WorldWideScience

Sample records for cyclotron produced iodine-124

  1. Iodine-124 labelled Annexin-V as a potential radiotracer to study apoptosis using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Matthias E-mail: m.glaser@csc.mrc.ac.uk; Collingridge, D.R.; Aboagye, E.O.; Bouchier-Hayes, Lisa; Hutchinson, O. Clyde; Martin, S.J.; Price, Pat; Brady, Frank; Luthra, S.K

    2003-01-01

    Annexin-V is a calcium-dependent protein that binds with high affinity to phosphaditylserine exposed during apoptosis. The aim of this study was to radiolabel annexin-V with iodine-124 for use as a potential probe of apoptosis by positron emission tomography. Annexin-V was radioiodinated directly using the cyclotron-produced positron emitter iodine-124 by the chloramine-T (CAT) method and indirectly by the pre-labelled reagent N-succinimidyl 3-[{sup 124}I]iodobenzoate ([{sup 124}I]m-SIB). Some reaction parameters of the CAT method such as reaction time and pH were optimised to give radiochemical yields of 22.3{+-}2.6% (n=3, gel-filtration). After incubation with [{sup 124}I]m-SIB, radiolabelled annexin-V was obtained in 14% and 25% yield by FPLC and gel-filtration, respectively. The radiochemical purities from direct and indirect labelling were 97.7{+-}1.0% (n=3) and 96.7{+-}2.1% (n=3), respectively. The new radiotracers could be stored for up to four days without significant de-iodination. The biological activity of radiolabelled annexin-V was tested in control and camptothecin-treated (i.e. apoptotic) human leukaemic HL60 cells. A significantly higher (21%) binding in treated cells was observed with [{sup 125}I]m-SIB-annexin-V. The binding of [{sup 125}I]m-SIB labelled annexin-V to camptothecin treated cells was blocked (68%) by a 100-fold excess of unlabelled annexin-V. Abbreviations: Fast protein liquid chromatography (FPLC), Instant thin layer chromatography (ITLC), Sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), 3-iodobenzoate (m-IBA), N-succinimidyl 3-(trimethylstannyl)benzoate (m-MeATE)

  2. Improving cancer treatment with cyclotron produced radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  3. Iodine-124: A Promising Positron Emitter for Organic PET Chemistry

    Directory of Open Access Journals (Sweden)

    Lena Koehler

    2010-04-01

    Full Text Available The use of radiopharmaceuticals for molecular imaging of biochemical and physiological processes in vivo has evolved into an important diagnostic tool in modern nuclear medicine and medical research. Positron emission tomography (PET is currently the most sophisticated molecular imaging methodology, mainly due to the unrivalled high sensitivity which allows for the studying of biochemistry in vivo on the molecular level. The most frequently used radionuclides for PET have relatively short half-lives (e.g. 11C: 20.4 min; 18F: 109.8 min which may limit both the synthesis procedures and the time frame of PET studies. Iodine-124 (124I, t1/2 = 4.2 d is an alternative long-lived PET radionuclide attracting increasing interest for long term clinical and small animal PET studies. The present review gives a survey on the use of 124I as promising PET radionuclide for molecular imaging. The first part describes the production of 124I. The second part covers basic radiochemistry with 124I focused on the synthesis of 124I-labeled compounds for molecular imaging purposes. The review concludes with a summary and an outlook on the future prospective of using the long-lived positron emitter 124I in the field of organic PET chemistry and molecular imaging.

  4. Iodine-124: a promising positron emitter for organic PET chemistry.

    Science.gov (United States)

    Koehler, Lena; Gagnon, Katherine; McQuarrie, Steve; Wuest, Frank

    2010-04-13

    The use of radiopharmaceuticals for molecular imaging of biochemical and physiological processes in vivo has evolved into an important diagnostic tool in modern nuclear medicine and medical research. Positron emission tomography (PET) is currently the most sophisticated molecular imaging methodology, mainly due to the unrivalled high sensitivity which allows for the studying of biochemistry in vivo on the molecular level. The most frequently used radionuclides for PET have relatively short half-lives (e.g. 11C: 20.4 min; 18F: 109.8 min) which may limit both the synthesis procedures and the time frame of PET studies. Iodine-124 (124I, t1/2 = 4.2 d) is an alternative long-lived PET radionuclide attracting increasing interest for long term clinical and small animal PET studies. The present review gives a survey on the use of 124I as promising PET radionuclide for molecular imaging. The first part describes the production of 124I. The second part covers basic radiochemistry with 124I focused on the synthesis of 124I-labeled compounds for molecular imaging purposes. The review concludes with a summary and an outlook on the future prospective of using the long-lived positron emitter 124I in the field of organic PET chemistry and molecular imaging.

  5. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Larson, S.M.; Finn, R.D.

    1993-11-01

    This report describes our continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section will be employed in the Pharmacology and Immunology sections during the next year. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  6. Assessment of a fully 3D Monte Carlo reconstruction method for preclinical PET with iodine-124

    Science.gov (United States)

    Moreau, M.; Buvat, I.; Ammour, L.; Chouin, N.; Kraeber-Bodéré, F.; Chérel, M.; Carlier, T.

    2015-03-01

    Iodine-124 is a radionuclide well suited to the labeling of intact monoclonal antibodies. Yet, accurate quantification in preclinical imaging with I-124 is challenging due to the large positron range and a complex decay scheme including high-energy gammas. The aim of this work was to assess the quantitative performance of a fully 3D Monte Carlo (MC) reconstruction for preclinical I-124 PET. The high-resolution small animal PET Inveon (Siemens) was simulated using GATE 6.1. Three system matrices (SM) of different complexity were calculated in addition to a Siddon-based ray tracing approach for comparison purpose. Each system matrix accounted for a more or less complete description of the physics processes both in the scanned object and in the PET scanner. One homogeneous water phantom and three heterogeneous phantoms including water, lungs and bones were simulated, where hot and cold regions were used to assess activity recovery as well as the trade-off between contrast recovery and noise in different regions. The benefit of accounting for scatter, attenuation, positron range and spurious coincidences occurring in the object when calculating the system matrix used to reconstruct I-124 PET images was highlighted. We found that the use of an MC SM including a thorough modelling of the detector response and physical effects in a uniform water-equivalent phantom was efficient to get reasonable quantitative accuracy in homogeneous and heterogeneous phantoms. Modelling the phantom heterogeneities in the SM did not necessarily yield the most accurate estimate of the activity distribution, due to the high variance affecting many SM elements in the most sophisticated SM.

  7. Purification of cyclotron-produced {sup 203}Pb for labeling Herceptin

    Energy Technology Data Exchange (ETDEWEB)

    Garmestani, Kayhan [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, NCI, Bethesda, MD 20892-1002 (United States); Milenic, Diane E. [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, NCI, Bethesda, MD 20892-1002 (United States); Brady, Erik D. [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, NCI, Bethesda, MD 20892-1002 (United States); Plascjak, Paul S. [PET Department, Clinical Center, NIH, Bethesda, MD 20892-1002 (United States); Brechbiel, Martin W. [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, NCI, Bethesda, MD 20892-1002 (United States)]. E-mail: martinwb@mail.nih.gov

    2005-04-01

    A simple and rapid procedure was developed for the purification of cyclotron-produced {sup 203}Pb via the {sup 203}Tl(d,2n) {sup 203}Pb reaction. A Pb(II) selective ion-exchange resin, with commercial name Pb Resin from Eichrom Technologies, Inc., was used to purify {sup 203}Pb from the cyclotron-irradiated Tl target with excellent recovery of the enriched Tl target material. The purified {sup 203}Pb was used to radiolabel the monoclonal antibody Herceptin. The in vitro and in vivo properties of the {sup 203}Pb radioimmunoconjugate were evaluated.

  8. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.; Bigler, R.E.

    1978-09-30

    Progress is reported on biomedical studies using cyclotron-produced /sup 18/F, /sup 15/O, /sup 11/C, /sup 13/N, /sup 52/Fe, /sup 38/K, /sup 206/Bi, /sup 73/Se, /sup 53/Co, and /sup 43/K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; /sup 38/K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments. (HLW)

  9. Determining Contents of Five Impurities in Cyclotron- Produced ~(64)Cu Solution by Emission Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    64Cu ( β+=17%, β-=39%, IEC=43%) is an important emerging biomedical radionuclide, which is useful for PET as well as a promising radiotherapy agent for the treatment of cancer. It can be produced on a small biomedical cyclotron utilizing 64Ni(p, n)64Cu nuclear reaction.

  10. Improving cancer treatment with cyclotron produced radionuclides. Comprehensive progress report, February 1, 1990--January 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author`s continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  11. Graphical user interface for yield and dose estimations for cyclotron-produced technetium.

    Science.gov (United States)

    Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A

    2014-07-07

    The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  12. Cyclotron Produced Radionuclides for Diagnosis and Therapy of Human Neoplasms

    Energy Technology Data Exchange (ETDEWEB)

    Steven Larson MD

    2009-09-21

    This project funded since 1986 serves as a core project for cancer research throughout MSKCC, producing key radiotracers as well as basic knowledge about thel physics of radiation decay and imaging, for nuclear medicine applications to cancer diagnosis and therapy. In recent years this research application has broadened to include experiments intended to lead to an improved understanding of cancer biology and into the discovery and testing of new cancer drugs. Advances in immune based radiotargeting form the basis for this project. Both antibody and cellular based immune targeting methods have been explored. The multi-step targeting methodologies (MST) developed by NeoRex (Seattle,Washington), have been adapted for use with positron emitting isotopes and PET allowing the quantification and optimization of targeted delivery. In addition, novel methods for radiolabeling immune T-cells with PET tracers have advanced our ability to track these cells of prolonged period of time.

  13. Preparation of Ga/Ni Solid Target for Cyclotron-produced 68Ge by Electrodeposition

    Institute of Scientific and Technical Information of China (English)

    SHEN; Yi-jia; FU; Hong-yu; LUO; Wen-bo; DENG; Xue-song; LIU; Yu-ping; LI; Guang; XU; Hong-wei; WANG; Gang

    2013-01-01

    68Ga is mainly used for preparation of the 68Ge-68Ga generator and the calibration of Positron Emission Computed Tomography.The low melting point of the target material in the production reaction69Ga(p,2n)68Ge has limited the availability of 68Ga.In order to use the existing industrial cyclotron hardware to produce 68Ga,a method of electrodepositing gallium-nickel alloy was set up in this study.

  14. Cyclotron-produced radioisotopes and their clinical use at the Austin PET Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tochon-Danguy, H.J. [Centre for PET, Melbourne, VIC (Australia). Austin and Repatriation Medical Centre

    1997-12-31

    A Centre for Positron Emission Tomography (PET) has been established within the Department of Nuclear Medicine at the Austin and Repatriation Medical Centre in Melbourne. PET is a non-invasive technique based on the use of biologically relevant compounds labelled with short-lived positron-emitting radionuclides such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18. The basic equipment consists of a medical cyclotron (10 MeV proton and 5 MeV deuteron), six lead-shielded hot cells with associated radiochemistry facilities and a whole body PET scanner. During its first five years of operation, the Melbourne PET Centre, has pursued a strong radiolabelling development program, leading to an ambitious clinical program in neurology, oncology and cardiology. This presentation will describe the basic principles of the PET technique and review the cyclotron-produced radioisotopes and radiopharmaceuticals. Radiolabelling development programs and clinical applications are also addressed. 30 refs., 1 tab., 1 fig.

  15. In vivo imaging of insulin receptors by PET: preclinical evaluation of iodine-125 and iodine-124 labelled human insulin

    Energy Technology Data Exchange (ETDEWEB)

    Iozzo, P.; Osman, S.; Glaser, M.; Knickmeier, M.; Ferrannini, E.; Pike, V.W.; Camici, P.G.; Law, M.P. E-mail: marilyn.law@csc.mrc.ac.uk

    2002-01-01

    [A{sub 14}-*I]iodoinsulin was prepared for studies to assess the suitability of labeled iodoinsulin for positron emission tomography (PET). Iodine-125 was used to establish the methods and for preliminary studies in rats. Further studies and PET scanning in rats were carried out using iodine-124. Tissue and plasma radioactivity was measured as the uptake index (UI={l_brace}cpm{center_dot}(g tissue){sup -1}{r_brace}/{l_brace}cpm injected{center_dot}(g body weight){sup -1}{r_brace}) at 1 to 40 min after intravenous injection of either [A{sub 14}-{sup 125}I]iodoinsulin or [A{sub 14}-{sup 124}I]iodoinsulin. For both radiotracers, initial clearance of radioactivity from plasma was rapid (T{sub 1/2} {approx} 1 min), reaching a plateau (UI = 2.8) at {approx} 5 min which was maintained for 35 min. Tissue biodistributions of the two radiotracers were comparable; at 10 min after injection, UI for myocardium was 2.4, liver, 4.0, pancreas, 5.4, brain, 0.17, kidney, 22, lung, 2.3, muscle, 0.54 and fat, 0.28. Predosing rats with unlabelled insulin reduced the UI for myocardium (0.95), liver (1.8), pancreas (1.2) and brain (0.08), increased that for kidney (61) but had no effect on that for lung (2.5), muscle (0.50) or fat (0.34). Analysis of radioactivity in plasma demonstrated a decrease of [{sup 125}I]iodoinsulin associated with the appearance of labeled metabolites; the percentage of plasma radioactivity due to [{sup 125}I]iodoinsulin was 40% at 5 min and 10% at 10 min. The heart, liver and kidneys were visualized using [{sup 124}I]iodoinsulin with PET.

  16. Preparation of Ga/Ni Solid Target for Cyclotron-Produced 68Ge by Electrodeposition

    OpenAIRE

    SHEN Yi-jia1,2;FU Hong-yu1;LUO Wen-bo1;DENG Xue-song1;LIU Yu-ping1;LI Guang1;XU Hong-wei1,2;WANG Gang1

    2014-01-01

    Germanium 68 is mainly used for preparation of the 68Ge-68Ga generator and the calibration of positron emission computed tomography. The low melting point of the target material in the production reaction 69Ga (p, 2n) 68Ge has limited the availability of Ge-68. In order to use the existing industrial cyclotron hardware to produce Germanium 68, the method of electrodepositing gallium-nickel alloy was set up in this study. Acidic requirements were met through the preparation of the gallium-nick...

  17. Preparation of Ga/Ni Solid Target for Cyclotron-Produced 68Ge by Electrodeposition

    Directory of Open Access Journals (Sweden)

    SHEN Yi-jia1,2;FU Hong-yu1;LUO Wen-bo1;DENG Xue-song1;LIU Yu-ping1;LI Guang1;XU Hong-wei1,2;WANG Gang1

    2014-02-01

    Full Text Available Germanium 68 is mainly used for preparation of the 68Ge-68Ga generator and the calibration of positron emission computed tomography. The low melting point of the target material in the production reaction 69Ga (p, 2n 68Ge has limited the availability of Ge-68. In order to use the existing industrial cyclotron hardware to produce Germanium 68, the method of electrodepositing gallium-nickel alloy was set up in this study. Acidic requirements were met through the preparation of the gallium-nickel alloy targets and by optimizing the plating bath composition and electrodepositing conditions, finally confirmed by adjustment of the electro-deposition process, and preparation of the gallium-nickel alloy targets with a gallium content of 75%. After three time irradiation tests, the process was certified to produce targets of Germanium 68. This process is user-friendly, the preparation of the targets is of stable quality, and it can be applied to the cyclotron production of Germanium 68.

  18. Effective dose to immuno-PET patients due to metastable impurities in cyclotron produced zirconium-89

    Science.gov (United States)

    Alfuraih, Abdulrahman; Alzimami, Khalid; Ma, Andy K.; Alghamdi, Ali; Al Jammaz, Ibrahim

    2014-11-01

    Immuno-PET is a nuclear medicine technique that combines positron emission tommography (PET) with radio-labeled monoclonal antibodies (mAbs) for tumor characterization and therapy. Zirconium-89 (89Zr) is an emerging radionuclide for immuno-PET imaging. Its long half-life (78.4 h) gives ample time for the production, the administering and the patient uptake of the tagged radiopharmaceutical. Furthermore, the nuclides will remain in the tumor cells after the mAbs are catabolized so that time series studies are possible without incurring further administration of radiopharmarceuticals. 89Zr can be produced in medical cyclotrons by bombarding an yttrium-89 (89Y) target with a proton beam through the 89Y(p,n)89Zr reaction. In this study, we estimated the effective dose to the head and neck cancer patients undergoing 89Zr-based immune-PET procedures. The production of 89Zr and the impurities from proton irradiation of the 89Y target in a cyclotron was calculated with the Monte Carlo code MCNPX and the nuclear reaction code TALYS. The cumulated activities of the Zr isotopes were derived from real patient data in literature and the effective doses were estimated using the MIRD specific absorbed fraction formalism. The estimated effective dose from 89Zr is 0.5±0.2 mSv/MBq. The highest organ dose is 1.8±0.2 mSv/MBq in the liver. These values are in agreement with those reported in literature. The effective dose from 89mZr is about 0.2-0.3% of the 89Zr dose in the worst case. Since the ratio of 89mZr to 89Zr depends on the cooling time as well as the irradiation details, contaminant dose estimation is an important aspect in optimizing the cyclotron irradiation geometry, energy and time.

  19. Improving cancer treatment with cyclotron produced radionuclides. Comprehensive progress report, February 1, 1992--July 15, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Larson, S.M.; Finn, R.D.

    1995-07-17

    This research continues the long term goals of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. This program fits into the nuclear medicine component of DOE`s mission, which is aimed at enhancing the beneficial applications of radiation, radionuclides, and stable isotopes in the diagnosis, study and treatment of human diseases. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology/Immunology; and Imaging Physics. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Section under the DOE grant during the 1992--1995 will be employed in the Pharmacology/Immunology component in the period 1996--1999. Imaging Physics resolves relevant imaging related physics issues that arise during the experimentation that results. In addition to the basic research mission, this project also provides a basis for training of research scientists in radiochemistry, immunology, bioengineering and imaging physics.

  20. A new approach for manufacturing and processing targets to produce 99mTc with cyclotrons

    Science.gov (United States)

    Matei, L.; McRae, G.; Galea, R.; Niculae, D.; Craciun, L.; Leonte, R.; Surette, G.; Langille, S.; Louis, C. St.; Gelbart, W.; Abeysekera, B.; Johnson, R. R.

    2017-06-01

    The most important radioisotope for nuclear medicine is 99mTc. After the supply crisis of 99Mo starting in 2008, the availability of 99mTc became a worldwide concern. Alternative methods for producing the medical imaging isotope 99mTc are actively being developed around the world. The reaction 100Mo(p, 2n)99mTc provides a direct route that can be incorporated into routine production in nuclear medicine centers that possess medical cyclotrons for production of other isotopes, such as those used for Positron Emission Tomography. This paper describes a new approach for manufacturing targets for the (p, 2n) nuclear reaction on 100Mo and the foundation for the subsequent commercial separation and purification of the 99mTc produced. Two designs of targets are presented. The targets used to produce 99mTc are subject to a number of operational constraints.They must withstand the temperatures generated by the irradiation, accommodate temperature gradients from cooling system of the target, must be resilient and must be easily post-processed to separate the 99mTc. After irradiation, the separation of Tc from Mo was carried out using an innovative two-step approach. The process described in this paper can be automated with modules that easily fit in standard production hot cells found in nuclear medicine facilities.

  1. Using the Orbit Tracking Code Z3CYCLONE to Predict the Beam Produced by a Cold Cathode PIG Ion Source for Cyclotrons under DC Extraction

    CERN Document Server

    Forringer, Edward

    2005-01-01

    Experimental measurements of the emittance and luminosity of beams produced by a cold-cathode Phillips Ionization Guage (PIG) ion source for cyclotrons under dc extraction are reviewed. (The source being studied is of the same style as ones that will be used in a series of 250 MeV proton cyclotrons being constructed for cancer therapy by ACCEL Inst, Gmbh, of Bergisch Gladbach, Germany.) The concepts of 'plasma boundary' and 'plasma temperature' are presented as a useful set of parameters for describing the initial conditions used in computational orbit tracking. Experimental results for r-pr and z-pz emittance are compared to predictions from the MSU orbit tracking code Z3CYCLONE with results indicating that the code is able to predict the beam produced by these ion sources with adequate accuracy such that construction of actual cyclotrons can proceed with reasonably prudent confidence that the cyclotron will perform as predicted.

  2. Improving cancer treatment with cyclotron produced radionuclides. Progress report, February 1987--September 1989

    Energy Technology Data Exchange (ETDEWEB)

    Larson, S.M.

    1989-12-31

    This report is divided into six sections, each section dealing with a separate aspect of the program. The six sections are entitled (1) In Vivo Measurement of Amino Acid Transport and Protein Synthesis, (2) Angiogenesis in Human Gliomas: Correlations with Blood Flow and Transport of C-11 AIB, (3) Use of F-18 Fluoropyrimidines for Design and Evaluation of Regional and Systemic Chemotherapeutic Strategies in Human Adenocarcinomas of the Gastrointestinal Tract, (4) Enzymatic Synthesis of Metabolites Labeled with N-13 or C-11, (5) Synthesis of Amino Acids Labeled with C-11, and (6) Instrumentation: Cyclotron and Imaging Systems.

  3. Cyclotron produced {sup 67}Ga, a potential radionuclide for diagnostic and therapeutic applications

    Energy Technology Data Exchange (ETDEWEB)

    Khandaker, Mayeen Uddin, E-mail: mu-khandaker@um.edu.my; Kassim, Hasan Abu [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Haba, Hiromitsu [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-04-29

    Production cross-sections of the {sup nat}Zn(d,x){sup 67}Ga reactions have been measured from a 24-MeV deuteron energy down to the threshold by using a stacked-foil activation technique combined with HPGe γ-ray spectrometry. An overall good agreement is found with some of the earlier measurements, whereas a partial agreement is obtained with the theoretical data extracted from the TENDL-2013 library. Physical thick target yield for the {sup 67}Ga radionuclide was deduced using the measured cross-sections, and found in agreement with the directly measured yield available in the literature. This study reveals that a low deuteron energy (<11 MeV) cyclotron and an enriched {sup 66}Zn target could be used to obtain {sup 67}Ga in no carrier added form.

  4. Quantitative analysis of relationships between irradiation parameters and the reproducibility of cyclotron-produced (99m)Tc yields.

    Science.gov (United States)

    Tanguay, J; Hou, X; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A

    2015-05-21

    Cyclotron production of (99m)Tc through the (100)Mo(p,2n) (99m)Tc reaction channel is actively being investigated as an alternative to reactor-based (99)Mo generation by nuclear fission of (235)U. An exciting aspect of this approach is that it can be implemented using currently-existing cyclotron infrastructure to supplement, or potentially replace, conventional (99m)Tc production methods that are based on aging and increasingly unreliable nuclear reactors. Successful implementation will require consistent production of large quantities of high-radionuclidic-purity (99m)Tc. However, variations in proton beam currents and the thickness and isotopic composition of enriched (100)Mo targets, in addition to other irradiation parameters, may degrade reproducibility of both radionuclidic purity and absolute (99m)Tc yields. The purpose of this article is to present a method for quantifying relationships between random variations in production parameters, including (100)Mo target thicknesses and proton beam currents, and reproducibility of absolute (99m)Tc yields (defined as the end of bombardment (EOB) (99m)Tc activity). Using the concepts of linear error propagation and the theory of stochastic point processes, we derive a mathematical expression that quantifies the influence of variations in various irradiation parameters on yield reproducibility, quantified in terms of the coefficient of variation of the EOB (99m)Tc activity. The utility of the developed formalism is demonstrated with an example. We show that achieving less than 20% variability in (99m)Tc yields will require highly-reproducible target thicknesses and proton currents. These results are related to the service rate which is defined as the percentage of (99m)Tc production runs that meet the minimum daily requirement of one (or many) nuclear medicine departments. For example, we show that achieving service rates of 84.0%, 97.5% and 99.9% with 20% variations in target thicknesses requires producing on average

  5. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems

    Energy Technology Data Exchange (ETDEWEB)

    Jentzen, Walter; Freudenberg, Lutz; Brandau, Wolfgang; Bockisch, Andreas [Universitaet Duisburg-Essen, Klinik fuer Nuklearmedizin, Essen (Germany); Weise, Reiner; Burchert, Wolfgang [Institut fuer Radiologie, Nuklearmedizin und Molekulare Bildgebung, Herz- und Diabeteszentrum NRW, Bad Oeynhausen (Germany); Kupferschlaeger, Juergen; Bares, Ronald [Universitaet Tuebingen, Klinik fuer Nuklearmedizin, Tuebingen (Germany)

    2008-03-15

    This study evaluated the absolute quantification of iodine-124 ({sup 124}I) activity concentration with respect to the use of this isotope for dosimetry before therapies with {sup 131}I or {sup 131}I-labeled radiotherapeuticals. The recovery coefficients of positron emission tomography(/computed tomography) PET(/CT) systems using {sup 124}I were determined using phantoms and then validated under typical conditions observed in differentiated thyroid cancer (DTC) patients. Transversal spatial resolution and recovery measurements with {sup 124}I and with fluorine-18 ({sup 18}F) as the reference were performed using isotope-containing line sources embedded in water and six isotope-containing spheres 9.7 to 37.0 mm in diameter placed in water-containing body and cylinder phantoms. The cylinder phantom spheres were filled with {sup 18}F only. Measurements in two-dimensional (2D) and three-dimensional (3D) modes were performed using both stand-alone PET (EXACT HR{sup +}) and combined PET/CT (BIOGRAPH EMOTION DUO) systems. Recovery comparison measurements were additionally performed on a GE ADVANCE PET system using the cylinder phantom. The recovery coefficients were directly determined using the activity concentration of circular regions of interest divided by the prepared activity concentration determined by the dose calibrator. The recovery correction method was validated using three consecutive scans of the body phantom under our {sup 124}I PET(/CT) protocol for DTC patients. Compared with that of {sup 18}F, transversal spatial resolution of {sup 124}I was slightly, but statistically significantly degraded (7.4 mm vs. 8.3 mm, P<0.002). Using the body phantom, recovery was lower for {sup 124}I than for {sup 18}F in both 2D and 3D modes. The {sup 124}I recovery coefficient of the largest sphere was significantly higher in 2D than in 3D mode (81% vs. 75%, P=0.03). Remarkably, the {sup 18}F recovery coefficient for the largest sphere significantly deviated from unity

  6. Producing absorption mode Fourier transform ion cyclotron resonance mass spectra with non-quadratic phase correction functions.

    Science.gov (United States)

    Kilgour, David P A; Nagornov, Konstantin O; Kozhinov, Anton N; Zhurov, Konstantin O; Tsybin, Yury O

    2015-06-15

    Previously described methods for producing absorption mode Fourier transform ion cyclotron resonance (FTICR) mass spectra have all relied on the phase correction function being quadratic. This assumption has been found to be invalid for some instruments and spectra and so it has not been possible to produce absorption mode spectra for these cases. The Autophaser algorithm has been adapted to allow nth order polynomial phase correction functions to be optimized. The data was collected on a modified Thermo LTQ FTICR mass spectrometer, using electrospray ionization and a novel ICR cell design (NADEL). Peak assignment and mass calibration were undertaken using the pyFTMS framework. An nth-order phase correction function has been used to produce an absorption mode mass spectrum of the maltene fraction of a crude oil sample which was not possible using the previous assumption that the phase correction function must be quadratic. Data processing for this spectrum in absorption mode has shown the expected benefits in terms of increasing the number of assigned peaks and also improving the mass accuracy (i.e. confidence) of the assignments. It is possible to phase-correct time-domain data in FTICRMS to yield absorption mode mass spectra representation even when the data does not correspond to the theoretical quadratic phase correction function predicted by previous studies. This will allow a larger proportion of spectra to be processed in absorption mode. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Clinical Trial Using Sodium Pertechnetate 99mTc Produced with Medium-Energy Cyclotron: Biodistribution and Safety Assessment in Patients with Abnormal Thyroid Function.

    Science.gov (United States)

    Selivanova, Svetlana; Lavallée, Éric; Senta, Helena; Caouette, Lyne; McEwan, Alexander Jb; Guérin, Brigitte; Lecomte, Roger; Turcotte, Eric

    2016-10-13

    A single-site prospective open-label clinical study with cyclotron-produced sodium pertechnetate (99m)Tc ([(99m)Tc]NaTcO4, (99m)Tc-pertechnetate) was performed in patients with indication for a thyroid scan to demonstrate the clinical safety and diagnostic efficacy of the drug and confirm its equivalence with conventional sodium pertechnetate (99m)Tc eluted from a generator.

  8. Cyclotron Institute Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Henry [Texas A& M University; Yennello, Sherry [Texas A& M University; Tribble, Robert [Texas A& M University

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  9. Cyclotrons: 1978

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.A. (comp.)

    1978-01-01

    A compilation is presented of the experimental facilities of the world's cyclotrons including history and status, staff and operation, research staff, target facilities, magnet, acceleration system, vacuum system, characteristic beams, beam properties, and a plan view of the facility for each cyclotron. (GHT)

  10. Cyclotrons and positron emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  11. First-in-Human PET/CT Imaging of Metastatic Neuroendocrine Neoplasms with Cyclotron-Produced (44)Sc-DOTATOC: A Proof-of-Concept Study.

    Science.gov (United States)

    Singh, Aviral; van der Meulen, Nicholas P; Müller, Cristina; Klette, Ingo; Kulkarni, Harshad R; Türler, Andreas; Schibli, Roger; Baum, Richard P

    2017-05-01

    (44)Sc is a promising positron emission tomography (PET) radionuclide (T1/2 = 4.04 hours, Eβ+average = 632 keV) and can be made available, using a cyclotron production route, in substantial quantities as a highly pure product. Herein, the authors report on a first-in-human PET/CT study using (44)Sc-DOTATOC prepared with cyclotron-produced (44)Sc. The production of (44)Sc was carried out through the (44)Ca(p,n)(44)Sc nuclear reaction at Paul Scherrer Institut, Switzerland. After separation, (44)Sc was shipped to Zentralklinik Bad Berka, Germany, where radiolabeling was performed, yielding radiochemically pure (44)Sc-DOTATOC. Two patients, currently followed up after peptide receptor radionuclide therapy of metastatic neuroendocrine neoplasms, participated in this proof-of-concept study. Blood sampling was performed before and after application of (44)Sc-DOTATOC. PET/CT acquisitions, performed at different time points after injection of (44)Sc-DOTATOC, allowed detection of even very small lesions on delayed scans. No clinical adverse effects were observed and the laboratory hematological, renal, and hepatic profiles remained unchanged. In this study, cyclotron-produced (44)Sc was used in the clinic for the first time. It is attractive for theranostic application with (177)Lu, (90)Y, or (47)Sc as therapeutic counterparts. (44)Sc-based radiopharmaceuticals will be of particular value for PET facilities without radiopharmacy, to which they can be shipped from a centralized production site.

  12. A fast and simple dose-calibrator-based quality control test for the radionuclidic purity of cyclotron-produced 99mTc

    Science.gov (United States)

    Tanguay, J.; Hou, X.; Esquinas, P.; Vuckovic, M.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.

    2015-11-01

    Cyclotron production of {{}99\\text{m}} Tc through the 100Mo(p,2n){{}99\\text{m}} Tc reaction channel is actively being investigated as an alternative to reactor-based 99Mo generation by nuclear fission of 235U. Like most radioisotope production methods, cyclotron production of {{}99\\text{m}} Tc will result in creation of unwanted impurities, including Tc and non-Tc isotopes. It is important to measure the amounts of these impurities for release of cyclotron-produced {{}99\\text{m}} Tc (CPTc) for clinical use. Detection of radioactive impurities will rely on measurements of their gamma (γ) emissions. Gamma spectroscopy is not suitable for this purpose because the overwhelming presence of {{}99\\text{m}} Tc and the count-rate limitations of γ spectroscopy systems preclude fast and accurate measurement of small amounts of impurities. In this article we describe a simple and fast method for measuring γ emission rates from radioactive impurities in CPTc. The proposed method is similar to that used to identify 99Mo breakthrough in generator-produced {{}99\\text{m}} Tc: one dose calibrator (DC) reading of a CPTc source placed in a lead shield is followed by a second reading of the same source in air. Our experimental and theoretical analysis show that the ratio of DC readings in lead to those in air are linearly related to γ emission rates from impurities per MBq of {{}99\\text{m}} Tc over a large range of clinically-relevant production conditions. We show that estimates of the γ emission rates from Tc impurities per MBq of {{}99\\text{m}} Tc can be used to estimate increases in radiation dose (relative to pure {{}99\\text{m}} Tc) to patients injected with CPTc-based radiopharmaceuticals. This enables establishing dosimetry-based clinical-release criteria that can be tested using commercially-available dose calibrators. We show that our approach is highly sensitive to the presence of {{}93\\text{g}} Tc, {{}93\\text{m}} Tc, {{}94\\text{g}} Tc, {{}94\\text{m}} Tc

  13. Medical cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A P

    1976-01-01

    Cyclotrons as tools for therapy and for the production of radionuclides for use in nuclear medicine have been extensively reviewed in the literature. The current world status with respect to cyclotrons used primarily for research, development and application in nuclear medicine is reviewed here in the context of geographical distribution and type of use, presently available commercial types, machine characteristics and trends. Aspects of design requirements from a user perspective such as machine, beam and target characteristics are covered. Some special problems concerning many factors which can lead to effective production of the desired radionuclide or product are considered in light of machine characteristics. Consideration is also given to future directions for accelerators in nuclear medicine.

  14. Characterization of Polyolefin Pyrolysis Species Produced Under Ambient Conditions by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Ion Mobility-Mass Spectrometry

    Science.gov (United States)

    Farenc, Mathilde; Witt, Matthias; Craven, Kirsten; Barrère-Mangote, Caroline; Afonso, Carlos; Giusti, Pierre

    2017-03-01

    Polyolefins such as polyethylene (PE) and polypropylene (PP) are often characterized from their pyrolysis products by Py-MS. Nowadays the development of plasma-based direct probe atmospheric pressure sources allow the direct analysis of these polymers. These sources operate at atmospheric pressure, which implies a limited control of the ionization conditions. It was shown that side reactions could occur with species present in air, such as O2, which may lead to the formation of oxidized compounds. In this work, ion mobility-mass spectrometry (IM-MS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR) were used for the exhaustive characterization of the PP and PE pyrolysis ions produced using plasma-based atmospheric pressure ion sources. Both PP and PE yielded distributions of pyrolysis products presenting different amounts of unsaturation but also different numbers of oxygen atoms. In addition, the ions produced from PP presented a lower collision cross-section (CCS) than those produced from PE. In the same way, both PP and PE present repeated patterns separated by 14 m/z in the bidimensional drift time versus m/z plots. Within these plots, several trend lines can be evidenced, which are specific of each polymer investigated. Differences were observed between isotactic and atactic samples concerning the pyrolysis profile relative abundance and collision cross-section.

  15. Characterization of Polyolefin Pyrolysis Species Produced Under Ambient Conditions by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Ion Mobility-Mass Spectrometry

    Science.gov (United States)

    Farenc, Mathilde; Witt, Matthias; Craven, Kirsten; Barrère-Mangote, Caroline; Afonso, Carlos; Giusti, Pierre

    2017-01-01

    Polyolefins such as polyethylene (PE) and polypropylene (PP) are often characterized from their pyrolysis products by Py-MS. Nowadays the development of plasma-based direct probe atmospheric pressure sources allow the direct analysis of these polymers. These sources operate at atmospheric pressure, which implies a limited control of the ionization conditions. It was shown that side reactions could occur with species present in air, such as O2, which may lead to the formation of oxidized compounds. In this work, ion mobility-mass spectrometry (IM-MS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR) were used for the exhaustive characterization of the PP and PE pyrolysis ions produced using plasma-based atmospheric pressure ion sources. Both PP and PE yielded distributions of pyrolysis products presenting different amounts of unsaturation but also different numbers of oxygen atoms. In addition, the ions produced from PP presented a lower collision cross-section (CCS) than those produced from PE. In the same way, both PP and PE present repeated patterns separated by 14 m/z in the bidimensional drift time versus m/z plots. Within these plots, several trend lines can be evidenced, which are specific of each polymer investigated. Differences were observed between isotactic and atactic samples concerning the pyrolysis profile relative abundance and collision cross-section.

  16. Method and apparatus for ion cyclotron spectrometry

    Science.gov (United States)

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  17. Developing the smallest possible medical cyclotron

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Imagine a portable medical cyclotron operated in a conventional radioactive facility at a hospital. Imagine a nurse or technician switching it on and producing isotopes at the patient’s bedside. Sounds like science fiction? Think again.   CERN has teamed up with Spain’s national scientific research centre (CIEMAT) to develop an avant-garde cyclotron to be used for Positron Emission Tomography (PET). “We plan to make a cyclotron that doesn't need an insulated building or ‘vault’: a cyclotron small enough to fit inside a hospital lift,” explains Jose Manuel Perez, who is leading the CIEMAT/CERN collaboration. “It will be the smallest possible medical cyclotron for single patient dose production and will dramatically reduce costs for hospitals.” While PET technology has transformed imaging techniques, many of its medical benefits have remained confined to highly specialised hospitals. “Studies have foun...

  18. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  19. Method and apparatuses for ion cyclotron spectrometry

    Science.gov (United States)

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  20. Shielding Design for a Medical Cyclotron

    Institute of Scientific and Technical Information of China (English)

    WANG; Feng; SONG; Guo-fang; GUAN; Feng-ping; LV; Yin-long; ZHANG; Xing-zhi

    2012-01-01

    <正>A 10 MeV 100 μA medical cyclotron is constructed at CIAE which is used in the production of FDG. The energy of the cyclotron can reach 14 MeV by adjusting the magnetic field and RF system parameters, and the shielding design is in accordance with the 14 MeV beam energy. In this shielding design only neutron is considered, and the neutron source is produced by proton

  1. Building 211 cyclotron characterization survey report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-30

    The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.

  2. The development of cyclotron radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Dae; Chun, K. W.; Suh, Y. S.; Lee, J. D.; Ahn, S. H. and others

    1999-03-01

    The purpose of this project is to developthe radiopharmaceuticals and automatic synthetic unit for labelled compounds, and to establish mass production system of radiopharmaceuticals. These will contribute to the early diagnosis of the disease hard to cure. The contents of this project are as follows, the development of the radiopharmaceutical for imaging of cancer, the development of automatic synthesizer for the synthesis of radio-pharmaceuticals, the development of hormone derivatives labelled with {sup 12}'3I, the development of the radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for imaging of myocardial metabolism.

  3. Alfven cyclotron instability and ion cyclotron emission

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N.N.; Cheng, C.Z.

    1995-07-01

    Two-dimensional solutions of compressional Alfven eigenmodes (CAE) are studied in the cold plasma approximation. For finite inverse aspect ratio tokamak plasmas the two-dimensional eigenmode envelope is localized at the low magnetic field side with the radial and poloidal localization on the order of a/{radical}m and a/(fourth root of m), respectively, where m is the dominant poloidal mode number. Charged fusion product driven Alfven Cyclotron Instability (ACI) of the compressional Alfven eigenmodes provides the explanation for the ion cyclotron emission (ICE) spectrum observed in tokamak experiments. The ACI is excited by fast charged fusion products via Doppler shifted cyclotron wave-particle resonances. The ion cyclotron and electron Landau dampings and fast particle instability drive are calculated perturbatively for deuterium-deuterium (DD) and deuterium-tritium (DT) plasmas. Near the plasma edge at the low field side the velocity distribution function of charged fusion products is localized in both pitch angle and velocity. The poloidal localization of the eigenmode enhances the ACI growth rates by a factor of {radical}m in comparison with the previous results without poloidal envelope. The thermal ion cyclotron damping determines that only modes with eigenfrequencies at multiples of the edge cyclotron frequency of the background ions can be easily excited and form an ICE spectrum similar to the experimental observations. Theoretical understanding is given for the results of TFTR DD and DT experiments with {upsilon}{sub {alpha}0}/{upsilon}{sub A} < 1 and JET experiments with {upsilon}{sub {alpha}0}/{upsilon}{sub A} > 1.

  4. Synchro-cyclotron

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    The electromagnetic coil which forms the first section of the proton extraction channel in the improved synchro-cyclotron. The photograph shows the positioning gear and the current septum. An extraction efficiency above 50% is expected.

  5. The new cyclotrons

    CERN Multimedia

    Lawson, J D

    1966-01-01

    Article describing how valuable scientific work can still be carried out with the smaller energy cyclotrons such as those at the Radiochemical Centre, Amersham and the Atomic Energy Research Establishment, Harwell (2 pages).

  6. Low energy cyclotron for radiocarbon dating

    Energy Technology Data Exchange (ETDEWEB)

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  7. Inflation and Cyclotron Motion

    CERN Document Server

    Greensite, Jeff

    2016-01-01

    We consider, in the context of a braneworld cosmology, the motion of the universe coupled to a four-form gauge field, with constant field strength, defined in higher dimensions. It is found, under rather general initial conditions, that in this situation there is a period of exponential inflation combined with cyclotron motion in the inflaton field space. The main effect of the cyclotron motion is that conditions on the flatness of the inflaton potential, which are typically necessary for exponential inflation, can be evaded. There are Landau levels associated with the four-form gauge field, and these correspond to quantum excitations of the inflaton field.

  8. Upgrading Synchro-cyclotron

    CERN Multimedia

    1974-01-01

    Final touches to the central region of SC2, the refurbished 600 MeV synchro-cyclotron, before the start of commissioning. Modifications included a new type of ion source at the centre. Protons were first accelerated in SC2 at full energy by October 1974. (See photo 7408042X)

  9. Electron-Cyclotron Waves

    NARCIS (Netherlands)

    Westerhof, E.

    1994-01-01

    The essential elements of the theory of electron cyclotron waves are reviewed, The two main electro-magnetic modes of propagation are identified and their dispersion and absorption properties are discussed. The importance of the use of the relativistic resonance condition is stressed.

  10. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  11. Development of the cyclotron radioisotope production technology

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Yong Sup; Chun, K.S.; Yang, S.D.; Lee, J.D.; Ahn, S.H.; Yun, Y.K.; Park, H.; Lee, J.S.; Chai, J.S.; Kim, U.S.; Hong, S.S.; Lee, M.Y.; Park, C.W.; Baik, S. K.; Kim, E. H.; Kim, T. K.; Kim, K. S.; Kim, J. H

    1999-04-01

    The purpose of this study is to contribute the advance of nuclear medicine and to the improvement of human health through the development of various accelerator radionuclides and mass production with automization of production. The results obtained from this study are following: 1) In order to introduce 30 MeV high current cyclotron, the specification of cyclotron has been made, the building site was selected and we drew the draw-up of cyclotron. The cyclotron installation contract was postponed until the financial resources could be secured. 2) For a development high purity 1-123 producing system, a Xe-124 target system, a temperature measurement system of the inner part of the target and a target window were fabricated. A Xe-124 gas target recovery system and a full production system of 1-123 was drew up. 3) For a development of a therapeutic nuclide At-211, a target for the production of At-211 via {sup 209}Bi(alpha, 2n) reaction was fabricated. Produced At-211 was separated by distillation method. 4) For development of beta-emitting nuclides, Ti-45, C-11, F{sub 2}-18, beam irradiation system suitable for each target were fabricated. 5) For automatic production of Ga-67, automated module and PLC program was made 6) For the quality control of radiopharmaceuticals, analytical method of thallium and copper by polarography was investigated and established.

  12. Electron Cyclotron Emission Radiometer

    Science.gov (United States)

    Morales, Cristina

    2009-11-01

    There is much interest in studying plasmas that generate hot electrons. The goal of this project is to develop a wide band electron cyclotron radiometer to measure the non-Maxwellian rapid rises in electron temperature. These rapid increases in temperature will then be correlated to instabilities in the plasma. This project explores a type of noncontact temperature measurement. We will attempt to show the feasibility of electron cyclotron emissions to measure the Maryland Centrifugal Experiment's electron plasma temperature. The radiometer has been designed to have 100dB of gain and a sensitivity of 24mV/dB given by its logarithmic amplifier. If successful, this radiometer will be used as a diagnostic tool in later projects such as the proposed experiment studying magnetic reconnection using solar flux loops.

  13. Cyclotron Line Variability

    CERN Document Server

    Mihara, Tatehiro; Nagase, Fumiaki

    2014-01-01

    We systematically analyzed the spectra of X-ray binary pulsars observed with GINGA (Mihara 1995). A new model NPEX (Negative and Positive power-laws EXponential) was introduced t o represent the pulsar continuum. Combining the NPEX continuum with the CYAB factor (cyclotron resonance scattering model), we successfully fit the whole-band spectra of all the pulsars. A possible physical meaning of the NPEX model is the Comptonized spectra. By using the smooth and concave NPEX model, the cyclotron structures were detected from 12 pulsars, about a half of the 23 sources, including new discoveries from LMC X-4 and GS 1843+00. The magnetic fields were scattered in the range of $3\\times10^{11}$ - $5\\times10^{12}$ G. The distribution was shown for the first time, which is remarkably similar to that of radio pulsars with a peak at $2 \\times 10^{12}$ G. The double harmonic cyclotron structures of 4U 0115+63 in 1990 changed to a sin gle structure in 1991. The resonance energy also increased by 40 % as the luminosity decre...

  14. Cyclotrons and positron emission tomography radiopharmaceuticals for clinical imaging.

    Science.gov (United States)

    Saha, G B; MacIntyre, W J; Go, R T

    1992-07-01

    Positron emission tomography (PET) requires positron-emitting radionuclides that emit 511-keV photons detectable by PET imagers. Positron-emitting radionuclides are commonly produced in charged particle accelerators, eg, linear accelerators or cyclotrons. The most widely available radiopharmaceuticals for PET imaging are carbon-11-, nitrogen-13-, and oxygen-15-labeled compounds, many of which, either in their normal state or incorporated in other compounds, serve as physiological tracers. Other useful PET radiopharmaceuticals include fluorine-18-, bromine-75-, gallium-68 (68Ga)-, rubidium-82 (82Rb)-, and copper-62 (62Cu)-labeled compounds. Many positron emitters have short half-lives and thus require on-site cyclotrons for application, and others (68Ga, 82Rb, and 62Cu) are available from radionuclides generators using relatively long-lived parent radionuclides. This review is divided into two sections: cyclotrons and PET radiopharmaceuticals for clinical imaging. In the cyclotron section, the principle of operation of the cyclotron, types of cyclotrons, medical cyclotrons, and production of radionuclides are discussed. In the section on PET radiopharmaceuticals, the synthesis and clinical use of PET radiopharmaceuticals are described.

  15. Promises of cyclotron-produced 44Sc as a diagnostic match for trivalent β--emitters: in vitro and in vivo study of a 44Sc-DOTA-folate conjugate.

    Science.gov (United States)

    Müller, Cristina; Bunka, Maruta; Reber, Josefine; Fischer, Cindy; Zhernosekov, Konstantin; Türler, Andreas; Schibli, Roger

    2013-12-01

    In recent years, implementation of (68)Ga-radiometalated peptides for PET imaging of cancer has attracted the attention of clinicians. Herein, we propose the use of (44)Sc (half-life = 3.97 h, average β(+) energy [Eβ(+)av] = 632 keV) as a valuable alternative to (68)Ga (half-life = 68 min, Eβ(+)av = 830 keV) for imaging and dosimetry before (177)Lu-based radionuclide therapy. The aim of the study was the preclinical evaluation of a folate conjugate labeled with cyclotron-produced (44)Sc and its in vitro and in vivo comparison with the (177)Lu-labeled pendant. (44)Sc was produced via the (44)Ca(p,n)(44)Sc nuclear reaction at a cyclotron (17.6 ± 1.8 MeV, 50 μA, 30 min) using an enriched (44)Ca target (10 mg (44)CaCO3, 97.00%). Separation from the target material was performed by a semiautomated process using extraction chromatography and cation exchange chromatography. Radiolabeling of a DOTA-folate conjugate (cm09) was performed at 95°C within 10 min. The stability of (44)Sc-cm09 was tested in human plasma. (44)Sc-cm09 was investigated in vitro using folate receptor-positive KB tumor cells and in vivo by PET/CT imaging of tumor-bearing mice Under the given irradiation conditions, (44)Sc was obtained in a maximum yield of 350 MBq at high radionuclide purity (>99%). Semiautomated isolation of (44)Sc from (44)Ca targets allowed formulation of up to 300 MBq of (44)Sc in a volume of 200-400 μL of ammonium acetate/HCl solution (1 M, pH 3.5-4.0) within 10 min. Radiolabeling of cm09 was achieved with a radiochemical yield of greater than 96% at a specific activity of 5.2 MBq/nmol. In vitro, (44)Sc-cm09 was stable in human plasma over the whole time of investigation and showed folate receptor-specific binding to KB tumor cells. PET/CT images of mice injected with (44)Sc-cm09 allowed excellent visualization of tumor xenografts. Comparison of cm09 labeled with (44)Sc and (177)Lu revealed almost identical pharmacokinetics. This study presents a high-yield production and

  16. Biomedical research with cyclotron produced radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.

    1979-09-01

    Progress is reported on: metabolic and tumor localization in man and animals; radiodrug development; dosimetry for internally deposited isotopes; and radioactive material transfer system. Based on experience with /sup 13/N-glutamate in osteogenic sarcoma and Ewing's sarcoma, we conclude that (a) the /sup 13/N label enters tumor tissue rapidly at a rate similar to that at which activity leaves the blood, suggesting that the labeled glutamate itself is being transported into the tumor rather than some labeled metabolite; (b) uptake in the tumor is related to its metabolic activity, but factors such as blood flow are also important; (c) changes in the glutamate scan accurately reflect the response of osteogenic sarcoma to pre-operative chemotherapy as measured by conventional means, and that it is desirable to extend this experience to other types of tumors. /sup 13/N-Glutamate (and other /sup 13/N-labeled compounds) afford several advantages over conventional tumor imaging agents, such as rapid blood clearance and localization, low radiation exposure and the possibility of obtaining accurate, three-dimensional quantitative images via positron emission tomography. It is doubtful that these advantages will justify the routine use of /sup 13/N-glutamate to detect tumors or to monitor therapy except in clinical situations where conventional techniques are unsatisfactory. The value of /sup 1/3N-glutamate is as a tool to assess the metabolic requirement of neoplastic tissue in cancer patients in-vivo. (PCS)

  17. Single electron detection and spectroscopy via relativistic cyclotron radiation

    CERN Document Server

    Asner, D M; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thummler, T; VanDevender, B A; Woods, N L

    2014-01-01

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spec- trometer. We observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta elec- tron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta sp...

  18. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M.; Bradley, Rich; De Viveiros Souza Filho, Luiz A.; Doe, Peter J.; Fernandes, Justin L.; Fertl, M.; Finn, Erin C.; Formaggio, Joseph; Furse, Daniel L.; Jones, Anthony M.; Kofron, Jared N.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Miller, M. L.; Mohanmurthy, Prajwal T.; Monreal, Ben; Oblath, Noah S.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Rysewyk, Devyn M.; Sternberg, Michael G.; Tedeschi, Jonathan R.; Thummler, Thomas; VanDevender, Brent A.; Woods, N. L.

    2015-04-01

    It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

  19. Mean magnetic field calculation program with allowance for flutter for isochronous cyclotron (Cyclotron Analytic Model Program - CAMP)

    CERN Document Server

    Kiyan, I N; Vorozhtsov, S B

    2002-01-01

    The Cyclotron Analytic Model Program (CAMP) written in C++ with the use of Visual C++ is described. The program is intended for the mean magnetic field calculation of the isochronous cyclotron with allowance for flutter. The program algorithm was developed on the basis of the paper 'Calculation of Isochronous Fields for Sector-Focused Cyclotrons', by M.M.Gordon (Particle Accelerators. 1983. V.13). The accuracy of the calculations, performed with this program, was tested with the use of maps of isochronous magnetic fields of different cyclotrons with the azimuthally varying fields - AVF cyclotrons, in which the ion beams were produced. The calculation by CAMP showed that the isochronous mean magnetic field curve for the measured magnetic field, in which the ion beam was produced, exactly corresponded to the curve of the isochronous mean magnetic field, calculated with the allowance for flutter for all the AVF cyclotrons that were considered. As is evident from the calculations, this program can be used for cal...

  20. Cyclotrons as Drivers for Precision Neutrino Measurements

    Directory of Open Access Journals (Sweden)

    A. Adelmann

    2014-01-01

    Full Text Available As we enter the age of precision measurement in neutrino physics, improved flux sources are required. These must have a well defined flavor content with energies in ranges where backgrounds are low and cross-section knowledge is high. Very few sources of neutrinos can meet these requirements. However, pion/muon and isotope decay-at-rest sources qualify. The ideal drivers for decay-at-rest sources are cyclotron accelerators, which are compact and relatively inexpensive. This paper describes a scheme to produce decay-at-rest sources driven by such cyclotrons, developed within the DAEδALUS program. Examples of the value of the high precision beams for pursuing Beyond Standard Model interactions are reviewed. New results on a combined DAEδALUS—Hyper-K search for CP violation that achieve errors on the mixing matrix parameter of 4° to 12° are presented.

  1. Ion Cyclotron Heating on Proto-MPEX

    Science.gov (United States)

    Goulding, R. H.; Caughman, J. B. O.; Rapp, J.; Biewer, T. M.; Campbell, I. H.; Caneses, J. F.; Kafle, N.; Ray, H. B.; Showers, M. A.; Piotrowicz, P. A.

    2016-10-01

    Ion cyclotron heating will be used on Proto-MPEX (Prototype Material Plasma Exposure eXperiment) to increase heat flux to the target, to produce varying ion energies without substrate biasing, and to vary the extent of the magnetic pre-sheath for the case of a tilted target. A 25 cm long, 9 cm diameter dual half-turn helical ion cyclotron antenna has been installed in the device located at the magnetic field maximum. It couples power to ions via single pass damping of the slow wave at the fundamental resonance, and operates with ω 0.8ωci at the antenna location. It is designed to operate at power levels up to 30 kW, with a later 200 kW upgrade planned. Near term experiments include measuring RF loading at low power as a function of frequency and antenna gap. The plasma is generated by a helicon plasma source that has achieved ne > 5 ×1019m-3 operating with deuterium, as measured downstream from the ion cyclotron antenna location. Measurements will be compared with 1-D and 2-D models of RF coupling. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  2. EC-5 fifth international workshop on electron cyclotron emission and electron cyclotron heating

    Energy Technology Data Exchange (ETDEWEB)

    Prater, R.; Lohr, J. [eds.

    1985-12-31

    This report contains papers on the following topics: electron cyclotron emission measurements; electron cyclotron emission theory; electron cyclotron heating; gyrotron development; and ECH systems and waveguide development. These paper have been indexed separately elsewhere. (LSP).

  3. BEST medical radioisotope production cyclotrons

    Science.gov (United States)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  4. Spiral Inflector For Compact Cyclotron

    CERN Document Server

    Karamysheva, G A

    2004-01-01

    Compact cyclotron for explosives detection by nuclear resonance absorption of γ-rays in nitrogen is under development [1] Cyclotron will be equipped with the external ion source. The injection system consists of a double-drift beam bunching system, a spiral inflector, beam diagnostics, focusing and adjustment elements [2]. The spiral inflector for ion bending from axial to median plane is used. Computer model of spiral inflector for the Customs cyclotron is developed. 3D electrostatic field calculations of the designed inflector are performed. Calculated electric field map and magnetic field map of the cyclotron [3] are used for beam dynamic simulations. Numeric simulations are carried out for 500 particles using code for calculation of particle dynamics by integration of differential equations in Cartesian coordinate system written in MATLAB. Direct Coulomb particle-to-particle method is used to take into account space-charge effects.

  5. Ion Cyclotron Resonance Facility (ICR)

    Data.gov (United States)

    Federal Laboratory Consortium — his facility is charged with developing and exploiting the unique capabilities of Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, and leads the...

  6. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  7. Cyclotron resonant interactions in cosmic particle accelerators

    CERN Document Server

    Terasawa, T; 10.1007/s11214-012-9878-0

    2012-01-01

    A review is given for cyclotron resonant interactions in space plasmas. After giving a simple formulation for the test particle approach, illustrative examples for resonant interactions are given. It is shown that for obliquely propagating whistler waves, not only fundamental cyclotron resonance, but also other resonances, such as transit-time resonance, anomalous cyclotron resonance, higher-harmonic cyclotron resonance, and even subharmonic resonance can come into play. A few recent topics of cyclotron resonant interactions, such as electron injection in shocks, cyclotron resonant heating of solar wind heavy ions, and relativistic modifications, are also reviewed.

  8. A new RF system for a rejuvenated Synchro-cyclotron

    CERN Multimedia

    1975-01-01

    The Synchro-cyclotron is shown here shortly after the completion of the improvement programme, which left the steel magnet yoke as almost the only remaining component of the original machine. On the left can be seen the rotary condenser which produces the frequency modulation required for the acceleration (one of a pair available -in this instance ROTCO II). (see photo 7506015)

  9. CSIR cyclotron modified for radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    National Accelerator Centre (NAC) staff members will be making an important contribution to radiation therapy in South Africa when the Transvaal Department of Hospital Services starts treating certain types of cancer with fast neutrons, at the Pretoria Cyclotron on the CSIR campus. The fast neutrons will be utilized mainly to treat advanced cancers of the head and the neck. The project will develop along two lines. Firstly the Pretoria cyclotron must be modified and secondly satisfactory radiobiological data must be provided before patients may be treated. This radiobiological experiment heralds a new area for use of the cyclotron which has thus far been used mainly for basic nuclear research and the production of isotopes.

  10. Use of cyclotrons in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Qaim, S.M. E-mail: s.m.qaim@fz-juelich.de

    2004-11-01

    Cyclotrons are versatile ion-accelerating machines which find many applications in medicine. In this short review their use in hadron therapy is briefly discussed. Proton therapy is gaining significance because of its capability to treat deep-lying tumours. A strong area of application of cyclotrons involves the production of short-lived neutron deficient radiotracers for use in emission tomography, especially positron emission tomography. This fast and quantitative in vivo diagnostic technique is being increasingly used in neurology, cardiology and oncology. Besides routine patient care, considerable interdisciplinary work on development of new positron emitters is under way. A short account of those efforts is given. The use of cyclotrons in the production of radionuclides for internal radiotherapy is also briefly described.

  11. MC-50 AVF cyclotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seok; Chai, Jong Seo; Bak, Seong Ki; Park, Chan Won; Jo, Young Ho; Hong, Seong Seok; Lee, Min Yong; Jang Ho Ha

    2000-01-01

    The first cyclotron in Korea, MC-50 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-60{mu}A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23 days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed.

  12. Cyclotron and linac production of Ac-225.

    Science.gov (United States)

    Melville, Graeme; Allen, Barry J

    2009-04-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. The reduction of radium by photonuclear transmutation by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) has been investigated. A linac dose of 2800 Gy produced about 2.4 MBq (64 microCi) of Ra-225, which decays to Ac-225 and can then be used for 'Targeted Alpha Therapy' (TAT) of cancer. This result, while consistent with theoretical calculations, is far too low to be of practical use unless much larger quantities of radium are irradiated. The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. This paper investigates the possibility of producing of Ac-225 in commercial quantities, which could potentially reduce obsolete radioactive material and displace the need for expensive importation of Ac-225 from the USA and Russia in the years ahead. Scaled up production of Ac-225 could theoretically be achieved by the use of a high current cyclotron or linac. Production specifications are determined for a linac in terms of current, pulse length and frequency, as well as an examination of other factors such as radiation issues and radionuclei separation. Yields are compared with those calculated for the Australian National Cyclotron in Sydney.

  13. Cyclotron Production of Technetium-99m

    Science.gov (United States)

    Gagnon, Katherine M.

    Technetium-99m (99mTc) has emerged as the most widely used radionuclide in medicine and is currently obtained from a 99Mo/ 99mTc generator system. At present, there are only a handful of ageing reactors worldwide capable of producing large quantities of the parent isotope, 99Mo, and owing to the ever growing shutdown periods for maintenance and repair of these ageing reactors, the reliable supply 99mTc has been compromised in recent years. With an interest in alternative strategies for producing this key medical isotope, this thesis focuses on several technical challenges related to the direct cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction. In addition to evaluating the 100Mo(p,2n)99mTc and 100Mo(p,x)99Mo reactions, this work presented the first experimental evaluation of the 100Mo(p,2n) 99gTc excitation function in the range of 8-18 MeV. Thick target calculations suggested that large quantities of cyclotron-produced 99mTc may be possible. For example, a 6 hr irradiation at 500 μA with an energy window of 18→10 MeV is expected to yield 1.15 TBq of 99mTc. The level of coproduced 99gTc contaminant was found to be on par with the current 99Mo/99mTc generator standard eluted with a 24 hr frequency. Highly enriched 100Mo was required as the target material for 99mTc production and a process for recycling of this expensive material is presented. An 87% recovery yield is reported, including metallic target preparation, irradiation, 99mTc extraction, molybdate isolation, and finally hydrogen reduction to the metal. Further improvements are expected with additional optimization experiments. A method for forming structurally stable metallic molybdenum targets has also been developed. These targets are capable of withstanding more than a kilowatt of beam power and the reliable production and extraction of Curie quantities of 99mTc has been demonstrated. With the end-goal of using the cyclotron-produced 99mTc clinically, the quality of the cyclotron-produced

  14. Status of the Cyclotron Institute Upgrade Project

    Science.gov (United States)

    Melconian, Dan

    2016-09-01

    The Texas A&M University Re-accelerated EXotics (T-REX) project, an upgrade to the Cyclotron Institute, will provide high-quality re-accelerated secondary beams of a unique energy range and the ability to provide primary beams to two experiments concurrently. The upgrade is nearing completion of its three major tasks: re-commissioning of the existing K150 cyclotron; construction of light- and heavy-ion guide transport systems; and charge-boosting the K150 RIB for re-acceleration using the K500 cyclotron. The light-ion guide transport system will utilize the high intensity (>= 10 μ A) proton beam from the K150 to produce rare ions via fusion-evapouration reactions or proton-induced fission fragments. These ions will be transported to an ECR charge breeder prior to injection in the K500. The heavy-ion guide will use deep inelastic, transfer and fragmentation reactions using the up to 25 MeV/u primary beams from the K150. The products will be separated by a superconducting solenoid and collected in a large gas-catcher, after which a multi-RFQ system will transport the RIB to any of: the charge-breeder and K500; the TAMU Penning Trap beamline; or an MR-TOF for beam analysis. The status of the T-REX upgrade and an overview of its capabilities will be presented Supported by DOE Grant Number DE-FG03-93ER40773 and the Robert A. Welch Foundation Grant Number H-A-0098.

  15. Ion sources for cyclotron applications

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N.; Bachman, D.A.; McDonald, D.S.; Young, A.T.

    1992-07-01

    The use of a multicusp plasma generator as an ion source has many advantages. The development of both positive and negative ion beams based on the multicusp source geometry is presented. It is shown that these sources can be operated at steady state or cw mode. As a result they are very suitable for cyclotron operations.

  16. Status report on cyclotron operation

    CERN Document Server

    Kovács, P; Ander, I; Lakatos, T; Fenyvesi, A; Ditrói, F; Takács, S; Tarkanyi, F

    2003-01-01

    The operation of the cyclotron in 2002 was concentrated to 9 months; January, July and August were reserved for maintenance and holidays. The overall working time of the accelerator was 4084 hours, the breakdown periods amounted to 15 hours last year. In order to improve the circumstances of the irradiations, several following improvements were done. (R.P.)

  17. Status of the NSCL Cyclotron Gas Stopper

    CERN Document Server

    Joshi, N; Brodeur, M; Morrissey, D J; Schwarz, S

    2016-01-01

    A gas-filled reverse cyclotron for the thermalisation of energetic beams is under construction at NSCL/MSU. Rare isotopes produced via projectile fragmentation after in-flight separation will be injected into the device and converted into low-energy beams through buffer gas interactions as they spiral towards the centre of the device. The extracted thermal beams will be used for low energy experiments such as precision mass measurements with traps or laser spectroscopy, and further transport for reacceleration. Detailed calculations have been performed to optimize the magnetic field design as well as the transport and stopping of ions inside the gas. An RF carpet will be used to transport the thermal ions to the axial extraction point. The calculations indicate that the cyclotron gas stopper will be much more efficient for the thermalisation of light and medium mass ions compared to linear gas cells. In this contribution we will discuss simulations of the overall performance and acceptance of machine, the bea...

  18. Optimization of production yields, radionuclidic purity and hotcell shielding of SPECT and PET radionuclides produced by proton irradiation in variable energy 30 MeV cyclotrons--Part 67Ga.

    Science.gov (United States)

    Adam-Rebeles, R; Van den Winkel, P; De Vis, L

    2007-09-01

    Optimization of the production parameters (incident and exit proton energy, thickness of the (68)Zn target layer, decay time to start chemical processing of an irradiated target after the end of bombardment) and of the thickness of the lead shield of the processing hotcell for the cyclotron production of (67)Ga by the (68)Zn(p,2n) threshold reaction are accomplished by powerful divide et impera and binary search algorithms with the Pharmacopoeia radionuclidic purity of the (67)Ga-citrate radiopharmaceutical at a reference time and the locally accepted dose rate level for the controlled area as boundary conditions. Two sets of equations are presented (one associated with the maximum production rate, the other with the use of a minimum target layer thickness) that allow the expression of the optimized production parameters, the radionuclide yields satisfying the Pharmacopoeia requirements at the start of distribution and the necessary shielding as a function of the required activity at the start of distribution and of the maximum allowable beam current on target.

  19. Commercial compact cyclotrons in the 90`s

    Energy Technology Data Exchange (ETDEWEB)

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. The authors also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA.

  20. Cyclotron Line Measurements with INTEGRAL

    Science.gov (United States)

    Pottschmidt, K.; Kreykenbohm, I.; Caballero, I.; Fritz, S.; Schoenherr, G.; Kretschmar, P.; Wilms, J.; McBride, V. A.; Suchy, S.; Rothschild, R. E.

    2008-01-01

    Due to its broadband energy coverage, INTEGRAL has made important contributions to observing and interpreting cyclotron lines, which are present in the 10-100 keV range of a sample of accreting pulsars. In these systems photons with energies fulfilling the resonance condition inelastically Compton scatter off electrons quantized in the accretion column above the neutron star's magnetic pole(s). This process gives rise to the broad, absorption-like lines or 'cyclotron resonant scattering features' (CRSF). The observed lines allow to directly measure the B-fields of these sources, resulting in values of a few times 1E12G. In this overview I will present recent highlights regarding CRSF observations as well as discuss current ideas and models for the physical conditions in the accretion column. Among the former are the stability of the spectrum of Vela X-1 during giant flares in 2003, the observation of three cyclotron lines during the 2004 outburst of V0332+53, the confirmation of the fundamental line at approximately 45 keV during a 2005 normal outburst of A0535-26, and the simultaneous detection of the two lines in the dipping source 4U 1907+09 (for which also a torque reversal was detected for the first time). Through these and other observations it has become increasingly apparent that two types of observations can potentially be used to constrain the accretion column geometry: the determination of energy ratios for multiple harmonic lines (only two sources with greater than 2 lines are known), was well as the evolution of the fundamental line centroid, which, for different sources, may or may not be correlated with flux. Furthermore, first steps have been taken away from the usual phenomenological description of the lines, towards a physical approach based on self-consistent CRSF modeling. Initial applications are presented.

  1. Ion cyclotron waves at Titan

    Science.gov (United States)

    Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F. M.; Dougherty, M. K.

    2016-03-01

    During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm-3 to 0.02 cm-3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm-3 to 0.25 cm-3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.

  2. Cyclotron Line Measurements with INTEGRAL

    Science.gov (United States)

    Pottschmidt, K.; Kreykenbohm, I.; Caballero, I.; Fritz, S.; Schoenherr, G.; Kretschmar, P.; Wilms, J.; McBride, V. A.; Suchy, S.; Rothschild, R. E.

    2008-01-01

    Due to its broadband energy coverage, INTEGRAL has made important contributions to observing and interpreting cyclotron lines, which are present in the 10-100 keV range of a sample of accreting pulsars. In these systems photons with energies fulfilling the resonance condition inelastically Compton scatter off electrons quantized in the accretion column above the neutron star's magnetic pole(s). This process gives rise to the broad, absorption-like lines or 'cyclotron resonant scattering features' (CRSF). The observed lines allow to directly measure the B-fields of these sources, resulting in values of a few times 1E12G. In this overview I will present recent highlights regarding CRSF observations as well as discuss current ideas and models for the physical conditions in the accretion column. Among the former are the stability of the spectrum of Vela X-1 during giant flares in 2003, the observation of three cyclotron lines during the 2004 outburst of V0332+53, the confirmation of the fundamental line at approximately 45 keV during a 2005 normal outburst of A0535-26, and the simultaneous detection of the two lines in the dipping source 4U 1907+09 (for which also a torque reversal was detected for the first time). Through these and other observations it has become increasingly apparent that two types of observations can potentially be used to constrain the accretion column geometry: the determination of energy ratios for multiple harmonic lines (only two sources with greater than 2 lines are known), was well as the evolution of the fundamental line centroid, which, for different sources, may or may not be correlated with flux. Furthermore, first steps have been taken away from the usual phenomenological description of the lines, towards a physical approach based on self-consistent CRSF modeling. Initial applications are presented.

  3. The Warsaw K=160 cyclotron

    Science.gov (United States)

    Choinski, J.; Miszczak, J.; Sura, J.

    2001-12-01

    The overview of the Warsaw cyclotron facility is presented. The facility consists of K=160 cyclotron, 10 GHz ECR ion source, and several experimental stations. The cyclotron is of compact design with 2 straight dees. A yearly operation time is about 2900 hours on an average for the past few years. The cyclotron can deliver beams up to Ar with energy up to 10 MeV/amu to the experimental area. Experimental stations are: 1) The multidetector OSIRIS II, allows the study of exotic nuclei in the double magic 100Sn region. The experimental set-up consists of 8 HPGe detectors equipped with charged particle 4π multiplicity filter SiBall, 50 elements BGO γ-rays multiplicity filter, 4 sector polarimeter and electron conversion detector system. 2) CUDAC-Coulomb Universal Detector Scattering Chamber-an array of PIN-diodes in connection with HPGe detectors and the computer data analysis package GOSIA, maintained by the Laboratory allows investigation the Coulomb Excitation (COULEX) reactions. 3) IGISOL or Helium-jet transport system opened investigation of the reaction products by means of the online mass separator with ion-guide system. The system uses the Scandinavian-type mass separator built in INR Świerk, Poland. 4) Giant Dipole Resonance studies using experimental set-up JANOSIK developed for the detection of high-energy photons emitted in heavy-ion collisions. The set-up consists of a large NaI(Tl) detector (25 cm×29 cm) surrounded by shields: passive lead shield, active anticoincidence plastic shield and LiH shield to absorb neutrons, and a multiplicity filter of 32 small scintillator detectors (BaF2 and NaI(Tl)). 5) Laser spectroscopy stand now in test phase. The laser spectroscopy group at HIL has completed an equipment consisting of Argon ion Laser Innova 400-25W in all lines and coherent Ring Laser 669-21 as well as atomic beam apparatus.

  4. Superconducting cyclotrons at Michigan State University

    Science.gov (United States)

    Blosser, H. G.

    1987-04-01

    This paper describes the status of the three superconducting cyclotrons which are in operation or under construction at the National Superconducting Cyclotron Laboratory. The oldest of these, the K500, has been in operation since September 1982 supporting a national user program in heavy ion nuclear physics. A second large research cyclotron, the K800, is now nearing completion. This cyclotron will accelerate lighter heavy ions to 200 MeV/nuc and heavier particles up to energies given by 1200 Q2/ A MeV/nucleon. The magnet for this cyclotron came into operation in May 1984 and has performed smoothly and reliably in three extended operating periods. At present, K800 construction activity centers on fabrication and installation of the rf system, the extraction system, and the ECR injection line. The third NSCL superconducting cyclotron is a smaller 50 MeV deuteron cyclotron to be used for neutron therapy in the radiation oncology center of a major Detroit hospital (Harper Hospital). Design features of this small, application oriented, cyclotron are described in some detail.

  5. Studies of radioisotope production with an AVF cyclotron in TIARA

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Toshiaki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    The production of radioisotopes to be used mainly for nuclear medicine and biology is studied with an AVF cyclotron in TIARA. A production method of no-carrier-added {sup 186}Re with the {sup 186}W(p,n){sup 186}Re reaction has been developed; this product may be used as a therapeutic agent in radioimmunotherapy due to the adequate nuclear and chemical properties. For the study of the function of plants using a positron-emitter two-dimensional imaging system, a simple method of producing the positron emitter {sup 18}F in water was developed by taking advantage of a highly-energetic {alpha} beam from the AVF cyclotron. (author)

  6. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    Science.gov (United States)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  7. Injection and extraction for cyclotrons

    CERN Document Server

    Kleeven, W

    2006-01-01

    The main design goals for beam injection are explained and special problems related to a central region with internal ion source are considered. The principle of a PIG source is addressed. The issue of vertical focusing in the cyclotron centre is briefly discussed. Several examples of numerical simulations are given. Different ways of (axial) injection are briefly outlined. A proposal for a magnetostatic axial inflector is given. Different solutions for beam extraction are treated. These include the internal target, extraction by stripping, resonant extraction using a deflector and self-extraction. The different ways of creating a turn-separation are explained. The purpose of different types of extraction devices such as harmonic coils, deflectors and gradient corrector channels are outlined. Several illustrations are given in the form of photographs and drawings.

  8. Potential applications of an electron cyclotron resonance multicusp plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C.; Berry, L.A.; Gorbatkin, S.M.; Haselton, H.H.; Roberto, J.B.; Stirling, W.L. (Oak Ridge National Laboratory, Oak Ridge, TN (USA))

    1990-05-01

    An electron cyclotron resonance (ECR) multicusp plasmatron has been developed by feeding a multicusp bucket arc chamber with a compact ECR plasma source. This novel source produces large (about 25 cm diam), uniform (to within {plus minus}10%), dense ({gt}10{sup 11} cm{sup {minus}3}) plasmas of argon, helium, hydrogen, and oxygen. It has been operated to produce an oxygen plasma for etching 12.7 cm (5 in.) positive photoresist-coated silicon wafers with uniformity within {plus minus}8%. Results and potential applications of this new ECR plasma source for plasma processing of thin films are discussed.

  9. Cyclotron resonance absorption in ionospheric plasma

    Science.gov (United States)

    Villalon, Elena

    1991-04-01

    The mode conversion of ordinary polarized electromagnetic waves into electrostatic cyclotron waves in the inhomogeneous ionospheric plasma is investigated. Near resonance the warm plasma dispersion relation is a function of the angle theta between the geomagnetic field and the density gradient and of the wave frequency omega, which lies between the electron cyclotron frequency and its doubling. The differential equations describing the electric field amplitudes near the plasma resonance are studied, including damping at the second gyroharmonic. The energy transmission coefficients and power absorbed by the cyclotron waves are calculated. The vertical penetration of the plasma wave amplitudes is estimated using a WKB analysis of the wave equation.

  10. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Chu, William T.

    2005-09-01

    , constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80,000 volts using less than 1,000 volts on a semi-circular accelerating electrode, now called the ''dee''. Following the discovery by J. D. Cockcroft and E. T. S. Walton of how to produce larger currents at higher voltages, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. The 27-Inch Cyclotron was used extensively in early investigations of nuclear reactions involving neutrons and artificial radioactivity. In 1939, working with William Brobeck, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. It was housed in the Crocker Laboratory, where scientists first made transmutations of some elements, discovered several transuranic elements, and created hundreds of radioisotopes of known elements. At the Crocker Laboratory the new medical modality called nuclear medicine was born, which used radioisotopes for diagnosis and treatment of human diseases. In 1939 Lawrence was awarded the Nobel Prize in Physics, and later element 103 was named ''Lawrencium'' in his honor.

  11. Ion cyclotron resonance detection techniques at TRIGA-TRAP

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, K.; Eberhardt, K.; Ketelaer, J. [Johannes Gutenberg-Universitaet, Mainz (Germany); Beyer, T.; Blaum, K. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Ruprecht-Karls-Universitaet, Heidelberg (Germany); Block, M.; Herfurth, F. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Eibach, M.; Smorra, C. [Johannes Gutenberg-Universitaet, Mainz (Germany); Ruprecht-Karls-Universitaet, Heidelberg (Germany); Nagy, S. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2010-07-01

    In Penning trap mass spectrometry the mass of stored ions is obtained via a determination of the cyclotron frequency ({nu}{sub c}=qB/(2 {pi} m)), for which two different techniques are available. The destructive time-of-flight ion cyclotron resonance (TOF-ICR) technique, based on the measurement of the flight time of excited ions, is the established method for measurements on short-lived radionuclides. It is not ideally suited for rarely produced ion species, since typically some hundred ions are required for a single resonance spectrum. At the Penning trap mass spectrometer TRIGA-TRAP therefore a non-destructive narrow-band Fourier transform ion cyclotron resonance (FT-ICR) detection system is being developed. It is based on the detection of the image currents induced by the stored ions in the trap electrodes and will ultimately reach single ion sensitivity. TRIGA-TRAP also features broad-band FT-ICR detection for the coarse identification of the trap content. Additionally, the TOF-ICR detection system has been recently improved to utilize the Ramsey excitation technique to gain in precision, and the position information of the ion impact to further suppress background events in the final time-of-flight spectrum.

  12. Electron cyclotron heating and current drive

    NARCIS (Netherlands)

    Westerhof, E.

    1996-01-01

    Plasma heating and non-inductive current drive by waves in the electron cyclotron range of frequencies are reviewed. Both theoretical aspects concerning wave properties, heating and current drive mechanisms, as well as the major experimental results are summarized.

  13. Cyclotron production of Ac-225 for targeted alpha therapy.

    Science.gov (United States)

    Apostolidis, C; Molinet, R; McGinley, J; Abbas, K; Möllenbeck, J; Morgenstern, A

    2005-03-01

    The feasibility of producing Ac-225 by proton irradiation of Ra-226 in a cyclotron through the reaction Ra-226(p,2n)Ac-225 has been experimentally demonstrated for the first time. Proton energies were varied from 8.8 to 24.8 MeV and cross-sections were determined by radiochemical analysis of reaction yields. Maximum yields were reached at incident proton energies of 16.8 MeV. Radiochemical separation of Ac-225 from the irradiated target yielded a product suitable for targeted alpha therapy of cancer.

  14. The Cyclotron Production and Nuclear Imaging of BROMINE-77.

    Science.gov (United States)

    Galiano, Eduardo

    In this investigation, bromine-77 was produced with a medical cyclotron and imaged with gamma cameras. Br -77 emits a 240 kev photon with a half life of 56 hours. The C-Br bond is stronger than the C-I bond and bromine is not collected in the thyroid. Bromine can be used to label many organic molecules by methods analogous to radioiodination. The only North American source of Br-77 in the 70's and 80's was Los Alamos National Laboratory, but it discontinued production in 1989. In this method, a p,3n reaction on Br-77 produces Kr-77 which decays with a 1.2 hour half life to Br-77. A cyclotron generated 40 MeV proton beam is incident on a nearly saturated NaBr or LiBr solution contained in a copper or titanium target. A cooling chamber through which helium gas is flowed separates the solution from the cyclotron beam line. Helium gas is also flowed through the solution to extract Kr-77 gas. The mixture flows through a nitrogen trap where Kr-77 freezes and is allowed to decay to Br-77. Eight production runs were performed, three with a copper target and five with a titanium target with yields of 40, 104, 180, 679, 1080, 685, 762 and 118 uCi respectively. Gamma ray spectroscopy has shown the product to be very pure, however corrosion has been a major obstacle, causing the premature retirement of the copper target. Phantom and in-vivo rat nuclear images, and an autoradiograph in a rat are presented. The quality of the nuclear scans is reasonable and the autoradiograph reveals high isotope uptake in the renal parenchyma, a more moderate but uniform uptake in pulmonary and hepatic tissue, and low soft tissue uptake. There is no isotope uptake in the brain or the gastric mucosa.

  15. New Cyclotron Targetry to Enhance F-18 clinical Position Emission Tomography

    Energy Technology Data Exchange (ETDEWEB)

    J. Michael Doster

    2008-12-19

    This project proposes to develop cyclotron targets that produce F-18 for clinical Positron Emission Tomography (PET) at significantly higher rates than that available from current targetry. This production rate of 18F is directly proportional to the beam current. Higher beam currents would result in increased 18F production but would be accompanied by higher heat loads to the target. The beam power available in most commercial cyclotrons exceeds the heat removal capacity of current target technology by a factor of two to four, significantly limiting the production rate of Fluorine-18.

  16. 3-Dimensional Simulations of Multipacting Effects in RF Cavities of CYCIAE-100 Cyclotron

    Institute of Scientific and Technical Information of China (English)

    WANG; Chuan; JI; Bin; LI; Peng-zhan; YIN; Zhi-guo; LEI; Yu; XING; Jian-sheng; ZHANG; Tian-jue

    2013-01-01

    Multipacting phenomena have been observed in various RF structures of accelerators.The multipacting appearing in high-Q RF cavities of cyclotrons,are the well known examples that how disturbing these phenomenon could be during commissioning.The seed electrons will impact the cavity surface,produce new electrons.Under certain conditions(material and geometry of the RF structure,

  17. Excitation of ion-cyclotron harmonic waves in lower-hybrid heating

    Science.gov (United States)

    Villalon, E.

    1981-06-01

    The parametric excitation of ion-cyclotron waves by a lower-hybrid pump field is studied in the assumption that the magnitude of the pump is constant. The spatial amplification factor is given as a function of the wavenumber mismatch as produced by the plasma density gradient, and of the linear damping rates of the excited ion-cyclotron and sideband waves. The analysis is applied to plasma edge parameters relevant to the JFT2 heating experiment. It is found that ion-cyclotron harmonic modes are excited depending on pump frequency and plasma density. These modes are shown to have finite damping rates. The parallel refractive indices n1z of the excited sideband fields are found to be always larger than that of the driven pump field. Transition to quasi-mode decay occurs either by decreasing the pump frequency or by increasing the applied RF-power.

  18. Design study of an ultra-compact superconducting cyclotron for isotope production

    Science.gov (United States)

    Smirnov, V.; Vorozhtsov, S.; Vincent, J.

    2014-11-01

    A 12.5 MeV, 25 μA, proton compact superconducting cyclotron for medical isotope production has been designed and is currently in fabrication. The machine is initially aimed at producing 13N ammonia for Positron Emission Tomography (PET) cardiology applications. With an ultra-compact size and cost-effective price point, this system will offer clinicians unprecedented access to the preferred radiopharmaceutical isotope for cardiac PET imaging. A systems approach that carefully balanced the subsystem requirements coupled to precise beam dynamics calculations was followed. The system is designed to irradiate a liquid target internal to the cyclotron and to minimize the need for radiation shielding. The main parameters of the cyclotron, its design, and principal steps of the development work are presented here.

  19. Central region design for a 10 MeV internal ion source cyclotron

    Institute of Scientific and Technical Information of China (English)

    QIN Bin; LIU Kai-Feng; FENG Yi-Zhang; FAN Ming-Wu

    2009-01-01

    Internal ion sources are widely adopted in commercial cyclotrons used for short-life isotopes produc-tion. Without beam manipulation provided by the external beam injection line, the central region of this type of cyclotron is more sensitive and should be carefully designed. A design study and beam dynamics simulation for the central region of a 10 MeV compact cyclotron is presented. The OPERA3D/TOSCA code was used to calculate the electric field from a parameterized three dimensional (3D) central region model. With iterative structure optimizations of the central region, the beam centering and vertical focusing is well controlled, and the RF phase acceptance is around 25° A c++ code for beam simulation in the central region was developed and tested.

  20. Progress of General Test Stand for Intensive Beam Cyclotron

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The general test stand for intensive beam cyclotron is one of the preliminary tasks of BRIF project at CIAE. The test stand, which actually is a small compact cyclotron with designed energy of 10 MeV,

  1. Cyclotron resonance absorption in ionospheric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Villalon, E. (Northeastern Univ., Boston, MA (USA) Geophysics Lab., Hanscom AFB, MA (USA))

    1991-04-01

    The mode conversion of ordinary polarized electromagnetic waves into electrostatic cyclotron waves in the inhomogeneous ionospheric plasma is investigated. Near resonance the warm plasma dispersion relation is a function of the angle {theta} between the geomagnetic field and the density gradient and of the wave frequency {omega}, where {Omega} {le} {omega} {le} 2{Omega} and {Omega} is the electron cyclotron frequency. The differential equations describing the electric field amplitudes near the plasma resonance are studied, including damping at the second gyroharmonic. For certain values of {omega} and {theta} (e.g., {theta} < 45{degree}, {omega} {approximately} 2{Omega}) the wave equations reduce to the parabolic cylinder equation. The energy transmission coefficients and power absorbed by the cyclotron waves are calculated. The vertical penetration of the plasma wave amplitudes is iestimated using a WKB analysis of the wave equation.

  2. Design of the shielding wall of a cyclotron room and the activation interpretation using the Monte Carlo simulation

    Science.gov (United States)

    Jang, D. G.; Kim, J. M.; Kim, J. H.

    2017-01-01

    Medical cyclotron is mainly a facility used for producing radiopharmaceutical products, which secondarily generate high energy radiation when producing a radiopharmaceutical product. In this study, the intention is that the reductions in spatial dose rate for the radiation generated when cyclotron is operated and the absorbed dose rate, according to the width of shielding wall, will be analyzed. The simulation planned targetry and protons of 16.5 MeV, 60μA through a Monte Carlo simulation, and as a result of the simulation, it has been found through an analysis that a concrete shielding wall of 200 cm is needed, according to the absorbed dose rate of the shielding wall thickness of cyclotron, and the concrete gives an external exposure level of 1 μSv/hr after 19 years of cyclotron operation as it is activated by the nuclear reaction of cyclotron. When taking into account the mechanical life span of cyclotron, it is deemed necessary to develop additional shielding and a low activation material.

  3. Initial experience with an 11 MeV self-shielded medical cyclotron on operation and radiation safety

    Directory of Open Access Journals (Sweden)

    Pant G

    2007-01-01

    Full Text Available A self-shielded medical cyclotron (11 MeV was commissioned at our center, to produce positron emitters, namely, 18 F, 15 O, 13 N and 11 C for positron emission tomography (PET imaging. Presently the cyclotron has been exclusively used for the production of 18 F - for 18 F-FDG imaging. The operational parameters which influence the yield of 18 F - production were monitored. The radiation levels in the cyclotron and radiochemistry laboratory were also monitored to assess the radiation safety status in the facility. The target material, 18 O water, is bombarded with proton beam from the cyclotron to produce 18 F - ion that is used for the synthesis of 18 F-FDG. The operational parameters which influence the yield of 18 F - were observed during 292 production runs out of a total of more than 400 runs. The radiation dose levels were also measured in the facility at various locations during cyclotron production runs and in the radiochemistry laboratory during 18 F-FDG syntheses. It was observed that rinsing the target after delivery increased the number of production runs in a given target, as well as resulted in a better correlation between the duration of bombardment and the end of bombardment 18 F - activity with absolutely clean target after being rebuilt. The radiation levels in the cyclotron and radiochemistry laboratory were observed to be well within prescribed limits with safe work practice.

  4. Hospital based superconducting cyclotron for neutron therapy: Medical physics perspective

    Science.gov (United States)

    Yudelev, M.; Burmeister, J.; Blosser, E.; Maughan, R. L.; Kota, C.

    2001-12-01

    The neutron therapy facility at the Gershenson Radiation Oncology Center, Harper University Hospital in Detroit has been operational since September 1991. The d(48.5)+Be beam is produced in a gantry mounted superconducting cyclotron designed and built at the National Superconducting Cyclotron Laboratory (NSCL). Measurements were performed in order to obtain the physical characteristics of the neutron beam and to collect the data necessary for treatment planning. This included profiles of the dose distribution in a water phantom, relative output factors and the design of various beam modifiers, i.e., wedges and tissue compensators. The beam was calibrated in accordance with international protocol for fast neutron dosimetry. Dosimetry and radiobiology intercomparions with three neutron therapy facilities were performed prior to clinical use. The radiation safety program was established in order to monitor and reduce the exposure levels of the personnel. The activation products were identified and the exposure in the treatment room was mapped. A comprehensive quality assurance (QA) program was developed to sustain safe and reliable operation of the unit at treatment standards comparable to those for conventional photon radiation. The program can be divided into three major parts: maintenance of the cyclotron and related hardware; QA of the neutron beam dosimetry and treatment delivery; safety and radiation protection. In addition the neutron beam is used in various non-clinical applications. Among these are the microdosimetric characterization of the beam, the effects of tissue heterogeneity on dose distribution, the development of boron neutron capture enhanced fast neutron therapy and variety of radiobiology experiments.

  5. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    DEFF Research Database (Denmark)

    Oosterbeek, J.W.; Bürger, A.; Westerhof, E.;

    2008-01-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) beam...

  6. Imaging Cyclotron Orbits of Electrons in Graphene.

    Science.gov (United States)

    Bhandari, Sagar; Lee, Gil-Ho; Klales, Anna; Watanabe, Kenji; Taniguchi, Takashi; Heller, Eric; Kim, Philip; Westervelt, Robert M

    2016-03-09

    Electrons in graphene can travel for several microns without scattering at low temperatures, and their motion becomes ballistic, following classical trajectories. When a magnetic field B is applied perpendicular to the plane, electrons follow cyclotron orbits. Magnetic focusing occurs when electrons injected from one narrow contact focus onto a second contact located an integer number of cyclotron diameters away. By tuning the magnetic field B and electron density n in the graphene layer, we observe magnetic focusing peaks. We use a cooled scanning gate microscope to image cyclotron trajectories in graphene at 4.2 K. The tip creates a local change in density that casts a shadow by deflecting electrons flowing nearby; an image of flow can be obtained by measuring the transmission between contacts as the tip is raster scanned across the sample. On the first magnetic focusing peak, we image a cyclotron orbit that extends from one contact to the other. In addition, we study the geometry of orbits deflected into the second point contact by the tip.

  7. Tokamak startup with electron cyclotron heating

    Energy Technology Data Exchange (ETDEWEB)

    Holly, D J; Prager, S C; Shepard, D A; Sprott, J C

    1980-04-01

    Experiments are described in which the startup voltage in a tokamak is reduced by approx. 60% by the use of a modest amount of electron cyclotron resonance heating power for preionization. A 50% reduction in volt-second requirement and impurity reflux are also observed.

  8. <600> MeV synchro-cyclotron

    CERN Multimedia

    1971-01-01

    One of the 14 pancakes of the new magnet coils for the 600 MeV synchro-cyclotron which were wound and coated with epoxy resin on the CERN site. These new coils will replace the present ones which have been in use for more than 14 years but are now showing signs of deteriorations.

  9. Stability of the Electron Cyclotron Resonance

    Science.gov (United States)

    Asch, Joachim; Bourget, Olivier; Meresse, Cédric

    2015-12-01

    We consider the magnetic AC Stark effect for the quantum dynamics of a single particle in the plane under the influence of an oscillating homogeneous electric and a constant perpendicular magnetic field. We prove that the electron cyclotron resonance is insensitive to impurity potentials.

  10. Cyclotron-based neutron source for BNCT

    Science.gov (United States)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-01

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  11. SC Cyclotron and RIB Facilities in Kolkata

    CERN Document Server

    Sinha, Bikash; Chakrabarti, Alok

    2005-01-01

    The superconducting cyclotron under construction at this Centre has bending limit (K-bend) of 520 and focusing limit (K-foc) of 160. It is being constructed, primarily, for nuclear physics experiments with heavy ion beams at intermediate energies. The 100-ton main magnet is currently in the commissioning phase with the main coil already at 4.2K temperature. Magnetic field measurements will be carried out over the next several months. All other systems of the cyclotron are in an advanced stage of fabrication or development. We plan to start assembly of the complete cyclotron around the end of 2005. In the phase-I of the project one beam line has been provided. Construction of three more beam lines and various experimental facilities for nuclear physics as well as irradiation experiments has also been funded and the work is well on its way. An ISOL type Radioactive Ion Beam (RIB) facility is being built with the existing K=130 room temperature cyclotron, VEC, as the primary beam source. In-beam RIB production a...

  12. The irradiation facility at the AGOR cyclotron

    NARCIS (Netherlands)

    Brandenburg, Sytze; Ostendorf, Reint; Hofstee, Mariet; Kiewiet, Harry; Beijers, Hans

    2007-01-01

    The KVI is conducting radiobiology research using protons up to 190 MeV from the superconducting AGOR cyclotron in collaboration with the University Medical Center Groningen (UMCG) since 1998. Using the same set-up, we have started irradiations for radiation hardness studies of detectors and compone

  13. Electron cyclotron resonance heating on TEXTOR

    NARCIS (Netherlands)

    Westerhof, E.; Hoekzema, J. A.; Hogeweij, G. M. D.; Jaspers, R. J. E.; Schüller, F. C.; Barth, C. J.; Bongers, W. A.; Donne, A. J. H.; Dumortier, P.; van der Grift, A. F.; van Gorkom, J. C.; Kalupin, D.; Koslowski, H. R.; Kramer-Flecken, A.; Kruijt, O. G.; Cardozo, N. J. L.; Mantica, P.; van der Meiden, H. J.; Merkulov, A.; Messiaen, A.; Oosterbeek, J. W.; Oyevaar, T.; Poelman, A. J.; Polman, R. W.; Prins, P. R.; Scholten, J.; Sterk, A. B.; Tito, C. J.; Udintsev, V.S.; Unterberg, B.; Vervier, M.; van Wassenhove, G.

    2003-01-01

    The 110 GHz and the new 140 GHz gyrotron systems for electron cyclotron resonance heating (ECRH) and ECCD on TEXTOR are described and results of ECRH experiments with the 110 GHz system are reported. Central ECRH on Ohmic plasmas shows the presence of an internal electron transport barrier near q =

  14. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  15. General Electric PETtrace cyclotron as a neutron source for boron neutron capture therapy

    Science.gov (United States)

    Bosko, Andrey

    This research investigates the use of a PETtrace cyclotron produced by General Electric (GE) as a neutron source for boron neutron capture therapy (BNCT). The GE PETtrace was chosen for this investigation because this type of cyclotron is popular among nuclear pharmacies and clinics in many countries; it is compact and reliable; it produces protons with energies high enough to produce neutrons with appropriate energy and fluence rate for BNCT and it does not require significant changes in design to provide neutrons. In particular, the standard PETtrace 18O target is considered. The cyclotron efficiency may be significantly increased if unused neutrons produced during radioisotopes production could be utilized for other medical modalities such as BNCT at the same time. The resulting dose from the radiation emitted from the target is evaluated using the Monte Carlo radiation transport code MCNP at several depths in a brain phantom for different scattering geometries. Four different moderating materials of various thicknesses were considered: light water, carbon, heavy water, arid Fluental(TM). The fluence rate tally was used to calculate photon and neutron dose, by applying fluence rate-to-dose conversion factors. Fifteen different geometries were considered and a 30-cm thick heavy water moderator was chosen as the most suitable for BNCT with the GE PETtrace cyclotron. According to the Brookhaven Medical Research Reactor (BMRR) protocol, the maximum dose to the normal brain is set to 12.5 RBEGy, which for the conditions of using a heavy water moderator, assuming a 60 muA beam current, would be reached with a treatment time of 258 min. Results showed that using a PETtrace cyclotron in this configuration provides a therapeutic ratio of about 2.4 for depths up to 4 cm inside a brain phantom. Further increase of beam current proposed by GE should significantly improve the beam quality or the treatment time and allow treating tumors at greater depths.

  16. Potential applications of an electron cyclotron resonance multicusp plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C.; Berry, L.A.; Gorbatkin, S.M.; Haselton, H.H.; Roberto, J.B.; Schechter, D.E.; Stirling, W.L.

    1990-03-01

    An electric cyclotron resonance (ECR) multicusp plasmatron has been developed by feeding a multicusp bucket arc chamber with a compact ECR plasma source. This novel source produces large (about 25-cm- diam), uniform (to within {plus minus}10%), dense (>10{sup 11}--cm{sup {minus}3}) plasmas of argon, helium, hydrogen, and oxygen. It has been operated to produce an oxygen plasma for etching 12.7-cm (5-in.) positive photoresist-coated silicon wafers with uniformity within {plus minus}8%. Following a brief review of the large plasma source developed at Oak Ridge National Laboratory, the configuration and operation of the source are described and a discharge model is presented. Results from this new ECR plasma source and potential applications for plasma processing of thin films are discussed. 21 refs., 10 figs.

  17. Cyclotron laboratory of the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2016-06-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that could be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99m Tc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including nuclear energy. The building of the laboratory will be constructed nearby the Institute for Nuclear Research and Nuclear Energy and the cyclotron together with all the equipment needed will be installed there.

  18. Functional comparison of annexin V analogues labeled indirectly and directly with iodine-124

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, Bronwen [CRUK/UMIST Dept. of Radiochemical Targeting and Imaging, Paterson Inst. for Cancer Research, M20 4BX Manchester (United Kingdom)]|[Dept. of Instrumentation and Analytical Science, Univ. of Manchester Inst. for Science and Technology (United Kingdom)]. E-mail: bdekker@picr.man.ac.uk; Keen, Heather [CRUK/UMIST Dept. of Radiochemical Targeting and Imaging, Paterson Inst. for Cancer Research, M20 4BX Manchester (United Kingdom)]|[Dept. of Instrumentation and Analytical Science, Univ. of Manchester Inst. for Science and Technology, M60 1QD Manchester (United Kingdom); Shaw, David [CRUK/UMIST Dept. of Radiochemical Targeting and Imaging, Paterson Inst. for Cancer Research, M20 4BX Manchester (United Kingdom)]|[CRUK Dept. of Immunology, Paterson Inst. for Cancer Research, M20 4BX Manchester (United Kingdom); Disley, Lynn [CRUK/UMIST Dept. of Radiochemical Targeting and Imaging, Paterson Inst. for Cancer Research, M20 4BX Manchester (United Kingdom); Hastings, David; Julyan, Peter [CRUK/UMIST Dept. of Radiochemical Targeting and Imaging, Paterson Inst. for Cancer Research, M20 4BX Manchester (United Kingdom)]|[North Western Medical Physics, Christie Hospital NHS Trust, M20 4BX Manchester (United Kingdom); Hadfield, John [School of Environment and Life Sciences, Univ. of Salford, M5 4WT Manchester (United Kingdom); Reader, Andrew [Dept. of Instrumentation and Analytical Science, Univ. of Manchester Inst. for Science and Technology, M60 1QD Manchester (United Kingdom); Allan, Donald [Physics and Electronic Unit, Paterson Inst. for Cancer Research, M20 4BX Manchester (United Kingdom); Watson, Alastair [Dept. of Medicine, Univ of Liverpool (United Kingdom); Zweit, Jamal [CRUK/UMIST Dept. of Radiochemical Targeting and Imaging, Paterson Inst. for Cancer Research, M20 4BX Manchester (United Kingdom)]|[Dept. of Instrumentation and Analytical Science, Univ. of Manchester Inst. for Science and Technology (United Kingdom)]. E-mail: jzweit@picr.man.ac.uk

    2005-05-01

    We are interested in imaging cell death in vivo using annexin V radiolabeled with {sup 124}I. In this study, [{sup 124}I]4IB-annexin V and [{sup 124}I]4IB-ovalbumin were made using [{sup 124}I]N-hydroxysuccinimidyl-4-iodobenzoate prepared by iododestannylation of N-hydroxysuccinimidyl-4-(tributylstannyl)benzoate. [{sup 124}I]4IB-annexin V binds to phosphatidylserine-coated microtiter plates and apoptotic Jurkat cells and accumulates in hepatic apoptotic lesions in mice treated with anti-Fas antibody, while [{sup 124}I]4IB-ovalbumin does not. In comparison with {sup 124}I-annexin V, [{sup 124}I]4IB-annexin V has a higher rate of binding to phosphatidylserine in vitro, a higher kidney and urine uptake, a lower thyroid and stomach content uptake, greater plasma stability and a lower rate of plasma clearance. Binding of radioactivity to apoptotic cells relative to normal cells in vitro and in vivo appears to be lower for [{sup 124}I]4IB-annexin V than for {sup 124}I-annexin V.

  19. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency

    Science.gov (United States)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2017-02-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences.

  20. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    Science.gov (United States)

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  1. TFTR Michelson interferometer electron cyclotron emission diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, F.J.; Boyd, D.A.; Cutler, R.C.; McCarthy, M.P.

    1985-05-01

    In July 1984, a Fourier transform spectrometer employing a fast-scanning Michelson interferometer began operating on TFTR. This diagnostic system can measure the electron cyclotron emission spectrum 72 times per s with a time resolution of 11 ms and a spectral resolution of 3.6 GHz. The initial operating spectral range is 75--540 GHz, which is adequate for measuring the first three cyclotron harmonics at present TFTR magnetic field levels. The range can be extended easily to 75--1080 GHz in order to accommodate increases in toroidal magnetic field or to study superthermal ECE. The measured spectra are absolutely calibrated using a liquid nitrogen cooled blackbody reference source. The second harmonic feature of each spectrum is used to calculate the absolute electron temperature profile.

  2. Hybrid simulation of electron cyclotron resonance heating

    CERN Document Server

    Ropponen, T; Suominen, P; Koponen, T K; Kalvas, T; Koivisto, H

    2008-01-01

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  3. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  4. Beam stripping extraction from the VINCY cyclotron

    Directory of Open Access Journals (Sweden)

    Ristić-Đurović Jasna L.

    2006-01-01

    Full Text Available The extraction system of a cyclotron guides an ion beam from a spiral acceleration orbit, through an extraction trajectory, into a high energy transport line. The two methods commonly used to direct an ion into the extraction path are deflection, by the electric field of an electrostatic deflector, and ion stripping, by a thin carbon foil. Compared to the electrostatic deflector system, the stripping extraction provides a fast and easy change of the extracted ion energy and is easier to manufacture operate, and maintain. However, the extraction trajectory and dynamics of an ion beam after stripping are highly dependant on the ion energy and specific charge. Thus, when a multipurpose machine such as the VINCY Cyclotron is concerned, it is far from easy to deliver a variety of ion beams into the same high energy transport line and at the same time preserve a reasonable compactness of the extraction system. The front side stripping extraction system of the VINCY Cyclotron provides high (~70 MeV and mid (~30 MeV energy protons, as well as a number of heavy ions in broad energy ranges. The back side stripping extraction system extracts low energy protons (~18 MeV and enables their simultaneous use with high energy protons at the front side of the machine.

  5. Transparency of Magnetized Plasma at Cyclotron Frequency

    Energy Technology Data Exchange (ETDEWEB)

    G. Shvets; J.S. Wurtele

    2002-03-14

    Electromagnetic radiation is strongly absorbed by a magnetized plasma if the radiation frequency equals the cyclotron frequency of plasma electrons. It is demonstrated that absorption can be completely canceled in the presence of a magnetostatic field of an undulator or a second radiation beam, resulting in plasma transparency at the cyclotron frequency. This effect is reminiscent of the electromagnetically induced transparency (EIT) of the three-level atomic systems, except that it occurs in a completely classical plasma. Unlike the atomic systems, where all the excited levels required for EIT exist in each atom, this classical EIT requires the excitation of the nonlocal plasma oscillation. The complexity of the plasma system results in an index of refraction at the cyclotron frequency that differs from unity. Lagrangian description was used to elucidate the physics and enable numerical simulation of the plasma transparency and control of group and phase velocity. This control naturally leads to applications for electromagnetic pulse compression in the plasma and electron/ion acceleration.

  6. Comparative study of ion cyclotron waves at Mars, Venus and Earth

    Science.gov (United States)

    Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.

    2011-08-01

    Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which

  7. Characteristics of surface sterilization using electron cyclotron resonance plasma

    Science.gov (United States)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  8. Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams

    CERN Document Server

    Tang, J F; Chen, L; Zhao, G Q; Tan, C M

    2016-01-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool in the understanding of FEBs as well as the solar plasma environment in which they are propagating along solar magnetic fields. In particular, the evolutions of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field when propagating can significantly influence the efficiency and property of their emissions. In this paper, we discuss some possible evolutions of the energy spectrum and velocity distribution of FEBs due to the energy loss processes and the pitch-angle effect caused by the magnetic field inhomogeneity, and analyze the effects of these evolutions on electron cyclotron maser (ECM) emission, which is one of the most important mechanisms of producing solar radio bursts by FEBs. The results show that the growth rates all decrease with the energy loss factor $Q$, but increase with the magnetic mirror ratio $\\sigma$ as well ...

  9. Flash ionisation signature in coherent cyclotron emission from Brown Dwarfs

    CERN Document Server

    Vorgul, Irena

    2016-01-01

    Brown dwarfs form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in form of lightning resulting in a substantial sudden increase of local ionisation. Brown dwarfs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionisation events (flash ionisation) can be imprinted on a pre-existing radiation. Detection of such flash ionisation events will open investigations into the ionisation state and atmospheric dynamics. Such ionisation events can also result from explosion shock waves, bursts or eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionisation events like lightning. Our conductivity model reproduces the conductivity function derived from observations of Terrestrial Gamma Ray Flashes, and is applicable to astrophysical objects with strong temporal variations in the loca...

  10. Alternative optical concept for electron cyclotron emission imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J. X., E-mail: jsliu9@berkeley.edu [Department of Physics, University of California Berkeley, Berkeley, California 94720 (United States); Milbourne, T. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23185 (United States); Bitter, M.; Delgado-Aparicio, L.; Dominguez, A.; Efthimion, P. C.; Hill, K. W.; Kramer, G. J.; Kung, C.; Pablant, N. A.; Tobias, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Kubota, S. [Department of Physics, University of California Los Angeles, Los Angeles, California 90095 (United States); Kasparek, W. [Department of Electrical Engineering, University of Stuttgart, Stuttgart (Germany); Lu, J. [Department of Physics, Chongqing University, Chongqing 400044 (China); Park, H. [Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of)

    2014-11-15

    The implementation of advanced electron cyclotron emission imaging (ECEI) systems on tokamak experiments has revolutionized the diagnosis of magnetohydrodynamic (MHD) activities and improved our understanding of instabilities, which lead to disruptions. It is therefore desirable to have an ECEI system on the ITER tokamak. However, the large size of optical components in presently used ECEI systems have, up to now, precluded the implementation of an ECEI system on ITER. This paper describes a new optical ECEI concept that employs a single spherical mirror as the only optical component and exploits the astigmatism of such a mirror to produce an image with one-dimensional spatial resolution on the detector. Since this alternative approach would only require a thin slit as the viewing port to the plasma, it would make the implementation of an ECEI system on ITER feasible. The results obtained from proof-of-principle experiments with a 125 GHz microwave system are presented.

  11. Commercial compact cyclotrons in the 90's

    Energy Technology Data Exchange (ETDEWEB)

    Milton, B.F

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. We will also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA. (author)

  12. Nuclear physics with superconducting cyclotron at Kolkata: Scopes and possibilities

    Indian Academy of Sciences (India)

    Sailajananda Bhattacharya

    2010-08-01

    The K500 superconducting cyclotron at the Variable Energy Cyclotron Centre, Kolkata, India is getting ready to deliver its first accelerated ion beam for experiment. At the same time, the nuclear physics programme and related experimental facility development activities are taking shape. A general review of the nuclear physics research opportunities with the superconducting cyclotron and the present status of the development of different detector arrays and other experimental facilities will be presented.

  13. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova st., Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., Nizhny Novgorod (Russian Federation); Izotov, I.; Mansfeld, D. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova st., Nizhny Novgorod (Russian Federation); Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O. [Department of Physics, University of Jyväskylä, Jyväskylä (Finland)

    2015-08-15

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities.

  14. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O. [RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Tamura, M.; Aihara, T.; Uchiyama, A. [SHI Accelerator Service Ltd., 1-17-6 Osaki, Shinagawa, Tokyo 141-0032 (Japan)

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  15. Production of high intensity {sup 48}Ca for the 88-Inch Cyclotron and other updates

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M., E-mail: jybenitez@lbl.gov; Strohmeier, M.; Thullier, T.; Todd, D.; Xie, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Franzen, K. Y. [Mevion Medical Systems, 300 Foster St., Littleton, Massachusetts 01460 (United States)

    2014-02-15

    Recently the Versatile ECR for NUclear Science (VENUS) ion source was engaged in a 60-day long campaign to deliver high intensity {sup 48}Ca{sup 11+} beam to the 88-Inch Cyclotron. As the first long term use of VENUS for multi-week heavy-element research, new methods were developed to maximize oven to target efficiency. First, the tuning parameters of VENUS for injection into the cyclotron proved to be very different than those used to tune VENUS for maximum beam output of the desired charge state immediately following its bending magnet. Second, helium with no oxygen support gas was used to maximize the efficiency. The performance of VENUS and its low temperature oven used to produce the stable requested 75 eμA of {sup 48}Ca{sup 11+} beam current was impressive. The consumption of {sup 48}Ca in VENUS using the low temperature oven was checked roughly weekly, and was found to be on average 0.27 mg/h with an ionization efficiency into the 11+ charge state of 5.0%. No degradation in performance was noted over time. In addition, with the successful operation of VENUS the 88-Inch cyclotron was able to extract a record 2 pμA of {sup 48}Ca{sup 11+}, with a VENUS output beam current of 219 eμA. The paper describes the characteristics of the VENUS tune used for maximum transport efficiency into the cyclotron as well as ongoing efforts to improve the transport efficiency from VENUS into the cyclotron. In addition, we briefly present details regarding the recent successful repair of the cryostat vacuum system.

  16. Production of high intensity 48Ca for the 88-Inch Cyclotron and other updates

    Science.gov (United States)

    Benitez, J. Y.; Franzen, K. Y.; Hodgkinson, A.; Lyneis, C. M.; Strohmeier, M.; Thullier, T.; Todd, D.; Xie, D.

    2014-02-01

    Recently the Versatile ECR for NUclear Science (VENUS) ion source was engaged in a 60-day long campaign to deliver high intensity 48Ca11+ beam to the 88-Inch Cyclotron. As the first long term use of VENUS for multi-week heavy-element research, new methods were developed to maximize oven to target efficiency. First, the tuning parameters of VENUS for injection into the cyclotron proved to be very different than those used to tune VENUS for maximum beam output of the desired charge state immediately following its bending magnet. Second, helium with no oxygen support gas was used to maximize the efficiency. The performance of VENUS and its low temperature oven used to produce the stable requested 75 eμA of 48Ca11+ beam current was impressive. The consumption of 48Ca in VENUS using the low temperature oven was checked roughly weekly, and was found to be on average 0.27 mg/h with an ionization efficiency into the 11+ charge state of 5.0%. No degradation in performance was noted over time. In addition, with the successful operation of VENUS the 88-Inch cyclotron was able to extract a record 2 pμA of 48Ca11+, with a VENUS output beam current of 219 eμA. The paper describes the characteristics of the VENUS tune used for maximum transport efficiency into the cyclotron as well as ongoing efforts to improve the transport efficiency from VENUS into the cyclotron. In addition, we briefly present details regarding the recent successful repair of the cryostat vacuum system.

  17. submitter Development of a Superconducting Magnet for a Compact Cyclotron for Radioisotope Production

    CERN Document Server

    Garcia-Tabares, Luis; Calero, Jesus; Gutierrez, Jose L; Munilla, Javier; Obradors, Diego; Perez, Jose M; Toral, Fernando; Iturbe, Rafael; Minguez, Leire; Gomez, Jose; Rodilla, Elena; Bajko, Marta; Michels, Matthias; Berkowitz, Daniel; Haug, Friedrich

    2016-01-01

    The present paper describes the development process of a low critical temperature superconducting magnet to be installed in a compact cyclotron producing single-dose radioisotopes for clinical and preclinical applications. After a brief description of the accelerator, the magnet development process is described, starting from the magnetic, mechanical, quench, and thermal calculations, continuing with the designing process, particularly the support structure of the magnet and the cryogenic supply system, to finish with the fabrication and the first tests than have been performed.

  18. Note: Production of a mercury beam with an electron cyclotron resonance ion source.

    Science.gov (United States)

    Vondrasek, R; Pardo, R; Scott, R

    2013-11-01

    An electron cyclotron resonance ion source has been utilized to produce mercury beams with intensities of 4.5 eμA of (202)Hg(29+) and 3.0 eμA of (202)Hg(31+) from natural abundance mercury metal. The production technique relies on the evaporation of liquid mercury into the source plasma vacuum region and utilizes elemental mercury instead of a volatile organic compound as the neutral feed material.

  19. Medium to large scale radioisotope production for targeted radiotherapy using a small PET cyclotron

    DEFF Research Database (Denmark)

    Thisgaard, Helge; Jensen, Mikael; Elema, Dennis Ringkjøbing

    2011-01-01

    In recent years the use of radionuclides in targeted cancer therapy has increased. In this study we have developed a high-current solid target system and demonstrated that by the use of a typical low-energy medical cyclotron, it is possible to produce tens of GBq's of many unconventional...... radionuclides relevant for cancer therapy such as 64Cu and 119Sb locally at the hospitals....

  20. Benchmarking of codes for electron cyclotron heating and electron cyclotron current drive under ITER conditions

    NARCIS (Netherlands)

    Prater, R.; Farina, D.; Gribov, Y.; Harvey, R. W.; Ram, A. K.; Lin-Liu, Y. R.; Poli, E.; Smirnov, A. P.; Volpe, F.; Westerhof, E.; Zvonkovo, A.

    2008-01-01

    Optimal design and use of electron cyclotron heating requires that accurate and relatively quick computer codes be available for prediction of wave coupling, propagation, damping and current drive at realistic levels of EC power. To this end, a number of codes have been developed in laboratories wor

  1. Simulation of Electron Behavior in PIG Ion Source for 9MeV Cyclotron

    CERN Document Server

    Ghergherehchi, Mitra; Yeon, Yeong- Heum; Chai, Jong- Seo

    2013-01-01

    In this paper, we focus on a PIG source for producing intense H-ions inside a 9MeV cyclotron. The properties of the PIG ion source were simulated for a variety of electric field distributions and magnetic field strengths using CST Particle Studio. After analyzing secondary electron emission (SEE) as a function of both magnetic and electric field strengths, we found that for the modeled PIG geometry a magnetic field strength of 0.2 T provided the best results in term of number of secondary electrons. Furthermore, at 0.2 T the number of secondary electrons proved to be greatest regardless of the cathode potential. Also the modified PIG ion source with quartz insulation tubes was tested in KIRAMS-13 cyclotron by varying gas flow rate and arc current, respectively. The capacity of the designed ion source was also demonstrated by producing plasma inside the constructed 9MeV cyclotron. As a result, the ion source is verified to be capable to produce intense H- beam and high ion beam current for the desired 9 MeV cy...

  2. Diagnostic assessment to estimate and minimize neutron dose rates received by occupationally exposed individuals at cyclotron facilities

    Energy Technology Data Exchange (ETDEWEB)

    Reina, L.C. [Instituto de Engenharia Nuclear, Comissao Nacional de Energia Nuclear, Caixa Postal 68550, Cidade Universitaria, CEP: 21941-906 Rio de Janeiro (Brazil)], E-mail: reina@ien.gov.br; Silva, A.X. [PEN/COPPE-DNC/Escola Politecnica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, CEP: 21945-970 Rio de Janeiro (Brazil); Suita, J.C.; Souza, M.I.S. [Instituto de Engenharia Nuclear, Comissao Nacional de Energia Nuclear, Caixa Postal 68550, Cidade Universitaria, CEP: 21941-906 Rio de Janeiro (Brazil); Facure, A. [Comissao Nacional de Energia Nuclear Rua General Severiano, 90-Botafogo, CEP: 22290-901 Rio de Janeiro (Brazil); Silva, J.C.P.; Furlanetto, J.A.D. [Instituto de Engenharia Nuclear, Comissao Nacional de Energia Nuclear, Caixa Postal 68550, Cidade Universitaria, CEP: 21941-906 Rio de Janeiro (Brazil); Rebello, W. [Instituto Militar de Engenharia, Ministerio da Defesa Praca General Tiburcio, 80-Praia Vermelha, CEP: 22290-270 Rio de Janeiro (Brazil)

    2010-03-15

    Since 2003, radiopharmaceuticals for medical diagnostic purposes have been produced at the Instituto de Engenharia Nuclear, in Brazil, using two cyclotron accelerators - CV-28 and RDS111. As a result of the ever increasing production, a diagnostic assessment to reduce neutron dose rates received by occupationally exposed individuals during irradiation processes has been developed. The purpose of this work is to present this assessment, which is currently being applied to both the Fluorine and Iodine targets of CV-28 and RDS111 cyclotron accelerators.

  3. Flash ionization signature in coherent cyclotron emission from brown dwarfs

    Science.gov (United States)

    Vorgul, I.; Helling, Ch.

    2016-05-01

    Brown dwarfs (BDs) form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in the form of lightning resulting in substantial sudden increase of local ionization. BDs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionization events (flash ionization) can be imprinted on a pre-existing radiation. Detection of such flash ionization events will open investigations into the ionization state and atmospheric dynamics. Such events can also result from explosion shock waves, material outbursts or (volcanic) eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionization events like lightning. Our conductivity model reproduces the conductivity function derived from observations of terrestrial gamma-ray flashes, and is applicable to astrophysical objects with strong temporal variations in the local ionization, as in planetary atmospheres and protoplanetary discs. We show that the field responds with a characteristic flash-shaped pulse to a conductivity flash of intermediate intensity. More powerful ionization events result in smaller variations of the initial radiation, or in its damping. We show that the characteristic damping of the response field for high-power initial radiation carries information about the ionization flash magnitude and duration. The duration of the pulse amplification or the damping is consistently shorter for larger conductivity variations and can be used to evaluate the intensity of the flash ionization. Our work suggests that cyclotron emission could be probe signals for electrification processes inside BD atmosphere.

  4. The NSCL cyclotron gas stopper – Entering commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S. [National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Bollen, G. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI (United States); Facility for Rare Isotope Beams, East Lansing, MI (United States); Chouhan, S. [Facility for Rare Isotope Beams, East Lansing, MI (United States); Das, J.J. [National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Green, M. [Facility for Rare Isotope Beams, East Lansing, MI (United States); Magsig, C. [National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Morrissey, D.J. [National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Ottarson, J.; Sumithrarachchi, C. [National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Villari, A.C.C.; Zeller, A. [Facility for Rare Isotope Beams, East Lansing, MI (United States)

    2016-06-01

    Linear gas stopping cells have been used successfully at NSCL to slow down ions produced by projectile fragmentation from the 100 MeV/u to the keV energy range. These ‘stopped beams’ have first been used for low-energy high precision experiments and more recently for NSCLs re-accelerator ReA. A gas-filled reverse cyclotron is currently under construction by the NSCL to complement the existing stopping cells: Due to its extended stopping length, efficient stopping and fast extraction is expected even for light and medium-mass ions, which are difficult to thermalize in linear gas cells. The device is based on a 2.6 T maximum-field cyclotron-type magnet to confine the injected beam while it is slowed down in ≈100 mbar of LN{sub 2}-temperature helium gas. Once thermalized, the beam will be transported to the center of the device by a traveling-wave RF-carpet system, extracted along the symmetry axis with an ion conveyor and miniature RF-carpets, and accelerated to a few tens of keV of energy for delivery to the users. The superconducting magnet has been constructed on a 60 kV platform and energized to its nominal field strength. The magnet’s two cryostats use 3 cryo-refrigerators each and liquid-nitrogen cooled thermal shields to cool the coil pair to superconductivity. This concept, chosen not to have to rely on external liquid helium, has been working well. Measurements of axial and radial field profiles confirm the field calculations. The individual RF-ion guiding components for low-energy ion transport through the device have been tested successfully. The beam stopping chamber with its 0.9 m-diameter RF carpet system and the ion extraction system are being prepared for installation inside the magnet for low-energy ion transport tests.

  5. Cyclotron production of (44)Sc: From bench to bedside.

    Science.gov (United States)

    van der Meulen, Nicholas P; Bunka, Maruta; Domnanich, Katharina A; Müller, Cristina; Haller, Stephanie; Vermeulen, Christiaan; Türler, Andreas; Schibli, Roger

    2015-09-01

    (44)Sc, a PET radionuclide, has promising decay characteristics (T1/2 = 3.97 h, Eβ(+)av = 632 keV) for nuclear imaging and is an attractive alternative to the short-lived (68)Ga (T1/2 = 68 min, Eβ(+)av = 830 keV). The aim of this study was the optimization of the (44)Sc production process at an accelerator, allowing its use for preclinical and clinical PET imaging. (44)CaCO3 targets were prepared and irradiated with protons (~11 MeV) at a beam current of 50 μA for 90 min. (44)Sc was separated from its target material using DGA extraction resin and concentrated using SCX cation exchange resin. Radiolabeling experiments at activities up to 500 MBq and stability tests were performed with DOTANOC by investigating different scavengers, including gentisic acid. Dynamic PET of an AR42J tumor-bearing mouse was performed after injection of (44)Sc-DOTANOC. The optimized chemical separation method yielded up to 2 GBq (44)Sc of high radionuclidic purity. In the presence of gentisic acid, radiolabeling of (44)Sc with DOTANOC was achieved with a radiochemical yield of ~99% at high specific activity (10 MBq/nmol) and quantities which would allow clinical application. The dynamic PET images visualized increasing uptake of (44)Sc-DOTANOC into AR42J tumors and excretion of radioactivity through the kidneys of the investigated mouse. The concept "from-bench-to-bedside" was clearly demonstrated in this extended study using cyclotron-produced (44)Sc. Sufficiently high activities of (44)Sc of excellent radionuclidic purity are obtainable for clinical application, by irradiation of enriched calcium at a cyclotron. This work demonstrates a promising basis for introducing (44)Sc to clinical routine of nuclear imaging using PET. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Microwave Absorption in Electron Cyclotron Resonance Plasma

    Institute of Scientific and Technical Information of China (English)

    LIU Ming-Hai; HU Xi-Wei; WU Qin-Chong; YU Guo-Yang

    2000-01-01

    The microwave power absorption in electron cyclotron resonance plasma reactor was investigated with a twodimensional hybrid-code. Simulation results indicated that there are two typical power deposition profiles over the entire parameter region: (1) microwave power deposition peaks on the axis and decreases in radial direction,(2) microwave power deposition has its maximum at some radial position, i.e., a hollow distribution. The spatial distribution of electron temperature resembles always to the microwave power absorption profile. The dependence of plasma parameter on the gas pressure is discussed also.

  7. Relativistic Cyclotron Instability in Anisotropic Plasmas

    Science.gov (United States)

    López, Rodrigo A.; Moya, Pablo S.; Navarro, Roberto E.; Araneda, Jaime A.; Muñoz, Víctor; Viñas, Adolfo F.; Alejandro Valdivia, J.

    2016-11-01

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  8. Electron cyclotron emission diagnostics on KSTAR tokamak.

    Science.gov (United States)

    Jeong, S H; Lee, K D; Kogi, Y; Kawahata, K; Nagayama, Y; Mase, A; Kwon, M

    2010-10-01

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  9. Electron cyclotron emission diagnostics on KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, S. H. [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Daejeon 305-353 (Korea, Republic of); Lee, K. D.; Kwon, M. [National Fusion Research Institute, 113 Gwahangno, Daejeon 305-333 (Korea, Republic of); Kogi, Y. [Fukuoka Institute of Technology, Higashiku, Fukuoka 811-0295 (Japan); Kawahata, K.; Nagayama, Y. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Mase, A. [KASTEC, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  10. Electron Cyclotron Resonance Heating of a High-Density Plasma

    DEFF Research Database (Denmark)

    Hansen, F. Ramskov

    1986-01-01

    Various schemes for electron cyclotron resonance heating of tokamak plasmas with the ratio of electron plasma frequency to electron cyclotron frequency, "»pe/^ce* larger than 1 on axis, are investigated. In particular, a mode conversion scheme is investigated using ordinary waves at the fundamental...

  11. The next generation of electron cyclotron emission imaging diagnostics (invited)

    NARCIS (Netherlands)

    Zhang, P.; Domier, C.W.; Liang, T.; Kong, X.; Tobias, B.; Shen, Z.; N C Luhmann Jr.,; Park, H.; Classen, I.G.J.; van de Pol, M.J.; Donne, A. J. H.; R. Jaspers,

    2008-01-01

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T-e profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities

  12. The next generation of electron cyclotron emission imaging diagnostics (invited)

    NARCIS (Netherlands)

    Zhang, P.; Domier, C.W.; Liang, T.; Kong, X.; Tobias, B.; Shen, Z.; N C Luhmann Jr.,; Park, H.; Classen, I.G.J.; van de Pol, M.J.; Donne, A. J. H.; R. Jaspers,

    2008-01-01

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T-e profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities

  13. A new generation of medical cyclotrons for the 90`s

    Energy Technology Data Exchange (ETDEWEB)

    Milton, B.F.

    1995-08-01

    Cyclotrons continue to be efficient accelerators for use in radio-isotope production. In recent years, developments in accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology as they relate to the new generation of commercial cyclotrons. Existing and potential markets for these cyclotrons will be presented. They will also discuss the possibility of systems capable of extracted energies up to 150 MeV and extracted beam currents of up to 2.0 mA.

  14. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    Science.gov (United States)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  15. Beam Phase Measurements in the AGOR Cyclotron

    CERN Document Server

    Brandenburg, S; Van Asselt, W K

    2003-01-01

    Beamphase measurement to optimize the isochronism is an essential part of the diagnostics in multi-particle, multi-energy cyclotrons. In the AGOR cyclotron an array of 13 nondestructive beamphase pick-ups is installed. To reduce the large disturbances from the RF-system the measurements are traditionally performed at the 2nd harmonic of the RF-frequency. To further improve the sensitivity intensity modulation of the beam has been introduced. This creates side-bands in the Fourier spectrum, that are completely free of interference from the RF-system. These side-bands contain information on both the beamphase with respect to the accelerating voltage and the number of revolutions up to the radius of the measurement. A specific case is intensity modulation at the orbital frequency, where the side-bands contain only information on the beamphase. Measurements with the different methods will be presented, demonstrating that the intensity modulation strongly improves the sensitivity of the measurement. Useful beampha...

  16. Resonant cyclotron scattering in magnetars' emission

    CERN Document Server

    Rea, Nanda; Turolla, Roberto; Lyutikov, Maxim; Gotz, Diego

    2008-01-01

    We present a systematic application of a resonant cyclotron scattering (RCS) model to a comprehensive set of magnetars, including canonical and transient anomalous X-ray pulsars, and soft gamma repeaters. In this scenario, non-thermal magnetar spectra in the soft X-rays (i.e. below ~10keV) result from resonant cyclotron scattering of the thermal surface emission by hot magnetospheric plasma. We find that this model can successfully account for the X-ray emission of magnetars, while using the same number of free parameters than the commonly used empirical blackbody plus power-law model. We find that the entire class of sources is characterized by magnetospheric plasma with similar properties, in particular the optical depth is in a quite narrow range (tau_{res} ~1-2). This leads to an estimate of the magnetospheric electron densities at the resonance n_e ~ 1.5x10^{13} tau_{res} cm^{-3}, which is 3 orders of magnitudes greater than n_{GJ}, the Goldreich-Julian electron density for pulsar magnetospheres. The inf...

  17. Roles of Fast-Cyclotron and Alfven-Cyclotron Waves for the Multi-Ion Solar Wind

    CERN Document Server

    Xiong, Ming

    2012-01-01

    Using linear Vlasov theory of plasma waves and quasi-linear theory of resonant wave-particle interaction, the dispersion relations and the electromagnetic field fluctuations of fast and Alfven waves are studied for a low-beta multi-ion plasma in the inner corona. Their probable roles in heating and accelerating the solar wind via Landau and cyclotron resonances are quantified. We assume that (1) low-frequency Alfven and fast waves have the same spectral shape and the same amplitude of power spectral density; (2) these waves eventually reach ion cyclotron frequencies due to a turbulence cascade; (3) kinetic wave-particle interaction powers the solar wind. The existence of alpha particles in a dominant proton/electron plasma can trigger linear mode conversion between oblique fast-whistler and hybrid alpha-proton cyclotron waves. The fast-cyclotron waves undergo both alpha and proton cyclotron resonances. The alpha cyclotron resonance in fast-cyclotron waves is much stronger than that in Alfven-cyclotron waves. ...

  18. Verification of effectiveness of borated water shield for a cyclotron type self-shielded; Verificacao da eficacia da blindagem de agua borada construida para um acelerador ciclotron do tipo autoblindado

    Energy Technology Data Exchange (ETDEWEB)

    Videira, Heber S.; Burkhardt, Guilherme M.; Santos, Ronielly S., E-mail: heber@cyclopet.com.br [Cyclopet Radiofarmacos Ltda., Curitiba, PR (Brazil); Passaro, Bruno M.; Gonzalez, Julia A.; Santos, Josefina; Guimaraes, Maria I.C.C. [Universidade de Sao Paulo (HCFMRP/USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Hospital das Clinicas; Lenzi, Marcelo K. [Universidade Federal do Parana (UFPR), Curitina (Brazil). Programa de Pos-Graduacao em Engenharia Quimica

    2013-04-15

    The technological advances in positron emission tomography (PET) in conventional clinic imaging have led to a steady increase in the number of cyclotrons worldwide. Most of these cyclotrons are being used to produce {sup 18}F-FDG, either for themselves as for the distribution to other centers that have PET. For there to be safety in radiological facilities, the cyclotron intended for medical purposes can be classified in category I and category II, ie, self-shielded or non-shielded (bunker). Therefore, the aim of this work is to verify the effectiveness of borated water shield built for a cyclotron accelerator-type Self-shielded PETtrace 860. Mixtures of water borated occurred in accordance with the manufacturer’s specifications, as well as the results of the radiometric survey in the vicinity of the self-shielding of the cyclotron in the conditions established by the manufacturer showed that radiation levels were below the limits. (author)

  19. Kinetic simulation of the electron-cyclotron maser instability: effect of a finite source size

    CERN Document Server

    Kuznetsov, A A

    2012-01-01

    The electron-cyclotron maser instability is widespread in the Universe, producing, e.g., radio emission of the magnetized planets and cool substellar objects. Diagnosing the parameters of astrophysical radio sources requires comprehensive nonlinear simulations of the radiation process. We simulate the electron-cyclotron maser instability in a very low-beta plasma. The model used takes into account the radiation escape from the source region and the particle flow through this region. We developed a kinetic code to simulate the time evolution of an electron distribution in a radio emission source. The model includes the terms describing the particle injection to and escape from the emission source region. The spatial escape of the emission from the source is taken into account by using a finite amplification time. The unstable electron distribution of the horseshoe type is considered. A number of simulations were performed for different parameter sets typical of the magnetospheres of planets and ultracool dwarf...

  20. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    Science.gov (United States)

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  1. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source

    Science.gov (United States)

    Yang, Y.; Sun, L. T.; Feng, Y. C.; Fang, X.; Lu, W.; Zhang, W. H.; Cao, Y.; Zhang, X. Z.; Zhao, H. W.

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  2. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    Science.gov (United States)

    Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.

    1992-01-01

    The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.

  3. Observation of increased ion cyclotron resonance signal duration through electric field perturbations.

    Science.gov (United States)

    Kaiser, Nathan K; Bruce, James E

    2005-09-15

    Ion motion in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is complex and the subject of ongoing theoretical and experimental studies. Two predominant pathways for the loss of ICR signals are thought to include damping of cyclotron motion, in which ions lose kinetic energy and radially damp toward the center of the ICR cell, and dephasing of ion coherence, in which ions of like cyclotron frequency become distributed out of phase at similar cyclotron radii. Both mechanisms result in the loss of induced ion image current in FTICR-MS measurements and are normally inseparable during time-domain signal analysis. For conventional ICR measurements which take advantage of ion ensembles, maximization of the ion population size and density can produce the desired effect of increasing phase coherence of ions during cyclotron motion. However, this approach also presents the risk of coalescence of ion packets of similar frequencies. In general, ICR researchers in the past have lacked the tools necessary to distinguish or independently control dephasing and damping mechanisms for ICR signal loss. Nonetheless, the ability to impart greater phase coherence of ions in ICR measurements will allow significant advances in FTICR-MS research by improving the current understanding of ICR signal loss contributions of dephasing and damping of ion ensembles, increasing overall time-domain signal length, and possibly, resulting in more routine ultrahigh resolution measurements. The results presented here demonstrate the ability to employ a high density electron beam to perturb electric fields within the ICR cell during detection of cyclotron motion, in an approach we call electron-promoted ion coherence (EPIC). As such, EPIC reduces ICR signal degradation through loss of phase coherence, and much longer time-domain signals can be obtained. Our results demonstrate that time-domain signals can be extended by more than a factor of 4 with the implementation of EPIC, as

  4. Electron cyclotron resonance heating in a short cylindrical plasma system

    Indian Academy of Sciences (India)

    Vipin K Yadav; D Bora

    2004-09-01

    Electron cyclotron resonance (ECR) plasma is produced and studied in a small cylindrical system. Microwave power is delivered by a CW magnetron at 2.45 GHz in TE10 mode and launched radially to have extraordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the first two ECR surfaces ( = 875.0 G and = 437.5 G) reside in the system. ECR plasma is produced with hydrogen with typical plasma density e as 3.2 × 1010 cm-3 and plasma temperature e between 9 and 15 eV. Various cut-off and resonance positions are identified in the plasma system. ECR heating (ECRH) of the plasma is observed experimentally. This heating is because of the mode conversion of X-wave to electron Bernstein wave (EBW) at the upper hybrid resonance (UHR) layer. The power mode conversion efficiency is estimated to be 0.85 for this system. The experimental results are presented in this paper.

  5. Ion cyclotron emission by spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa, O. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Gresillon, D. [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises

    1994-07-01

    The goal of the study is to examine whether the spontaneous emission can account for ICE (ion cyclotron emission) experimental results, or part of them. A straightforward approach to plasma emission is chosen, investigating the near equilibrium wave radiation by gyrating ions, and thus building from the majority and fast fusion ions the plasma fluctuations and emission on the fast magnetoacoustic or compressional Alfven wave mode in the IC frequency range. Similarities with the ICE experiments are shown: the emission temperature in the presence of fast ions (even in a very small amount), the strong fast ion emission increase with the harmonic, the fine double-line splitting of each peak, the linear but not proportional increase of the peak width with the harmonic. 3 refs., 2 figs.

  6. Simulation of cyclotron resonant scattering features

    Directory of Open Access Journals (Sweden)

    Schwarm Fritz-Walter

    2014-01-01

    Full Text Available X-ray binary systems consisting of a mass donating optical star and a highly magnetized neutron star, under the right circumstances, show quantum mechanical absorption features in the observed spectra called cyclotron resonant scattering features (CRSFs. We have developed a simulation to model CRSFs using Monte Carlo methods. We calculate Green’s tables which can be used to imprint CRSFs to arbitrary X-ray continua. Our simulation keeps track of scattering parameters of individual photons, extends the number of variable parameters of previous works, and allows for more flexible geometries. Here we focus on the influence of bulk velocity of the accreted matter on the CRSF line shapes and positions.

  7. Ion cyclotron resonance heating system on Aditya

    Indian Academy of Sciences (India)

    D Bora; Sunil Kumar; Raj Singh; S V Kulkarni; A Mukherjee; J P Singh; Raguraj Singh; S Dani; A Patel; Sai Kumar; V George; Y S S Srinivas; P Khilar; M Kushwah; P Shah; H M Jadav; Rajnish Kumar; S Gangopadhyay; H Machhar; B Kadia; K Parmar; A Bhardwaj; Suresh Adav; D Rathi; D S Bhattacharya

    2005-02-01

    An ion cyclotron resonance heating (ICRH) system has been designed, fabricated indigenously and commissioned on Tokamak Aditya. The system has been commissioned to operate between 20·0 and 47·0 MHz at a maximum power of 200 kW continuous wave (CW). Duration of 500 ms is sufficient for operation on Aditya, however, the same system feeds the final stage of the 1·5 MW ICRH system being prepared for the steady-state superconducting tokamak (SST-1) for a duration of 1000 s. Radio frequency (RF) power (225 kW) has been generated and successfully tested on a dummy load for 100s at 30·0 MHz. Lower powers have been coupled to Aditya in a breakdown experiment. We describe the system in detail in this work.

  8. Electron cyclotron resonance heating and current drive

    Energy Technology Data Exchange (ETDEWEB)

    Fidone, I.; Castejon, F.

    1992-07-01

    A brief summary of the theory and experiments on electron- cyclotron heating and current drive is presented. The general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D- III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave, damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (Author) 13 refs.

  9. Lower hybrid current drive favoured by electron cyclotron radiofrequency heating

    Energy Technology Data Exchange (ETDEWEB)

    Cesario, R.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Tuccillo, A. A. [Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati, 00044, Frascati (Italy); Amicucci, L.; Galli, A. [Università di Roma Sapienza, Dipartimento Ingegneria Elettronica, Rome (Italy); Giruzzi, G. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Napoli, F.; Schettini, G. [Università di Roma Tre, Dipartimento Ingegneria Elettronica, Rome (Italy)

    2014-02-12

    The important goal of adding to the bootstrap a fraction of non-inductive plasma current, which would be controlled for obtaining and optimizing steady-state profiles, can be reached by using the Current Drive produced by Lower Hybrid waves (LHCD). FTU (Frascati Tokamak Upgrade) experiments demonstrated, indeed, that LHCD is effective at reactor-graded high plasma density, and the LH spectral broadening is reduced, operating with higher electron temperature in the outer region of plasma column (T{sub e-periphery}). This method was obtained following the guidelines of theoretical predictions indicating that the broadening of launched spectrum produced by parametric instability (PI) should be reduced, and the LHCD effect at high density consequently enabled, under higher (T{sub e-periphery}). In FTU, the temperature increase in the outer plasma region was obtained by operating with reduced particle recycling, lithized walls and deep gas fuelling by means of fast pellet. Heating plasma periphery with electron cyclotron resonant waves (ECRH) will provide a further tool for achieving steady-state operations. New FTU experimental results are presented here, demonstrating that temperature effect at the plasma periphery, affecting LH penetration, occurs in a range of plasma parameters broader than in previous work. New information is also shown on the modelling assessing frequencies and growth rates of the PI coupled modes responsible of spectral broadening. Finally, we present the design of an experiment scheduled on FTU next campaign, where ECRH power is used to slightly increase the electron temperature in the outer plasma region of a high-density discharge aiming at restoring LHCD. Consequent to model results, by operating with a toroidal magnetic field of 6.3 T, useful for locating the electron cyclotron resonant layer at the periphery of the plasma column (r/a∼0.8, f{sub 0}=144 GHz), an increase of T{sub e} in the outer plasma (from 40 eV to 80 eV at r/a∼0.8) is

  10. ECR Ion Source for a High-Brightness Cyclotron

    Science.gov (United States)

    Comeaux, Justin; McIntyre, Peter; Assadi, Saeed

    2011-10-01

    New technology is being developed for high-brightness, high-current cyclotrons with performance benefits for accelerator-driven subcritical fission power, medical isotope production, and proton beam cancer therapy. This paper describes the design for a 65 kV electron cyclotron resonance (ECR) ion source that will provide high-brightness beam for injection into the cyclotron. The ion source is modeled closely upon the one that is used at the Paul Scherrer Institute. Modifications are being made to provide enhanced brightness and compatibility for higher-current operation.

  11. Semi-classical quantum theory for cyclotron radiation

    Institute of Scientific and Technical Information of China (English)

    陈军锋; 邓劲松; 徐毅; 尤峻汉

    1997-01-01

    A semi-classical quantum theory of the cyclotron radiation of the nonrelativistic thermal electrons in a very strong magnetic field is presented.The basic formulae of the absorption coefficient of cyclotron resonance kv and the absorption (scattering) cross-section of cyclotron resonance σv have been derived under the quadrupole approximation.σv is an important quantity in the study of the "magnetic inverse-Compton scattering".It is shown that σv is greatly larger than the Thomson cross-sectron σT,which is important in discussing the magnetic inverse-Compton scattering of the relativistic electrons in a very strong magnetic field.

  12. Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs

    Science.gov (United States)

    Amaldi, U.; Bonomi, R.; Braccini, S.; Crescenti, M.; Degiovanni, A.; Garlasché, M.; Garonna, A.; Magrin, G.; Mellace, C.; Pearce, P.; Pittà, G.; Puggioni, P.; Rosso, E.; Verdú Andrés, S.; Wegner, R.; Weiss, M.; Zennaro, R.

    2010-08-01

    Hadrontherapy with protons and carbon ions is a fast developing methodology in radiation oncology. The accelerators used and planned for this purpose are reviewed starting from the cyclotrons used in the thirties. As discussed in the first part of this paper, normal and superconducting cyclotrons are still employed, together with synchrotrons, for proton therapy while for carbon ion therapy synchrotrons have been till now the only option. The latest developments concern a superconducting cyclotron for carbon ion therapy, fast-cycling high frequency linacs and 'single room' proton therapy facilities. These issues are discussed in the second part of the paper by underlining the present challenges, in particular the treatment of moving organs.

  13. Radiation Monitoring System of 30 MeV Cyclotron

    Science.gov (United States)

    Lee, Jin-Woo; Hur, Min-Goo; Jeong, Gyosung; Kim, Jongil

    2017-09-01

    A state-of-the-art radiation monitoring system was implemented at KAERI for a 30-MeV cyclotron. This system consists of several types of radiation measuring systems for ambient dose equivalent rate measurements of outside photon and neutron areas as well as inside the cyclotron, and monitors the alpha and beta particulates released from a stack, as well as the results of worker contamination at the portal of the cyclotron. In addition, an automatic alarm system is also mounted if there are alarms in the measuring systems.

  14. High-current cyclotron to drive an electronuclear assembly

    CERN Document Server

    Alenitsky, Yu G

    2002-01-01

    The proposal on creation of a high-current cyclotron complex for driving an electronuclear assembly reported at the 17th Meeting on Accelerators of Charged Particles is discussed. Some changes in the basic design parameters of the accelerator are considered in view of new results obtained in the recent works. It is shown that the cyclotron complex is now the most real and cheapest accelerator for production of proton beams with a power of up to 10 MW. Projects on design of a high-current cyclotron complex for driving an electronuclear subcritical assembly are presented.

  15. Global Simulation of Electromagnetic Ion Cyclotron Waves

    Science.gov (United States)

    Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern

  16. Enhancement of Ar sup 8 sup + ion beam intensity from RIKEN 18 GHz electron cyclotron resonance ion source by optimizing the magnetic field configuration

    CERN Document Server

    Higurashi, Y; Kidera, M; Kase, M; Yano, Y; Aihara, T

    2003-01-01

    We successfully produced a 1.55 emA Ar sup 8 sup + ion beam using the RIKEN 18 GHz electron cyclotron resonance ion source at a microwave power of 700 W. To produce such an intense beam, we optimized the minimum magnetic field of mirror magnetic field and plasma electrode position. (author)

  17. Identification of fast particle triggered modes by means of correlation electron cyclotron emission on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M.; Huysmans, G.T.A.; Turco, F.; Maget, P.; Segui, J.L.; Artaud, J.F.; Giruzzi, G.; Imbeaux, F.; Lotte, P.; Mazon, D.; Molina, D. [CEA Cadarache, Assoc EURATOM DRFC, SCCP, F-13108 St Paul Les Durance (France); Udintsev, V.S. [EPFL /SB/CRPP, Assoc EURATOM Confederat Suisse, CH-1015 Lausanne (Switzerland)

    2008-07-01

    Low-frequency (5- to 20-kHz) and high-frequency (40- to 200-kHz) modes are studied during radio-frequency heating experiments on the Tore Supra tokamak by means of correlation electron cyclotron emission. High-frequency modes are detected when the plasma is heated by ion cyclotron range of frequency waves in the minority D(H) heating scheme in combination with lower hybrid current drive (LHCD) producing a flat or slightly reversed q-profile. They are identified as Alfven cascade modes. When this mode is triggered, fast ion losses ({<=} 20%) are detected from the neutron emission rate, and an additional heat load on plasma-facing components can be measured by an infrared camera when the fast ion energy is sufficiently large. Low-frequency modes are commonly triggered during LHCD experiments performed at low loop voltage. This mode can be observed with moderate lower hybrid power when the q-profile is monotonic or at higher power when the q-profile is flat in the core (r/a {<=} 0.2) or reversed. It is identified, in most cases, as an electron fishbone-like mode. These modes can be stabilized by a slight modification of the q-profile provided by an increase of lower hybrid power or by a small addition of electron cyclotron current device. (authors)

  18. Characterization of 41Ar production in air at a PET cyclotron facility

    Science.gov (United States)

    Cicoria, Gianfranco; Cesarini, Francesco; Infantino, Angelo; Vichi, Sara; Zagni, Federico; Marengo, Mario

    2017-06-01

    In the production of Positron Emission Tomography (PET) nuclides at a medical cyclotron facility 41Ar (T1/2 = 109.34 m) is produced by the activation of air due to the neutron flux, according to the 40Ar(n, γ)41Ar reaction. In this work, we describe a relatively inexpensive and readily reproducible methodology of air sampling that can be used for quantification of 41Ar during the routine production of PET nuclides. We report the results of an extensive measurement campaign in the cyclotron bunker and in the ducts of the ventilation system, before and after final filtering of the extracted air. Air Samples were analyzed using a gamma-ray spectrometry system equipped with HPGe detector, with proper correction of the efficiency calibration to account for the samples density. The results of measurement were then used to evaluate the Total Effective Dose (TED) to the population living in the surrounding areas, due to routine emissions in the operation of the cyclotron. The average 41Ar saturation yield per one liter of air emitted in the environment resulted to be (0.044 ± 0.007) Bq/(μA ṡ dm3). The maximum value of TED for the critical group of the population, even considering an overestimated workload, was less than 0.19 μSv/year, well below the level of radiological relevance.

  19. Advances in intense beams, beam delivery, targetry, and radiochemistry at advanced cyclotron systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.R. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada)]. E-mail: djohnson@advancedcyclotron.com; Watt, R. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada); Kovac, B. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada); Zyuzin, A. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada); Van Lier, E. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada); Erdman, K.L. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada); Gyles, Wm. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada); Sabaiduc, V. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada); McQuarrie, S.A. [Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 1Z2 (Canada); Wilson, J. [Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 1Z2 (Canada); Backhouse, C. [Department of Electrical Engineering, University of Alberta, Edmonton, AB (Canada); Gelbart, Wm. [Advanced System Design, C22, S6, RR1, Garden Bay, BC, V0N 1S0 (Canada); Kuo, T. [4654 N. Larwin Ave., Concorde, CA 94521 United States (United States)

    2007-08-15

    The increasing demand for radionuclides for PET and SPECT has resulted in ACSI system improvements starting from the cyclotron and proceeding to the Radiochemistry Modules. With more TR30 cyclotrons installed and operating at full capacity, emphasis has been placed on improving the operational components to reduce both the incidence of failure and subsequent maintenance time. A cyclotron system has been developed that meets the needs of a regional radiopharmacy that supplies both positron and single photon emitters that would not otherwise be available. This new system has been named the TR24. In order to deal with some of the challenges of high currents, a method has been developed for passivating the entrance window foil during high current irradiation of a water target used to produce F-18. A method has been developed for passivating the entrance window foil to reduce unwanted chemical species that interfere with radiopharmaceutical production. Preliminary results for novel radioiodine production technique using the TR19/9 are also discussed.

  20. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seungwook; Lee, Jongchul [Department of Energy Science, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon-si, Gyeonggi-do (Korea, Republic of); LEE, Byeong-No [Radiation Equipment Research Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon (Korea, Republic of); Ha, Donghyup; Namgoong, Ho [College of Information & Communication Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon-si, Gyeonggi-do (Korea, Republic of); Chai, Jongseo, E-mail: jschai@skku.edu [College of Information & Communication Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon-si, Gyeonggi-do (Korea, Republic of)

    2015-09-21

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H{sup −} ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested.

  1. Ion cyclotron waves near comet C/2013 A1 (Siding Spring) and Mars

    Science.gov (United States)

    Crary, F. J.; Dols, V. J.; Connerney, J. E. P.; Espley, J. R.

    2014-12-01

    On October 19, 2014, comet C/2013 A1 (Siding Spring) passed approximately 135,000 km from Mars. Previously,we predicted the amplitude of ion cyclotron waves which might be observed during the Siding Spring encounter. Ioncyclotron waves have been observed both in the vicinity of comets and of Mars. These waves are generated by theionization of neutrals in the flowing solar wind, which produces an unstable ring-beam velocity distribution. We estimated that, for a production rate of 2x1028 s-1, ion cyclotron wave with amplitudes over 0.1 nT would be present within ‡5 hours (1.2 million km) of closest approach. We will compare the actual observations made by the MAVEN spacecraft with these predictions. The spacecraft was close to or downstream of the martian bow shock, which complicates the interpretation of the data. Taking thisinto account, we will describe the observations and their implications for wave activity and cometary neutral production. We also present updated hybrid simulations of ion cyclotron wave generation. The simulations use our best estimate of solar wind conditions at the time of the encounter and a variable injection of 18 AMU pickup ions, at a rates consistent a model of the cometary neutrals.

  2. Design of a superconducting beam transport channel and beam dynamics for a strong-focusing cyclotron

    Science.gov (United States)

    Badgley, Karie Elizabeth

    There is an increasing interest in high power proton accelerators for use as neutron and muon sources, accelerator driven systems (ADS) for nuclear waste transmutation, high energy physics, medical physics, nuclear physics, and medical isotope production. Accelerating high current beams has a number of challenges; including avoiding harmful resonance crossing, space charge effects and, specific to cyclotrons, sufficient turn separation at injection and extraction. The Accelerator Research Laboratory at Texas A&M University is developing a high-power strong-focusing cyclotron with two main technologies to overcome these challenges. The first is a superconducting RF cavity to provide the energy gain required for fully separated turns. The second is the use of superconducting beam transport channels within the sectors of the cyclotron to provide strong-focusing with alternating focusing and defocusing quadrupoles. A method has been developed to find the equilibrium spiral orbit through the cyclotron which maintains isochronicity. The isochronous spiral orbit was then used to perform full linear optics calculations. The strengths of the quadrupoles were adjusted to hold the horizontal and vertical betatron tunes constant per turn to avoid resonance crossing. Particle tracking was performed with a modified MAD-X-PTC code and Synergia to provide a framework for future space charge studies. Magnetic modeling was performed on a 2D cross section of the beam transport channel. The wire locations were adjusted to reduce the higher order multipoles and a good field region was obtained at 70% of the beam pipe aperture with multipoles less than 10-4 . The 2D model was also used to determine the required current density needed to produce the quadrupole gradients. MgB2 superconducting wire was chosen as it meets all the field and current requirements and can operate at a reduced cryogenic cost. A winding mandrel was also designed and fabricated which minimized the bend radius for

  3. Cyclotron mode frequency shifts in multi-species ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Affolter, M.; Anderegg, F.; Dubin, D.H.E.; Driscoll, C.F.

    2014-06-27

    In trapped plasmas, electric fields and collective effects shift the cyclotron mode frequencies away from the “bare” cyclotron frequency for each species s. Here, these shifts are measured on a set of cyclotron modes (m=0,1, and 2) with cos(mθ) azimuthal dependence in near rigid-rotor multi-species ion plasmas. We observe that these frequency shifts are dependent on the plasma density, through the E×B rotation frequency f{sub E}, and on the “local” charge concentration δ{sub s} of species s, in close agreement with theory. - Highlights: • Cyclotron modes varying as sin(mθ) with m=0,1and2 are detected. • These mode frequencies shift by factors of the ExB rotation frequency. • These frequency shifts depend on the species charge fraction and radial distribution. • Centrifugal separation of species can greatly modify these frequency shifts.

  4. Variable-Energy Cyclotron for Proton Therapy Application

    CERN Document Server

    Alenitsky, Yu G; Vorozhtsov, A S; Glazov, A A; Mytsyn, G V; Molokanov, A G; Onishchenko, L M

    2004-01-01

    The requirements to characteristics of the beams used for proton therapy are considered. The operation and proposed cyclotrons for proton therapy are briefly described. The technical decisions of creation of the cyclotron with energy variation in the range 70-230 MeV and with current up to 100 nA are estimated. Taking into account the fact, that the size and cost of the cyclotron are approximately determined by the maximum proton energy, it is realistically offered to limit the maximum proton energy to 190 MeV and to elaborate a cyclotron project with a warm winding of the magnet for acceleration of H^{-} ions. The energy of the extracted protons for each run is determined by a stripped target radius in the vacuum chamber of the accelerator, and the radiation dose field for the patient is created by the external devices using the developed techniques.

  5. Cryogenic system for VECC K500 superconducting cyclotron

    CERN Document Server

    Pal, G; Bhattacharyya, T K; Bhandari, R K

    2009-01-01

    VEC Centre, Kolkata in India is at an advanced stage of commissioning a K500 superconducting cyclotron. The superconducting coil of the magnet for cyclotron is cooled by liquid helium. Three liquid helium cooled cryopanels, placed inside the Dees of the radiofrequency system, maintain the vacuum in the acceleration region of the superconducting cyclotron. The cryogenic system for magnet for cyclotron has been tested by cooling the coil and energizing the magnet. The cryogenic system for cryopanels has also been tested. Heater and temperature sensor were placed on the liquid helium cold head for cryopanel. The temperature of the cold head was observed to be below 20 K upto a heat load of 11.7 watt.

  6. Design Study Of Cyclotron Magnet With Permanent Magnet

    Science.gov (United States)

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 [1] and the All field calculations had been performed by OPERA-3D TOSCA [2]. The self-made beam dynamics program OPTICY [3] is used for making isochronous field and other calculations.

  7. Undergraduate Education with the Rutgers 12-Inch Cyclotron

    Science.gov (United States)

    Koeth, Timothy W.

    The Rutgers 12-Inch Cyclotron is a research grade accelerator dedicated to undergraduate education. From its inception, it has been intended for instruction and has been designed to demonstrate classic beam physics phenomena and provides students hands on experience with accelerator technology. The cyclotron is easily reconfigured, allowing experiments to be designed and performed within one academic semester. Our cyclotron offers students the opportunity to operate an accelerator and directly observe many fundamental beam physics concepts, including axial and radial betatron motion, destructive resonances, weak and azimuthally varying field (AVF) focusing schemes, RF and DEE voltage effects, diagnostic techniques, and perform low energy nuclear reactions. This paper emphasizes the unique beam physics measurements and beam manipulations capable at the Rutgers 12-Inch Cyclotron.

  8. The fundamental cyclotron line in 4U 1538-52

    CERN Document Server

    Rodes-Roca, J J; Bernabéu, J G

    2009-01-01

    We present pulse phase averaged spectra of the high mass X-ray binary pulsar 4U 1538-52/QV Nor. Observations of this persistent accreting pulsar were made with the Rossi X-ray Timing Explorer (RXTE). We study the variability of cyclotron resonant scattering feature (CRSF or simply cyclotron line) in the high energy spectra of this binary system. We show that the parameters of the CRSF are correlated. The first one is, as suggested by theory, between the width and the energy of the cyclotron line. The second one is between the relative width and the optical depth of the cyclotron line. We discuss these results with studies of other X-ray pulsars and their implications on the line variability.

  9. Design of 10 MeV cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    R Solhju

    2015-09-01

    Full Text Available Design and construction of 10MeV cyclotron has been started at Amirkabir University of Technology since 2012. So far, the conceptual and detail engineering design phases have been finalized. The main purpose of this baby cyclotron is to generate proton beam for the production of PET radioisotopes. The cyclotron consists of magnet, cavity, ion source, RF and LLRF system, vacuum system, cooling system, power amplifiers and power supplies system. In this paper, a brief of design principles for all the parts of cyclotron and their final simulation results is presented. It should be noted that these simulations have been performed and optimized by the most accurate softwares such as TOSCA, ANSYS, HFSS, SolidWorks and CST. Also, the manufacturing feasibility of all the parts is performed and their dimensions and parameters are synchronized with manufacturing standards

  10. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 32

    Energy Technology Data Exchange (ETDEWEB)

    1968-06-28

    Completion of magnet tests, followed by completion of installation of major cyclotron components, are reported. Intermediate level power tests of the rf system are also reported. Design and fabrication of the control system are reported to be under way. (LEW)

  11. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 26

    Energy Technology Data Exchange (ETDEWEB)

    1968-01-17

    Progress is reported in the fabrication, installation, and testing of cyclotron components, including magnets and coils, rf components, vacuum and control equipment. Also reported are magnet and rf component measurements. (LEW)

  12. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 23

    Energy Technology Data Exchange (ETDEWEB)

    1967-10-09

    Progress is reported in the design, installation of various components of the cyclotron, including coils, magnets, rf system, and vacuum system. Also reported are measurements on magnets and rf components. (LEW)

  13. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 20

    Energy Technology Data Exchange (ETDEWEB)

    1967-06-30

    Progress is reported in the fabrication and testing of cyclotron components, including magnet system and rf system components. Work on vacuum components and instrumentation and control equipment is also reported. (LEW)

  14. Fusion Reactivity in the Case of Ion Cyclotron Resonant Heating

    Institute of Scientific and Technical Information of China (English)

    俞国扬; 常永斌; 沈林芳

    2003-01-01

    By applying the integral-variable-change technique,an explicit expression of deuterium-tritium fusion reactivity in the case of second harmonic ion cyclotron resonant heating on deuterium is obtained.

  15. ATLAS 10 GHz electron cyclotron resonance ion source upgrade project

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, D. P. [Argonne National Laboratory, Physics Division, Argonne, Illinois 60439 (United States); Vondrasek, R. [Argonne National Laboratory, Physics Division, Argonne, Illinois 60439 (United States); Pardo, R. C. [Argonne National Laboratory, Physics Division, Argonne, Illinois 60439 (United States); Xie, D. [Berkeley Ion Equipment Inc., Santa Clara, California 95054 (United States)

    2000-02-01

    A major upgrade of the first ATLAS 10 GHz electron cyclotron resonance (ECR) ion source, which began operations in 1987, is in the planning and procurement phase. The new design will convert the old two-stage source into a single-stage source with an electron donor disk and high gradient magnetic field that preserves radial access for solid material feeds and pumping of the plasma chamber. The new magnetic-field profile allows for the possibility of a second ECR zone at a frequency of 14 GHz. An open hexapole configuration, using a high-energy-product Nd-Fe-B magnet material, having an inner diameter of 8.8 cm and pole gaps of 2.4 cm, has been adopted. Models indicate that the field strengths at the chamber wall, 4 cm in radius, will be 9.3 kG along the magnet poles and 5.6 kG along the pole gaps. The individual magnet bars will be housed in austenitic stainless steel, allowing the magnet housing within the aluminum plasma chamber to be used as a water channel for direct cooling of the magnets. Eight solenoid coils from the existing ECR will be enclosed in an iron yoke to produce the axial mirror. Based on a current of 500 A, the final model predicts a minimum B field of 3 kG with injection and extraction mirror ratios of 4.4 and 2.9, respectively. (c) 2000 American Institute of Physics.

  16. Cyclotron Production of Radionuclides for Nuclear Medicine at Academic Centers

    Science.gov (United States)

    Lapi, Suzanne

    2016-09-01

    The increase in use of radioisotopes for medical imaging has led to the development of new accelerator targetry and separation techniques for isotope production. For example, the development of longer-lived position emitting radionuclides has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller cyclotrons (10-25 MeV) at academic or hospital based facilities. Recent research has further expanded the toolbox of PET tracers to include additional isotopes such as 52Mn, 55Co, 76Br and others. The smaller scale of these types of facilities can enable the straightforward involvement of students, thus adding to the next generation of nuclear science leaders. Research pertaining to development of robust and larger scale production technologies including solid target systems and remote systems for transport and purification of these isotopes has enabled both preclinical and clinical imaging research for many diseases. In particular, our group has focused on the use of radiolabeled antibodies for imaging of receptor expression in preclinical models and in a clinical trial of metastatic breast cancer patients.

  17. Isotope exchange by Ion Cyclotron Wall Conditioning on JET

    Energy Technology Data Exchange (ETDEWEB)

    Wauters, T., E-mail: t.wauters@fz-juelich.de [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Douai, D.; Kogut, D. [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Lyssoivan, A. [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Brezinsek, S. [Forschungszentrum Jülich, Institut für Energie- und Klimaforschung Plasmaphysik, 52425 Jülich (Germany); Belonohy, E. [Max-Planck Institut für Plasmaphysik, 85748 Garching (Germany); Blackman, T. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Bobkov, V. [Max-Planck Institut für Plasmaphysik, 85748 Garching (Germany); Crombé, K. [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Drenik, A. [Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Graham, M. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Joffrin, E. [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Lerche, E. [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Loarer, T. [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Lomas, P.L.; Mayoral, M.-L.; Monakhov, I. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Oberkofler, M. [Max-Planck Institut für Plasmaphysik, 85748 Garching (Germany); Philipps, V. [Forschungszentrum Jülich, Institut für Energie- und Klimaforschung Plasmaphysik, 52425 Jülich (Germany); Plyusnin, V. [IST, Instituto de Plasmas e Fusão Nuclear, 1049-001 Lisboa (Portugal); and others

    2015-08-15

    The isotopic exchange efficiencies of JET Ion Cyclotron Wall Conditioning (ICWC) discharges produced at ITER half and full field conditions are compared for JET carbon (C) and ITER like wall (ILW). Besides an improved isotope exchange rate on the ILW providing cleaner plasma faster, the main advantage compared to C-wall is a reduction of the ratio of retained discharge gas to removed fuel. Complementing experimental data with discharge modeling shows that long pulses with high (∼240 kW coupled) ICRF power maximizes the wall isotope removal per ICWC pulse. In the pressure range 1–7.5 × 10{sup −3} Pa, this removal reduces with increasing discharge pressure. As most of the wall-released isotopes are evacuated by vacuum pumps in the post discharge phase, duty cycle optimization studies for ICWC on JET-ILW need further consideration. The accessible reservoir by H{sub 2}-ICWC at ITER half field conditions on the JET-ILW preloaded by D{sub 2} tokamak operation is estimated to be 7.3 × 10{sup 22} hydrogenic atoms, and may be exchanged within 400 s of cumulated ICWC discharge time.

  18. Applied research with cyclotron beams at FLNR JINR

    Energy Technology Data Exchange (ETDEWEB)

    Oganessian, Yu.Ts.; Apel, P.Yu.; Didyk, A.Yu.; Dmitriev, S.N.; Gulbekian, G.G. [Joint Inst. for Nuclear Research, Dubna, Moscow (Russian Federation). Flerov Lab. of Nuclear Reactions

    1997-03-01

    The Center of Applied Physics at the Flerov Laboratory carries out an R and D program comprising development of track membrane technology, materials research with heavy ion beams and production of radioisotopes. Experiments are performed on three cyclotrons: U-400, U-200 and IC-100 providing a wide variety of ion beams with the energies of 1 to 10 MeV/u. The activity on track membranes (TMs) includes studies of track formation in polymers and latent track structure, track sensitization and etching, methods of membrane testing, development of track membranes on the basis of new materials, surface modification of TMs, design and construction of facilities for track membrane production. Recent experiments on heavy ion-induced radiation damage in non-polymeric substances have been devoted to defect creation in semiconductor and dielectric single crystals. TEM, SEM, STM and `in situ` luminescent spectroscopy are used to investigate heavy ion effects. Methods for producing several isotopes of high radiochemical and isotopic purity for medical, biomedical and environmental protection applications have been developed. (author)

  19. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    Science.gov (United States)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  20. Nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique monochromatic EMIC waves

    Science.gov (United States)

    Wang, Geng; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Zhang, Min; Wang, Shui

    2017-02-01

    Cyclotron resonant scattering by electromagnetic ion cyclotron (EMIC) waves has been considered to be responsible for the rapid loss of radiation belt high-energy electrons. For parallel-propagating EMIC waves, the nonlinear character of cyclotron resonance has been revealed in recent studies. Here we present the first study on the nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique EMIC waves on the basis of test particle simulations. Higher wave obliquity produces stronger nonlinearity of harmonic resonances but weaker nonlinearity of fundamental resonance. Compared to the quasi-linear prediction, these nonlinear resonances yield a more rapid loss of electrons over a wider pitch angle range. In the quasi-linear regime, the ultrarelativistic electrons are lost in the equatorial pitch angle range αeq87.5° at ψ = 20° and 40°. At the resonant pitch angles αeq<75°, the difference between quasi-linear and nonlinear loss timescales tends to decrease with the wave normal angle increasing. At ψ = 0° and 20°, the nonlinear electron loss timescale is 10% shorter than the quasi-linear prediction; at ψ = 40°, the difference in loss timescales is reduced to <5%.

  1. Electron cyclotron emission diagnostic for ITER.

    Science.gov (United States)

    Rowan, W; Austin, M; Beno, J; Ellis, R; Feder, R; Ouroua, A; Patel, A; Phillips, P

    2010-10-01

    Electron temperature measurements and electron thermal transport inferences will be critical to the nonactive and deuterium phases of ITER operation and will take on added importance during the alpha heating phase. The diagnostic must meet stringent criteria on spatial coverage and spatial resolution during full field operation. During the early phases of operation, it must operate equally well at half field. The key to the diagnostic is the front end design. It consists of a quasioptical antenna and a pair of calibration sources. The radial resolution of the diagnostic is less than 0.06 m. The spatial coverage extends at least from the core to the separatrix with first harmonic O-mode being used for the core and second harmonic X-mode being used for the pedestal. The instrumentation used for the core measurement at full field can be used for detection at half field by changing the detected polarization. Intermediate fields are accessible. The electron cyclotron emission systems require in situ calibration, which is provided by a novel hot calibration source. The critical component for the hot calibration source, the emissive surface, has been successfully tested. A prototype hot calibration source has been designed, making use of extensive thermal and mechanical modeling.

  2. Cyclotron-based effects on plant gravitropism

    Science.gov (United States)

    Kordyum, E.; Sobol, M.; Kalinina, Ia.; Bogatina, N.; Kondrachuk, A.

    Primary roots exhibit positive gravitropism and grow in the direction of the gravitational vector, while shoots respond negatively and grow opposite to the gravitational vector. We first demonstrated that the use of a weak combined magnetic field (CMF), which is comprised of a permanent magnetic field and an alternating magnetic field with the frequency resonance of the cyclotron frequency of calcium ions, can change root gravitropism from a positive direction to negative direction. Two-day-old cress seedlings were gravistimulated in a chamber that was placed into a μ-metal shield where this CMF was created. Using this "new model" of a root gravitropic response, we have studied some of its components including the movement of amyloplasts-statoliths in root cap statocytes and the distribution of Ca 2+ ions in the distal elongation zone during gravistimulation. Unlike results from the control, amyloplasts did not sediment in the distal part of a statocyte, and more Ca 2+ accumulation was observed in the upper side of a gravistimulated root for seedlings treated with the CMF. For plants treated with the CMF, it appears that a root gravitropic reaction occurs by a normal physiological process resulting in root bending although in the opposite direction. These results support the hypothesis that both the amyloplasts in the root cap statocytes and calcium are important signaling components in plant gravitropism.

  3. Performance optimization of H(-) multicusp ion source for KIRAMS-30 cyclotron.

    Science.gov (United States)

    Kang, Kun Uk; An, Dong Hyun; Chang, Hong Suk; Chai, Jong Seo

    2008-02-01

    KIRAMS-30 cyclotron has been developed and implemented for radio isotope production. For the purpose of producing negative hydrogen ions and low energy beam injection to the central region of KIRAMS-30, 10 mA H(-) multicusp ion source with beam kinetic energies in the 20-30 keV range and the normalized 4 rms emittance less than 1 mm mrad was installed. The optimized ion source operating condition is presented and the correlation between the extracted beam current and ion source parameters is described for the performance enhancement of the ion source.

  4. An analytical approach of thermodynamic behavior in a gas target system on a medical cyclotron.

    Science.gov (United States)

    Jahangiri, Pouyan; Zacchia, Nicholas A; Buckley, Ken; Bénard, François; Schaffer, Paul; Martinez, D Mark; Hoehr, Cornelia

    2016-01-01

    An analytical model has been developed to study the thermo-mechanical behavior of gas targets used to produce medical isotopes, assuming that the system reaches steady-state. It is based on an integral analysis of the mass and energy balance of the gas-target system, the ideal gas law, and the deformation of the foil. The heat transfer coefficients for different target bodies and gases have been calculated. Excellent agreement is observed between experiments performed at TRIUMF's 13 MeV cyclotron and the model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The Neutron Emission Ratio Observer NERO at the National Superconducting Cyclotron Laboratory

    Science.gov (United States)

    Pereira, Jorge; Hosmer, Paul; Lorusso, Giuseppe; Santi, Peter; Del Santo, Marcelo; Herlitzius, Clemens; Kratz, Karl-Ludwig; Montes, Fernando; Schatz, Hendrik; Schertz, Florian; Schnorrenberger, Linda; Smith, Karl; Wiescher, Michael

    2009-10-01

    The new neutron counter NERO (Neutron Emission Ratio Observer) was built at the National Superconducting Cyclotron Laboratory (NSCL) for measuring Pn values of neutron-rich nuclei produced as fast fragmentation beams. The design was motivated by the requirement of being coupled to the NSCL beta counting system, so that β-decay particles and neutrons emitted from implanted nuclei can be measured simultaneously, while keeping a high efficiency. The detector's performance and main features will be discussed, as well as recent measurements done at NSCL for astrophysical studies of the r-process.

  6. Fourier transform ion cyclotron resonance at SHIPTRAP. A non-destructive detection method for heavy radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.; Dilling, J.; Kluge, H.J.; Marx, G.; Mukherjee, M.; Quint, W.; Rahaman, S.; Rodriguez, D.; Schoenfelder, J.; Sikler, G.; Tarisien, M. [GSI, Darmstadt (Germany)

    2003-07-01

    The physics program of the SHIPTRAP facility comprises mass spectrometry, nuclear spectroscopy, optical spectroscopy, and chemistry of fusion reaction produced nuclides and, especially, transeinsteinium elements. One of the major limitations to the experimental investigations is the low production rate for exotic nuclei. Detection schemes based on a destructive time-of-flight measurement lead to intolerably long beam times. An alternative is the Fourier transform-ion cyclotron resonance (FT-ICR) technique. It is suited for ion identification and mass measurements as well as for chemical studies. (orig.)

  7. Development of DRAGON electron cyclotron resonance ion source at Institute of Modern Physics.

    Science.gov (United States)

    Lu, W; Xie, D Z; Zhang, X Z; Xiong, B; Ruan, L; Sha, S; Zhang, W H; Cao, Y; Lin, S H; Guo, J W; Fang, X; Guo, X H; Li, X X; Ma, H Y; Yang, Y; Wu, Q; Zhao, H Y; Ma, B H; Wang, H; Zhu, Y H; Feng, Y C; Li, J Y; Li, J Q; Sun, L T; Zhao, H W

    2012-02-01

    A new room temperature electron cyclotron resonance (ECR) ion source, DRAGON, is under construction at IMP. DRAGON is designed to operate at microwaves of frequencies of 14.5-18 GHz. Its axial solenoid coils are cooled with evaporative medium to provide an axial magnetic mirror field of 2.5 T at the injection and 1.4 T at the extraction, respectively. In comparison to other conventional room temperature ECR ion sources, DRAGON has so far the largest bore plasma chamber of inner diameter of 126 mm with maximum radial fields of 1.4-1.5 T produced by a non-Halbach permanent sextupole magnet.

  8. A small low energy cyclotron for radioisotope measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, K.J.

    1989-11-01

    Direct detection of {sup 14}C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of {sup 14}C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring {sup 14}C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting {sup 14}C in some biomedical experiments by a factor of 10{sup 4}. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as {sup 3}H, and {sup 10}Be, and {sup 26}Al, are discussed. 70 refs.

  9. Conceptual Design Study of 13 MeV Proton Cyclotron

    Directory of Open Access Journals (Sweden)

    Silakhuddin

    2012-04-01

    Full Text Available A study to determine the conceptual design of a 13 MeV proton cyclotron for PET (Positron Emission Tomography facility has been carried out. Based on studies on reactions of PET radioisotopes production, reaction cross-sections and some design references, a design of the proton cyclotron is proposed. The design criteria for the main components are decided using empirical and semitheoretical methods, as well as by referring to data regarding cyclotrons for PET production. The empirical method was carried out by using some data from operational experiences of BATAN cyclotron at Serpong, while the semitheoretical method was carried out by using the commonly used equations of cyclotron basic theory. The general layout of components and the main components, namely the ion source, the RF dees, the magnet, and the extractor are discussed. Based on the calculations and on the data used, the cyclotron is designed as a negative ion acceleration cyclotron with internal ion source. The designated proton energy and beam currents are 13 MeV and 50 µA. Its magnetic field is in the relativistic mode with sectors on the pole. The magnetic field intensity at the extraction radius is 12.745 kG and in the innermost radius is 12.571 kG. The magnetic poles consist of four sectors to make adequate space for components placement such as dees, ion source, extractor and beam probe. The dee angle is 430. The dee operates at 78 MHz on the fourth harmonic. A multifoil extractor is chosen to obtain an efficient operation

  10. Production of intense highly charged ion beams by IMP 14.5 GHz electron cyclotron resonance ion source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new 14.5 GHz Electron Cyclotron Resonance (ECR) ion source has been constructed over the last two years. The source was designed and tested by making use of the latest results from ECR ion source development, such as high mirror magnetic field, large plasma volume, and biased probe. 140μA of O7+, 185μA of Ar11+ and 50 μA of Xe26+ could be produced with a RF power of 800 W. The intense beams of highly charged metallic ions are produced by means of the method of a metal evaporation oven and volatile compound through axial access. The test results are 130μA of Ca11+, 70μA of Ca12+ and 65μA of Fe10+. The ion source has been put into operation for the cyclotron at the Institute of Modern Physics (IMP).

  11. ``Pheudo-cyclotron'' radiation of non-relativistic particles in small-scale magnetic turbulence

    Science.gov (United States)

    Keenan, Brett; Ford, Alex; Medvedev, Mikhail V.

    2014-03-01

    Plasma turbulence in some astrophysical objects (e.g., weakly magnetized collisionless shocks in GRBs and SN) has small-scale magnetic field fluctuations. We study spectral characteristics of radiation produced by particles moving in such turbulence. It was shown earlier that relativistic particles produce jitter radiation, which spectral characteristics are markedly different from synchrotron radiation. Here we study radiation produced by non-relativistic particles. In the case of a homogeneous fields, such radiation is cyclotron and its spectrum consists of just a single harmonic at the cyclotron frequency. However, in the sub-Larmor-scale turbulence, the radiation spectrum is much reacher and reflects statistical properties of the underlying magnetic field. We present both analytical estimates and results of ab initio numerical simulations. We also show that particle propagation in such turbulence is diffusive and evaluate the diffusion coefficient. We demonstrate that the diffusion coefficient correlates with some spectral parameters. These results can be very valuable for remote diagnostics of laboratory and astrophysical plasmas. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.

  12. Design of RF system for CYCIAE-230 superconducting cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  13. Cyclotron-based of plant gravisensing

    Science.gov (United States)

    Kordyum, E.; Kalinina, Ia.; Bogatina, N.; Kondrachuk, A.

    Roots exhibit positive gravitropism they grow in the direction of a gravitational vector while shoots respond negatively and grow opposite to a gravitational vector We first demonstrated the inversion of roots gravitropism from positive to negative one under gravistimulation in the weak combined magnetic field WCMF consisted of permanent magnetic field PMF with the magnitude of order of 50 mu T and altering magnetic field AMF with the 6 mu T magnitude and a frequency of 32 Hz It was found that the effect of inversion has a resonance nature It means that in the interval of frequencies 1-45 Hz inversion of root gravitropism occurs only at frequency 32 Hz 2-3-day old cress seedlings were gravistimulated in moist chambers which are placed in mu -metal shields Inside mu -metal shields combined magnetic fields have been created The magnitude of magnetic fields was measured by a flux-gate magnetometer Experiments were performed in darkness at temperature 20 pm 1 0 C We measured the divergence angle of a growing root from its horizontal position After 1 h of gravistimulation in the WCMF we observed negative gravitropism of cress roots i e they grow in the opposite direction to a gravitational vector Frequency of 32 Hz for the magnitude of the PMF applied formally corresponds to cyclotron frequency of Ca 2 ions This indicates possible participation of calcium ions in root gravitropism There are many evidences of resonance effects of the WCMF on the biological processes that involve Ca 2 but the nature of

  14. A simple thick target for production of 89Zr using an 11MeV cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Link, Jeanne M.; Krohn, Kenneth A.; O' Hara, Matthew J.

    2017-04-01

    The growing interest but limited availability of 89Zr for PET led us to test targets for the 89(p,n) reaction. The goal was an easily constructed target for an 11 MeV Siements cyclotron. Yttrium foils were tested at different thicknesses, angles and currents. A 90 degree foil tolerated 41 microAmp without damage and produced ~800 MBq/hr, >20 mCi, an amount adequate for radiochemistry research and human doses in a widely available accelerator. This method should translate to higher energy cyclotrons.

  15. Electric and Magnetic Vertical Focusing Study for 100 MeV High Intensity Proton Cyclotron

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>For the central region design of cyclotrons, the basic problem in the vertical motion is very different from the one in the radial motion. The reason is that vertical tune is almost zero at the center of cyclotrons,

  16. Vertical Electron Cyclotron Emission Diagnostic for TCV Plasmas

    Directory of Open Access Journals (Sweden)

    Goodman T. P.

    2012-09-01

    Full Text Available Electron cyclotron resonance heating (ECRH and electron cyclotron current drive (ECCD are used to heat the plasma, to tailor the current profiles and to achieve different operating regimes of tokamak plasmas. Plasmas with ECRH/ECCD are characterized by non-thermal electrons, which cannot be described by a Maxwellian distribution. Non-thermal electrons are also generated during MHD activity, like sawteeth crashes. Quantifying the non-thermal electron distribution is therefore a key for understanding EC heated fusion plasmas. For this purpose a vertical electron cyclotron emission (V-ECE diagnostic is being installed at TCV. The diagnostic layout, the calibration, the analysis technique for data interpretation, the physics potentials and limitations are discussed.

  17. Calibration of the simulation model of the VINCY cyclotron magnet

    Directory of Open Access Journals (Sweden)

    Ćirković Saša

    2002-01-01

    Full Text Available The MERMAID program will be used to isochronise the nominal magnetic field of the VINCY Cyclotron. This program simulates the response, i. e. calculates the magnetic field, of a previously defined model of a magnet. The accuracy of 3D field calculation depends on the density of the grid points in the simulation model grid. The size of the VINCY Cyclotron and the maximum number of grid points in the XY plane limited by MERMAID define the maximumobtainable accuracy of field calculations. Comparisons of the field simulated with maximum obtainable accuracy with the magnetic field measured in the first phase of the VINCY Cyclotron magnetic field measurements campaign has shown that the difference between these two fields is not as small as required. Further decrease of the difference between these fields is obtained by the simulation model calibration, i. e. by adjusting the current through the main coils in the simulation model.

  18. Cassini observations of ion cyclotron waves and ions anisotropy

    Science.gov (United States)

    Crary, F. J.; Dols, V. J.; Cassidy, T. A.; Tokar, R. L.

    2013-12-01

    In Saturn's equatorial, inner magnetosphere, the production of fresh ions in a pick-up distribution generates ion cyclotron waves. These waves are a sensitive indicator of fresh plasma production, but the quantitative relation between wave properties and ionization rates is nontrivial. We present a combined analysis of Cassini MAG and CAPS data, from a variety of equatorial orbits between 2005 and 2012. Using the MAG data, we determine the amplitude and peak frequency of ion cyclotron waves. From the CAPS data we extract the parallel and perpendicular velocity distribution of water group ions. We compare these results with hybrid simulations of the ion cyclotron instability and relate the observed wave amplitudes and ion velocity distributions to the production rate of pickup ions. The resulting relation between wave and plasma properties will allow us to infer ion production rates even at times when no direct ion measurements are available.

  19. Design study of the KIRAMS-430 superconducting cyclotron magnet

    Science.gov (United States)

    Kim, Hyun Wook; Kang, Joonsun; Hong, Bong Hwan; Jung, In Su

    2016-07-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the 12C6+ ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  20. Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs

    Energy Technology Data Exchange (ETDEWEB)

    Amaldi, U.; Bonomi, R.; Braccini, S., E-mail: Saverio.Braccini@cern.ch; Crescenti, M.; Degiovanni, A.; Garlasche, M.; Garonna, A.; Magrin, G.; Mellace, C.; Pearce, P.; Pitta, G.; Puggioni, P.; Rosso, E.; Verdu Andres, S.; Wegner, R.; Weiss, M.; Zennaro, R.

    2010-08-21

    Hadrontherapy with protons and carbon ions is a fast developing methodology in radiation oncology. The accelerators used and planned for this purpose are reviewed starting from the cyclotrons used in the thirties. As discussed in the first part of this paper, normal and superconducting cyclotrons are still employed, together with synchrotrons, for proton therapy while for carbon ion therapy synchrotrons have been till now the only option. The latest developments concern a superconducting cyclotron for carbon ion therapy, fast-cycling high frequency linacs and 'single room' proton therapy facilities. These issues are discussed in the second part of the paper by underlining the present challenges, in particular the treatment of moving organs.

  1. Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs

    CERN Document Server

    Braccini, S; Garlasche, M; Weiss, M; Crescenti, M; Pearce, P; Rosso, E; Wegner, R; Magrin, G; Pitta, G; Amaldi, U; Puggioni, P; Degiovanni, A; Mellace, C; Zennaro, R; Bonomi, R; Garonna, A

    2010-01-01

    Hadrontherapy with protons and carbon ions is a fast developing methodology in radiation oncology. The accelerators used and planned for this purpose are reviewed starting from the cyclotrons used in the thirties. As discussed in the first part of this paper, normal and superconducting cyclotrons are still employed, together with synchrotrons, for proton therapy while for carbon ion therapy synchrotrons have been till now the only option. The latest developments concern a superconducting cyclotron for carbon ion therapy, fast-cycling high frequency linacs and `single room' proton therapy facilities. These issues are discussed in the second part of the paper by underlining the present challenges, in particular the treatment of moving organs. (C) 2010 Elsevier B.V. All rights reserved.

  2. Calibration of the simulation model of the Vincy cyclotron magnet

    CERN Document Server

    Cirkovic, S; Vorozhtsov, A S; Vorozhtsov, S B

    2002-01-01

    The MERMAID program will be used to isochronise the nominal magnetic field of the VINCY Cyclotron. This program simulates the response, i. e. calculates the magnetic field, of a previously defined model of a magnet. The accuracy of 3D field calculation depends on the density of the grid points in the simulation model grid. The size of the VINCY Cyclotron and the maximum number of grid points in the XY plane limited by MERMAID define the maximum obtainable accuracy of field calculations. Comparisons of the field simulated with maximum obtainable accuracy with the magnetic field measured in the first phase of the VINCY Cyclotron magnetic field measurements campaign has shown that the difference between these two fields is not as small as required. Further decrease of the difference between these fields is obtained by the simulation model calibration, i. e. by adjusting the current through the main coils in the simulation model.

  3. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Classen, I. G. J. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Boom, J. E.; Vries, P. C. de [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr. [University of California at Davis, Davis, California 95616 (United States); Donne, A. J. H. [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Jaspers, R. J. E. [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Park, H. K. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Munsat, T. [University of Colorado, Boulder, Colorado 80309 (United States)

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  4. Electron cyclotron emission diagnostics on the large helical device

    Science.gov (United States)

    Nagayama, Y.; Kawahata, K.; England, A.; Ito, Y.; Bretz, N.; McCarthy, M.; Taylor, G.; Doane, J.; Ikezi, H.; Edlington, T.; Tomas, J.

    1999-01-01

    The electron cyclotron emission (ECE) diagnostic system is installed on the large helical device (LHD). The system includes the following instruments: a heterodyne radiometer, a Michelson spectrometer, and a grating polychromator. A 63.5 mm corrugated waveguide system is fully utilized. Large collection optics and notch filters at the frequency of the LHD electron cyclotron heating (ECH) were developed for this system. In addition to these filters, the rectangular waveguide notch filters, the ECE measurement with the radiometer has been successfully performed during the ECH.

  5. Fluid equations in the presence of electron cyclotron current drive

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Thomas G.; Kruger, Scott E. [Tech-X Corporation, 5621 Arapahoe Avenue, Boulder, Colorado 80303 (United States)

    2012-12-15

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  6. Electron Plasmas Cooled by Cyclotron-Cavity Resonance

    CERN Document Server

    Povilus, A P; Evans, L T; Evetts, N; Fajans, J; Hardy, W N; Hunter, E D; Martens, I; Robicheaux, F; Shanman, S; So, C; Wang, X; Wurtele, J S

    2016-01-01

    We observe that high-Q electromagnetic cavity resonances increase the cyclotron cooling rate of pure electron plasmas held in a Penning-Malmberg trap when the electron cyclotron frequency, controlled by tuning the magnetic field, matches the frequency of standing wave modes in the cavity. For certain modes and trapping configurations, this can increase the cooling rate by factors of ten or more. In this paper, we investigate the variation of the cooling rate and equilibrium plasma temperatures over a wide range of parameters, including the plasma density, plasma position, electron number, and magnetic field.

  7. Evaluation Study for the Production of the Medical Isotope ^90Y, using a Cyclotron

    Science.gov (United States)

    Necsoiu, D.; Morgan, I. L.; Hupf, Homer; Armbruster, J.; Boyce, D.; El Bouanani, M.; McDaniel, F. D.

    2000-10-01

    The use of radioisotopes in therapy, medical imaging and laboratory tests is well-established worldwide. ^90Y is a very good therapeutic candidate for radioimmunotherapy applications. Traditionally, medical radioisotopes are produced using either nuclear reactors or proton accelerators. In this study, the medical isotope ^90Y has been produced using ^90Zr(n,p)^90Y nuclear reaction. Neutrons for the activation process were produced using ^natRh(p,xn) reaction with a 27 MeV proton beam from a cyclotron. Since ^90Y is a pure beta emitter, the gamma rays from the ^90Zr(n,2n)^89Zr reaction were used to quantify the incident neutron flux on the ^90Zr sample. Experimental results of the neutron production and ^90Y activity are presented.

  8. The electron-cyclotron maser instability as a source of plasma radiation. [Solar radio bursts

    Science.gov (United States)

    Winglee, R. M.; Dulk, G. A.

    1986-01-01

    The generation of continuum bursts from the sun at dm and m wavelengths (in particular, type IV bursts) via the electron-cyclotron-maser instability is examined. The maser instability can be driven by an electron distribution with either a loss-cone anisotropy or a peak at large pitch angles. For omega(p)/Omega(e) much greater than 1, the maser emission is produced by electrons interacting through a harmonic (cyclotron) resonance and is electrostatic, being in the upper hybrid mode at frequencies approximately equal to omega(p). Coalescence processes are required to convert the electrostatic waves into transverse radiation which can escape from the source region. Whether the resultant spectrum is nearly a smooth continuum or has a zebra-stripe pattern (both of which occur in type IV bursts) depends on the form of the electron distribution, inhomogeneities in the density and magnetic field, and whether the maser reaches saturation. For at least the case of some type IV dm bursts with fine structure, comparison with observations seems to indicate that the electrons producing the emission are more likely to have a loss-cone distribution, and that the maser instability is not at saturation.

  9. A solvent-extraction module for cyclotron production of high-purity technetium-99m.

    Science.gov (United States)

    Martini, Petra; Boschi, Alessandra; Cicoria, Gianfranco; Uccelli, Licia; Pasquali, Micòl; Duatti, Adriano; Pupillo, Gaia; Marengo, Mario; Loriggiola, Massimo; Esposito, Juan

    2016-12-01

    The design and fabrication of a fully-automated, remotely controlled module for the extraction and purification of technetium-99m (Tc-99m), produced by proton bombardment of enriched Mo-100 molybdenum metallic targets in a low-energy medical cyclotron, is here described. After dissolution of the irradiated solid target in hydrogen peroxide, Tc-99m was obtained under the chemical form of (99m)TcO4(-), in high radionuclidic and radiochemical purity, by solvent extraction with methyl ethyl ketone (MEK). The extraction process was accomplished inside a glass column-shaped vial especially designed to allow for an easy automation of the whole procedure. Recovery yields were always >90% of the loaded activity. The final pertechnetate saline solution Na(99m)TcO4, purified using the automated module here described, is within the Pharmacopoeia quality control parameters and is therefore a valid alternative to generator-produced (99m)Tc. The resulting automated module is cost-effective and easily replicable for in-house production of high-purity Tc-99m by cyclotrons.

  10. Optimal Design of Proposed 800 MeV Proton Cyclotron Beam Dynamics

    Institute of Scientific and Technical Information of China (English)

    YANG; Jian-jun; LI; Ming; ZHANG; Tian-jue; SONG; Guo-fang; AN; Shi-zhong

    2015-01-01

    The high intensity beam dynamic simulation shows that the theoretic beam current limit of the original design version of the 800 MeV proton cyclotron CYCIEA-800is 1mA.In order to further improve the current limit and reduce beam losses in the cyclotron,the layout of the cyclotron

  11. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.

    Science.gov (United States)

    Yonai, Shunsuke; Aoki, Takao; Nakamura, Takashi; Yashima, Hiroshi; Baba, Mamoru; Yokobori, Hitoshi; Tahara, Yoshihisa

    2003-08-01

    To realize the accelerator-based boron neutron capture therapy (BNCT) at the Cyclotron and Radioisotope Center of Tohoku University, the feasibility of a cyclotron-based BNCT was evaluated. This study focuses on optimizing the epithermal neutron field with an energy spectrum and intensity suitable for BNCT for various combinations of neutron-producing reactions and moderator materials. Neutrons emitted at 90 degrees from a thick (stopping-length) Ta target, bombarded by 50 MeV protons of 300 microA beam current, were selected as a neutron source, based on the measurement of angular distributions and neutron energy spectra. As assembly composed of iron, AlF3/Al/6LiF, and lead was chosen as moderators, based on the simulation trials using the MCNPX code. The depth dose distributions in a cylindrical phantom, calculated with the MCNPX code, showed that, within 1 h of therapeutic time, the best moderator assembly, which is 30-cm-thick iron, 39-cm-thick AlF3/Al/6LiF, and 1-cm-thick lead, provides an epithermal neutron flux of 0.7 x 10(9) [n cm(-2) s(-1)]. This results in a tumor dose of 20.9 Gy-eq at a depth of 8 cm in the phantom, which is 6.4 Gy-eq higher than that of the Brookhaven Medical Research Reactor at the equivalent condition of maximum normal tissue tolerance. The beam power of the cyclotron is 15 kW, which is much lower than other accelerator-based BNCT proposals.

  12. Cyclotron resonant scattering feature simulations. II. Description of the CRSF simulation process

    Science.gov (United States)

    Schwarm, F.-W.; Ballhausen, R.; Falkner, S.; Schönherr, G.; Pottschmidt, K.; Wolff, M. T.; Becker, P. A.; Fürst, F.; Marcu-Cheatham, D. M.; Hemphill, P. B.; Sokolova-Lapa, E.; Dauser, T.; Klochkov, D.; Ferrigno, C.; Wilms, J.

    2017-05-01

    Context. Cyclotron resonant scattering features (CRSFs) are formed by scattering of X-ray photons off quantized plasma electrons in the strong magnetic field (of the order 1012 G) close to the surface of an accreting X-ray pulsar. Due to the complex scattering cross-sections, the line profiles of CRSFs cannot be described by an analytic expression. Numerical methods, such as Monte Carlo (MC) simulations of the scattering processes, are required in order to predict precise line shapes for a given physical setup, which can be compared to observations to gain information about the underlying physics in these systems. Aims: A versatile simulation code is needed for the generation of synthetic cyclotron lines. Sophisticated geometries should be investigatable by making their simulation possible for the first time. Methods: The simulation utilizes the mean free path tables described in the first paper of this series for the fast interpolation of propagation lengths. The code is parallelized to make the very time-consuming simulations possible on convenient time scales. Furthermore, it can generate responses to monoenergetic photon injections, producing Green's functions, which can be used later to generate spectra for arbitrary continua. Results: We develop a new simulation code to generate synthetic cyclotron lines for complex scenarios, allowing for unprecedented physical interpretation of the observed data. An associated XSPEC model implementation is used to fit synthetic line profiles to NuSTAR data of Cep X-4. The code has been developed with the main goal of overcoming previous geometrical constraints in MC simulations of CRSFs. By applying this code also to more simple, classic geometries used in previous works, we furthermore address issues of code verification and cross-comparison of various models. The XSPEC model and the Green's function tables are available online (see link in footnote, page 1).

  13. Formation of a conical distribution and intense ion heating in the presence of hydrogen cyclotron waves. [in earth ionosphere

    Science.gov (United States)

    Okuda, H.; Ashour-Abdalla, M.

    1981-01-01

    In the considered investigation, it is assumed that the field aligned currents are responsible for producing electrostatic harmonic cyclotron waves (EHC). Using a one-dimensional simulation model in which the electron velocity distribution is maintained by a constant injection of the initial distribution, it is shown that, in contrast to earlier initial value simulations, EHC waves grow to a large amplitude, resulting in the formation of an anisotropic ion velocity distribution. Both the heating rate and the anisotropy are in reasonable agreement with the quasi-linear theory, taking into account the cyclotron resonance. The results show that the saturation is due to the combined effects of wave induced diffusion in an electron velocity space and the heating of ions perpendicularly. Both these effects reduce the growth rate.

  14. The effects of beam line pressure on the beam quality of an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Toivanen, V., E-mail: ville.toivanen@jyu.f [University of Jyvaeskylae, Department of Physics, Accelerator Laboratory, P.O. Box 35 (YFL), 40500 Jyvaeskylae (Finland); Steczkiewicz, O.; Tarvainen, O.; Ropponen, T.; Arje, J.; Koivisto, H. [University of Jyvaeskylae, Department of Physics, Accelerator Laboratory, P.O. Box 35 (YFL), 40500 Jyvaeskylae (Finland)

    2010-05-01

    The results of a series of measurements studying the possibility to use neutral gas feeding into the beam line as a way to improve the quality of the heavy ion beams produced with an electron cyclotron resonance ion source (ECRIS) are presented. Significant reduction of the beam spot size and emittance can be achieved with this method. The observed effects are presumably due to increased space charge compensation degree of the ion beam in the beam line section between the ion source and the analyzing magnet. This is the region where the neutral gas was injected. It is shown that the effects are independent of the ion source tuning. Transmission measurements through the beam line and K-130 cyclotron have been carried out to study the effects of improved ion beam quality to the transmission efficiency.

  15. Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross sections, mean free photon-path tables, and electron momentum sampling

    CERN Document Server

    Schwarm, F -W; Falkner, S; Pottschmidt, K; Wolff, M T; Becker, P A; Sokolova-Lapa, E; Klochkov, D; Ferrigno, C; Fuerst, F; Hemphill, P B; Marcu-Cheatham, D M; Dauser, T; Wilms, J

    2016-01-01

    Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electron's final spin. The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron...

  16. Fokker-Planck Study of Tokamak Electron Cyclotron Resonance Heating

    Institute of Scientific and Technical Information of China (English)

    SHIBingren; LONGYongxing; DONGJiaqi; LIWenzhong; JIAOYiming; WANGAike

    2002-01-01

    In this study, we add a subroutine for describing the electron cyclotron resonant heating calculation to the Fokker-Planck code. By analyzing the wave-particle resonance condition in tokamak plasma and the fast motion of electrons along magnetic field lines, suitable quasi-linear diffusion coefficients are given.

  17. Electron cyclotron heating and current drive in toroidal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kritz, A.H.

    1991-11-01

    The Principal Investigator has continued to work on problems associated both with the deposition and with the emission of electron cyclotron power in toroidal plasmas. We have investigated the use of electron cyclotron resonance heating for bringing compact tokamaks (BPX) to ignition-like parameters. This requires that we continue to refine the modeling capability of the TORCH code linked with the BALDUR 1 {1/2} D transport code. Using this computational tool, we have examined the dependence of ignition on heating and transport employing both theoretical (multi-mode) and empirically based transport models. The work on current drive focused on the suppression of tearing modes near the q = 2 surface and sawteeth near the q = 1 surface. Electron cyclotron current drive in CIT near the q =2 surface was evaluated for a launch scenario where electron cyclotron power was launched near the equatorial plane. The work on suppression of sawteeth has been oriented toward understanding the suppression that has been observed in a number of tokamaks, in particular, in the WT-3 tokamak in Kyoto. To evaluate the changes in current profile (shear) near the q =1 surface, simulations have been carried out using the linked BALDUR-TORCH code. We consider effects on shear resulting both from wave-induced current as well as from changes in conductivity associated with changes in local temperature. Abstracts and a paper relating to this work is included in Appendix A.

  18. Beam phase measurement in the AGOR-cyclotron

    NARCIS (Netherlands)

    Brandenburg, S; Roobol, LP; Schreuder, HW; de Vries, L; Laune, B; Baron, E.; Lieuvin, M.

    1999-01-01

    The AGOR cyclotron is equipped with thirteen phase probes for optimization of the isochronism The beam phase is measured at the 2(nd) harmonic of the RF frequency, in order to be able to suppress the large RF interference from the nearby resonators. At low RF frequencies a phase accuracy of 1 deg. i

  19. Traveling wave ion transport for the cyclotron gas stopper

    Energy Technology Data Exchange (ETDEWEB)

    Brodeur, M., E-mail: maxime.brodeur.2@nd.edu; Joshi, N.; Gehring, A.E.; Bollen, G.; Morrissey, D.J.; Schwarz, S.

    2013-12-15

    Highlights: • Estimated transport time of thermal ions of 5 ms or less for the cyclotron gas stopper using the ion surfing method. • Experimental investigation of a prototype ion conveyor to transport ions in the magnet magnetic field gradient. • Efficient long-distance ion transport with the conveyor is expected. -- Abstract: Next generation beam thermalization devices such as the cyclotron gas stopper are being developed to efficiently deliver a broad range of radioactive isotopes to experiments. Ion transport methods utilizing a traveling wave were investigated experimentally as part of the developments needed for this device. The “ion surfing” method, which will be used to transports thermal ions inside the main chamber of the cyclotron gas stopper, was found to transport ions at speeds reaching 75 m/s, resulting in net transport times as short as 5 ms. A second traveling wave transport method called the “ion conveyor” was investigated for the challenging task of extracting the ions through the cyclotron gas stopper magnetic field gradient. Results from the first prototype conveyor show a strong pressure and wave amplitude dependance for the transport efficiency. A second prototype designed to operate over a larger pressure range is currently being tested.

  20. Cyclotron waves in a non-neutral plasma column

    Energy Technology Data Exchange (ETDEWEB)

    Dubin, Daniel H. E. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)

    2013-04-15

    A kinetic theory of linear electrostatic plasma waves with frequencies near the cyclotron frequency {Omega}{sub c{sub s}} of a given plasma species s is developed for a multispecies non-neutral plasma column with general radial density and electric field profiles. Terms in the perturbed distribution function up to O(1/{Omega}{sub c{sub s}{sup 2}}) are kept, as are the effects of finite cyclotron radius r{sub c} up to O(r{sub c}{sup 2}). At this order, the equilibrium distribution is not Maxwellian if the plasma temperature or rotation frequency is not uniform. For r{sub c}{yields}0, the theory reproduces cold-fluid theory and predicts surface cyclotron waves propagating azimuthally. For finite r{sub c}, the wave equation predicts that the surface wave couples to radially and azimuthally propagating Bernstein waves, at locations where the wave frequency equals the local upper hybrid frequency. The equation also predicts a second set of Bernstein waves that do not couple to the surface wave, and therefore have no effect on the external potential. The wave equation is solved both numerically and analytically in the WKB approximation, and analytic dispersion relations for the waves are obtained. The theory predicts that both types of Bernstein wave are damped at resonances, which are locations where the Doppler-shifted wave frequency matches the local cyclotron frequency as seen in the rotating frame.

  1. Vacuum Pre-designing for CYCIAE-230 Superconducting Cyclotron

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Su-ping; PAN; Gao-feng; LI; Zhen-guo; QIN; Jiu-chang

    2015-01-01

    CYCIAE-230superconducting cyclotron has two separate vacuum system,one is for beam chamber,another is for cryostat.Beam chamber and cryostat shall maintain separate vacuum against atmospheric pressure.The pressure of pumps inlet is better than 1×10-4Pa and the

  2. Digital control in LLRF system for CYCIAE-100 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Fu, Xiaoliang; Ji, Bin; Zhang, Tianjue; Wang, Chuan

    2016-05-21

    As a driven accelerator, the CYCIAE-100 cyclotron is designed by China Institute of Atomic Energy for the Beijing Radio Ion-beam Facility project. The cyclotron RF system is designed to use two RF power sources of 100 kW to drive two half-wavelength cavities respectively. Two Dee accelerating electrodes are kept separately from each other inside the cyclotron, while their accelerating voltages are maintained in phase by the efforts of LLRF control. An analog–digital hybrid LLRF system has been developed to achieve cavity tuning control, dee voltage amplitude and phase stabilization etc. The analog subsystems designs are focused on RF signal up/down conversion, tuning control, and dee voltage regulation. The digital system provides an RF signal source, aligns the cavity phases and maintains a Finite State Machine. The digital parts combine with the analog functions to provide the LLRF control. A brief system hardware introduction will be given in this paper, followed by the review of several major characteristics of the digital control in the 100 MeV cyclotron LLRF system. The commissioning is also introduced, and most of the optimization during the process was done by changing the digital parts.

  3. Ion-Beam-Excited Electrostatic Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  4. Unstable Electrostatic Ion Cyclotron Waves Exited by an Ion Beam

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Electrostatic ion cyclotron waves were observed in a quiescent cesium plasma into which a low‐energy beam of sodium ions was injected. The instability appeared when the beam velocity was above 12 times the ion thermal velocity. The waves propagated along the magnetic field with a velocity somewhat...

  5. Cyclotrons with Fast Variable and/or Multiple Energy Extraction

    CERN Document Server

    Baumgarten, C

    2013-01-01

    We discuss the principle possibility of stripping extraction in combination with reverse bends in isochronous separate sector cyclotrons (and/or FFAGs). If one uses reverse bends between the sectors (instead of drifts) and places stripper foils at the sector exit edges, the stripped beam has a reduced bending radius and it should be able to leave the cyclotron within the range of the reverse bend - even if the beam is stripped at less than full energy. We are especially interested in $H_2^+$-cyclotrons, which allow to double the charge to mass ratio by stripping. However the principle could be applied to other ions or ionized molecules as well. For the production of proton beams by stripping extraction of an $H_2^+$-beam, we discuss possible designs for three types of machines: First a low-energy cyclotron for the simultaneous production of several beams at multiple energies - for instance 15 MeV, 30 MeV and 70 MeV - thus allowing to have beam on several isotope production targets. In this case it is desired ...

  6. Radiation safety aspects of the AGOR superconducting cyclotron facility

    NARCIS (Netherlands)

    Beijers, JPM; de Meijer, RJ

    1996-01-01

    This paper describes shielding calculations and skyshine estimates for the new AGOR K=600 superconducting cyclotron facility. Both simple, semi-empirical models and Monte-Carlo simulations were used. The calculations are based on a 200 MeV proton beam incident on a trick aluminum target. Also the

  7. Heavy stable isotope separation by ion cyclotron resonance

    Energy Technology Data Exchange (ETDEWEB)

    Louvet, P.; Compant La Fontaine, A.; Larousse, B.; Patris, M.

    1994-12-31

    The scientific feasibility of the ion cyclotron resonance process (ICR), as well as the technical one, has been investigated carefully for light metallic elements, whose masses lies between 40 and 100/1,2/. The present work deals mainly with the same demonstration for heavier elements such as ytterbium, gadolinium and barium. Recent results, as well as future prospects, are considered here. (authors).

  8. The development of technology for the improvement of cyclotron performance

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Jong Seo; Kim, Y. S.; Ha, J. H.; Lee, M. Y.; Lee, H. S

    1999-05-01

    We show the first-order beam optics theory which is a simplified theory that can be used to carry out the initial design of a cyclotron. Based on this, a computer program has been developed to determine main cyclotron parameters such as number of magnet sectors, sector angle, hill and valley fields, and overall size of the cyclotron etc. We then show the result of two-dimensional magnetic field calculation using POISSON program. By using this program, one can determine magnet yoke geometry and the average magnetic fields etc. Finally, the three-dimensional computer program OPERA-3D had been invoked to determine magnet pole tips (i.e. sector). Validity of the design can be seen by investigating magnetic fields, radial and vertical focusing frequencies as a function of the beam energy. In this report, we show the results of cyclotron magnet design. And we designed 72 MHz RF system and ion source system. We tested RF resonance each coupling methods. We show the result of RF design and prototype operation. Our developed ion source is PIG type. We described our design methods and implementation. We report the result of getting negative hydrogen ion.

  9. Radiation safety aspects of the AGOR superconducting cyclotron facility

    NARCIS (Netherlands)

    Beijers, JPM; de Meijer, RJ

    1996-01-01

    This paper describes shielding calculations and skyshine estimates for the new AGOR K=600 superconducting cyclotron facility. Both simple, semi-empirical models and Monte-Carlo simulations were used. The calculations are based on a 200 MeV proton beam incident on a trick aluminum target. Also the de

  10. Asymmetric Wave Transmission During Electron-Cyclotron Resonant Heating

    NARCIS (Netherlands)

    Peeters, A.G.; Smits, F. M. A.; Giruzzi, G.; Oomens, A. A. M.; Westerhof, E.

    1995-01-01

    In low density plasmas in the RTP tokamak the single-pass absorption of O-mode waves at the fundamental electron cyclotron resonance is observed to be toroidally asymmetric. The absorption is highest for waves travelling in the direction opposite to the toroidal plasma current. Fokker-Planck

  11. THE DEMINERALIZED WATER SYSTEM FOR THE NRL CYCLOTRON.

    Science.gov (United States)

    handling system was considered impractical to handle this heat load. Therefore, the demineralized water system for the NRL Sector-Focusing Cyclotron...decided to run the water system on a continuous basis. Continuous operation can be dangerous, because it can cause a large leak to occur, but this

  12. Ion-Beam-Excited, Electrostatic, Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  13. Development of beam instruments at JAERI cyclotron facility

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Susumu; Fukuda, Mitsuhiro; Ishibori, Ikuo; Agematsu, Takashi; Yokota, Watalu; Nara, Takayuki; Nakamura, Yoshiteru; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A beam phase monitor and two kinds of fluence distribution monitors have been developed for measuring characteristics of cyclotron beams. The beam phase monitor provides a beam phase signal for tuning a beam chopping system and a beam phase selection system. A two-dimensional fluence distribution on a large area is measured with fluence distribution monitors. (author)

  14. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 35

    Energy Technology Data Exchange (ETDEWEB)

    1986-10-29

    Efforts are reported on the installation and checkout of cyclotron components which had been previously fabricated. Final integration of subsystems and major systems leading to internal beam tests is reported near completion. Progress is reported in relation to control system components, focus and steering magnet design, and rf system testing. (LEW)

  15. Digital control in LLRF system for CYCIAE-100 cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhang, Tianjue; Wang, Chuan

    2016-05-01

    As a driven accelerator, the CYCIAE-100 cyclotron is designed by China Institute of Atomic Energy for the Beijing Radio Ion-beam Facility project. The cyclotron RF system is designed to use two RF power sources of 100 kW to drive two half-wavelength cavities respectively. Two Dee accelerating electrodes are kept separately from each other inside the cyclotron, while their accelerating voltages are maintained in phase by the efforts of LLRF control. An analog-digital hybrid LLRF system has been developed to achieve cavity tuning control, dee voltage amplitude and phase stabilization etc. The analog subsystems designs are focused on RF signal up/down conversion, tuning control, and dee voltage regulation. The digital system provides an RF signal source, aligns the cavity phases and maintains a Finite State Machine. The digital parts combine with the analog functions to provide the LLRF control. A brief system hardware introduction will be given in this paper, followed by the review of several major characteristics of the digital control in the 100 MeV cyclotron LLRF system. The commissioning is also introduced, and most of the optimization during the process was done by changing the digital parts.

  16. Effect of Quantizing Magnetic Field on Cyclotron Energy and Cyclotron Effective Mass in Size Quantized Films with Non-Parabolic Energy Band

    Institute of Scientific and Technical Information of China (English)

    B.(I). GUL(I)YEV; R. F. EM(I)NBEYL(I); A. KORKUT

    2007-01-01

    The Fermi energy, cyclotron energy and cyclotron effective mass of degenerate electron gas in a size-quantized semiconductor thin film with non-parabolic energy bands are studied. The influences of quantizing magnetic field on these quantities in two-band approximation of the Kane model are investigated. It is shown that the Fermi energy oscillates in a magnetic field. The period and positions of these oscillations are found as a function of film thickness and concentration of electrons. Cyclotron energy and cyclotron effective mass are investigated as a function of film thickness in detail. The results obtained here are compared with experimental data on GaAs quantum wells.

  17. Use of cyclotrons in medical research: Past, present, future

    Science.gov (United States)

    Smathers, James B.; Myers, Lee T.

    1985-05-01

    The use of cyclotrons in medical research started in the late 1930s with the most prominent use being neutron irradiation in cancer therapy. Due to a lack of understanding of the biological effect of neutrons, the results were less than encouraging. In the 1940s and 1950s, small cyclotrons were used for isotope production and in the mid 60s, the biological effect of neutrons was more thoroughly studied, with the result that a second trial of neutron therapy was initiated at Hammersmith Hospital, England. Concurrent with this, work on the use of high energy charged particles, initially protons and alphas, was initiated in Sweden and Russia and at Harvard and Berkeley. The English success in neutron therapy led to some pilot studies in the USA using physics cyclotrons of various energies and targets. These results in turn lead to the present series of machines presently being installed at M.D. Anderson Hospital (42 MeV), Seattle (50 MeV) and UCLA (46 MeV). The future probably bodes well for cyclotrons at the two extremes of the energy range. For nuclear medicine the shift is away from the use of multiple isotopes, which requires a large range of particles and energies to 11C, 13N, 15O, and 18F, which can be incorporated in metabolic specific compounds and be made with small 8-10 MeV p+ "table top" cyclotrons. For tumor therapy machines of 60 MeV or so will probably be the choice for the future, as they allow the treatment of deep seated tumors with neutrons and the charged particles have sufficient range to allow the treatment of ocular tumors.

  18. Heavy ion cocktail beams at the 88 inch Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Daniela; McMahan, Margaret A.; Argento, David; Gimpel, Thomas; Guy, Aran; Morel, James; Siero, Christine; Thatcher, Ray; Lyneis, Claude M.

    2002-09-03

    Cyclotrons in combination with ECR ion sources provide the ability to accelerate ''cocktails'' of ions. A cocktail is a mixture of ions of near-identical mass-to-charge (m/q) ratio. The different ions cannot be separated by the injector mass-analyzing magnet and are tuned out of the ion source together. The cyclotron then is utilized as a mass analyzer by shifting the accelerating frequency. This concept was developed soon after the first ECR ion source became operational at the 88-Inch Cyclotron and has since become a powerful tool in the field of heavy ion radiation effects testing. Several different ''cocktails'' at various energies are available at the 88-Inch cyclotron for radiation effect testing, covering a broad range of linear energy transfer and penetration depth. Two standard heavy ion cocktails at 4.5 MeV/nucleon and 10 MeV/nucleon have been developed over the years containing ions from boron to bismuth. Recently, following requests for higher penetration depths, a 15MeV/nucleon heavy ion cocktail has been developed. Up to nine different metal and gaseous ion beams at low to very high charge states are tuned out of the ion source simultaneously and injected together into the cyclotron. It is therefore crucial to balance the ion source very carefully to provide sufficient intensities throughout the cocktail. The paper describes the set-up and tuning of the ion source for the various heavy ion cocktails.

  19. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yushi, E-mail: kato@eei.eng.osaka-u.ac.jp; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2016-02-15

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  20. Microwave power coupling with electron cyclotron resonance plasma using Langmuir probe

    Indian Academy of Sciences (India)

    S K Jain; V K Senecha; P A Naik; P R Hannurkar; S C Joshi

    2013-07-01

    Electron cyclotron resonance (ECR) plasma was produced at 2.45 GHz using 200 – 750 W microwave power. The plasma was produced from argon gas at a pressure of 2 × 10−4 mbar. Three water-cooled solenoid coils were used to satisfy the ECR resonant conditions inside the plasma chamber. The basic parameters of plasma, such as electron density, electron temperature, floating potential, and plasma potential, were evaluated using the current–voltage curve using a Langmuir probe. The effect of microwave power coupling to the plasma was studied by varying the microwave power. It was observed that the optimum coupling to the plasma was obtained for ∼ 600 W microwave power with an average electron density of ∼ 6 × 1011 cm−3 and average electron temperature of ∼ 9 eV.

  1. Ion cyclotron emission calculations using a 2D full wave numerical code

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, D.B.; Jaeger, E.F.; Colestock, P.L.

    1987-01-01

    Measurement of radiation in the HF band due to cyclotron emission by energetic ions produced by fusion reactions or neutral beam injection promises to be a useful diagnostic on the large devices which are entering the reactor regime of operation. A number of complications make the modelling and interpretation of such measurements difficult using conventional geometrical optics methods. In particular, the long wavelength and lack of high directivity of antennas in this frequency regime make observation of a single path across the plasma into a viewing dump impractical. Pickup antennas effectively see the whole plasma and wall reflection effects are important. The 2D full wave ICHR code has been modified to calculate wave fields due to a distribution of energetic ions in tokamak geometry. The radiation is modeled as due to an ensemble of localized source currents distributed in space. The spatial structure of the coherent wave field is then calculated including cyclotron harmonic damping as compared to the usual procedure of incoherently summing powers of individual radiators. This method has the advantage that phase information from localized radiating currents is globally retained so the directivity of the pickup antennas is correctly represented. Also, standing waves and wall reflections are automatically included.

  2. Ion cyclotron emission calculations using a 2D full wave numerical code

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, D.B.; Jaeger, E.F.; Colestock, P.L.

    1987-09-01

    Measurement of radiation in the HF band due to cyclotron emission by energetic ions produced by fusion reactions or neutral beam injection promises to be a useful diagnostic on large devices which are entering the reactor regime of operation. A number of complications make the modelling and interpretation of such measurements difficult using conventional geometrical optics methods. In particular the long wavelength and lack of high directivity of antennas in this frequency regime make observation of a single path across the plasma into a viewing dump impractical. Pickup antennas effectively see the whole plasma and wall reflection effects are important. We have modified our 2D full wave ICRH code/sup 2/ to calculate wave fields due to a distribution of energetic ions in tokamak geometry. The radiation is modeled as due to an ensemble of localized source currents distributed in space. The spatial structure of the coherent wave field is then calculated including cyclotron harmonic damping as compared to the usual procedure of incoherently summing powers of individual radiators. This method has the advantage that phase information from localized radiating currents is globally retained so the directivity of the pickup antennas is correctly represented. Also standing waves and wall reflections are automatically included.

  3. Ion cyclotron emission calculations using a 2D full wave numerical code

    Science.gov (United States)

    Batchelor, D. B.; Jaeger, E. F.; Colestock, P. L.

    1987-09-01

    Measurement of radiation in the HF band due to cyclotron emission by energetic ions produced by fusion reactions or neutral beam injection promises to be a useful diagnostic on large devices which are entering the reactor regime of operation. A number of complications make the modelling and interpretation of such measurements difficult using conventional geometrical optics methods. In particular the long wavelength and lack of high directivity of antennas in this frequency regime make observation of a single path across the plasma into a viewing dump impractical. Pickup antennas effectively see the whole plasma and wall reflection effects are important. We have modified our 2D full wave ICRH code2 to calculate wave fields due to a distribution of energetic ions in tokamak geometry. The radiation is modeled as due to an ensemble of localized source currents distributed in space. The spatial structure of the coherent wave field is then calculated including cyclotron harmonic damping as compared to the usual procedure of incoherently summing powers of individual radiators. This method has the advantage that phase information from localized radiating currents is globally retained so the directivity of the pickup antennas is correctly represented. Also standing waves and wall reflections are automatically included.

  4. Cyclotron production of {sup 64}Cu by deuteron irradiation of {sup 64}Zn

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, K. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (Vatican City State, Holy See,) (Italy)]. E-mail: kamel.abbas@jrc.it; Kozempel, J. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Charles University Prague, Faculty of Science, Department of Organic and Nuclear Chemistry, 128 43 Prague (Czech Republic); Bonardi, M. [LASA, Radiochemistry Laboratory, University and INFN, via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Groppi, F. [LASA, Radiochemistry Laboratory, University and INFN, via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Alfarano, A. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Holzwarth, U. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Simonelli, F. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Hofman, H. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Horstmann, W. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy); Menapace, E. [ENEA, Applied Physics Division, Bologna (Italy); Leseticky, L. [Charles University Prague, Faculty of Science, Department of Organic and Nuclear Chemistry, 128 43 Prague (Czech Republic); Gibson, N. [Institute for Health and Consumer Protection, Joint Research Centre, European Commission, TP 500, I-21020 Ispra (VA) (Italy)

    2006-09-15

    The short-lived (12.7 h half-life) {sup 64}Cu radioisotope is both a {beta} {sup +} and a {beta} {sup -} emitter. This property makes {sup 64}Cu a promising candidate for novel medical applications, since it can be used simultaneously for therapeutic application of radiolabelled biomolecules and for diagnosis with PET. Following previous work on {sup 64}Cu production by deuteron irradiation of natural zinc, we report here the production of this radioisotope by deuteron irradiation of enriched {sup 64}Zn. In addition, yields of other radioisotopes such as {sup 61}Cu, {sup 67}Cu, {sup 65}Zn, {sup 69m}Zn, {sup 66}Ga and {sup 67}Ga, which were co-produced in this process, were also measured. The evaporation code ALICE-91 and the transport code SRIM 2003 were used to determine the excitation functions and the stopping power, respectively. All the nuclear reactions yielding the above-mentioned radioisotopes were taken into account in the calculations both for the natural and enriched Zn targets. The experimental and calculated yields were shown to be in reasonable agreement. The work was carried out at the Scanditronix MC-40 Cyclotron of the Institute for Health and Consumer Protection of the Joint Research Centre of the European Commission (Ispra site, Italy). The irradiations were carried out with 19.5 MeV deuterons, the maximum deuteron energy obtainable with the MC-40 cyclotron.

  5. Measurement of the Beam Size and Emittance for the CRC Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae Hoon; Kim, Yu Seok [Dongguk University, Gyeongju (Korea, Republic of)

    2012-05-15

    The purpose of the present study was to confirm beam property for regional Cyclotron Research Center (CRC) installed at Chosun University Hospital. The regional CRC has been developed to produce radioisotope for positron emission tomography (PET). The original radioisotope production cyclotron had a large beam size, which need to be reduced by collimator. In order to construct the proton-induced X-ray emission and proton-induced gamma-ray emission (PIXE-PIGE) beam line, ion beam will be transported to PIXE-PIGE chamber that we have identified the beam size decreased by collimator and beam emittance. There are several methods to measure the emittace, such as the slit and collector method, the pepper-pot method, and the quad scan method. These methods use a slit and monitor to measure the beam profiles, which depend on the field gradient of the quadrupole magnet. In this study, we did not use magnet and monitor. The emittance calculation based on simulated data by previously proven program is approached to consider various methods. Beam emittance was calculated in two methods. The two methods were classical method and ion beam position with divergence method. We found that the beam sizes of x, y-direction are reduced very well

  6. Cyclotron Production of (99m)Tc using (100)Mo2C targets.

    Science.gov (United States)

    Richards, Vernal N; Mebrahtu, Efrem; Lapi, Suzanne E

    2013-10-01

    An investigative study of the (100)Mo (p,2n)(99m)Tc reaction on a medical cyclotron using (100)Mo2C is reported. This is the first report of this compound being used as a target for this reaction. (100)Mo2C, a refractory carbide with high thermal conductivity, properties which underscore its use on a cyclotron, was synthesized using (100)MoO3. Its ease of oxidation back to (100)MoO3 under air at elevated temperatures facilitates the use of thermo-chromatography, a high temperature gas phase separation technique for the separation and isolation of (99m)Tc. Activity yields for (99m)Tc averaged 84% of the calculated theoretical yields. Additionally, the percent recovery of MoO3, the precursor for Mo2C, was consistently high at 85% ensuring a good life cycle for this target material. The produced (99m)Tc was radio-chemically pure and easily labeled MDP for imaging purposes.

  7. A strong-focusing 800 MeV cyclotron for high-current applications

    Science.gov (United States)

    Pogue, N.; Assadi, S.; Badgley, K.; Comeaux, J.; Kellams, J.; McInturff, A.; McIntyre, P.; Sattarov, A.

    2013-04-01

    A superconducting strong-focusing cyclotron (SFC) is being developed for high-current applications. It incorporates four innovations. Superconducting quarter-wave cavities are used to provide >20 MV/turn acceleration. The orbit separation is thereby opened so that bunch-bunch interactions between successive orbits are eliminated. Quadrapole focusing channels are incorporated within the sectors so that alternating-gradient strong-focusing transport is maintained throughout. Dipole windings on the inner and outer orbits provide enhanced control for injection and extraction of bunches. Finally each sector magnet is configured as a flux-coupled stack of independent apertures, so that any desired number of independent cyclotrons can be integrated within a common footprint. Preliminary simulations indicate that each SFC should be capable of accelerating 10 mA CW to 800 MeV with very low loss and >50% energy efficiency. A primary motivation for SFC is as a proton driver for accelerator-driven subcritical fission in a molten salt core. The cores are fueled solely with the transuranics from spent nuclear fuel from a conventional nuclear power plant. The beams from one SFC stack would destroy all of the transuranics and long-lived fission products that are produced by a GWe reactor [1]. This capability offers the opportunity to close the nuclear fuel cycle and provide a path to green nuclear energy.

  8. Study of the source term of radiation of the CDTN GE-PET trace 8 cyclotron with the MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Benavente C, J. A.; Lacerda, M. A. S.; Fonseca, T. C. F.; Da Silva, T. A. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Vega C, H. R., E-mail: jhonnybenavente@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    Full text: The knowledge of the neutron spectra in a PET cyclotron is important for the optimization of radiation protection of the workers and individuals of the public. The main objective of this work is to study the source term of radiation of the GE-PET trace 8 cyclotron of the Development Center of Nuclear Technology (CDTN/CNEN) using computer simulation by the Monte Carlo method. The MCNPX version 2.7 code was used to calculate the flux of neutrons produced from the interaction of the primary proton beam with the target body and other cyclotron components, during 18F production. The estimate of the source term and the corresponding radiation field was performed from the bombardment of a H{sub 2}{sup 18}O target with protons of 75 μA current and 16.5 MeV of energy. The values of the simulated fluxes were compared with those reported by the accelerator manufacturer (GE Health care Company). Results showed that the fluxes estimated with the MCNPX codes were about 70% lower than the reported by the manufacturer. The mean energies of the neutrons were also different of that reported by GE Health Care. It is recommended to investigate other cross sections data and the use of physical models of the code itself for a complete characterization of the source term of radiation. (Author)

  9. Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross sections, mean free photon-path tables, and electron momentum sampling

    Science.gov (United States)

    Schwarm, F.-W.; Schönherr, G.; Falkner, S.; Pottschmidt, K.; Wolff, M. T.; Becker, P. A.; Sokolova-Lapa, E.; Klochkov, D.; Ferrigno, C.; Fürst, F.; Hemphill, P. B.; Marcu-Cheatham, D. M.; Dauser, T.; Wilms, J.

    2017-01-01

    Context. Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. Aims: We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electron's final spin. Methods: The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron momenta sampled during these simulations were analyzed and justified using theoretically determined boundaries. Results: We present a complete set of tables suited for mean free path calculations of Monte Carlo simulations of the cyclotron scattering process for conditions expected in typical X-ray pulsar accretion columns (0.01 ≤ B/Bcrit ≤ 0.12, where Bcrit = 4.413 × 1013 G, and 3 keV ≤ kBT ≤ 15 keV). The sampling of the tables is chosen such that the results have an estimated relative error of at most 1/15 for all points in the grid. The tables are available online (see link in footnote, page 1). The electronic tables described here are available at http://www.sternwarte.uni-erlangen.de/research/cyclo

  10. Summary of EC-17: the 17th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (Deurne, The Netherlands, 7-10 May 2012)

    NARCIS (Netherlands)

    Westerhof, E.; Austin, M. E.; Kubo, S.; Lin-Liu, Y. R.; Plaum, B.

    2013-01-01

    An overview is given of the papers presented at the 17th Joint Workshop on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH). The meeting covered all aspects of the research field ranging from theory to enabling technologies. From the workshop, advanced control by ele

  11. Examination of the Plasma located in PSI Ring Cyclotron

    CERN Document Server

    Pogue, Nathaniel; Schneider, Markus; Stingelin, Lukas

    2016-01-01

    A plasma has been observed inside the vacuum chamber of the PSI Ring Cyclotron. This ionized gas cloud maybe a substantial contributor to several interior components having reduced lifetimes. The plasma's generation has been directly linked to the voltage that is applied to the Flat Top Cavity through visual confirmation using CCD cameras. A spectrometer was used to correlate the plasma's intensity and ignition to the Flat Top Cavity voltage as well as to determine the composition of the plasma. This paper reports on the analysis of the plasma using spectroscopy. The spectrometer data was analyzed to determine the composition of the plasma and that the plasma intensity (luminosity) directly corresponds to the Flat Top voltage. The results showed that the plasma was comprised of elements consistent with the cyclotrons vacuum interior

  12. Vortex dynamics and shear layer instability in high intensity cyclotrons

    CERN Document Server

    Cerfon, Antoine J

    2016-01-01

    We show that the space charge dynamics of high intensity beams in the plane perpendicular to the magnetic field in cyclotrons is described by the two-dimensional Euler equations for an incompressible fluid. This analogy with fluid dynamics gives a unified and intuitive framework to explain the beam spiraling and beam break up behavior observed in experiments and in simulations. In particular, we demonstrate that beam break up is the result of a classical instability occurring in fluids subject to a sheared flow. We give scaling laws for the instability and predict the nonlinear evolution of beams subject to it. Our work suggests that cyclotrons may be uniquely suited for the experimental study of shear layers and vortex distributions that are not achievable in Penning-Malmberg traps.

  13. RF cavity design for KIRAMS-430 superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Su, E-mail: jis@kirams.re.kr [Korea Institute of Radiological & Medical Sciences (KIRMAS), 75 Nowon-Gil, Nowon-Gu, Seoul 139-706 (Korea, Republic of); Hong, Bong Hwan; Kang, Joonsun; Kim, Hyun Wook; Kim, Chang Hyeuk [Korea Institute of Radiological & Medical Sciences (KIRMAS), 75 Nowon-Gil, Nowon-Gu, Seoul 139-706 (Korea, Republic of); Kwon, Key Ho [School of Information and Communication Engineering, Natural Sciences Campus, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-03-21

    The Korea Heavy Ion Medical Accelerator (KHIMA) has developed a superconducting cyclotron for the carbon therapy, which is called KIRAMS-430. The cyclotron is designed to accelerate only {sup 12}C{sup 6+} ions up to the energy of 430 MeV/u. It uses two normal conducting RF cavities. The RF frequency is about 70.76 MHz. The nominal dee voltage is 70 kV at the center and 160 kV at the extraction. The RF cavity was designed with 4 stems by using CST microwave studio (MWS). In this paper, we represent the simulation results and the optimized design of the RF cavity for the KIRAMS-430.

  14. Cyclotron resonance studies on InAs/GaSb heterostructures

    CERN Document Server

    Petchsingh, C

    2002-01-01

    Far-infrared cyclotron resonance is used to study the magneto-optical properties of semimetallic InAs/GaSb heterostructures. Spatially separated two-dimensional electron and hole gases coexist in this 'broken-gap' type-ll system due to charge transfer across the interfaces. Hybridisations of the overlapping electron and hole wavefunctions are investigated experimentally in samples of varying growth parameters. A self-consistent 8-band k centre dot p model is used to assist in the interpretation of experimental results. In samples subjected to varying magnetic field, hybridisations result in oscillations of cyclotron resonance mass, amplitude and linewidth, accompanied by transition splittings in the vicinity of Landau level anticrossings. Asymmetries introduced by InSb interface biasing enhance these effects. Comparison of samples with varying confinement energies (at specified magnetic field) shows effective mass enhancement greater than the standard nonparabolicity effect. The mass enhancement increases wit...

  15. Physics of electron cyclotron current drive on DIII-D

    CERN Document Server

    Petty, C C; Harvey, R W; Kinsey, J E; Lao, L L; Lohr, J; Luce, T C; Makowski, M A; Prater, R

    2002-01-01

    OAK A271 PHYSICS OF ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D. Recent experiments on the DIII-D tokamak have focused on determining the effect of trapped particles on the electron cyclotron current drive (ECCD) efficiency. The measured ECCD efficiency increases as the deposition location is moved towards the inboard midplane or towards smaller minor radius for both co and counter injection. The measured ECCD efficiency also increases with increasing electron density and/or temperature. The experimental ECCD is compared to both the linear theory (Toray-GA) as well as a quasilinear Fokker-Planck model (CQL3D). The experimental ECCD is found to be in better agreement with the more complete Fokker-Planck calculation, especially for cases of high rf power density and/or loop voltage. The narrow width of the measured ECCD profile is consistent with only low levels of radial transport for the current carrying electrons.

  16. Electron Cyclotron Waves Polarization in the TJII Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, A.; Martinez-Fernandez, J.; Wagner, D.

    2013-05-01

    This report describes the theoretical calculations related with the electron cyclotron (EC) waves polarization control in the TJII stellarator. Two main aspects will be distinguished: the determination of the vacuum polarization that the wave must exhibit if a given propagation mode in a cold plasma is desired and the calculation of the behavior of the grooved polarizers and other transmission systems used to launch the vacuum wave with the required polarization. (Author) 13 refs.

  17. Development of Production Procedure of 64Cu on Cyclotron

    Institute of Scientific and Technical Information of China (English)

    LIANG; Ji-xin; CHEN; Yu-qing; LI; Guang; DENG; Xue-song; SHEN; Yi-jia; QIAO; Lai-cheng; LIU; Yu-ping; JIANG; Hua; LI; Gui-qun

    2013-01-01

    Due to intermediate half-life(12.7 h)and favourable coordination chemistry,64Cu is an important emerging medical radionuclide that is suitable for labeling a wide range of radiopharmaceuticals for PET imaging and radiotherapy of tumor.The aim of this study is to develop the procedure for 64Cu production on Cyclone-30 cyclotron providing energy from 15-30 MeV.

  18. Heavy ion beam transmission in the AGOR cyclotron

    NARCIS (Netherlands)

    Sen, Ayanangsha

    2013-01-01

    In the framework of the TRImP program initiated at the KVI in 2002, the AGOR cyclotron was used to accelerate low energy heavy ion beams up to a beam intensity (>=10^12 particles per second). Typical beam ions are: 206Pb accelerated to 8 MeV/amu and 20Ne accelerated to 25 MeV/amu. In the course of b

  19. Multimegawatt DAE$\\delta$ALUS Cyclotrons for Neutrino Physics

    CERN Document Server

    Abs, M; Alonso, J R; Barletta, W A; Barlow, R; Calabretta, L; Calanna, A; Campo, D; Celona, L; Conrad, J M; Gammino, S; Kleeven, W; Koeth, T; Maggiore, M; Okuno, H; Piazza, L A C; Seidel, M; Shaevitz, M H; Stingelin, L; Yang, J J; Yeck, J

    2012-01-01

    DAE$\\delta$ALUS (Decay-At-rest Experiment for $\\delta_{CP}$ studies At the Laboratory for Underground Science) provides a new approach to the search for CP violation in the neutrino sector. High-power continuous-wave proton cyclotrons efficiently provide the necessary proton beams with an energy of up to 800 MeV to create neutrinos from pion and muon decay-at-rest. The experiment searches for $\\bar{\

  20. Design options for an ITER ion cyclotron system

    Science.gov (United States)

    Swain, D. W.; Baity, F. W.; Bigelow, T. S.; Ryan, P. M.; Goulding, R. H.; Carter, M. D.; Stallings, D. C.; Batchelor, D. B.; Hoffman, D. J.

    1996-02-01

    Recent changes have occurred in the design requirements for the ITER ion cyclotron system, requiring in-port launchers in four main horizontal ports to deliver 50 MW of power to the plasma. The design is complicated by the comparatively large antenna-separatrix distance of 10-20 cm. Designs of a conventional strap launcher and a folded waveguide launcher that can meet the new requirements are presented.

  1. Design options for an ITER ion cyclotron system

    Energy Technology Data Exchange (ETDEWEB)

    Swain, D.W.; Baity, F.W.; Bigelow, T.S.; Ryan, P.M.; Goulding, R.H.; Carter, M.D.; Stallings, D.C.; Batchelor, D.B.; Hoffman, D.J. [Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge, Tennessee 37831 (United States)

    1996-02-01

    Recent changes have occurred in the design requirements for the ITER ion cyclotron system, requiring in-port launchers in four main horizontal ports to deliver 50 MW of power to the plasma. The design is complicated by the comparatively large antenna-separatrix distance of 10{endash}20 cm. Designs of a conventional strap launcher and a folded waveguide launcher that can meet the new requirements are presented. {copyright} {ital 1996 American Institute of Physics.}

  2. Design options for an ITER ion cyclotron system

    Energy Technology Data Exchange (ETDEWEB)

    Swain, D.W.; Baity, F.W.; Bigelow, T.S.; Ryan, P.M.; Goulding, R.H.; Carter, M.D.; Stallings, D.C.; Batchelor, D.B.; Hoffman, D.J.

    1995-09-01

    Recent changes have occurred in the design requirements for the ITER ion cyclotron system, requiring in-port launchers in four main horizontal ports to deliver 50 MW of power to the plasma. The design is complicated by the comparatively large antenna-separatrix distance of 10--20 cm. Designs of a conventional strap launcher and a folded waveguide launcher than can meet the new requirements are presented.

  3. Coaxial Ring Cyclotron as a Perspective Nuclear Power Engineering Machine

    OpenAIRE

    Tumanyan, A. R.; Simonyan, Kh. A.; Mkrtchyan, R. L.; Amatuni, A. Ts.; Avakyan, R. O.; Khudaverdyan, A. G.

    1995-01-01

    The circuit arrangement of the proposed coaxial ring cyclotron (CRC) is described, and its main advantages, such as simple injection technique, several injected beams summation option, high efficiency, are considered. The proposed proton accelerator is a perspective machine for the solution of the main problems of the present day nuclear power engineering as well as for the next-generation nuclear power plants, representing a combination of subcritical reactors and particle accelerators. The ...

  4. Effect of imperfections of the radial component of a magnetic field on beam dynamics in medical cyclotron C235-V3

    Science.gov (United States)

    Karamysheva, G. A.; Kostromin, S. A.; Morozov, N. A.; Samsonov, E. V.; Syresin, E. M.

    2014-11-01

    This paper presents numerical simulations and experimental results related to the effect of imperfections of the radial component of a magnetic field on the beam dynamics in the medical cyclotron C235-V3 of the Dimitrovgrad Proton Therapy Center. These imperfections in the region of the minimal axial betatron frequency lead to a transformation of coherent motion of the center of gravity of the beam to the incoherent motion of separate particles. The radial component increases the axial size of the beam by a factor of 2 at a radius of 20 cm, which produces additional losses of protons. To reduce undesirable actions of the radial component on the axial motion, the magnetic system in the central region has been optimized using two procedures: the positioning of shim correctors on sectors and selecting a special asymmetric arrangement of the upper and lower central plugs. This led to a twofold reduction in the axial size of the beam and a decrease in proton losses. Eventually, the beam transmission in C235-V3 has been increased to 72% without a limiting aperture diaphragm, which is commonly used in cyclotrons of this type. This makes it possible to reduce the irradiation dose of machine elements and increase the beam current at a deflector entrance of the cyclotron C235-V3 by a factor of 1.5 when compared to a serial C235 cyclotron.

  5. Electron cyclotron maser emission mode coupling to the z-mode on a longitudinal density gradient in the context of solar type III bursts

    CERN Document Server

    Pechhacker, Roman

    2012-01-01

    A beam of super-thermal, hot electrons was injected into maxwellian plasma with a density gradient along a magnetic field line. 1.5D particle-in-cell simulations were carried out which established that the EM emission is produced by the perpendicular component of the beam injection momentum. The beam has a positive slope in the distribution function in perpendicular momentum phase space, which is the characteristic feature of a cyclotron maser. The cyclotron maser in the overdense plasma generates emission at the electron cyclotron frequency. The frequencies of generated waves were too low to propagate away from the injection region, hence the wavelet transform shows a pulsating wave generation and decay process. The intensity pulsation frequency is twice the relativistic cyclotron frequency. Eventually, a stable wave packet formed and could mode couple on the density gradient to reach frequencies of the order of the plasma frequency, that allowed for propagation. The emitted wave is likely to be a z-mode wav...

  6. RF control hardware design for CYCIAE-100 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-21

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  7. The cyclotron laboratory and the RFQ accelerator in Bern

    Science.gov (United States)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Scampoli, P.; von Bremen, K.; Weber, M.

    2013-07-01

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  8. The cyclotron laboratory and the RFQ accelerator in Bern

    Energy Technology Data Exchange (ETDEWEB)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Scampoli, P. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland and Department of Physical Sciences, University Federico II, Via Cintia, I-60126 Napoli (Italy); Bremen, K. von [SWAN Isotopen AG, Inselspital, CH-3010 Bern (Switzerland)

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  9. Modern compact accelerators of cyclotron type for medical applications

    Science.gov (United States)

    Smirnov, V.; Vorozhtsov, S.

    2016-09-01

    Ion beam therapy and hadron therapy are types of external beam radiotherapy. Recently, the vast majority of patients have been treated with protons and carbon ions. Typically, the types of accelerators used for therapy were cyclotrons and synchrocyclotrons. It is intuitively clear that a compact facility fits best to a hospital environment intended for particle therapy and medical diagnostics. Another criterion for selection of accelerators to be mentioned in this article is application of superconducting technology to the magnetic system design of the facility. Compact isochronous cyclotrons, which accelerate protons in the energy range 9-30 MeV, have been widely used for production of radionuclides. Energy of 230 MeV has become canonical for all proton therapy accelerators. Similar application of a carbon beam requires ion energy of 430 MeV/u. Due to application of superconducting coils the magnetic field in these machines can reach 4-5 T and even 9 T in some cases. Medical cyclotrons with an ironless or nearly ironless magnetic system that have a number of advantages over the classical accelerators are in the development stage. In this work an attempt is made to describe some conceptual and technical features of modern accelerators under consideration. The emphasis is placed on the magnetic and acceleration systems along with the beam extraction unit, which are very important from the point of view of the facility compactness and compliance with the strict medical requirements.

  10. Emittance Measurement for Beamline Extension at the PET Cyclotron

    Directory of Open Access Journals (Sweden)

    Sae-Hoon Park

    2016-01-01

    Full Text Available Particle-induced X-ray emission is used for determining the elemental composition of materials. This method uses low-energy protons (of several MeV, which can be obtained from high-energy (of tens MeV accelerators. Instead of manufacturing an accelerator for generating the MeV protons, the use of a PET cyclotron has been suggested for designing the beamline for multipurpose applications, especially for the PIXE experiment, which has a dedicated high-energy (of tens MeV accelerator. The beam properties of the cyclotron were determined at this experimental facility by using an external beamline before transferring the ion beam to the experimental chamber. We measured the beam profile and calculated the emittance using the pepper-pot method. The beam profile was measured as the beam current using a wire scanner, and the emittance was measured as the beam distribution at the beam dump using a radiochromic film. We analyzed the measurement results and are planning to use the results obtained in the simulations of external beamline and aligned beamline components. We will consider energy degradation after computing the beamline simulation. The experimental study focused on measuring the emittance from the cyclotron, and the results of this study are presented in this paper.

  11. AC Power Supply for Wobbler Magnet of the MC-50 Cyclotron

    CERN Document Server

    Kim, Yu-Seok; Kang, Bong-Koo; Lee, Hong-Gi; Park, Ki-Hyeon; Wha Chung, Chin; Woo Lee, Wol

    2005-01-01

    The MC-50 cyclotron (k=50) produces the ion beam for nuclear physics, chemistry, and applied researches in Korea. It has a small beam diameter with Gaussian beam shape, whereas many users want a beam irradiation on a large target. A wobbler magnet and an AC power supply were designed and constructed to meet the users' requirement. The power supply has two independently operating channels for the vertical and horizontal coils of the wobbler magnet. The frequency of the AC power supply for both coils is programmable from 1 to 20 Hz in a step of 1 Hz, and the maximum rms output current is 12 A. Various properties of the power supply and experimental results are given in the paper.

  12. Potential applications of a new microwave ECR (electron cyclotron resonance) multicusp plasma ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C.

    1990-01-01

    A new microwave electron cyclotron resonance (ECR) multicusp plasma ion source using two ECR plasma production regions and multicusp plasma confinement has been developed at Oak Ridge National Laboratory. This source has been operated to produce uniform and dense plasmas over large areas of 300 to 400 cm{sup 2}. The plasma source has been operated with continuous argon gas feed and pulsed microwave power. The discharge initiation phenomena and plasma properties have been investigated and studied as functions of discharge parameters. Together with the discharge characteristics observed, a hypothetical discharge mechanism for this plasma source is reported and discussed. Potential applications, including plasma and ion-beam processing for manufacturing advanced microelectronics and for space electric propulsion, are discussed. 7 refs., 6 figs.

  13. H- extraction from electron-cyclotron-resonance-driven multicusp volume source operated in pulsed mode

    Science.gov (United States)

    Svarnas, P.; Bacal, M.; Auvray, P.; Béchu, S.; Pelletier, J.

    2006-03-01

    H2 microwave (2.45GHz) pulsed plasma is produced from seven elementary electron cyclotron resonance sources installed into the magnetic multipole chamber "Camembert III" (École Polytechnique—Palaiseau) from which H- extraction takes place. The negative-ion and electron extracted currents are studied through electrical measurements and the plasma parameters by means of electrostatic probe under various experimental conditions. The role of the plasma electrode bias and the discharge duty cycle in the extraction process is emphasized. The gas breakdown at the beginning of every pulse gives rise to variations of the plasma characteristic parameters in comparison with those established at the later time of the pulse, where the electron temperature, the plasma potential, and the floating potential converge to the values obtained for a continuous plasma. The electron density is significantly enhanced in the pulsed mode.

  14. Evolution of Ring Current Protons Induced by Electromagnetic Ion Cyclotron Waves

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; TIAN Tian; CHEN Liang-Xu; SU Zhen-Peng; ZHENG Hui-Nan

    2009-01-01

    We investigate the evolution of the phase space density (PSD) of ring current protons induced by electromagnetic ion cyclotron (EMIC) waves at the location L=3.5, calculate the diffusion coefficients in pitch angle and momentum, and solve the standard two-dimensional Fokker-Planck diffusion equation. The pitch angle diffusion coefficient is found to be larger than the momentum diffusion coefficient by a factor of about 10~3 or above at lower pitch angles. We show that EMIC waves can produce efficient pitch angle scattering of energetic (~100 keV) protons, yielding a rapid decrement in PSD, typically by a factor of ~10 within a few hours, consistent with observational data. This result further supports previous findings that wave-particle interaction is responsible for the rapid ring current decay.

  15. Improved operation of the Michelson interferometer electron cyclotron emission diagnostic on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Austin, M.E.; Ellis, R.F. [Institute for Plasma Research, University of Maryland, College Park, Maryland 20742-3511 (United States); Doane, J.L. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); James, R.A. [Lawrence Livermore National Laboratory, Livermore, California 94551-9090 (United States)

    1997-01-01

    The measurement of accurate temperature profiles is critical for transport analysis and equilibrium reconstruction in the DIII-D tokamak. Recent refinements in the Michelson interferometer diagnostic have produced more precise electron temperature measurements from electron cyclotron emission and made them available for a wider range of discharge conditions. Replacement of a lens-relay with a low-loss corrugated waveguide transmission system resulted in an increase in throughput of 6 dB and a reduction of calibration error from 15{percent} to 5{percent}. The waveguide exhibits a small polarization scrambling fraction of 0.05 at the quarter-wavelength frequency and very stable transmission characteristics over time. Further reduction in error was realized through special signal processing of the calibration and plasma interferograms. {copyright} {ital 1997 American Institute of Physics.}

  16. Developing laser ablation in an electron cyclotron resonance ion source for actinide detection with AMS

    Energy Technology Data Exchange (ETDEWEB)

    Bauder, W. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Pardo, R.C.; Kondev, F.G.; Kondrashev, S.; Nair, C.; Nusair, O. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Palchan, T. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel); Scott, R.; Seweryniak, D.; Vondrasek, R. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Collon, P. [University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Paul, M. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel)

    2015-10-15

    A laser ablation material injection system has been developed at the ATLAS electron cyclotron resonance (ECR) ion source for use in accelerator mass spectrometry experiments. Beam production with laser ablation initially suffered from instabilities due to fluctuations in laser energy and cratering on the sample surface by the laser. However, these instabilities were rectified by applying feedback correction for the laser energy and rastering the laser across the sample surface. An initial experiment successfully produced and accelerated low intensity actinide beams with up to 1000 counts per second. With continued development, laser ablation shows promise as an alternative material injection scheme for ECR ion sources and may help substantially reduce cross talk in the source.

  17. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    Science.gov (United States)

    Nakagawa, T.

    2014-02-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams.

  18. Turbulent transport of MeV range cyclotron heated minorities as compared to alpha particles

    CERN Document Server

    Pusztai, István; Kazakov, Yevgen O; Fülöp, Tünde

    2016-01-01

    We study the turbulent transport of an ion cyclotron resonance heated (ICRH), MeV range minority ion species in tokamak plasmas. Such highly energetic minorities, which can be produced in the three ion minority heating scheme [Ye. O. Kazakov et al. (2015) Nucl. Fusion 55, 032001], have been proposed to be used to experimentally study the confinement properties of fast ions without the generation of fusion alphas. We compare the turbulent transport properties of ICRH ions with that of fusion born alpha particles. Our results indicate that care must be taken when conclusions are drawn from experimental results: While the effect of turbulence on these particles is similar in terms of transport coefficients, differences in their distribution functions - ultimately their generation processes - make the resulting turbulent fluxes different.

  19. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd. Becquerel, BP 55027, 14076 Caen Cedex 05 (France); Galata, A.; Porcellato, A. M.; Prete, G. F. [INFN-Laboratori Nazionali di Legnaro, Viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T. [LPSC Grenoble, 53, rue des Martyrs, 38026 Grenoble Cedex (France); Ban, G. [LPC Caen, 6 bd Marechal Juin, 14050 Caen Cedex (France); Celona, L.; Lunney, D. [INFN-Laboratori Nazionali del Sud, via S.Sofia 62, 95125 Catania (Italy); Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5a, 02 093 Warsaw (Poland); Kalvas, T. [Department of Physics, University of Jyvaeskylae, PB 35 (YFL) 40351 Jyvaeskylae (Finland); and others

    2012-02-15

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

  20. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, A., E-mail: a-uchi@riken.jp; Ozeki, K.; Higurashi, Y.; Kidera, M.; Komiyama, M.; Nakagawa, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2016-02-15

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.

  1. Studies for the ion cyclotron range of frequency heating in a tokamak fusion experimental device

    Energy Technology Data Exchange (ETDEWEB)

    Saigusa, Mikio [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-02-01

    Ion cyclotron range of frequency heating has been investigated as an efficient additional plasma heating and non-inductive current driving methods in a tokamak type fusion experimental device. At first, an ICRF antenna coupling code was developed for the estimation of the coupling properties of phased antenna array, so that the ICRF antennas were designed for JT-60 and JT-60U ICRF heating systems using the coupling codes. The ICRF heating experiments had been performed in JT-60 and JT-60U. The coupling properties of ICRF antenna, the physics of peripheral plasma and energy confinement by ICRF heating in various heating regimes have been investigated. Next, the Toroidicity induced Alfven Eigen (TAE) mode have been studied using minority ICRF heating for producing energetic ions which can excite TAE mode. The TAE mode could be suppressed by current profile control using current ramp operation and lower hybrid current drive. (author) 74 refs.

  2. First operation and effect of a new tandem-type ion source based on electron cyclotron resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yushi, E-mail: kato@eei.eng.osaka-u.ac.jp; Kimura, Daiju; Yano, Keisuke; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2016-02-15

    A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandem type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future.

  3. Cyclotron production of [18F]fluoride ion and [18F]fluorine gas and their medical applications

    Science.gov (United States)

    VanBrocklin, H. F.; O'Neil, J. P.

    1997-02-01

    One of the newest low energy cyclotrons for the production of positron emitting isotopes has been sited at Lawrence Berkeley National Laboratory. This prototype CTI RDS-111, proton only, 11 MeV, negative ion machine is capable of producing GBq quantities of fluorine-18 for radiopharmaceutical applications. A CTI designed target changing system developed for this cyclotron can hold up to eight small targets. We have tested two small high pressure CTI silver body target designs for the production of [18F]fluoride ion and compared them to the CTI RDS-112 style low pressure target. The high pressure target can produce up to 100% more activity for a given time and beam current with improved saturation yields. A high pressure aluminum RDS-112 gas target has been used to produce [18F]F2. The fluoride ion produced from this machine has been used to label fluorodeoxyglucose to trace glucose metabolism in patients and the fluorine gas has been used to label fluoro-meta-tyrosine to image therapeutic response to gene therapy in Parkinsonian monkeys.

  4. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  5. The cyclotron maser theory of AKR and Z-mode radiation. [Auroral Kilometric Radiation

    Science.gov (United States)

    Wu, C. S.

    1985-01-01

    The cyclotron maser mechanism which may be responsible for the generation of auroral kilometric radiation and Z-mode radiation is discussed. Emphasis is placed on the basic concepts of the cyclotron maser theory, particularly the relativistic effect of the cyclotron resonance condition. Recent development of the theory is reviewed. Finally, the results of a computer simulation study which helps to understand the nonlinear saturation of the maser instability are reported.

  6. Linear and nonlinear physics of the magnetoacoustic cyclotron instability of fusion-born ions in relation to ion cyclotron emission

    Energy Technology Data Exchange (ETDEWEB)

    Carbajal, L., E-mail: L.Carbajal-Gomez@warwick.ac.uk; Cook, J. W. S. [Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Dendy, R. O. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB, Oxfordshire (United Kingdom); Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Chapman, S. C. [Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Department of Mathematics and Statistics, University of Tromsø, N-9037, Tromsø (Norway); Max Planck Institute for the Physics of Complex Systems, D-01187, Dresden (Germany)

    2014-01-15

    The magnetoacoustic cyclotron instability (MCI) probably underlies observations of ion cyclotron emission (ICE) from energetic ion populations in tokamak plasmas, including fusion-born alpha-particles in JET and TFTR [Dendy et al., Nucl. Fusion 35, 1733 (1995)]. ICE is a potential diagnostic for lost alpha-particles in ITER; furthermore, the MCI is representative of a class of collective instabilities, which may result in the partial channelling of the free energy of energetic ions into radiation, and away from collisional heating of the plasma. Deep understanding of the MCI is thus of substantial practical interest for fusion, and the hybrid approximation for the plasma, where ions are treated as particles and electrons as a neutralising massless fluid, offers an attractive way forward. The hybrid simulations presented here access MCI physics that arises on timescales longer than can be addressed by fully kinetic particle-in-cell simulations and by analytical linear theory, which the present simulations largely corroborate. Our results go further than previous studies by entering into the nonlinear stage of the MCI, which shows novel features. These include stronger drive at low cyclotron harmonics, the re-energisation of the alpha-particle population, self-modulation of the phase shift between the electrostatic and electromagnetic components, and coupling between low and high frequency modes of the excited electromagnetic field.

  7. Microwave emission related to cyclotron instabilities in a minimum-B electron cyclotron resonance ion source plasma

    Science.gov (United States)

    Izotov, I.; Tarvainen, O.; Mansfeld, D.; Skalyga, V.; Koivisto, H.; Kalvas, T.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2015-08-01

    Electron cyclotron resonance ion sources (ECRIS) have been essential in the research and applications of nuclear physics over the past 40 years. They are extensively used in a wide range of large-scale accelerator facilities for the production of highly charged heavy ion beams of stable and radioactive elements. ECRISs are susceptible to kinetic instabilities due to resonance heating mechanism leading to anisotropic electron velocity distribution function. Instabilities of cyclotron type are a proven cause of frequently observed periodic bursts of ‘hot’ electrons and bremsstrahlung, accompanied with emission of microwave radiation and followed by considerable drop of multiply charged ions current. Detailed studies of the microwave radiation associated with the instabilities have been performed with a minimum-B 14 GHz ECRIS operating on helium, oxygen and argon plasmas. It is demonstrated that during the development of cyclotron instability ‘hot’ electrons emit microwaves in sub-microsecond scale bursts at temporally descending frequencies in the 8-15 GHz range with two dominant frequencies of 11.09 and 12.59 GHz regardless of ECRIS settings i.e. magnetic field strength, neutral gas pressure or species and microwave power. The experimental data suggest that the most probable excited plasma wave is a slow extraordinary Z-mode propagating quasi-longitudinally with respect to the external magnetic field.

  8. Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis

    Science.gov (United States)

    Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.

    2016-01-01

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  9. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    National Research Council Canada - National Science Library

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O’Connor, Peter B

    2015-01-01

    ...) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated...

  10. Analysis of relay based valley coil system of K-130 Cyclotron and an approach to computer controlled system

    Energy Technology Data Exchange (ETDEWEB)

    Shoor, B.

    2016-09-11

    To overcome the first harmonic field imperfection in sector focused cyclotron, a set of coils placed in valleys are used to produce an opposite first harmonic effect. Usually, at the time of beam tuning the phase of the first harmonic is varied using a relay system. It can be shown analytically that magnitude of it changes simultaneously, when phase is changed. This is not desirable at the time of beam tuning. Moreover phase changes in long steps, which hampers accuracy of beam tuning. To overcome this, a computer controlled system is suggested where amplitude remains constant at the time of phase change. Moreover, phase can be changed continuously which gives better tuning accuracy.

  11. Development of a PET cyclotron based irradiation setup for proton radiobiology

    Science.gov (United States)

    Ghithan, Sharif; Crespo, Paulo; do Carmo, S. J. C.; Ferreira Marques, Rui; Fraga, F. A. F.; Simões, Hugo; Alves, Francisco; Rachinhas, P. J. B. M.

    2015-02-01

    An out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinary produces radioisotopes for positron emission tomography (PET) has been developed, characterized, calibrated and validated. The current from a 20 μm thick aluminum transmission foil is readout by home-made transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setup can be computer-controlled with a shutter. In this work, we report on experimental results and Geant4 simulations of a setup which exploits for the first time the 18 MeV proton beam from a PET cyclotron to irradiate a selected region of a target using the developed irradiation system. By using this system, we are able to deliver a homogeneous beam on targets with 18 mm diameter, allowing to achieve the controlled irradiation of cell cultures located in biological multi-well dishes of 16 mm diameter. We found that the magnetic field applied inside the cyclotron plays a major role for achieving the referred to homogeneity. The quasi-Gaussian curve obtained by scanning the magnet current and measuring the corresponding dose rate must be measured before any irradiation procedure, with the shutter closed. At the optimum magnet current, which corresponds to the center of the Gaussian, a homogenous dose is observed over the whole target area. Making use of a rotating disk with a slit of 0.5 mm at a radius of 150 mm, we could measure dose rates on target ranging from 500 mGy/s down to 5 mGy/s. For validating the developed irradiation setup, several Gafchromic® EBT2 films were exposed to different values of dose. The absolute dose in the irradiated films were assessed in the 2D film dosimetry system of the Department of Radiotherapy of Coimbra University Hospital Center with a precision better than 2%. In the future, we plan

  12. A prediction model for the radiation safety management behavior of medical cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ji Hye; Han, Eun Ok [Daegu Health College, Daegu (Korea, Republic of); Kim, Ssang Tae [CareCamp Inc., Seoul (Korea, Republic of)

    2008-06-15

    This study attempted to provide reference materials for improving the behavior level in radiation safety managements by drawing a prediction model that affects the radiation safety management behavior because the radiation safety management of medical Cyclotrons, which can be used to produce radioisotopes, is an important factor that protects radiation caused diseases not only for radiological operators but average users. In addition, this study obtained follows results through the investigation applied from January 2 to January 30, 2008 for the radiation safety managers employed in 24 authorized organizations, which have already installed Cyclotrons, through applying a specific form of questionnaire in which the validity was guaranteed by reference study, site investigation, and focus discussion by related experts. The radiation safety management were configured as seven steps: step 1 is a production preparation step, step 2 is an RI production step, step 3 is a synthesis step, step 4 is a distribution step, step 5 is a quality control step, step 6 is a carriage container packing step, and step 7 is a transportation step. It was recognized that the distribution step was the most exposed as 15 subjects (62.5%), the items of 'the sanction and permission related works' and 'the guarantee of installation facilities and production equipment' were the most difficult as 9 subjects (37.5%), and in the trouble steps in such exposure, the item of 'the synthesis and distribution' steps were 4 times, respectively (30.8%). In the score of the behavior level in radiation safety managements, the minimum and maximum scores were 2.42 and 4.00, respectively, and the average score was 3.46 {+-} 0.47 out of 4. Prosperity and well-being programs in the behavior and job in radiation safety managements (r=0.529) represented a significant correlation statistically. In the drawing of a prediction model based on the factors that affected the behavior in

  13. Cyclotron resonance studies on InAs/GaSb heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Petchsingh, Cattleya

    2002-07-01

    Far-infrared cyclotron resonance is used to study the magneto-optical properties of semimetallic InAs/GaSb heterostructures. Spatially separated two-dimensional electron and hole gases coexist in this 'broken-gap' type-ll system due to charge transfer across the interfaces. Hybridisations of the overlapping electron and hole wavefunctions are investigated experimentally in samples of varying growth parameters. A self-consistent 8-band k{center_dot}p model is used to assist in the interpretation of experimental results. In samples subjected to varying magnetic field, hybridisations result in oscillations of cyclotron resonance mass, amplitude and linewidth, accompanied by transition splittings in the vicinity of Landau level anticrossings. Asymmetries introduced by InSb interface biasing enhance these effects. Comparison of samples with varying confinement energies (at specified magnetic field) shows effective mass enhancement greater than the standard nonparabolicity effect. The mass enhancement increases with hybridisation strength. A simple two-band minigap model gives good agreement with experimental results. Tilled field measurements show that hybridisation suppresses electron cyclotron resonance transitions. Increased resonance amplitudes at higher temperatures are therefore ascribed to reduced hybridisation strength. Strong evidence of Coulomb interactions between different single particle transitions shows the interactions increasing with temperature, leading to a single motion-averaged transition at sufficiently high temperature. High magnetic field measurements near the quantum limit show transition features generally consistent with electron-hole Landau level hybridisation. Multiple splittings in this field range (14-27T) are ascribed to spin splitting and subband coupling effects. Breaking of selection rules is suggested to be due to inherent band asymmetries in the samples. For narrow well samples, some transition features remain unexplained

  14. Electromagnetic waves near the proton cyclotron frequency: Stereo observations

    Energy Technology Data Exchange (ETDEWEB)

    Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Wei, H. Y.; Russell, C. T. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 (United States); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching (Germany); Omidi, N. [Solana Scientific Inc., Solana Beach, CA 92075 (United States); Isenberg, P. A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Goldstein, M. L.; Figueroa-Viñas, A. [Heliophysics Science Division, NASA Goddard Space Flight Center, MD 20771 (United States); Blanco-Cano, X., E-mail: lan.jian@nasa.gov [Instituto de Geofisica, Universidad Nacional Autónoma de México, Coyoacán D.F. (Mexico)

    2014-05-10

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  15. Ion Bernstein instability as a possible source for oxygen ion cyclotron harmonic waves

    Science.gov (United States)

    Min, Kyungguk; Denton, Richard E.; Liu, Kaijun; Gary, S. Peter; Spence, Harlan E.

    2017-05-01

    This paper demonstrates that an ion Bernstein instability can be a possible source for recently reported electromagnetic waves with frequencies at or near the singly ionized oxygen ion cyclotron frequency, ΩO+, and its harmonics. The particle measurements during strong wave activity revealed a relatively high concentration of oxygen ions (˜15%) whose phase space density exhibits a local peak at energy ˜20 keV. Given that the electron plasma-to-cyclotron frequency ratio is ωpe/Ωe≳1, this energy corresponds to the particle speed v/vA≳0.3, where vA is the oxygen Alfvén speed. Using the observational key plasma parameters, a simplified ion velocity distribution is constructed, where the local peak in the oxygen ion velocity distribution is represented by an isotropic shell distribution. Kinetic linear dispersion theory then predicts unstable Bernstein modes at or near the harmonics of ΩO+ and at propagation quasi-perpendicular to the background magnetic field, B0. If the cold ions are mostly protons, these unstable modes are characterized by a low compressibility (|δB∥|2/|δB|2≲0.01), a small phase speed (vph˜0.2vA), a relatively small ratio of the electric field energy to the magnetic field energy (between 10-4 and 10-3), and the Poynting vector directed almost parallel to B0. These linear properties are overall in good agreement with the properties of the observed waves. We demonstrate that superposition of the predicted unstable Bernstein modes at quasi-perpendicular propagation can produce the observed polarization properties, including the minimum variance direction on average almost parallel to B0.

  16. A small scale remote cooling system for a superconducting cyclotron magnet

    Science.gov (United States)

    Haug, F.; Berkowitz Zamorra, D.; Michels, M.; Gomez Bosch, R.; Schmid, J.; Striebel, A.; Krueger, A.; Diez, M.; Jakob, M.; Keh, M.; Herberger, W.; Oesterle, D.

    2017-02-01

    Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a “validation unit” housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated.

  17. Solar Wind Electric Fields in the Ion Cyclotron Frequency Range

    CERN Document Server

    Kellogg, P J; Mozer, F S; Horbury, T S; Reme, H

    2006-01-01

    Measurements of fluctuations of electric fields in the frequency range from a fraction of one Hz to 12.5 Hz are presented, and corrected for the Lorentz transformation of magnetic fluctuations to give the electric fields in the plasma frame. The electric fields are large enough to provide the dominant force on the ions of the solar wind in the region near the ion cyclotron frequency of protons, larger than the force due to magnetic fluctuations. They provide sufficient velocity space diffusion or heating to counteract conservation of magnetic moment in the expanding solar wind to maintain nearly isotropic velocity distributions.

  18. Automated cyclotron magnetic field measurement at the University of Manitoba

    Science.gov (United States)

    Derenchuk, V.; Bruckshaw, J.; Gusdal, I.; Lancaster, J.; McIlwain, A.; Oh, S.; Pogson, R.; McKee, J. S. C.

    The magnetic field of the University of Manitoba compact cyclotron has been measured in high vacuum by polar scanning with 52 flip coils. This was a unique invacuo operation was required because the Curie effect on invar material is used to trim the field. The data acquisition controller was a Digital Equipment Corporation LSI-11 with CAMAC and IEEE-488 interfaces. Filtering, display and conventional equilibrium orbit analysis were performed off-line by means of a VAX-11/750 computer. A description of the apparatus and software is given.

  19. Calibration of electron cyclotron emission radiometer for KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Kogi, Y. [Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Jeong, S. H. [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Lee, K. D.; Kwon, M. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Akaki, K.; Mase, A. [KASTEC, Kyushu University, Kasuga 816-8580 (Japan); Kuwahara, D. [Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Yoshinaga, T.; Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2010-10-15

    We developed and installed an electron cyclotron emission radiometer for taking measurements of Korea Superconducting Tokamak Advanced Research (KSTAR) plasma. In order to precisely measure the absolute value of electron temperatures, a calibration measurement of the whole radiometer system was performed, which confirmed that the radiometer has an acceptably linear output signal for changes in input temperature. It was also found that the output power level predicted by a theoretical calculation agrees with that obtained by the calibration measurement. We also showed that the system displays acceptable noise-temperature performance around 0.23 eV.

  20. RF sources for ITER Ion Cyclotron H and CD system

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, F., E-mail: fabienne.kazarian@iter.org [ITER Organization, CS 90 046, 13067 Sain-Paul-Les-Durance (France); Beaumont, B.; Arambhadiya, B.; Gassmann, T.; Lamalle, Ph.; Rathi, D. [ITER Organization, CS 90 046, 13067 Sain-Paul-Les-Durance (France); Mukherjee, A.; Ajesh, P.; Machchhar, H.; Patadia, D.; Patel, M.; Rajnish, K.; Singh, R.; Suthar, G.; Trivedi, R. [ITER India, IPR, Bhat, Gandhinagar 382428, Gujarat (India); Kumazawa, R.; Seki, T.; Saito, K.; Kasahara, H.; Mutoh, T. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2011-10-15

    The Ion Cyclotron Heating and Current Drive (IC H and CD) system for ITER will provide 20 MW to the plasma. The associated Radio Frequency (RF) source system has to be compliant with all operation modes foreseen in that frame. Their specifications are fully described in this paper and constraints on IC RF source components are detailed, in particular concerning the final stage tube of the amplifier. Results of tests performed under a collaborative work at the National Institute for Fusion Science (NIFS) facility are presented. Consequences on the procurement process by ITER India (II) are deduced.

  1. Calibration of electron cyclotron emission radiometer for KSTAR.

    Science.gov (United States)

    Kogi, Y; Jeong, S H; Lee, K D; Akaki, K; Mase, A; Kuwahara, D; Yoshinaga, T; Nagayama, Y; Kwon, M; Kawahata, K

    2010-10-01

    We developed and installed an electron cyclotron emission radiometer for taking measurements of Korea Superconducting Tokamak Advanced Research (KSTAR) plasma. In order to precisely measure the absolute value of electron temperatures, a calibration measurement of the whole radiometer system was performed, which confirmed that the radiometer has an acceptably linear output signal for changes in input temperature. It was also found that the output power level predicted by a theoretical calculation agrees with that obtained by the calibration measurement. We also showed that the system displays acceptable noise-temperature performance around 0.23 eV.

  2. Plane gyroklinotron at first and third harmonics of cyclotron frequency

    Energy Technology Data Exchange (ETDEWEB)

    Kurayev, A.A.; Lukashonok, D.V.; Sinitsyn, A.K., E-mail: kurayev@bsuir.by, E-mail: timka86@gmail.com [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2011-07-01

    The results of gyroklinotron's parameters optimization for efficiency at f = 100 GHz with interaction on first and third harmonics of the cyclotron frequency are presented. The predicted electron gyroklinotron's efficiency reaches 70% on first harmonic and 40% on third harmonic. This is more than in usual gyrotron. Besides in contrast to usual gyrotron the width electron beam on radius of guiding centers of electron orbits in gyroklinotron may considerable exceed working wave length {lambda}. This allows to use in it considerable more power of electron beams EB then in usual gyrotron. (author)

  3. Effects of electron-cyclotron instabilities on gyrotron beam quality

    Energy Technology Data Exchange (ETDEWEB)

    Jost, G.; Tran, T.M.; Appert, K. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Wuethrich, S. [CRAY Research, PATP/PSE, EPFL, Lausanne (Switzerland)

    1996-02-01

    A two-dimensional PIC code aimed at the investigation of electron-cyclotron beam instabilities in gyrotrons and their effects on the beam quality is presented. The code is based on recently developed techniques for handling charge conservation and open boundaries. It has been implemented on the massively parallel computer CRAY T3D. First results show an electromagnetic backward instability periodically growing and decaying to energy levels close to those obtained from the electrostatic Bernstein wave instability. On the average, the resulting beam degradation is 3 to 4 times larger than that predicted by electrostatic models. (author) 8 figs., 14 refs.

  4. Monte-Carlo Simulation of Cryopanel Parameter in CYCIAE-100 Cyclotron

    Institute of Scientific and Technical Information of China (English)

    PAN; Gao-feng; ZHANG; Su-ping; XING; Jian-sheng; LI; Zhen-guo; QIN; Jiu-chang

    2015-01-01

    The diameter of CYCIAE-100cyclotron main magnet is 4m,the angle of magnet valley is 35°and its height is about 500mm.Due to restrictions on the size of compact cyclotron structure,the available vacuum suction space is limited.According to the beam loss theory,particles

  5. Electromagnetism applications in nuclear engineering: cyclotron; Aplicacoes do eletromagnetismo na engenharia nuclear; ciclotron

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega Bastos; Dalla Riva, Maria Teresa Cristina da

    1995-08-01

    Particle accelerators, with special emphasis on cyclotrons, are presented. Other electromagnetic devices and their importance in technology and research are also shown. An experimental arrangement for positrons source productions using a cyclotron aiming at non-destructive testing for radiations damage studies is presented. 46 refs., 23 figs., 2 tabs.

  6. Field Simulation of Main Magnet for 230 MeV Superconducting Cyclotron

    Institute of Scientific and Technical Information of China (English)

    WANG; Chuan; LI; Ming; ZHANG; Dong-sheng; YIN; Meng; YANG; Jian-jun; CUI; Tao; LV; Yin-long; AN; Shi-zhong; ZHANG; Tian-jue

    2015-01-01

    Superconducting proton cyclotrons have many advantages over competitive accelerators in medium energy range,namely,lower construction cost,lower operation cost,more compact thus more suitable to be installed in limited cite like hospitals.More specifically,as superconducting proton cyclotrons provide CW proton

  7. Theoretical Formula and Simulation of Cyclotron Magnet Shimming in High Field Environment

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Dong-sheng; YANG; Jian-jun; LI; Ming

    2015-01-01

    In the computation of cyclotron magnet shimming,trim-rod and magnetic channel,one common process is to calculate the variation of magnet field caused by a small iron piece.Under the circumstance of superconducting cyclotron,high field approximate can be used and we can derive

  8. A new generation of medical cyclotrons for the 90's

    Energy Technology Data Exchange (ETDEWEB)

    Milton, B.F

    1995-08-01

    Cyclotrons continue to be efficient accelerators for use in radio-isotope production. In recent years, developments in accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology as they relate to the new generation of commercial cyclotrons. Existing and potential markets for these cyclotrons will be presented. We will also discuss the possibility of systems capable of extracted energies up to 150 MeV and extracted beam currents of up to 2.0 mA. (author)

  9. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W., E-mail: luwang@impcas.ac.cn; Sun, L. T.; Qian, C.; Feng, Y. C.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); Guo, J. W.; Fang, X.; Yang, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, B.; Guo, S. Q.; Ruan, L. [Institute of Electrical Engineering, CAS, Beijing 100190 (China)

    2015-04-15

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months’ commissioning, some outstanding results have been achieved, such as 1.97 emA of O{sup 6+}, 1.7 emA of Ar{sup 8+}, 1.07 emA of Ar{sup 9+}, and 118 euA of Bi{sup 28+}. The source has also successfully delivered O{sup 5+} and Ar{sup 8+} ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  10. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics.

    Science.gov (United States)

    Lu, W; Sun, L T; Qian, C; Guo, J W; Fang, X; Feng, Y C; Yang, Y; Ma, H Y; Zhang, X Z; Ma, B H; Xiong, B; Guo, S Q; Ruan, L; Zhao, H W

    2015-04-01

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months' commissioning, some outstanding results have been achieved, such as 1.97 emA of O(6+), 1.7 emA of Ar(8+), 1.07 emA of Ar(9+), and 118 euA of Bi(28+). The source has also successfully delivered O(5+) and Ar(8+) ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  11. Response of thermal ions to electromagnetic ion cyclotron waves

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  12. Response of thermal ions to electromagnetic ion cyclotron waves

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.

    1994-10-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  13. Robust Matching System for the ITER Ion Cyclotron System

    Science.gov (United States)

    Swain, D.; Goulding, R.; Rasmussen, D.; Vervier, M.; Messiaen, A.; Dumortier, P.

    2008-11-01

    The ITER ion cyclotron system is required to deliver 20 MW to the ITER plasma under a number of different operating scenarios. The EU will fabricate the antenna, the US will supply the matching system and transmission lines, and India will deliver the rf sources and high-voltage power supplies. A brief description of the complete ion cyclotron system will be presented, and different design options for the matching system will be discussed. Emphasis will be on analyzing the ability of the system to operate effectively during sudden changes caused by plasma perturbations (e. g., ELMs), and on the robustness of matching algorithms. Particular challenges are: the possibility of relatively low loading of the antenna by the plasma because of a large plasma-antenna distance; the resulting high voltages in the matching system (which must be minimized by good system design); the need to install a number of large matching components in the tight space available near the tokamak; and the requirement for operation and maintenance in a radiation environment.

  14. Polarization in cyclotron radiation in strong magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Luidmila Semionova; Denis Leahy; Jorge Paez

    2010-01-01

    We revisit the problem of radiative transitions of electrons in the presence of a strong magnetic field.We derive fully relativistic cyclotron transition rates for an arbitrary magnetic field,for any orientation of electron spin and for any polarization of the emitted radiation.Also,we obtain the transition rates for any value of the initial electron's parallel momentum.For very strong magnetic fields,transitions to the ground state predominate.Transition rates summed over the electron's spin orientation and for unpolarized radiation are also obtained,which confirm previous results by Latal.Transition widths are calculated for different electron spin orientations and different polarizations of radiation.We obtain general expressions for transition rates that reduce to the results for the non-relativistic case and for unpolarized radiation.Additionally we get,for the non-relativistic approximation,the transition rates for any polarization of radiation.As an application,the first five emission lines are evaluated and compared to the X-ray emitting neutron star V0332+53,which has multiple observable cyclotron lines,taking into account gravitational redshift.The most probable polarization is ∈(2).

  15. Superconducting Ring Cyclotron for Riken RI Beam Factory in Japan

    Science.gov (United States)

    Okuno, H.; Dantsuka, T.; Yamada, K.; Kase, M.; Maie, T.; Kamigaito, O.

    2010-04-01

    Since 1997, RIKEN Nishina Center has been constructing the Radioactive Isotope Beam Factory (RIBF) and succeeded in beam commissioning of its accelerator complex at the end of 2006. The world's first superconducting ring cyclotron (SRC) is the final booster in the RIBF accelerator complex which is able to accelerate all-element heavy ions to a speed of about 70% of the velocity of light. The ring cyclotron consists of 6 major superconducting sector magnets with a maximum field of 3.8 T. The total stored energy is 235 MJ, and its overall sizes are 19 m diameter, 8 m height and 8,300 tons. The magnet system assembly was completed in August 2005, and successfully reached the maximum field in November 2005. The first beam was extracted at the end of 2006 and the first uranium beam was extracted in March 2007. However operation of the helium refrigerator was not satisfactory although the commissioning of SRC was successful. Operation was stopped every two month due to degradation of its cooling power. In February 2008 the reason of the degradation was revealed to be oil contamination. Operation of the cryogenic system was restarted from August 2008 after hard task to clean up the helium refrigerator and to add oil separators to the compressor. After restoration long-term steady operation to keep the magnet superconducting continued for about 8 months with no sign of degradation of cooling capacity.

  16. Design of the ion cyclotron system for TPX

    Energy Technology Data Exchange (ETDEWEB)

    Swain, D.; Shipley, S.; Yugo, J.; Goulding, R.; Batchelor, D.; Stallings, D. [Oak Ridge National Lab., TN (United States); Fredd, E. [Princeton Univ., NJ (United States). Plasma Physics Lab.

    1993-06-01

    The TPX experiment will operate for very long pulse times ({ge} 1000 s) and will require current drive of several different types to explore the advanced physics operating modes as one of its main missions. Fast wave current drive (FWCD) using ion cyclotron waves in the 40--80 MHz range will be used as one of the main current-drive mechanisms. For initial operation, 8 MW of rf will be supplied, along with 8 MW of neutral beams and 1.5 MW of lower hybrid power. The ion cyclotron (IC) system is a major part of the TPX heating and current drive system. The IC system must: supply 8 MW of power through two main horizontal ports; be upgradable to provide up to 12 MW of rf power through two ports; operate, for 1000-s pulses every 75 min; drive current using FWCD with high reliability; be bakeable to 350{degree}C for cleaning; and incorporate shielding to attenuate the neutron and gamma flux from DD operation so that hands-on maintenance can be performed exterior to the vacuum vessel. The system will consist of four modified FMIT power units that will be upgraded to deliver 2 MW each to the plasma. Two antennas, each with six current straps, will be located in adjacent ports. A sophisticated matching system is needed to provide experimental flexibility and reliability.

  17. Design of the ion cyclotron system for TPX

    Energy Technology Data Exchange (ETDEWEB)

    Swain, D.; Shipley, S.; Yugo, J.; Goulding, R.; Batchelor, D.; Stallings, D. (Oak Ridge National Lab., TN (United States)); Fredd, E. (Princeton Univ., NJ (United States). Plasma Physics Lab.)

    1993-01-01

    The TPX experiment will operate for very long pulse times ([ge] 1000 s) and will require current drive of several different types to explore the advanced physics operating modes as one of its main missions. Fast wave current drive (FWCD) using ion cyclotron waves in the 40--80 MHz range will be used as one of the main current-drive mechanisms. For initial operation, 8 MW of rf will be supplied, along with 8 MW of neutral beams and 1.5 MW of lower hybrid power. The ion cyclotron (IC) system is a major part of the TPX heating and current drive system. The IC system must: supply 8 MW of power through two main horizontal ports; be upgradable to provide up to 12 MW of rf power through two ports; operate, for 1000-s pulses every 75 min; drive current using FWCD with high reliability; be bakeable to 350[degree]C for cleaning; and incorporate shielding to attenuate the neutron and gamma flux from DD operation so that hands-on maintenance can be performed exterior to the vacuum vessel. The system will consist of four modified FMIT power units that will be upgraded to deliver 2 MW each to the plasma. Two antennas, each with six current straps, will be located in adjacent ports. A sophisticated matching system is needed to provide experimental flexibility and reliability.

  18. Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER

    CERN Document Server

    Chapman, I T; Sauter, O; Zucca, C; Asunta, O; Buttery, R J; Coda, S; Goodman, T; Igochine, V; Johnson, T; Jucker, M; La Haye, R J; Lennholm, M; Contributors, JET-EFDA

    2013-01-01

    13MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neo-classical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced alpha particle stabilisation for instance, this ancillary sawtooth control can be provided from > 10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes sig...

  19. Cyclotrons with fast variable and/or multiple energy extraction

    Directory of Open Access Journals (Sweden)

    C. Baumgarten

    2013-10-01

    Full Text Available We discuss the possibility in principle of stripping extraction in combination with reverse bends in isochronous separate-sector cyclotrons (and/or fixed field alternating gradient accelerators. If one uses reverse bends between the sectors (instead of or in combination with drifts and places stripper foils at the sector exit edges, the stripped beam has a reduced bending radius and it should be able to leave the cyclotron within the range of the valley—even if the beam is stripped at less than full energy. We are especially interested in stripping of H_{2}^{+}, as it doubles the charge to mass ratio of the ions. However the method could be applied to other ions or ionized molecules as well. For the production of proton beams by stripping extraction of an H_{2}^{+} beam, we discuss possible designs for three types of machines: First, a low-energy cyclotron for the simultaneous production of several beams at multiple energies—for instance 15, 30, and 70 MeV—thus allowing beam delivery on several isotope production targets. In this case it can be an advantage to have a strong energy dependence of the direction of the extracted beam. Second, we consider a fast variable-energy proton machine for cancer therapy that should allow extraction (of the complete beam at all energies in the range of about 70 MeV to about 250 MeV into the same beam line. Third, we consider a high-intensity high-energy machine, where the main design goals are extraction with low losses, low activation of components, and high reliability. Especially if such a machine is considered for an accelerator driven system (ADS, this extraction mechanism has advantages: Beam trips by the failure of electrostatic elements could be avoided and the turn separation would be less critical, which allows operation at lower main cavity voltages. This would in turn reduce the number of rf trips. The price that has to be paid for these advantages is an increase in size and/or field

  20. Production study of high specific activity NCA Re-186g by proton and deuteron cyclotron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bonardi, M.L., E-mail: mauro.bonardi@mi.infn.i [L.A.S.A., Radiochemistry Laboratory, Universita degli Studi di Milano, UNIMI and Istituto Nazionale di Fisica Nucleare, INFN, Via F.lli Cervi 201, I-20090 Segrate (Italy); Groppi, F.; Manenti, S.; Persico, E.; Gini, L. [L.A.S.A., Radiochemistry Laboratory, Universita degli Studi di Milano, UNIMI and Istituto Nazionale di Fisica Nucleare, INFN, Via F.lli Cervi 201, I-20090 Segrate (Italy)

    2010-09-15

    Very high specific activity (A{sub S}) {sup 186g}Re could be produced by either proton or deuteron cyclotron irradiation on highly enriched {sup 186}W target in no-carrier-added (NCA) form, leading to a A{sub S} very close to the theoretical carrier free (CF) value of 6.88 GBq {mu}g{sup -1}. Thick target yields (TTYs), obtained irradiating both thick metal W targets of natural isotopic composition and highly enriched pressed powdered {sup 186}W targets, were measured at different particles energies taking into account high accuracy and precision on both yield and beam energy. The measurement of radionuclidic purity of {sup 186g}Re obtained activating highly enriched {sup 186}W by both p and d beams were also carried out and accurately compared. The excitation function as thin-target yields (tty, i.e. proportional to the reaction cross-sections) and the integrated TTYs for all Re (A=181, 182, 183, 184, 186 and their metastable levels), W and Ta co-produced radionuclides will be presented elsewhere in deep details.

  1. Matrix-assisted ionization vacuum for high-resolution Fourier transform ion cyclotron resonance mass spectrometers.

    Science.gov (United States)

    Wang, Beixi; Tisdale, Evgenia; Trimpin, Sarah; Wilkins, Charles L

    2014-07-15

    Matrix-assisted ionization vacuum (MAIV) produces charge states similar to electrospray ionization (ESI) from the solid state without requiring high voltage or added heat. MAIV differs from matrix-assisted laser desorption/ionization (MALDI) in that no laser is needed and abundant multiply charged ions are produced from molecules having multiple basic sites such as proteins. Here we introduce simple modifications to the commercial vacuum MALDI and ESI sources of a 9.4 T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer to perform MAIV from both intermediate and atmospheric pressure. The multiply charged ions are shown for the proteins bovine insulin, ubiquitin, and lysozyme using 3-nitrobenzonitrile as matrix. These are the first examples of MAIV operating at pressures as low as 10(-6) mbar in an FT-ICR mass spectrometer source, and the expected mass resolving power of 100000 to 400000 is achieved. Identical protein charge states are observed with and without laser ablation indicating minimal, if any, role of photochemical ionization for the compounds studied.

  2. Recent development of RIKEN 28 GHz superconducting electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Higurashi, Y., E-mail: higurasi@riken.jp; Ohnishi, J.; Ozeki, K.; Kidera, M.; Nakagawa, T. [RIKEN, 2-1 Hirosawa, Wako, Saitama (Japan)

    2014-02-15

    Over the past two years, we have tried to improve the performance of the RIKEN superconducting electron cyclotron resonance ion source using several methods. For the production of U vapor, we chose the sputtering method because it is possible to install a large amount of material inside the plasma chamber and thus achieve long-term operation without a break, although it is assumed that the beam intensity is weaker than in the oven technique. We also used an aluminum chamber instead of a stainless steel one. Using these methods, we successfully produced ∼180 eμA of U{sup 35+} and ∼230 eμA of U{sup 33+} at the injected radio frequency (RF) power of ∼4 kW (28 GHz). Very recently, to further increase the beam intensity of U{sup 35+}, we have started to develop a high temperature oven and have successfully produced a highly charged U ion beam. In this contribution, we report on the beam intensity of highly charged U ions as a function of various parameters (RF power and sputtering voltage) and discuss the effects of these parameters on the beam stability in detail.

  3. First results with the yin-yang type electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, P. [Department of Physics, University of Jyvaeskylae (JYFL), P.O. Box 35, FI-40014, Jyvaeskylae (Finland)]. E-mail: pekka.suominen@gmail.com; Ropponen, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae (JYFL), P.O. Box 35, FI-40014, Jyvaeskylae (Finland)

    2007-08-01

    Highly charged heavy-ion beams are often produced with Electron Cyclotron Resonance Ion Sources (ECRIS). The so-called conventional minimum-B ECRIS design includes two solenoid magnets and a multipole magnet (usually a hexapole). A minimum-B configuration can also be formed with 'yin-yang' ('baseball') type coils. Such a magnetic field configuration has been extensively tested in magnetic fusion experiments but not for the production of highly charged heavy ions. The application of the afore-mentioned coil structure to the production of multiply charged ion beams was studied. In this paper we present a design of a yin-yang type ion source known as the ARC-ECRIS and some preliminary experimental results. As a result of this work it was found that the ARC-ECRIS plasma is stable and capable of producing multiply charged ions. Many compromises were made in order to keep the costs of the prototype low. As a consequence, significant improvement can be expected in performance if the plasma size is increased and magnetic confinement is improved. At the end of this article an evolution model of the ARC-ECRIS and some future prospects are presented.

  4. Technical Note: Building a combined cyclotron and MRI facility: Implications for interference

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, Mark B. M.; Kuijer, Joost P. A.; Ridder, Jan Willem de; Perk, Lars R.; Verdaasdonk, Rudolf M. [Physics and Medical Technology, VU University Medical Center, Amsterdam 1007 MB (Netherlands) and BV Cyclotron VU, Amsterdam 1081HV (Netherlands)

    2013-01-15

    Purpose: With the introduction of hybrid PET/MRI systems, it has become more likely that the cyclotron and MRI systems will be located close to each other. This study considered the interference between a cyclotron and a superconducting MRI system. Methods: Interactions between cyclotrons and MRIs are theoretically considered. The main interference is expected to be the perturbation of the magnetic field in the MRI due to switching on or off the magnetic field of the cyclotron. MR imaging is distorted by a dynamic spatial gradient of an external inplane magnetic field larger than 0.5-0.04 {mu}T/m, depending on the specific MR application. From the design of a cyclotron, it is expected that the magnetic fringe field at large distances behaves as a magnetic dipolar field. This allows estimation of the full dipolar field and its spatial gradients from a single measurement. Around an 18 MeV cyclotron (Cyclone, IBA), magnetic field measurements were performed on 5 locations and compared with calculations based upon a dipolar field model. Results: At the measurement locations the estimated and measured values of the magnetic field component and its spatial gradients of the inplane component were compared, and found to agree within a factor 1.1 for the magnetic field and within a factor of 1.5 for the spatial gradients of the field. In the specific case of the 18 MeV cyclotron with a vertical magnetic field and a 3T superconducting whole body MR system, a minimum distance of 20 m has to be considered to prevent interference. Conclusions: This study showed that a dipole model is sufficiently accurate to predict the interference of a cyclotron on a MRI scanner, for site planning purposes. The cyclotron and a whole body MRI system considered in this study need to be placed more than 20 m apart, or magnetic shielding should be utilized.

  5. Helium-Charged Titanium Films Deposited by Pulsed Laser Deposition in an Electron-Cyclotron-Resonance Helium Plasma Environment

    Institute of Scientific and Technical Information of China (English)

    金钦华; 胡佩钢; 凌浩; 吴嘉达; 施立群; 周筑颖

    2003-01-01

    Titanium thin films incorporated with helium are produced by pulsed laser deposition in an electron cyclotron resonance helium plasma environment. Helium is distributed evenly in the film and a relatively high He/Ti atomic ratio (~ 20%) is obtained from the proton backscattering spectroscopy. This high concentration ofhelium leads to a surface blistering which is observed by scanning electron microscopy. Laser repetition rate has little influence on film characters. Substrate bias voltage is also changed for the helium incorporating mechanism study, and this is a helium ion implantation process during the film growth. Choosing suitable substrate bias voltage, one can avoid the damage produced by ion implantation, which is always present in general implantation case.

  6. Electron cyclotron resonance breakdown studies in a linear plasma system

    Indian Academy of Sciences (India)

    Vipin K Yadav; K Sathyanarayana; D Bora

    2008-03-01

    Electron cyclotron resonance (ECR) plasma breakdown is studied in a small linear cylindrical system with four different gases - hydrogen, helium, argon and nitrogen. Microwave power in the experimental system is delivered by a magnetron at 2.45 ± 0.02 GHz in TE10 mode and launched radially to have extra-ordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the fundamental ECR surface ( = 875.0 G) resides at the geometrical centre of the plasma system. ECR breakdown parameters such as plasma delay time and plasma decay time from plasma density measurements are carried out at the centre using a Langmuir probe. The operating parameters such as working gas pressure (1 × 10-5 -1 × 10-2 mbar) and input microwave power (160{800 W) are varied and the corresponding effect on the breakdown parameters is studied. The experimental results obtained are presented in this paper.

  7. Charge reversal Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Lobodin, Vladislav V; Savory, Joshua J; Kaiser, Nathan K; Dunk, Paul W; Marshall, Alan G

    2013-02-01

    We report the first charge reversal experiments performed by tandem-in-time rather than tandem-in-space MS/MS. Precursor odd-electron anions from fullerene C(60), and even-electron ions from 2,7-di-tert-butylfluorene-9-carboxylic acid and 3,3'-bicarbazole were converted into positive product ions ((-)CR(+)) inside the magnet of a Fourier transform ion cyclotron resonance mass spectrometer. Charge reversal was activated by irradiating precursor ions with high energy electrons or UV photons: the first reported use of those activation methods for charge reversal. We suggest that high energy electrons achieve charge reversal in one step as double electron transfer, whereas UV-activated (-)CR(+) takes place stepwise through two single electron transfers and formally corresponds to a neutralization-reionization ((-)NR(+)) experiment.

  8. Multicusp type Electron Cyclotron Resonance ion source for plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Amemiya, Hiroshi; Shigueoka, Yoshyuki (Institute of Physical and Chemical Research, Wako, Saitama (Japan)); Ishii, Shigeyuki

    1991-02-01

    A multi-cusp type ECR (electron cyclotron resonance) ion source is built with use of SmCo magnets and 2.45 GHz-TE{sub 11} circular mode microwave. The ion source is operated at pressures from 10{sup -4} to 10{sup -3} Torr with the input microwave power from 100 to 400 W. In hydrogen, the current density of H{sup +} is higher than those of H{sub 2}{sup +} and H{sub 3}{sup +}. The dependence of the fraction of each ion species on the power and pressure is measured and explained by rate equations. The source is operated also in other gases. Mass spectra in He, N{sub 2}, O{sub 2}, Ar and CH{sub 4} are shown together with the pressure and power dependences. Multicharged state of up to 3 has been obtained. (author).

  9. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    Science.gov (United States)

    Khazanov, George V.

    2002-01-01

    A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.

  10. Numerical model of electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    V. Mironov

    2015-12-01

    Full Text Available Important features of the electron cyclotron resonance ion source (ECRIS operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  11. Cyclotron resonance maser experiments in a bifilar helical waveguide

    Science.gov (United States)

    Aharony; Drori; Jerby

    2000-11-01

    Oscillator and amplifier cyclotron-resonance-maser (CRM) experiments in a spiral bifilar waveguide are presented in this paper. The slow-wave CRM device employs a low-energy low-current electron beam (2-12 keV, approximately 0.5 A). The pitch angle of the helical waveguide is relatively small; hence, the phase velocity in this waveguide, V(ph) congruent with0.8c (where c is the speed of light), is much faster than the axial velocity of the electrons, V(ez)traveling-wave-tube-type interactions are eliminated in this device. According to the CRM theory, the dominant effect in this operating regime, V(ez)2%). The wide tunable range of this CRM device due to the nondispersive bifilar helix is discussed.

  12. Positron-Cyclotron Maser for the Core Emissions from Pulsars

    CERN Document Server

    Ma, C; Wang, D; Wu, X; Ma, Chun-yu; Mao, Ding-yi; Wang, De-yu; Wu, Xin-ji

    1997-01-01

    We use the cyclotron-maser theory to explain the core emission from the magnetosphere of pulsars. As a kind of direct and efficient maser type of emission, it can give rise to escaping radiation with extremely high brightness temperature and narrow angle with respect to the magnetic axis. We find that the growth rates and real frequencies of the O-mode electromagnetic wave propagating parallel to the magnetic fields depend on the ratio of the plasma frequency $\\omega_p$ and the gyrofrequency $\\omega_b$ rather than the plasma frequency alone, as described by other models. The emission takes place in the region where the magnitude of $\\omega_p/\\omega_b$ is $10^{-2}$. The corresponding altitude is about a few decades of neutron star radius, where the magnetic field strength is about $10^6-10^8 G$. The qualitative spectrum and the lower frequency cut-off of the radio emission is obtained by this model.

  13. Cyclotron Resonance Gain for FIR and THz Radiation in Graphene

    CERN Document Server

    Cole, Nightvid

    2016-01-01

    A cyclotron resonance maser source using low-effective-mass conduction electrons in graphene, if successful, would allow for generation of Far Infrared (FIR) and Terahertz (THz) radiation without requiring magnetic fields running into the tens of Tesla. In order to investigate this possibility, we consider a device in which electrons are effectively injected via pumping from the valence band to the conduction band using an infrared (IR) laser source, subsequently gyrate in a magnetic field applied perpendicular to the plane of the graphene, and give rise to gain for a FIR/THz wave crossing the plane of the graphene. A set of integral expressions is derived by assuming that the non-radiative energy loss processes of the electrons can be adequately represented by a damping force proportional and antiparallel to their momentum. Minimal gain may occur at very short electron damping times of hundreds of femtoseconds.

  14. One-electron quantum cyclotron (and implications for cold antihydrogen)

    CERN Document Server

    Gabrielse, G; Odom, B; D'Urso, B

    2001-01-01

    Quantum jumps between Fock states of a one-electron oscillator reveal the quantum limit of a cyclotron accelerator. The states live for seconds when spontaneous emission is inhibited by a factor of 140 within a cylindrical Penning trap cavity. Averaged over hours the oscillator is in thermal equilibrium with black-body photons in the cavity. At 80 mK, quantum jumps occur only when resonant microwave photons are introduced into the cavity, opening a route to improved measurements of the magnetic moments of the electron and positron. The temperature demonstrated is about 60 times lower than the 4.2 K temperature at which charged elementary particles were previously stored. Implications for the production of cold antihydrogen are discussed. (21 refs).

  15. Ion cyclotron harmonics in the Saturn downward current auroral region

    Science.gov (United States)

    Menietti, J. D.; Schippers, P.; Santolík, O.; Gurnett, D. A.; Crary, F.; Coates, A. J.

    2011-12-01

    Observations of intense upgoing electron beams and diffuse ion beams have been reported during a pass by Cassini in a downward current auroral region, nearby a source region of Saturn kilometric radiation. Using the Cassini Radio and Plasma Wave Science (RPWS) instrument low frequency waveform receiver and the Cassini Plasma Spectrometer Investigation (CAPS) instrument we have been able to identify ion cyclotron harmonic waves associated with the particle beams. These observations indicate similarities with terrestrial auroral emissions, and may be a source of wave-particle interactions. We fit the observed plasma electron distribution with drifting Maxwellians and perform a linear numerical analysis of plasma wave growth. The results are relevant to ion heating and possibly to electron acceleration.

  16. Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions

    Science.gov (United States)

    Anderson, B. J.; Hamilton, D. C.

    1993-01-01

    AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.

  17. Electromagnetic ion cyclotron waves in the plasma depletion layer

    Science.gov (United States)

    Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.

    1993-01-01

    Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.

  18. Electromagnetic ion cyclotron waves observed in the plasma depletion layer

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.; Murr, D.

    1991-01-01

    Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.

  19. Fast particle-driven ion cyclotron emission (ICE) in tokamak plasmas and the case for an ICE diagnostic in ITER

    CERN Document Server

    McClements, K G; Dendy, R O; Carbajal, L; Chapman, S C; Cook, J W S; Harvey, R W; Heidbrink, W W; Pinches, S D

    2014-01-01

    Fast particle-driven waves in the ion cyclotron frequency range (ion cyclotron emission or ICE) have provided a valuable diagnostic of confined and escaping fast ions in many tokamaks. This is a passive, non-invasive diagnostic that would be compatible with the high radiation environment of deuterium-tritium plasmas in ITER, and could provide important information on fusion {\\alpha}-particles and beam ions in that device. In JET, ICE from confined fusion products scaled linearly with fusion reaction rate over six orders of magnitude and provided evidence that {\\alpha}-particle confinement was close to classical. In TFTR, ICE was observed from super-Alfv\\'enic {\\alpha}-particles in the plasma edge. The intensity of beam-driven ICE in DIII-D is more strongly correlated with drops in neutron rate during fishbone excitation than signals from more direct beam ion loss diagnostics. In ASDEX Upgrade ICE is produced by both super-Alfv\\'enic DD fusion products and sub-Alfv\\'enic deuterium beam ions.

  20. Plasma-Sheath Instability in Hall Thrusters Due to Periodic Modulation of the Energy of Secondary Electrons in Cyclotron Motion

    Energy Technology Data Exchange (ETDEWEB)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2008-04-23

    Particle-in-cell simulation of Hall thruster plasmas reveals a plasma-sheath instability manifesting itself as a rearrangement of the plasma sheath near the thruster channel walls accompanied by a sudden change of many discharge parameters. The instability develops when the sheath current as a function of the sheath voltage is in the negative conductivity regime. The major part of the sheath current is produced by beams of secondary electrons counter-streaming between the walls. The negative conductivity is the result of nonlinear dependence of beam-induced secondary electron emission on the plasma potential. The intensity of such emission is defined by the beam energy. The energy of the beam in crossed axial electric and radial magnetic fields is a quasi-periodical function of the phase of cyclotron rotation, which depends on the radial profile of the potential and the thruster channel width. There is a discrete set of stability intervals determined by the final phase of the cyclotron rotation of secondary electrons. As a result, a small variation of the thruster channel width may result in abrupt changes of plasma parameters if the plasma state jumps from one stability interval to another.

  1. The physics design of magnet in 14 MeV cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The 14 MeV, 400 μA compact cyclotron is under construction at China Institute of Atomic Energy (CIAE). The design of main magnet and the result of beam dynamics in the cyclotron will be described in this paper, including the choice of main parameters of magnet, the method of shimming isochronous field in the compact cyclotron and optimization of the magnetic field in central region. The beam will be accelerated to 14.6 MeV by optimizing the magnet structure.

  2. Intelligent Low-level RF System by Non-destructive Beam Monitoring Device for Cyclotrons

    CERN Document Server

    Malafeh, M S Sharifi Asadi; Afarideh, H; Chai, J S

    2015-01-01

    The project of a10MeV PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work Intelligent Low Level Radio Frequency Circuit or ILLRF suitable for Most of the AVF cyclotron accelerators was designed by the beam monitoring device and narrow band tunable band-pass filter. In this design, for the RF phase detection does not need to signal processing by microcontroller

  3. Fundamental ion cyclotron resonance heating of JET deuterium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krasilnikov, A. V. [Troitsk Institute of Nuclear Physics (TRINITI), Russia; Van Eester, D. [Laboratory for Plasma Physics-ERM/KMS (LPP-ERM/KMS), Brussels, Belgium; Lerche, E. [Laboratory for Plasma Physics-ERM/KMS (LPP-ERM/KMS), Brussels, Belgium; Ongena, J. [Laboratory for Plasma Physics-ERM/KMS (LPP-ERM/KMS), Brussels, Belgium; Amosov, V. N. [Troitsk Institute of Nuclear Physics (TRINITI), Russia; Biewer, Theodore M [ORNL; Bonheure, G. [Laboratory for Plasma Physics-ERM/KMS (LPP-ERM/KMS), Brussels, Belgium; Crombe, K. [Ghent University, Belgium; Ericsson, G. [Uppsala University, Uppsala, Sweden; Esposito, Basilio [ENEA, Frascati; Giacomelli, L. [Uppsala University, Uppsala, Sweden; Hellesen, C. [Uppsala University, Uppsala, Sweden; Hjalmarsson, A. [Uppsala University, Uppsala, Sweden; Jachmich, S. [EURATOM / UKAEA, UK; Kallne, J. [Uppsala University, Uppsala, Sweden; Kaschuck, Yu A [Troitsk Institute of Nuclear Physics (TRINITI), Russia; Kiptily, V. [EURATOM / UKAEA, UK; Leggate, H. [EURATOM / UKAEA, UK; Mailloux, J. [EURATOM / UKAEA, UK; Marocco, D. [ENEA, Frascati; Mayoral, M.-L. [EURATOM / UKAEA, UK; Popovichev, S. [EURATOM / UKAEA, UK; Riva, M. [ENEA, Frascati; Santala, M. [EURATOM / UKAEA, UK; Stamp, M. F. [EURATOM / UKAEA, UK; Vdovin, V. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Walden, A. [EURATOM / UKAEA, UK

    2009-03-01

    Radio frequency heating of majority ions is of prime importance for understanding the basic role of auxiliary heating in the activated D T phase of ITER. Majority deuterium ion cyclotron resonance heating (ICRH) experiments at the fundamental cyclotron frequency were performed in JET. In spite of the poor antenna coupling at 25 MHz, this heating scheme proved promising when adopted in combination with D neutral beam injection (NBI). The effect of fundamental ICRH of a D population was clearly demonstrated in these experiments: by adding ~25% of heating power the fusion power was increased up to 30 50%, depending on the type of NBI adopted. At this power level, the ion and electron temperatures increased from Ti ~ 4.0 keV and Te ~ 4.5 keV (NBI-only phase) to Ti ~ 5.5 keV and Te ~ 5.2 keV (ICRH + NBI phase), respectively. The increase in the neutron yield was stronger when 80 keV rather than 130 keV deuterons were injected in the plasma. It is shown that the neutron rate, the diamagnetic energy and the electron as well as the ion temperature scale roughly linearly with the applied RF power. A synergistic effect of the combined use of ICRF and NBI heating was observed: (i) the number of neutron counts measured by the neutron camera during the combined ICRF + NBI phases of the discharges exceeded the sum of the individual counts of the NBI-only and ICRF-only phases; (ii) a substantial increase in the number of slowing-down beam ions was detected by the time of flight neutron spectrometer when ICRF power was switched on; (iii) a small D subpopulation with energies slightly above the NBI launch energy was detected by the neutral particle analyzer and -ray spectroscopy.

  4. Response of thermal ions to electromagnetic ion cyclotron waves

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.J. [Johns Hopkins Univ., Laurel, MD (United States); Fuselier, S.A. [Lockheed Palo Alto Research Lab., CA (United States)

    1994-10-01

    Electromagnetic ion cyclotron waves generated by 10-50 keV protons in the Earth`s equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. The authors examine H{sup +} and He{sup +} distribution functions from {approx} 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicularly heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90{degrees} pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He{sup +} temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He{sup +} ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He{sup +} distributions are consistent with a gyroresonant interaction off the equator. The concentration of He{sup +} relative to H{sup +} is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He{sup +} accounts for the apparent increase in relative He{sup +} concentration by increasing the proportion of He{sup +} detected by the ion instrument. 35 refs., 8 figs., 1 tab.

  5. Conceptual design of CFETR electron cyclotron wave system

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yunying, E-mail: yytang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031, Anhui (China); University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, Anhui (China); Wang, Xiaojie; Liu, Fukun; Zhang, Liyuan; Wei, Wei; Xu, Handong; Xu, Weiye; Wu, Dajun; Feng, Jianqiang [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031, Anhui (China)

    2015-05-15

    Highlights: • The conceptual design of 170 GHz/20 MW electron cyclotron wave system was introduced. • The layout of RF sources was given. • The design and layout of transmission lines were shown and series of microwave components were introduced. • The structure of launcher was described in detail. • By the optic calculation and optimization of RF propagation inside the launcher, the quasi-optical parameters for launcher design were given. And then temperature distribution and thermal-stress of the injection mirror were analyzed. - Abstract: China Fusion Engineering Test Reactor (CFETR) is a test tokamak which is built for magnetically confined fusion plasma experiments. The electron cyclotron (EC) wave system of CFETR is designed to inject 20 MW RF power into the plasma for heating and current drive (H&CD) applications. The EC wave system consists of RF sources, twenty transmission lines (TLs) and one equatorial launcher. RF sources contain twenty gyrotrons with the output power 1 MW. There are series of microwave components distributed along the TL and the percentage of power losses of each TL is about 8.7%. In the equatorial launcher, five RF beams are injected into one focusing mirror and then reflected to the plasma via one injection mirror. The focusing mirror is spherical to focus Gaussian beam and the injection mirror which is flat can steer in the toroidal direction. After optic calculation and optimization, all the quasi-optical parameters for launcher design are given. Combining with the thermal stress analysis, the chosen inner diameter of water channel of injection mirror is 12 mm and the suggested water velocity is 3 m/s.

  6. Electrostatic electron cyclotron instabilities near the upper hybrid layer due to electron ring distributions

    Science.gov (United States)

    Eliasson, B.; Speirs, D. C.; Daldorff, L. K. S.

    2016-09-01

    A theoretical study is presented of the electrostatic electron cyclotron instability involving Bernstein modes in a magnetized plasma. The presence of a tenuous thermal ring distribution in a Maxwellian plasma decreases the frequency of the upper hybrid branch of the electron Bernstein mode until it merges with the nearest lower branch with a resulting instability. The instability occurs when the upper hybrid frequency is somewhat above the third, fourth, and higher electron cyclotron harmonics, and gives rise to a narrow spectrum of waves around the electron cyclotron harmonic nearest to the upper hybrid frequency. For a tenuous cold ring distribution together with a Maxwellian distribution an instability can take place also near the second electron cyclotron harmonic. Noise-free Vlasov simulations are used to assess the theoretical linear growth-rates and frequency spectra, and to study the nonlinear evolution of the instability. The relevance of the results to laboratory and ionospheric heating experiments is discussed.

  7. High performance computation on beam dynamics problems in high intensity compact cyclotrons

    Institute of Scientific and Technical Information of China (English)

    ADELMANN; Andreas

    2011-01-01

    This paper presents the research progress in the beam dynamics problems for future high intensity compact cyclotrons by utilizing the state-of-the-art high performance computation technology. A "Start-to-Stop" model, which includes both the interaction of the internal particles of a single bunch and the mutual interaction of neighboring multiple bunches in the radial direction, is established for compact cyclotrons with multi-turn extraction. This model is then implemented in OPAL-CYCL, which is a 3D object-oriented parallel code for large scale particle simulations in cyclotrons. In addition, to meet the running requirement of parallel computation, we have constructed a small scale HPC cluster system and tested its performance. Finally, the high intensity beam dynamics problems in the 100 MeV compact cyclotron, which is being constructed at CIAE, are studied using this code and some conclusions are drawn.

  8. Design of Spiral Inflector and Central Region for a Medical Cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    CYCIAE-14 is a medical cyclotron designed to accelerate H- ions and extract protons, and it adopts the external ion source and axial injection line. The spiral inflector and the central region are the important

  9. Cyclotron-based nuclear science. Progress report, April 1, 1979-March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Research at the cyclotron institute is summarized. These major areas are covered: nuclear structure; nuclear reactions and scattering; polarization studies; interdisciplinary nuclear science; instrumentation and systems development; and publications. (GHT)

  10. Determination of Magnet Specification of 13 MeV Proton Cyclotron Based on Opera 3D

    Directory of Open Access Journals (Sweden)

    Taufik

    2014-08-01

    Full Text Available The magnet is one of the main components of a cyclotron, used to form a circular particle beam trajectories and to provide focusing of the beam. To support the mastery of 13-MeV proton cyclotron technologies, cyclotron magnet design must be done to satisfy cyclotron magnet requirements. This research was conducted by studying important parameters in designing the cyclotron magnet which is then used to determine the design requirements. The magnet design was based on the results of a 3D simulation using Opera 3D software. Opera 3D is a software developed by Cobham plc to solve physical problems in 3D such as magnetostatic using finite element methods. The simulation started by drawing a 3D model of the magnet using a modeler, followed by magnetic field calculations by Tosca module in the Opera 3D software. Simulation results were analyzed with the Genspeo software to determine whether the parameters of the cyclotron magnet have met design requirements. The results indicate that the magnet design satisfied the cyclotron magnet design requirement, that B in the median plane of the magnetic pole approached the isochronous curve, providing axial and radial focusing beam, crossing the resonance line at vr = 1 when the particle energy is low and the particle energy is more than 13 MeV, and lead to small enough phase shift of about 13°. The dimension of the cyclotron magnet is 1.96 m × 1.30 m × 1.21 m; its weight is 17.3 ton; its coil current is 88,024 ampere-turn; its center magnetic field is 1.27479 T; its maximum magnetic field is 1.942116 T; its minimum magnetic field is 0.7689 T; its valley gap is 120 mm; its hill gaps are 40 to 50.78 mm; and its hill angles are 35° to 44°.to 44°

  11. Optically detected cyclotron resonance in a single GaAs/AlGaAs heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Gregor

    2011-09-23

    Optically detected far-infrared cyclotron resonance (FIR-ODCR) in GaAs/AlGaAs HJs is interpreted in the frame of an exciton-dissociation mechanism. It is possible to explain the ODR mechanism by an exciton drag, mediated by ballistically propagating phonons. Furthermore, very narrow resonances are presented and realistic electron mobility values can be calculated. The exceptionally narrow ODCRs allow to measure conduction-band nonparabolicity effects and resolve satellite resonances, close to the main cyclotron resonance line.

  12. Bi-directional Alfv\\'en Cyclotron Instabilities in the Mega-Amp Spherical Tokamak

    CERN Document Server

    Sharapov, S E; Akers, R; Ayed, N Ben; Cecconello, M; Cook, J W C; Cunningham, G; Verwichte, E; Tea, the MAST

    2014-01-01

    Alfv\\'en cyclotron instabilities excited by velocity gradients of energetic beam ions were investigated in MAST experiments with super-Alfv\\'enic NBI over a wide range of toroidal magnetic fields from ~0.34 T to ~0.585 T. In MAST discharges with high magnetic field, a discrete spectrum of modes in the sub-cyclotron frequency range is excited toroidally propagating counter to the beam and plasma current (toroidal mode numbers n < 0).

  13. Infra red active modes due to coupling of cyclotron excitation and LO phonons in polar semiconductor

    Science.gov (United States)

    Agrawal, Ratna; Dubey, Swati; Ghosh, S.

    2013-06-01

    Effects of free carrier concentration, external magnetic field and Callen effective charge on infra red active modes in a polar semiconductor have been analytically investigated using simple harmonic oscillator model. Callen effective charge considerably enhances reflectivity and shifts minima towards lower values of energy. Presence of magnetic field leads towards the coupling of collective cyclotron excitations with LO phonon giving rise to maximum reflectivity whereas cyclotron resonance absorption results into minimum reflectivity.

  14. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Kalvas, T.; Tarvainen, O.; Komppula, J.; Koivisto, H.; Tuunanen, J. [University of Jyväskylä, Department of Physics (Finland); Potkins, D.; Stewart, T.; Dehnel, M. P. [D-Pace, Inc., Nelson, B.C. Canada (Canada)

    2015-04-08

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H{sup −} and D{sup −} beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H{sup −} (2.6 mA/cm{sup 2}), which is the intensity needed at injection for production of 200 µA H{sup +} with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed.

  15. Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, June Young, E-mail: beacoolguy@snu.ac.kr; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr; Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-02-15

    The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H{sup −} ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H{sup −} ion generation in volume-produced negative hydrogen ion sources.

  16. First Signal on the Cryogenic Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer

    Science.gov (United States)

    Lin, Cheng; Mathur, Raman; Aizikov, Kostantin; O'Connor, Peter B.

    2009-01-01

    The construction and achievement of the first signal on a cryogenic Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) are reported here, demonstrating proof-of-concept of this new instrument design. Building the FTICR cell into the cold bore of a superconducting magnet provided advantages over conventional warm bore design. At 4.2 K, the vacuum system cryopumps itself, thus removing the requirement for a large bore to achieve the desired pumping speed for maintaining base pressure. Furthermore, because the bore diameter has been reduced, the amount of magnet wire needed to achieve high field and homogeneity was also reduced, greatly decreasing the cost/Tesla of the magnet. The current instrument implements an actively shielded 14-Tesla magnet of vertical design with an external matrix assisted laser desorption/ionization (MALDI) source. The first signal was obtained by detecting the laser desorbed/ionized (LDI) C60+• ions, with the magnet at 7 Tesla, unshimmed, and the preamplifier mounted outside of the vacuum chamber at room temperature. A subsequent experiment done with the magnet at 14 Tesla and properly shimmed produced a C60 spectrum showing ∼350,000 resolving power at m/z ∼720. Increased magnetic field strength improves many FTMS performance parameters simultaneously, particularly mass resolving power and accuracy. PMID:17931882

  17. H- ion production in electron cyclotron resonance driven multicusp volume source

    Science.gov (United States)

    Ivanov, A. A.; Rouillé, C.; Bacal, M.; Arnal, Y.; Béchu, S.; Pelletier, J.

    2004-05-01

    We have used the existing magnetic multicusp configuration of the large volume H- source Camembert III to confine the plasma created by seven elementary multidipolar electron cyclotron resonance (ECR) sources, operating at 2.45 GHz. We varied the pressure from 1 to 4 mTorr, while the total power of the microwave generator was varied between 500 W and 1 kW. We studied the plasma created by this system and measured the various plasma parameters, including the density and temperature of the negative hydrogen ions which are compared to the data obtained in a chamber with elementary ECR sources without multicusp magnetic confinement. The electron temperature is lower than that obtained with similar elementary sources in the absence of the magnetic multicusp field. We found that at pressures in the range from 2 to 4 mTorr and microwave power of up to 1 kW, the electron temperature is optimal for H- ion production (0.6-0.8 eV). This could indicate that the multicusp configuration effectively traps the fast electrons produced by the ECR discharge.

  18. High energy fast neutrons from the Harwell variable energy cyclotron. I. Physical characteristics.

    Science.gov (United States)

    Goodhead, D T; Berry, R J; Bance, D A; Gray, P; Stedeford, J B

    1977-10-01

    A high energy fast neutron beam potentially suitable for radiotherapy was built at the Harwell variable energy cyclotron. The beam line is described and results are given of physical measurements on the fast neutron beams produced by 42 MeV deuterons on thick (4 mm) and thin (2 mm) beryllium targets. With 20 muA beam current the entrance dose rate in a phantom 150 cm from the target was about 130 rad min-1 with the thick target and about 60 rad min-1 with the thin target. Therefore, it is possible to use both the thin target and the relatively large target-skin distance of 150 cm to improve depth dose for radiotherapy or radiobiology. With this arrangement the dose rate decreased to 50% at depths in the phantom of 11.3-15.4 cm, depending on the field size. The use of primarily hydrogenous materials for shielding and collimation provided beam edge definition similar to that of 60Co teletherapy units, and off-axis radiation levels of approximately 1% which compare favorably with 14 MeV deuteron-tritium generators. The copper backing of the thin target became highly radioactive and an alterative material may be preferable. Biologic characteristics of the beam are described in a companion paper.

  19. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook, E-mail: mswon@kbsi.re.kr [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of)

    2016-02-15

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  20. Seminar | Development of a PET Cyclotron Based Irradiation Setup for Proton Radiobiology | 25 June

    CERN Multimedia

    2015-01-01

    Sharif Hasan Mahmoud Ghithan, a Palestinian postdoctoral researcher at the Laboratory of Instrumentation and Experimental Particle Physics (Portugal), will discuss the development of an out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinarily produces radioisotopes for Positron Emission Tomography (PET). The speaker will also discuss possible future use of the results of this research for CERN’s new LEIR biomedical facility. The seminar will be proposed in the framework of a meeting of the CERN Medical Applications Study Group.   25 June, 2 p.m. to 3 p.m. Room 13-2-005 ABSTRACT: In this new irradiation setup, the current from a 20 mm thick aluminum transmission foil is read out by homemade transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setu...

  1. Is Cyclotron Maser Emission in Solar Flares Driven by a Horseshoe Distribution?

    CERN Document Server

    Melrose, D B

    2016-01-01

    Since the early 1980s, decimetric spike bursts have been attributed to electron cyclotron maser emission (ECME) by the electrons that produce hard X-ray bursts as they precipitate into the chromosphere in the impulsive phase of a solar flare. Spike bursts are regarded as analogous to the auroral kilometric radiation (AKR), which is associated with the precipitation of auroral electrons in a geomagnetic substorm. Originally, a loss-cone-driven version of ECME, developed for AKR, was applied to spike bursts, but it is now widely accepted that a different, horseshoe-driven, version of EMCE applies to AKR. We explore the implications of the assumption that horseshoe-driven ECME also applies to spike bursts. We develop a 1D model for the acceleration of the electrons by a parallel electric field, and show that under plausible assumptions it leads to a horseshoe distribution of electrons in a solar flare. A second requirement for horseshoe-driven ECME is an extremely low plasma density, referred to as a density cav...

  2. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis

    KAUST Repository

    Hourani, Nadim

    2013-10-01

    Rationale Polycyclic aromatic sulfur heterocycles (PASHs) are detrimental species for refining processes in petroleum industry. Current mass spectrometric Methods that determine their composition are often preceded by derivatization and dopant addition approaches. Different ionization Methods have different impact on the molecular assignment of complex PASHs. The analysis of such species under atmospheric pressure chemical ionization (APCI) is still considered limited due to uncontrolled ion generation with low- and high-mass PASHs. Methods The ionization behavior of a model mixture of five selected PASH standards was investigated using an APCI source with nitrogen as the reagent gas. A complex thiophenic fraction was separated from a vacuum gas oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same ionization pattern was observed for the real thiophenic sample. It was found that S1 class species were the major sulfur-containing species found in the VGO sample. These species indicated the presence of alkylated benzothiophenic (BT), dibenzothiophenic (DBT) and benzonaphthothiophenic (BNT) series that were detected by APCI-FTICR MS. CONCLUSIONS This study provides an established APCI-FTICR MS method for the analysis of complex PASHs. PASHs were detected without using any derivatization and without fragmentation. The method can be used for the analysis of S-containing crude oil samples. © 2013 John Wiley & Sons, Ltd.

  3. Evaluation of thermal neutron irradiation field using a cyclotron-based neutron source for alpha autoradiography.

    Science.gov (United States)

    Tanaka, H; Sakurai, Y; Suzuki, M; Masunaga, S; Mitsumoto, T; Kinashi, Y; Kondo, N; Narabayashi, M; Nakagawa, Y; Watanabe, T; Fujimoto, N; Maruhashi, A; Ono, K

    2014-06-01

    It is important to measure the microdistribution of (10)B in a cell to predict the cell-killing effect of new boron compounds in the field of boron neutron capture therapy. Alpha autoradiography has generally been used to detect the microdistribution of (10)B in a cell. Although it has been performed using a reactor-based neutron source, the realization of an accelerator-based thermal neutron irradiation field is anticipated because of its easy installation at any location and stable operation. Therefore, we propose a method using a cyclotron-based epithermal neutron source in combination with a water phantom to produce a thermal neutron irradiation field for alpha autoradiography. This system can supply a uniform thermal neutron field with an intensity of 1.7×10(9) (cm(-2)s(-1)) and an area of 40mm in diameter. In this paper, we give an overview of our proposed system and describe a demonstration test using a mouse liver sample injected with 500mg/kg of boronophenyl-alanine.

  4. Possible Scheme of the Analyzing Part of a Cyclotron Injection Beamline with Higher Energy

    CERN Document Server

    Kazarinov, Nikolay; Stetson, Jeffry W

    2005-01-01

    The ion beam produced with an ECR ion source (ECRIS) with an extraction voltage of 30 kV may be additionally accelerated using a negative voltage of -30 kV applied to the last electrode of the extraction system, connected to the beamline biased to the same -30 kV potential. In this way the kinetic energy of the beam is increased to 60 keV/q, decreasing to half the space charge effect on the beam emittance. Using a large gap analyzing magnet placed right after the ECRIS and no focusing element, the transmission is still close to 100%. The voltage on the beamline must be kept constant from the ECRIS till the image focal plane of the analyzing magnet where the full separation of the beam charge states is achieved. An insulator break separates the biased beamline from the downstream section, which is at zero potential. Passing through this section of the beamline, the ion beam is decelerated to 30 keV/q, the energy necessary for the injection in the cyclotron. In order to prevent the increase of the beam divergen...

  5. Development of target system for production of I-123 in Cyclotron 30

    Energy Technology Data Exchange (ETDEWEB)

    You, Jae Jun; Jung, Hyun Woo; Kim, Byung Il and others

    2013-10-15

    This work was mainly focused on the development of target system for production of I-123 in Cyclotron 30. We have analyzed the original I-123 target system which is constructed by company in Canada and designed with solid works 3D CAD program. We have designed newly by changing cooling method of straight line into spiral line. We look forward to increase the cooling efficiency by decreasing water resistance inside the target chamber. The target system also is made by modular method which is possible to change target quickly. So, the radiation exposure to engineers when exchanging target will be minimized. Only KIRAMS can produce I-123 radiopharmaceuticals in Korea. So we need to acquire techniques not only supplementing drawbacks of the existing target, but also minimizing the radiation exposure during maintenance of target. The new water cooling system will hold the pressure of the target constantly. This will enhance the yield of I-123. The first development of Xe-124 target in Korea will result in more distributed environment of I-123 to diagnose thyroid gland cancer.

  6. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    Science.gov (United States)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  7. Beam imaging in the injection line of the INFN-LNS superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Nicolosi, Dario, E-mail: dario.nicolosi@lns.infn.it; Cosentino, Luigi; Mascali, David; Pappalardo, Alfio; Castro, Maurizio; Celona, Luigi; Marchetta, Carmelo; Marletta, Salvatore; Maugeri, Antonio; Rifuggiato, Danilo; Seminara, Angelo; Gammino, Santo [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy)

    2016-02-15

    A cheap and efficient diagnostic system for beam monitoring has been recently developed at INFN-LNS in Catania. It consists of a high sensitivity CCD camera detecting the light produced by an ion beam hitting the surface of a scintillating screen and a frame grabber for image acquisition. A scintillating screen, developed at INFN-LNS and consisting of a 2 μm BaF{sub 2} layer evaporated on an aluminium plate, has been tested by using {sup 20}Ne and {sup 40}Ar beams in the keV energy range. The CAESAR ECR ion source has been used for investigating the influence of the frequency and magnetic field tuning effects, the impact of the microwave injected power, and of the focusing solenoids along the low energy beam transport on the beam shape and current. These tests will allow to better understand the interplay between the plasma and beam dynamics and, moreover, to improve the transport efficiency along the low energy beam line and the matching with the superconducting cyclotron, particularly relevant in view of the expected upgrade of the machine.

  8. Production of copper-64 and gallium-68 with a medical cyclotron using liquid targets

    Science.gov (United States)

    Alves, F.; Alves, V. H. P.; Do Carmo, S. J. C.; Neves, A. C. B.; Silva, M.; Abrunhosa, A. J.

    2017-06-01

    This work describes the production of two clinically relevant metal radioisotopes 64Cu and 68Ga with a medical cyclotron by the irradiation of liquid targets. New results are presented for the implementation of this methodology in a fully automated system, using commercially available equipment. Liquid target solutions containing enriched 64Ni and 68Zn were loaded, bombarded and transferred to synthesis modules where a purified solution containing the desired radiometal is obtained and can then be used to further radiolabeling within only one hour after End-Of-Bombardment (EOB). Typical production runs using enriched material lead to the production of 5 GBq and 6 GBq (0.14 MBq/(μAh ṡ mg) and 1.5 MBq/(μAh ṡ mg)) of 64Cu and 68Ga; although the technique can be used to obtain up to 25 GBq and 40 GBq, respectively, by simply scaling up the amount of the enriched material. Purified solutions containing 64Cu and 68Ga were obtained within 30 min after EOB and used to produce 64Cu-ATSM and 68Ga-DOTA-NOC, respectively, with quality parameters suitable for human use.

  9. Extraction and diagnostic systems of the CIME cyclotron for SPIRAL project; Systemes d`ejection et de diagnostics du cyclotron CIME du projet SPIRAL

    Energy Technology Data Exchange (ETDEWEB)

    Bibet, D.; Bourgarel, M.P. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Laune, B.; Malard, M.; Mormiche, M.; Serafini, A.; Szott, Ph. [Services Techniques, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-11-01

    The extraction of the CIME cyclotron of the SPIRAL R.I.B. facility is composed of two electrostatic deflectors followed by two magnetostatic channels. For the diagnostics, a radial probe carrying a plastic scintillator for the radioactive beams, has been built, as well as dedicated probes in front of each of the channels. A set of 15 electrostatic pick up probes will enable the phase tuning for the stable beams. All these elements have been built and fully tested at the IPN, prior to there final installation on the CIME cyclotron. (authors) 4 figs.

  10. Evaluation of the latent radiation dose from the activated radionuclides in a cyclotron vault

    Science.gov (United States)

    Kim, Hyunduk; Cho, Gyuseong; Kim, Sun A.; Kang, Bo Sun

    2015-02-01

    The production of short-lived radioisotopes for the synthesis of radiopharmaceuticals typically takes advantage of a cyclotron that accelerates a proton beam up to a few tens of MeV. The number of cyclotrons has been continuously increasing since the first operation of the MC-50 for the production of radiopharmaceuticals at the Korea Institute of Radiological & Medical Sciences (KIRAMS) in 1986, and currently 35 cyclotrons are under operation throughout the nation. As the number of operating cyclotrons has increased, concerns about radiation safety for the persons who are working at the facilities and dwelling in the vicinity of the facilities are becoming important issues. Radiation that could emit a time-dependent dose was shown to exist in a cyclotron vault after its shutdown. The calculation of the latent radiation dose rate was performed by using the MCNPX and the FISPACT. The calculated results for the activated long-lived radioisotopes in the concrete wall and the structural components of the cyclotron facility were compared with the measured data that were obtained by using gamma-ray spectroscopy with a HPGe detector.

  11. Influence of injection beam emittance on beam transmission efficiency in a cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp; Kashiwagi, Hirotsugu; Miyawaki, Nobumasa; Yoshida, Ken-Ichi; Okumura, Susumu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    The JAEA AVF cyclotron accelerates various kinds of high-energy ion beams for research in biotechnology and materials science. Beam intensities of an ion species of the order of 10{sup −9}–10{sup −6} ampere are often required for various experiments performed sequentially over a day. To provide ion beams with sufficient intensity and stability, an operator has to retune an ion source in a short time. However, the beam intensity downstream of the cyclotron rarely increases in proportion to the intensity at the ion source. To understand the cause of this beam behavior, transmission efficiencies of a {sup 12}C{sup 5+} beam from an electron cyclotron resonance ion source to the cyclotron were measured for various conditions of the ion source. Moreover, a feasible region for acceleration in the emittance of the injection beam was clarified using a transverse-acceptance measuring system. We confirmed that the beam emittance and profile were changed depending on the condition of the ion source and that matching between the beam emittance and the acceptance of the cyclotron was degraded. However, after fine-tuning to improve the matching, beam intensity downstream of the cyclotron increased.

  12. Upstream proton cyclotron waves at Venus near solar maximum

    Science.gov (United States)

    Delva, M.; Bertucci, C.; Volwerk, M.; Lundin, R.; Mazelle, C.; Romanelli, N.

    2015-01-01

    magnetometer data of Venus Express are analyzed for the occurrence of waves at the proton cyclotron frequency in the spacecraft frame in the upstream region of Venus, for conditions of rising solar activity. The data of two Venus years up to the time of highest sunspot number so far (1 Mar 2011 to 31 May 2012) are studied to reveal the properties of the waves and the interplanetary magnetic field (IMF) conditions under which they are observed. In general, waves generated by newborn protons from exospheric hydrogen are observed under quasi- (anti)parallel conditions of the IMF and the solar wind velocity, as is expected from theoretical models. The present study near solar maximum finds significantly more waves than a previous study for solar minimum, with an asymmetry in the wave occurrence, i.e., mainly under antiparallel conditions. The plasma data from the Analyzer of Space Plasmas and Energetic Atoms instrument aboard Venus Express enable analysis of the background solar wind conditions. The prevalence of waves for IMF in direction toward the Sun is related to the stronger southward tilt of the heliospheric current sheet for the rising phase of Solar Cycle 24, i.e., the "bashful ballerina" is responsible for asymmetric background solar wind conditions. The increase of the number of wave occurrences may be explained by a significant increase in the relative density of planetary protons with respect to the solar wind background. An exceptionally low solar wind proton density is observed during the rising phase of Solar Cycle 24. At the same time, higher EUV increases the ionization in the Venus exosphere, resulting in higher supply of energy from a higher number of newborn protons to the wave. We conclude that in addition to quasi- (anti)parallel conditions of the IMF and the solar wind velocity direction, the higher relative density of Venus exospheric protons with respect to the background solar wind proton density is the key parameter for the higher number of

  13. Status of the ITER Ion Cyclotron H and CD system

    Energy Technology Data Exchange (ETDEWEB)

    Lamalle, P., E-mail: philippe.lamalle@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Beaumont, B.; Kazarian, F.; Gassmann, T. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Agarici, G. [Fusion for Energy, Carrer Josep Pla 2, Torres Diagonal Litoral Edificio B3, 08019 Barcelona (Spain); Ajesh, P. [ITER India, Institute for Plasma Research, Bhat, Gandhinagar 382424, Gujarat (India); Alonzo, T. [Solution F, Allée du Verdon, 13770 Venelles (France); Arambhadiya, B. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Argouarch, A. [CEA Cadarache, IRFM, F-13108 St-Paul-lez-Durance (France); Bamber, R. [EURATOM/CCFE Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Berger-By, G.; Bernard, J.-M.; Brun, C. [CEA Cadarache, IRFM, F-13108 St-Paul-lez-Durance (France); Carpentier, S. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Clairet, F.; Colas, L.; Courtois, X. [CEA Cadarache, IRFM, F-13108 St-Paul-lez-Durance (France); Davis, A. [EURATOM/CCFE Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Dechelle, C.; Doceul, L. [CEA Cadarache, IRFM, F-13108 St-Paul-lez-Durance (France); and others

    2013-10-15

    Highlights: ► We summarize the progress and outstanding issues in the development of the ITER Ion Cyclotron Heating and Current Drive (IC H and CD) system. ► The system is designed to robustly couple 20 MW in quasi-CW operation for a broad range of plasma scenarios, and is upgradeable to up to 40 MW. ► The design is rendered challenging by the wide spectrum of requirements and interface constraints to which it is subject. ► R and D is ongoing to validate key antenna components, and to qualify the radio-frequency (RF) sources and the transmission and matching components. ► Intensive numerical modeling and experimental studies on antenna mock-ups have been conducted to validate and optimize the RF design. -- Abstract: The ongoing design of the ITER Ion Cyclotron Heating and Current Drive system (20 MW, 40–55 MHz) is rendered challenging by the wide spectrum of requirements and interface constraints to which it is subject, several of which are conflicting and/or still in a high state of flux. These requirements include operation over a broad range of plasma scenarios and magnetic fields (which prompts usage of wide-band phased antenna arrays), high radio-frequency (RF) power density at the first wall (and associated operation close to voltage and current limits), resilience to ELM-induced load variations, intense thermal and mechanical loads, long pulse operation, high system availability, efficient nuclear shielding, high density of antenna services, remote-handling ability, tight installation tolerances, and nuclear safety function as tritium confinement barrier. R and D activities are ongoing or in preparation to validate critical antenna components (plasma-facing Faraday screen, RF sliding contacts, RF vacuum windows), as well as to qualify the RF power sources and the transmission and matching components. Intensive numerical modeling and experimental studies on antenna mock-ups have been conducted to validate and optimize the RF design. The paper

  14. The new bern PET cyclotron, its research beam line, and the development of an innovative beam monitor detector

    Science.gov (United States)

    Braccini, Saverio

    2013-04-01

    The new Bern cyclotron laboratory aims at industrial radioisotope production for PET diagnostics and multidisciplinary research by means of a specifically conceived beam transfer line, terminated in a separate bunker. In this framework, an innovative beam monitor detector based on doped silica and optical fibres has been designed, constructed, and tested. Scintillation light produced by Ce and Sb doped silica fibres moving across the beam is measured, giving information on beam position, shape, and intensity. The doped fibres are coupled to commercial optical fibres, allowing the read-out of the signal far away from the radiation source. This general-purpose device can be easily adapted for any accelerator used in medical applications and is suitable either for low currents used in hadrontherapy or for currents up to a few μA for radioisotope production, as well as for both pulsed and continuous beams.

  15. The new bern PET cyclotron, its research beam line, and the development of an innovative beam monitor detector

    Energy Technology Data Exchange (ETDEWEB)

    Braccini, Saverio [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2013-04-19

    The new Bern cyclotron laboratory aims at industrial radioisotope production for PET diagnostics and multidisciplinary research by means of a specifically conceived beam transfer line, terminated in a separate bunker. In this framework, an innovative beam monitor detector based on doped silica and optical fibres has been designed, constructed, and tested. Scintillation light produced by Ce and Sb doped silica fibres moving across the beam is measured, giving information on beam position, shape, and intensity. The doped fibres are coupled to commercial optical fibres, allowing the read-out of the signal far away from the radiation source. This general-purpose device can be easily adapted for any accelerator used in medical applications and is suitable either for low currents used in hadrontherapy or for currents up to a few {mu}A for radioisotope production, as well as for both pulsed and continuous beams.

  16. Isochronous Cyclotron Closed Equilibrium Orbit Calculation Program Description

    CERN Document Server

    Kian, I N; Tarashkevich, R

    2003-01-01

    The Equilibrium Orbit Research Program - EORP, written in C++ with the use of Visual C++ is described. The program is intended for the calculation of the particle rotation frequency and particle kinetic energy in the closed equilibrium orbits of an isochronous cyclotron, where the closed equilibrium orbits are described through the radius and particle momentum angle: r_{eo}(\\theta) and \\varphi_{p}(\\theta). The program algorithm was developed on the basis of articles, lecture notes and original analytic calculations. The results of calculations by the EORP were checked and confirmed by using the results of calculations by the numerical methods. The discrepancies between the EORP results and the numerical method results for the calculations of the particle rotation frequency and particle kinetic energy are within the limits of \\pm1\\cdot10^{-4}. The EORP results and the numerical method results for the calculations of r_{eo}(\\theta) and \\varphi_{p}(\\theta) practically coincide. All this proves the accuracy of ca...

  17. Electron cyclotron plasma startup in the GDT experiment

    Science.gov (United States)

    Yakovlev, D. V.; Shalashov, A. G.; Gospodchikov, E. D.; Solomakhin, A. L.; Savkin, V. Ya.; Bagryansky, P. A.

    2017-01-01

    We report on a new plasma startup scenario in the gas dynamic trap (GDT) magnetic mirror device. The primary 5 MW neutral beam injection (NBI) plasma heating system fires into a sufficiently dense plasma target (‘seed plasma’), which is commonly supplied by an arc plasma generator. In the reported experiments, a different approach to seed plasma generation is explored. One of the channels of the electron cyclotron resonance (ECR) heating system is used to ionize the neutral gas and build up the density of plasma to a level suitable for NBI capture. After a short transition of approximately 1 ms the discharge becomes essentially similar to a standard one initiated by the plasma gun. This paper presents the discharge scenario and experimental data on the seed plasma evolution during ECRH, along with the dependencies on incident microwave power, magnetic configuration and pressure of a neutral gas. The characteristics of the consequent high-power NBI discharge are studied and differences from the conventional scenario are discussed. A theoretical model describing the ECR breakdown and the seed plasma accumulation in a large-scale mirror trap is developed on the basis of the GDT experiment.

  18. Electron cyclotron emission measurements at the stellarator TJ-K

    Energy Technology Data Exchange (ETDEWEB)

    Sichardt, Gabriel; Ramisch, Mirko [Institut fuer Grenzflaechenverfahrenstechnik und Plasmatechnologie, Universitaet Stuttgart (Germany); Koehn, Alf [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2016-07-01

    Electron temperature (T{sub e}) measurements in the magnetised plasmas of the stellarator TJ-K are currently performed by means of Langmuir probes. The use of these probes is restricted to relatively low temperatures and the measurement of temperature profiles requires the acquisition of the local current-voltage characteristics which limits strongly the sampling rate. As an alternative, T{sub e} can be measured using the electron cyclotron emission (ECE) that is generated by the gyration of electrons in magnetised plasmas. Magnetic field gradients in the plasma lead to a spatial distribution of emission frequencies and thus the measured intensity at a given frequency can be related to its point of origin. The T{sub e} dependence of the intensity then leads to a temperature profile along the line of sight for Maxwellian velocity distributions. A diagnostic system for T{sub e} measurements using ECE is currently being set up at TJ-K. When non-thermal electrons are present the emission spectrum changes dramatically. Therefore, the ECE can also be used to investigate the contribution of fast electrons to previously observed toroidal net currents in TJ-K. Simulations are used to examine the role of electron drift orbits in generating these currents.

  19. A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST

    Science.gov (United States)

    Liu, Yong; Stefan, Schmuck; Zhao, Hailin; John, Fessey; Paul, Trimble; Liu, Xiang; Zhu, Zeying; Zang, Qing; Hu, Liqun

    2016-12-01

    A Michelson interferometer, on loan from EFDA-JET (Culham, United Kingdom) has recently been commissioned on the experimental advanced superconducting tokamak (EAST, ASIPP, Hefei, China). Following a successful in-situ absolute calibration the instrument is able to measure the electron cyclotron emission (ECE) spectrum, from 80 GHz to 350 GHz in extraordinary mode (X-mode) polarization, with high accuracy. This allows the independent determination of the electron temperature profile from observation of the second harmonic ECE and the possible identification of non-Maxwellian features by comparing higher harmonic emission with numerical simulations. The in-situ calibration results are presented together with the initial measured temperature profiles. These measurements are then discussed and compared with other independent temperature profile measurements. This paper also describes the main hardware features of the diagnostic and the associated commissioning test results. supported by National Natural Science Foundation of China (Nos. 11405211, 11275233), and the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB106002, 2015GB101000), and the RCUK Energy Programme (No. EP/I501045), partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (NSFC: No. 11261140328)

  20. Polarization of electron cyclotron emission spectra in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Vries, P.C. de; Nagayama, Y.; Kawahata, K.; Inagaki, S.; Sasao, H. [National Inst. for Fusion Science, Toki, Gifu (Japan); Nagasaki, K.

    1999-07-01

    Electron cyclotron emission (ECE) can be used to determine the electron temperature profile in magnetized plasmas. The complex structure of the magnetic field configuration in the Large Helical Device (LHD), which has a large shear, complicates the analysis of the ECE spectrum. In a sheared magnetic field the propagation of X and O-mode polarization through the plasma are coupled, causing mode conversion and polarization rotation. Mode scrambling is also caused by wall reflections. In this report, this mode conversion in LHD is numerically analyzed. It was found that at low density mode conversion scrambles the ECE spectra. However, at higher density (n{sub eo} > 1.0{center_dot}10{sup 19} m{sup -3}) the polarization mode is found to rotate with the sheared magnetic field, yielding only a negligible mode conversion. Wall reflections are found to depolarize the ECE spectrum. Notwithstanding the LHD magnetic configuration, it is shown that temperature profiles could be revealed from the ECE spectra. (author)

  1. Electron-cyclotron plasma startup in the GDT experiment

    CERN Document Server

    Yakovlev, D V; Gospodchikov, E D; Solomakhin, A L; Savkin, V Ya; Bagryansky, P A

    2016-01-01

    The paper reports on a new plasma startup scenario in the Gas Dynamic Trap (GDT) magnetic mirror device. The primary 5 MW neutral beam injection (NBI) plasma heating system fires into a sufficiently dense plasma target ("seed plasma"), which is commonly supplied by an arc plasma generator. In the reported experiments, a different approach to seed plasma generation is explored. One of the channels of the electron cyclotron resonance (ECR) heating system is used to ionize the neutral gas and build up the density of plasma to a level suitable for NBI capture. After a short transition (about 1 ms) the discharge becomes essentially similar to a standard one initiated by the plasma gun. The paper presents the discharge scenario and experimental data on the seed plasma evolution during ECR heating, along with the dependencies on incident microwave power, magnetic configuration and pressure of a neutral gas. The characteristics of consequent high-power NBI discharge are studied and differences to the conventional sce...

  2. Current drive by electron cyclotron waves in stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Castejon, F.; Alejaldre, C.; Coarasa, J. A.

    1992-07-01

    In this paper we propose a method to estimate the induced current by Electron Cyclotron waves fast enough, from the numerical point of view, to be included in a ray-tracing code, and yet accounting for the complicated geometry of stellarators. Since trapped particle effects are particularly important in this Current Drive method and in stellarator magnetic configuration, they are considered by the modification they introduce in the current drive efficiency. Basically, the method consists of integrating the Fisch and Boozer relativistic efficiency, corrected with the effect of trapped particles, times the absorbed power per momentum interval. This one is calculated for a Maxwellian distribution function, assuming a nearly linear regime. The influence of impurities and of species which are not protons is studied, calculating the efficiency for plasmas with Zeff) - Finally, a numerical analysis particularized to TJ-II stellarator is presented. The absorbed power density is calculated by the ray tracing code RAYS, taking into account the actual microwave beam structure. (Author) 23 refs.

  3. ATLAS 10 GHz electron cyclotron resonance ion source upgrade project

    CERN Document Server

    Moehs, D P; Pardo, R C; Xie, D

    2000-01-01

    A major upgrade of the first ATLAS 10 GHz electron cyclotron resonance (ECR) ion source, which began operations in 1987, is in the planning and procurement phase. The new design will convert the old two-stage source into a single-stage source with an electron donor disk and high gradient magnetic field that preserves radial access for solid material feeds and pumping of the plasma chamber. The new magnetic-field profile allows for the possibility of a second ECR zone at a frequency of 14 GHz. An open hexapole configuration, using a high-energy-product Nd-Fe-B magnet material, having an inner diameter of 8.8 cm and pole gaps of 2.4 cm, has been adopted. Models indicate that the field strengths at the chamber wall, 4 cm in radius, will be 9.3 kG along the magnet poles and 5.6 kG along the pole gaps. The individual magnet bars will be housed in austenitic stainless steel, allowing the magnet housing within the aluminum plasma chamber to be used as a water channel for direct cooling of the magnets. Eight solenoid...

  4. Fourier transform ion cyclotron resonance mass spectrometry: a primer.

    Science.gov (United States)

    Marshall, A G; Hendrickson, C L; Jackson, G S

    1998-01-01

    This review offers an introduction to the principles and generic applications of FT-ICR mass spectrometry, directed to readers with no prior experience with the technique. We are able to explain the fundamental FT-ICR phenomena from a simplified theoretical treatment of ion behavior in idealized magnetic and electric fields. The effects of trapping voltage, trap size and shape, and other nonidealities are manifested mainly as perturbations that preserve the idealized ion behavior modified by appropriate numerical correction factors. Topics include: effect of ion mass, charge, magnetic field, and trapping voltage on ion cyclotron frequency; excitation and detection of ICR signals; mass calibration; mass resolving power and mass accuracy; upper mass limit(s); dynamic range; detection limit, strategies for mass and energy selection for MSn; ion axialization, cooling, and remeasurement; and means for guiding externally formed ions into the ion trap. The relation of FT-ICR MS to other types of Fourier transform spectroscopy and to the Paul (quadrupole) ion trap is described. The article concludes with selected applications, an appendix listing accurate fundamental constants needed for ultrahigh-precision analysis, and an annotated list of selected reviews and primary source publications that describe in further detail various FT-ICR MS techniques and applications.

  5. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    1967-01-10

    The past quarter has seen further progress in the solution of the problem of achieving a cyclotron which meets or exceeds the performance requirements. The magnet system, with the exception of the trim coils and their supplies, is all on order or about to be ordered, and a high confidence level exists that the system will meet all requirements. The rf system studies, nearly complete, have indicated that the solution chosen will meet the frequency requirements and will be within the power expected. The center studies, complete in the first phase, have resulted in a preliminary center design of the electrostatic focusing system and a design of the magnetic center which provides the required axial focusing. A high degree of cooperation on the center study programs between the U of M and CSF has efficiently yielded these results. The overall schedule continues to be maintained, and the program is expected to be completed on the 37-month schedule. For better control and greater visibility on schedule progress, two reference points have been selected as more immediate objectives. These are 17 July 1967 for the start of the magnet testing program and 2 October 1967 as the start of the rf high power tests. Each task involved is being analyzed with these dates in mind, and they appear to be reasonable.

  6. Producing Presences

    OpenAIRE

    Mandagará, Pedro

    2008-01-01

    Resenha de MENDES, Victor K.; ROCHA, João Cezar de Castro (Eds.). Producing Presences: branching out from Gumbrecht’s work. Dartmouth, Massachusetts: University of Massachusetts Dartmouth, 2007. (Adamastor book series, 2)

  7. The development of enabling technologies for producing active interrogation beams

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Thomas J. T.; Morgado, Richard E.; Wang, Tai-Sen F. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Vodolaga, B.; Terekhin, V. [All-Russia Scientific Research Institute of Technical Physics, Snezhinsk (Russian Federation); Onischenko, L. M.; Vorozhtsov, S. B.; Samsonov, E. V.; Vorozhtsov, A. S.; Alenitsky, Yu. G.; Perpelkin, E. E.; Glazov, A. A.; Novikov, D. L. [Joint Institute of Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Parkhomchuk, V.; Reva, V.; Vostrikov, V. [Budker Institute of Nuclear Physics (BINP), Av. Lavrent' ev, 630090 Novosibirsk (Russian Federation); Mashinin, V. A.; Fedotov, S. N.; Minayev, S. A. [Research Firm IFI, Moscow (Russian Federation)

    2010-10-15

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current ({approx}1 mA) and high-quality (emittance {approx}15 {pi}mm mrad; energy spread {approx}0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  8. The beam commissioning of BRIF and future cyclotron development at CIAE

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianjue, E-mail: tjzhang@ciae.ac.cn; Yang, Jianjun, E-mail: yangjianjun2000@tsinghua.org.cn

    2016-06-01

    As an upgrade project of the existing HI-13 tandem accelerator facility, the Beijing Radioactive Ion-beam Facility (BRIF) is being constructed in China Institute of Atomic Energy (CIAE). This project consists of an 100 MeV proton compact cyclotron, a two-stage ISOL system, a superconducting linac booster and various experimental terminals. The beam commissioning of the cyclotron was launched by the end of 2013 and on July 4, 2014 the first 100 MeV proton beam was received on a temporary target which was positioned at the outlet of the cyclotron. The beam current was stably maintained at above 25 μA for about 9 h on July 25, 2014 and the cyclotron is now ready for providing CW proton beam on target-source for RIB production. The beam current is expected to be increased to 200–500 μA in the coming years. The installation of the ISOL system is finished and the stable ion beam test shows it can reach a mass resolution better than 10,000. It is expected to generate dozens of RIB by 100 MeV proton beam. In addition, this paper also introduces the recent progress of the pre-study of an 800 MeV, 3–4 MW separate-sector proton cyclotron, which is aimed to provide high power proton beam for various applications, such as neutron and neutrino physics, proton radiography and nuclear data measurement and ADS system.

  9. Ion beam driven resonant ion-cyclotron instability in a magnetized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Ved; Vijayshri [School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110 068 (India); Sharma, Suresh C. [Department of Applied Physics, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110 042 (India); Gupta, Ruby [Department of Physics, Swami Shraddhanand College, University of Delhi, Alipur, Delhi 110 036 (India)

    2014-03-15

    Electrostatic ion cyclotron waves are excited by axial ion beam in a dusty plasma via Cerenkov and slow cyclotron interaction. The dispersion relation of the instability is derived in the presence of positively/negatively charged dust grains. The minimum beam velocity needed for the excitation is estimated for different values of relative density of negatively charged dust grains. It is shown that the minimum beam velocity needed for excitation increases as the charge density carried by dust increases. Temperature of electrons and ions, charge and mass of dust grains, external static magnetic field and finite boundary of dusty plasma significantly modify the dispersion properties of these waves and play a crucial role in the growth of resonant ion cyclotron instability. The ion cyclotron modes with phase velocity comparable to the beam velocity possess a large growth rate. The maximum value of growth rate increases with the beam density and scales as the one-third power of the beam density in Cerenkov interaction and is proportional to the square root of beam density in slow cyclotron interaction.

  10. Support vector machine based fault detection approach for RFT-30 cyclotron

    Science.gov (United States)

    Kong, Young Bae; Lee, Eun Je; Hur, Min Goo; Park, Jeong Hoon; Park, Yong Dae; Yang, Seung Dae

    2016-10-01

    An RFT-30 is a 30 MeV cyclotron used for radioisotope applications and radiopharmaceutical researches. The RFT-30 cyclotron is highly complex and includes many signals for control and monitoring of the system. It is quite difficult to detect and monitor the system failure in real time. Moreover, continuous monitoring of the system is hard and time-consuming work for human operators. In this paper, we propose a support vector machine (SVM) based fault detection approach for the RFT-30 cyclotron. The proposed approach performs SVM learning with training samples to construct the classification model. To compensate the system complexity due to the large-scale accelerator, we utilize the principal component analysis (PCA) for transformation of the original data. After training procedure, the proposed approach detects the system faults in real time. We analyzed the performance of the proposed approach utilizing the experimental data of the RFT-30 cyclotron. The performance results show that the proposed SVM approach can provide an efficient way to control the cyclotron system.

  11. On the origin of cyclotron lines in the spectra of X-ray pulsars

    Directory of Open Access Journals (Sweden)

    Mushtukov A. A.

    2014-01-01

    Full Text Available Cyclotron resonance scattering features are observed in the spectra of some X-ray pulsars and show significant changes in the line energy with the pulsar luminosity. In a case of bright sources, the line centroid energy is anti-correlated with the luminosity. Such a behaviour is often associated with the onset and growth of the accretion column, which is believed to be the origin of the observed emission and the cyclotron lines. However, this scenario inevitably implies large gradient of the magnetic field strength within the line-forming region, and it makes the formation of the observed line-like features problematic. Moreover, the observed variation of the cyclotron line energy is much smaller than could be anticipated for the corresponding luminosity changes. We argue that a more physically realistic situation is that the cyclotron line forms when the radiation emitted by the accretion column is reflected from the neutron star surface. The idea is based on the facts that a substantial part of column luminosity is intercepted by the neutron star surface and the reflected radiation should contain absorption features. The reflection model is developed and applied to explain the observed variations of the cyclotron line energy in a bright X-ray pulsar V 0332+53 over a wide range of luminosities.

  12. The beam commissioning of BRIF and future cyclotron development at CIAE

    Science.gov (United States)

    Zhang, Tianjue; Yang, Jianjun

    2016-06-01

    As an upgrade project of the existing HI-13 tandem accelerator facility, the Beijing Radioactive Ion-beam Facility (BRIF) is being constructed in China Institute of Atomic Energy (CIAE). This project consists of an 100 MeV proton compact cyclotron, a two-stage ISOL system, a superconducting linac booster and various experimental terminals. The beam commissioning of the cyclotron was launched by the end of 2013 and on July 4, 2014 the first 100 MeV proton beam was received on a temporary target which was positioned at the outlet of the cyclotron. The beam current was stably maintained at above 25 μA for about 9 h on July 25, 2014 and the cyclotron is now ready for providing CW proton beam on target-source for RIB production. The beam current is expected to be increased to 200-500 μA in the coming years. The installation of the ISOL system is finished and the stable ion beam test shows it can reach a mass resolution better than 10,000. It is expected to generate dozens of RIB by 100 MeV proton beam. In addition, this paper also introduces the recent progress of the pre-study of an 800 MeV, 3-4 MW separate-sector proton cyclotron, which is aimed to provide high power proton beam for various applications, such as neutron and neutrino physics, proton radiography and nuclear data measurement and ADS system.

  13. Predictive ion source control using artificial neural network for RFT-30 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Young Bae, E-mail: ybkong@kaeri.re.kr; Hur, Min Goo; Lee, Eun Je; Park, Jeong Hoon; Park, Yong Dae; Yang, Seung Dae

    2016-01-11

    An RFT-30 cyclotron is a 30 MeV proton accelerator for radioisotope production and fundamental research. The ion source of the RFT-30 cyclotron creates plasma from hydrogen gas and transports an ion beam into the center region of the cyclotron. Ion source control is used to search source parameters for best quality of the ion beam. Ion source control in a real system is a difficult and time consuming task, and the operator should search the source parameters by manipulating the cyclotron directly. In this paper, we propose an artificial neural network based predictive control approach for the RFT-30 ion source. The proposed approach constructs the ion source model by using an artificial neural network and finds the optimized parameters with the simulated annealing algorithm. To analyze the performance of the proposed approach, we evaluated the simulations with the experimental data of the ion source. The performance results show that the proposed approach can provide an efficient way to analyze and control the ion source of the RFT-30 cyclotron.

  14. Electron-cyclotron heating in the Constance 2 mirror experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mauel, Michael E.

    1982-09-01

    Electron cyclotron heating of a highly-ionized plasma in mirror geometry is investigated. The experimental diagnosis of the electron energy distribution and the comparison of the results of this diagnosis with a two dimensional, time-dependent Fokker-Planck simulation are accomplished in four steps. (1) First, the power balance of the heated and unheated Constance 2 plasma is analyzed experimentally. It is concluded that the heated electrons escape the mirror at a rate dominated by a combination of the influx of cool electrons from outside the mirror and the increased loss rate of the ions. (2) The microwave parameters at the resonance zones are then calculated by cold-plasma ray tracing. High N/sub parallel/ waves are launched and for these waves, strong first-pass absorption is predicted. The absorption strength is qualitatively checked in the experiment by surrounding the plasma with non-reflecting liners. (3) A simplified quasilinear theory including the effect of N/sub parallel/ is developed to model the electrons. An analytic expression is derived for the RF-induced pump-out of the magnetically-confined warm electrons. Results of the Fokker-Planck simulations show the development of the electron energy distribution for several plasma conditions and verify the scaling of the analytic expression for RF-induced diffusion into the loss cone. (4) Sample x-ray and endloss data are presented, and the overall comparison between the simulation and experiment is discussed. The x-ray signals indicate that, for greater RF power, the hot electrondensity increases more rapidly than its temperature. The time history of the endloss data, illustrating RF-enhancement, suggests the predicted scaling for warm-electron pump-out. Finally, a comparison between the measured and predicted energy distribution shows that the bulk, warm and hot components of the heated Constance 2 electrons are indeed reproduced by the simulation.

  15. Heating and Current Drive by Electron Cyclotron Waves

    Science.gov (United States)

    Prater, R.

    2003-10-01

    The physics model of electron cyclotron heating (ECH) and current drive (ECCD) is becoming well validated through systematic comparisons of theory and experiment. Work has shown that ECCD can be highly localized and robustly controlled, leading to applications including stabilization of MHD instabilities like neoclassical tearing modes, control and sustainment of desired profiles of current density and plasma pressure, and studies of localized transport. These physics applications and the study of the basic physics of ECH and ECCD were enabled by the advent of the gyrotron in the 1980s and of the diamond window for megawatt gyrotrons in the 1990s. The experimental work stimulated a broad base of theory based on first principles which is encapsulated in linear ray tracing codes and fully relativistic quasilinear Fokker-Planck codes. Recent experiments use measurements of the local poloidal magnetic field through the motional Stark effect to determine the magnitude and profile of the locally driven current. The subtle balance between wave-induced diffusion and Coulomb relaxation in velocity space provides an understanding of the effects of trapping of current-carrying electrons in the magnetic well, an effect which can be used to advantage. Strong quasilinear effects and radial transport of electrons which may broaden the driven current profile have also been observed under some conditions and appear to be consistent with theory, but in large devices these are usually insignificant. Additional advantages of ECH compared with other rf heating methods are that the antenna can be far removed from the plasma and the power density can be very high. The agreement of theory and experiment, the broad base of established applications, and the technical advantages of ECH support the application of ECH in next-step tokamaks and stellarators.

  16. Ring Current-Electromagnetic Ion Cyclotron Waves Coupling

    Science.gov (United States)

    Khazanov, G. V.

    2005-01-01

    The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.

  17. Modeling whistler wave generation regimes in magnetospheric cyclotron maser

    Directory of Open Access Journals (Sweden)

    D. L. Pasmanik

    2004-11-01

    Full Text Available Numerical analysis of the model for cyclotron instability in the Earth's magnetosphere is performed. This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. A parametric study of the model is performed. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch angle distributions and its intensity. Two mechanisms of removal of energetic electrons from a generation region are considered, one is due to the particle precipitation through the loss cone and another one is related to the magnetic drift of energetic particles.

    It was confirmed that two main regimes occur in this system in the presence of a constant particle source, in the case of precipitation losses. At small source intensity relaxation oscillations were found, whose parameters are in good agreement with simplified analytical theory developed earlier. At a larger source intensity, transition to a periodic generation occurs. In the case of drift losses the regime of self-sustained periodic generation regime is realized for source intensity higher than some threshold. The dependencies of repetition period and dynamic spectrum shape on the source parameters were studied in detail. In addition to simple periodic regimes, those with more complex spectral forms were found. In particular, alteration of spikes with different spectral shape can take place. It was also shown that quasi-stationary generation at the low-frequency band can coexist with periodic modulation at higher frequencies.

    On the basis of the results obtained, the model for explanation of

  18. An automated flow system incorporating in-line acid dissolution of bismuth metal from a cyclotron irradiated target assembly for use in the isolation of astatine-211

    Energy Technology Data Exchange (ETDEWEB)

    O’Hara, Matthew J.; Krzysko, Anthony J.; Niver, Cynthia M.; Morrison, Samuel S.; Owsley, Stanley L.; Hamlin, Donald K.; Dorman, Eric F.; Scott Wilbur, D.

    2017-04-01

    Astatine-211 (211At) is a promising cyclotron-produced radionuclide being investigated for use in targeted alpha therapy of blood borne and metastatic cancers, as well as treatment of tumor remnants after surgical resections. The isolation of trace quantities of 211At, produced within several grams of a Bi metal cyclotron target, involves a complex, multi-step procedure: (1) Bi metal dissolution in strong HNO3, (2) distillation of the HNO3 to yield Bi salts containing 211At, (3) dissolution of the salts in strong HCl, (4) solvent extraction of 211At from bismuth salts with diisopropyl ether (DIPE), and (5) back-extraction of 211At from DIPE into NaOH, leading to a purified 211At product. Step (1) has been addressed first to begin the process of automating the onerous 211At isolation process. A computer-controlled Bi target dissolution system has been designed. The system performs in-line dissolution of Bi metal from the target assembly using an enclosed target dissolution block, routing the resulting solubilized 211At/Bi mixture to the subsequent process step. The primary parameters involved in Bi metal solubilization (HNO3 concentration and influent flow rate) were optimized prior to evaluation of the system performance on replicate cyclotron irradiated targets. The results indicate that the system performs reproducibly, having nearly quantitative release of 211At from irradiated targets, with cumulative 211At recoveries that follow a sigmoidal function. The predictable nature of the 211At release profile allows the user to tune the system to meet target processing requirements.

  19. Electromagnetic ion-cyclotron instability in a dusty plasma with product-bi-kappa distributions for the plasma particles

    Science.gov (United States)

    dos Santos, M. S.; Ziebell, L. F.; Gaelzer, R.

    2017-01-01

    We study the dispersion relation for parallel propagating ion-cyclotron (IC) waves in a dusty plasma, considering situations where the velocity dispersion along perpendicular direction is greater than along the parallel direction, and considering the use of product-bi-kappa (PBK) velocity distributions for the plasma particles. The results obtained by numerical solution of the dispersion relation, in a case with isotropic Maxwellian distributions for electrons and PBK distribution for ions, show the occurrence of the electromagnetic ion-cyclotron instability (EMIC), and show that the decrease in the kappa indexes of the PBK ion distribution leads to significant increase in the magnitude of the growth rates and in the range of wavenumber for which the instability occurs. On the other hand, for anisotropic Maxwellian distribution for ions and PBK distribution for electrons, the decrease of the kappa index in the PBK electron distribution contributes to reduce the growth rate of the EMIC instability, but the reduction effect is less pronounced than the increase obtained with ion PBK distribution with the same kappa index. The results obtained also show that, as a general rule, the presence of a dust population contributes to reduce the instability in magnitude of the growth rates and range, but that in the case of PBK ion distribution with small kappa indexes the instability may continue to occur for dust populations which would eliminate completely the instability in the case of bi-Maxwellian ion distributions. It has also been seen that the anisotropy due to the kappa indexes in the ion PBK distribution is not so efficient in producing the EMIC instability as the ratio of perpendicular and parallel ion temperatures, for equivalent value of the effective temperature.

  20. The Swift-BAT monitoring reveals a long-term decay of the cyclotron line energy in Vela X-1

    Science.gov (United States)

    La Parola, V.; Cusumano, G.; Segreto, A.; D'Aì, A.

    2016-11-01

    We study the behaviour of the cyclotron resonant scattering feature (CRSF) of the high-mass X-ray binary Vela X-1 using the long-term hard X-ray monitoring performed by the Burst Alert Telescope (BAT) on board Swift. High-statistics, intensity-selected spectra were built along 11 years of BAT survey. While the fundamental line is not revealed, the second harmonic of the CRSF can be clearly detected in all the spectra, at an energy varying between ˜53 and ˜58 keV, directly correlated with the luminosity. We have further investigated the evolution of the CRSF in time, by studying the intensity-selected spectra built along four 33-month time intervals along the survey. For the first time, we find in this source a secular variation in the CRSF energy: independent of the source luminosity, the CRSF second harmonic energy decreases by ˜0.36 keV yr-1 between the first and the third time intervals, corresponding to an apparent decay of the magnetic field of ˜3 × 1010 G yr-1. The intensity-cyclotron energy pattern is consistent between the third and the last time intervals. A possible interpretation for this decay could be the settling of an accreted mound that produces either a distortion of the poloidal magnetic field on the polar cap or a geometrical displacement of the line forming region. This hypothesis seems supported by the correspondence between the rate of the line shift per unit accreted mass and the mass accreted on the polar cap per unit area in Vela X-1 and Her X-1, respectively.

  1. Cyclotron production of ⁹⁹mTc: recycling of enriched ¹⁰⁰Mo metal targets.

    Science.gov (United States)

    Gagnon, K; Wilson, J S; Holt, C M B; Abrams, D N; McEwan, A J B; Mitlin, D; McQuarrie, S A

    2012-08-01

    There is growing interest in the large scale cyclotron production of (99m)Tc via the (100)Mo(p,2n)(99m)Tc reaction. While the use and recycling of cyclotron-irradiated enriched molybdenum targets has been reported previously in the context of (94m)Tc production, to the best of our knowledge, previous recycling studies have been limited to the use of oxide targets. To facilitate reuse of high-power enriched (100)Mo targets, this work presents and evaluates a strategy for recycling of enriched metallic molybdenum. For the irradiated (100)Mo targets in this study, an overall metal to metal recovery of 87% is reported. Evaluation of "new" and "recycled" (100)Mo revealed no changes in the molybdenum isotopic composition (as measured via ICP-MS). For similar irradiation conditions of "new" and "recycled" (100)Mo, (i.e. target thicknesses, irradiation time, and energy), comparable levels of (94g)Tc, (95g)Tc, and (96g)Tc contaminants were observed. Comparable QC specifications (i.e. aluminum ion concentration, pH, and radiochemical purity) were also reported. We finally note that [(99m)Tc]-MDP images obtained by comparing MDP labelled with generator-based (99m)Tc vs. (99m)Tc obtained following the irradiation of recycled (100)Mo demonstrated comparable biodistribution. With the goal of producing large quantities of (99m)Tc, the proposed methodology demonstrates that efficient recycling of enriched metallic (100)Mo targets is feasible and effective.

  2. Production parameters of the therapeutic 105Rh radionuclide using medium energy cyclotron

    Indian Academy of Sciences (India)

    Mayeen Uddin Khandaker; Kwangsoo Kim; Guinyun Kim

    2012-08-01

    Production cross-sections of the therapeutic 105Rh radionuclide from proton-induced reactions on natural palladium target were measured using stacked-foil activation technique combined with high resolution -ray spectrometry at the MC50 cyclotron of the Korea Institute of Radiological and Medical Sciences. Note that cyclotron production of the 105Rh radionuclide from natural palladium target was measured here for the first time. Results are compared with the theoretical values obtained using the model codes TALYS and ALICE-IPPE. Thick target integral yields for the investigated 105Rh radionuclide were deduced from the threshold energy to 40 MeV. Measured data of the 105Rh radionuclide are important because of its potential applications in nuclear medicine and/or therapeutic purposes. Optimal production circumstances for the therapeutic 105Rh radionuclide using a cyclotron are discussed elaborately.

  3. The study of acceptance and the transmission efficiency of separated sector cyclotron

    Directory of Open Access Journals (Sweden)

    Li Xiaoni

    2015-01-01

    Full Text Available In this paper we present the study of the transversal and longitudinal acceptance and the transmission efficiency in the injection, acceleration, and extraction systems in the separated sector cyclotron of the heavy ion research facility in Lanzhou, China. The study of cyclotron acceptance is done for 238U36+ with energy of 97 MeV/u and for 70Zn10+ with energy of 5.62 MeV/u under the theoretical isochronous and real magnetic field distribution. From the simulation results it can be seen that the transmission efficiency and the acceptances of separated sector cyclotron can be improved by redesign the curvature of MSI3 deflector or by introducing the magnet shim in MSI3 deflector region to change the distribution of the inner magnetic field. [Projekat Ministarstva nauke Republike Srbije, br. OI-171018

  4. Observations of rotation in JET plasmas with electron heating by ion cyclotron resonance heating

    DEFF Research Database (Denmark)

    Hellsten, T.; Johnson, T. J.; Van Eester, D.

    2012-01-01

    The rotation of L-mode plasmas in the JET tokamak heated by waves in the ion cyclotron range of frequencies (ICRF) damped on electrons, is reported. The plasma in the core is found to rotate in the counter-current direction with a high shear and in the outer part of the plasma with an almost...... constant angular rotation. The core rotation is stronger in magnitude than observed for scenarios with dominating ion cyclotron absorption. Two scenarios are considered: the inverted mode conversion scenarios and heating at the second harmonic He-3 cyclotron resonance in H plasmas. In the latter case......, electron absorption of the fast magnetosonic wave by transit time magnetic pumping and electron Landau damping (TTMP/ELD) is the dominating absorption mechanism. Inverted mode conversion is done in (He-3)-H plasmas where the mode converted waves are essentially absorbed by electron Landau damping. Similar...

  5. Ensemble Simulations of Proton Heating in the Solar Wind via Turbulence and Ion Cyclotron Resonance

    CERN Document Server

    Cranmer, Steven R

    2014-01-01

    Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant Alfven waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo...

  6. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Science.gov (United States)

    van Agthoven, Maria A.; Barrow, Mark P.; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A.; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B.

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules.

  7. Design and Experimental Study of the External H~- Ion Source for a 10 MeV Medical Cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A 10 MeV medical cyclotron has been designed by the BRIF Division at CIAE, for which the H- beam is axially injected to the machine. To satisfy the requirement for the cyclotron with H- ion source, a compact multicusp H- ion source has

  8. The modulation of electromagnetic ion cyclotron waves by Pc 5 ULF waves

    Directory of Open Access Journals (Sweden)

    T. M. Loto'aniu

    2009-01-01

    Full Text Available The modulation of electromagnetic ion cyclotron (EMIC waves by longer-period ULF waves has been proposed as a method for producing pearl structured Pc 1–2 EMIC waves. This study examines frequency and phase relationship between Pc 1 EMIC wavepacket envelopes and simultaneously occurring Pc 5 ULF waves using magnetic data measured by the CRRES spacecraft. Intervals from three days in 1991 where CRRES observed pearls are presented along with simple statistics for 58 EMIC wavepackets. The observations were dominated by EMIC waves propagating away from the equatorial region. Comparisons between pearl wavepacket envelopes and Pc 5 waves show excellent agreement. The pearl wavepacket duration times, τdur, were statistically correlated with Pc 5 wave periods, TPc5, resulting in a correlation coefficient of R=0.7 and best fit equation τdur=0.8·TPc5+6 s. In general, phase differences varied although time intervals of constant in-phase or anti-phase correlation were observed. Anti-phase modulation may be explained by a decreasing background magnetic field due to the negative cycle of the ULF wave decreasing Alfvén velocity and minimum resonant energy. In-phase modulation could be the result of adiabatic modulation of temperature anisotropy in-phase with variations in the background field. Non-adiabatic processes may contribute to intervals that showed varying phase differences with time. Results suggest that future theoretical developments should take into account the full range of possible wave particle interactions inside the magnetosphere.

  9. Is Cyclotron Maser Emission in Solar Flares Driven by a Horseshoe Distribution?

    Science.gov (United States)

    Melrose, D. B.; Wheatland, M. S.

    2016-12-01

    Since the early 1980s, decimetric spike bursts have been attributed to electron cyclotron maser emission (ECME) by the electrons that produce hard X-ray bursts as they precipitate into the chromosphere in the impulsive phase of a solar flare. Spike bursts are regarded as analogous to the auroral kilometric radiation (AKR), which is associated with the precipitation of auroral electrons in a geomagnetic substorm. Originally, a loss-cone-driven version of ECME, developed for AKR, was applied to spike bursts, but it is now widely accepted that the measured distribution function is horseshoe-like (an isotropic distribution with a one-sided loss cone), and that a horseshoe-driven version of ECME applies to AKR. We explore the implications of the assumption that horseshoe-driven ECME also applies to spike bursts. We develop a 1D model for the acceleration of the electrons by a parallel electric field, and show that under plausible assumptions it leads to a horseshoe distribution of electrons in a solar flare. A second requirement for horseshoe-driven ECME is an extremely low plasma density, referred to as a density cavity. We argue that a coronal density cavity should develop in association with a hard X-ray burst, and that such a density cavity can overcome a long-standing problem with the escape of ECME through the second-harmonic absorption layer. Both the horseshoe distribution and the associated coronal density cavity are highly localized, and could not be resolved in the statistically large number of local precipitation regions needed to explain a hard X-ray burst. The model highlights the "number problem" in the supply of the electrons needed to explain a hard X-ray burst.

  10. Development of recycling process of oxygen isotope used in a PET cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Woo; Choi, Hwa Rim; Jang, Dae Shik; Kim, Taek Soo; Jeong, Do Young [KAERI, Daejeon (Korea, Republic of)

    2004-07-01

    Currently, {sup 18}O is produced by a cold distillation of NO (Nitric Oxide) or a fractional distillation of water. These processes, however, are technically complicated and costly so as to limit the production of {sup 18}O. Especially, the demand for {sup 18}O-enriched water (>90%) used as a target in a PET cyclotron for the production of the {beta}-emitting radioisotope pharmaceutical [{sup 18}F]-labeled 2-deoxyglucose (FDG) is expanding significantly. Hence, it is required to re-use the used target water as much as possible. In order to recycle the used target water, there are three prerequisites: (a) to purify the organic and inorganic impurities contaminated during the {sup 18}F-FDG production loop, (b) to analyze the concentration of oxygen isotopes in the purified water, and (c) to re-enrich the {sup 18}O isotope in the target water diluted during the purification process. We used UV irradiation process to oxidize and purify the organic impurities in the water. For the development of a compact target water {sup 18}O re-enrichment system, the {sup 18}O isotope separation characteristics of MD(Membrane Distillation) were investigated. The {sup 18}O isotopic water permeation and separation characteristics of a hydrophobic PTFE membrane multi-stage air-gap and direct-contact combined MD system were evaluated. Permeation fluxes were measured by weighing the collected membrane-permeated water vapor. Finally, {sup 18}O/1{sup 6}O and {sup 17}O/{sup 16}O of the water samples were analyzed by a Tunable Diode Laser Absorption Spectroscopy (TDLAS) with 4% precisions.

  11. Numerical simulations of gas mixing effect in electron cyclotron resonance ion sources

    Science.gov (United States)

    Mironov, V.; Bogomolov, S.; Bondarchenko, A.; Efremov, A.; Loginov, V.

    2017-01-01

    The particle-in-cell Monte Carlo collisions code nam-ecris is used to simulate the electron cyclotron resonance ion source (ECRIS) plasma sustained in a mixture of Kr with O2 , N2 , Ar, Ne, and He. The model assumes that ions are electrostatically confined in the ECR zone by a dip in the plasma potential. A gain in the extracted krypton ion currents is seen for the highest charge states; the gain is maximized when oxygen is used as a mixing gas. The special feature of oxygen is that most of the singly charged oxygen ions are produced after the dissociative ionization of oxygen molecules with a large kinetic energy release of around 5 eV per ion. The increased loss rate of energetic lowly charged ions of the mixing element requires a building up of the retarding potential barrier close to the ECR surface to equilibrate electron and ion losses out of the plasma. In the mixed plasmas, the barrier value is large (˜1 V ) compared to pure Kr plasma (˜0.01 V ), with longer confinement times of krypton ions and with much higher ion temperatures. The temperature of the krypton ions is increased because of extra heating by the energetic oxygen ions and a longer time of ion confinement. In calculations, a drop of the highly charged ion currents of lighter elements is observed when adding small fluxes of krypton into the source. This drop is caused by the accumulation of the krypton ions inside plasma, which decreases the electron and ion confinement times.

  12. Numerical simulations of gas mixing effect in electron cyclotron resonance ion sources

    Directory of Open Access Journals (Sweden)

    V. Mironov

    2017-01-01

    Full Text Available The particle-in-cell Monte Carlo collisions code nam-ecris is used to simulate the electron cyclotron resonance ion source (ECRIS plasma sustained in a mixture of Kr with O_{2}, N_{2}, Ar, Ne, and He. The model assumes that ions are electrostatically confined in the ECR zone by a dip in the plasma potential. A gain in the extracted krypton ion currents is seen for the highest charge states; the gain is maximized when oxygen is used as a mixing gas. The special feature of oxygen is that most of the singly charged oxygen ions are produced after the dissociative ionization of oxygen molecules with a large kinetic energy release of around 5 eV per ion. The increased loss rate of energetic lowly charged ions of the mixing element requires a building up of the retarding potential barrier close to the ECR surface to equilibrate electron and ion losses out of the plasma. In the mixed plasmas, the barrier value is large (∼1  V compared to pure Kr plasma (∼0.01  V, with longer confinement times of krypton ions and with much higher ion temperatures. The temperature of the krypton ions is increased because of extra heating by the energetic oxygen ions and a longer time of ion confinement. In calculations, a drop of the highly charged ion currents of lighter elements is observed when adding small fluxes of krypton into the source. This drop is caused by the accumulation of the krypton ions inside plasma, which decreases the electron and ion confinement times.

  13. Cyclotron resonance of figure-of-eight orbits in a type-II Weyl semimetal

    Science.gov (United States)

    Koshino, Mikito

    2016-07-01

    We study the cyclotron resonance in the electron-hole joint Fermi surface of a type-II Weyl semimetal. In magnetic field, the electron and hole pockets touching at the Weyl node are hybridized to form quantized Landau levels corresponding to semiclassical 8-shaped orbits. We calculate the dynamical conductivities for the electric fields oscillating in x and y directions and find that the resonant frequencies in x and y differ by a factor of two, reflecting the figure-of-eight electron motion in real space. The peculiar anisotropy in the cyclotron resonance serves as a unique characteristic of the dumbbell-like Fermi surface.

  14. Cavity Control of a Single-Electron Quantum Cyclotron:\\\\Measuring the Electron Magnetic Moment

    CERN Document Server

    Hanneke, D; Gabrielse, G

    2010-01-01

    Measurements with a one-electron quantum cyclotron determine the electron magnetic moment, given by $g/2 = 1.001\\,159\\,652\\,180\\,73\\,(28)\\,[0.28~\\textrm{ppt}]$, and the fine structure constant, $\\alpha^{-1}=137.035\\,999\\,084\\,(51)\\,[0.37~\\textrm{ppb}]$. Brief announcements of these measurements are supplemented here with a more complete description of the one-electron quantum cyclotron and the new measurement methods, a discussion of the cavity control of the radiation field, a summary of the analysis of the measurements, and a fuller discussion of the uncertainties.

  15. First results of electron cyclotron emission measurements at the GDT magnetic mirror

    CERN Document Server

    Shalashov, A G; Gospodchikov, E D; Lubyako, L V; Yakovlev, D V; Bagryansky, P A

    2016-01-01

    This paper summarizes the results of experiments on electron cyclotron emission (ECE) measurements at the fundamental harmonic recently performed at the axially symmetric magnetic mirror device GDT (Budker Institute, Novosibirsk). New ECE diagnostics is installed to facilitate the successful electron cyclotron resonance heating experiment and operates in the vicinity of the heating frequency of 54.5 GHz. Besides expected emission of thermal electrons, a clearly resolved non-thermal ECE is observed indicating the presence of suprathermal electrons driven by high-power microwave heating. The particulars of plasma emission are studied experimentally in a broad range of discharge scenarios.

  16. High brightness 50 MeV Cyclotron for Accelerator-Driven Subcritical Fission

    Science.gov (United States)

    Assadi, Saeed; Badgley, Karie; Mann, Thomas; McIntyre, Peter; Pogue, Nathaniel; Sattarov, Akhdiyor

    2011-10-01

    The Accelerator Research Lab at Texas A&M University is developing new accelerator technology for a high-brightness, high-current cyclotron with capabilities that will be beneficial for applications to accelerator-driven subcritical fission, medical isotope production, and proton therapy. As a first embodiment of the technology, we are developing a detailed design for TAMU-50, a 50 MeV, 5 mA proton cyclotron with high beam brightness. In this presentation we present devices and beamline components for injection, extraction, controls and diagnostics. We emphasize the system integration and implementation of TAMU-50 for production of medical radioisotopes.

  17. Ordinary-mode fundamental electron cyclotron resonance absorption and emission in the Princeton Large Torus

    Energy Technology Data Exchange (ETDEWEB)

    Efthimion, P.C.; Arunasalam, V.; Hosea, J.C.

    1979-11-01

    Fundamental electron cyclotron resonance damping for 4 mm waves with ordinary polarization is measured for propagation along the major radius traversing the midplane of the plasma in the Princeton Large Torus (PLT). Optical depths obtained from the data are in good agreement with those predicted by the relativistic hot plasma theory. Near blackbody emission over much of the plasma midplane is obtained and, in conjunction with the damping measurements, indicates that the vessel reflectivity is high. The practical use of ordinary mode fundamental electron cyclotron resonance heating (ECRH) in existing and future toroidal devices is supported by these results.

  18. Solid targets for production of radioisotopes with cyclotron; Blancos solidos para produccion de radioisotopos con ciclotron

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.; Balcazar G, M. [Instituto Nacional de Investigaciones Nucleares, Direccion de Investigacion Tecnologica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The design of targets for production of radioisotopes and radiopharmaceuticals of cyclotron to medical applications requires a detailed analysis of several variables such as: cyclotron operation conditions, choice of used materials as target and their physicochemical characteristics, activity calculation, the yielding of each radioisotope by irradiation, the competition of nuclear reactions in function of the projectiles energy and the collision processes amongst others. The objective of this work is to determine the equations for the calculation for yielding of solid targets at the end of the proton irradiation. (Author)

  19. Space Charge Limits in the Dae$\\delta$alus DIC Compact Cyclotron

    CERN Document Server

    Baartman, Rick

    2016-01-01

    The Dae$\\delta$alus DIC compact cyclotron is proposed to achieve an extracted current of 5 mA of singly-charged hydrogen molecules, even though unlike other compact cyclotrons, the extraction is not by stripping. The authors of the proposal consistently use perveance as a scaling argument that such high current is possible. The argument is shown to be incorrect and a realistic limit is calculated. This limit is likely about 0.2 mA and certainly no higher than 0.5 mA.

  20. Beam Loss by Lorentz Stripping in a 100 MeV Compact H~- Cyclotron

    Institute of Scientific and Technical Information of China (English)

    Larry; Root

    2002-01-01

    The success of TRIUMF’s ISAC facility demonstrates that a 500 MeV 100 μ A H cyclotron is agood choice for the driver stage of an ISOL type RIB facility. As a result, China Institute of AtomicEnergy is proposing the construction of a 75~100 MeV 200~500μA H~- cyclotron as an upgrade to theBeijing Tandem Laboratory. This would be a multiple user facility, which would include a RIB target

  1. The electrostatic ion-cyclotron instability-a two-dimensional potential relaxation instability

    DEFF Research Database (Denmark)

    Popa, G.; Schrittwieser, R.; Juul Rasmussen, Jens;

    1985-01-01

    An experimental investigation shows that the electrostatic ion-cyclotron instability, driven by an electron current to a positively biased collector, is accompanied by strong coherent two-dimensional fluctuations of the plasma potential in front of the collector. These results suggest that this i......An experimental investigation shows that the electrostatic ion-cyclotron instability, driven by an electron current to a positively biased collector, is accompanied by strong coherent two-dimensional fluctuations of the plasma potential in front of the collector. These results suggest...

  2. High harmonics of the cyclotron resonance in a weak magnetic field

    Science.gov (United States)

    Gramada, A.; Raikh, M. E.

    1998-03-01

    Harmonics of the cyclotron resonance have their origin in the disorder-induced mixing of the Landau levels which leads to the violation of the Kohn theorem. In a strong magnetic field, ω_cτ>> 1, (ωc is the cyclotron frequency and τ is the relaxation time) the amplitudes of the harmonics, σ^n, fall off rapidly^1 with the number n: σ^n∝ n-2. We have studied theoretically the opposite case, ω_cτPhys. Soc. Japan, 38, 989 (1975). 2. M. A. Zudov, R. R. Du, J. A. Simmons, J. L. Reno, preprint cond-mat/9711149.

  3. Field structure and electron life times in the MEFISTO electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Bodendorfer, M. [EPFL - Ecole Polytechnique Federale de Lausanne (Switzerland); University of Berne, Institute of Physics, Space Research and Planetary Sciences, Siedlerstrasse 5, 3012 Berne (Switzerland)], E-mail: michael.bodendorfer@space.unibe.ch; Altwegg, K. [University of Berne, Institute of Physics, Space Research and Planetary Sciences, Siedlerstrasse 5, 3012 Berne (Switzerland); Shea, H. [EPFL - Ecole Polytechnique Federale de Lausanne (Switzerland); Wurz, P. [University of Berne, Institute of Physics, Space Research and Planetary Sciences, Siedlerstrasse 5, 3012 Berne (Switzerland)

    2008-03-15

    The complex magnetic field of the permanent magnet electron cyclotron resonance (ECR) ion source MEFISTO located at the University of Berne has been numerically simulated. For the first time the magnetized volume qualified for electron cyclotron resonance at 2.45 GHz and 87.5 mT has been analyzed in highly detailed 3D simulations with unprecedented resolution. New results were obtained from the numerical simulation of 25,211 electron trajectories. The evident characteristic ion sputtering trident of hexapole confined ECR ion sources has been identified with the field and electron trajectory distribution. Furthermore, unexpected long electron trajectory lifetimes were found.

  4. Field structure and electron life times in the MEFISTO electron cyclotron resonance ion source

    Science.gov (United States)

    Bodendorfer, M.; Altwegg, K.; Shea, H.; Wurz, P.

    2008-03-01

    The complex magnetic field of the permanent magnet electron cyclotron resonance (ECR) ion source MEFISTO located at the University of Berne has been numerically simulated. For the first time the magnetized volume qualified for electron cyclotron resonance at 2.45 GHz and 87.5 mT has been analyzed in highly detailed 3D simulations with unprecedented resolution. New results were obtained from the numerical simulation of 25,211 electron trajectories. The evident characteristic ion sputtering trident of hexapole confined ECR ion sources has been identified with the field and electron trajectory distribution. Furthermore, unexpected long electron trajectory lifetimes were found.

  5. Field structure and electron life times in the MEFISTO Electron Cyclotron Resonance Ion Source

    CERN Document Server

    Bodendorfer, Michael; Shea, Herbert; Wurz, Peter

    2008-01-01

    The complex magnetic field of the permanent-magnet electron cyclotron resonance (ECR) ion source MEFISTO located at the University of Bern have been numerically simulated. For the first time the magnetized volume qualified for electron cyclotron resonance at 2.45 GHz and 87.5 mT has been analyzed in highly detailed 3D simulations with unprecedented resolution. New results were obtained from the numerical simulation of 25211 electron trajectories. The evident characteristic ion sputtering trident of hexapole confined ECR sources has been identified with the field and electron trajectory distribution. Furthermore, unexpected long electron trajectory lifetimes were found.

  6. Cyclotron resonance in two-dimensional electron system with self-organized antidots

    CERN Document Server

    Suchalkin, S D; Zundel, M; Nachtwei, G; Klitzing, K V; Eberl, K

    2001-01-01

    The data on the experimental study on the cyclotron resonance in the two-dimensional electron system with the random scattering potential, conditioned by the massif of the AlInAs self-organized quantum islands, formed in the AlGaAs/GaAs heterotransition plane, are presented. The sharp narrowing of the cyclotron resonance with increase in the magnetic field, explained by the charge scattering peculiarities in the given potential is established. The obtained results suggest the strongly correlated electron state in the strong magnetic fields by the carriers concentrations lesser than the antidots concentrations

  7. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    CERN Document Server

    Fu, Xiangrong; Dong, Chuanfei; Gary, S Peter

    2015-01-01

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at $\\omega \\simeq 0.5\\Omega_e$, where $\\Omega_e$ is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near $0.3\\Omega_e$ and $0.6\\Omega_e$. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test-particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  8. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  9. Cyclotron radiation cooling of a short electron bunch kicked in an undulator with guiding magnetic field

    Directory of Open Access Journals (Sweden)

    I. V. Bandurkin

    2015-11-01

    Full Text Available We propose to use of an undulator with the guiding axial magnetic field as a “kicker” forming a bunch of electron gyro-oscillators with a small spread in the axial velocity. The cyclotron emission from the bunch leads to losing oscillatory velocity of electron gyrorotation, but it does not perturb the axial electron velocity. This effect can be used for transformation of minimization of the spread in electron axial velocity in the undulator section into minimization of the spread in electron energy in the cyclotron radiation section.

  10. Cyclotron resonance in InAs/GaSb heterostructure in inclined magnetic field

    CERN Document Server

    Greshnov, A A; Vasilev, Yu B; Suchalkin, S D; Meltser, B Y; Ivanov, S V; Kopev, P S

    2002-01-01

    The mechanism of splitting the cyclotron resonance line in the InAs/GaSb heterostructure in the inclined magnetic field is experimentally and theoretically studied. It is shown that the electrons and holes mixing in leads to the anticrossing Landau levels and consequently to the cyclotron resonance line splitting. Splitting in the case of the inclined magnetic field was not observed which is explained by damping the electrons and holes states mixing in on the account of originating the additional barrier for the electrons and holes by availability of the magnetic field longitudinal constituent

  11. Second-harmonic ion cyclotron resonance heating scenarios of Aditya tokamak plasma

    Indian Academy of Sciences (India)

    Asim Kumar Chattopadhyay; S V Kulkarni; R Srinivasan; Aditya Team

    2015-10-01

    Plasma heating with the fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) is one of the auxiliary heating schemes of Aditya tokamak. Numerical simulation of second-harmonic resonance heating scenarios in low-temperature, low-density Aditya plasma has been carried out for fast magnetosonic wave absorption in ICRF range, using full-wave ion cyclotron heating code TORIC combined with Fokker–Planck quasilinear solver SSFPQL and the results are explained. In such low-temperature, low-density plasma, ion absorption for second-harmonic resonance heating is less but significant amount of direct electron heating is observed.

  12. Neutron transport calculation for Activation Evaluation for Decommissioning of PET cyclotron Facility

    Science.gov (United States)

    Nobuhara, Fumiyoshi; Kuroyanagi, Makoto; Masumoto, Kazuyoshi; Nakamura, Hajime; Toyoda, Akihiro; Takahashi, Katsuhiko

    2017-09-01

    In order to evaluate the state of activation in a cyclotron facility used for the radioisotope production of PET diagnostics, we measured the neutron flux by using gold foils and TLDs. Then, the spatial distribution of neutrons and induced activity inside the cyclotron vault were simulated with the Monte Calro calculation code for neutron transport and DCHAIN-SP for activation calculation. The calculated results are in good agreement with measured values within factor 3. Therefore, the adaption of the advanced evaluation procedure for activation level is proved to be important for the planning of decommissioning of these facilities.

  13. Kinetic instabilities in pulsed operation mode of a 14 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, O., E-mail: olli.tarvainen@jyu.fi; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J. [Department of Physics, University of Jyväskylä, 40500 Jyväskylä (Finland); Izotov, I.; Mansfeld, D. [Institute of Applied Physics, RAS, 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Skalyga, V. [Institute of Applied Physics, RAS, 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation)

    2016-02-15

    The occurrence of kinetic plasma instabilities is studied in pulsed operation mode of a 14 GHz A-electron cyclotron resonance type electron cyclotron resonance ion source. It is shown that the temporal delay between the plasma breakdown and the appearance of the instabilities is on the order of 10-100 ms. The most important parameters affecting the delay are magnetic field strength and neutral gas pressure. It is demonstrated that kinetic instabilities limit the high charge state ion beam production in the unstable operating regime.

  14. Magnetic signatures of ion cyclotron waves during Cassini's high-inclination orbits of Saturn

    Science.gov (United States)

    Meeks, Zachary; Simon, Sven

    2017-02-01

    Based on magnetic field data from Cassini's high-inclination orbits of Saturn (radius RS = 60 , 268 km), we analyze the latitudinal distribution of ion cyclotron waves in the giant planet's magnetosphere. Our survey takes into account magnetic field data from all high-inclination orbits between 2004 and 2015. We analyze the dependency of the occurrence rate and amplitude of the ion cyclotron waves on radial distance ρ to Saturn's rotation axis, vertical distance z to Saturn's equatorial plane, and magnetic latitude λ. The occurrence rate of ion cyclotron waves is approximately 100% in Saturn's equatorial plane between the orbits of Enceladus and Dione and decreases to 50% at altitudes of | z | ≈ 0.6RS . Ion cyclotron waves were detected up to | z | = 2.0RS . The occurrence rate displays strong, non-monotonic variations with respect to ρ, z, and λ. The vertical amplitude profile of the waves exhibits an M-like pattern with two distinct peaks near z = ± 0.3RS and the central minimum at z=0. Compared to earlier observations, we find this M-like structure to be inflated in±z direction by a factor of three. The available magnetic field data provides only weak evidence for a local impact of Enceladus and Dione on the ion cyclotron wave field. Using the observed Doppler shift of the ion cyclotron wave frequency during Cassini's high-inclination orbits, we demonstrate the existence of a narrow band of bidirectional wave propagation. This band is centered around Saturn's equatorial plane and possesses a half-width of | z | = 0.15RS , which agrees well with the vertical scale height of Saturn's neutral cloud. To the north of this band, all ion cyclotron waves propagate towards the north (z > 0); and to the south, all waves propagate towards the south (z < 0). In companion with our previous study (Meeks et al., 2016), this survey provides the complete three-dimensional picture of the ion cyclotron wave field between the orbits of Enceladus and Rhea during the Cassini

  15. Narrow heavy-hole cyclotron resonances split by the cubic Rashba spin-orbit interaction in strained germanium quantum wells

    Science.gov (United States)

    Failla, M.; Myronov, M.; Morrison, C.; Leadley, D. R.; Lloyd-Hughes, J.

    2015-07-01

    The spin-orbit interaction was found to split the cyclotron resonance of heavy holes confined in high-mobility, compressively strained germanium quantum wells. The interference between coherent spin-split cyclotron resonances was tracked on picosecond time scales using terahertz time-domain spectroscopy. Analysis in the time domain, or using a time-frequency decomposition based on the Gabor-Morlet wavelet, was necessary when the difference between cyclotron frequencies was comparable to the linewidth. The cubic Rashba spin-orbit coefficient β was determined via two methods: (i) the magnetic-field dependence of the cyclotron frequencies, and (ii) the spin-resolved subband densities. An enhanced β and spin polarization was created by tailoring the strain to enhance the spin-orbit interaction. The amplitude modulation of the narrow, interfering cyclotron resonances is a signature of spin coherences persisting for more than 10 ps.

  16. Effects of Magnetic Shear on Ion-Cyclotron Modes.

    Science.gov (United States)

    Ganguli, Gurudas

    Effects of Magnetic Shear on electrostatic Ion -Bernstein Modes (IBM) are examined. Shear affects the mode structure in 3 principal ways: (i) Local effect, (ii) Global effect and (iii) Orbital effect. The role of shear at the above three levels is investigated for IBM in general and in the context of parametric instability of two Ion-Bernstein modes by a magnetosonic wave in a multispecies plasma in particular. An improved marginal stability criterion is presented at Local and Global levels and the region where the Orbital effects are influential is defined and discussed. An electron drift relative to the ions is introduced parallel to the external magnetic field giving rise to Current Driven Ion Cyclotron Instability (CDICI). An improved theory of CDICI in a sheared magnetic field is given. For temperature ratios (tau) = T(,i)/T(,e) > .25, the imaginary part of the local dispersion relation, (as a function of k(,(PARLL)) (('x)), the local parallel wavevector), can be approximated by a parabola, while for weaker (tau) it can be approximated by a pair of straight lines; in each case a second order differential equation is solved for complex roots, (omega). Growth rates ((gamma)/(OMEGA)), are plotted against the square of the normalized pependicular wavevector ((TURN)b) for various values of shear, temperature ratios and electron drift strengths. The main effect of shear is to localize this instability in x-space around some x(,0) such that k(,(PARLL))('0) = ('s)k(,y)x(,0), (('s) being inverse shear length), corresponds to the ((gamma)/(OMEGA))(,max) in the absence of shear. Shear also reduces the growth rate in general: however, ((gamma)/(OMEGA)) for the b values away from the value corresponding to the maximum growth rate are affected more than those which are closer, thereby making the instability more coherent in b. Operator methods employing the Vlasov operator to obtain orbits and velocities in external magnetic fields are studied. Particle orbits and

  17. Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the outer magnetosphere

    Science.gov (United States)

    Ni, B.; Liang, J.; Thorne, R. M.; Angelopoulos, V.; Horne, R. B.; Kubyshkina, M.; Spanswick, E. L.; Donovan, E.; Lummerzheim, D.

    2011-12-01

    We report a causal connection between the intensification of electrostatic ECH waves and the postmidnight diffuse auroral activity in the absence of whistler-mode chorus waves at L = 11.5 on the basis of simultaneous observations from THEMIS spacecraft and NORSTAR optical instruments during 8 - 9 UT on February 5, 2009. We use the THEMIS particle and wave measurements together with the magnetically conjugate auroral observations for this event to illustrate an example where electrostatic electron cyclotron harmonic (ECH) waves are the main contributor to the diffuse auroral precipitation. We use the wave and particle data to perform a comprehensive theoretical and numerical analysis of ECH wave driven resonant scattering rates. We find that the observed ECH wave activity can cause intense pitch angle scattering of plasma sheet electrons between 100 eV and 5 keV at a rate of > 10-4 s-1 for equatorial pitch angles < 30°. The scattering approaches the strong diffusion limit in the realistic ambient magnetic field to produce efficient precipitation loss of < ~ 5 keV electrons on a timescale of a few hours or less. Using the electron differential energy flux inside the loss cone estimated based upon the energy-dependent efficiency of ECH wave scattering for an 8-second interval with high resolution wave data available, the auroral electron transport model developed by Lummerzheim [1987] produced an intensity of ~ 2.3 kR for the green-line diffuse aurora. Separately, Maxwellian fitting to the electron differential flux spectrum produced a green-line auroral intensity of ~ 2.6 kR. This is in good agreement with the ~2.4 kR green-line auroral intensity observed simultaneously at the magnetic footpoint (as inferred using the event-adaptive model of Kubyshkina et al. [2009, 2011]) of the location where the in situ observations were obtained. Our results support the scenario that enhanced ECH emissions in the central plasma sheet (CPS) can be an important or even dominant

  18. Positron Emission Tomographic Imaging of Iodine 124 Anti–Prostate Stem Cell Antigen–Engineered Antibody Fragments in LAPC-9 Tumor–Bearing Severe Combined Immunodeficiency Mice

    Directory of Open Access Journals (Sweden)

    Jeffrey V. Leyton

    2013-05-01

    Full Text Available The humanized antibody (hu1G8 has been shown to localize to prostate stem cell antigen (PSCA and image PSCA-positive xenografts. We previously constructed hu1G8 anti-PSCA antibody fragments and tested them for tumor targeting and the ability to image prostate cancer at early and late time points postinjection by positron emission tomography (PET. We now then compare the PET imaging and the radioactivity accumulation properties in prostate cancer tumors and nontarget tissues to determine the superior 124I-labeled hu1G8 antibody format. 124I-labeled diabody, minibody, scFv-Fc, scFv-Fc double mutant (DM, and parental IgG were administered into severe combined immunodeficiency (SCID mice bearing LAPC-9 xenografts and followed by whole-body PET imaging of mice at preselected time points. Regions of interest were manually drawn around tumor and nontarget tissues and evaluated for radioactivity accumulation. The 124I-hu1G8 IgG has its best time point for tumor high-contrast imaging at 168 hours postinjection. The 124I-hu1G8 minibody at 44 hours postinjection results in superior tumor high-contrast imaging compared to the other antibody formats. The 124I-hu1G8 minibody at 44 hours postinjection also has comparable percent tumor radioactivity compared to 124I-hu1G8 IgG at 168 hours postinjection. The 124I-hu1G8 minibody is the best engineered hu1G8 antibody format for imaging prostate cancer.

  19. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.

    Science.gov (United States)

    Khorshidi, Abdollah

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Efficiency of the generation of impulsion by cyclotron waves currents of the electrons in an Axisymmetric Tokamak; Eficiencia de la generacion de corrientes de impulsion por ondas ciclotronicas de los electrones en un Tokamak axisimetrico

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez T, C.; Beltran P, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    The neoclassical theory of transport is used to calculate the current efficiency of electronic cyclotron impulsion (ECCD) in an axisymmetric tokamak in the few collisions regime. The standard parameter of the tokamak is used to obtain a system of equations that describe the hydrodynamic of the plasma, where the ponderomotive force (PM) due to high power radio frequency waves is taken in account. The PM force is produced in the proximity of electron cyclotron resonance surface in a specific poloidal localization. The efficiency ECCD is analyzed in the cases of first and second harmonic (for different angles of injection of radio frequency waves) and it is validated using the experimental values of the TCV and T-10 tokamaks. The results are according to those obtained by means of the techniques of the Green functions. (Author)

  1. LIBO - boosting medical cyclotron facilities for cancer therapy Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    Length : Energy boost : From 62 to 200 MeVAccelerating gradient : 10 MeV/metreAccelerating frequency : 3 GHz Collaboration : CERN, INFN and University of Milan, INFN and University of Naples and TERA foundation Prototype test in 2001 : SC cyclotron Catania

  2. Advanced launcher design options for electron cyclotron current drive on ITER based on remote steering

    NARCIS (Netherlands)

    Graswinckel, M. R.; Bongers, W. A.; M.R. de Baar,; van den Berg, M. A.; Denisov, G.; Donne, A. J. H.; Elzendoorn, B. S. Q.; Goede, A. P. H.; Heidinger, R.; Kuzikov, S.; Kruijt, O. G.; Kruizinga, B.; Moro, A.; Poli, E.; Ronden, D. M. S.; Saibene, G.; Thoen, D. J.; Verhoeven, A. G. A.

    2008-01-01

    Electron cyclotron current drive will become the main scheme on ITER for the stabilization of neoclassical tearing modes (NTMs) and the control of sawtooth oscillations. The effectiveness of this scheme forms the basis for the requirements of the ITER Upper Port Launcher. These requirements include

  3. Electron cyclotron heating and current drive in toroidal geometry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kritz, A.H.

    1991-11-01

    The Principal Investigator has continued to work on problems associated both with the deposition and with the emission of electron cyclotron power in toroidal plasmas. We have investigated the use of electron cyclotron resonance heating for bringing compact tokamaks (BPX) to ignition-like parameters. This requires that we continue to refine the modeling capability of the TORCH code linked with the BALDUR 1 {1/2} D transport code. Using this computational tool, we have examined the dependence of ignition on heating and transport employing both theoretical (multi-mode) and empirically based transport models. The work on current drive focused on the suppression of tearing modes near the q = 2 surface and sawteeth near the q = 1 surface. Electron cyclotron current drive in CIT near the q =2 surface was evaluated for a launch scenario where electron cyclotron power was launched near the equatorial plane. The work on suppression of sawteeth has been oriented toward understanding the suppression that has been observed in a number of tokamaks, in particular, in the WT-3 tokamak in Kyoto. To evaluate the changes in current profile (shear) near the q =1 surface, simulations have been carried out using the linked BALDUR-TORCH code. We consider effects on shear resulting both from wave-induced current as well as from changes in conductivity associated with changes in local temperature. Abstracts and a paper relating to this work is included in Appendix A.

  4. Observations of rotation in JET plasmas with electron heating by ion cyclotron resonance heating

    NARCIS (Netherlands)

    Hellsten, T.; Johnson, T. J.; Van Eester, D.; Lerche, E.; Lin, Y.; Mayoral, M. L.; Ongena, J.; Calabro, G.; Crombe, K.; Frigione, D.; Giroud, C.; Lennholm, M.; Mantica, P.; Nave, M. F. F.; Naulin, V.; Sozzi, C.; Studholme, W.; Tala, T.; Versloot, T.

    2012-01-01

    The rotation of L-mode plasmas in the JET tokamak heated by waves in the ion cyclotron range of frequencies (ICRF) damped on electrons, is reported. The plasma in the core is found to rotate in the counter-current direction with a high shear and in the outer part of the plasma with an almost constan

  5. Neutron Beams from Deuteron Breakup at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, M.A.; Ahle, L.; Bleuel, D.L.; Bernstein, L.; Braquest, B.R.; Cerny, J.; Heilbronn, L.H.; Jewett, C.C.; Thompson, I.; Wilson, B.

    2007-07-31

    Accelerator-based neutron sources offer many advantages, in particular tunability of the neutron beam in energy and width to match the needs of the application. Using a recently constructed neutron beam line at the 88-Inch Cyclotron at LBNL, tunable high-intensity sources of quasi-monoenergetic and broad spectrum neutrons from deuteron breakup are under development for a variety of applications.

  6. Dispersion equations for field-aligned cyclotron waves in axisymmetric magnetospheric plasmas

    Directory of Open Access Journals (Sweden)

    N. I. Grishanov

    2006-03-01

    Full Text Available In this paper, we derive the dispersion equations for field-aligned cyclotron waves in two-dimensional (2-D magnetospheric plasmas with anisotropic temperature. Two magnetic field configurations are considered with dipole and circular magnetic field lines. The main contribution of the trapped particles to the transverse dielectric permittivity is estimated by solving the linearized Vlasov equation for their perturbed distribution functions, accounting for the cyclotron and bounce resonances, neglecting the drift effects, and assuming the weak connection of the left-hand and right-hand polarized waves. Both the bi-Maxwellian and bi-Lorentzian distribution functions are considered to model the ring current ions and electrons in the dipole magnetosphere. A numerical code has been developed to analyze the dispersion characteristics of electromagnetic ion-cyclotron waves in an electron-proton magnetospheric plasma with circular magnetic field lines, assuming that the steady-state distribution function of the energetic protons is bi-Maxwellian. As in the uniform magnetic field case, the growth rate of the proton-cyclotron instability (PCI in the 2-D magnetospheric plasmas is defined by the contribution of the energetic ions/protons to the imaginary part of the transverse permittivity elements. We demonstrate that the PCI growth rate in the 2-D axisymmetric plasmasphere can be significantly smaller than that for the straight magnetic field case with the same macroscopic bulk parameters.

  7. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature

    NARCIS (Netherlands)

    Schmuck, S.; Fessey, J.; Gerbaud, T.; Alper, B.; Beurskens, M. N. A.; de la Luna, E.; Sirinelli, A.; Zerbini, M.

    2012-01-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron tempe

  8. Buncher Power Source Monitoring System of 100 MeV Cyclotron

    Institute of Scientific and Technical Information of China (English)

    WEI; Jun-yi; FU; Xiao-liang; GUO; Juan-juan; ZHANG; Yi-wang; CAO; Xue-long; YIN; Zhi-guo; JI; Bin

    2015-01-01

    The 100MeV cyclotron provides 70-100MeV and 200μA proton beam,which can be used in astrophysics,medical,defense,energy and other fields.Buncher system can enhance the beam intensity and expand the scope of application of the accelerator.Buncher system is one part of the

  9. Design study of a 9 MeV compact cyclotron system for PET

    Science.gov (United States)

    Lee, Byeong-No; Shin, Seung-Wook; Song, Hoseung; Kim, Hyun-Wook; Chai, Jong-Seo

    2013-06-01

    A cyclotron is an accelerator which can be applied to both cancer diagnosis and treatment. Among commercially sold cyclotrons, the major energy is used for positron emission tomography (PET) ranges from 10 to 20 MeV. In this research, 9 MeV compact cyclotron for PET was designed. The research was conducted on the response cross section and the yield for the energy distribution to decide the design features. Also, it was determined the specifications on the basis of the fluoro-deoxy-glucose (FDG) maximum dose. The machine, which has a 20 uA beam current, is designed to be installed in small-to-medium-sized hospitals in local cities because of its relatively light weight (6 tons). This compact cyclotron, which provides 9-MeV proton beams, is composed of a azimuthally varying field (AVF) electromagnet, 83-MHz RF systems with a 20 kW amplifier, a panning ion gauge (PIG) type ion-source for negative hydrogen, and a double-stage high-vacuum system. The basic model design was done by using 3-D CAD program, CATIA and all the field calculations were performed using commercial electromagnetic field analysis code, OPERA-3D TOSCA. From this research, we expect a time reduction for FDG production, a decrease of radioactive exposure for workers, and an equipment cost reduction.

  10. Recent Results on Ion-Cyclotron and Combined Heating of Textor

    NARCIS (Netherlands)

    Koch, R.; Messiaen, A. M.; Ongena, J.; Vannieuwenhove, R.; Van Oost, G.; van Wassenhove, G.; Dumortier, P.; Durodie, F.; Vandenplas, P. E.; Vanesteer, D.; Vervier, M.; Weynants, R. R.; Finken, K.H.; Euringer, H.; Philipps, V.; Samm, U.; Unterberg, B.; Winter, J.; Bertschinger, G.; Esser, H. G.; Fuchs, G.; Giesen, B.; Hintz, E.; Hoenen, F.; Hutteman, P.; Konen, L.; Korten, M.; Koslowski, H. R.; KramerFlecken, A.; Lochter, M.; Mank, G.; Pospieszczyk, A.; Schweer, B.; Soltwisch, H.; Telesca, G.; Uhlemann, R.; Waidmann, G.; Wolf, G. H.; Boedo, J.; Gray, D.; Hillis, D. L.; Oyevaar, T.; Tammen, H. F.; Tanabe, T.; Ueda, Y.

    1995-01-01

    The recent experimental activity in the field of auxiliary heating and related topics on TEXTOR is reviewed. TEXTOR is equipped with up to 4 MW of ion cyclotron heating power and 3.4 MW of neutral beam injection. The combination of the radiating boundary concept with high auxiliary power has

  11. Isotopic anomaly for carbon ions in an electron cyclotron resonance ion source

    NARCIS (Netherlands)

    Drentje, A. G.; Kitagawa, A.; Muramatsu, M.

    2010-01-01

    In many experiments methods were applied to increase the highly charged ion output from an electron cyclotron resonance ion source; the gas-mixing method is still generally being applied. The dominant role of the masses of the ions in the gas-mixture was apparent. Two basically differing mechanisms

  12. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    2003-01-01

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  13. Design Study of Superconducting Coil of 230 MeV Superconducting Cyclotron

    Institute of Scientific and Technical Information of China (English)

    WANG; Chuan; YIN; Meng; ZHANG; Su-ping; LI; Ming; CUI; Tao; LIN; Jun; LV; Yin-long; GE; Tao; YIN; Zhi-guo; ZHANG; Tian-jue

    2015-01-01

    The superconducting coil system of CYCIAE-230superconducting proton cyclotron consists of two coil windings,cryostat,GM coolers,and the liquid helium condenser(Fig.1),along with multiple thermometers,pressure gauges,liquid level gauges,load cells,a vacuum pump,a

  14. Commissioning of electron cyclotron emission imaging instrument on the DIII-D tokamak and first data

    NARCIS (Netherlands)

    Tobias, B.; Domier, C.W.; Liang, T.; Kong, X.; Yu, L.; Yun, G. S.; Park, H. K.; Classen, I.G.J.; Boom, J. E.; Donne, A. J. H.; Munsat, T.; Nazikian, R.; Van Zeeland, M.; Boivin, R. L.; N C Luhmann Jr.,

    2010-01-01

    A new electron cyclotron emission imaging diagnostic has been commissioned on the DIII-D tokamak. Dual detector arrays provide simultaneous two-dimensional images of T-e fluctuations over radially distinct and reconfigurable regions, each with both vertical and radial zoom capability. A total of 320

  15. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    DEFF Research Database (Denmark)

    Schneider, M.; Johnson, T.; Dumont, R.

    2016-01-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...

  16. Stability of electrostatic ion cyclotron waves in a multi-ion plasma

    Indian Academy of Sciences (India)

    M J Kurian; S Jyothi; S K Leju; Molly Isaac; Chandu Venugopal; G Renuka

    2009-12-01

    We have studied the stability of the electrostatic ion cyclotron wave in a plasma consisting of isotropic hydrogen ions (+) and temperature-anisotropic positively (+) and negatively (−) charged oxygen ions, with the electrons drifting parallel to the magnetic field. Analytical expressions have been derived for the frequency and growth/damping rate of ion cyclotron waves around the first harmonic of both hydrogen and oxygen ion gyrofrequencies. We find that the frequencies and growth/damping rates are dependent on the densities and temperatures of all species of ions. A detailed numerical study, for parameters relevant to comet Halley, shows that the growth rate is dependent on the magnitude of the frequency. The ion cyclotron waves are driven by the electron drift parallel to the magnetic field; the temperature anisotropy of the oxygen ions only slightly enhance the growth rates for small values of temperature anisotropies. A simple explanation, in terms of wave exponentiation times, is offered for the absence of electrostatic ion cyclotron waves in the multi-ion plasma of comet Halley.

  17. An overview of control system for the ITER electron cyclotron system

    NARCIS (Netherlands)

    Purohit, D.; Bigelow, T.; Billava, D.; Bonicelli, T.; Caughman, J.; Darbos, C.; Denisov, G.; Gandini, F.; Gassmann, T.; Henderson, M.; Journeux, J. Y.; Kajiwara, K.; Kobayashi, N.; Nazare, C.; Oda, Y.; Omori, T.; Rao, S. L.; Rasmussen, D.; Ronden, D.; Saibene, G.; Sakamoto, K.; Sartori, F.; Takahashi, K.; Temkin, R.

    2011-01-01

    The ITER electron cyclotron (EC) system having capability of up to 26 MW generated power at 170 GHz is being procured by 5 domestic agencies via 10 procurement arrangements. This implies diverse types of equipment and complex interface management. It also places a challenge on control system archite

  18. Status of the PHOENIX electron cyclotron resonance charge breeder at ISOLDE, CERN.

    Science.gov (United States)

    Barton, Charles; Cederkall, Joakim; Delahaye, Pierre; Kester, Oliver; Lamy, Thierry; Marie-Jeanne, Mélanie

    2008-02-01

    We report here on the last progresses made with the PHOENIX electron cyclotron resonance charge breeder test bench at ISOLDE. Recently, an experiment was performed to test the trapping of (61)Fe daughter nuclides from the decay of (61)Mn nuclides. Preliminary results are given.

  19. Three-wave interaction during electron cyclotron resonance heating and current drive

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Jacobsen, Asger Schou; Hansen, Søren Kjer

    2016-01-01

    Non-linear wave-wave interactions in fusion plasmas, such as the parametric decay instability (PDI) of gyrotron radiation, can potentially hamper the use of microwave diagnostics. Here we report on anomalous scattering in the ASDEX Upgrade tokamak during electron cyclotron resonance heating...

  20. Design and installation of the electron cyclotron wave system for the TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, T.P.; Alberti, S.; Henderson, M.A.; Pochelon, A.; Tran, M.Q. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-10-01

    The design of a combined 82.7 GHz and 118 GHz, 4.5 MW, 2.0 s electron cyclotron wave (ECW) system for heating and current drive on TCV is described. Low and high power test results of the RF source, transmission line and launching antenna are presented. (author) 3 figs., 5 refs.

  1. Closure of the single fluid magnetohydrodynamic equations in presence of electron cyclotron current drive

    NARCIS (Netherlands)

    Westerhof, E.; Pratt, J.

    2014-01-01

    In the presence of electron cyclotron current drive (ECCD), the Ohm's law of single fluid magnetohydrodynamics is modified as E + v × B = η(J – J EC). This paper presents a new closure relation for the EC driven current density appearing in this modified Ohm's law. The new relation faithfu

  2. Discrete-Spectrum Waves in the Vicinity of Cyclotron Resonance in Silver

    DEFF Research Database (Denmark)

    Henningsen, J. O.

    1970-01-01

    Cyclotron-resonance studies of silver have revealed two additional series of oscillations, one between the fundamental and the second harmonic, the other above the fundamental resonance. These series are caused by the excitation of weakly damped discrete-spectrum waves propagating perpendicular...

  3. Simulation on the electronic wave packet cyclotron motion in a Weyl semimetal slab.

    Science.gov (United States)

    Yao, Haibo; Zhu, Mingfeng; Jiang, Liwei; Zheng, Yisong

    2017-04-20

    We perform a numerical simulation on the time evolution of an electronic wave packet in a Weyl semimetal (WSM) slab driven by a magnetic field. We find that the evolution trajectory of the wave packet depends sensitively on its initial spin state. Only with initial spin state identical to that of the Fermi arc state at the surface it localized, does the wave packet evolution demonstrate the characteristic cyclotron orbit of WSM previously predicted from a semiclassical viewpoint. By analyzing the eigen-expansion of the electronic wave packet, we find the chiral Landau levels (LLs) of the WSM slab, as ingredients of the wave packet, to be responsible for establishing the characteristic WSM cyclotron orbit. In contrast, the nonchiral LLs contribute irregular oscillations to the wave packet evolution, going against the formation of a well-defined cyclotron orbit. In addition, the tilted magnetic field does not affect the motion of the electronic wave packet along the Fermi arcs in the momentum space. It does, however, alter the evolution trajectory of the electronic wave packet in real space and spin space. Finally, the energy disalignment of the Weyl nodes results in a 3D cyclotron orbit in real space.

  4. Fast Ion Induced Shearing of 2D Alfven Eigenmodes Measured by Electron Cyclotron Emission Imaging

    NARCIS (Netherlands)

    Tobias, B. J.; Classen, I.G.J.; Domier, C.W.; Heidbrink, W. W.; N C Luhmann Jr.,; Nazikian, R.; Park, H. K.; Spong, D. A.; VanZeeland, M. A.

    2011-01-01

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfven eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the o

  5. Electromagnetic waves near the proton cyclotron frequency in the solar wind

    Science.gov (United States)

    Jian, Lan; Alexander, Robert; Wicks, Robert; Stevens, Michael; Figueroa-Vinas, Adolfo; Russell, Christopher

    2015-04-01

    Strong narrow-band electromagnetic waves around the proton cyclotron frequency have been found sporadically in the solar wind throughout the inner heliosphere. They are nearly-circularly polarized and propagate close to the magnetic field. Electromagnetic waves near the proton cyclotron frequency can be ion cyclotron waves or magnetosonic waves. They can play an important role in modulating the solar wind ion distribution, and contribute to the heating and acceleration of solar wind. Since the waves are left-hand or right-hand polarized in the spacecraft frame with similar characteristics, they are probably due to Doppler shift of a same type of waves, or there could be a mixture of waves with intrinsically different polarizations. Through the assistance of audification, we have studied the long-lasting low frequency wave events in 2005 using high-cadence magnetic field data from the Wind mission. The Solar Wind Experiment team of the Wind mission has provided the temperature anisotropies for core protons, beam protons, and alpha particles, as well as the beam drift for selected cases. We conduct wave dispersion analysis using these ion moments to examine if these waves can be explained by ion cyclotron anisotropy instability or ion beam instability related to the solar wind inhomogeneities.

  6. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Development of instrumentation, data aquisition software and processing methods

    NARCIS (Netherlands)

    Barbu, I.M.

    2008-01-01

    This thesis describes, the use of a Fourier Transform Ion Cyclotron (FTICR) mass spectrometer in the study of biological samples with, imaging mass spectrometry (MS). To achieve this goal experiments were performed on an in-house modified FTICR-MS instrument (for which special acquisition software w

  7. Tomsk Polytechnic University cyclotron as a source for neutron based cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lisin, V. A. [Cancer Research Institute, 5 Kooperativny St., Tomsk 634050 (Russian Federation); Tomsk Polytechnic University, 30 Lenina av., Tomsk 634050 (Russian Federation); Bogdanov, A. V.; Golovkov, V. M.; Sukhikh, L. G.; Verigin, D. A., E-mail: verigin@tpu.ru [Tomsk Polytechnic University, 30 Lenina av., Tomsk 634050 (Russian Federation); Musabaeva, L. I. [Cancer Research Institute, 5 Kooperativny St., Tomsk 634050 (Russian Federation)

    2014-02-15

    In this paper we present our cyclotron based neutron source with average energy 6.3 MeV generated during the 13.6 MeV deuterons interactions with beryllium target, neutron field dosimetry, and dosimetry of attendant gamma fields. We also present application of our neutron source for cancer treatment.

  8. Distorted cyclotron line profile in Cep X-4 as observed by NuSTAR

    DEFF Research Database (Denmark)

    Fürst, F.; Pottschmidt, K.; Miyasaka, H.;

    2015-01-01

    a powerlaw with a Fermi-Dirac cutoff at high energies. Cep X-4 has a very strong cyclotron resonant scattering feature (CRSF) around 30 keV. A simple absorption-like line with a Gaussian optical depth or a pseudo-Lorentzian profile both fail to describe the shape of the CRSF accurately, leaving significant...

  9. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  10. Geometric analysis of phase bunching in the central region of cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Miyawaki, Nobumasa, E-mail: miyawaki.nobumasa@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Fukuda, Mitsuhiro [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kurashima, Satoshi; Kashiwagi, Hirotsugu; Okumura, Susumu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Arakawa, Kazuo [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Gunma University Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8511 (Japan); Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2013-07-01

    An optimum condition for realizing phase bunching in the central region of a cyclotron was quantitatively clarified by a simplified geometric trajectory analysis of charged particles from the first to the second acceleration gap. The phase bunching performance was evaluated for a general case of a cyclotron. The phase difference of incident particles at the second acceleration gap depends on the combination of four parameters: the acceleration harmonic number h, the span angle θ{sub D} of the dee electrode, the span angle θ{sub F} from the first to the second acceleration gap, the ratio R{sub V} of the peak acceleration voltage between the cyclotron and ion source. Optimum values of θ{sub F} for phase bunching were limited by the relationship between h and θ{sub D}, which is 90°/h+θ{sub D}/2≤θ{sub F}≤180°/h+θ{sub D}/2, and sin θ{sub F}>0. The phase difference with respect to the reference particle at the second acceleration gap is minimized for voltage-ratios between two and four for an initial phase difference within 40 RF degrees. Although the slope of the first acceleration gap contributes to the RF phase at which the particles reach the second acceleration gap, phase bunching was not affected. An orbit simulation of the AVF cyclotron at the Japan Atomic Energy Agency verifies the evaluation based on geometric analysis.

  11. Alfvenic behavior of alpha particle driven ion cyclotron emission in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, S.; Majeski, R. [Princeton Plasma Physics Lab., NJ (United States); McClements, K.G. [UKAEA Government Division, Oxfordshire (United Kingdom). Euratom/UKAEA Fusion Association] [and others

    1995-07-01

    Ion cyclotron emission (ICE) has been observed during D-T discharges in the Tokamak Fusion Test Reactor (TFTR), using rf probes located near the top and bottom of the vacuum vessel. Harmonics of the alpha cyclotron frequency ({Omega}{sub {alpha}}) evaluated at the outer midplane plasma edge are observed at the onset of the beam injection phase of TFTR supershots, and persist for approximately 100-250 ms. These results are in contrast with observations of ICE in JET, in which harmonics of {Omega}{sub {alpha}} evolve with the alpha population in the plasma edge. Such differences are believed to be due to the fact that newly-born fusion alpha particles are super-Alfvenic near the edge of JET plasmas, while they are sub-Alfvenic near the edge of TFTR supershot plasmas. In TFTR discharges with edge densities such that newly-born alpha particles are super-Alfvenic, alpha cyclotron harmonics are observed to persist. These results are in qualitative agreement with numerical calculations of growth rates due to the magnetoacoustic cyclotron instability.

  12. Radiologic assessment of a self-shield with boron-containing water for a compact medical cyclotron.

    Science.gov (United States)

    Horitsugi, Genki; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Eto, Akihisa; Iwamoto, Yasuo; Hashimoto, Hiromi; Hamada, Seiki; Obara, Satoshi; Watanabe, Hiroshi; Hatazawa, Jun

    2012-07-01

    The cyclotron at our hospital has a self-shield of boron-containing water. The amount of induced radioactivity in the boron-containing water shield of a compact medical cyclotron has not yet been reported. In this study, we measured the photon and neutron dose rates outside the self-shield during cyclotron operation. We estimated the induced radioactivities of the boron-containing water used for the self-shield and then measured them. We estimated the activation of concrete outside the self-shield in the cyclotron laboratory. The thermal neutron flux during cyclotron operation was estimated to be 4.72 × 10(2) cm(-2) s(-1), and the activation of concrete in a cyclotron laboratory was about three orders of magnitude lower than the clearance level of RS-G-1.7 (IAEA). The activity concentration of the boron-containing water did not exceed the concentration limit for radioactive isotopes in drainage in Japan and the exemption level for Basic Safety Standards. Consequently, the boron-containing water is treatable as non-radioactive waste. Neutrons were effectively shielded by the self-shield during cyclotron operation.

  13. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source.

    Science.gov (United States)

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  14. Unambiguous identification and discovery of bacterial siderophores by direct injection 21 Tesla Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Lawrence R.; Tfaily, Malak M.; Shaw, Jared B.; Hess, Nancy J.; Pasa Tolic, Ljiljana; Koppenaal, David W.

    2017-01-01

    Under iron-limiting conditions, bacteria produce low molecular mass Fe(III) binding molecules known as siderophores to sequester the Fe(III), along with other elements, increasing their bioavailibility. Siderophores are thought to influence iron cycling and biogeochemistry in both marine and terrestrial ecosystems and hence the need for rapid, confident characterization of these compounds has increased. In this study, the type of siderophores produced by two marine bacterial species, Synechococcus sp. PCC 7002 and Vibrio cyclitrophicus 1F53, were characterized using a newly developed 21T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR MS) with direct injection electrospray ionization. This technique allowed for the rapid detection of synechobactins from Synechococcus sp. PCC 7002 as well as amphibactins from Vibrio cyclitrophicus 1F53 based on high mass accuracy and resolution allowing for observation of specific Fe isotopic peaks and fine isotopic structure enables highly confident identification of these sideropohores. When combined with molecular network analysis two new amphibactins were discovered and verified by tandem MS. These results show that high-field FTICR MS is a powerful technique that will greatly improve the ability to rapidly identify and discover metal binding species in the environment.

  15. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    Science.gov (United States)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  16. Discovery of Cyclotron Resonance Features in the Soft Gamma Repeater SGR 1806-20

    Science.gov (United States)

    Ibrahim, Alaa I.; Safi-Harb, Samar; Swank, Jean H.; Parke, William; Zane, Silvia; Turolla, Roberto

    2002-01-01

    We report evidence of cyclotron resonance features from the Soft Gamma Repeater SGR 1806-20 in outburst, detected with the Rossi X-ray Timing Explorer in the spectrum of a long, complex precursor that preceded a strong burst. The features consist of a narrow 5.0 keV absorption line with modulation near its second and third harmonics (at 11.2 keV and 17.5 keV respectively). The line features are transient and are detected in the harder part of the precursor. The 5.0 keV feature is strong, with an equivalent width of approx. 500 eV and a narrow width of less than 0.4 keV. Interpreting the features as electron cyclotron lines in the context of accretion models leads to a large mass-radius ratio (M/R greater than 0.3 solar mass/km) that is inconsistent with neutron stars or that requires a low (5-7) x 10(exp 11) G magnetic field that is unlikely for SGRs. The line widths are also narrow compared with those of electron cyclotron resonances observed so far in X-ray pulsars. In the magnetar picture, the features are plausibly explained as ion cyclotron resonances in an ultra-strong magnetic field that have recently been predicted from magnetar candidates. In this view, the 5.0 keV feature is consistent with a proton cyclotron fundamental whose energy and width are close to model predictions. The line energy would correspond to a surface magnetic field of 1.0 x 10(exp 15) G for SGR 1806-20, in good agreement with that inferred from the spin-down measure in the source.

  17. A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn

    Science.gov (United States)

    Meeks, Zachary; Simon, Sven; Kabanovic, Slawa

    2016-09-01

    We present a comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn, considering all magnetic field data collected during the Cassini era (totaling to over 4 years of data from the equatorial plane). This dataset includes eight targeted flybys of Enceladus, three targeted flybys of Dione, and three targeted flybys of Rhea. Because all remaining orbits of Cassini are high-inclination, our study provides the complete map of ion cyclotron waves in Saturn's equatorial magnetosphere during the Cassini era. We provide catalogs of the radial and longitudinal dependencies of the occurrence rate and amplitude of the ion cyclotron fundamental and first harmonic wave modes. The fundamental wave mode is omnipresent between the orbits of Enceladus and Dione and evenly distributed across all Local Times. The occurrence rate of the fundamental mode displays a Fermi-Dirac-like profile with respect to radial distance from Saturn. Detection of the first harmonic mode is a rare event occurring in only 0.49% of measurements taken and always in conjunction with the fundamental mode. We also search for a dependency of the ion cyclotron wave field on the orbital positions of the icy moons Enceladus, Dione, and Rhea. On magnetospheric length scales, the wave field is independent of the moons' orbital positions. For Enceladus, we analyze wave amplitude profiles of seven close flybys (E9, E12, E13, E14, E17, E18, and E19), which occurred during the studied trajectory segments, to look for any local effects of Enceladan plume variability on the wave field. We find that even in the close vicinity of Enceladus, the wave amplitudes display no discernible dependency on Enceladus' angular distance to its orbital apocenter. Thus, the correlation between plume activity and angular distance to apocenter proposed by Hedman et al. (2013) does not leave a clearly distinguishable imprint in the ion cyclotron wave field.

  18. Broadband measurements of electron cyclotron emission in TFTR (Tokamak Fusion Test Reactor) using a quasi-optical light collection system and a polarizing Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, F.J.; Boyd, D.A.; Cutler, R.C.; Diesso, M.; McCarthy, M.P.; Montague, J.; Rocco, R.

    1988-04-01

    For the past three years, a Fourier transform spectrometer diagnostic system, employing a fast-scanning polarizing Michelson interferometer, has been operating on the TFTR tokamak at Princeton Plasma Physics Laboratory. It is used to measure the electron cyclotron emission spectrum over the range 2.5 to 18 cm/sup /minus/1/ (75-540 GHz) with a resolution of 0.123 cm/sup /minus/1/(3.7 GHz), at a rate of 72 spectra per second. The quasi-optical system for collecting the light and transporting it through the interferometer to the detector has been designed using the concepts of both Gaussian and geometrical optics in order to produce a system that is efficient over the entire spectral range. The commerical Michelson interferometer was custom-made for this project and is at the state of the art for this type of specialized instrument. Various pre-installation and post-installation tests of the optical system and the interferometer were performed and are reported here. An error propagation analysis of the absolute calibration process is given. Examples of electron cyclotron emission spectra measured in two polarization directions are given, and electron temperature profiles derived from each of them are compared. 34 refs., 17 figs.

  19. High current H{sub 2}{sup +} and H{sub 3}{sup +} beam generation by pulsed 2.45 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Peng, Shixiang, E-mail: sxpeng@pku.edu.cn; Ren, Haitao; Zhao, Jie; Chen, Jia; Zhang, Tao; Guo, Zhiyu [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Zhang, Ailin [University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jia' er [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-02-15

    The permanent magnet 2.45 GHz electron cyclotron resonance ion source at Peking University can produce more than 100 mA hydrogen ion beam working at pulsed mode. For the increasing requirements of cluster ions (H{sub 2}{sup +} and H{sub 3}{sup +}) in linac and cyclotron, experimental study was carried out to further understand the hydrogen plasma processes in the ion source for the generation of cluster ions. The constituents of extracted beam have been analyzed varying with the pulsed duration from 0.3 ms to 2.0 ms (repetition frequency 100 Hz) at different operation pressure. The fraction of cluster ions dramatically increased when the pulsed duration was lower than 0.6 ms, and more than 20 mA pure H{sub 3}{sup +} ions with fraction 43.2% and 40 mA H{sub 2}{sup +} ions with fraction 47.7% were obtained when the operation parameters were adequate. The dependence of extracted ion fraction on microwave power was also measured at different pressure as the energy absorbed by plasma will greatly influence electron temperature and electron density then the plasma processes in the ion source. More details will be presented in this paper.

  20. Assessment of the direct cyclotron production of (99m)Tc: An approach to crisis management of (99m)Tc shortage.

    Science.gov (United States)

    Rovais, Mohammad Reza Aboudzadeh; Aardaneh, Khosro; Aslani, Gholamreza; Rahiminejad, Ali; Yousefi, Kamran; Boulouri, Fatemeh

    2016-06-01

    Nowadays, the cyclotron production of technetium-99m ((99m)Tc) has been increased, due to the worldwide (99m)Tc generator shortage. In the present work, an improved strategy for the production of (99m)Tc, using the proton irradiation of the enriched (100)Mo was developed. The performance of this method in terms of the production yield, chemical purity, radiochemical purity, as well as radionuclide purity was evaluated. The average production yield was measured to be 356MBqμA(-1)h(-1). A good agreement was found between the calculated production yield and the experimental one. The radiochemical separation and total recovery yields of (99m)Tc were 92% and 69%, respectively. The radiochemical and the radionuclide purities of the (99m)Tc were 99% and >99.99% at the end of purification, respectively. The results of quality control tests (QC) support the concept that cyclotron-produced (99m)Tc is suitable for preparation of USP-compliant.