysis in the annular thermoelectric generator (ATEG) system is proposed. • Analytical expressions for the power output, exergy efficiency of an ATEG is derived. • The effects of S r , R L , and θ in P out and exergy efficiency of an ATEG is studied. • The influence of Thomson effect in P out and exergy efficiency of an ATEG is studied. - Abstract: The exoreversible thermodynamic model of an annular thermoelectric generator (ATEG) considering Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for optimum current at the maximum power output and maximum energy, exergy efficiency conditions, and dimensionless irreversibilities in the ATEG are derived. The modified expression for figure of merit of a thermoelectric generator considering the Thomson effect has also been obtained. The results show that the power output, energy and exergy efficiency of the ATEG is lower than the flat plate thermoelectric generator. The effects of annular shape parameter (S r = r 2 /r 1 ), load resistance (R L ), dimensionless temperature ratio (θ = T h /T c ) and the thermal and electrical contact resistances in power output, energy/exergy efficiency of the ATEG have been studied. It has also been proved that because of the influence of Thomson effect, the power output and energy/exergy efficiency of the ATEG is reduced. This study will help in the designing of the actual annular thermoelectric generation systems

  7. Surface tension effects on vertical upward annular flows in a small diameter pipe

    Energy Technology Data Exchange (ETDEWEB)

    Sadatomi, Michio, E-mail: sadatomi@mech.kumamoto-u.ac.jp [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Kawahara, Akimaro [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Suzuki, Aruta [Plant Design & Engineering Dept., Environment, Energy & Plant Headquarters, Hitachi Zosen Corporation, 7-89, Nankokita 1-chome, Suminoe-ku, Osaka, 559-8559 (Japan)

    2016-12-15

    Highlights: • Surface tension effects were clarified on annular flow in a small diameter pipe. • The mean liquid film thickness became thinner with decreasing of surface tension. • The liquid droplet fraction and the interfacial shear stress became higher with it. • New prediction methods for the above parameters were developed and validated. - Abstract: Experiments were conducted to study the surface tension effects on vertical upward annular flows in a 5 mm I.D. pipe using water and low surface tension water with a little surfactant as the test liquid and air as the test gas. Firstly, the experimental results on the mean liquid film thickness, the liquid droplet fraction and the interfacial shear stress in annular flows together with some flow pictures are presented to clarify the surface tension effects. From these, the followings are clarified: In the low surface tension case, the liquid film surface becomes rough, the liquid film thickness thin, the liquid droplet fraction high, and the interfacial shear stress high. Secondary, correlations in literatures for the respective parameters are tested against the present data. The test results show that no correlation for the respective parameters could predict well the present data. Thus, correlations are revised by accounting for the surface tension effects. The results of the experiments, the correlations tests and their revisions mentioned above are presented in the present paper.

  8. Axially symmetrical stresses measurement in the cylindrical tube using DIC with hole-drilling

    Science.gov (United States)

    Ma, Yinji; Yao, Xuefeng; Zhang, Danwen

    2015-03-01

    In this paper, a new method combining the digital image correlation (DIC) with the hole-drilling technology to characterize the axially symmetrical stresses of the cylindrical tube is developed. First, the theoretical expressions of the axially symmetrical stresses in the cylindrical tube are derived based on the displacement or strain fields before and after hole-drilling. Second, the release of the axially symmetrical stresses for the cylindrical tube caused by hole-drilling is simulated by the finite element method (FEM), which indicates that the axially symmetrical stresses of the cylindrical tube calculated by the cylindrical solution is more accuracy than that for traditionally planar solution. Finally, both the speckle image information and the displacement field of the cylindrical tube before and after hole-drilling are extracted by combining the DIC with the hole-drilling technology, then the axially symmetrical loading induced stresses of the cylindrical tube are obtained, which agree well with the results from the strain gauge method.

  9. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.

    2015-08-14

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  10. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.; Guyon, A.; Li, E.  Q.; Thoraval, M.-J.; Thoroddsen, Sigurdur T

    2015-01-01

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  11. Comparison of the effect of annular and solid electron beams on linear and nonlinear traveling wave tube

    Directory of Open Access Journals (Sweden)

    F. Sheykhe

    Full Text Available The present paper, compares the effect of the annular and solid electron beam on the efficiency of linear and nonlinear TWTs. To do this, first we introduce four different geometric structure of the beam-helix. Then, we calculate the output power of each structure, in linear and nonlinear modes, at different frequencies using the numerical solution of the mathematical equations of the multi-frequency Eulerian model. Now, plot the output power in terms of distance for each structure at different frequencies and compare them. In a linear tube, the effect of annular beams on the output power is better than the solid beam, while this affects the frequency in nonlinear tubes. It is shown that in linear regime the power increase linearly with frequency but for nonlinear regimes is nonlinear. Keywords: Annular beam, Solid beam, Circuit power, Nonlinear, Traveling wave tube, Helix

  12. Two-phase flow characteristic of inverted bubbly, slug and annular flow in post-critical heat flux region

    International Nuclear Information System (INIS)

    Ishii, M.; Denten, J.P.

    1988-01-01

    Inverted annular flow can be visualized as a liquid jet-like core surrounded by a vapor annulus. While many analytical and experimental studies of heat transfer in this regime have been performed, there is very little understanding of the basic hydrodynamics of the post-CHF flow field. However, a recent experimental study was done that was able to successfully investigate the effects of various steady-state inlet flow parameters on the post-CHF hydrodynamics of the film boiling of a single phase liquid jet. This study was carried out by means of a visual photographic analysis of an idealized single phase core inverted annular flow initial geometry (single phase liquid jet core surrounded by a coaxial annulus of gas). In order to extend this study, a subsequent flow visualization of an idealized two-phase core inverted annular flow geometry (two-phase central jet core, surrounded by a coaxial annulus of gas) was carried out. The objective of this second experimental study was to investigate the effect of steady-state inlet, pre-CHF two-phase jet core parameters on the hydrodynamics of the post-CHF flow field. In actual film boiling situations, two-phase flows with net positive qualities at the CHF point are encountered. Thus, the focus of the present experimental study was on the inverted bubbly, slug, and annular flow fields in the post dryout film boiling region. Observed post dryout hydrodynamic behavior is reported. A correlation for the axial extent of the transition flow pattern between inverted annular and dispersed droplet flow (the agitated regime) is developed. It is shown to depend strongly on inlet jet core parameters and jet void fraction at the dryout point. 45 refs., 9 figs., 4 tabs

  13. Two-phase flow characteristic of inverted bubbly, slug, and annular flow in post-critical heat flux region

    International Nuclear Information System (INIS)

    Ishii, M.; Denten, J.P.

    1989-01-01

    Inverted annular flow can be visualized as a liquid jet-like core surrounded by a vapor annulus. While many analytical and experimental studies of heat transfer in this regime have been performed, there is very little understanding of the basic hydrodynamics of the post-critical heat flux (CHF) flow field. However, a recent experimental study was done that was able to successfully investigate the effects of various steady-state inlet flow parameters on the post-CHF hydrodynamics of the film boiling of a single phase liquid jet. This study was carried out by means of a visual photographic analysis of an idealized single phase core inverted annular flow initial geometry (single phase liquid jet core surrounded by a coaxial annulus of gas). In order to extend this study, a subsequent flow visualization of an idealized two-phase core inverted annular flow geometry (two-phase central jet core, surrounded by a coaxial annulus of gas) was carried out. The objective of this second experimental study was to investigate the effect of steady-state inlet, pre-CHF two-phase jet core parameters on the hydrodynamics of the post-CHF flow field. In actual film boiling situations, two-phase flows with net positive qualities at the CHF point are encountered. Thus, the focus of the present experimental study was on the inverted bubbly, slug, and annular flow fields in the post dryout film boiling region. Observed post dryout hydrodynamic behavior is reported. A correlation for the axial extent of the transition flow pattern between inverted annular and dispersed droplet flow (the agitated regime) is developed. It is shown to depend strongly on inlet jet core parameters and jet void fraction at the dryout point

  14. Microcrystalline diamond cylindrical resonators with quality-factor up to 0.5 million

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Daisuke; Yang, Chen; Lin, Liwei [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Heidari, Amir [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Najar, Hadi [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Horsley, David A. [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States)

    2016-02-01

    We demonstrate high quality-factor 1.5 mm diameter batch-fabricated microcrystalline diamond cylindrical resonators (CR) with quality-factors limited by thermoelastic damping (TED) and surface loss. Resonators were fabricated 2.6 and 5.3 μm thick in-situ boron-doped microcrystalline diamond films deposited using hot filament chemical vapor deposition. The quality-factor (Q) of as-fabricated CR's was found to increase with the resonator diameter and diamond thickness. Annealing the CRs at 700 °C in a nitrogen atmosphere led to a three-fold increase in Q, a result we attribute to thinning of the diamond layer via reaction with residual O{sub 2} in the annealing furnace. Post-anneal Q exceeding 0.5 million (528 000) was measured at the 19 kHz elliptical wineglass modes, producing a ring-down time of 8.9 s. A model for Q versus diamond thickness and resonance frequency is developed including the effects of TED and surface loss. Measured quality factors are shown to agree with the predictions of this model.

  15. Numerical analysis of the cylindrical rigidity of the vertical steel tank shell

    Science.gov (United States)

    Chirkov, Sergey; Tarasenko, Alexander; Chepur, Petr

    2017-10-01

    The paper deals with the study of rigidity of a vertical steel cylindrical tank and its structural elements with the development of inhomogeneous subsidence in ANSYS software complex. The limiting case is considered in this paper: a complete absence of a base sector that varies along an arc of a circle. The subsidence zone is modeled by the parameter n. A finite-element model of vertical 20000 m3 steel tank has been created, taking into account all structural elements of tank metal structures, including the support ring, beam frame and roof sheets. Various combinations of vertical steel tank loading are analyzed. For operational loads, the most unfavorable combination is considered. Calculations were performed for the filled and emptied tank. Values of the maximum possible deformations of the outer contour of the bottom are obtained with the development of inhomogeneous base subsidence for the given tank size. The obtained parameters of intrinsic rigidity (deformability) of vertical steel tank can be used in the development of new regulatory and technical documentation for tanks.

  16. Numerical simulations of helium flow through prismatic fuel elements of very high temperature reactors

    International Nuclear Information System (INIS)

    Ribeiro, Felipe Lopes; Pinto, Joao Pedro C.T.A.

    2013-01-01

    The 4 th generation Very High Temperature Reactor (VHTR) most popular concept uses a graphite-moderated and helium cooled core with an outlet gas temperature of approximately 1000 deg C. The high output temperature allows the use of the process heat and the production of hydrogen through the thermochemical iodine-sulfur process as well as highly efficient electricity generation. There are two concepts of VHTR core: the prismatic block and the pebble bed core. The prismatic block core has two popular concepts for the fuel element: multihole and annular. In the multi-hole fuel element, prismatic graphite blocks contain cylindrical flow channels where the helium coolant flows removing heat from cylindrical fuel rods positioned in the graphite. In the other hand, the annular type fuel element has annular channels around the fuel. This paper shows the numerical evaluations of prismatic multi-hole and annular VHTR fuel elements and does a comparison between the results of these assembly reactors. In this study the analysis were performed using the CFD code ANSYS CFX 14.0. The simulations were made in 1/12 fuel element models. A numerical validation was performed through the energy balance, where the theoretical and the numerical generated heat were compared for each model. (author)

  17. Cylindrical pressure vessel constructed of several layers

    International Nuclear Information System (INIS)

    Yamauchi, Takeshi.

    1976-01-01

    For a cylindrical pressure vessel constructed of several layers whose jacket has at least one circumferential weld joining the individual layers, it is proposed to provide this at least at the first bending line turning point (counting from the weld between the jacket and vessel floor), which the sinusoidally shaped jacket has. The section of the jacket extending in between should be made as a full wall section. The proposal is based on calculations of the bending stiffness of cylindrical jackets, which could not yet be confirmed for jackets having several layers. (UWI) [de

  18. Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode

    Energy Technology Data Exchange (ETDEWEB)

    Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I., E-mail: fbaida@univ-fcomte.fr [Département d' Optique P.M. Duffieux, Institut FEMTO-ST, UMR 6174 CNRS, Université de Franche–Comté, 25030 Besançon Cedex (France); Belkhir, Abderrahmane [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, Tizi-Ouzou (Algeria)

    2013-11-18

    We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.

  19. Generalized Granuloma Annulare in Infancy Following Bacillus Calmette-Guerin Vaccination

    OpenAIRE

    Lee, Sang Woo; Cheong, Seung Hyun; Byun, Ji Yeon; Choi, You Won; Choi, Hae Young; Myung, Ki Bum

    2011-01-01

    Generalized granuloma annulare (GGA) is a rare benign granulomatous dermatosis characterized by disseminated necrobiotic dermal papules. Histologically, it presents as a lymphohistiocytic granuloma associated with varying degrees of connective tissue degeneration. It usually occurs in adults and rarely affects infants. Herein, we report an interesting case of GGA which occurred in a 3 month-old girl in association with Bacillus Calmette-Guerin vaccination.

  20. Excitational metamorphosis of surface flowfield under an impinging annular jet

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Trávníček, Zdeněk

    2008-01-01

    Roč. 144, č. 2 (2008), s. 312-316 ISSN 1385-8947 R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : jets * impinging jets * flow topology * annular jets * stagnation points Subject RIV: BK - Fluid Dynamics Impact factor: 2.813, year: 2008 http://www.sciencedirect.com/

  1. Novel spherical hohlraum with cylindrical laser entrance holes and shields

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ke [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zheng, Wudi [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2014-09-15

    Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.

  2. Novel spherical hohlraum with cylindrical laser entrance holes and shields

    International Nuclear Information System (INIS)

    Lan, Ke; Zheng, Wudi

    2014-01-01

    Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums

  3. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  4. Monitoring system of depressurization valves of migrated gas in annular space of flexible risers

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Luiz A.; Santos, Joilson M.; Carvalho, Antonio L.; Loureiro, Patricia [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    PETROBRAS Research and Development Center - CENPES developed an automatic system for monitoring pressure of annular space due to permeation of gas in flexible risers to inspect continuously integrity of such lines. To help maintaining physical integrity of flexible risers, two PSV's are installed to end fittings on top of riser, so that operation of any valve grants the maximum admissible gas pressure within the riser annular space, as overpressure might cause damages to external polymeric layer of flexible riser. Due to the fact that there is no mechanism allowing operation to verify correct PSV performance and frequency of valve's closings and openings, we felt to be necessary the development and implement an automatic instrumented system, integrated to platform's automation and control infrastructure. The objective of this instrumentation is to monitor and register pressure of annular space in flexible riser, as well as XV's depressurization frequency. Having such information registered and monitored, can infer some riser structural conditions, anticipating repairs and preventive maintenance. In this paper we present developed system details including instruments required, application, operation of associated screens that are used in the ECOS, with events, alarms and industrial automation services required (Application development and system integration). (author)

  5. Optimized numerical annular flow dryout model using the drift-flux model in tube geometry

    International Nuclear Information System (INIS)

    Chun, Ji Han; Lee, Un Chul

    2008-01-01

    Many experimental analyses for annular film dryouts, which is one of the Critical Heat Flux (CHF) mechanisms, have been performed because of their importance. Numerical approaches must also be developed in order to assess the results from experiments and to perform pre-tests before experiments. Various thermal-hydraulic codes, such as RELAP, COBRATF, MARS, etc., have been used in the assessment of the results of dryout experiments and in experimental pre-tests. These thermal-hydraulic codes are general tools intended for the analysis of various phenomena that could appear in nuclear power plants, and many models applying these codes are unnecessarily complex for the focused analysis of dryout phenomena alone. In this study, a numerical model was developed for annular film dryout using the drift-flux model from uniform heated tube geometry. Several candidates of models that strongly affect dryout, such as the entrainment model, deposition model, and the criterion for the dryout point model, were tested as candidates for inclusion in an optimized annular film dryout model. The optimized model was developed by adopting the best combination of these candidate models, as determined through comparison with experimental data. This optimized model showed reasonable results, which were better than those of MARS code

  6. Cylindrical optical resonators: fundamental properties and bio-sensing characteristics

    Science.gov (United States)

    Khozeymeh, Foroogh; Razaghi, Mohammad

    2018-04-01

    In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).

  7. Analysis of radial vibrations of poroelastic circular cylindrical shells ...

    African Journals Online (AJOL)

    DR OKE

    vanished, the considered problem reduces to the problem of radial vibrations of fluid-filled poroelastic circular cylindrical shell. (2). When the .... the volume change of the solid to that of liquid. ..... When the outer fluid density is zero, that is, ρof = 0 then the poroelastic cylindrical shell immersed in an acoustic medium will.

  8. IDIOPATHIC MULTIFOCAL CHOROIDITIS PRESENTING WITH A TRANSIENT PERIPAPILLARY WHITE RING.

    Science.gov (United States)

    Gattoussi, Sarra; Ghadiali, Quraish; Dolz-Marco, Rosa; Freund, K Bailey

    2017-11-22

    We describe with multimodal imaging the presentation and follow-up for a patient with idiopathic multifocal choroiditis and a transient peripapillary white ring. Case report. A 39-year-old Asian woman was initially seen for an evaluation of lattice degeneration in 2015. Her medical history included Graves disease and psoriasis. Best-corrected visual acuity was 20/25 in her right eye and 20/25 in her left eye. Ultra-widefield fundus autofluorescence imaging showed a curvilinear hyperautofluorescent line in her right eye. One year later, the patient returned complaining of floaters in her right eye for 1 month. Her visual acuity was unchanged. Funduscopic examination showed new inflammatory yellowish lesions in the right eye corresponding to hyperreflective sub-retinal pigment epithelium lesions on structural spectral domain optical coherence tomography. Fluorescein angiography showed corresponding late staining of these active lesions. Late-phase indocyanine green angiography showed multiple nummular hypocyanescent dots. Ultra-widefield fundus autofluorescence showed large areas of hyperautofluorescence. The patient was started on a 60-mg oral prednisone taper and demonstrated subsequent regression of the inflammatory lesions. Ten months later, the patient returned emergently with complaints of floaters in both eyes for 2 days and a new temporal scotoma in her left eye. Funduscopic examination demonstrated a white ring around the optic nerve of the left eye corresponding to a hyperautofluorescent lesion. Ultra-widefield fundus autofluorescence showed new areas of hyperautofluorescence in both eyes. Structural spectral domain optical coherence tomography showed new sub-retinal pigment epithelium inflammatory lesions and a disruption of the ellipsoid zone in both eyes. The patient was again treated with a 60-mg oral prednisone taper and demonstrated subsequent restoration of the ellipsoid zone. To our knowledge, this is the first report of a transient annular white

  9. On cylindrically converging shock waves shaped by obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, V; Henshaw, W D; Appelo, D

    2007-07-16

    Motivated by recent experiments, numerical simulations were performed of cylindrically converging shock waves. The converging shocks impinged upon a set of zero to sixteen regularly space obstacles. For more than two obstacles the resulting diffracted shock fronts formed polygonal shaped patterns near the point of focus. The maximum pressure and temperature as a function of number of obstacles were studied. The self-similar behavior of cylindrical, triangular and square-shaped shocks were also investigated.

  10. Variations in Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, S. M.; Spilker, L. J.; Pilorz, S.; Edgington, S. G.; Déau, E.; Altobelli, N.

    2010-12-01

    Cassini's Composite Infrared Spectrometer has recorded over two million of spectra of Saturn's rings in the far infrared since arriving at Saturn in 2004. CIRS records far infrared radiation between 10 and 600 cm-1 ( 16.7 and 1000 μ {m} ) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn’s rings peaks in this wavelength range. Ring temperatures can be inferred from FP1 data. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and rapidly changing temperatures are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid particles can be expected to have higher thermal inertias. Ferrari et al. (2005) fit thermal inertia values of 5218 {Jm)-2 {K}-1 {s}-1/2 to their B ring data and 6412 {Jm)-2 {K}-1 {s}-1/2 to their C ring data. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The rings’ thermal budget is dominated by its absorption of solar radiation. As a result, ring particles abruptly cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  11. Stokes flow heat transfer in an annular, rotating heat exchanger

    International Nuclear Information System (INIS)

    Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.

    2011-01-01

    The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.

  12. Laser-assisted printing of alginate long tubes and annular constructs

    International Nuclear Information System (INIS)

    Yan Jingyuan; Huang Yong; Chrisey, Douglas B

    2013-01-01

    Laser-assisted printing such as laser-induced forward transfer has been well studied to pattern or fabricate two-dimensional constructs. In particular, laser printing has found increasing biomedical applications as an orifice-free cell and organ printing approach, especially for highly viscous biomaterials and biological materials. Unfortunately, there have been very few studies on the efficacy of three-dimensional printing performance of laser printing. This study has investigated the feasibility of laser tube printing and the effects of sodium alginate concentration and operating conditions such as the laser fluence and laser spot size on the printing quality during laser-assisted printing of alginate annular constructs (short tubes) with a nominal diameter of 3 mm. It is found that highly viscous materials such as alginate can be printed into well-defined long tubes and annular constructs. The tube wall thickness and tube outer diameter decrease with the sodium alginate concentration, while they first increase, then decrease and finally increase again with the laser fluence. The sodium alginate concentration dominates if the laser fluence is low, and the laser fluence dominates if the sodium alginate concentration is low. (paper)

  13. DETERMINATION OF CRITICAL ROTATIONAL SPEED OF CIRCULAR SAWS FROM NATURAL FREQUENCIES OF ANNULAR PLATE WITH ANALOGOUS DIMENSIONS

    Directory of Open Access Journals (Sweden)

    Ante Skoblar

    2016-03-01

    Full Text Available It is suitable to reduce thickness of circular saw when trying to enhance usability of wood raw material, but reducing thickness also causes reduction of permissible rotational speed which reduces sawing speed. If one increase circular saw rotational speed over permissible one the quality of machined surfaces will reduce because of enhanced vibrations. Permissible rotational speed can be calculated from critical rotational speed which can be defined from natural frequencies of the saw. In this article critical rotational speeds of standard clamped saws (with flat disk surface and without slots are calculated by using finite element method and classical theory of thin plates on annular plates. Mode shapes and natural frequencies of annular plates are determined by using Bessel functions and by using polynomial functions. Obtained results suggest that standard clamped circular saws without slots and with relatively small teeth can be determined from classical theory of thin plates for annular plates with accuracy depending on clamping ratio.

  14. Churn-annular flow pattern transition in a vertical upward gas-liquid two-phase flow in various conduits

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki; Ueda, Tadanobu; Asano, Hitoshi

    2008-01-01

    Void fraction was measured by neutron radiography for a vertical upward gas-water two-phase flow in a concentric annular tube with and with out a spacer, 4x4 rod bundle with and without a spacer and a tight rod bundle with and without a wrapping wire for various gas and liquid flow rates. The flow patterns of these two-phase flows were determined by the Mishima-Ishii flow pattern map and void fraction was calculated by the Ishii's drift flux model. The predicted values were compared with the experimental results. The void fraction was well predicted by the Mishima-Ishii flow pattern map and the Ishii's drift flux model except the annular flow region with void fraction lower than 0.8 for conduits with small equivalent diameter. A new churn-annular flow pattern transition condition of the void fraction equal to 0.8 was added. The void fraction for the present experimental condition was successful predicted with the new transition model. (author)

  15. Hydrodynamics of annular-dispersed flow

    International Nuclear Information System (INIS)

    Ishii, M.; Kataoka, I.

    1982-01-01

    The interfacial drag, droplet entrainment, and droplet size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The drag correlations for multiple fluid particle systems have been developed from a similarity hypothesis based on the mixture viscosity model. The results show that the drag coefficient depends on the particle Reynolds number and droplet concentration. The onset on droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet size distribution have been obtained from a simple model in collaboration with a large number of data

  16. Fluxon dynamics in long annular Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Martucciello, N.; Mygind, Jesper; Koshelets, V.P.

    1998-01-01

    Single-fluxon dynamics has been experimentally investigated in high-quality Nb/Al-AlOx/Nb annular Josephson tunnel junctions having a radius much larger than the Josephson penetration depth. Strong evidence of self-field effects is observed. An external magnetic field in the barrier plane acts...... on the fluxon as a periodic potential and lowers its average speed. Further, the results of perturbative calculations do not fit the experimental current-voltage profile and, provided the temperature is low enough, this profile systematically shows pronounced deviations from the smooth predicted form...

  17. Dismantling OPAL's cylindrical magnet core

    CERN Multimedia

    Laurent Guiraud

    2001-01-01

    Lifting a handling device for dismounting the pressure bells, which are inside the cylindrical magnet coil on the central section of OPAL, on the right part of the photo. OPAL was a detector on the LEP accelerator, which ran from 1989 to 2000.

  18. Analytical modeling of inverted annular film boiling

    International Nuclear Information System (INIS)

    Analytis, G.T.; Yadigaroglu, G.

    1985-01-01

    By employing a two-fluid formulation similar to the one used in the most recent LWR accident analysis codes, a model for the Inverted Annular Film Boiling region is developed. The conservation equations, together with appropriate constitutive relations are solved numerically and successful comparisons are made between model predictions and heat transfer coefficient distributions measured in a series of single-tube reflooding experiments. The model predicts generally correctly the dependence of the heat transfer coefficient on liquid subcooling and flow rate, through, for some cases, heat transfer is still under-predicted, and an enhancement of the heat exchange from the liquid-vapour interface to the bulk of the liquid is required

  19. Annular burnout data from rod-bundle experiments

    International Nuclear Information System (INIS)

    Yoder, G.L.; Morris, D.G.; Mullins, C.B.

    1983-01-01

    Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident

  20. Development of a new miniature short-residence-time annular centrifugal solvent extraction contactor for tests of process flowsheets in hot cells

    International Nuclear Information System (INIS)

    Lanoe, J.Y.; Rivalier, P.

    2000-01-01

    Researches undertaken on new nuclear fuel reprocessing extraction processes need tests of process flowsheets in hot cells. To this goal, a new miniature short residence-time annular centrifugal solvent extraction contactor was conceived and developed at Marcoule. This single stage contactor is composed of an outer stationary cylinder (made of transparent plexiglas on prototype and of stainless steel on models for hot cells) and a suspended inner rotating cylinder of stainless steel; the inside diameter of the rotor is 12 mm. Aqueous and organic phases are fed into the gap between the two cylinders. The mixture flows down the annular space and then up through an orifice at the bottom of the rotor. Into the rotor, the emulsion breaks rapidly under the centrifugal force (up to 600 g with rotor speed of 10,000 rpm). The separated phases flow over their weirs and discharge at the top in their collector rings. The liquid hold-up of this centrifugal contactor is approximately 6 mL. The use in hots cells needed original designs for: - the assembly of a single-stage contactor: every part (motor, rotor, stationary housing) is simply inserted on the other one without screws and nuts; - the assembly of multistage group: every stage is stacking in two rails and an intermediate part (supported on the two rails) links exit ports and their corresponding inlet ports. All the parts are pressed and sealed against a terminal plate with a screw. Separating capacity tests with. a prototype were conducted using water as the aqueous phase and hydrogenated tetra-propylene (TPH) as the organic phase with aqueous to organic (A/O) flow ratio equal to 1. The best performances were obtained with rotor speed ranging from 4000 to 5000 rpm; the total throughput was then up to 2 L.h -1 . For a total throughput of 300 mL.h -1 , the hold-up in the annular mixing zone varied from 0.5 to 1.5 mL according to the A/O ratio and the starting mode. A number of tests were also performed to measure the