WorldWideScience

Sample records for cyclotron facility-indian experience

  1. An overview of experiments at the Indiana University Cyclotron Facility

    International Nuclear Information System (INIS)

    Foster, C.C.

    1981-01-01

    The research program of the Indiana University Cyclotron Facility (IUCF) is a product of many factors. Among these factors are the properties of the beams of charged particles available from the cyclotrons, the facilities and personnel available to support experiments, the guidance of the Program Advisory Committee, the decisions of the directors and the ideas and work of the users of the facility. It is the author's purpose, in this brief overview paper, to provide a summary of features and properties of accelerator operation, beams, experimental facilities and the user interaction of interest to a perspective experimental user and a discussion of recent results of measurements made at IUCF

  2. Medical cyclotron facilities

    International Nuclear Information System (INIS)

    1984-09-01

    This report examines the separate proposals from the Austin Hospital and the Australian Atomic Energy Commission for a medical cyclotron facility. The proponents have argued that a cyclotron facility would benefit Australia in areas of patient care, availability and export of radioisotopes, and medical research. Positron emission tomography (PET) and neutron beam therapy are also examined

  3. Radiation protection problems by the operation of the cyclotron facility

    International Nuclear Information System (INIS)

    Durcik, M.; Nikodemova, D.

    1998-01-01

    The Cyclotron Center in Bratislava will consist of two cyclotrons. First - cyclotron DC-72 with maximal energy of 72 MV for protons for making experiments, for teaching process, for radioisotope production as 123 I and for neutron and proton therapy. Second - compact cyclotron with maximal proton energy of 18 MeV will be used for radioisotopes production for medical diagnosis as 1 *F (fluorodeoxyglucose), 81 Rb/ 81 Kr generator. This paper deals with the radiation protection problems by the operation of tis cyclotron facility as radiation protection of workers, monitoring plan, ventilation, safety lock and limitation and radiation monitoring. For proposed and continuing practices at the accelerator facility, the following general principles have to be fulfilled: (1) practices should produce sufficient benefit to offset the radiation detriment they case (justification); (2) the magnitude of the individual doses should be kept as low as achievable (optimization of protection); (3) individual exposures are subject to dose limits and some control of risk from potential exposures (dose and risk limits)

  4. Development of a Medical Cyclotron Production Facility

    Science.gov (United States)

    Allen, Danny R.

    2003-08-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.

  5. Development of a Medical Cyclotron Production Facility

    International Nuclear Information System (INIS)

    Allen, Danny R.

    2003-01-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes

  6. Possible modernization of the U-400 cyclotron facilities to perform precise RIB experiments in the vicinity of the Coulomb barrier. (The technical proposal)

    International Nuclear Information System (INIS)

    Majdikov, V.Z.; Bashevoj, V.V.; Mel'nikov, V.N.

    1998-01-01

    An analysis of the ion-optical parameters of the existing facilities for precise nuclear reactions experiments at the U-400 cyclotron swichyard shows that some improvement can be made to perform RIB experiments at the Coulomb barrier of interactions. A change in the position of a dozen of quadrupole lenses at the cyclotron switchyard permits one to obtain parameters of magnetic spectrometers adequate for the modern experiments

  7. Emergency situation in a medical cyclotron facility

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Bhat, M.K.; Singh, D.K.; Pthania, B.S.; Pandit, A.G.; Jacob, M.J.

    2010-01-01

    Full text: Medical cyclotron is a particle accelerator used in producing short lived radioisotopes such as 18 F, 11 C, 15 O, 13 N, 18 F-2 gas etc. Positron Emission Tomography (PET) is a nuclear imaging modality that has rapidly gained favour. 18 F-FDG is the most widely used radiopharmaceutical with a half-life of 109.8 min. Having more than five years experience in this field we face lots of emergency conditions in the medical cyclotron facility. On the basis of harm we have divided in to three categories i.e. Harm of (a) working personnel, (b) Equipment and (c) environment. Radioactive gas leak and Target foil rupture is considered as the major emergency situations during medical cyclotron operations because there is a potential of over exposure to the working personnel. Radiation protection survey of a self-shielded medical cyclotron installation was carried out during normal and emergency conditions. It is found that the induced activity in the target foil increases with its successive usages. Recommendations have also been made to reduce personal exposure while handling the radioactive gas leak and target foil rupture conditions

  8. Ion Cyclotron Resonance Facility (ICR)

    Data.gov (United States)

    Federal Laboratory Consortium — his facility is charged with developing and exploiting the unique capabilities of Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, and leads the...

  9. The Medical Cyclotron Facility in RMC, Parel, BARC

    International Nuclear Information System (INIS)

    Gopalakrishna, Arjun; Banerjee, Sharmila

    2017-01-01

    The Medical Cyclotron Facility in Radiation Medicine Centre (RMC) is the first one of its kind, installed in 2002. "1"8F based radiotracers are produced in this facility on a routine basis for Positron Emission Tomography (PET), of in-house patients, as well as for supply to other nuclear medicine centers in Mumbai as well as Pune. The facility consists of the following sub parts - Cyclotron and support equipment; Radiochemistry synthesis laboratory; Quality control (QC) laboratory

  10. New irradiation facilities at the Australian national medical cyclotron

    International Nuclear Information System (INIS)

    Parcell, S.K.; Arnott, D.W.; Conard, E.M.

    1999-01-01

    Two new irradiation facilities have been developed at the National Medical Cyclotron for radionuclide production. The first relocates PET irradiations from the cyclotron vault to a dedicated PET beam room, to improve accessibility and reduce radiation exposures associated with target maintenance. This new facility consists of a beam line to transport 16-30 MeV proton beams from the cyclotron to 1 of 8 PET targets mounted on a target rack. The target rack has increased the number of targets available for production and experimentation. The second is a completely independent solid target irradiation facility for SPECT. This facility consists of a beam line to transport 26-30 MeV proton beams from the cyclotron to a dedicated beam room containing one solid target station. A new pneumatic target transfer system was also developed to transport the solid target to and from the existing chemistry hot cells. The beam line and target components are operated under the control of a dedicated PLC with a PC based user interface. The development and some technical aspects of these new irradiation facilities are discussed here. (author)

  11. Research activities by INS cyclotron facility

    International Nuclear Information System (INIS)

    1992-06-01

    Research activities made by the cyclotron facility and the related apparatuses at Institute for Nuclear Study (INS), University of Tokyo, have been reviewed in terms of the associated scientific publications. This publication list, which is to be read as a continuation of INS-Rep.-608 (October, 1986), includes experimental works on low-energy nuclear physics, accelerator technology, instrumental developments, radiation physics and other applications in interdisciplinary fields. The publications are classified into the following four categories. (A) : Internal reports published in INS. (B) : Publications in international scientific journals on experimental research works done by the cyclotron facility and the related apparatuses at INS. Those made by outside users are also included. (C) : Publications in international scientific journals on experimental low-energy nuclear physics, which have been done by the staff of INS Nuclear Physics Division using facilities outside INS. (D) : Contributions to international conferences. (author)

  12. The PET / cyclotron facility at Putrajaya Hospital - an update

    International Nuclear Information System (INIS)

    Siti Najila Mohd Janib; Suzilawati Muhd Sarowi; Munira Shaikh Nasir; Zulkifli Mohamed Hashim

    2006-01-01

    Malaysia desire to have a cyclotron for nuclear medical use came into realisation recently with the establishment of a PET/Cyclotron Facility at Putrajaya Hospital. The testing and commissioning of the cyclotron, hot cells, QC equipment and PET/CT started on March 27, culminating in the first patient to be injected on May 10 2006. Three other patients were to be followed on May 15. The patients from both the Kuala Lumpur and Putrajaya Hospital were pre-selected by physicians from these hospitals. The 18 MeV cyclotron is capable of generating 16.4 MeV protons and 8.4 MeV deuterons. The cyclotron at Putrajaya has three targets (2 liquid and 1 gas) and is capable of producing 18 F-FDG and 18 F-DOPA. To complement this, the facility has 2 modules for FDG synthesis, 1 for F-DOPA and 1 for nucleophilic synthesis. The facility will be GMP compliant. For the first production for human use, the water-18 target was irradiated for 50 minutes at 20 mA to produce 1.3 Ci of F-18. At the end of synthesis, the activity of the FDG obtained was 600 mCi. The product was then injected to a 26-year-old female, with a suspected adenocarcinoma. (Author)

  13. Atmospheric tracer study of the emissions from the University of Michigan Cyclotron/PET Facility

    International Nuclear Information System (INIS)

    Scofield, P.A.

    1986-01-01

    The University of Michigan (U of M) Cyclotron/Positron Emission Tomography (PET) facility consists of a cyclotron (Model CS-30, The Cyclotron Corporation), radiochemistry laboratory, and Pet scanner. Accelerator-produced radioactive materials, such as, carbon-11 and oxygen-15 are typically emitted from the Cyclotron/PET facility through short stacks located on the roof. This project studied the dispersion of emissions from the facility within the medical complex. To achieve this purpose, the research project had three phases: a physical modeling study; a preliminary field smoke release study; and, a field study using a tracer gas to simulate emission dispersion from the U of M Cyclotron/PET facility vault stack. The objective was to determine normalized concentrations, under selected wind directions and speeds, for use in establishing radionuclide concentrations at the air intakes of the Cyclotron/PET facility and surrounding buildings and at selected ground-level locations

  14. A national medical cyclotron facility: report to the Minister of Health by the Medical Cyclotron Committee

    International Nuclear Information System (INIS)

    1985-01-01

    Research and training in nuclear medicine in Australia are both limited by the lack of a medical cyclotron facility. The Committee recommends the establishment of a national medical cyclotron to provide a supply of short-lived radioisotopes for research in relevant fields of medicine, and for diagnostic use in nuclear medicine

  15. Shielding experiments for accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2000-06-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  16. Shielding experiments for accelerator facilities

    International Nuclear Information System (INIS)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio

    2000-01-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  17. Research and education by SF cyclotron facility

    International Nuclear Information System (INIS)

    1992-04-01

    This report represents the current activities in research and education using the cyclotron facility and related apparatus which are supported by Nuclear Physics Division and this is a continuation of INS-T-466 (1986, December). In this version an iron-free β-ray spectrometer and a cooler-synchrotron (TARN II) are briefly described also in the first chapter. The second chapter explains experimental programs performed in the last 5 years. The third chapter gives the number of publications on researches performed in 1975-1991, and also gives twelve topics obtained from the cyclotron and the β-ray spectrometer in recent 5 years. The last chapter provides the whole list of the works for Doctor and Master theses performed at the facility in the last 10 years. (J.P.N.)

  18. One year's experience of the WA medical cyclotron and radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    DeRoach, J.; Tuchyna, T.; Jones, C.; Price, R.

    2004-01-01

    9 days owing to scheduled maintenance, and a total of 35 (1.6%) patients were cancelled owing to unscheduled maintenance on 7 days. The following major initiatives are now in place for the further development of this facility: 1. Development of a solid targetry facility for the production of 123 I, 124 I, 64 Cu, and other isotopes. Two prototype external beam lines have been developed and trialled. Experiments designed to measure the beam profile at the end of the external beam line are underway. 2. A synthesis module for the production of 18 FMISO and 18 FLT is being developed in-house in collaboration with the cyclotron manufacturer. 3. A module for the synthesis of 18 F-Choline has been installed. 4. A prototype synthesis module is under development which will allow experimentation in the production of novel radiopharmaceuticals based on isotopes produced from liquid targetry. Normalised over 12 months, production staff received on average 3.28 mSv whole body effective dose, with the worst case being 8.46 mSv. Finger doses were 35.6 mSv on average, 70.6 mSv worst case. (Note that production staff also dispense patient doses into individual syringes). Similarly, maintenance staff received 1.41 mSv (avg), 2.56 mSv (max) whole body effective dose, and 33.0 mSv (avg), 124.3 mSv (max) finger dose. A facility for the production and development of short-lived PET radiopharmaceuticals has been created with a capacity that is expected to satisfy Western Australian demands for the next ten years. This facility reliably and routinely produces FDG, and incorporates a well supported and vigorous radiopharmaceutical development function. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  19. A new slow positron beam facility using a compact cyclotron

    International Nuclear Information System (INIS)

    Hirose, Masafumi

    1998-01-01

    In 1993, Sumitomo Heavy Industries became the first in the world to successfully produce a slow positron beam using a compact cyclotron. Slow positron beam production using an accelerator had mainly consisted of using an electron linear accelerator (LINAC). However, the newly developed system that uses a compact cyclotron enabled cost reduction, downsizing of equipment, production of a DC slow positron beam, a polarized slow positron beam, and other benefits. After that, a genuine slow positron beam facility was developed with the construction of compact cyclotron No.2, and beam production in the new facility has already been started. The features of this new slow positron beam facility are explained below. 1) It is the world's first compact slow positron beam facility using a compact cyclotron. 2) It is the only genuine slow positron beam facility in the world which incorporates the production and use of a slow positron beam in the design stage of the cyclotron. To use a slow positron beam for non-destructive detection of lattice defects in semiconductor material, it is necessary to convert the beam into ultra-short pulses of several hundreds of pico-seconds. Sumitomo Heavy Industries has devised a new short-pulsing method (i.e. an induction bunching method) that enables the conversion of a slow positron beam into short pulses with an optimum pulsing electric field change, and succeeded in converting a slow positron beam into short pulses using this method for the first time in the world. Non-destructive detection of lattice defects in semiconductor material using this equipment has already been started, and some information about the depth distribution, size, density, etc. of lattice defects has already been obtained. (J.P.N.)

  20. Performance of the RI exhaust filter at Chosun university cyclotron facility and {sup 18}F emission reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Cheol Ki; Jang, Han; Lee, Goung Jin [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2017-03-15

    Recently, the number of PET cyclotrons has increased in Korea. A cyclotron mainly produces {sup 18}F, which is used for the production of [{sup 18}F]FDG, a cancer diagnostic radiopharmaceutical. For radiation protection, the discharge control standard under the Nuclear Safety Act limits the radioactive concentration of {sup 18}F in the exhaust discharged from a nuclear power utilization facility to below 2,000 Bq m-3. However, the radioactive concentration of 18F discharged during [18F]FDG production at the cyclotron facility at Chosun University is maintained at about 1,500 Bq m{sup -3} on average, which is 75% of the concentration limit of the discharge control standard, and temporarily exceeds the standard as per the real-time monitoring results. This study evaluated the performance of the exhaust flter unit of the cyclotron facility at Chosun University by assessing the concentration of {sup 18}F in the exhaust, and an experiment was conducted on the discharge reduction, where {sup 18}F is discharged without reacting with the FDG precursors during [{sup 18}F]FDG synthesis and is immediately captured by the [{sup 18}F]FDG automatic synthesis unit. Based on the performance evaluation results of the exhaust flter at the cyclotron facility of Chosun University, the measured capture effciency before and after the flter was found to be 92%. Furthermore, the results of the discharge reduction experiment, where the exhaust {sup 18}F was immediately captured by the [{sup 18}F]FDG synthesizer, showed a very satisfactory 94.3% reduction in the concentration of discharge compared to the existing discharge concentration.

  1. Gaseous radioactive effluent restrictions, measurement, and minimization at a PET/cyclotron facility

    International Nuclear Information System (INIS)

    Plascjak, P.S.; Kim, K.K.; Googins, S.W.; Meyer, W.C. Jr.

    1993-01-01

    In the US, restrictions on the release of radioactive effluents from PET (positron emission tomography)/cyclotron facilities are typically imposed by State regulatory agencies and may be based on various methodologies and limits published by numerous agencies. This work presents suitable effluent concentration limits for various chemical forms of radioisotopes routinely produced in PET/cyclotron facilities. They were determined by application of metabolic models defined by ICRP 53 and ICRP 26/30 which will result in compliance with effective dose equivalent limits of 100 mrem per year at the release point. The NIH Cyclotron Facility effluent air monitoring system, environmental dosimetry program, and simple, effective systems for radioactive effluent minimization are also described. (orig.)

  2. Operational experience and recent developments at the National Medical Cyclotron, Sydney

    International Nuclear Information System (INIS)

    Conard, E.M.; Arnott, D.W.

    1996-01-01

    The National Medical Cyclotron, Sydney, Australia commenced operation in mid 1991, with a mission to provide PET and SPECT radionuclides throughout Australia. The realization of the present production capacity has been synonymous with the development of the facility's industrial cyclotron (IBA Cyclone 30). The choice of cyclotron was based on the Cyclone 30's virtues as a compact, user-friendly, energy efficient cyclotron, offering the beam quality characteristic of negative ion technology. Development of the cyclotron has improved reliability and increased beam capacity, while improvements to targetry have increased production reliability. More recently, the installation and commissioning of a new solid target irradiation facility has provided much needed redundancy. This paper describes the major cyclotron and targetry developments carried out to date. (orig.)

  3. Health physics and quality control management of a cyclotron-based PET facility

    International Nuclear Information System (INIS)

    Jerabek, P.A.

    1995-01-01

    This paper provides an overview of the operation and management of a Positron Emission Tomography (PET) facility at the University of Texas. The facility components are discussed from an operations perspective with an emphasis on devices, and on practices and procedures which are implemented to ensure that personnel exposures are as low as reasonably achievable. The cyclotron-based PET facility uses in-house production of PET radioisotopes for preparation of radiopharmaceuticals. A combination of specially designed cyclotron equipped devices, radiopharmaceutical preparation devices, and shielded devices along with health physics practices have helped to make PET operations become routine

  4. Risk assessment of 30 MeV cyclotron facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gyo Seong; Lee, Jin Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim, Chong Yeal [Dept. of Radiation Science and Technology, Chonbuk National University, Jeonju (Korea, Republic of)

    2017-03-15

    A cyclotron is a kind of particle accelerator that produces a beam of charged particles for the production of medical, industrial, and research radioisotopes. More than 30 cyclotrons are operated in Korea to produce 18F, an FDG synthesis at hospitals. A 30-MeV cyclotron was installed at ARTI (Advanced Radiation Technology Institute, KAERI) mainly for research regarding isotope production. In this study, we analyze and estimate the items of risk such as the problems in the main components of the cyclotron, the loss of radioactive materials, the leakage of coolant, and the malfunction of utilities, fres and earthquakes. To estimate the occurrence frequency in an accident risk assessment, five levels, i.e., Almost certain, Likely, Possible, Unlikely, and Rare, are applied. The accident consequence level is classified under four grades based on the annual permissible dose for radiation workers and the public in the nuclear safety law. The analysis of the accident effect is focused on the radioactive contamination caused by radioisotope leakage and radioactive material leakage of a ventilation filter due to a free. To analyze the risks, Occupation Safety and Health Acts is applied. In addition, action plans against an accident were prepared after a deep discussion among relevant researchers. In this acts, we will search for hazard and introduce the risk assessment for the research 30-MeV cyclotron facilities of ARTI.

  5. Risk assessment of 30 MeV cyclotron facilities

    International Nuclear Information System (INIS)

    Jeong, Gyo Seong; Lee, Jin Woo; Kim, Chong Yeal

    2017-01-01

    A cyclotron is a kind of particle accelerator that produces a beam of charged particles for the production of medical, industrial, and research radioisotopes. More than 30 cyclotrons are operated in Korea to produce 18F, an FDG synthesis at hospitals. A 30-MeV cyclotron was installed at ARTI (Advanced Radiation Technology Institute, KAERI) mainly for research regarding isotope production. In this study, we analyze and estimate the items of risk such as the problems in the main components of the cyclotron, the loss of radioactive materials, the leakage of coolant, and the malfunction of utilities, fres and earthquakes. To estimate the occurrence frequency in an accident risk assessment, five levels, i.e., Almost certain, Likely, Possible, Unlikely, and Rare, are applied. The accident consequence level is classified under four grades based on the annual permissible dose for radiation workers and the public in the nuclear safety law. The analysis of the accident effect is focused on the radioactive contamination caused by radioisotope leakage and radioactive material leakage of a ventilation filter due to a free. To analyze the risks, Occupation Safety and Health Acts is applied. In addition, action plans against an accident were prepared after a deep discussion among relevant researchers. In this acts, we will search for hazard and introduce the risk assessment for the research 30-MeV cyclotron facilities of ARTI

  6. Indian participation in FAIR accelerator facility

    International Nuclear Information System (INIS)

    Sur, Amitava

    2015-01-01

    India is a founder member of the FAIR-GmbH, the upcoming International Accelerator Facility at Darmstadt, Germany. Indian participation at FAIR is being funded jointly by the Department of Science and Technology (DST) and the Department of Atomic Energy (DAE). Indo- FAIR Coordination Centre at Bose Institute (BI-IFCC) is coordinating the Indian efforts of both in-kind contribution as well as experimental programmes at FAIR. FAIR aims for beams of stable and unstable nuclei as well as antiprotons in a wide range of intensities and energies. A superconducting double-synchrotron SIS100/300 with a circumference of 1,100 meters and with magnetic rigidities of 100 and 300 Tm, respectively, is at the heart of the FAIR accelerator facility. The existing GSI accelerators UNILAC and SIS18 will serve as an injector. Adjacent to the large double- synchrotron is a complex system of storage- cooler rings and experiment stations, including a superconducting nuclear fragment separator (Super-FRS) and an antiproton production target. FAIR will supply rare isotope beams (RIBs) and antiproton beams. In FAIR accelerator facility up to four research programs can be run in a parallel mode. The multidisciplinary research program covers the fields of QCD studies with cooled beams of antiprotons, nucleus nucleus collisions at highest baryon density, nuclear structure and nuclear astrophysics investigations with nuclei far off stability, high density plasma physics, atomic and material science studies, radio-biological and other application-oriented studies will contribute in providing in-kind items both for the accelerator and the experiments. As per current plans Indian in kind contributions include: Power Converters, Superconducting Magnets, Beam Stopper, Vacuum Chamber. A short sample from an Indian Industry has been tested successfully at FAIR. Indian participation in building the accelerator components for FAIR is presented

  7. Evaluation of {sup 18}F radioactive concentration in exhaust at cyclotron facility at Chosun University

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Cheol Ki; Jang, Han; Lee, Goung Jin [Dept. of Nuclear Engineering, Chsoun University, Gwangju (Korea, Republic of)

    2016-11-15

    the recent prevalence of PET examinations in Korea has led to an increase in the number of cyclotrons. the medical isotope 18F produced in most cyclotron facilities currently operating in Korea is emitted into the environment during the production of [{sup 18}F]FdG, a cancerdiagnosis reagent. the amount of [{sup 18}F]FdG synthesized determines the radioactive concentration of {sup 18}F in the exhaust. at some facilities, this amount temporarily exceeds the emission limit. In this study, we evaluated the {sup 18}F radioactivity concentration in the exhaust from the cyclotron facility at chosun university. the {sup 18}F radioactivity concentration was measured using an air sampler and a hPGe semiconductor detector. the measurements showed that the radioactive concentration of {sup 18}F in the exhaust at the cyclotron facility at Chosun university was the highest during [{sup 18}F]FdG synthesis but remained under the legal limit of 2,000 Bq m{sup -3}.

  8. Cyclotrons: 1978

    International Nuclear Information System (INIS)

    Martin, J.A.

    1978-01-01

    A compilation is presented of the experimental facilities of the world's cyclotrons including history and status, staff and operation, research staff, target facilities, magnet, acceleration system, vacuum system, characteristic beams, beam properties, and a plan view of the facility for each cyclotron

  9. Five Years of Cyclotron Radioisotope Production Experiences at the First PET-CT in Venezuela

    International Nuclear Information System (INIS)

    Colmenter, L.; Coelho, D.; Esteves, L. M.; Ruiz, N.; Morales, L.; Lugo, I.; Sajo-Bohus, L.; Liendo, J. A.; Greaves, E. D.; Barros, H.; Castillo, J.

    2007-01-01

    Five years operation of a compact cyclotron installed at PET-CT facility in Caracas, Venezuela is given. Production rate of 18 F labeled FDG, operation and radiation monitoring experience are included. We conclude that 18 FDG CT-PET is the most effective technique for patient diagnosis

  10. Design features of isotope production facility at Inshas cyclotron complex. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Comsan, M N [Nuclear Research Center, Atomic Energy Aurhority, Cairo, (Egypt)

    1996-03-01

    The nuclear research center, AEA, Egypt is erecting at its Inshas campus cyclotron complex for multidisciplinary use for research and application. The complex is to utilize a russian made AVF cyclotron accelerator of the type MGC-20 with MeV protons. Among its applications, the accelerator will be used for the production of short lived cyclotron isotopes. This article presents a concise description of the design features of isotope production facility to be annexed to the complex layout, schemes for radio waste, ventilation, and air conditioning systems. 2 figs., 2 tabs.

  11. Neutron transport calculation for Activation Evaluation for Decommissioning of PET cyclotron Facility

    Science.gov (United States)

    Nobuhara, Fumiyoshi; Kuroyanagi, Makoto; Masumoto, Kazuyoshi; Nakamura, Hajime; Toyoda, Akihiro; Takahashi, Katsuhiko

    2017-09-01

    In order to evaluate the state of activation in a cyclotron facility used for the radioisotope production of PET diagnostics, we measured the neutron flux by using gold foils and TLDs. Then, the spatial distribution of neutrons and induced activity inside the cyclotron vault were simulated with the Monte Calro calculation code for neutron transport and DCHAIN-SP for activation calculation. The calculated results are in good agreement with measured values within factor 3. Therefore, the adaption of the advanced evaluation procedure for activation level is proved to be important for the planning of decommissioning of these facilities.

  12. Radiation safety aspects of the AGOR superconducting cyclotron facility

    NARCIS (Netherlands)

    Beijers, JPM; de Meijer, RJ

    1996-01-01

    This paper describes shielding calculations and skyshine estimates for the new AGOR K=600 superconducting cyclotron facility. Both simple, semi-empirical models and Monte-Carlo simulations were used. The calculations are based on a 200 MeV proton beam incident on a trick aluminum target. Also the

  13. A cyclotron isotope production facility designed to maximize production and minimize radiation dose

    International Nuclear Information System (INIS)

    Dickie, W.J.; Stevenson, N.R.; Szlavik, F.F.

    1993-01-01

    Continuing increases in requirements from the nuclear medicine industry for cyclotron isotopes is increasing the demands being put on an aging stock of machines. In addition, with the 1990 recommendations of the ICRP publication in place, strict dose limits will be required and this will have an effect on the way these machines are being operated. Recent advances in cyclotron design combined with lessons learned from two decades of commercial production mean that new facilities can result in a substantial charge on target, low personnel dose, and minimal residual activation. An optimal facility would utilize a well engineered variable energy/high current H - cyclotron design, multiple beam extraction, and individual target caves. Materials would be selected to minimize activation and absorb neutrons. Equipment would be designed to minimize maintenance activities performed in high radiation fields. (orig.)

  14. Cyclotron facilities in Brazil: Current status and licensing aspects

    International Nuclear Information System (INIS)

    Facure, A.; Carvalho, S.M.; Di Prinzio, R.; Silveira, C.S.; Gasparian, P.B.R.; Franca, W.F.

    2017-01-01

    Positron Emission Tomography (PET) is a highly sensitive and accurate nuclear medicine imaging technology but the major problem of this technique is the use of radioisotopes with short half-life, less than two hours. The production and selling of short half-life radioisotopes used to be monopoly of the Brazilian Government. In 2006, a Constitutional Amendment revoked the state monopoly due to the need for the use of short half-life radioisotopes in nuclear medicine centers very far from the government production facilities. The aim of this study is to describe the current status of short half-life radioisotopes production in Brazil and discuss some licensing process. In Brazil, as has been occurring worldwide, the number of nuclear medicine centers is increasing. Currently there are 123 services performing PET scans in Brazil. There are 14 cyclotrons operating in Brazil. The type of licensing process conducted in Brazil does not take into account the population density of each state, with a free competition model being adopted. Because of this there is a lot of equipment concentrated in the Southeast and no cyclotrons operating in the Northern part of the country. One of the biggest obstacles during the licensing process is the designation of qualified personnel as operation workers and radiation safety officers. The number of cyclotron accelerators and PET/CT equipment increased in recent years. However, a number of external factors such as the distance from the nuclear medicine centers, and qualified personnel have proved crucial for the economic viability of this type of facility. (author)

  15. Cyclotron facilities in Brazil: Current status and licensing aspects

    Energy Technology Data Exchange (ETDEWEB)

    Facure, A.; Carvalho, S.M.; Di Prinzio, R.; Silveira, C.S.; Gasparian, P.B.R.; Franca, W.F., E-mail: facure@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-09-01

    Positron Emission Tomography (PET) is a highly sensitive and accurate nuclear medicine imaging technology but the major problem of this technique is the use of radioisotopes with short half-life, less than two hours. The production and selling of short half-life radioisotopes used to be monopoly of the Brazilian Government. In 2006, a Constitutional Amendment revoked the state monopoly due to the need for the use of short half-life radioisotopes in nuclear medicine centers very far from the government production facilities. The aim of this study is to describe the current status of short half-life radioisotopes production in Brazil and discuss some licensing process. In Brazil, as has been occurring worldwide, the number of nuclear medicine centers is increasing. Currently there are 123 services performing PET scans in Brazil. There are 14 cyclotrons operating in Brazil. The type of licensing process conducted in Brazil does not take into account the population density of each state, with a free competition model being adopted. Because of this there is a lot of equipment concentrated in the Southeast and no cyclotrons operating in the Northern part of the country. One of the biggest obstacles during the licensing process is the designation of qualified personnel as operation workers and radiation safety officers. The number of cyclotron accelerators and PET/CT equipment increased in recent years. However, a number of external factors such as the distance from the nuclear medicine centers, and qualified personnel have proved crucial for the economic viability of this type of facility. (author)

  16. Vancouver Cyclotron Conference

    International Nuclear Information System (INIS)

    Clark, David J.

    1993-01-01

    Although no longer on the high energy frontier, the cyclotron field is still a major scientific growth area. Its progress is highlighted at the international conference on cyclotron design, development and utilization held at intervals of about three years, under the auspices of the International Union of Pure and Applied Physics (IUPAP). Vancouver, surrounded by mountains, water and some cyclotrons, provided a pleasant setting for the 13th Conference, held last summer. With over 200 cyclotrons in operation around the world, the attendance, 241 delegates and 26 industrial exhibitors, was a near record, reflecting the flourishing state of the field. The early sessions covered the initial operation of new or upgraded cyclotron facilities. Major facilities completed since the previous Conference in Berlin in May 1989 included the 400 MeV ring cyclotron at Osaka, the U400M cyclotron at Dubna which will be coupled to the U400 to give 20 MeV nucléon uranium beams, the 130 MeV cyclotron at Jyvaskyla (in Finland, the furthest north!), the 110 MeV JAERI machine in Japan, and the 65 MeV proton therapy cyclotron in Nice. Among the facility upgrades were the KFA cyclotron at Julich which will inject the 2.5 GeV storage ring COSY, and the addition of an FM mode to the K=200 CW mode at Uppsala to give protons up to 180 MeV. The impressive current of 1.5 mA at 72 MeV obtained from the PSI Injector II will soon be injected into the 590 MeV ring

  17. Neutron measurements at BRIT/BARC medical cyclotron facility of RMC, Parel

    International Nuclear Information System (INIS)

    Sathian, Deepa; Sathian, V.; Phandnis, U.V.; Soni, P.S.; Mohite, D.Y.

    2005-01-01

    Neutron leakage and its long distance propagation in the atmosphere from the intense neutron facilities such as high energy accelerators like Cyclotron are very important for the shielding design of the facilities and resulting dose reduction to nearby population, because of strong penetrability of high energy neutrons. The neutron interaction cross sections are highly energy dependent, so different methods are adopted for measuring different energy neutrons. The method also depends on the amount of neutron fluence rate expected at the location. When the fluence rate is very high, the foil activation is the best method for the measurement of neutron fluence rate. In foil activation technique an inactive material is activated by neutrons and the activity is measured and correlated to the neutron fluence rate. In this paper, neutron fluence rate measurement using different activation foils at medical cyclotron room of Radiation Medicine Centre (RMC) is discussed. (author)

  18. Recent performance of the TRIUMF cyclotron and status of the facility

    International Nuclear Information System (INIS)

    Dutto, G.; Blackmore, E.W.; Carey, J.

    1995-09-01

    In December 1994, TRIUMF celebrated 20 years of operation. The peak intensity has been increased over the years to the present level of approximately 200 μA on beam line 1A. Polarized beam currents in excess of 20 μA are available although most users prefer lower intensity, higher quality slit-tailored polarized beams. The cyclotron simultaneously extracts three beams: one at 500 MeV for meson production, a lower intensity beam on beam line 4 for nuclear physics, nuclear chemistry, or astrophysics experiments, and a low energy beam (65-120 MeV, from a few nA up to 100 μA) on beam line 2C for isotope production or proton therapy. The yearly total integrated extracted beam current is now in the order of 600 mAh per year. Beam delivery is in excess of 5000 hours per year with beam availability consistently around 90%, serving as many as 8 experimental stations simultaneously. An additional simultaneous extraction line is planned for the new ISAC facility. With the present polarized beam current capability, the operation of polarized beams for the beam line 4 experiments will be possible simultaneously with the operation of the ISAC facility up to levels of 20 μA, 500 MeV, on target. Recent facility developments will also be reported. (author)

  19. The Midwest Proton Radiation Institute project at the Indiana University Cyclotron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Anferov, V; Broderick, B; Collins, J C; Friesel, D L; Jenner, D; Jones, W P; Katuin, J; Klein, S B; Starks, W; Self, J; Schreuder, N [IUCF, Bloomington, Indiana 47408 (United States)

    2001-12-12

    The IUCF cyclotrons ceased delivering particle beams for physics research and became dedicated medical proton beam accelerators in 1999. Removal of the beam lines and nuclear research facilities associated with the cyclotrons to make room for the new medical beam delivery systems was completed in October, 2000. A new achromatic beam line was completed, extending from the main stage cyclotron and ending at a temporary research platform. This beam line is being commissioned during ongoing applied research. The achromatic line will deliver 0.5 {mu}A of 205 MeV protons from which the treatment room technician may draw current at any time via fast switching, laminated magnets located at the entrances to the energy selection systems upstream of each of the treatment rooms. Three treatment rooms are planned, one containing two fixed horizontal lines and two gantry rooms. The cyclotrons will also support full time research in radiation effects, single event upset, radiation biology and pre-clinical research. This contribution describes the status of the medical construction project.

  20. The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kireeff Covo, M.; Albright, R. A.; Ninemire, B. F.; Johnson, M. B.; Hodgkinson, A.; Loew, T.; Benitez, J. Y.; Todd, D. S.; Xie, D. Z.; Perry, T.; Phair, L.; Bernsteiny, L. A.; Bevins, J.; Brown, J. A.; Goldblum, B. L.; Harasty, M.; Harrig, K. P.; Laplace, T. A.; Matthews, E. F.; Bushmaker, A.; Walker, D.; Oklejas, V.; Hopkins, A. R.; Bleuel, D. L.; Chen, J.; Cronin, S. B.

    2017-10-01

    In outer space down to the altitudes routinely flown by larger aircrafts, radiation can pose serious issues for microelectronics circuits. The 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is a sector-focused cyclotron and home of the Berkeley Accelerator Space Effects Facility, where the effects of energetic particles on sensitive microelectronics are studied with the goal of designing electronic systems for the space community. This paper describes the flexibility of the facility and its capabilities for testing the bombardment of electronics by heavy ions, light ions, and neutrons. Experimental capabilities for the generation of neutron beams from deuteron breakups and radiation testing of carbon nanotube field effect transistor will be discussed.

  1. Control system specification for a cyclotron and neutron therapy facility

    International Nuclear Information System (INIS)

    Jacky, J.; Risler, R.; Kalet, I.; Wootton, P.; Barke, A.; Brossard, S.; Jackson, R.

    1991-01-01

    It is usually considered an essential element of good practice in engineering to produce a specification for a system before building it. However, it has been found to be quite difficult to produce useful specifications of large software systems. The authors have nearly completed a comprehensive specification for the computer control system of a cyclotron and treatment facility that provides particle beams for cancer treatments with fast neutrons, production of medical isotopes, and physics experiments. They describe the control system as thoroughly as is practical using standard technical English, supplemented by tables, diagrams, and some algebraic equations. This specification comprises over 300 single-spaced pages. A more precise and compact specification might be achieved by making greater use of formal mathematical notations instead of English. They have begun work on a formal specification of the system, using the Z and Petri net notations

  2. Medical Cyclotrons

    Science.gov (United States)

    Friesel, D. L.; Antaya, T. A.

    Particle accelerators were initially developed to address specific scientific research goals, yet they were used for practical applications, particularly medical applications, within a few years of their invention. The cyclotron's potential for producing beams for cancer therapy and medical radioisotope production was realized with the early Lawrence cyclotrons and has continued with their more technically advanced successors — synchrocyclotrons, sector-focused cyclotrons and superconducting cyclotrons. While a variety of other accelerator technologies were developed to achieve today's high energy particles, this article will chronicle the development of one type of accelerator — the cyclotron, and its medical applications. These medical and industrial applications eventually led to the commercial manufacture of both small and large cyclotrons and facilities specifically designed for applications other than scientific research.

  3. Biomedical cyclotron facility

    International Nuclear Information System (INIS)

    MacDonald, N.S.; Birdsall, R.; Takahaski, J.; McConnel, L.; Wood, R.; Wakakuwa, S.

    1976-01-01

    During the fifth year of operation the mechanical performance of the cyclotron and accessory equipment was excellent. Major items put into operation were a small computer system interfaced with Ge-Li gamma spectrometer and a pneumatic-tube system for fast delivery of short-lived radionuclides. A table is presented listing the radionuclides produced

  4. U-2g0 cyclotron operational experience and improvement

    International Nuclear Information System (INIS)

    Gigal, B.N.; Gul'bekyan, G.G.; Kozlov, S.I.; Oganesyan, R.Ts.

    1983-01-01

    Brief description of main syste's of the U-200 isochronous 2-m cyclotron put into opera ion in 1968 is given and its operational characteristics a e presented. The cyclotron is used for conducting inve tigations in the field of nuclear physics. Ions from d uterium to argon have been accelerated in the cyclotro'. Annual time of target irradiation constitutes 2000-4000. The specific features of the cyclotron are: high l vel of a magnetic field (of about 20 kOe), possibili y of acceleration of ions with different mass-to-charge ratio a low correcting winding power, simple and high-e fective beam extraction by the method of charge exchange on a thin target allowing to vary smoothly energy of extracted ons. An experience in the U-200 cyclotron development and o eration is used as the basis for designing and choosing basic parameters of the U-200P, U-250, U-400 heavy ion cyclotrons

  5. The design, construction, and commissioning of a multi-use cyclotron facility

    International Nuclear Information System (INIS)

    Ho, S.; Hutcheson, M.; Schick-Martin, D.; Dalzell, M.; Alexander, N.

    2015-01-01

    The Sylvia Fedoruk Canadian Centre for Nuclear Innovation in Saskatchewan is in the process of commissioning the Saskatchewan Centre for Cyclotron Sciences that is to be used for both academic research and commercial radiopharmaceutical production. The hybrid nature of this facility comes with unique challenges in satisfying both the rigid demands of pharmaceutical production while providing the necessary flexibility for academic research. In order to meet these competing demands, the Fedoruk Centre has assembled a distinct combination of skill sets and areas of expertise to operate a facility with an interdisciplinary focus. (author)

  6. Radiation effects testing at the 88-Inch Cyclotron at LBNL

    International Nuclear Information System (INIS)

    McMahan, Margaret A.; Koga, Rokotura

    2002-01-01

    The effects of ionizing particles on sensitive microelectronics is an important component of the design of systems as diverse as satellites and space probes, detectors for high energy physics experiments and even internet server farms. Understanding the effects of radiation on human cells is an equally important endeavor directed towards future manned missions in space and towards cancer therapy. At the 88-Inch Cyclotron at the Berkeley Laboratory, facilities are available for radiation effects testing (RET) with heavy ions and with protons. The techniques for doing these measurements and the advantages of using a cyclotron will be discussed, and the Cyclotron facilities will be compared with other facilities worldwide. RET of the same part at several facilities of varying beam energy can provide tests of the simple models used in this field and elucidate the relative importance of atomic and nuclear effects. The results and implications of such measurements will be discussed

  7. Operational experience and recent developments at the National Medical Cyclotron

    International Nuclear Information System (INIS)

    Conard, E.; Pac, B.; Arnott, D.W.

    1994-01-01

    The National Medical Cyclotron is a radioisotope production facility run by ANSTO and located on the grounds of the Royal Prince Alfred Hospital in Sydney, Australia. A CYCLONE 30 (IBA) cyclotron is used in the production of short-lived PET radiopharmaceuticals required by the hospital's PET Scanner and also to produce a number of bulk radiochemicals for processing and distribution throughout Australasia. Following commissioning of the cyclotron and beam lines in October 1991, and the overcoming of a number of early open-quote teething close-quote problems especially relating to the reliability of the r.f. and solid target transport systems, a steady program of improvements has been pursued. These improvements have included development of new beam diagnostics and the design and installation of a new beam line for SPECT radioisotope production. The current operations schedule includes the production of 18 FDG, 13 NH 3 , 15 O 2 and 201 Tl, 67 Ga and 123 I. This paper will discuss the process of development of the cyclotron to ably meet the present demands on it, and the problems resolved in the pursuit of this goal

  8. ELECTRON CYCLOTRON CURRENT DRIVE IN DIII-D: EXPERIMENT AND THEORY

    International Nuclear Information System (INIS)

    PRATER, R; PETTY, CC; LUCE, TC; HARVEY, RW; CHOI, M; LAHAYE, RJ; LIN-LIU, Y-R; LOHR, J; MURAKAMI, M; WADE, MR; WONG, K-L

    2003-01-01

    A271 ELECTRON CYCLOTRON CURRENT DRIVE IN DIII-D: EXPERIMENT AND THEORY. Experiments on the DIII-D tokamak in which the measured off-axis electron cyclotron current drive has been compared systematically to theory over a broad range of parameters have shown that the Fokker-Planck code CQL3D provides an excellent model of the relevant current drive physics. This physics understanding has been critical in optimizing the application of ECCD to high performance discharges, supporting such applications as suppression of neoclassical tearing modes and control and sustainment of the current profile

  9. Radiation exposure to workers at cyclotron facilities

    International Nuclear Information System (INIS)

    Ribeiro, M.S.; Sanches, M.P.; Sanchez, A.S.; Rodrigues, D.L.

    2001-01-01

    Radiopharmaceuticals quickly furnish the information doctors need to establish a precise diagnosis of the patient's condition, and therefore to prescribe the most effective therapy. In cancerology, F18-FDG, the most widely used PET imaging tracer, excels in the early detection of cancer tumors, even very tiny ones, which it locates and clearly distinguishes from healthy surrounding tissues. IPEN-CNEN/SP has two cyclotron accelerators used mainly for radioisotope production to be utilized in nuclear medicine for diagnosis and therapy. The first is a CV-28 cyclotron, variable energy that came into operation in 1982, which was used to produce F18-FDG and Iodine 123 up to 1998. The second, a Cyclone 30 cyclotron, 30 MeV, commenced operation in 1998 for certification purpose, and due to increase demand for radiopharmaceuticals in Brazil, started F18-FDG production in 1999. Cyclotron Laboratory will be a reference Research and Developing Center in our country and will help the Brazilian and Latin-American community. It is necessary to have an adequate database to allow regular follow up and analysis of the individual dose distributions for each group involved in the cyclotron activities. These databases are also important means to assess the effectiveness of efforts in order to maintain doses ALARA and reduce inequalities. The official individual occupational dosimetry is provided by certified Laboratory of Thermoluminescent Dosimetry at IPEN-CNEN/SP. This paper describes the occupational doses distribution in Laboratory of Cyclotrons at IPEN-CNEN/SP from January, 1998 to July, 2000 and propose improvements for the future. (author)

  10. NIRS-Chiba isochronous cyclotron 1975

    International Nuclear Information System (INIS)

    Ogawa, H.; Kumamoto, Y.; Yamada, T.; Hiramoto, T.

    1976-02-01

    The cyclotron facility installed according to the recommendation of the Atomic Energy Committee of Japan is used for neutron therapy and production of short-lived radioisotopes. Construction on the facility was started in the autumn of 1972, and completed in March 1974. Described are the following: beam transport and the experimental hall, machine research and improvement, machine time sharing and the particles and energies, characteristics of the cyclotron, and facility personnel. (auth.)

  11. Fast wave heating experiments in the ion cyclotron range of frequencies on ATF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, M; Shepard, T D; Goulding, R H [Oak Ridge National Lab., TN (United States); and others

    1992-07-01

    Fast wave heating experiments in the ion cyclotron range of frequencies (ICRF) were performed on target plasmas produced by 350 kW of electron cyclotron heating at 53 GHz and also by neutral beam injection in the Advanced Toroidal Facility (ATF). Various heating regimes were investigated in the frequency range between 9.2 MHz and 28.8 MHz with magnetic fields of 0.95 T and 1.9 T on axis. The nominal pulse lengths of up to 200 kW RF power were in the range between 100 and 400 ms. Data from spectroscopy, loading measurements, and edge RF and Langmuir probes were used to characterize the RF induced effects on the ATF plasma. In the hydrogen minority regime at low plasma density, large suprathermal ion tails were observed with a neutral particle analyser. At high density (n-bar{sub e} {>=} 5.0 x 10{sup 13} cm{sup -3}) substantial increases in antenna loading were observed, but ICRF power was insufficient to produce definitive heating results. A two-dimensional RF heating code, ORION, and a Fokker-Planck code, RFTRANS, were used to simulate these experiments. A simulation of future high power, higher density experiments in ATF indicates improved bulk heating results due to the improved loading and more efficient thermalization of the minority tail. (author). 29 refs, 16 figs, 3 tabs.

  12. Health physics considerations at a neutron therapy facility cyclotron

    International Nuclear Information System (INIS)

    Kleck, J.H.; Krueger, D.J.; Mc Laughlin, J.E.; Smathers, J.B.

    1987-01-01

    The U.C.L.A. Neutron Therapy Facility (NTF) is one of four such facilities in the United States currently involved in NCI sponsored trials of neutron therapy and reflects the present interest in the use of high energy neutron beams for treating certain types of human cancers. The NTF houses a CP-45 negative ion cyclotron which accelerates a 46 MeV proton beam for production of neutrons from a beryllium target. In addition to patient treatment, the NTF is involved in the production of positron emitting radioisotopes for diagnostic use in Positron Emission Tomography (PET). The activation of therapy treatment collimators, positron and neutron target systems, and a high and rapidly varying external radiation environment in a clinical setting have contributed to the need for a comprehensive radiation control program in which patient care is balanced with the maintenance of occupational exposures to ALARA levels

  13. Comparison Between In-Beam and Offline Positron Emission Tomography Imaging of Proton and Carbon Ion Therapeutic Irradiation at Synchrotron- and Cyclotron-Based Facilities

    International Nuclear Information System (INIS)

    Parodi, Katia; Bortfeld, Thomas; Haberer, Thomas

    2008-01-01

    Purpose: The benefit of using dedicated in-beam positron emission tomography (PET) detectors in the treatment room instead of commercial tomographs nearby is an open question. This work quantitatively compares the measurable signal for in-beam and offline PET imaging, taking into account realistic acquisition strategies at different ion beam facilities. Both scenarios of pulsed and continuous irradiation from synchrotron and cyclotron accelerators are considered, because of their widespread use in most carbon ion and proton therapy centers. Methods and Materials: A mathematical framework is introduced to compare the time-dependent amount and spatial distribution of decays from irradiation-induced isotope production. The latter is calculated with Monte Carlo techniques for real proton treatments of head-and-neck and paraspinal tumors. Extrapolation to carbon ion irradiation is based on results of previous phantom experiments. Biologic clearance is modeled taking into account available data from previous animal and clinical studies. Results: Ratios between the amount of physical decays available for in-beam and offline detection range from 40% to 60% for cyclotron-based facilities, to 65% to 110% (carbon ions) and 94% to 166% (protons) at synchrotron-based facilities, and increase when including biologic clearance. Spatial distributions of decays during irradiation exhibit better correlation with the dose delivery and reduced influence of biologic processes. Conclusions: In-beam imaging can be advantageous for synchrotron-based facilities, provided that efficient PET systems enabling detection of isotope decays during beam extraction are implemented. For very short (<2 min) irradiation times at cyclotron-based facilities, a few minutes of acquisition time after the end of irradiation are needed for counting statistics, thus affecting patient throughput

  14. Building 211 cyclotron characterization survey report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-30

    The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.

  15. Experimental monitoring of ozone production in a PET cyclotron facility

    International Nuclear Information System (INIS)

    Zanibellato, L.; Cicoria, G.; Pancaldi, D.; Boschi, S.; Mostacci, D.; Marengo, M.

    2010-01-01

    Ozone produced from radiolytic processes was investigated as a possible health hazard in the working environment at the University Hospital 'S.Orsola-Malpighi' PET facility. Intense radiation fields can generate ozone, known to be the most toxic gas produced by ionizing radiation around a particle accelerator. To evaluate ozone concentration in air, two different measurement campaigns were conducted with passive diffusion detectors. Comparison of the results with the concentration limits recommended by American Conference of Governmental Industrial Hygienists (ACGIH) demonstrated that ozone poses no health hazard to workers around a biomedical cyclotron.

  16. Rf structure of superconducting cyclotron for therapy application

    International Nuclear Information System (INIS)

    Takekoshi, Hidekuni; Matsuki, Seishi; Mashiko, Katuo; Shikazono, Naomoto.

    1981-01-01

    Advantages of fast neutrons in therapeutical application are now widely recognized. Fast neutrons are generated by bombarding a thick beryllium target with high energy protons and deuterons. The AVF cyclotrons which deliver 50 MeV protons and 25 MeV deuterons are commonly used and are commercially available now. At the treatment usually rotational irradiation is taken to prevent an injury to normal tissue from the high LET effect of fast neutrons. The construction cost of both cyclotrons and isocentric irradiation installation are relatively high, so that the spread of neutron therapy is obstructed. A superconducting cyclotron for neutron therapy application was proposed by a Chalk River group. This low cost design allows the installation to be a dedicated facility located in a hospital, and small size allows installations of the complete cyclotron in a rotatable gantry. The design studies of the superconducting cyclotron based on this idea are going on at Kyoto University. The full scale model experiments for a rf structure of the cyclotron were carried out. (author)

  17. Potential of cyclotron based accelerators for energy production and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Stammbach, T.; Adam, S.; Fitze, H.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1995-10-01

    PSI operates a 590 MeV-cyclotron facility for high intensity proton beams for the production of intense beams of pions and muons. The facility, commissioned in 1974, has been partially upgraded and is now operated routinely at a beam current of 1 mA, which corresponds to a beam power of 0.6 MW. At this current, the beam losses in the cyclotron are about 0.02%. By the end of 1995 the authors expect to have 1.5 mA of protons. Extensive theoretical investigations on beam current limitations in isochronous cyclotrons were undertaken. They show that the longitudinal space charge effects dominate. Based on their experience the authors present a preliminary design of a cyclotron scheme that could produce a 10 MW beam as a driver for an {open_quotes}energy amplifier{close_quotes} as proposed by C. Rubbia and his collaborators. The expected efficiency for the conversion of AC into beam power would be about 50% (for the RF-systems only). The beam losses in the cyclotron are expected to be a few {mu}A, leading to a tolerable activation level.

  18. Recycling and recommissioning a used biomedical cyclotron

    International Nuclear Information System (INIS)

    Carroll, L.R.; Ramsey, F.; Armbruster, J.; Montenero, M.

    2001-01-01

    Biomedical Cyclotrons have a very long life, but there eventually comes a time when any piece of equipment has to be retired from service. From time to time, we have the opportunity to help find new homes for used cyclotrons which, with relatively modest overhaul and refurbishment, can have many additional years of productive service, and thus represent a very valuable asset. The reasons for retiring a cyclotron vary, of course, but in our experience it is often due to an institution's changing priorities or changing needs, rather than the due to any fundamental age-related deficiency in the cyclotron itself. In this paper we will report on the relocation and successful restoration of a used TCC CP-42 cyclotron, which was moved from M.D. Anderson Hospital in Houston to Denton, Texas in early 1998, where it is presently being used for R and D and commercial production of biomedical isotopes. Ownership of the machine has been transferred to the University of North Texas; facility, manpower, and operational resources are provided by International Isotopes, Inc

  19. Radiation exposure to the staff working in PET/CT and Cyclotron Facility

    International Nuclear Information System (INIS)

    Ivanova, S.D.

    2016-01-01

    Positron Emission Tomography (PET) has been available in number of centers for more than 25 years, but its use was not wide spread until 10 years ago. In Bulgarian PET/CT was installed for the first time in 2009 and the dose on demand cyclotron also for the first time – in 2013 in Nuclear Medicine Department in University Hospital St. Marina in Varna, Bulgaria. Responsibility of every radiation protection officer is to educate the stuff how to protect their selves from radioactive exposure and to observe and calculate the dose to the people and the stuff. The purpose of this paper is to show how big the doses of the stuff working in Nuclear Medicine Center including PET/CT and Cyclotron facilities situated in University Hospital St. Marina in Varna, Bulgaria are. The Department is working now with about 15 patients every day. The dose rates measured with personal TLD’s and personal dose rate meters for the last 5 years for the stuff are under 3 mSv. As the average dose is under 1 mSv, and the doses over 1mSv are only for nurses who injected the FDG. Keywords: radiation exposure, effective dose, PET/CT, Cyclotron, FDGbf

  20. The Berkeley Accelerator Space Effects (BASE) Facility - A new mission for the 88-Inch Cyclotron at LBNL

    International Nuclear Information System (INIS)

    McMahan, M.A.

    2005-01-01

    In FY04, the 88-Inch Cyclotron began a new operating mode that supports a local research program in nuclear science, R and D in accelerator technology and a test facility for the National Security Space (NSS) community (the US Air Force and NRO). The NSS community (and others on a cost recovery basis) can take advantage of both the light- and heavy-ion capabilities of the cyclotron to simulate the space radiation environment. A significant portion of this work involves the testing of microcircuits for single event effects. The experimental areas within the building that are used for the radiation effects testing are now called the Berkeley Accelerator Space Effects (BASE) Facility. Improvements to the facility to provide increased reliability, quality assurance and new capabilities are underway and will be discussed. These include a 16 A MeV 'cocktail' of beams for heavy ion testing, a neutron beam, more robust dosimetry, and other upgrades

  1. High efficiency confinement mode by electron cyclotron heating

    International Nuclear Information System (INIS)

    Funahashi, Akimasa

    1987-01-01

    In the medium size nuclear fusion experiment facility JFT-2M in the Japan Atomic Energy Research Institute, the research on the high efficiency plasma confinement mode has been advanced, and in the experiment in June, 1987, the formation of a high efficiency confinement mode was successfully controlled by electron cyclotron heating, for the first time in the world. This result further advanced the control of the formation of a high efficiency plasma confinement mode and the elucidation of the physical mechanism of that mode, and promoted the research and development of the plasma heating by electron cyclotron heating. In this paper, the recent results of the research on a high efficiency confinement mode at the JFT-2M are reported, and the role of the JFT-2M and the experiment on the improvement of core plasma performance are outlined. Now the plasma temperature exceeding 100 million deg C has been attained in large tokamaks, and in medium size facilities, the various measures for improving confinement performance are to be brought forth and their scientific basis is elucidated to assist large facilities. The JFT-2M started the operation in April, 1983, and has accumulated the results smoothly since then. (Kako, I.)

  2. 83-inch cyclotron research program. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.C.

    1983-07-01

    In June of 1960 the US Atomic Energy Commission authorized the construction of a modern variable energy cyclotron facility at The University of Michigan to be used for research in nuclear spectroscopy. The Legislature of the State of Michigan made available funds for construction of a building to house the 83-inch cyclotron and auxiliary equipment as well as the University's remodeled 42-inch cyclotron. The research program centered around the 83-inch cyclotron was funded by the AEC and its successors, the Energy Research and Development Administration (ERDA) and the Department of Energy (DOE), from September 1964 through March 1977. The program represented a continuation of the research effort using the 42-inch cyclotron facility which had been supported continuously by the AEC since February 1950. This final report to DOE briefly describes the research facility, the research program, and highlights the principal accomplishments of the effort. It begins with a historical note to place this effort within the context of nuclear physics research in the Department of Physics of the University of Michigan

  3. System aspects of the Indian MST radar facility

    Science.gov (United States)

    Viswanathan, G.

    1986-01-01

    One of the major objectives of the Indian Middle Atmosphere Program is to investigate the motions of the middle atmosphere on temporal and spatial scales and the interaction between the three height regions of the middle atmosphere. Realizing the fact that radar technique has proven to be a very powerful tool for the study of Earth atmosphere, the Indian Middle Atmosphere Program has recommended establishing a mesosphere-stratosphere-troposphere (MST) radar as a national facility for atmospheric research. The major landmarks in this attempt to setup the MST radar as a national facility are described.

  4. Channeling experiments at IPNE Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, F; Dumitru, M; Ivan, A [Cyclotron Laboratory, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, R-76900 Bucharest, P.O.Box MG-6, (Romania)

    1992-01-01

    Channeling experiments have been performed at the I.P.N.E Cyclotron using a 3 MeV alpha beam. A slide system cut the beam up to 5 minutes spatial resolution with a maximum 60 nA beam current on the target. The two-axis goniometer, fully computer-controlled, moves the target, a silicon wafer, with 2.5 minute resolution, while an alpha particle sensitive solid state detector, monitors the backscattered particle fluence. In the first stage, channeling appears to be a simple, fast and reliable method for precise monocrystal orientation. A reduction of the host yield by a factor of two allowed impurities and defects to be studied. (Author).

  5. Survey on radionuclide producing using cyclotron method in Malaysia

    International Nuclear Information System (INIS)

    Mohd Fadli Mohammad Noh

    2008-01-01

    This research discuss about basic design and systems of medical cyclotron that Malaysia currently have, its applications in radionuclide production and upcoming technologies of cyclotron. Surveys have been carried out on cyclotron facilities at Hospital Putrajaya and Wijaya International Medical Center, WIMC as well as reactor facility at Malaysia Nuclear Agency. The sources in this research also involves on-line and library searches. Information obtained are recorded, categorized, synthesized and discussed. systems of cyclotron of Hospital Putrajaya are further discussed in details. Based from the surveys carried out, it is found out that cyclotron facilities both in Hospital Putrajaya and WIMC only produce ( 18 F)FDG with radioactivity of 18 F produced in 2007 are 16479 mCi and 92546 mCi respectively. Survey also revealed that radioisotope production at Nuclear Malaysia has had its operation been ceased. A new radiopharmaceutical, namely CHOL is suggested to be synthesized by both facilities as a new PET tracer. Latest developments concerning technologies of cyclotron as well as other accelerators such as laser for future medical accelerator, prospect of boron neutron capture and the potential of hadron therapy in Malaysia are discussed here. Radioisotope production in Malaysia is expected to keep booming in future due to increase in usage of PET techniques and the construction of more compact, easy to handle and less costly cyclotrons. (author)

  6. A facility for liquid-phase radiation experiments on heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stuglik, Z; Zvara, I; Yakushev, A B; Timokhin, S N [Flerov Lab. of Nuclear Reactions, Dubna (Russian Federation). Joint Inst. for Nuclear Research

    1994-05-01

    The facility for liquid-phase radiation experiments installed on the beam line of the U-400 cyclotron in the Flerov Laboratory of Nuclear Reactions, JINR, Dubna, is described. The accelerator provides intermediate energy (some 10 MeV/nucleon) beams of ions ranging from Li to Xe. Preliminary results on the radiolysis of the Fricke solution and malachite green in ethanol by {sup 11}B, {sup 24}Mg and {sup 40}Ca ions are presented. (author).

  7. Building on TR-24 success. Advanced Cyclotron Systems Inc. launches a new cyclotron model

    International Nuclear Information System (INIS)

    Russell Watt; William Gyles; Alexander Zyuzin

    2015-01-01

    ACSI is designing a new 30 MeV cyclotron based on the TR-24. While minimizing changes from the proven TR-24, including maintaining the same outer dimensions, the energy of the cyclotron will be increased to 30 MeV, which will make it the most compact, non-superconducting, 30 MeV cyclotron design to date. Maximum beam current will match the TR-24 at 1 mA. With the size and footprint of a typical low energy PET cyclotron, this system will offer users a cost effective solution for a diversified facility capable of producing a wide spectrum of PET and SPECT radioisotopes for research and commercial distribution. (author)

  8. Progress report: Variable Energy Cyclotron Centre, Calcutta

    International Nuclear Information System (INIS)

    1999-01-01

    This volume of the progress report brings out the scientific and technical activities of Variable Energy Cyclotron Centre, Calcutta during the year 1999. This includes brief review of the various R and D activities of the Centre and outside users of the cyclotron from the universities and other research institutes. The operational activities of the cyclotron with ECR ion sources, accelerator oriented research activities, activities on detector, target and electronics are reported. The activities of the Computer and Informatics group are described. The status report of the ongoing projects is also provided. The main activities of the superconducting cyclotron project, radioactive ion beam project, heavy ion experimental facility, advanced computational facility, recovery and analysis of helium from hot springs and material science research are described

  9. Cyclotrons in developing countries

    International Nuclear Information System (INIS)

    Vera Ruiz, Hernan

    2004-01-01

    Cyclotron accelerators are prolific sources of charged particle for the production of radionuclides and have become an essential tool in the practice of modern nuclear medicine by providing reliable radiotracers for SPECT and PET studies. In a recent survey conducted by the IAEA in 2001, the growth in the number of cyclotron facilities installed in laboratories and hospitals in developed as well as developing countries was recorded. This trend, which started in the late 70's, continues in the present time also and all indications are that it will continue in the next five to ten years. The reasons for this growth are several: technology involved has become more user or 'hospital friendly', third party reimbursement for several clinical studies based on F-18 PET radiopharmaceuticals at least in some of the advanced countries started in 1998 and above all, the clear irrefutable and demonstrable conclusion of the positive cost/benefit outcomes of PET studies in the field of oncology to a lesser degree, thus far, for cardiology and neurology. It is however recognizable that the overall financial cost of the technology, which comprises the premises to house the facility, the cyclotron accelerator, the corresponding radiochemistry and quality control equipment and the PET cameras can be nevertheless an expensive proposition that requires careful advance planning. This fact is even more relevant when the facility is planned for installation in a developing country, which, frequently, in addition to having a lack of sufficient financial resources, do have shortage of qualified human resources to efficiently run the facility. In spite of the above, it is fact that more and more public as well as private organizations in the developing countries are setting up cyclotron/PET programmes or are seriously considering the installation of such a facility

  10. Radiation shielding and health physics instrumentation for PET medical cyclotrons

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: Modern Medical Cyclotrons produce a variety of short-lived positron emitting PET radioisotopes, and as a result are the source of intense neutron and gamma radiations. Since such cyclotrons are housed within hospitals or medical clinics, there is significant potential for un-intentional exposure to staff or patients in proximity to cyclotron facilities. Consequently, the radiological hazards associated with Cyclotrons provide the impetus for an effective radiological shielding and continuous monitoring of various radiation levels in the cyclotron environment. Management of radiological hazards is of paramount importance for the safe operation of a Medical Cyclotron facility. This work summarised the methods of shielding calculations for a compact hospital based Medical Cyclotron currently operating in Canada, USA and Australia. The design principle and operational history of a real-time health physics monitoring system (Watchdog) operating at a large multi-energy Medical Cyclotron is also highlighted

  11. Production of exotic beams at the LBL 88-Inch Cyclotron by the ISOL method

    International Nuclear Information System (INIS)

    1990-04-01

    The Users of the LBL 88-Inch Cyclotron are preparing a proposal to produce exotic, i.e., radioactive beams. The facility will consist of a high-current 30 MeV cyclotron to generate the radioactive nuclei, an ECR source that can be coupled to different production targets, and the 88-Inch Cyclotron to accelerate the radioactive ions. Thus, the basic concept is that of the double cyclotron system pioneered at Louvain-la-Neuve, although the initial emphasis will be on producing a variety of light proton-rich beams at energies up to 10 MeV/A. At this workshop we wish to outline what is being planned, to invite comments and suggestions, and, especially, to encourage participation. We believe that this facility will be an important step toward establishing the scientific and technical basis for a National High Intensity Facility. This can be achieved through active participation by members of the radioactive beam (RB) community in (1) experiments with high quality radioactive beams of moderate intensity and, (2) R ampersand D on high beam-power targets and highly efficient ion sources. 5 refs., 4 figs

  12. A real-time positron monitor for the estimation of stack effluent releases from PET medical cyclotron facilities

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar.

    2002-01-01

    Large activities of short-lived positron emitting radiopharmaceuticals are routinely manufactured by modern Medical Cyclotron facilities for positron emission tomography (PET) applications. During radiochemical processing, a substantial fraction of the volatile positron emitting radiopharmaceuticals are released into the atmosphere. An inexpensive, fast response positron detector using a simple positron-annihilation chamber has been developed for real-time assessment of the stack release of positron emitting effluents at the Australian National Medical Cyclotron. The positron detector was calibrated by using a 3.0 ml (1.50 MBq) aliquot of 18 FDG and interfaced to an industrial standard datalogger for the real-time acquisition of stack release data

  13. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  14. Cyclotron produced radionuclides: Guidelines for setting up a facility

    International Nuclear Information System (INIS)

    2009-01-01

    Establishment of a cyclotron based radionuclide and radiopharmaceutical production facility is a major undertaking regardless of the scope and size of the facility. Regulatory demands of radiation protection and pharmaceutical manufacturing only add to the need for meticulous attention to a large number of factors in overall planning and successful implementation. Also, a significant commitment of resources, not just during the onset of the project, but also for sustained continuity further adds to the already difficult decision making process. In this publication, all these issues have been addressed and discussed conceptually for the benefit of planners and stakeholders of a new facility. The need for a clear vision and realistic scope of the programme has been repeatedly emphasized throughout this book as this aspect of project planning is absolutely vital for defining and achieving the mission and objectives of the facility. The most critical aspects in conceptualization, planning and subsequent implementation have been discussed in detail and are highlighted below as necessary actions: - Performing a feasibility study which balances wishful thinking with project viability; - Forming a task force composed of the stakeholders to evaluate strategically the various aspects of project planning to ultimately recommend the scope and objectives of the facility, and also to formulate the project plan; - Assessing the financial aspects of the project, including the set-up and operating costs of the facility through the development of business models and cost-benefit analyses; - Designing a facility and layout that encompasses the scope of the project and also takes into consideration the regulatory requirements; - Ensuring the availability of appropriately qualified and trained staff, critical for efficient and high quality operation of the facility; - Applying GMP regulations for the production of radiopharmaceutical products which are consistently safe for human use

  15. Neutron radiography with the cyclotron

    International Nuclear Information System (INIS)

    Tazawa, Shuichi; Asada, Yorihisa; Yano, Munehiko; Nakanii, Takehiko.

    1985-01-01

    Neutron radiography is well recognized as a powerful tool in nondestructive testing, but not widely used yet owing to lack of high intense thermal neutron source convenient for practical use. This article presents a new neutron radiograph facility, utilizing a sub-compact cyclotron as neutron source and is equipped with vertical and horizontal irradiation ports. The article describes a series of experiments, we conducted using beams of a variable energy cyclotron at Tohoku University to investigate the characteristics of thermal neutron obtained from 9 Be(p, n) reaction and thermalized by elastic scattering process. The article also describes a computer simulation of neutron moderator to analyze conditions getting maximal thermal neutron flux. Further, some of practical neutron radiograph examinations of aero-space components and museum art objects of classic bronze mirror and an attempt realizing real time imaging technique, are introduced in the article. (author)

  16. Future cyclotron systems : an industrial perspective

    International Nuclear Information System (INIS)

    Stevenson, N.R.; Dickie, W.J.

    1995-09-01

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modem cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired decisions regarding their replacement are made based on several factors including the market's potential and the cyclotron system's abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, we investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century. (author)

  17. Future cyclotron systems: An industrial perspective

    International Nuclear Information System (INIS)

    Stevenson, N.R.; Dickie, W.J.

    1995-09-01

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modern cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired, decisions regarding their replacement are made based on several factors including the market's potential and the cyclotron system's abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, the authors investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century

  18. SPES: A new cyclotron-based facility for research and applications with high-intensity beams

    Science.gov (United States)

    Maggiore, M.; Campo, D.; Antonini, P.; Lombardi, A.; Manzolaro, M.; Andrighetto, A.; Monetti, A.; Scarpa, D.; Esposito, J.; Silvestrin, L.

    2017-06-01

    In 2016, Laboratori Nazionali di Legnaro (Italy) started the commissioning of a new accelerator facility based on a high-power cyclotron able to deliver proton beams up to 70 MeV of energy and 700 μA current. Such a machine is the core of the Selective Production of Exotic Species (SPES) project whose main goal is to provide exotics beam for nuclear and astrophysics research and to deliver high-intensity proton beams for medical applications and neutrons generator.

  19. Neutron radiography with the cyclotron, 3

    International Nuclear Information System (INIS)

    Hiraoka, Eiichi; Fujishiro, Masatoshi; Tsujii, Yukio

    1985-01-01

    Neutron radiography is well recognized as a powerful tool in nondestructive testing, but not widely used yet owing to lack of high intense thermal neutron source convenient for practical use. A new neutron radiograph facility, utilizing a sub-compact cyclotron as neutron source and equipped with vertical and horizontal irradiation ports, is presented in this article. A series of experiment, prior to its construction, was conducted using beams of a variable energy cyclotron at Tohoku University to investigate the characteristics of thermal neutron obtained, from 9 Be (p, n) reaction and thermalized by elastic scattering process. This article describes a computer simulation of neutron moderator to analyze conditions getting maximal thermal neutron flux. Some of practical neutron radiograph examination of aero-space components and museum art objects of classic bronze mirror are also presented together with an attempt realizing real time imaging technique. (author)

  20. Cyclotron based nuclear science. Progress report, April 1, 1985-March 31, 1986

    International Nuclear Information System (INIS)

    Youngblood, D.H.

    1986-08-01

    Progress report for cyclotron based nuclear science cyclotron facility are summarized. Research is described under the headings heavy ion reactions, nuclear theory, atomic studies and activation analysis, superconducting cyclotron and instrumentation. Publications are listed

  1. Low energy cyclotron for radiocarbon dating

    International Nuclear Information System (INIS)

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity 14 C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate 14 C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect 14 C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible

  2. Project of positron source at the U-120 Cyclotron, Bucharest. Status report

    International Nuclear Information System (INIS)

    Racolta, P.M.; Popa Simil, L.; Voiculescu, Dana; Miron, N.

    1999-01-01

    To extend the applications with our U-120 Cyclotron we started a project of off-line and on-line positron sources produced at the cyclotron. This machine may be successfully used for producing positron sources with few day half-life for off-line positron studies (eg. 48 V), or a cyclotron on-line intense positron beam (eg. 27 Si) with a variable energy for various materials study experiments, enough to cover a depth range from few micrometers down to tens of nanometers. Until now, using a 48 V positron source we performed experiments for determination of the Doppler broadening of the 511 KeV peak for different materials (copper, lead, indium). This research is carrier out on a cooperation agreement between IFIN-HH Bucharest and LISES-Chisinau. The positron source project is now in its initial stage. This stage consists of the experiments on the off-line version using positron sources produced in the cyclotron (eg. 48 V, 22 Na), to develop experience with detection chains (Doppler broadening and positron annihilation lifetime spectroscopy), to choose proper experiments in order to select moderator materials (W, Mo, Pt, etc.) and to study and design the different versions for the on-line production of positrons with the cyclotron. Slow positrons are valuable tools in atomic physics, materials science and solid state physics research. The controlled energy beam facility can be used to probe defects in metals, to study Fermi surfaces and materials surfaces and interfaces and to obtain detailed information about the electronic structure of materials. The aim of this project is to perform applications in the semiconductor industry, for coating materials, polymers, biomaterials etc. (authors)

  3. Project of positron source at the U-120 cyclotron Bucharest status report

    International Nuclear Information System (INIS)

    Racolta, P.M.; Simil Popa, L.; Voiculescu, Dana; Miron, N.

    2000-01-01

    To extend the applications with our U-120 Cyclotron we started a project of off-line positron sources produced at the cyclotron. This machine may be successfully used for producing positron sources with few day half-life for off-line positron studies (e.g. 48 V), or a cyclotron on-line intense positron beam (e.g. 27 Si) with a variable energy for various materials study experiments, enough to cover a depth range from a few micrometers down to tens of nanometers. Until now, using a 48 V positron source we performed experiments for determination of the Doppler broadening of the 511 keV peak for different materials (copper, lead, indium). This research is carried out on a cooperation agreement between IFIN-HH Bucharest and LISES-Chisinau. The positron source project is now in its initial stage. This stage consists of the experiments on the off-line version using positron source produced in the cyclotron (e.g. 48 V, 22 Na), to develop experience with detection chains (Doppler broadening and positron annihilation lifetime spectroscopy) to choose proper experiments in order to select moderator materials (W, Mo, Pt, etc.) and to study and design the different versions for the on-line positron production by cyclotron. Slow positrons are valuable tools in atomic physics, materials science and solid state physics research. The controlled energy beam facility can be used to probe defects in metals, to study Fermi surfaces and materials surfaces and interfaces and to obtained detailed information about electronic structures of materials. The aim of this project is to perform applications in the semiconductor industry, for coating materials, polymers, biomaterials, etc. (authors)

  4. Developing the smallest possible medical cyclotron

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Imagine a portable medical cyclotron operated in a conventional radioactive facility at a hospital. Imagine a nurse or technician switching it on and producing isotopes at the patient’s bedside. Sounds like science fiction? Think again.   CERN has teamed up with Spain’s national scientific research centre (CIEMAT) to develop an avant-garde cyclotron to be used for Positron Emission Tomography (PET). “We plan to make a cyclotron that doesn't need an insulated building or ‘vault’: a cyclotron small enough to fit inside a hospital lift,” explains Jose Manuel Perez, who is leading the CIEMAT/CERN collaboration. “It will be the smallest possible medical cyclotron for single patient dose production and will dramatically reduce costs for hospitals.” While PET technology has transformed imaging techniques, many of its medical benefits have remained confined to highly specialised hospitals. “Studies have foun...

  5. Assessment of Mammography Experiences and Satisfaction among American Indian/Alaska Native Women

    Science.gov (United States)

    Ndikum-Moffor, Florence M.; Braiuca, Stacy; Daley, Christine Makosky; Gajewski, Byron J.; Engelman, Kimberly K.

    2013-01-01

    BACKGROUND American Indian/Alaska Native (AI/AN) women have lower breast cancer (BCA) screening and 5-year survival rates than non-Hispanic Whites. Understanding reasons for low screening rates is important to combat later stage diagnoses. The purpose of this study was to assess mammography experiences and satisfaction among AI/AN women. METHODS Nine focus groups were held with rural (N=15) and urban (N=38) AI/AN women 40 years and older in Kansas and Kansas City, Missouri, living both near and far from Indian Health Service (IHS) and tribal facilities, to examine experiences and satisfaction with mammography. Transcripts were coded and themes identified using a community-based participatory research approach. FINDINGS Themes were classified under knowledge, communication, and awareness of breast cancer, barriers to mammography, mammogram facility size, impressions of mammogram technologist, motivations to getting a mammogram, and how to improve the mammogram experience. Participants had knowledge of prevention, but described cultural reasons for not discussing it and described better experiences in smaller facilities. Participants indicated having a mammogram technologist who was friendly, knowledgeable, respectful, competent, and explained the test was a determining factor in satisfaction. Other factors included family history, physician recommendation, and financial incentives. Barriers included transportation, cost, perceptions of prejudice, and time constraints. Participants on reservations or near IHS facilities preferred IHS over mainstream providers. Suggestions for improvement included caring technologists, better machines with less discomfort, and education. CONCLUSIONS Interventions to enhance the professionalism, empathy, and cultural awareness of mammogram technologists, reduce barriers, and provide positive expectations and incentives could improve satisfaction and compliance with screening mammography. PMID:24183414

  6. The Juelich compact cyclotron - a multi-purpose irradiation facility

    International Nuclear Information System (INIS)

    Hemmerich, J.; Hoelzle, R.; Kogler, W.

    1977-01-01

    A commercially available variable-energy compact cyclotron has been installed at the Kernforschungsanlage Juelich. It is equipped to accelerate protons, deuterons, 3 He- and α-particles. A +- 60 0 switching magnet allows to switch the beam to any of seven external target stations. Three separately shielded target rooms allow a flexible use of the cyclotron for a wide range of applications such as production of short-lived nuclides, activation analysis, radiation damage studies in metals and studies of biological effects of fast neutron irradiation. (orig.) [de

  7. FWCD (fast wave current drive) and ECCD (electron cyclotron current drive) experiments on DIII-D

    International Nuclear Information System (INIS)

    Prater, R.; Austin, M.; Baity, F.W.

    1994-01-01

    Fast wave current drive and electron cyclotron current drive experiments have been performed on the DIII-D tokamak as part of the advanced tokamak program. The goal of this program is to develop techniques for controlling the profile of the current density in order to access regimes of improved confinement and stability. The experiments on fast wave current drive used a four strap antenna with 90deg phasing between straps. A decoupler was used to help maintain the phasing, and feedback control of the plasma position was used to keep the resistive loading constant. RF pickup loops demonstrate that the directivity of the antenna is as expected. Plasma currents up to 0.18 MA were driven by 1.5 MW of fast wave power. Electron cyclotron current drive experiments at 60 GHz have shown 0.1 MA of plasma current driven by 1 MW of power. New fast wave and electron cyclotron heating systems are in development for DIII-D, so that the goals of the advanced tokamak program can be carried out. (author)

  8. H-superconducting cyclotron for PET isotope production

    International Nuclear Information System (INIS)

    Smirnov, V.L.; Vorozhtsov, S.B.; Vincent, J.

    2014-01-01

    The scientific design of a 14-MeV H - compact superconducting cyclotron for producing of the 18 F and 13 N isotopes has been developed. Main requirements to the facility as a medical accelerator are met in the design. In particular, the main requirement for the cyclotron was the smallest possible size due to the superconducting magnet. The calculations show that the proposed cyclotron allows extracted beam intensity over 500 μA. To increase system reliability and production rates, an external H - ion source is applied. The choice of the cyclotron concept, design of the structure elements, calculation of the electromagnetic fields and beam dynamics from the ion source to the extraction system were performed.

  9. The Holifield Radioactive Ion Beams Facility (HRIBF) - getting ready to do experiments

    International Nuclear Information System (INIS)

    Shapira, D.; Lewis, T.A.

    1998-01-01

    The conversion of the HHIRF facility to a Radioactive Ion Beam facility started in 1994. In this ISOL type facility the Cyclotron has been re-fitted as a driver providing high intensity proton beams which react with the target from which the radioactive products are extracted and then accelerated in the Tandem Electrostatic Accelerator to the desired energy for nuclear science studies. Facilities for nuclear physics experiments are at different stages of development: A Recoil Mass Spectrometer (RMS) with a complement of detectors at the focal plane and around the target is used primarily for nuclear structure studies. A large recoil separator combining velocity and momentum selection, with its complement of focal plane detectors, will be dedicated to measurements relevant to nuclear astrophysics. The Enge Split Pole spectrograph is being re-fitted for operation in a gas filled mode, making it a more versatile tool for nuclear reaction studies. With the new experimental equipment being commissioned and the prospects of running experiments with low intensity radioactive beams a significant effort to develop equipment for beam diagnostics is underway. Some of the efforts and results in developing beam diagnostic tools will be described

  10. Technical Note: Building a combined cyclotron and MRI facility: Implications for interference

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, Mark B. M.; Kuijer, Joost P. A.; Ridder, Jan Willem de; Perk, Lars R.; Verdaasdonk, Rudolf M. [Physics and Medical Technology, VU University Medical Center, Amsterdam 1007 MB (Netherlands) and BV Cyclotron VU, Amsterdam 1081HV (Netherlands)

    2013-01-15

    Purpose: With the introduction of hybrid PET/MRI systems, it has become more likely that the cyclotron and MRI systems will be located close to each other. This study considered the interference between a cyclotron and a superconducting MRI system. Methods: Interactions between cyclotrons and MRIs are theoretically considered. The main interference is expected to be the perturbation of the magnetic field in the MRI due to switching on or off the magnetic field of the cyclotron. MR imaging is distorted by a dynamic spatial gradient of an external inplane magnetic field larger than 0.5-0.04 {mu}T/m, depending on the specific MR application. From the design of a cyclotron, it is expected that the magnetic fringe field at large distances behaves as a magnetic dipolar field. This allows estimation of the full dipolar field and its spatial gradients from a single measurement. Around an 18 MeV cyclotron (Cyclone, IBA), magnetic field measurements were performed on 5 locations and compared with calculations based upon a dipolar field model. Results: At the measurement locations the estimated and measured values of the magnetic field component and its spatial gradients of the inplane component were compared, and found to agree within a factor 1.1 for the magnetic field and within a factor of 1.5 for the spatial gradients of the field. In the specific case of the 18 MeV cyclotron with a vertical magnetic field and a 3T superconducting whole body MR system, a minimum distance of 20 m has to be considered to prevent interference. Conclusions: This study showed that a dipole model is sufficiently accurate to predict the interference of a cyclotron on a MRI scanner, for site planning purposes. The cyclotron and a whole body MRI system considered in this study need to be placed more than 20 m apart, or magnetic shielding should be utilized.

  11. Induction linac driven relativistic klystron and cyclotron autoresonance maser experiments

    International Nuclear Information System (INIS)

    Goodman, D.L.; Birx, D.L.; Danly, B.G.

    1991-01-01

    In this paper design and experimental results are presented from two high power microwave generation experiments utilizing a high repetition rate induction linac generated electron beam. A relativistic klystron has generated more than 100 MW microwave pulses in X-band for 50 ns without pulse shortening or breakdown. design studies for the first cyclotron autoresonance maser (CARM) amplifier using an induction linac electron beam are also presented

  12. The 200 MeV cyclotron facility

    International Nuclear Information System (INIS)

    1987-01-01

    Beams of protons with several different energies have now been successfully transported between the injector cyclotron SPC1 and the SSC. Some small modifications to the placement of steering magnets and diagnostic equipment have been made in the light of our operational experience, which should improve the ease of tuning this beamline. Proton beams up to 200 MeV in energy have been transported to the experimental areas, where experiments in nuclear physics have been successful conducted. Three of the experimental beamlines are now in operation. Beams of 66 MeV protons have also been transported to targets in the isotope production vault, without difficulty. Field mapping of the remaining quadrupoles on site has been completed. Installation of and alignment of magnets up to the beam swinger is also complete, although the beam tube itself, plus vacuum and diagnostic equipment must still be tackled. The beam swinger has been designed and detailed in the drawing office, and is now being manufactured locally. The beamline elements for the sepctrometer beamline remain to be purchased. A personal computer has been purchased for controlling the field-mapping equipment for the spectrometer magnets, which are being manufactured in this country. A number of computer programs have been written for conversion of calibrated quadrupole and dipole magnet field data to absolute current values for the control system. Other programs permit diagnostic measurements of beam profiles to be used to calculated the beam emittance, or to set steering magnets so that the beam is correctly aligned

  13. Present status of device controls and hardware interfaces for the RCNP ring cyclotron

    International Nuclear Information System (INIS)

    Yamazaki, T.; Tamura, K.; Hosono, K.

    1994-01-01

    Since the first proton beam from the injector AVF cyclotron was injected to the ring cyclotron in 1991, the computer control system has been used for the beam acceleration of the ring cyclotron. Some device control modules have been updated, and computer configuration has been changed in 1992. Total control system performs basic facilities almost satisfactory under actual cyclotron operation. (author)

  14. Commissioning of the collinear laser spectroscopy system in the BECOLA facility at NSCL

    International Nuclear Information System (INIS)

    Minamisono, K.; Mantica, P.F.; Klose, A.; Vinnikova, S.; Schneider, A.; Johnson, B.; Barquest, B.R.

    2013-01-01

    A collinear laser-spectroscopy (CLS) system in the BEam COoler and LAser spectroscopy (BECOLA) facility was constructed at National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The BECOLA facility will be used to advance measurements of nuclear properties of low-energy rare isotope beams generated via in-flight reactions and subsequent beam thermalization in a buffer gas. The CLS studies at BECOLA will complement laser spectroscopy studies of charge radii and nuclear moments mostly obtained so far at Isotope SeOn Line (ISOL) facilities. Commissioning tests of the CLS system have been performed using an offline ion source to produce stable-ion beams. The tests set the ground work for experiments at the future Facility for Rare Isotope Beams (FRIB) as well as experiments at the current Coupled Cyclotron Facility at NSCL

  15. An Indian test facility to characterise diagnostic neutral beam for ITER

    International Nuclear Information System (INIS)

    Singh, M.J.; Bandyopadhyay, M.; Rotti, C.; Singh, N.P.; Shah, Sejal; Bansal, G.; Gahlaut, A.; Soni, J.; Lakdawala, H.; Waghela, Harshad; Ahmed, I.; Roopesh, G.; Baruah, U.K.; Chakraborty, A.K.

    2011-01-01

    The diagnostic neutral beam (DNB) line shall be used to diagnose the He ash content in the D-T phase of the ITER machine using the charge exchange recombination spectroscopy (CXRS). Implementation of a successful DNB at ITER requires several challenges related to the production, neutralization and transport of the neutral beam over path lengths of 20.665 m, to be overcome. The delivery is aided if the above effects are tested prior to onsite commissioning. As DNB is a procurement package for INDIA, an ITER approved Indian test facility, INTF, is under construction at Institute for Plasma Research (IPR), India and is envisaged to be operational in 2015. The timeline for this facility is synchronized with the RADI, ELISE (IPP, Garching), SPIDER (RFX, Padova) in a manner that best utilization of configurational inputs available from them are incorporated in the design. This paper describes the facility in detail and discusses the experiments planned to optimise the beam transmission and testing of the beam line components using various diagnostics.

  16. First radioactive beams at ACCULINNA-2 facility and first proposed experiment

    Science.gov (United States)

    Bezbakh, A. A.; Beekman, W.; Chudoba, V.; Fomichev, A. S.; Golovkov, M. S.; Gorshkov, A. V.; Grigorenko, L. V.; Kaminski, G.; Krupko, S. A.; Mentel, M.; Nikolskii, E. Yu.; Parfenova, Yu. L.; Plucinski, P.; Sidorchuk, S. I.; Slepnev, R. S.; Sharov, P. G.; Ter-Akopian, G. M.; Zalewski, B.

    2018-04-01

    New fragment separator ACCULINNA-2 was installed at the primary beam line of the U-400M cyclotron in 2016. Recently, first radioactive ion beams were obtained. The design parameters of new facility were experimentally confirmed. Intensity, purity and transverse profile of several secondary beams at the final focal plane were studied. The intensities obtained for the secondary beams of 14B, 12Be, 9;11Li, 6;8He in the fragmentation reaction 15N (49.7 AMeV) + Be (2 mm) are in average 15 times higher in comparison to the ones produced at its forerunner ACCULINNA separator. The ACCULINNA-2 separator will become a backbone facility at the FLNR for the research in the field of light exotic nuclei in the vicinity of the nuclear drip lines. The planned first experiment, aimed for the observation of the 7H nucleus at ACCULINNA-2, is outlined.

  17. National RF Test Facility as a multipurpose development tool

    International Nuclear Information System (INIS)

    McManamy, T.J.; Becraft, W.R.; Berry, L.A.

    1983-01-01

    Additions and modifications to the National RF Test Facility design have been made that (1) focus its use for technology development for future large systems in the ion cyclotron range of frequencies (ICRF), (2) expand its applicability to technology development in the electron cyclotron range of frequencies (ECRF) at 60 GHz, (3) provide a facility for ELMO Bumpy Torus (EBT) 60-GHz ring physics studies, and (4) permit engineering studies of steady-state plasma systems, including superconducting magnet performance, vacuum vessel heat flux removal, and microwave protection. The facility will continue to function as a test bed for generic technology developments for ICRF and the lower hybrid range of frequencies (LHRF). The upgraded facility is also suitable for mirror halo physics experiments

  18. Holifield Heavy Ion Research Facility. Phase II

    International Nuclear Information System (INIS)

    Ball, J.B.; Hudson, E.D.; Lord, R.S.; Johnson, J.W.; Martin, J.A.; McNeilly, G.S.; Milner, W.T.; Mosko, S.W.; Sayer, R.O.; Robinson, R.L.

    1979-01-01

    The Holifield Heavy Ion Research Facility, with the completion of Phase I in late 1979, will include the Oak Ridge Isochronous Cyclotron (ORIC) and associated research areas, the new 25 MV tandem accelerator with new research areas for tandem beams, and modifications to utilize the ORIC as a booster accelerator. The combination of the tandem and ORIC will provide beam energies of 25 MeV/A for light heavy ions and 6 MeV/A up to A = 160. This paper discusses plans for a Phase II expansion of the facility to include an isochronous cyclotron with superconducting magnet and reconfiguration of the existing research areas and the ORIC vault to handle the higher energy beams from the new cyclotron. The new booster cyclotron is a low-flutter high-spiral design patterned after the MSU K = 800 design, with a central magnetic field of about 5 tesla and an extraction radius of 1 meter. The new beam transport system will incorporate an rf beam-splitter system that will be able to deliver successive beam pulses to two or three experiment areas

  19. Measurements of the fast ion distribution during neutral beam injection and ion cyclotron heating in ATF [Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Wade, M.R.; Kwon, M.; Thomas, C.E.; Colchin, R.J.; England, A.C.; Gossett, J.M.; Horton, L.D.; Isler, R.C.; Lyon, J.F.; Rasmussen, D.A.; Rayburn, T.M.; Shepard, T.D.; Bell, G.L.; Fowler, R.H.; Morris, R.N.

    1990-01-01

    A neutral particle analyzer (NPA) with horizontal and vertical scanning capability has been used to make initial measurements of the fast ion distribution during neutral beam injection (NBI) and ion cyclotron heating (ICH) on the Advanced Toroidal Facility (ATF). These measurements are presented and compared with the results of modeling codes that predict the analyzer signals during these heating processes. 6 refs., 5 figs

  20. New superconducting cyclotron driven scanning proton therapy systems

    International Nuclear Information System (INIS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Juergen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-01-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC

  1. Nonlinear cyclotron absorption and stimulated scattering

    International Nuclear Information System (INIS)

    Chung, T.H.

    1986-01-01

    In electron cyclotron resonance heating (ECRH), wave sources heating a plasma linearly with respect to intensity; but as the intensity of ECRH gets larger, there might appear nonlinear effects that would result in cutoff of net absorption. This thesis uses quantum mechanical theory to derive a threshold microwave intensity for nonlinear absorption. The quantum mechanical theory estimates that the threshold microwave intensity for nonlinear absorption is about 10 5 watts/cm 2 for a microwave heating experiment (T/sub e/ = 100 ev, λ = 3,783 cm, B = 2.5 kG). This value seems large considering the present power capabilities of microwave sources (10 2 ∼ 10 3 watts/cm 2 ), but for a low temperature plasma, this threshold will go down. There is another nonlinear phenomenon called stimulated cyclotron scattering that enhances photon scattering by electrons gyrating in a magnetic field. This is expected to prevent incoming photons from arriving at the central region of the fusion plasma, where absorption mainly takes place. Theory based on a photon transport model predicts that the threshold intensity for the stimulated cyclotron scattering is about 10 4 watts/cm 2 for the plasma parameters mentioned above. This value seems large also, but a longer wavelength of microwaves and a larger magnitude magnetic field, which will be the case in reactor type facilities, will lower the threshold intensity to levels comparable with the currently developed microwave sources

  2. Development of beam instruments at JAERI cyclotron facility

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Susumu; Fukuda, Mitsuhiro; Ishibori, Ikuo; Agematsu, Takashi; Yokota, Watalu; Nara, Takayuki; Nakamura, Yoshiteru; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A beam phase monitor and two kinds of fluence distribution monitors have been developed for measuring characteristics of cyclotron beams. The beam phase monitor provides a beam phase signal for tuning a beam chopping system and a beam phase selection system. A two-dimensional fluence distribution on a large area is measured with fluence distribution monitors. (author)

  3. NORTICA - a new code for cyclotron analysis

    International Nuclear Information System (INIS)

    Gorelov, D.; Johnson, D.; Marti, F.

    2001-01-01

    The new package NORTICA (Numerical ORbit Tracking In Cyclotrons with Analysis) of computer codes for beam dynamics simulations is under development at NSCL. The package was started as a replacement for the code MONSTER developed in the laboratory in the past. The new codes are capable of beam dynamics simulations in both CCF (Coupled Cyclotron Facility) accelerators, the K500 and K1200 superconducting cyclotrons. The general purpose of this package is assisting in setting and tuning the cyclotrons taking into account the main field and extraction channel imperfections. The computer platform for the package is Alpha Station with UNIX operating system and X-Windows graphic interface. A multiple programming language approach was used in order to combine the reliability of the numerical algorithms developed over the long period of time in the laboratory and the friendliness of modern style user interface. This paper describes the capability and features of the codes in the present state

  4. NORTICA—a new code for cyclotron analysis

    Science.gov (United States)

    Gorelov, D.; Johnson, D.; Marti, F.

    2001-12-01

    The new package NORTICA (Numerical ORbit Tracking In Cyclotrons with Analysis) of computer codes for beam dynamics simulations is under development at NSCL. The package was started as a replacement for the code MONSTER [1] developed in the laboratory in the past. The new codes are capable of beam dynamics simulations in both CCF (Coupled Cyclotron Facility) accelerators, the K500 and K1200 superconducting cyclotrons. The general purpose of this package is assisting in setting and tuning the cyclotrons taking into account the main field and extraction channel imperfections. The computer platform for the package is Alpha Station with UNIX operating system and X-Windows graphic interface. A multiple programming language approach was used in order to combine the reliability of the numerical algorithms developed over the long period of time in the laboratory and the friendliness of modern style user interface. This paper describes the capability and features of the codes in the present state.

  5. Medical isotope production experience at the V.G. Khlopin Radium Institute cyclotron

    International Nuclear Information System (INIS)

    Solin, L.M.

    2000-01-01

    Radium Institute cyclotron MGC-20 is used since 1990. There are four cyclotrons of such type in Russia and four abroad: in Finland, in Hungary, in North Korea and in Egypt. The Radium institute cyclotron was used in different fields, such as radioisotope production, nuclear physics, physics and engineering. For ten years some improvements of the Radium Institute cyclotron operation have been made. Those are: creation of the automatic control system based on IBM PC, development of a new power supply for the ion source, creation of the deflector electronic protection from discharges, change of the main elements of the cyclotron with high induced radioactivity. Moreover we investigated the possibility of the negative ions acceleration at the MGC-20 cyclotron without ion source exchange. The maximum value of the proton beam current reached was about 30 μA for 10 MeV H - beam energy. To extract the proton beam from the cyclotron after the stripping foil we made an additional output beam line. It was used for determination of the horizontal and vertical emittance. A special device was constructed and used for measurements of emittance. The latter amounted 30 π mm mrad for horizontal direction and 16 π mm mrad for vertical direction

  6. Concepts and strategies to establish a cyclotron/PET center

    International Nuclear Information System (INIS)

    Hernan Vera Ruiz; D, Ph.

    2004-01-01

    Cyclotron accelerators are prolific sources of charged particle for the production of radionuclides and have become an essential tool in the practice of modern nuclear medicine by providing reliably radiotracers for SPECT and PET studies. In a recent survey conducted by the IAEA in 2001 (1) , the growth in the number of cyclotron facilities installed in laboratories and hospitals in developed as well as developing nations was put into evidence This trend, which started in the late 70's, continues up to the present time, and all indications are that it will continue in the next future. The reasons for this growth are several, amongst them it can be mentioned the fact that the technology involved has became more user or 'hospital friendly', third party reimbursement for several of clinical studies based on F-18 PET radiopharmaceuticals at least in some of the advanced countries starting with F-18FDG in 1998, and above all, the clear, irrefutable and demonstrable Conclusion of the positive cost/benefit outcomes of PET studies in the field of oncology and to a lesser degree, thus far, for cardiology and neurology. It is however recognized that the overall financial cost of the technology, which comprises the premises to house the facility, the cyclotron accelerator, the corresponding radiochemistry and quality control equipment and the PET camera can nevertheless be an expensive proposition that requires careful advance planning. This fact is even more relevant when the facility is planed for installation in a developing country which frequently, in addition to having a lack of sufficient financial resources, do have shortages of qualify human resources for advance planning and later, to run efficiently the facility. Several are the steps that needs consideration when planning a cyclotron facility, the most critical ones are a careful definition of the mission and scope of the facility including the utilization programme of the facility as a whole, followed by a

  7. Proposal for a heavy ion ECR-source at the PSI-Philips cyclotron

    International Nuclear Information System (INIS)

    Kern, J.

    1989-10-01

    It is proposed by a large community of PSI- and external scientists to install an electron cyclotron resonance (ECR) source for highly charged heavy ions at the PHILIPS (injector I) cyclotron. Such a facility would then allow to produce high intensity ion beams with energies up to 30 MeV/u. A workshop hold in June 1989 clearly showed that with such a machine a large variety of interesting heavy ion experiments could be performed. While at foreign heavy ion centres the main focus is given to basic research in the field of nuclear physics we propose to concentrate the scientific effort at a PSI heavy ion facility mainly onto applications in the fields of atomic physics, chemistry, accelerator mass spectrometry, radiation biology and solid state physics. This is adequate, in view of the broad infrastructure available at PSI together with the existing know-how in many different fields. The proposed machine will thus be of great potential use for a large community. (author) 19 figs., 3 tabs., 82 refs

  8. Ion cyclotron resonant heating 2 x 1700 loop antenna for the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Brooksby, C.A.; Ferguson, S.W.; Molvik, A.W.; Barter, J.

    1985-01-01

    This paper reviews the mechanical design and improvements that have taken place on the loop type ion cyclotron resonance heating (ICRH) antennas that are located in the center cell region of the Tandem Mirror Experiment-Upgrade (TMX-U)

  9. The technology of the ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Barber, G.C.

    1988-01-01

    Plasma heating in the ion cyclotron range of frequencies (ICRF) is the least expensive means of accomplishing auxiliary heating in fusion experiments. RF systems comprise two major elements: the transmitter and the antenna. The state of the art for the transmitter is already at the megawatt level. The technology of the antenna is strongly coupled to the plasma character. Typically, these antennas are designed to operate at a high power density (1.2 kW/cm 2 ) with an efficiency of 96%. ICRF technology and options have improved over the past few years, owing to development and experiments; however, the optimal combination of options can be defined only when results from confinement experiments and test facilities are in hand. 19 refs., 5 figs., 1 tab

  10. PIXE analysis by baby cyclotron

    International Nuclear Information System (INIS)

    Yoshida, Hyogo; Tanaka, Teruaki; Ito, Takashi; Toda, Yohjiro; Wakasa, Hideichiro

    1988-01-01

    The Japan Steel Works, Ltd. has been supplying a very small sized cyclotron (Baby Cyclotron) to hospitals and research facilities. The cyclotron is designed to produce short-lived radioisotopes for medical use. In the present study, this cyclotron is modified so that it can serve for PIXE analysis. The PIXE (particle induced X-ray emission) technique has the following features: (1) Down to 1 ng of trace material in a sample (mg - μg) can be detected, (2) An analysis run is completed in one to ten minutes, permitting economical analysis for a large number of samples, (3) Several elements can be analyzed simultaneously, with an almost constant sensitivity for a variety of elements ranging from aluminum to heavy metals, (4) Analysis can be performed nondestructively without a chemical process, and (5) The use of microbeam can provide data on the distribution of elements with a resolution of several μm. Software for analysis is developed to allow the modified equipment to perform peak search, background fitting, and identification and determination of peaks. A study is now being conducted to examine the performance of the equipment for PIXE analysis of thin samples. Satisfactory results have been obtained. The analysis time, excluding the background correction, is 5-10 min. (Nogami, K.)

  11. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    International Nuclear Information System (INIS)

    Singh, M. J.; Bandyopadhyay, M.; Yadava, Ratnakar; Chakraborty, A. K.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-01-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1x10 18 /m 3 , at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  12. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    Science.gov (United States)

    Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  13. Emittance Measurement for Beamline Extension at the PET Cyclotron

    Directory of Open Access Journals (Sweden)

    Sae-Hoon Park

    2016-01-01

    Full Text Available Particle-induced X-ray emission is used for determining the elemental composition of materials. This method uses low-energy protons (of several MeV, which can be obtained from high-energy (of tens MeV accelerators. Instead of manufacturing an accelerator for generating the MeV protons, the use of a PET cyclotron has been suggested for designing the beamline for multipurpose applications, especially for the PIXE experiment, which has a dedicated high-energy (of tens MeV accelerator. The beam properties of the cyclotron were determined at this experimental facility by using an external beamline before transferring the ion beam to the experimental chamber. We measured the beam profile and calculated the emittance using the pepper-pot method. The beam profile was measured as the beam current using a wire scanner, and the emittance was measured as the beam distribution at the beam dump using a radiochromic film. We analyzed the measurement results and are planning to use the results obtained in the simulations of external beamline and aligned beamline components. We will consider energy degradation after computing the beamline simulation. The experimental study focused on measuring the emittance from the cyclotron, and the results of this study are presented in this paper.

  14. Advances in superconducting cyclotrons at MSU

    International Nuclear Information System (INIS)

    Blosser, H.; Antaya, T.; Au, R.

    1987-01-01

    Intensive work on superconducting cyclotrons began at MSU in late 1973 (a brief earlier study had occurred in the early 1960's) and continues vigorously at present. One large cyclotron, the ''K500'', has been operating for a number of years, a second, the ''K800'', is nearing completion, the first operating tests of its magnet having occurred at the time of the previous conference, and a third, the ''medical cyclotron'', is now also nearing completion with first operation of its magnet expected just after the present conference. These cyclotrons like other superconducting cyclotrons are all dramatically smaller than comparable room temperature machines; overall weight is typically about 1/20th of that of room temperature cyclotrons of the same energy. This large reduction in the quantities of materials is partially offset by added complexity, but finally, a net overall cost savings of 50 to 70 % typically results; as a consequence the superconducting cyclotron is widely viewed as the cyclotron of the future. The thirteen years of experience at MSU involving three of these cyclotrons, together with much important work at other laboratories, gives a rather clear view of the advantages and disadvantages of various design approaches including by now a rather significant period of long term evaluation. This paper reviews highlights of this program. (author)

  15. Standardized high current solid targets for cyclotron production of radionuclides

    International Nuclear Information System (INIS)

    Al-Jammaz, Ibrahim

    2000-01-01

    The Cyclotron and Radiopharmaceuticals Department (CRP) is an advanced and modern facility that encompasses two essential components: radioisotope research, and radiopharmaceuticals manufacturing. Radiopharmaceuticals manufacturing program is not only quite unique, but also an essential component of King Faisal Specialist Hospital and Research Center (KFSH and RC) in providing quality patient care for the population of the Kingdom. Accurate diagnosis and therapy with medical imaging equipment requires quality radiopharmaceuticals that are available readily and with reliability. The CRP Department provides that quality and reliability. Research activities of the CRP Department are focused on developing new radiotracers with potential usefulness in biomedical research and clinical applications. Research projects consist of: developing cyclotron targetry for radioisotope production; developing synthesis methods for radiolabeling biomolecules; and developing analytical methods for quality control. The CRP Department operates a semi-commercial radiopharmaceuticals manufacturing program that supplies the diagnostic radioactive products to several hospitals in the Kingdom and neighboring countries. These products for clinical applications are produced according to the international standards of Good Manufacturing Practices of quality and efficacy. At the heart of the radioisotope program is a medium energy cyclotron capable of accelerating a number of particles for transformation of non-radioactive atoms into radionuclides that are the primary sources for research and development activities, and for preparing radiopharmaceuticals. In addition to having the only cyclotron facility in the region, KFSH and RC also has the only Positron Emission Tomography Center (PET) in this part of the world. This combination of cyclotron and the ultra modern PET facility translates into advanced and specialized care for the patients at KFSH and RC

  16. Calculation of the neutrons shielding in cyclotron accelerator

    International Nuclear Information System (INIS)

    Ribeiro, Martha S.; Sanches, Matias P.; Rodrigues, Demerval L.

    2000-01-01

    The objective of radioprotection in cyclotron facilities is to reduce the dose levels in the workplaces to classify them like supervised areas. In this way, the radiation dose rates in areas occupied by workers during cyclotron operations should not exceed 7,5 μSv/h. In controlled areas these levels are not observed and some rigorous controls must be exerted by administrative procedures or protection mechanisms. The Cyclotron Laboratory at IPEN-CNEN/SP has a cyclotron model Cyclone 30, 30 MeV, used for research and it is also used for radioisotopes production for medical diagnosis and therapeutical applications. Among them, 123 I, 67 Ga and 18 F can be pointed. When accelerator is operating, failures in perforations and paths that conduce to room accelerator can be occur and thus, the dose levels are higher than that established by law. For this reason, a review for shielding structure was necessary in order to optimize radiation dose. The purpose of this work was to determine the shielding thickness and adequate material to diminish the dose rates in workplaces to a value below 7,5 μSv/h. It was used a method to employ the equivalent dose value in the facility areas for neutrons fluency rate for the principal reactions in target irradiation processes. The purposed shielding for the vault doors ensures dose levels lower than established limits to supervised areas. (author)

  17. Resonance cones below the ion cyclotron frequency: theory and experiment

    International Nuclear Information System (INIS)

    Bellan, P.

    1976-03-01

    The resonance cones existing below the ion cyclotron frequency, ω/sub c/sub i//, are shown, theoretically and experimentally, to be the asymptotes of hyperbolic constant-phase surfaces of low-frequency ion acoustic waves. Above ω/sub c/sub i// the surfaces transform into ellipses that are related to the electrostatic ion cyclotron waves and ion acoustic waves

  18. 25 CFR 20.502 - Can Child Assistance funds be used to place Indian children in residential care facilities?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Can Child Assistance funds be used to place Indian children in residential care facilities? 20.502 Section 20.502 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES FINANCIAL ASSISTANCE AND SOCIAL SERVICES PROGRAMS Child Assistance How...

  19. Method and apparatus for ion cyclotron spectrometry

    Science.gov (United States)

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  20. Commissioning of cryogen delivery system for superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Pal, G.; Nandi, C.; Bhattacharyya, T.K.; Chaudhuri, J.; Bhandari, R.K.

    2005-01-01

    A K-500 superconducting cyclotron is being constructed at VECC Kolkata. The cryogen delivery system distributes liquid helium and liquid nitrogen to the superconducting cyclotron. Liquid helium is required to cool the cyclotron magnet and cryopanels. Liquid nitrogen is used to reduce the capacity of the helium liquefier. This paper describes the system, the current status and the commissioning experiences of cryogen delivery system for cyclotron magnet. (author)

  1. High-intensity cyclotrons for radioisotope production and accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y.; Vandeplassche, D.; Kleeven, W.; Beeckman, W.; Zaremba, S.; Lannoye, G.; Stichelbaut, F

    2002-04-22

    IBA recently proposed a new method to extract high-intensity positive ion beams from a cyclotron based on the concept of auto-extraction. We review the design of a 14 MeV, multi-milliampere cyclotron using this new technology. IBA is also involved in the design of the accelerator system foreseen to drive the MYRRHA facility, a multipurpose neutron source developed jointly by SCK-CEN and IBA.

  2. Cyclotron based nuclear science: Progress report, April 1, 1987-March 31, 1988

    International Nuclear Information System (INIS)

    1988-08-01

    This report discusses experiment run on the K500 cyclotron and 88 in cyclotron at Texas AandM University. The main topics of these experiments are: Heavy ion reactions; Nuclear structure and fundamental interactions; Atomic and material science; Nuclear theory; and Superconducting cyclotron and instrumentation

  3. Development of HM12 cyclotron for PET

    International Nuclear Information System (INIS)

    Morita, Takuzo; Kawama, Tetsuo; Fujii, Kazuo

    2000-01-01

    In Japan, there are at present more than 30 PET (Positron Emission Tomography) facilities. The movements of medical insurance application to the PET diagnosis using [ 18 F] FDG (2-[ 18 F]-fluoro-2-deoxy-glucose) by the Ministry of Health and Welfare are being enhanced by PET related people. Therefore, more clinical centers using PET system are expected to be built in the near future. HM12 cyclotron was developed to meet such market demands for PET, and the prototype machine has been rent to Cyclotron Radio Isotope Center (CYRIC) of Tohoku University since Oct. 1998 for their use of clinical research with positron emitters like 11 C, 13 N, 15 O and 18 F. We got many technical data of HM12 Cyclotron on the clinical base. The data was enough to establish the reliability of HM12 system operation under the clinical condition. The first commercial product of HM12 Cyclotron was delivered to National Cancer Center in March 2000. The final performance test will be finished by the end of June 2000. (author)

  4. Cyclotron Development and Technical Aspects on Accelerator Based Laboratory Development

    International Nuclear Information System (INIS)

    Sunarhadijoso

    2000-01-01

    BATAN is planning to establish an accelerator-based laboratory at P3TM Yogyakarta as an effort in the development and use of accelerator technology for improving industrial performance and public welfare. This paper reviews several aspects of cyclotron technology and describes the combination of a linear accelerator - cyclotron system as an alternative to be considered in the planing of the laboratory. The progress of cyclotron technology is discussed covering three generations, i.e. conventional cyclotron, synchrocyclotron and AVF cyclotron generations. The planning should not consider the accelerator application for radioisotope production because it is established in Serpong with the existing negative ion cyclotron. The proposed facility at P3TM may comprise two linear accelerators coupled with a positive ion cyclotron of synchrocyclotron generation. In fact, the attachment of the synchrocyclotron unit is flexible and it can be installed subsequently if the higher energy particle beam, which can not be produced by the linear accelerators, is extremely needed. Some technical aspects related to ion beam application, building construction and infrastructure, human resources, and specification of function test are discussed for additional information in the implementation of the planning. (author)

  5. Electron-cyclotron current drive in the tokamak physics experiment

    International Nuclear Information System (INIS)

    Smith, G.R.; Kritz, A.H.; Radin, S.H.

    1992-01-01

    Ray-tracking calculations provide estimates of the electron-cyclotron heating (ECH) power required to suppress tearing modes near the q=2 surface in the Tokamak Physics Experiment. Effects of finite beam width and divergence are included, as are the effects of scattering of the ECH power by drift-wave turbulence. A frequency of about 120 GHz allows current drive on the small-R (high-B) portion of q=2, while 80 GHz drives current on the large-R (low-B) portion. The higher frequency has the advantages of less sensitivity to wave and plasma parameters and of no trapped-electron degradation of current-drive efficiency. Less than 1 MW suffices to suppress tearing modes even with high turbulence levels

  6. Decommissioning analyzis of a university cyclotron

    International Nuclear Information System (INIS)

    Eggermont, G.X.; Buls, N.; Hermanne, A.

    1996-01-01

    In the widespread use of some medical nuclear facilities, such as cyclotrons for isotope production, Life cycle analyzis, including decommissioning, was not taken into account. The structural materials of an accelerator and the concrete shielding of the bunker are activated by neutrons. This could yield a considerable volume of nuclear waste and needs radiation protection concern for occupational workers and the environment during some decennia. At the university of Brussels (WB) a prospective radiation protection and waste analyzis is being made for the later decommissioning of their cyclotron. Only few similar studies have been published. In Belgium future nuclear dismantling operations will be submitted to a radiation protection authorization procedure. Meanwhile the nuclear waste authorities insist on dismantling planning, including financial provisioning. An optimization exercise was made at the VUB-cyclotron, taking into account international trends to clearance levels for low level nuclear waste. Conceptual prevention opportunities e.g. selective material choice could be identified for future accelerator constructions. (author)

  7. Superconducting cyclotron deflector conditioning status - an experience with high voltage

    International Nuclear Information System (INIS)

    Ghosh, Subhash; Chattopadhyay, Subrata; Bhattacharjee, Tanushyam; De, Anirban; Paul, Santanu; Pal, Gautam; Saha, Subimal; Mallik, C.; Bhandari, R.K.

    2009-01-01

    In this paper we report about the status of the electrostatic deflector which will be used in K500 superconducting cyclotron at VECC, Kolkata. For extraction of beams from superconducting cyclotron we have to achieve 130 kV/cm. Titanium and tungsten are used for anode and septum respectively. The deflector fits within the median plane of the superconducting magnet. We report here the voltage limit, sparking rates, dark current levels and the effects observed on conditioning. For commissioning of the superconducting cyclotron, the plan is to accelerate Neon beam of 50 MeV/n for which the required extraction voltage is 81 kV/cm and we reached up to 110 kV/cm. The conditioning test chamber is maintained at a pressure of 8.0 x 10 -7 mbar. (author)

  8. Cost benefit analysis of the radiological shielding of medical cyclotrons using a genetic algorithm

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar

    2001-01-01

    Adequate radiation shielding is vital to the safe operation of modern commercial medical cyclotrons producing large yields of short-lived radioisotopes. The radiological shielding constitutes a significant capital investment for any new cyclotron-based radioisotope production facility; hence, the shielding design requires an accurate cost-benefit analysis often based on a complex multi-variant optimization technique. This paper demonstrates the application of a Genetic Algorithm (GA) for the optimum design of the high yield target cave of a Medical Cyclotron radioisotope production facility based in Sydney, Australia. The GA is a novel optimization technique that mimics the Darwinian Evolution paradigm and is ideally suited to search for global optima in a large multi-dimensional solution space

  9. Electron cyclotron current drive experiments on DIII-D

    International Nuclear Information System (INIS)

    James, R.A.; Giruzzi, G.; Gentile, B. de; Rodriguez, L.; Fyaretdinov, A.; Gorelov, Yu.; Trukhin, V.; Harvey, R.; Lohr, J.; Luce, T.C.; Matsuda, K.; Politzer, P.; Prater, R.; Snider, R.; Janz, S.

    1990-05-01

    Electron Cyclotron Current Drive (ECCD) experiments on the DIII-D tokamak have been performed using 60 GHz waves launched from the high field side of the torus. Preliminary analysis indicates rf driven currents between 50 and 100 kA in discharges with total plasma currents between 200 and 500 kA. These are the first ECCD experiments with strong first pass absorption, localized deposition of the rf power, and τ E much longer than the slowing-down time of the rf generated current carriers. The experimentally measured profiles for T e , η e and Z eff are used as input for a 1D transport code and a multiply-ray, 3D ray tracing code. Comparisons with theory and assessment of the influence of the residual electric field, using a Fokker-Planck code, are in progress. The ECH power levels were between 1 and 1.5 MW with pulse lengths of about 500 msec. ECCD experiments worldwide are motivated by issues relating to the physics and technical advantages of the use of high frequency rf waves to drive localized currents. ECCD is accomplished by preferentially heating electrons moving in one toroidal direction, reducing their collisionality and thereby producing a non-inductively driven toroidal current. 6 refs., 4 figs

  10. Electron cyclotron current drive experiments on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    James, R.A. (Lawrence Livermore National Lab., CA (USA)); Giruzzi, G.; Gentile, B. de; Rodriguez, L. (Association Euratom-CEA, Centre d' Etudes Nucleaires de Cadarache, 13 - Saint-Paul-les-Durance (France)); Fyaretdinov, A.; Gorelov, Yu.; Trukhin, V. (Kurchatov Inst. of Atomic Energy, Moscow (USSR)); Harvey, R.; Lohr, J.; Luce, T.C.; Matsuda, K.; Politzer, P.; Prater, R.; Snider, R. (General Atomics, San Di

    1990-05-01

    Electron Cyclotron Current Drive (ECCD) experiments on the DIII-D tokamak have been performed using 60 GHz waves launched from the high field side of the torus. Preliminary analysis indicates rf driven currents between 50 and 100 kA in discharges with total plasma currents between 200 and 500 kA. These are the first ECCD experiments with strong first pass absorption, localized deposition of the rf power, and {tau}{sub E} much longer than the slowing-down time of the rf generated current carriers. The experimentally measured profiles for T{sub e}, {eta}{sub e} and Z{sub eff} are used as input for a 1D transport code and a multiply-ray, 3D ray tracing code. Comparisons with theory and assessment of the influence of the residual electric field, using a Fokker-Planck code, are in progress. The ECH power levels were between 1 and 1.5 MW with pulse lengths of about 500 msec. ECCD experiments worldwide are motivated by issues relating to the physics and technical advantages of the use of high frequency rf waves to drive localized currents. ECCD is accomplished by preferentially heating electrons moving in one toroidal direction, reducing their collisionality and thereby producing a non-inductively driven toroidal current. 6 refs., 4 figs.

  11. Remote machining and robotic welding in a proton cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, W; Mark, C

    1984-09-01

    Increasing residual radiation in the TRIUMF meson research facility cyclotron at the University of British Columbia has required development of a remotely operable industrial robot cutting and vacuum tight welding capabili

  12. The National Medical Cyclotron - An Australian experience in technology

    International Nuclear Information System (INIS)

    Barnes, R. K.

    1997-01-01

    The establishment of the National Medical Cyclotron (NMC) in the early 1990's was the practical outcome of a vision, held by nuclear medicine professionals, to complement the available neutron-rich radionuclides produced in Australia, with neutron-deficient radionuclides. The NMC is operated by the Australian Nuclear Science and Technology Organisation (ANSTO) in collaboration with the Royal Prince Alfred Hospital (RPAH) in Sydney where the PET department is able to use the short-lived radiotracers to good advantage. Neutron-deficient radionuclides, are also produced by the NMC laboratories. The cyclotron-generated radionuclides are used in over 70,000 patient studies per year

  13. Major results of the electron cyclotron heating experiment in the PDX tokamak

    International Nuclear Information System (INIS)

    Hsuan, H.; Bol, K.; Bowen, N.

    1984-07-01

    Electron Cyclotron Heating (ECH) experiments on PDX have been carried out with two 60 GHz pulsed gyrotrons each yielding up to approximately 100 kW. The ECH system used two waveguide runs each about 30 meters long. One run included 5 bends and the other, 7 bends. Predetermined waveguide modes were transmitted. The electron cyclotron waves were launched in narrow beams from both the high field and the low field sides of the plasma torus. The major new physics results are: (1) efficient central electron heating for both ohmic and neutral beam heated target plasmas; (2) alteration of MHD behavior using ECH; (3) identification of the trapped electron population with ECH; and (4) signature of velocity-space time evolution during ECH. In the best heating results obtained, Thomson scattering data indicated a central temperature increase from less than or equal to 1.5 keV to greater than or equal to 2.5 keV. This occurred with an average density of about 10 13 cm -3 and approximately 80 kW outside-launch ordinary-mode heating

  14. ULTRA-LOW INTENSITY PROTON BEAMS FOR RADIATION RESPONSE RELATED EXPERIMENTS AT THE U-120M CYCLOTRON

    Directory of Open Access Journals (Sweden)

    Tomas Matlocha

    2018-05-01

    Full Text Available The U-120M cyclotron at the Nuclear Physics Institute (NPI of the Czech Academy of Sciences in Rez is used for radiation hardness tests of electronics for high-energy physics experiments. These tests are usually carried out with proton fluxes of the order of 105–109 proton·cm−2·s−1. Some tests done for the upgrade of the Inner Tracking System of the ALICE experiment at CERN, however, required proton beam intensities several orders of magnitude lower. This paper presents a method which has been developed to achieve the proton beam flux of the order of 1 proton · cm−2·s−1. The method is mainly based on reduction of the discharge current in the cyclotron internal Penning type ion source. Influence of this new operation mode on the lifetime of ion source cathodes is discussed.

  15. Clinical diagnostic system using a small cyclotron for medical use

    International Nuclear Information System (INIS)

    Yonekura, Y.; Magata, Y.; Konishi, J.

    1990-01-01

    Since a small cyclotron and a positron emission tomography (PET) scanner have been installed at the Kyoto University Hospital in 1983, a great deal of effort has been directed to the clinical application of the PET-cyclotron system. This paper outlines the experience with PET in the clinical setting, including the facility, equipments and staff involved, weekly schedule, typical clinical protocols, and some results from the patients. The system consists of small cyclotron for production of the short-lived positron emitting radionuclides, fully automated synthesis system for labeling various compounds, scanning for measurement of radioactivities, and data analysis system for calculating physiological parameters. A resolving cylinder target system with eight smaller cylinders is equipped for production of C-11, N-13, O-15, and F-18. Labeled compounds are quickly delivered to the PET scanner room by two systems--the continuous delivery system for the labeled gas and the rapid delivery system for the liquid compounds by compressed air. A PET scanner devoted for clinical studies is a multislice whole-body PET scanner. Ten PET studies are performed weekly on the average for measuring blood flow and oxygen and glucose metabolism in the brain, blood flow and glucose and fatty acid metabolism in the heart, blood flow and amino acid uptake in the pancreas, lung ventilation, and tumor glucose metabolism. The availability of PET-cyclotron system is still limited in view of cost. The previous clinical studies suggest the contribution of PET to the the understanding of the mechanism of disease pathophysiology. (N.K.)

  16. Evaluation of residual radioactivity and dose rate of a target assembly in an IBA cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seon Yong; Kim, Young Ju; Lee, Seung Wook [School of Mechanical Engineering, Pusan National University (Korea, Republic of)

    2016-12-15

    When a cyclotron produces 18F-, accelerated protons interact with metal parts of the cyclotron machine and induces radioactivity. Especially, the target window and chamber of the target assembly are the main parts where long-lived radionuclides are generated as they are incident by direct beams. It is of great importance to identify radionuclides induced in the target assembly for the safe operation and maintenance of a cyclotron facility. In this study, we analyzed major radionuclides generated in the target assembly by an operation of the Cyclotron 18/9 machine and measured dose rates after the operation to establish the radiation safety guideline for operators and maintenance personnel of the machine. Gamma spectroscopy with HPGe was performed on samples from the target chamber and Havar foil target window to identify the radionuclides generated during the operation for production of 18F-- isotope and their specific activity. Also, the dose rates from the target were measured as a function of time after an operation. These data will help improve radiological safety of operating the cyclotron facilities.

  17. Radiation safety and operational health physics of hospital based medical cyclotrons

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: Compact, low energy, high current Medical Cyclotrons are now primarily used to produce large activities of short lived, neutron deficient, positron- emitting radioisotopes. These isotopes constitute the key ingredients of important PET (Positron Emission Tomography) radiopharmaceuticals used in diagnostic nuclear medicine. The PET-radioisotope producing Medical Cyclotrons are now increasingly installed in modern urban hospitals in many countries of the world. Modern Medical Cyclotrons run at a very high beam current (∼100-200 micro Amp) level and thereby produce intense fields of parasitic gamma rays and neutrons, causing the activation of cyclotron components, ambient air and radiation exposure to patients and members of the public. This report highlights the important operational aspects and the characteristics of the radiation fields produced by Medical Cyclotrons. The pathways of personnel radiation exposure are also analyzed. The above information constitutes the scientific basis of a sound operational health physics service, which is manifested in an effective dose reduction and an enhanced radiological safety of the Medical Cyclotron facility within the framework of ALARA

  18. The National Medical Cyclotron - An Australian experience in technology

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, R K [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia). National Medical Cyclotron

    1998-12-31

    The establishment of the National Medical Cyclotron (NMC) in the early 1990`s was the practical outcome of a vision, held by nuclear medicine professionals, to complement the available neutron-rich radionuclides produced in Australia, with neutron-deficient radionuclides. The NMC is operated by the Australian Nuclear Science and Technology Organisation (ANSTO) in collaboration with the Royal Prince Alfred Hospital (RPAH) in Sydney where the PET department is able to use the short-lived radiotracers to good advantage. Neutron-deficient radionuclides, are also produced by the NMC laboratories. The cyclotron-generated radionuclides are used in over 70,000 patient studies per year. 7 refs., 1 tab.

  19. The beam commissioning of BRIF and future cyclotron development at CIAE

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianjue, E-mail: tjzhang@ciae.ac.cn; Yang, Jianjun, E-mail: yangjianjun2000@tsinghua.org.cn

    2016-06-01

    As an upgrade project of the existing HI-13 tandem accelerator facility, the Beijing Radioactive Ion-beam Facility (BRIF) is being constructed in China Institute of Atomic Energy (CIAE). This project consists of an 100 MeV proton compact cyclotron, a two-stage ISOL system, a superconducting linac booster and various experimental terminals. The beam commissioning of the cyclotron was launched by the end of 2013 and on July 4, 2014 the first 100 MeV proton beam was received on a temporary target which was positioned at the outlet of the cyclotron. The beam current was stably maintained at above 25 μA for about 9 h on July 25, 2014 and the cyclotron is now ready for providing CW proton beam on target-source for RIB production. The beam current is expected to be increased to 200–500 μA in the coming years. The installation of the ISOL system is finished and the stable ion beam test shows it can reach a mass resolution better than 10,000. It is expected to generate dozens of RIB by 100 MeV proton beam. In addition, this paper also introduces the recent progress of the pre-study of an 800 MeV, 3–4 MW separate-sector proton cyclotron, which is aimed to provide high power proton beam for various applications, such as neutron and neutrino physics, proton radiography and nuclear data measurement and ADS system.

  20. Directory of cyclotrons used for radionuclide production in Member States [2006 update

    International Nuclear Information System (INIS)

    2006-10-01

    The present directory of cyclotron facilities used for the production of radionuclides in Member States is an update of the one compiled by the International Atomic Energy Agency (IAEA) in late 2001 and published in 2002. This directory was prepared through information collected by questionnaires that the IAEA sent to known institutions operating cyclotrons for radionuclide production. Technical as well as administrative data supplied to the IAEA as of November 2005 were taken into account. The directory is considered to include most of the cyclotrons of the world that are used at least partially for radionuclide production. There are 262 entries for cyclotrons operating in 39 Member States of the IAEA. This is an increase of 7% over the 246 reported in the 2002 cyclotron directory. This can be compared to the 350 or so cyclotrons believed to be presently operating in the world, which are involved in some aspects of radionuclide production. The increase has been in the number of cyclotrons in developed countries, but even more so in the developing countries. The increase in number during the last four years was driven by several factors, i.e. advent of advances in medical imaging, introduction of compact, user friendly medical cyclotron, and a recent decision that costs for 15 O-oxygen position emission tomography (PET) studies in Japan and 18 F-FDG PET studies in Germany and the United States of America are eligible for reimbursement by government or health insurance companies. There is no doubt that the fastest growing segment of the market is in the commercial distribution of FDG to local hospitals. The IAEA is promoting cyclotron technology as applied to nuclear medicine. Requests for cyclotron technology is steadily increasing; many developing Member States are interested in this technology. There is need to stimulate, build and maintain consulting capability in interested developing Member States. There are good reasons to believe that the number of cyclotron

  1. A 250-GHz CARM [Cyclotron Auto Resonance Maser] oscillator experiment driven by an induction linac

    International Nuclear Information System (INIS)

    Caplan, M.; Kulke, B.; Bubp, D.G.; McDermott, D.; Luhmann, N.

    1990-01-01

    A 250-GHz Cyclotron Auto Resonance Maser (CARM) oscillator has been designed and constructed and will be tested using a 1-kA, 2-MeV electron beam produced by the induction linac at the Accelerator Research Center (ARC) facility of Lawrence Livermore National Laboratory (LLNL). The oscillator circuit was made to operate in the TE 11 mode at ten times cutoff using waveguide Bragg reflectors to create an external cavity Q of 8000. Theory predicts cavity fill times of less than 30 ns (pulse length) and efficiencies approaching 20% is sufficiently low transverse electron velocity spreads are maintained (2%)

  2. Theoretical and experimental investigations into natural circulation behaviour in a simulated facility of the Indian PHWR under reduced inventory conditions

    International Nuclear Information System (INIS)

    Satish Kumar, N.V.; Nayak, A.K.; Vijayan, P.K.; Pal, A.K.; Saha, D.; Sinha, R.K.

    2004-01-01

    A theoretical and experimental investigation has been carried out to study natural circulation characteristics of an Indian PHWR under reduced inventory conditions. The theoretical model incorporates a quasi-steady state analysis of natural circulation at different system inventories. It predicts the system flow rate under single-phase and two-phase conditions and the inventory at which reflux condensation occurs. The model predictions were compared with test data obtained from FISBE (facility for integral system behaviour experiments), which simulates the thermal hydraulic behaviour of the Indian 220 MWe PHWR. The experimental results were found to be in close agreement with the predictions. It was also found that the natural circulation could be oscillatory under reduced inventory conditions. (orig.)

  3. Cyclotron Produced Radionuclides: Guidance on Facility Design and Production of [18F]Fluorodeoxyglucose (FDG)

    International Nuclear Information System (INIS)

    2012-01-01

    Positron emission tomography (PET) has advanced rapidly in recent years and is becoming an indispensable imaging modality for the evaluation and staging of cancer patients. A key component of the successful operation of a PET centre is the on-demand availability of radiotracers (radiopharmaceuticals) labelled with suitable positron emitting radioisotopes. Of the hundreds of positron labelled radiotracers, 2-[ 18 F]-fluoro-2-deoxy-D-glucose (FDG) is the most successful and widely used imaging agent in PET today. While FDG is utilized largely in oncology for the management of cancer patients, its applications in neurology and cardiology are also steadily growing. A large number of PET facilities have been established in Member States over the past few years, and more are being planned. The design and operation of a facility for the production of FDG requires attention to detail, in particular the application of good manufacturing practices (GMP) guidelines and quality assurance. The product must conform to the required quality specifications and must be safe for human use. This book is intended to be a resource manual with practical information for planning and operating an FDG production facility, including design and implementation of the laboratories, facility layout, equipment, personnel and FDG quality assessment. GMP and quality management are discussed only briefly, since these topics are covered extensively in the IAEA publication Cyclotron Produced Radionuclides: Guidelines for Setting up a Facility (Technical Reports Series No. 471). It should be noted that manufacturing processes and quality specifications for FDG are not currently globally harmonized, and these do vary to some extent. However, there is no disagreement over the need to ensure that the product is manufactured in a controlled manner, that it conforms to applicable quality specifications and that it is safe for human use. Administrators, managers, radiopharmaceutical scientists, production

  4. Operation of the Karlsruhe Isochronous Cyclotron in 1976

    International Nuclear Information System (INIS)

    Schulz, F.; Schweickert, H.

    1977-08-01

    The operation of the Karlsruhe Isochronous Cyclotron in 1976 is briefly surveyed. The status and the results of the following technical developments are briefly described: 1) Computer aided cyclotron operation; 2) New correction coils for the cyclotron; 3) Non-intercepting measurement of the extraction rate; 4) Lambshift source for polarized deuterons; 5) Improvements of the 6 Li 3+ -Penning ion source; 6) New beam line to an irradiation room for machine parts; 7) Nova 2 computer system for nuclear physics experiments; 8) Routine production of Iodine-123 for nuclear medicine. - In the annual report 1975 we have included a section consisting of a series of brief reports on applied research in progress. This year we give a compilation of the current basic nuclear physics work at our cyclotron. The short papers prepared by the experimental groups are arranged according to the following topics: 1) Experiments using the 156 MeV 6 Li 3+ -beam; 2) Experiments using the 52 MeV polarized deuteron beam; 3) Further nuclear reactions; 4) Nuclear spectroscopy; 5) Measurements of nuclear magnetic moments; 6) Measurements with the neutron time-of-flight spectrometer. (orig.) [de

  5. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  6. Method and apparatuses for ion cyclotron spectrometry

    Science.gov (United States)

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  7. Status of the Catania tandem as injector of the superconducting cyclotron

    International Nuclear Information System (INIS)

    Ciavola, G.; Cuttone, G.; Raia, G.

    1990-01-01

    The Catania LNS tandem facility is operating since 1984. The status and the main modifications of the accelerator during these years are described and the performance obtained is reported. A superconducting cyclotron will be installed at the LNS facility as tandem booster; the main progress is presented. (orig.)

  8. Nuclear physics experiment at INS

    International Nuclear Information System (INIS)

    Sugimoto, Kenzo.

    1981-02-01

    Present activities at the Institute for Nuclear Study (INS) are presented. Selected topics are from recent experiments by use of the INS cyclotron, experiments at the Bevalac facility under the INS-LBL collaboration program, and preparatory works for the Numatron project, a new project for the high-energy heavy-ion physics. (author)

  9. Heating tokamaks via the ion-cyclotron and ion-ion hybrid resonances

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1977-04-01

    For the ion-ion hybrid resonance it is shown that: (1) the energy absorption occurs via a sequence of mode conversions; (2) a poloidal field component normal to the ion-ion hybrid mode conversion surface strongly influences the mode conversion process so that roughly equal electron and ion heating occurs in the present proton-deuterium experiments, while solely electron heating is predicted to prevail in deuterium-tritium reactors; (3) the ion-ion hybrid resonance suppresses toroidal eigenmodes; and (4) wave absorption in minority fundamental ion-cyclotron heating experiments will be dominated by ion-ion hybrid mode conversion absorption for minority concentrations exceeding roughly 1 percent. For the ion-cyclotron resonance, it is shown that: (1) ion-cyclotron mode conversion leads to surface electron heating; and (2) ion-cyclotron mode conversion absorption dominates fundamental ion-cyclotron absorption thereby preventing efficient ion heating

  10. Solid targets and irradiation facilities for production of diagnostic and therapeutic radionuclides at the Debrecen cyclotron

    International Nuclear Information System (INIS)

    Tarkanyi, F.; Ando, L.; Szucs, Z.; Mahunka, I.; Kovacs, Z.

    2000-01-01

    The MGC-20E (NIIEFA, Leningrad, USSR) variable energy compact cyclotron (k=20) was installed in ATOMKI (Debrecen, Hungary) in 1985. Protons, deuterons, 3 He- and α-particles can be accelerated with currents up to 300 μA for internal irradiation and up to 50 μA for external beams. The establishment of the Cyclotron Laboratory was partly supported by the International Atomic Energy Agency. The application of the cyclotron is multipurpose: basic nuclear research, application of activation technique for analytical and wear studies, application of intense fast neutron source for agro-biological, bio-medical application and for radiation damage test of electronic components, and finally radioisotope production for medical diagnostics and for other scientific and applied fields. The cyclotron laboratory has six target rooms, a radiochemistry laboratory and a medical unit equipped with PET

  11. Development of PET in Latin America. Experience of the first PET-Cyclotron Center

    International Nuclear Information System (INIS)

    Tutor, C.A.; Frias, L.

    2002-01-01

    Aim: Describe the experience of the first PET-Cyclotron Center in Latin America. Demonstrate the viability of running a PET Center in Argentina despite the economic crisis. Materials and Methods: For this study, we used a UGM/GE Quest 250 PET scan, a RDS 112 cyclotron and a Radiosynthesis Laboratory installed at the (FUESMEN) Nuclear Medicine School Foundation, located in Mendoza City, in the middle-west of Argentina. From January 1999 to March 2002, 741 studies were obtained, 731 were 18 FluorDeoxyGlucose-PET studies and 10 phantoms for calibration purposes. We used acquisition and imaging processing standard protocols, as well as research protocols designed according to the pathology under investigation. To better correlate anatomical and functional images, we used fusion techniques with (CT) Computed Tomography in some (WB) whole-body PET scans. Results: A total of 731 patients were retrospectively analyzed and classified according to statistics variables such as: 1-sex: 317 women and 414 men, 2-type of scan: 439 WB cases, 267 brain studies and 25 cardiac. From this data we divided them as PET indications and resulted in 17 cases as healthy volunteers, 422 oncological cases, 267 neurological studies and 25 cardiac for myocardial viability. According to the origin they were classified as patients coming from Mendoza 544, Buenos Aires 112, other argentine provinces 60 and foreign (Chile, Brazil and Uruguay) 15 cases. In terms of billing, 181 studies were done free of charge, 95 under research protocols were also done free of charge and 451 were charged. Conclusion: Not only the economical and political factors play an important role limiting the advances of PET Imaging in Latin America, but also the lack of a neighboring cyclotron that circumscribe many hospitals to have access to the radiopharmaceutical agent. FUESMEN was established in 1991 by three governmental entities: the (CONEA) National Commission of Atomic Energy, the (UNC) National University of Cuyo and

  12. Pumping system of 30,000 l/sec for CIME cyclotron

    International Nuclear Information System (INIS)

    Horbowa, A.; Buhler, S.; Blache, Ph.; Chevrollier, R.; Grolet, D.; Pilot, A.; Szott, Ph.; Languiller, J.; Gallardo, Ph.

    1999-01-01

    The cyclotron CIME (SPIRAL facilities) has to accelerate radioactive ions produced from primary heavy beams delivered by GANIL. To avoid beam losses by charge exchange on the residual gas, the ultimate pressure in the cyclotron is expected to be better than 5.10 -8 mbar. In order to reach such a low pressure, a system of 30.000 l/sec twin cryo-panels has been designed for being installed inside the cyclotron. Each cryo-panel will be individually cooled by a separate set of two cryo-generators. From cryo-generators to cryo-panels, the cooling power is transferred through heat-pipes over several meters. The complete system designed and constructed in the IPN and GANIL laboratories, is presently under testing at the GANIL location. (authors)

  13. First operations of the LNS heavy ions facility

    International Nuclear Information System (INIS)

    Calabretta, L.; Ciavola, G.; Cuttone, G.; Gammino, S.; Gmaj, P.; Migneco, E.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Sura, J.; Scuderi, V.; Acerbi, E.; Alessandria, F.; Bellomo, G.; Bosotti, A.; Martinis, C. de; Giove, D.; Michelato, P.; Pagani, C.; Rossi, L.

    1996-01-01

    A heavy ion facility is now available at laboratorio nazionale del Sud (LNS) of Catania. It can deliver beams with an energy up to 100 MeV/amu. The facility is based on a 15 MV HVEC tandem and a K=800 superconducting cyclotron as booster. During the last year, the facility came into operation. A 58 Ni beam delivered by the tandem has been radially injected in the SC and then has been accelerated and extracted at 30 MeV/amu. In this paper the status of the facility together with the experience gained during the commissioning will be extensively reported. (orig.)

  14. Medical cyclotron basic concepts and its applications

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Sonkawade, R.G.

    2012-01-01

    More than 3000 nuclides are known, of which approximately 2700 are radioactive, and rest are stable. The majority of radionuclides are artificially produced in the reactor and cyclotron. In a cyclotron, Charge particle such as proton, Deuteron, á (Alpha) particle, 3 He particles and so forth are accelerated in circular paths within the Dees under vacuum by means of an electromagnetic field. These accelerated particles can possess few KeV to several BeV of kinetic energy depending on the design of the cyclotron. At our setup we have an 11 MeV dual beam multi target cyclotron which is capable producing 11 C, 13 N, 15 O, 18 F and 2 F radioisotopes and all have been successfully produced and tested in our lab. Earlier cyclotrons were the best source of high-energy beams for nuclear physics experiments; several cyclotrons are still in use for this type of research. Cyclotrons can be used to treat cancer. Ion beams from cyclotrons can be used, as in proton therapy. The positron emitting isotopes are suitable for PET imaging. As discussed we are producing mainly Carbon-11, Nitrogen-13, Oxygen-15, and Fluorine-18: These are positron emitters used in PET for studying brain physiology and pathology, in particular for localizing epileptic focus, and in dementia, psychiatry and neuropharmacology studies. So these are having significant role in diagnosis of Oncological, Neurological and Cardiological disorder. More than ninety percent we are producing 18 F in FDG. 18 F in FDG (Flouro-Deoxy-glucose) has become very important in detection of cancers and the monitoring of progress in their treatment, using PET. Medical cyclotron is complex equipment requiring delicate handling by highly trained personnel. The aim of this article is to highlight few finer aspects of Medical cyclotron operation, including precautions for safety and smooth functioning of this sophisticated equipment. (author)

  15. Damage by the Great East Japan Earthquake and current status of the Sendai cyclotron

    International Nuclear Information System (INIS)

    Wakui, Takashi; Itoh, Masatoshi; Shimada, Kenzi; Yoshida, Hidetomo; Shinozuka, Tsutomu; Sakemi, Yasuhiro

    2012-01-01

    The Great East Japan Earthquake has inflicted damages on the accelerator facility of the Cyclotron and Radioisotope Center (CYRIC), Tohoku University. The K=110 MeV cyclotron was slanted due to the damage of props supporting the cyclotron. The cyclotron building has also been slightly inclined. This situation requires the re-alignment of all the beam transport line and the cyclotron. Some of the shield doors at experimental rooms were broken and blocked the entrance. The earthquake caused also a lot of damages to some components of the cyclotron as well as the beam transport lines, such as beam ducts, magnets, vacuum pumps and power supplies. Fortunately, no one was injured at CYRIC. The restoration work was started on July 2011 and will be completed by July 2012. This report describes the situation of damages and the current status of the restoration work. (author)

  16. LIBO - boosting medical cyclotron facilities for cancer therapy Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    Length : Energy boost : From 62 to 200 MeVAccelerating gradient : 10 MeV/metreAccelerating frequency : 3 GHz Collaboration : CERN, INFN and University of Milan, INFN and University of Naples and TERA foundation Prototype test in 2001 : SC cyclotron Catania

  17. Scientific instruments, scientific progress and the cyclotron

    International Nuclear Information System (INIS)

    Baird, David; Faust, Thomas

    1990-01-01

    Philosophers speak of science in terms of theory and experiment, yet when they speak of the progress of scientific knowledge they speak in terms of theory alone. In this article it is claimed that scientific knowledge consists of, among other things, scientific instruments and instrumental techniques and not simply of some kind of justified beliefs. It is argued that one aspect of scientific progress can be characterized relatively straightforwardly - the accumulation of new scientific instruments. The development of the cyclotron is taken to illustrate this point. Eight different activities which promoted the successful completion of the cyclotron are recognised. The importance is in the machine rather than the experiments which could be run on it and the focus is on how the cyclotron came into being, not how it was subsequently used. The completed instrument is seen as a useful unit of scientific progress in its own right. (UK)

  18. Status of RNB facilities in North America

    CERN Document Server

    Nolen, J A

    1998-01-01

    This paper presents the status of accelerator facilities in North America that are involved in research using radioactive nuclear beams (RNB), including existing and operating facilities, ones currently under construction or undergoing major upgrades, and ones being planned or proposed for the future. Existing RNB facilities are located at TRIUMF (TISOL) in Vancouver, B.C., the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory, the Argonne Tandem Linear Accelerator System (ATLAS) at Argonne National Laboratory, the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University, the Nuclear Structure Laboratory at the University of Notre Dame, the 88" Cyclotron at Lawrence Berkeley National Laboratory, and the Cyclotron Institute at Texas A&M University. Currently, there are two major RNB facility upgrades in progress in North America, one at TRIUMF, the ISAC project, and one at NSCL, the Intensity Upgrade project. For the future, the U.S. Nuclear Science A...

  19. Radioisotope production by reactors and cyclotrons in Japan

    International Nuclear Information System (INIS)

    Murakami, Yukio

    1978-01-01

    Present status of radioisotope production in Japan and the increasing demand from various fields are generally reviewed. Future problems associated with the shortage of economical supply are also discussed. The first half of this report is devoted to general review of the increasing demand for various radioisotopes from increasing number of users. The present status and future trends of the distribution of users of specific radioisotopes and their demands are shown. The remaining half of this report reviews the production with reactors and cyclotrons. The Japanese reactors producing radioisotopes are limited to low flux (10 13 ) research reactors at JAERI. Some problems associated with the improvement of availability and with the organizational structure are discussed. As for the production with cyclotrons, available facilities and the method of production are explained in detail. For clinical use, especially for the production of short lived radioisotopes, the advantage of a small special purpose cyclotron at each medical organization is emphasized. (Aoki, K.)

  20. A 30 MeV H- cyclotron for isotope production

    International Nuclear Information System (INIS)

    Milton, B.F.; Dawson, R.; Erdman, K.L.

    1989-05-01

    Because of an expanding market for radioisotopes there is a need for a new generation of cyclotrons designed specifically for this purpose. TRIUMF is cooperating with a local industrial company in designing and constructing such a cyclotron. It will be a four sector H - cyclotron, exploiting the newly developed high brightness multicusp ion source. This source with H - current capability in excess of 5 mA makes feasible accelerated H - beam intensities of up to 500 μA. Beam extraction is by stripping to H + in a thin graphite foil. Extraction of two high-intensity beams, with energy variable from 15 to 30 MeV is planned. The use of an external ion source, provision of a good vacuum in the acceleration region, and the careful choice of materials for components in the median plane leads to a cyclotron that will have low activation and can be easily serviced in spite of the very high operating beam intensities. A design extension to 70 MeV using many of the design features of the 30 MeV cyclotron can be easily made. Such a machine with a good quality variable energy beam is a highly desirable source of protons for isotope production, injection into higher energy high intensity acceleration, injection into higher energy high intensity accelerators, and as an irradiation facility for ocular melanomas. Design of the 30 MeV cyclotron is well advanced and construction is in progress

  1. Modular beam diagnostics instrument design for Cyclotrons

    International Nuclear Information System (INIS)

    Chaddha, N.; Bhole, R.B.; Sahoo, S.; Nandy, P.P.; Pal, S.

    2012-01-01

    The Cyclotrons at VECC, Kolkata i.e. Room Temperature Cyclotron (RTC) and Superconducting Cyclotron (SCC) comprise of internal and external Beam Diagnostic systems. These systems provide the beam developer with position, intensity, beam profile, a visual impression of the size and shape of ion beam, and operational control over diagnostic components like 3-finger probe, Beam Viewer probe, Deflector probe, Faraday cup, X-Y slit, Beam viewer etc. Automation of these components was initially done using customised modules for individual sub-system. An expansion of this facility and various levels of complexity demand modular design to cater easy modification and upgradation. The overall requirements are analysed and modular cards are developed based on basic functionalities like valve operation, probe/slit/viewer control, position read-out, Interlock, aperture control of beam line and communication. A 32-bit Advanced RISC Machine (ARM) based card with embedded EPICS is chosen as the master controller and FPGA/microcontroller is used for functional modules. The paper gives a comprehensive description of all modules and their integration with the control system. (author)

  2. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  3. Design Study of a Mini Cyclotron for the Application of Biomedical Accelerator Mass Spectrometry

    International Nuclear Information System (INIS)

    Kim, Jong-Won; Yun, Chong-Chul; Youn, Min-Yong; Wang, Sonjong

    2009-01-01

    A small cyclotron has been considered for the use of biomedical accelerator mass spectrometer (BAMS). Over a decade ago a few cyclotrons had been constructed and tested for AMS, but technical problems of instability and poor transmission efficiency caused to discontinue further developments. The major reason of the demise of cyclotron AMS was the dominance of commercial Tandem-based AMS facilities. Now BAMS may ask for more compact system, and perhaps using positive ions to accelerate isotope tracers is a favorable feature. The design of a cyclotron to meet the requirements of BAMS has been performed by adopting a compact magnet with high stability and a flat-topping rf system to increase transmission efficiency.

  4. Circular waveguide systems for electron-cyclotron-resonant heating of the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Felker, B.; Calderon, M.O.; Chargin, A.K.

    1983-01-01

    Extensive use of electron cyclotron resonant heating (ECRH) in the Tandem Mirror Experiment-Upgrade (TMX-U) requires continuous development of components to improve efficiency, increase reliability, and deliver power to new locations with respect to the plasma. We have used rectangular waveguide components on the experiment and have developed, tested, and installed circular waveguide components. We replaced the rectangular with the circular components because of the greater transmission efficiency and power-handling capability of the circular ones. Design, fabrication, and testing of all components are complete for all systems. In this paper we describe the design criteria for the system

  5. Status Of The EXCYT Facility at INFN-LNS

    International Nuclear Information System (INIS)

    Cuttone, G.; Alba, R.; Calabretta, L.; Celona, L.; Chines, F.; Cosentino, L.; Finocchiaro, P.; Grmek, A.; Gammino, S.; Menna, M.; Messina, G.E.; Raia, G.; Passarello, S.; Re, M.; Rifuggiato, D.; Rovelli, A.; Russo, S.; Schillaci, G.; Scuderi, V.; Zappala, E.

    2004-01-01

    The EXCYT facility (EXotics with CYclotron and Tandem) at the INFN-LNS is based on a K-800 Superconducting Cyclotron injecting stable heavy-ion beams (up to 80 MeV/amu, 1 eμA) into a target-ion source assembly to produce the required nuclear species, and on a 15 MV Tandem for post-accelerating the radioactive beams. Since December 1999 the Superconducting Cyclotron operates in a stand-alone mode by means of the new axial injection beam line. The primary beam line has been already mounted and tested. The part of mass separator on the two high-voltage platforms together with low intensity diagnostics is already installed while the ancillary items along with the part of mass separator at ground potential will be installed during the next stop of accelerator operations. The target-ion source unit has been successfully tested on-line at GANIL. The goal of such efforts will be represented by the test of the mass separator with stable beams planned at LNS by the end of the year. The commissioning of the EXCYT facility is foreseen in 2004 together with the start of nuclear experiments program

  6. CAS CERN Accelerator School: Cyclotrons, linacs and their applications. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1996-01-01

    These proceedings present the lectures given at the eighth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Cyclotrons, Linacs and Their Applications'. Following an introductory lecture on linacs, the fundamental features of electron, ion and induction linacs are described together with their RF systems and particle sources. Cyclotrons are then introduced followed by details of their different types, their magnet and RF design, and their injection and extraction systems, with a glance towards exotic and possible future machines. Chapters are then presented on the use of linacs and cyclotrons for medical, fission, fusion and material applications, as well as for isotope production. Finally, descriptions of the design of a radioisotope facility, the matching of accelerators to their task and the computational tools used in their design are included. (orig.)

  7. CAS CERN Accelerator School: Cyclotrons, linacs and their applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1996-03-04

    These proceedings present the lectures given at the eighth specialized course organized by the CERN Accelerator School (CAS), the topic this time being `Cyclotrons, Linacs and Their Applications`. Following an introductory lecture on linacs, the fundamental features of electron, ion and induction linacs are described together with their RF systems and particle sources. Cyclotrons are then introduced followed by details of their different types, their magnet and RF design, and their injection and extraction systems, with a glance towards exotic and possible future machines. Chapters are then presented on the use of linacs and cyclotrons for medical, fission, fusion and material applications, as well as for isotope production. Finally, descriptions of the design of a radioisotope facility, the matching of accelerators to their task and the computational tools used in their design are included. (orig.).

  8. Experiments on ion cyclotron damping at the deuterium fourth harmonic in DIII-D

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Petty, C.C.; Baity, F.W.; Bernabei, S.; Greenough, N.; Heidbrink, W.W.; Mau, T.K.; Porkolab, M.

    1999-05-01

    Absorption of fast Alfven waves by the energetic ions of an injected beam is evaluated in the DIII-D tokamak. Ion cyclotron resonance absorption at the fourth harmonic of the deuteron cyclotron frequency is observed with deuterium neutral beam injection (f = 60 MHz, B T = 1.9 T). Enhanced D-D neutron rates are evidence of absorption at the Doppler-shifted cyclotron resonance. Characteristics of global energy confinement provide further proof of substantial beam acceleration by the rf. In many cases, the accelerated deuterons cause temporary stabilization of the sawtooth (monster sawteeth), at relatively low rf power levels of ∼1 MW

  9. Status of the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Martin, J.A.

    1978-01-01

    The Holifield Heavy Ion Research Facility presently operates the Oak Ridge Isochronous Cyclotron (ORIC). This accelerator provides heavy ions up to argon with energies useful for nuclear physics. The Phase I expansion of this facility, now a year away from completion, includes a 25-MV vertical folded tandem accelerator, beam transport and injection systems to use the ORIC as an energy booster, and additional experiment areas for the beams directly from the tandem. The tandem--cyclotron combination will provide heavy ions with energies up to 25 MeV/A for A 11 particles/sec. Building construction for the project is essentially complete. The accelerator manufacturer, National Electrostatics Corporation, has completed installation and testing of the 10-m-diam by 30-m-high accelerator pressure vessel and has begun installation of the accelerator systems. The accelerator has previously been assembled at the NEC plant and the digital control system operated without voltage on the column. Voltage tests are expected to begin in Oak Ridge in January 1979 with beam tests to begin in March. Completion of the project, including acceptance tests of the tandem and the beam injection system for ORIC is presently scheduled for November 15, 1979. Construction of Phase II for the facility wich will include a much larger booster cyclotron and additional research areas is expected to begin in 1982

  10. Progress on Electron Cyclotron Heating Experiments in LHD

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Nagasaki, K.; Notake, T.; Inagaki, S.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Takita, Y.; Ohkubo, K.; Saito, K.; Seki, T.; Kumazawa, R.; Watari, T.; Mutoh, T.

    2005-01-01

    Electron cyclotron resonance heating (ECH) is a powerful heating method because of its well-controlled local heating and high deposition power density. Together with the development of high power long pulse gyrotrons, ECH becomes one of the major heating scenarios to control electron temperature and current profiles for the improved plasma confinement and suppression of some magneto-hydro-dainamic (MHD) instabilities in both tokamaks and stellarators [1]. In the Large Helical Device (LHD), ECH has been worked as a method of plasma initiation and electron heating. The ECH system has been improved with respect to each experimental campaign. In the recent campaign, nine gyrotrons were operated reliably and steadily. As a diagnostic objective, a modulated ECH (MECH) was injected together with main ECH power. A Fourier analysis of the induced heat wave gave useful information of not only the heat transport in the plasmas but also precise power deposition layer [2]. Several kinds of ECH experiment were performed by using this flexible ECH system. In LHD, electron ITB formation have been observed by using strongly focused ECH in the plasma core [3].Two different kinds of improved confinement were realized depending on the direction of tangentially injected NBI. NBI beam driven currents modify the profiles of the rotational transform 2 ro and the existence low order rational surfaces, 2 = 0.5 in special, affects the difference of appearance of the improved confinement states. The MECH method was used to investigate the internal structure of the thermal diffusion in such plasmas [4]. Another important role of the MECH is the precise determination of the ECH power deposition. Shift of the deposition location by changing an injection polarization in the electron Bernstein wave (EBW) heating was clearly demonstrated by the MECH method. Electron cyclotron current drive (ECCD) experiments were proceeded by using a flexible antenna system, which had wide scanning range in both

  11. Cyclotron Produced Radionuclides: Guidance on Facility Design and Production of [{sup 18}F]Fluorodeoxyglucose (FDG)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    Positron emission tomography (PET) has advanced rapidly in recent years and is becoming an indispensable imaging modality for the evaluation and staging of cancer patients. A key component of the successful operation of a PET centre is the on-demand availability of radiotracers (radiopharmaceuticals) labelled with suitable positron emitting radioisotopes. Of the hundreds of positron labelled radiotracers, 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose (FDG) is the most successful and widely used imaging agent in PET today. While FDG is utilized largely in oncology for the management of cancer patients, its applications in neurology and cardiology are also steadily growing. A large number of PET facilities have been established in Member States over the past few years, and more are being planned. The design and operation of a facility for the production of FDG requires attention to detail, in particular the application of good manufacturing practices (GMP) guidelines and quality assurance. The product must conform to the required quality specifications and must be safe for human use. This book is intended to be a resource manual with practical information for planning and operating an FDG production facility, including design and implementation of the laboratories, facility layout, equipment, personnel and FDG quality assessment. GMP and quality management are discussed only briefly, since these topics are covered extensively in the IAEA publication Cyclotron Produced Radionuclides: Guidelines for Setting up a Facility (Technical Reports Series No. 471). It should be noted that manufacturing processes and quality specifications for FDG are not currently globally harmonized, and these do vary to some extent. However, there is no disagreement over the need to ensure that the product is manufactured in a controlled manner, that it conforms to applicable quality specifications and that it is safe for human use. Administrators, managers, radiopharmaceutical scientists

  12. A partial snake for the AGS

    International Nuclear Information System (INIS)

    Ratner, L.G.

    1990-01-01

    Based on snake experiments at the Indian University Cyclotron Facility and computer simulations at Brookhaven National Laboratory, as well as the conclusions of a BNL mini-workshop, we feel that a partial Siberian snake is a practical device for the AGS. It is anticipated that such a device could reduce the polarized beam tune-up time from 2--3 weeks to 2--3 days

  13. Experiments on ion cyclotron damping at the deuterium fourth harmonic in DIII-D

    International Nuclear Information System (INIS)

    Pinsker, R. I.; Baity, F. W.; Bernabei, S.; Greenough, N.; Heidbrink, W. W.; Mau, T. K.; Petty, C. C.; Porkolab, M.

    1999-01-01

    Absorption of fast Alfven waves by the energetic ions of an injected beam is evaluated in the DIII-D tokamak. Ion cyclotron resonance absorption at the fourth harmonic of the deuteron cyclotron frequency is observed with deuterium neutral beam injection (f=60 MHz, B T =1.9 T). Enhanced D-D neutron rates are evidence of absorption at the Doppler-shifted cyclotron resonance. Characteristics of global energy confinement provide further proof of substantial beam acceleration by the rf. In many cases, the accelerated deuterons cause temporary stabilization of the sawtooth (''monster sawteeth''), at relatively low rf power levels of ∼1 MW. (c) 1999 American Institute of Physics

  14. First operations of the LNS heavy ions facility

    Energy Technology Data Exchange (ETDEWEB)

    Calabretta, L. [INFN-LNS, Catania (Italy); Ciavola, G. [INFN-LNS, Catania (Italy); Cuttone, G. [INFN-LNS, Catania (Italy); Gammino, S. [INFN-LNS, Catania (Italy); Gmaj, P. [INFN-LNS, Catania (Italy); Migneco, E. [INFN-LNS, Catania (Italy); Raia, G. [INFN-LNS, Catania (Italy); Rifuggiato, D. [INFN-LNS, Catania (Italy); Rovelli, A. [INFN-LNS, Catania (Italy); Sura, J. [INFN-LNS, Catania (Italy); Scuderi, V. [INFN-LNS, Catania (Italy); Acerbi, E. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Alessandria, F. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Bellomo, G. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Bosotti, A. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Martinis, C. de [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Giove, D. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Michelato, P. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Pagani, C. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Rossi, L. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy)

    1996-11-11

    A heavy ion facility is now available at laboratorio nazionale del Sud (LNS) of Catania. It can deliver beams with an energy up to 100 MeV/amu. The facility is based on a 15 MV HVEC tandem and a K=800 superconducting cyclotron as booster. During the last year, the facility came into operation. A {sup 58}Ni beam delivered by the tandem has been radially injected in the SC and then has been accelerated and extracted at 30 MeV/amu. In this paper the status of the facility together with the experience gained during the commissioning will be extensively reported. (orig.).

  15. An alternative beam line at the U-400 M cyclotron for RIB separation and transport to the FOBOS spectrometer (The technical proposal)

    International Nuclear Information System (INIS)

    Majdikov, V.Z.; Bashevoj, V.V.

    1998-01-01

    The first order ion-optic calculations performed together with the graphical modeling permits us to propose a new variant of the beam-transport line from the backside of the U-400M cyclotron to the FOBOS spectrometer. This beam line could be built in a rather short time without large financial expenditures from available magnetic and vacuum elements. The new beam line could even be considered as an economic alternative to the existing beam line and as a RIB separator. This work is the result of the pre-design R and D aimed to develop the U-400M cyclotron facilities for the RIB experiments performance with the FOBOS spectrometer

  16. Digital control in LLRF system for CYCIAE-100 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Fu, Xiaoliang; Ji, Bin; Zhang, Tianjue; Wang, Chuan

    2016-05-21

    As a driven accelerator, the CYCIAE-100 cyclotron is designed by China Institute of Atomic Energy for the Beijing Radio Ion-beam Facility project. The cyclotron RF system is designed to use two RF power sources of 100 kW to drive two half-wavelength cavities respectively. Two Dee accelerating electrodes are kept separately from each other inside the cyclotron, while their accelerating voltages are maintained in phase by the efforts of LLRF control. An analog–digital hybrid LLRF system has been developed to achieve cavity tuning control, dee voltage amplitude and phase stabilization etc. The analog subsystems designs are focused on RF signal up/down conversion, tuning control, and dee voltage regulation. The digital system provides an RF signal source, aligns the cavity phases and maintains a Finite State Machine. The digital parts combine with the analog functions to provide the LLRF control. A brief system hardware introduction will be given in this paper, followed by the review of several major characteristics of the digital control in the 100 MeV cyclotron LLRF system. The commissioning is also introduced, and most of the optimization during the process was done by changing the digital parts.

  17. New development of neutron radiography with a small cyclotron

    International Nuclear Information System (INIS)

    Ikeda, Yasushi; Ohkubo, Kohei; Kato, Toshihiko; Nakamura, Tomihisa; Fuji, Takayoshi.

    1990-01-01

    A series of neutron radiography testing has been performed for several years by using a small accelerator called 'Baby Cyclotron' manufactured by Japan Steel Works, Ltd. The Baby Cyclotron produces fast neutrons at the rate of 4x10 12 n/cm 2 s, and enables to perform neutron radiography imaging by various techniques. The most important application of this Baby Cyclotron radiography system is the non-destructive testing (NDT) of various explosive devices prepared for space launch vehicles. It is assured that thermal neutron radiography testing is a very useful means for the NDT. Also fast neutron radiography testing is in progress. The fast neutron radiography with a CR39 track-etch image recorder was developed, and it was shown to be the very useful NDT means when the thicker objects used for new H-2 launch vehicles had to be examined. Because thermal neutron radiography has the high detectability of hydrogenous materials, organic elastomers such as O-rings and explosive powder are clearly observable through the opaque steel walls of containers. The Baby Cyclotron and the neutron radiography facility, thermal neutron and fast neutron radiography testings and so on are reported. (K.I.)

  18. Fragment-separator at the U-400 cyclotron. (The Technical proposal)

    International Nuclear Information System (INIS)

    Majdikov, V.Z.; Bashevoj, V.V.

    1998-01-01

    The ion-optical calculations together with graphical modeling show some possibility to create the low-energy fragment-separator for the RIB experiments performed at the Coulomb barrier of interactions at the U-400 cyclotron. Combination of two available magnetic dipoles SP-95 and SP-97 without any additional focussing elements at the cyclotron switchyard permits one to obtain the parameters of the RIB separator adequate for the modern experiments performance

  19. MICHIGAN: Cyclotron conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-10-15

    A sense of excitement was in the air as cyclotron physicists and engineers from 17 countries convened on 30 April for the opening of the Tenth International Conference on Cyclotrons and Their Applications. Some 50 years after its invention, the redoubtable cyclotron remains a topic of compelling current interest. Cyclotron experts gathered at Michigan State University's Kellogg Center to hear of latest developments, of progress and successes on new machines which had come into operation, of new projects which were underway, and of dreams which lay ahead.

  20. Digital Data Acquisition System for experiments with segmented detectors at National Superconducting Cyclotron Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Starosta, K., E-mail: starosta@sfu.c [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Vaman, C.; Miller, D.; Voss, P.; Bazin, D.; Glasmacher, T. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Crawford, H.; Mantica, P. [National Superconducting Cyclotron Laboratory and Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Tan, H.; Hennig, W.; Walby, M.; Fallu-Labruyere, A.; Harris, J.; Breus, D.; Grudberg, P.; Warburton, W.K. [XIA LLC, Hayward, CA 94544 (United States)

    2009-11-11

    A 624-channel Digital Data Acquisition System capable of instrumenting the Segmented Germanium Array at National Superconducting Cyclotron Laboratory has been implemented using Pixie-16 Digital Gamma Finder modules by XIA LLC. The system opens an opportunity for determination of the first interaction position of a gamma ray in a SeGA detector from implementation of gamma-ray tracking. This will translate into a significantly improved determination of angle of emission, and in consequence much better Doppler corrections for experiments with fast beams. For stopped-beam experiments the system provides means for zero dead time measurements of rare decays, which occur on time scales of microseconds.

  1. Digital Data Acquisition System for experiments with segmented detectors at National Superconducting Cyclotron Laboratory

    International Nuclear Information System (INIS)

    Starosta, K.; Vaman, C.; Miller, D.; Voss, P.; Bazin, D.; Glasmacher, T.; Crawford, H.; Mantica, P.; Tan, H.; Hennig, W.; Walby, M.; Fallu-Labruyere, A.; Harris, J.; Breus, D.; Grudberg, P.; Warburton, W.K.

    2009-01-01

    A 624-channel Digital Data Acquisition System capable of instrumenting the Segmented Germanium Array at National Superconducting Cyclotron Laboratory has been implemented using Pixie-16 Digital Gamma Finder modules by XIA LLC. The system opens an opportunity for determination of the first interaction position of a γ ray in a SeGA detector from implementation of γ-ray tracking. This will translate into a significantly improved determination of angle of emission, and in consequence much better Doppler corrections for experiments with fast beams. For stopped-beam experiments the system provides means for zero dead time measurements of rare decays, which occur on time scales of microseconds.

  2. Digital Data Acquisition System for experiments with segmented detectors at National Superconducting Cyclotron Laboratory

    Science.gov (United States)

    Starosta, K.; Vaman, C.; Miller, D.; Voss, P.; Bazin, D.; Glasmacher, T.; Crawford, H.; Mantica, P.; Tan, H.; Hennig, W.; Walby, M.; Fallu-Labruyere, A.; Harris, J.; Breus, D.; Grudberg, P.; Warburton, W. K.

    2009-11-01

    A 624-channel Digital Data Acquisition System capable of instrumenting the Segmented Germanium Array at National Superconducting Cyclotron Laboratory has been implemented using Pixie-16 Digital Gamma Finder modules by XIA LLC. The system opens an opportunity for determination of the first interaction position of a γ ray in a SeGA detector from implementation of γ-ray tracking. This will translate into a significantly improved determination of angle of emission, and in consequence much better Doppler corrections for experiments with fast beams. For stopped-beam experiments the system provides means for zero dead time measurements of rare decays, which occur on time scales of microseconds.

  3. Electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Hamamatsu, K.

    1981-09-01

    Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)

  4. MICHIGAN: Cyclotron conference

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    A sense of excitement was in the air as cyclotron physicists and engineers from 17 countries convened on 30 April for the opening of the Tenth International Conference on Cyclotrons and Their Applications. Some 50 years after its invention, the redoubtable cyclotron remains a topic of compelling current interest. Cyclotron experts gathered at Michigan State University's Kellogg Center to hear of latest developments, of progress and successes on new machines which had come into operation, of new projects which were underway, and of dreams which lay ahead

  5. Proceedings of eighth joint workshop on electron cyclotron emission and electron cyclotron resonance heating. Vol. 1

    International Nuclear Information System (INIS)

    1993-03-01

    The theory of electron cyclotron resonance phenomena is highly developed. The main theoretical tools are well established, generally accepted and able to give a satisfactory description of the main results obtained in electron cyclotron emission, absorption and current drive experiments. In this workshop some advanced theoretical and numerical tools have been presented (e.g., 3-D Fokker-Planck codes, treatment of the r.f. beam as a whole, description of non-linear and finite-beam effects) together with the proposal for new scenarios for ECE and ECA measurements (e.g., for diagnosing suprathermal populations and their radial transport). (orig.)

  6. Proceedings of eighth joint workshop on electron cyclotron emission and electron cyclotron resonance heating. Vol. 2

    International Nuclear Information System (INIS)

    1993-03-01

    The theory of electron cyclotron resonance phenomena is highly developed. The main theoretical tools are well established, generally accepted and able to give a satisfactory description of the main results obtained in electron cyclotron emission, absorption and current drive experiments. In this workshop some advanced theoretical and numerical tools have been presented (e.g., 3-D Fokker-Planck codes, treatment of the r.f. beam as a whole, description of non-linear and finite-beam effects) together with the proposal for new scenarios for ECE and ECA measurements (e.g., for diagnosing suprathermal populations and their radial transport). (orig.)

  7. Princeton Cyclotron QDDD spectrograph system

    International Nuclear Information System (INIS)

    Kouzes, R.T.

    1985-01-01

    A review of experiments involving the Princeton Quadrupole-Dipole-Dipole- Dipole (QDDD) spectrograph is given. The QDDD is a high resolution, large solid angle device which is combined with the azymuthally varying field (AVF) cyclotron. Some reactions involving 3 He beams are discussed

  8. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  9. Optimisation of the radiation shielding of medical cyclotrons using a genetic algorithm

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar

    2000-01-01

    Effective radiation shielding is imperative for safe operation of modern Medical Cyclotrons producing large activities of short-lived radioisotopes on a commercial basis. The optimal cyclotron shielding design demands a careful balance between the radiological, economical and often the sociopolitical factors. One is required to optimize the cost of radiation protection and the cost of radiological-health detriment. The cost of radiation protection depends explicitly on a) the nature of the radiation field produced by the cyclotron, b) the cyclotron operation condition, c) the cost of shielding material, d) the level of dose reduction, e) the projected net revenue from the sale of the radioisotopes, and f) the depreciation rate of the cyclotron facility. The Genetic Algorithm (GA) is used for a cost -benefit analysis of this problem. The GA is a mathematical technique that emulates the Darwinian Evolution paradigm. It is ideally suited to search for a global optimum in a large multi-dimensional solution space, having demonstrated strength compared to the classical analytical methods. Furthermore the GA method runs on a PC in a Windows environment. This paper highlights an interactive spreadsheet macro program for the cost benefit analysis of the optimize Medical Cyclotron shielding using a GA search engine. (author)

  10. Intelligent CAE system of CYCLONE type cyclotron main magnet and its applications

    International Nuclear Information System (INIS)

    Zhang Tianjue; Chen Yong; Fan Mingwu

    1993-01-01

    The main magnet that features the cyclotron is the most important part in a cyclotron construction. Though there are many codes devoted to solving magnetic field computation problems, the results depend on the user's skill and experience very much. To help a cyclotron magnet designer get acceptable results, an intelligent CAE system for CYCLONE type cyclotron magnet design and machining has been developed. Reasonable good results could be got even the designer with the help from an expert knowledge library installed in the program

  11. Cyclotron waves in plasma

    International Nuclear Information System (INIS)

    Lominadse, D.G.

    1975-01-01

    The book deals with fundamental physical concepts of the theory of cyclotron waves and cyclotron instabilities conditioned by the presence in plasma of direct or alternating electric currents passing in it perpendicularily to a magnetic field. A great variety of problems is considered connected with the linear theory of cyclotron oscillations in equilibrium and electron plasma of metals and semiconductors. Parametric excitations of electron cyclotron oscillations of plasma in an alternating electric field are studied. Particular attention is paid to the investigation of plasma turbulence arising as a result of development of cyclotron instabilities. Experimental data are discussed and compared with theoretical results

  12. Remote machining and robotic welding in a proton cyclotron

    International Nuclear Information System (INIS)

    Cameron, W.; Mark, C.

    1984-01-01

    Increasing residual radiation in the TRIUMF meson research facility cyclotron at the University of British Columbia has required development of a remotely operable industrial robot cutting and vacuum tight welding capability for modification and updating of vacuum tank access ports, and for possible repairs of leaks or holes in the vacuum tank periphery

  13. Cyclotrons as mass spectrometers

    International Nuclear Information System (INIS)

    Clark, D.J.

    1984-04-01

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures

  14. A facility for liquid-phase radiation experiments on heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stuglik, Z; Zvara, I; Yakushev, A B; Timokhin, S N

    1993-12-31

    The title facility is described, installed on a beam line of the 4-meter U-400 cyclotron in the Flerov Laboratory of Nuclear Reactions, JINR, Dubna. The accelerator provides intermediate energy (some 10 MeV/nucleon) beams of ions from Li to Xe. Preliminary results on the radiolysis of two liquid systems -Fricke solution and malachite green in ethanol - by {sup 11}B, {sup 24}Mg, and {sup 40}Ca ions are presented. Some experimental problems and uncertainities faced at the quantitative evaluation of the data are discussed. 62 refs.; 5 figs.; 2 tabs.

  15. A facility for liquid-phase radiation experiments on heavy ion beams

    International Nuclear Information System (INIS)

    Stuglik, Z.; Zvara, I.; Yakushev, A.B.; Timokhin, S.N.

    1992-01-01

    The title facility is described, installed on a beam line of the 4-meter U-400 cyclotron in the Flerov Laboratory of Nuclear Reactions, JINR, Dubna. The accelerator provides intermediate energy (some 10 MeV/nucleon) beams of ions from Li to Xe. Preliminary results on the radiolysis of two liquid systems -Fricke solution and malachite green in ethanol - by 11 B, 24 Mg, and 40 Ca ions are presented. Some experimental problems and uncertainities faced at the quantitative evaluation of the data are discussed. 62 refs.; 5 figs.; 2 tabs

  16. Medical applications of cyclotrons

    International Nuclear Information System (INIS)

    Jean, R.; Fauchet, M.

    1978-01-01

    Isochronous cyclotrons used to accelerate different charged particles (protons, deuterons, alphas...) at variable energies, have important medical applications, for neutron teletherapy, in vivo or in vitro activation analysis or production of short-lived radioisotopes for nuclear medicine. The characteristics of the cyclotron presently available are described for these three applications (low energy 'compact' cyclotrons, cyclotrons of intermediate and high energies), and their advantages are discussed from the points of view of the medical requirements, the financial investments and the results obtained. (orig.) [de

  17. Intelligent CAE system of CYCLONE type cyclotron main magnet and its applications

    International Nuclear Information System (INIS)

    Zhang Tianjue; Chen Yong; Fan Mingwu

    1992-07-01

    The main magnet that represents the feature of the cyclotron is the most important part in a cyclotron construction. Though there are many codes devoted to solve magnetic field computation problems, the results from them depend on the user's skill and experience very much. To help cyclotron magnet designer to get acceptable results, an intelligent CAE (computer aided engineering) system for CYCLONE type cyclotron magnet design and machining has been developed. A reasonable good results in the design could be got even if the designer is a beginner, because of the help from an expert knowledge library installed in the program

  18. Design of DC-60 cyclotron with the fair ion energy variation for the Inter-disciplinary laboratory complex by L.N. Gumilev Eurasian State University

    International Nuclear Information System (INIS)

    Gukal, B.N.; Itkis, M.G.; Dmitriev, S.N.; Gul'bekyan, G.G.; Franko, J.; Kadyrzhanov, K.K.; Arzumanov, A.A.; Borisenko, A.N.; Lysukhin, S.N.

    2003-01-01

    The DC-60 heavy ions cyclotron pre-design project is implemented. The cyclotron is the key facility of the Inter-disciplinary laboratory complex by L.N. Gumilev Eurasian State University. In comparison with previous project in a new one the possibility for fair variation of the ions energies on 30 % at the expense of magnetic field level change is planed. The magnet structure of the cyclotron allowing to vary the magnet field from 1.25 to 1.65 T with use the low-power magnet coils system is found. The accelerator provides the opportunity for the ions acceleration from Li to Xe with energies from 0.4 to 1.6 MeV/nucleon. The exterior ion source of the ECR type will be planing to use on the cyclotrons and axial beam injection system development will be created. The extending voltage on the ion source is 10-25 kV. For experiments conducting on the cyclotron complex is expecting to create on channel for low energy beams - 10-25 kV per charge (ECR source beams) and three withdrawn channels for accelerated ion beams, one of those will be packaged with necessary equipment for the nuclear filters manufacture. The cyclotron complex will be used for both the fulfillment of a wide range of scientific and applied problems and a students training

  19. ISOL science at the Holifield Radioactive Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Beene, James R [ORNL; Bardayan, Daniel W [ORNL; Galindo-Uribarri, Alfredo {nmn} [ORNL; Gross, Carl J [ORNL; Jones, K. L. [University of Tennessee, Knoxville (UTK); Liang, J Felix [ORNL; Nazarewicz, Witold [ORNL; Stracener, Daniel W [ORNL; Tatum, B Alan [ORNL; Varner Jr, Robert L [ORNL

    2011-01-01

    The Holi eld Radioactive Ion Beam Facility, located in Oak Ridge, Tennessee, is operated as a National User Facility for the U.S. Department of Energy, producing high quality ISOL beams of short-lived, radioactive nuclei for studies of exotic nuclei, astrophysics research, and various societal applications. The primary driver, the Oak Ridge Isochronous Cyclotron, produces rare isotopes by bombarding highly refractory targets with light ions. The radioactive isotopes are ionized, formed into a beam, mass selected, injected into the 25-MV Tandem, accelerated, and used in experiments. This article reviews HRIBF and its science.

  20. Development and application of intelligent CAE system for cyclotron main magnet

    International Nuclear Information System (INIS)

    Zhang Tianjue; Chen Yong; Fan Mingwu

    1993-01-01

    The main magnet that represents the feature of the cyclotron is the most important part in a cyclotron construction. Though there are many codes devoted to solve magnetic field computation problems, the results from them are depended on user's skill and experience very much. To help cyclotron magnet designer get acceptable result an intelligent CAE system for cyclotron main magnet design and machining has been developed. A reasonable good results in design could be get even the designer is a beginner with the help from an expert knowledge library installed in the program. The codes include following functions: 1. Intelligent CAD; 2. 2D and 3D magnetic field computation; 3. Beam dynamics analysis; 4. CAM for main magnet

  1. Development of cyclotron solid targetry

    International Nuclear Information System (INIS)

    D'Souza, J.; Deans, T.; Cryer, D.; Price, R.

    2004-01-01

    bunker. Electrometers were attached to measure beam current obtained on the target and on the beam line. This was to ensure that the ratio of current hitting the target position is optimised compared to the current hitting the beam line. Teflon (mp: 285-295 deg C) was used in order to electrically isolate the target from the beam line. The cyclotron roughing pump was used to pull the beam line down to 10 -3 bar. The isolation valve between the beam line and the cyclotron was opened. The cyclotron was run for 10 minutes at a low current During the first trial of the beam line two main problems arose: 1. Although the beam line was brought down to 10 3 bar prior to the isolation valve being opened, the large volume within the beam line (compared with that in the regularly used liquid targets) contained enough air to cause flow into the cyclotron, sufficient to rupture the strippers. 2. The bombardment melted the Teflon insulator. Due to these faults the design of the beam line was changed. A diffusion pump was fitted to the beam line which evacuated the beam line to 10 -7 bar. The beam line was fitted onto the cyclotron and the port isolation valve opened. There was no loss of stripper integrity. This design improvement of including the diffusion pump on the beam line was therefore successful. The target body was electrically isolated from the beam line further away from the target and also incorporated water cooling via a water flow system, therefore the temperature of this component will not reach its melting point. The next step is to bombard the target to verify that the new cooling system is successful. Once this bombardment has been conducted successfully, the next step in the project is to irradiate a disc of known substance and get a profile of the beam at the target position by measuring the emissions from the disc using radiographic film. Considerable progress has been achieved in the design of a facility for bombarding solid targets, using the medical cyclotron

  2. Atmospheric tracer tests and assessment of a potential accident at the National Medical Cyclotron, Camperdown, NSW, Australia

    International Nuclear Information System (INIS)

    Clark, G.H.; Bartsch, F.J.K.; Stone, D.J.M.

    1994-08-01

    In order to assess the impact of a potential atmospheric release of radionuclides from the National Medical Cyclotron facility, in Camperdown, an atmospheric tracer release, sampling and analysis system using SF 6 was developed. During eight experiments conducted in a variety of meteorological conditions, ten samplers were located in the vicinity of the Cyclotron building and other nearby buildings on the rapid downward movement of the tracer gas plume. The atmospheric dilution factors which lead to the highest observed air concentrations were then applied to the releases of I 123 and Xe 123 from a potential accident scenario in order to assess the impact on nearby receptors. Even given the conservative assumptions about the release of I 123 , the estimated radiation doses were at least an order of magnitude below the international standards for doses to member of the public. 27 refs., 8 tabs., 5 figs

  3. Atmospheric tracer tests and assessment of a potential accident at the National Medical Cyclotron, Camperdown, NSW, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G H; Bartsch, F J.K.; Stone, D J.M.

    1994-08-01

    In order to assess the impact of a potential atmospheric release of radionuclides from the National Medical Cyclotron facility, in Camperdown, an atmospheric tracer release, sampling and analysis system using SF{sub 6} was developed. During eight experiments conducted in a variety of meteorological conditions, ten samplers were located in the vicinity of the Cyclotron building and other nearby buildings on the rapid downward movement of the tracer gas plume. The atmospheric dilution factors which lead to the highest observed air concentrations were then applied to the releases of I{sup 123} and Xe{sup 123} from a potential accident scenario in order to assess the impact on nearby receptors. Even given the conservative assumptions about the release of I{sup 123}, the estimated radiation doses were at least an order of magnitude below the international standards for doses to member of the public. 27 refs., 8 tabs., 5 figs.

  4. Use of maze in cyclotron hoppers

    International Nuclear Information System (INIS)

    Fernandes, Fernando A.; Alves, Juliano S.; Fochesatto, Cintia; Cerioli, Luciane; Borges, Joao Alfredo; Gonzalez, Delfin; Silva, Daniel C.

    2013-01-01

    Introduction: the increasing number of cyclotrons in Brazil due to constitutional amendment 49 /06 that enabled the production of radiopharmaceuticals with a short half - life by private companies. The radionuclides used for PET - CT require production centers near or within the diagnostic centers. In order to minimize maintenance and operating risks, gaining efficiency, our facility was the first in Brazil to use the access to a cyclotron bunker via maze, rather than armored door stopper type. Materials: the design calculations were based on the Monte Carlo method (MCNP5 - Monte Carlo N-Particletransportcode version 5). At the ends of the labyrinth are installed a door of polyethylene, for thermalization of neutrons, and other of wood for limiting access. Both legs of the maze have wall thickness of 100cm. In inspection Brazilian CNEN realize measures of dose rate for neutrons and gamma 9 points: 7 around the bunker, 1 over the bunker and 1 in the exhaust with the cyclotron operating with maximum load, double beam of 50uA for 2 hours. After commissioning were carried out around the bunker, the following measures: cumulative dose in three months with dosimeters for neutron rate dose with a gas proportional detector type filled with 3 He and polyethylene neutron moderator and dose rate with a Geiger - Mueller detector for gamma radiation. Readings with neutron detectors were classified as background radiation and dose rates were always below the limits established in standard EN 3.01, and the calculation of the predicted regardless of the intensity of irradiation inside the bunker. Conclusion: the use of labyrinths as a way to access the bunkers cyclotron has been shown to be effective as the radiation shielding and efficient by allowing quick and easy access, virtually eliminating the maintenance

  5. Proposal for an irradiation facility at the TAEK SANAEM Proton Accelerator Facility

    Science.gov (United States)

    Demirköz, B.; Gencer, A.; Kiziloren, D.; Apsimon, R.

    2013-12-01

    Turkish Atomic Energy Authority's (TAEK's) Proton Accelerator Facility in Ankara, Turkey, has been inaugurated in May 2012 and is under the process of being certified for commercial radio-isotope production. Three of the four arms of the 30 MeV cyclotron are being used for radio-isotope production, while the fourth is foreseen for research and development of novel ideas and methods. The cyclotron can vary the beam current between 12 μA and 1.2 mA, sufficient for irradiation tests for semiconductor materials, detectors and devices. We propose to build an irradiation facility in the R&D room of this complex, open for use to the international detector development community.

  6. Applied research with cyclotron beams at FLNR JINR

    Energy Technology Data Exchange (ETDEWEB)

    Oganessian, Yu Ts; Apel, P Yu; Didyk, A Yu; Dmitriev, S N; Gulbekian, G G [Joint Inst. for Nuclear Research, Dubna, Moscow (Russian Federation). Flerov Lab. of Nuclear Reactions

    1997-03-01

    The Center of Applied Physics at the Flerov Laboratory carries out an R and D program comprising development of track membrane technology, materials research with heavy ion beams and production of radioisotopes. Experiments are performed on three cyclotrons: U-400, U-200 and IC-100 providing a wide variety of ion beams with the energies of 1 to 10 MeV/u. The activity on track membranes (TMs) includes studies of track formation in polymers and latent track structure, track sensitization and etching, methods of membrane testing, development of track membranes on the basis of new materials, surface modification of TMs, design and construction of facilities for track membrane production. Recent experiments on heavy ion-induced radiation damage in non-polymeric substances have been devoted to defect creation in semiconductor and dielectric single crystals. TEM, SEM, STM and `in situ` luminescent spectroscopy are used to investigate heavy ion effects. Methods for producing several isotopes of high radiochemical and isotopic purity for medical, biomedical and environmental protection applications have been developed. (author)

  7. Radioactive ion beam facilities at INFN LNS

    International Nuclear Information System (INIS)

    Rifuggiato, D; Calabretta, L; Celona, L; Chines, F; Cosentino, L; Cuttone, G; Finocchiaro, P; Pappalardo, A; Re, M; Rovelli, A

    2011-01-01

    Radioactive ion beams are produced at INFN- Laboratori Nazionali del Sud (LNS) by means of the two operating accelerators, the Tandem and the Superconducting Cyclotron (CS), originally designed to accelerate stable beams. Both the ISOL (Isotope Separation On Line) and the IFF (In-Flight Fragmentation) methods are exploited to produce RIBs in two different ways at different energies: in the first case, the Cyclotron is the primary accelerator and the Tandem accelerates the secondary beams, while in the second case radioactive fragments are produced by the Cyclotron beam in a thin target with energies comparable to the primary beam energy. The ISOL facility is named EXCYT (Exotics at the Cyclotron and Tandem) and was commissioned in 2006, when the first radioactive beam ( 8 Li) has been produced. The IFF installation is named FRIBs (in Flight Radioactive Ion Beams), and it has started to produce radioactive beams in 2001, placing a thin target in the extraction beam line of the Cyclotron. The development of both facilities to produce and accelerate radioactive ion beams at LNS, is briefly described, with some details on the future prospects that are presently under consideration or realization.

  8. Microwave measurement test results of circular waveguide components for electron cyclotron resonant heating (ECRH) of the Tandem Mirror Experiment-Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Williams, C.W.; Rubert, R.R.; Coffield, F.E.; Felker, B.; Stallard, B.W.; Taska, J.

    1983-01-01

    Development of high-power components for electron cyclotron resonant heating (ECRH) applications requires extensive testing. In this paper we describe the high-power testing of various circular waveguide components designed for application on the Tandem Mirror Experiment-Upgrade (TMX-U). These include a 2.5-in. vacuum valve, polarizing reflectors, directional couplers, mode converters, and flexible waveguides. All of these components were tested to 200 kW power level with 40-ms pulses. Cold tests were used to determine field distribution. The techniques used in these tests are illustrated. The new high-power test facility at Lawrence Livermore National Laboratory (LLNL) is described and test procedures are discussed. We discuss the following test results: efficiency at high power of mode converters, comparison of high power vs low power for waveguide components, and full power tests of the waveguide system. We also explain the reasons behind selection of these systems for use on TMX-U

  9. CATANA protontherapy facility: The state of art of clinical and dosimetric experience

    Science.gov (United States)

    Cuttone, G.; Cirrone, G. A. P.; Di Franco, G.; La Monaca, V.; Lo Nigro, S.; Ott, J.; Pittera, S.; Privitera, G.; Raffaele, L.; Reibaldi, A.; Romano, F.; Sabini, M. G.; Salamone, V.; Sanfilippo, M.; Spatola, C.; Valastro, L. M.

    2011-07-01

    After nine years of activity, about 220 patients have been treated at the CATANA Eye Protontherapy facility. A 62MeV proton beam produced by a Superconducting Cyclotron is dedicated to radiotherapy of eye lesions, as uveal melanomas. Research and development work has been done to test different dosimetry devices to be used for reference and relative dosimetry, in order to achieve dose delivering accuracy. The follow-up results demonstrated the efficacy of proton beams and encouraged us in our activity in the fight against cancer.

  10. Ion Cyclotron Heating on Proto-MPEX

    Science.gov (United States)

    Goulding, R. H.; Caughman, J. B. O.; Rapp, J.; Biewer, T. M.; Campbell, I. H.; Caneses, J. F.; Kafle, N.; Ray, H. B.; Showers, M. A.; Piotrowicz, P. A.

    2016-10-01

    Ion cyclotron heating will be used on Proto-MPEX (Prototype Material Plasma Exposure eXperiment) to increase heat flux to the target, to produce varying ion energies without substrate biasing, and to vary the extent of the magnetic pre-sheath for the case of a tilted target. A 25 cm long, 9 cm diameter dual half-turn helical ion cyclotron antenna has been installed in the device located at the magnetic field maximum. It couples power to ions via single pass damping of the slow wave at the fundamental resonance, and operates with ω 0.8ωci at the antenna location. It is designed to operate at power levels up to 30 kW, with a later 200 kW upgrade planned. Near term experiments include measuring RF loading at low power as a function of frequency and antenna gap. The plasma is generated by a helicon plasma source that has achieved ne > 5 ×1019m-3 operating with deuterium, as measured downstream from the ion cyclotron antenna location. Measurements will be compared with 1-D and 2-D models of RF coupling. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  11. Isotope separation in plasma by ion-cyclotron resonance method

    International Nuclear Information System (INIS)

    Dubinov, A.E.; Kornilova, I.Yu.; Selemir, V.D.

    2001-01-01

    Contemporary state of investigation on isotope separation in plasma using selective ion-cyclotron resonance (ICR) heating is considered. The main attention is paid to necessary conditions of heating selectivity, plasma creation methods in isotope ICR-separation facilities, selection of antenna systems for heating, and principles of more-heated component selection. Experimental results obtained at different isotope mixtures separation are presented [ru

  12. Tokamak startup with electron cyclotron heating

    International Nuclear Information System (INIS)

    Holly, D.J.; Prager, S.C.; Shepard, D.A.; Sprott, J.C.

    1980-04-01

    Experiments are described in which the startup voltage in a tokamak is reduced by approx. 60% by the use of a modest amount of electron cyclotron resonance heating power for preionization. A 50% reduction in volt-second requirement and impurity reflux are also observed

  13. Tokamak startup with electron cyclotron heating

    Energy Technology Data Exchange (ETDEWEB)

    Holly, D J; Prager, S C; Shepard, D A; Sprott, J C

    1980-04-01

    Experiments are described in which the startup voltage in a tokamak is reduced by approx. 60% by the use of a modest amount of electron cyclotron resonance heating power for preionization. A 50% reduction in volt-second requirement and impurity reflux are also observed.

  14. Status report on RIKEN Ring Cyclotron

    International Nuclear Information System (INIS)

    Yano, Y.

    1988-01-01

    This paper gives a status report on RIKEN Ring Cyclotron (RRC), successfully commissioned on December 16, 1986. The routine operation of RRC began in April, 1987, and was made until March 1988. April and May were devoted to the machine studies, and beams were delivered to the experiments from the end of May. Seven kinds of ion species from carbon to copper were used for the nuclear physics and atomic physics experiments during these one-year runs. High quality beams with transverse emittances less than 10 mm mrad, energy spread of approximately 0.1% and pulse width less than 300 psec were extracted. Since the middle of March, 1988, RRC has been shut down for extending the beam transfer lines and installing the various experimental setups. Next experimental program will start in July, 1988. The initial operational status of RRC is described as well as the running construction program of the new injector, a K70 AVF cyclotron with an external ECR ion source

  15. A small low energy cyclotron for radioisotope measurements

    International Nuclear Information System (INIS)

    Bertsche, K.J.

    1989-11-01

    Direct detection of 14 C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the ''cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of 14 C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring 14 C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting 14 C in some biomedical experiments by a factor of 10 4 . Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as 3 H, and 10 Be, and 26 Al, are discussed. 70 refs

  16. Electron cyclotron waves, transport and instabilities in hot plasmas

    International Nuclear Information System (INIS)

    Westerhof, E.

    1987-01-01

    A number of topics relevant to the magnetic confinement approach to the thermonuclear fusion is addressed. The absorption and emission of electron cyclotron waves in a thermal plasma with a small population of supra-thermal, streaming electrons is examined and the properties of electron cyclotron waves in a plasma with a pure loss-cone distribution are studied. A report is given on the 1-D transport code simulations that were performed to assist the interpretation of the electron cyclotron heating experiments on the TFR tokamak. Transport code simulations of sawteeth discharges in the T-10 tokamak are discussed in order to compare the predictions of different models for the sawtooth oscillations with the experimental findings. 149 refs.; 69 figs.; 7 tabs

  17. Compact superconducting 250 MeV proton cyclotron for the PSI PROSCAN proton therapy project

    International Nuclear Information System (INIS)

    Schillo, M.; Geisler, A.; Hobl, A.; Klein, H.U.; Krischel, D.; Meyer-Reumers, M.; Piel, C.; Blosser, H.; Kim, J.-W.; Marti, F.; Vincent, J.; Brandenburg, S.; Beijers, J.P.M.

    2001-01-01

    A cyclotron for proton therapy has to fulfill many requirements set by the specific operational and safety needs of a medical facility and the medical environment. These are for instance high extraction efficiency, high availability and reliability, simple and robust operation. ACCEL Instruments GmbH has refined the design concept of a medical cyclotron for the PSI PROSCAN project with the objective to use this cyclotron as the standard accelerator in complete proton therapy facilities, which ACCEL intends to market. Starting from the design, we have carried out further detail clarifications, optimizations and adaptations to the needs of PSI. The work was performed in a collaboration between ACCEL, NSCL and KVI in view of the requirements from the PSI PROSCAN project. An overview on the design will be given touching on subjects such as the 3D structural analysis of the coil, detailed magnetic modeling for optimization of the inner region and the spiral, optimization of the RF power, optimization of the cryogenic design based on available cryocoolers instead of a liquefaction plant and Monte Carlo simulations to estimate the heat balance produced by neutrons at 4K components

  18. International assignment and repatriation experiences of Indian international assignees in the Netherlands

    NARCIS (Netherlands)

    Valk, R.; van der Velde, M.; van Engen, M.L.; Szkudlarek, B.

    2013-01-01

    Purpose The purpose of this paper is to explore the influence of cultural identity change, organizational and social support and cultural distance on repatriation experiences of Indian international assignees. Design/methodology/approach Semi‐structured interviews were held with 19 Indians on

  19. Occupational radiation exposure at the self-shielded IBA CYCLONE 10/5, cyclotron of the Austin and Repatriation Medical Centre, Melbourne, Australia

    International Nuclear Information System (INIS)

    Tochon-Danguy, H.; Sachinidis, J.I.; U, P.; Egan, G.; Mukherjee, B.

    1999-01-01

    A series of health physics measurements was carried out at the IBA CYCLONE 10/5 Medical Cyclotron of the Austin and Repatriation Medical Centre, Melbourne. The neutron attenuation factor of the cyclotron shielding was estimated using the Superheated Bubble dosimeters. The neutron and gamma dose rates at various public access and radiation worker's area in the vicinity of the cyclotron facility were evaluated during the 11 C, 18 F, 13 N and 15 O production conditions. (authors)

  20. A visual assistance environment for cyclotron operation

    International Nuclear Information System (INIS)

    Okamura, Tetsuya; Murakami, Tohru; Agematsu, Takashi; Okumura, Susumu; Arakawa, Kazuo.

    1993-01-01

    A computer-based operation system for a cyclotron which assists inexperienced operators has been developed. Cyclotron start-up operations require dozens of adjustable parameters to be finely tuned to maximize extracted beam current. The human interfaces of the system provide a visual environment designed to enhance beam parameter adjustments. First, the mental model of operators is analyzed. It is supposed to be composed of five partial mental models: beam behavior model, feasible setting regions model, parameter sensitivity model, parameter mutual relation model, and status map model. Next, based on these models, three visual interfaces are developed, i.e., (1) Beam trajectory is rapidly calculated and graphically displayed whenever the operators change the cyclotron parameters. (2) Feasible setting regions (FSR) of the parameters that satisfy the cyclotron's beam acceptance criteria are indicated. (3) Search traces, being a historical visual map of beam current values, are superimposed on the FSRs. Finally, to evaluate system effectiveness, the search time required to reach maximum beam current conditions was measured. In addition, system operability was evaluated using written questionnaires. Results of the experiment showed that the search time to reach specific beam conditions was reduced by approximately 65% using these interfaces. The written questionnaires survey showed the operators highly evaluate system operability. (author)

  1. Remote target removal for the Oak Ridge 86-inch Cyclotron

    International Nuclear Information System (INIS)

    Walls, A.A.

    1982-01-01

    A remotely operated target remover has been plaed in operation at the 86-Inch Cyclotron located in Oak Ridge. The system provides for the remote removal of a target from inside the cyclotron, loading it into a cask, and the removal of the cask from the 1.5 m (5-ft) shielding walls. The remote system consists of multiple electrical and pneumatically operated equipment which is designed for controlled step-by-step operation, operated with an electrical control panel, and monitored by a television system. The target remover has reduced the radiation exposures to operating personnel at the facility and has increased the effective operating time. The system is fast, requires a minimum of skill to operate, and has demonstrated both reliability and durability

  2. General aspects of radiological protection to consider for the licensing a hospital cyclotron

    International Nuclear Information System (INIS)

    Andrada Contardi, F.A.; Fruttero, N.H.; Bozzo, R.H.; Moschella, E.G.

    2010-01-01

    The use of PET/PET-CT studies for a variety of diagnoses has increased significantly on a global scale. Modern medical cyclotrons must be placed in or near hospitals on account of the short radioactive half-life of the pharmaceuticals used in such studies. Many countries in Latin America are now licensing cyclotrons and laboratories for the production of radio-pharmaceuticals for the first time, and most are expected to have installations within the near future. This report outlines the general aspects of radiological protection important to consideration during the licensing of these facilities, and includes the following: general operation of the cyclotron and laboratory for the production of radiopharmaceuticals, safety systems (shielding, interlocks, ventilation, manual safety systems, alarms and monitors), and general aspects for licensing an installation (monitoring, accidental and incidental events, activation of components, etc.) and personnel. (authors) [es

  3. On-orbit technology experiment facility definition

    Science.gov (United States)

    Russell, Richard A.; Buchan, Robert W.; Gates, Richard M.

    1988-01-01

    A study was conducted to identify on-orbit integrated facility needs to support in-space technology experiments on the Space Station and associated free flyers. In particular, the first task was to examine the proposed technology development missions (TDMX's) from the model mission set and other proposed experimental facilities, both individually and by theme, to determine how and if the experiments might be combined, what equipment might be shared, what equipment might be used as generic equipment for continued experimentation, and what experiments will conflict with the conduct of other experiments or Space Station operations. Then using these results, to determine on-orbit facility needs to optimize the implementation of technology payloads. Finally, to develop one or more scenarios, design concepts, and outfitting requirements for implementation of onboard technology experiments.

  4. Installation and testing of a hospital-based cyclotron for radiation therapy and isotope production

    International Nuclear Information System (INIS)

    Almond, P.R.; Marbach, J.R.; Otte, V.A.

    1983-01-01

    A hospital based cyclotron is under installation at The University of Texas M.D. Anderson Hospital in Houston. This machine will be used for the production of radioactive isotopes and for the generation of neutrons for the radiotherapy treatment of cancer. It is a Cyclotron Corporation CP-42 negative proton accelerator. For neutron production the protons are transported through an isocentrically mounted beam transport system that can be rotated around the patient. The shielding requirements of this facility will be described as will the initial measurements on the characteristics of the neutron beam

  5. A simple irradiation facility for radiobiological experiments with low energy protons from a cyclotron

    International Nuclear Information System (INIS)

    Mukherjee, B.

    1982-01-01

    An experimental facility for irradiation of small biological targets with low-energy protons has been developed. The depth-dose distribution in soft-tissue is calculated from the proton energy spectrum. (orig.)

  6. Initial operation of the Holifield facility

    International Nuclear Information System (INIS)

    Ball, J.B.

    1982-01-01

    The Holifield Heavy Ion Research Facility (HHIRF) is located at Oak Ridge National Laboratory and operated, by the Physics Division, as a national user facility for research in heavy-ion science. The facility operates two accelerators: the new Pelletron electrostatic accelerator, designed to accelerate all ions at terminal potentials up to 25 million volts, and the Oak Ridge Isochronous Cyclotron (ORIC) which, in addition to its stand-alone capabilities, has been modified to serve also as a booster accelerator for ion beams from the Pelletron. In addition, a number of state-of-the-art experimental devices, a new data acquisition computer system, and special user accommodations have been implemented as part of the facility. The construction of the facility was completed officially in June of this year. This paper reports on the present status of facility operation, observations from testing and running of the 25 MV Pelletron, experience with coupled operation of the Pelletron with the ORIC booster, and a brief summary of the experimental devices now available at the facility

  7. Initial operation of the Holifield Facility

    International Nuclear Information System (INIS)

    Ball, J.B.

    1983-01-01

    The Holifield Heavy Ion Research Facility (HHIRF) is located at Oak Ridge National Laboratory and operated, by the Physics Division, as a national user facility for research in heavy-ion science. The facility operates two accelerators: the new pelletron electrostatic accelerator, designed to accelerate all ions at terminal potentials up to 25 million volts, and the Oak Ridge Isochronous Cyclotron (ORIC) which, in addition to its stand-alone capabilities, has been modified to serve also as a booster accelerator for ion beams from the Pelletron. In addition, a number of state-of-the-art experimental devices, a new data acquisition computer system, and special user accommodations have been implemented as part of the facility. The construction of the facility was completed officially in June of this year. This paper reports on the present status of facility operation, observations from testing and running of the 25 MV Pelletron, experience with coupled operation of the Pelletron with the ORIC booster, and a brief summary of the experimental devices now available at the facility

  8. Radiation protection of cyclotron vault with maze in PET Cyclotron Center

    International Nuclear Information System (INIS)

    Fueloep, Marko

    2003-01-01

    The PET Cyclotron center (PCC) is a complex for production, research and application of positron radiopharmaceuticals for PET (Positron Emission Tomography), which was commissioned this year (2004) in Bratislava, Slovak Republic. Positron radionuclides are produced by 18/9 MeV proton/deuteron cyclotron CYCLONE 18/9. Radiation protection of personnel and inhabitants against ionizing radiation in the PCC is solved with regard to the ICRP recommendations and Slovak regulatory system, protection rules and criteria and optimization of radiation protection. In the article comparisons of calculated and measured neutron and gamma dose equivalent rates around the CYCLONE 18/9 and at various points behind the shielding of cyclotron vault with maze are presented. Description of the CYCLONE 18/9 as a source of angular distribution of neutron energy spectra (production of 18 F was considered) was simulated by Monte Carlo code MCNPX. Code MCNP4B was used for shielding calculation of cyclotron vault with maze. Neutron energy spectra behind the shielding were measured by Bonner spectrometer. The values of neutron dose equivalent, which were calculated and measured around the CYCLONE 18/9 and at various points behind the shielding of cyclotron vault with maze, are within the range of factor 2. (authors)

  9. Regulatory requirements for designing PET-CT facility in India

    International Nuclear Information System (INIS)

    Tandon, Pankaj

    2010-01-01

    In India, cyclotron-produced radionuclides are gaining importance in molecular imaging in Nuclear Medicine (NM) departments. The importance of this modality among others is due to the fact that it provides valuable clinical information, which was lacking in other available modalities. Presently, every well-established hospital would like to procure Medical Cyclotron or positron emission tomography-computed tomography (PET-CT) facility in their NM department. Because cyclotron-produced radionuclides have higher energy than the other routinely used radionuclides for diagnosis, it becomes essential for the user to know about the regulatory requirement and radiation safety precautions that one has to take for the installation of this new modality in their premises. The various stages of approval of PET-CT facility by the Atomic Energy Regulatory Board (AERB) and important steps that one has to know/follow before planning for this new facility are summarized

  10. The Indian Ocean Experiment : Widespread air pollution from South and Southeast Asia

    NARCIS (Netherlands)

    Lelieveld, J; Crutzen, PJ; Ramanathan, A.; Andreae, MO; Brenninkmeijer, CAM; Campos, T; Cass, GR; Dickerson, RR; Fischer, H; de Gouw, JA; Hansel, A; Jefferson, A; Kley, D; de Laat, ATJ; Lal, S; Lawrence, MG; Lobert, JM; Mayol-Bracero, OL; Mitra, AP; Novakov, T; Oltmans, SJ; Prather, KA; Reiner, T; Rodhe, H; Scheeren, HA; Sikka, D; Williams, J

    2001-01-01

    The Indian Ocean Experiment (INDOEX) was an international, multiplatform field campaign to measure Long-range transport of air pollution from South and Southeast Asia toward the Indian Ocean during the dry monsoon season in January to March 1999. Surprisingly high pollution Levels were observed over

  11. Injection and extraction for cyclotrons

    International Nuclear Information System (INIS)

    Heikkinen, P.

    1994-01-01

    External ion sources for cyclotrons are needed for polarised and heavy ions. This calls for injection systems, either radial or axial. Radial injection is also needed when a cyclotron works as a booster after another cyclotron or a linear accelerator (usually tandem). Requirements for injection differ from separated sector cyclotrons where there is plenty of room to house inflectors and/or strippers, to superconducting cyclotrons where the space is limited by a small magnet gap, and high magnetic field puts other limitations to the inflectors. Several extraction schemes are used in cyclotrons. Stripping injection is used for H - and also for heavy ions where the q/m ratio is usually doubled. For other cases, electric and magnetic deflection has to be used. To increase the turn separation before the first deflector, both resonant and non-resonant schemes are used. In this lecture, external injection systems are surveyed and some rules to thumb for injection parameters are given. Extraction schemes are also reviewed. (orig.)

  12. Medical cyclotron: why, where, how

    International Nuclear Information System (INIS)

    Scheer, Kurt; Comar, Dominique; Kellershohn, Claude

    1976-01-01

    Cyclotrons for medical purposes are particularly useful for the production of radioactive isotopes of elements normally constituting organic matter ( 15 O, 13 N, 11 C). The short half-life and positron emission of those elements are of great interest in medical diagnosis. Many others carrier-free radioisotopes can be produced by cyclotrons. Three categories of cyclotrons are mentioned. Desk top cyclotron only adapted to the production of short-lived radioisotopes in a hospital; low energy and average energy cyclotrons which require well-entrained personnel for their operation and are best adapted to the production of radioelements on a regional or even national scale. Examples relative to the interest of short-lived radioisotopes in lung and brain investigations and tumor detection are given

  13. Project of the JAERI superconducting AVF cyclotron for applications in biotechnology and materials science

    International Nuclear Information System (INIS)

    Miyawaki, Nobumasa; Kurashima, Satoshi; Okumura, Susumu; Chiba, Atsuya; Agematsu, Takashi; Kamiya, Tomihiro; Kaneko, Hirohisa; Nara, Takayuki; Saito, Yuichi; Ishii, Yasuyuki; Sakai, Takuro; Mizuhashi, Kiyoshi; Fukuda, Mitsuhiro; Yokota, Watalu; Arakawa, Kazuo

    2005-01-01

    A project for expanding TIARA (Takasaki Ion accelerators for Advanced Radiation Application) facilities of JAERI has been proposed to broaden application region of biotechnology and materials science. As a result of the investigation of TIARA facility user's request, energy increase up to more than 100 MeV/n for heavy ions and up to 300 MeV for proton are strongly required. The magnet of a superconducting AVF cyclotron with a K number of 900 has been designed to cope with acceleration of both 150 MeV/n heavy ions and 300 MeV protons. The lower limit of energies has been investigated to overlap the energy region covered by the JAERI AVF cyclotron, required to increase beam time for present users. We have designed a beam transport system to satisfy various requirements of the applications. (author)

  14. Cyclotrons for isotope production

    International Nuclear Information System (INIS)

    Milton, B.F.; Stevenson, N.R.

    1995-06-01

    Cyclotrons continue to be efficient accelerators for radioisotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology, and isotope production, as they relate to the new generation of commercial cyclotrons. We will also discuss the possibility of systems capable of extracted energies up to 100 MeV and extracted beam currents of up to 2.0 mA. (author). 6 refs., 2 tabs., 3 figs

  15. Excitation and propagation of electromagnetic fluctuations with ion-cyclotron range of frequency in magnetic reconnection laboratory experiment

    International Nuclear Information System (INIS)

    Inomoto, Michiaki; Tanabe, Hiroshi; Ono, Yasushi; Kuwahata, Akihiro

    2013-01-01

    Large-amplitude electromagnetic fluctuations of ion-cyclotron-frequency range are detected in a laboratory experiment inside the diffusion region of a magnetic reconnection with a guide field. The fluctuations have properties similar to kinetic Alfvén waves propagating obliquely to the guide field. Temporary enhancement of the reconnection rate is observed during the occurrence of the fluctuations, suggesting a relationship between the modification in the local magnetic structure given by these fluctuations and the intermittent fast magnetic reconnection

  16. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    DEFF Research Database (Denmark)

    Schneider, M.; Johnson, T.; Dumont, R.

    2016-01-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...... enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast...

  17. Isochronous cyclotron data base description

    International Nuclear Information System (INIS)

    Kiyan, I.N.; Vorozhtsov, S.B.; Tarashkevich, R.

    2004-01-01

    The relational data base of the control parameters of the isochronous cyclotron, Isochronous Cyclotron Data Base (ICDB), is described. The relational data base under consideration, written in Transact SQL for the MS SQL Server 2000 with the use of MS Enterprise Manager and MS Query Analyzer, was installed on the server of the AIC144 isochronous cyclotron in Krakow, which operates under the control of the operating system MS Windows Server 2003 (Standard Edition). The interface of the data base under considerations is written in C++ with the use of Visual C++ .NET and is built in the Cyclotron Operator Help Program (COHP), which is used for modeling the operational modes of the isochronous cyclotron. Communication between the COHP and the relational data base is realised on the base of the Open Data Base Connectivity protocol. The relational data base of the control parameter of the isochronous cyclotron is intended: firstly, for systematization and automatic use of all measured and modelled magnetic field maps in the process of modeling the operational modes; secondly, for systematization and convenient access to the stored operational modes; thirdly, for simplifying the operator's work. The relational data base of the control parameter of the isochronous cyclotron reflects its physical structure and the logic of its operator's work. (author)

  18. Electron cyclotron heating and associated parallel cooling

    International Nuclear Information System (INIS)

    Rapozo, C. da C.; Assis, A.S. de; Busnardo Neto, J.

    1990-01-01

    It has been experimentally observed that during the electron-cyclotron heating the electron longitudinal temperature drops as the perpendicular temperature increases. The experiment was carried in a linear mirror machine with a low density (10 10 cm -3 ) weakly ionized (< 1.0 %) plasma. (Author)

  19. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    Science.gov (United States)

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω + ), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω + quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω + frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω + frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  20. Bureau of Indian Affairs Schools: New Facilities Management Information System Promising, but Improved Data Accuracy Needed.

    Science.gov (United States)

    General Accounting Office, Washington, DC.

    A General Accounting Office (GAO) study evaluated the Bureau of Indian Affairs' (BIA) new facilities management information system (FMIS). Specifically, the study examined whether the new FMIS addresses the old system's weaknesses and meets BIA's management needs, whether BIA has finished validating the accuracy of data transferred from the old…

  1. New compact cyclotron design for SPIRAL

    International Nuclear Information System (INIS)

    Duval, M.; Bourgarel, M.P.; Ripouteau, F.

    1995-01-01

    The SPIRAL project whose purpose is the production and the acceleration of radioactive nuclei is under realization at GANIL. The new facility uses a cyclotron as post accelerator taking place behind the present machine. The magnet structure is made of 4 independent return yokes and a common circular pole piece (3.5 m in diameter) with 4 sectors. The average induction needed is 1.56 Tesla with hill and valley gaps of respectively 0.12 and 0.3 m. The required field patterns are adjusted by means of circular trim coils located between the sectors and the pole piece. (author)

  2. Ion cyclotron radio frequency systems and performance on the tandem mirror experiment-upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Moore, T.L.; Molvik, A.W.; Cummins, W.F.; Pedrotti, L.R.; Henderson, A.L.; Karsner, P.G.; Scofield, D.W.; Brooksby, C.A.

    1983-01-01

    High power ion cyclotron radio frequency (ICRF) systems are now gaining greater attention than before as prime driver ion heating systems. Lawrence Livermore National Laboratory (LLNL) has installed a 200 kW high frequency (HF) transmitter system on its Tandem Mirror Experiment-Upgrade (TMX-U). This paper describes the system, antenna, controls, and monitoring apparatus. The transmitter operates into a high Q antenna installed in the central cell region of the experiment. It incorporates a dual-port feedback system to automatically adjust the transmitter's output power and allow the maximum consistent with the plasma loading of the antenna. Special techniques have been used to measure, in real-time, the dynamically changing loading values presented by the plasma. From the measurements, the antenna impedance can be optimized for specified plasma density

  3. National Biomedical Tracer Facility. Project definition study

    International Nuclear Information System (INIS)

    Schafer, R.

    1995-01-01

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H - , H + , and D + ). The proposed NBTF facility includes an 80 MeV, 1 mA H - cyclotron that will produce proton-induced (neutron deficient) research isotopes

  4. The Sillery Experiment: A Jesuit-Indian Village in New France, 1637-1663.

    Science.gov (United States)

    Ronda, James P.

    1979-01-01

    The Christian mission was an attempt to effect massive culture change upon American Indians by the introduction of European social and cultural values and institutions into Indian life. The Sillery Montagnais of Quebec were the subjects of a Jesuit experiment in 1632, which failed because it demanded cultural suicide. (Author/RTS)

  5. Thermal-Hydraulic Experiment Facility (THEF)

    International Nuclear Information System (INIS)

    Martinell, J.S.

    1982-01-01

    This paper provides an overview of the Thermal-Hydraulic Experiment Facility (THEF) at the Idaho National Engineering Laboratory (INEL). The overview describes the major test systems, measurements, and data acquisition system, and presents objectives, facility configuration, and results for major experimental projects recently conducted at the THEF. Plans for future projects are also discussed. The THEF is located in the Water Reactor Research Test Facility (WRRTF) area at the INEL

  6. National Biomedical Tracer Facility: Project definition study

    International Nuclear Information System (INIS)

    Heaton, R.; Peterson, E.; Smith, P.

    1995-01-01

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design

  7. National Biomedical Tracer Facility: Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  8. Construction of new critical experiment facilities in JAERI

    International Nuclear Information System (INIS)

    Takeshita, Isao; Itahashi, Takayuki; Ogawa, Kazuhiko; Tonoike, Kotaro; Matsumura, Tatsuro; Miyoshi, Yoshinori; Nakajima, Ken; Izawa, Naoki

    1995-01-01

    Japan Atomic Energy Research Institute (JAERI) has promoted the experiment research program on criticality safety since early in 1980s and two types of new critical facilities, Static Experiment Critical Facility (STACY) and Transient Experiment Critical Facility (TRACY) were completed on 1994 in Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) of JAERI Tokai Research Establishment. STACY was designed so as to obtain critical mass data of low enriched uranium and plutonium solution which is extensively handled in LWR fuel reprocessing plant. TRACY is the critical facility where critical accident phenomenon is demonstrated with low enriched uranium nitrate solution. For criticality safety experiments with both facilities, the Fuel Treatment System is attached to them, where composition and concentration of uranium and plutonium nitrate solutions are widely varied so as to obtain experiments data covering fuel solution conditions in reprocessing plant. Design performances of both critical facilities were confirmed through mock-up tests of important components and cold function tests. Hot function test has started since January of 1995 and some of the results on STACY are to be reported. (author)

  9. Pediatric epilepsy: The Indian experience.

    Science.gov (United States)

    Gadgil, Pradnya; Udani, Vrajesh

    2011-10-01

    Epilepsy is a common clinical entity in neurology clinics. The understanding of the genetics of epilepsy has undergone a sea change prompting re-classification by the International league against epilepsy recently. The prevalence rates of epilepsy in India are similar to those of developed nations. However, the large treatment gap is a major challenge to our public health system. Perinatal injuries are a major causative factor in pediatric group. We have discussed a few common etiologies such as neurocysticercosis and newer genetic epilepsy syndromes. We have also briefly touched upon the Indian experience in pediatric epilepsy surgery.

  10. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron

    International Nuclear Information System (INIS)

    Kurashima, Satoshi; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Taguchi, Mitsumasa; Fukuda, Mitsuhiro

    2015-01-01

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method

  11. RF control hardware design for CYCIAE-100 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-21

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  12. Preliminary design of safety and interlock system for indian test facility of diagnostic neutral beam

    International Nuclear Information System (INIS)

    Tyagi, Himanshu; Soni, Jignesh; Yadav, Ratnakar; Bandyopadhyay, Mainak; Rotti, Chandramouli; Gahlaut, Agrajit; Joshi, Jaydeep; Parmar, Deepak; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2016-01-01

    Highlights: • Indian Test Facility being built to characterize DNB for ITER delivery. • Interlock system required to safeguard the investment incurred in building the facility and protecting ITER deliverable components. • Interlock levels upto 3IL-3 identified. • Safety instrumented system for occupational safety being designed. Safety I&C functions of SIL-2 identified. • The systems are based on ITER PIS and PSS design guidelines. - Abstract: Indian Test Facility (INTF) is being built in Institute For Plasma Research to characterize Diagnostic Neutral Beam in co-operation with ITER Organization. INTF is a complex system which consists of several plant systems like beam source, gas feed, vacuum, cryogenics, high voltage power supplies, high power RF generators, mechanical systems and diagnostics systems. Out of these, several INTF components are ITER deliverable, that is, beam source, beam line components and power supplies. To ensure successful operation of INTF involving integrated operation of all the constituent plant systems a matured Data Acquisition and Control System (DACS) is required. The INTF DACS is based on CODAC platform following on PCDH (Plant Control Design Handbook) guidelines. The experimental phases involve application of HV power supplies (100 KV) and High RF power (∼800 KW) which will produce energetic beam of maximum power 6MW within the facility for longer durations. Hence the entire facility will be exposed tohigh heat fluxes and RF radiations. To ensure investment protection and to provide occupational safety for working personnel a matured Safety and Interlock system is required for INTF. The Safety and Interlock systems are high-reliability I&C systems devoted completely to the specific functions. These systems will be separate from the conventional DACS of INTF which will handle the conventional control and acquisition functions. Both, the Safety and Interlock systems are based on IEC 61511 and IEC 61508 standards as

  13. Preliminary design of safety and interlock system for indian test facility of diagnostic neutral beam

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Himanshu, E-mail: htyagi@iter-india.org [ITER-India, Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Soni, Jignesh [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Yadav, Ratnakar; Bandyopadhyay, Mainak; Rotti, Chandramouli [ITER-India, Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Gahlaut, Agrajit [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Joshi, Jaydeep; Parmar, Deepak [ITER-India, Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India)

    2016-11-15

    Highlights: • Indian Test Facility being built to characterize DNB for ITER delivery. • Interlock system required to safeguard the investment incurred in building the facility and protecting ITER deliverable components. • Interlock levels upto 3IL-3 identified. • Safety instrumented system for occupational safety being designed. Safety I&C functions of SIL-2 identified. • The systems are based on ITER PIS and PSS design guidelines. - Abstract: Indian Test Facility (INTF) is being built in Institute For Plasma Research to characterize Diagnostic Neutral Beam in co-operation with ITER Organization. INTF is a complex system which consists of several plant systems like beam source, gas feed, vacuum, cryogenics, high voltage power supplies, high power RF generators, mechanical systems and diagnostics systems. Out of these, several INTF components are ITER deliverable, that is, beam source, beam line components and power supplies. To ensure successful operation of INTF involving integrated operation of all the constituent plant systems a matured Data Acquisition and Control System (DACS) is required. The INTF DACS is based on CODAC platform following on PCDH (Plant Control Design Handbook) guidelines. The experimental phases involve application of HV power supplies (100 KV) and High RF power (∼800 KW) which will produce energetic beam of maximum power 6MW within the facility for longer durations. Hence the entire facility will be exposed tohigh heat fluxes and RF radiations. To ensure investment protection and to provide occupational safety for working personnel a matured Safety and Interlock system is required for INTF. The Safety and Interlock systems are high-reliability I&C systems devoted completely to the specific functions. These systems will be separate from the conventional DACS of INTF which will handle the conventional control and acquisition functions. Both, the Safety and Interlock systems are based on IEC 61511 and IEC 61508 standards as

  14. Development of Medical Cyclotron in KIRAMS

    International Nuclear Information System (INIS)

    Chai, Jong Seo; Jung, In Su; An, Dong Hyun

    2005-01-01

    This paper is presented on the development and status of medical cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS) at present. We have developed medical cyclotron which is KIRAMS-13. And the improvement of KIRAMS-13 is presented. Furthermore, the design of new cyclotrons, such as KIRAMS-5 and KIRAMS-30 cyclotron, are presented, and R and D studies for future plan of heavy ion accelerator are discussed

  15. All-magnetic extraction for cyclotron beam reacceleration

    Science.gov (United States)

    Hudson, E.D.; Mallory, M.L.

    1975-07-22

    An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)

  16. Computer control and data acquisition system for the Mirror Fusion Test Facility Ion Cyclotron Resonant Heating System (ICRH)

    International Nuclear Information System (INIS)

    Cheshire, D.L.; Thomas, R.A.

    1985-01-01

    The Lawrence Livermore National Laboratory (LLNL) large Mirror Fusion Test Facility (MFTF-B) will employ an Ion Cyclotron Resonant Heating (ICRH) system for plasma startup. As the MFTF-B Industrial Participant, TRW has responsibility for the ICRH system, including development of the data acquisition and control system. During the MFTF-B Supervisory Control and Diagnostic System (SCDS). For subsystem development and checkout at TRW, and for verification and acceptance testing at LLNL, the system will be run from a stand-alone computer system designed to simulate the functions of SCDS. The ''SCDS Simulator'' was developed originally for the MFTF-B ECRH System; descriptions of the hardware and software are updated in this paper. The computer control and data acquisition functions implemented for ICRH are described, including development status, and test schedule at TRW and at LLNL. The application software is written for the SCDS Simulator, but it is programmed in PASCAL and designed to facilitate conversion for use on the SCDS computers

  17. Trends in cyclotrons for radionuclide production

    International Nuclear Information System (INIS)

    Vera Ruiz, H.; Lambrecht, R.M.

    1999-01-01

    The IAEA recently concluded a worldwide survey of the cyclotrons used for radionuclide production. Most of the institutions responded to the questionnaire. The responses identified technical, utilisation and administrative information for 206 cyclotrons. Compiled data includes the characteristics, performance and popularity of each of the different commercial cyclotrons. Over 20 cyclotrons are scheduled for installation in 1998. The expansion in the number of cyclotron installations during the last decade was driven by the advent of advances in medical imaging instrumentation (namely, positron emission tomography (PET), and more recently by 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons; and recent governmental decisions that permit reimbursement for cyclotron radiopharmaceutical studies by the government or insurance companies. The priorities for the production of clinical, commercial and research radionuclides were identified. The emphasis is on radionuclides used for medical diagnosis with SPET (e.g. 123 I, 201 Tl) and PET (e.g. 11 C, 13 N, 15 O, 18 F) radiopharmaceuticals, and for individualized patient radiation treatment planning (e.g. 64 Cu, 86 Y, 124 I) with PET. There is an emerging trend to advance the cyclotron as an alternative method to nuclear reactors for the production of neutron-rich radionuclides (e.g. 64 Cu, 103 Pd, 186 Re) needed for therapeutic applications. (authors)

  18. Construction of STACY (Static Experiment Critical Facility)

    International Nuclear Information System (INIS)

    Murakami, Kiyonobu; Onodera, Seiji; Hirose, Hideyuki

    1998-08-01

    Two critical assemblies, STACY (Static Experiment Critical Facility) and TRACY (Transient Experiment Critical Facility), were constructed in NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility) to promote researches on the criticality safety at a reprocessing facility. STACY aims at providing critical data of uranium nitrate solution, plutonium nitrate solution and their mixture while varying concentration of solution fuel, core tank shape and size and neutron reflecting condition. STACY achieved first criticality in February 1995, and passed the licensing inspection by STA (Science and Technology Agency of Japan) in May. After that a series of critical experiments commenced with 10 w/o enriched uranium solution. This report describes the outline of STACY at the end of FY 1996. (author)

  19. Light ions cyclotron bombardment to simulate fast neutron radiation damage in nuclear materials

    International Nuclear Information System (INIS)

    Segura, E.; Lucki, G.; Aguiar, D.

    1984-01-01

    The applicability and limitations of the use of cyclotron light ions bombardment to simulate the effects of the neutron irradiation are presented. Light ions with energies of about 10 MeV are capable to produce homogeneous damage in specimens suitable for measuring bulk mechanical properties although their low damage rate of 10 -5 dpa.sec -1 limit the dose range to a few dpa. On the other hand, cyclotron alpha particle implantation provides a fast and convenient way of introducing helium with a minimum of side effects so that we can take advantage of this technique to get better understanding of the mechanism by which this insoluble gas produces high temperature embrittlement. Some experimental details such as dimensions and cooling techniques are described. Finally a description of the infrastructure for cyclotron alpha particle implantation and a creep-test facility of the Division of Radiation Damage at IPEN-CNEN/SP are presented. (Author) [pt

  20. National Biomedical Tracer Facility. Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  1. Computer design of a compact cyclotron

    International Nuclear Information System (INIS)

    Bing Wang; Huanfeng Hao; Qinggao Yao; Jinquan Zhang; Mingtao Song; Vorozhtsov, S.B.; Smirnov, V.L.; Hongwei Zhao

    2011-01-01

    Here we present results of the computer design of the structural elements of a compact cyclotron by the example of HITFiL cyclotron selected as the driving accelerator that is under construction at the Institute of Modern Physics (Lanzhou, China). In the article a complex approach to modeling of the compact cyclotron, including calculation of electromagnetic fields of the structural elements and beam dynamics calculations, is described. The existing design data on the axial injection, magnetic, acceleration and extraction systems of the cyclotron are used as a starting point in the simulation. Some of the upgrades of the cyclotron structural elements were proposed, which led to substantial improvement of the beam quality and transmission

  2. NTES laser facility for physics experiments

    International Nuclear Information System (INIS)

    Christie, D.J.; Foley, R.J.; Frank, D.N.

    1989-01-01

    This paper discusses the following topics on the NTES laser facility: Mission Statement and Project Description; Experiment Area; High-Energy, Double-Pass Laser; Facilities; Laser Control and Data Acquisition; and Auxiliary Lasers

  3. Startup work on Inshas cyclotron

    International Nuclear Information System (INIS)

    Vorogushin, M.F.; Strokach, A.P.; Shikhov, V.Ya.; Galchuk, A.V.; Soliman, A.N.; El-Abyad, M.; Comsan, M.N.H.; Saleh, Z.A.; Azzam, A.N.

    2001-01-01

    Startup works on the MGC-20 variable energy cyclotron in the Inshas Nuclear Research Center (Egypt) are described. The cyclotron is intended for acceleration of hydrogen and helium ions in a wide energy range (for protons - from 5 to 20 MeV). Main units of the cyclotron and results of computer experimental acceleration of protons to 18 MeV are described. The prospects of furthers investigations are presented [ru

  4. Initial high-power testing of the ATF [Advanced Toroidal Facility] ECH [electron cyclotron heating] system

    International Nuclear Information System (INIS)

    White, T.L.; Bigelow, T.S.; Kimrey, H.D. Jr.

    1987-01-01

    The Advanced Toroidal Facility (ATF) is a moderate aspect ratio torsatron that will utilize 53.2 GHz 200 kW Electron Cyclotron Heating (ECH) to produce nearly current-free target plasmas suitable for subsequent heating by strong neutral beam injection. The initial configuration of the ECH system from the gyrotron to ATF consists of an optical arc detector, three bellows, a waveguide mode analyzer, two TiO 2 mode absorbers, two 90 0 miter bends, two waveguide pumpouts, an insulating break, a gate valve, and miscellaneous straight waveguide sections feeding a launcher radiating in the TE 02 mode. Later, a focusing Vlasov launcher will be added to beam the ECH power to the saddle point in ATF magnetic geometry for optimum power deposition. The ECH system has several unique features; namely, the entire ECH system is evacuated, the ECH system is broadband, forward power is monitored by a newly developed waveguide mode analyzer, phase correcting miter bends will be employed, and the ECH system will be capable of operating short pulse to cw. Initial high-power tests show that the overall system efficiency is 87%. The waveguide mode analyzer shows that the gyrotron mode output consists of 13% TE 01 , 82.6% TE 02 , 2.5% TE 03 , and 1.9% TE 04 . 4 refs

  5. Numerical modeling of the EBT-S ion-cyclotron heating experiment

    International Nuclear Information System (INIS)

    Sperling, J.L.; Hamasaki, S.; Klein, H.H.; Krall, N.A.

    1980-01-01

    To determine the effect of ion-cyclotron heating on EBT-S plasma parameters, a one-dimensional, time dependent neoclassical model of plasma particle and energy transport was used. For EBT-S the code was run with the following parameters: B/sub O/ = 0.7 tesla (axial field at the midplane), B/sub O/ = 1.4 tesla (axial field at the throat), R/sub T/ = 150 cm (major radius), a = 15 cm

  6. National cyclotron centre at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Tonev, D.; Goutev, N.; Asova, G.; Artinyan, A.; Demerdjiev, A.; Georgiev, L. S.; Yavahchova, M.; Bashev, V.; Genchev, S. G.; Geleva, E.; Mincheva, M.; Nikolov, A.; Dimitrov, D. T.

    2018-05-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that can be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99mTc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, materials sciences, applied research, new materials and for education in all these fields including nuclear energy. Presently we perform investigations in the fields of target design for production of radioisotopes, shielding and radioprotection, new ion sources etc.

  7. Statement on INO from the three Indian science academies: The ...

    Indian Academy of Sciences (India)

    Savitha Sekhar Nair

    such an experimental facility for its intrinsic scientific value. In addition to enabling Indian ... present around us at all times, causing no damage. The INO ... benefits are not just for the short term: the INO is one of a set of major experiments that ...

  8. Report of the consultants' meeting on target and processing technologies for cyclotron production of radionuclides

    International Nuclear Information System (INIS)

    1999-11-01

    Cyclotron produced radionuclides are used routinely for the diagnosis of a wide variety of diseases. Recently a number of radionuclides available from cyclotrons have been proposed for use in radiotherapy. In fact Pd-103 has become routinely available in some parts of the world for incorporation into brachytherapy seeds for treating prostate cancer. The consultants meeting reviewed the status of target and processing technologies associated with cyclotron production of radionuclides. The main topics of discussion included the basic nuclear data that is crucial to the production of the desired radionuclides, gas and solid target systems, the automated chemical processing units, the Good Manufacturing Practices (GMP) required in order to use these radionuclides in human patients in a safe and efficacious manner and a review of possible candidate nuclides that show promise for use in Nuclear Medicine in the near future. Advances in the preparation of solid targets using electroplating technology has created the possibility of preparing targets capable of operating at very high beam currents which would make the production of large quantities of SPECT agents possible at cyclotron facilities throughout the world. Recognising the needs of the developing countries which have established cyclotron facilities, the consultants focussed on how to provide the technology for preparing solid targets that could be used in the existing facilities. While solid target technology can be used for many radionuclides the report concentrated on several key radionuclides, which are of current importance or show potential for use in the near future. Tl-201 is currently used for cardiac profusion studies throughout the world. New target preparation techniques could potentially make many of the member states self sufficient in the production of this nuclide. I-123 has tremendous potential because of the near ideal photon energy for SPECT cameras and its well-understood chemistry. However, it

  9. Progress in research, April 1, 1992--March 31, 1993, Texas A and M University Cyclotron Institute

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    This Institute annual report for the period 1 April 1992--31 March 1993 covers a period which has seen the initial runs of three new spectrometers which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP), the Mass Achromat Recoil Mass Spectrometer (MARS), and the Multipole dipole Multipole (MDM) Particle Spectrometer. These devices are now available to pursue the studies of Gamow Teller states, reactions of astrophysical interest, and giant resonance studies for which they were constructed, as well as for other experiments. A beam analysis system which will deliver high resolution beams to the MDM spectrometer is currently under construction. With the completion of these spectrometer projects, the facility emphasis is now focused on the development of the full capabilities of the K500 cyclotron and on the research program. During the report period, the ECR-K500 cyclotron combination operated 5,849 hours. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons, the latter as a probe of the QCD phase transition. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. In atomic physics, new measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported.

  10. Progress in research, April 1, 1992 - March 31, 1993, Texas A and M University Cyclotron Institute

    International Nuclear Information System (INIS)

    1993-07-01

    This Institute annual report for the period 1 April 1992--31 March 1993 covers a period which has seen the initial runs of three new spectrometers which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP), the Mass Achromat Recoil Mass Spectrometer (MARS), and the Multipole dipole Multipole (MDM) Particle Spectrometer. These devices are now available to pursue the studies of Gamow Teller states, reactions of astrophysical interest, and giant resonance studies for which they were constructed, as well as for other experiments. A beam analysis system which will deliver high resolution beams to the MDM spectrometer is currently under construction. With the completion of these spectrometer projects, the facility emphasis is now focused on the development of the full capabilities of the K500 cyclotron and on the research program. During the report period, the ECR-K500 cyclotron combination operated 5,849 hours. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons, the latter as a probe of the QCD phase transition. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. In atomic physics, new measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported

  11. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    At the same time, the nuclear physics programme and related experimental facility development activities are taking shape. A general review of the nuclear physics research opportunities with the superconducting cyclotron and the present status of the development of different detector arrays and other experimental facilities ...

  12. Cyclotron resonance for electrons over helium in resonator

    CERN Document Server

    Shikin, V B

    2002-01-01

    The problem on the cyclotron resonance (CR) for electrons on the helium film, positioned in the resonator lower part, is solved. It is shown, that it relates to one of the examples of the known problem on the oscillations of the coupled oscillators system. The coupling constant between these oscillators constituting the variable function of the problem parameters. It is minimal in the zero magnetic field and reaches its maximum under the resonance conditions, when the cyclotron frequency coincides with one of the resonator modes. The CR details of the Uhf CR-energy absorption coupled by the electrons + resonator system, are calculated. The applications of the obtained results to the available CR experiments for electrons over helium

  13. Modelling of non-thermal electron cyclotron emission during ECRH

    International Nuclear Information System (INIS)

    Tribaldos, V.; Krivenski, V.

    1990-01-01

    The existence of suprathermal electrons during Electron Cyclotron Resonance Heating experiments in tokamaks is today a well established fact. At low densities the creation of large non-thermal electron tails affects the temperature profile measurements obtained by 2 nd harmonic, X-mode, low-field side, electron cyclotron emission. At higher densities suprathermal electrons can be detected by high-field side emission. In electron cyclotron current drive experiments a high energy suprathermal tail, asymmetric in v, is observed. Non-Maxwellian electron distribution functions are also typically observed during lower-hybrid current drive experiments. Fast electrons have been observed during ionic heating by neutral beams as well. Two distinct approaches are currently used in the interpretation of the experimental results: simple analytical models which reproduce some of the expected non-Maxwellian characteristics of the electron distribution function are employed to get a qualitative picture of the phenomena; sophisticated numerical Fokker-Planck calculations give the electron distribution function from which the emission spectra are computed. No algorithm is known to solve the inverse problem, i.e. to compute the electron distribution function from the emitted spectra. The proposed methods all relay on the basic assumption that the electron distribution function has a given functional dependence on a limited number of free parameters, which are then 'measured' by best fitting the experimental results. Here we discuss the legitimacy of this procedure. (author) 7 refs., 5 figs

  14. American Indian Women Cancer Survivor's Needs and Preferences: Community Support for Cancer Experiences.

    Science.gov (United States)

    Burnette, Catherine E; Roh, Soonhee; Liddell, Jessica; Lee, Yeon-Shim

    2018-03-15

    Cancer (the focus of this inquiry) is the leading cause of death among American Indian and Alaska Native women. The purpose of this study was to identify American Indian women cancer survivors' needs and preferences related to community supports for their cancer experience. This qualitative study examined female American Indian cancer survivors' needs and preferences about community support. The sample included 43 American Indian women cancer survivors (the types of cancer survivors included cervical cancer: n = 14; breast cancer: n = 14; and colon and other types: n = 15) residing in the Northern Plains region, in the state of South Dakota. Data were analyzed using qualitative content analysis and were collected between June of 2014 and February of 2015. When asked about their needs and preferences, 82% of participants (n = 35) of female American Indian cancer survivors reported at least one of the following most commonly reported themes: cancer support groups (n = 31, 72%), infrastructure for community support (n = 17, 40%), and cancer education (n = 11, 26%). In addition to the aforementioned themes, 33% of participants (n = 14) indicated the need for an improved healthcare system, with 11% (n = 5) of participants expressly desiring the integration of spirituality and holistic healing options. The majority of American Indian women cancer survivor participants of this study identified a need for more community-based support systems and infrastructures to aid with the cancer survivor experience. Results warrant a community approach to raise awareness, education, and support for American Indian cancer survivors.

  15. Critical experiment study on uranyl nitrate solution experiment facility

    International Nuclear Information System (INIS)

    Zhu Qingfu; Shi Yongqian; Wang Jinrong

    2005-01-01

    The Uranyl Nitrate Solution Experiment Facility was constructed for the research on nuclear criticality safety. In this paper, the configuration of the facility is introduced; a series of critical experiments on uranyl nitrate solution is described later, which were performed for various uranium concentrations under different conditions, i.e. with or without neutron absorbers in the core and with or without water-reflector outside the core. Critical volume and the minimum 235U critical mass for different uranium concentrations are presented. Finally, theoretical analysis is made on the experimental results. (authors)

  16. Guide to user facilities at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1984-04-01

    Lawrence Berkeley Laboratories' user facilities are described. Specific facilities include: the National Center for Electron Microscopy; the Bevalac; the SuperHILAC; the Neutral Beam Engineering Test Facility; the National Tritium Labeling Facility; the 88 inch Cyclotron; the Heavy Charged-Particle Treatment Facility; the 2.5 MeV Van de Graaff; the Sky Simulator; the Center for Computational Seismology; and the Low Background Counting Facility

  17. Radio frequency heating in the ion-cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1985-01-01

    Both the theory of the absorption process in the ion-cyclotron range of frequencies and some of the experiments which slow the promise and problems with radio frequency plasma heating in this range are discussed. It is shown that mode conversion is invariably involved in the process and so an extensive review of mode conversion theory, expecially as it applies to problems with back-to-back cutoff-resonance pairs, is included. This includes a discussion of the tunneling equation with and without absorption effects and with and without energy conservation. The general theory is applied to various ion-cyclotron harmonics, the two-ion hybrid resonance, and to a case where a wave converts to a Bernstein mode at the plasma edge. The results are given analytically for a variety of cases without absorption, and empirical formulas are given for the second and third harmonics of the ion-cyclotron frequency, which include effects of absorption. Various problem areas in the theory are also discussed with some of the limitations caused by the approximations involved. A number of experiments are also discussed which show effective heating, and some show the features of the mode conversion process, indicating that the general processes of absorption are reasonably well understood. Areas where further work is necessary, both in fundamental theory and in comparing theory with experiment, are also discussed

  18. Important radiation protection aspects of the operation of a commercial medical cyclotron

    International Nuclear Information System (INIS)

    Mukherjee, B.

    1997-01-01

    Since July 1991 the Radiopharmaceutical Division of the Australian Nuclear Science and Technology Organisation (ANSTO) operates a 30 MeV H'- ion Medical Cyclotron (Model; CYCLONE 30, Manufacturer: Ion Beam Applications, Louvain La Neuve, Belgium). During routine isotope production operations at the cyclotron a thick copper substrate plate electroplated with thin layer of selected enriched target material are bombarded with 30 MeV proton beam current up to 450 μA. The nuclear reaction of protons with the copper atoms result in the reduction of prompt evaporation neutrons with a peak energy of ∼ 1.8 MeV. These evaporation neutrons slow down via multiple collisions with the concrete shielding walls of the target cave, bounce back to the,interior space of the cave activating the cyclotron parts, beam tube components and other utilities installed in the irradiation cave. After the completion of 60 hour isotope production run, gamma dose equivalent rates of ∼10 5 μSvh -1 were measured at contact with the target irradiation stations and beam collimators. Evidently, these gamma rays emitted from the activated cyclotron components impose crucial radiation exposure hazard problems for the cyclotron maintenance technicians. Experiments had been carried out in order to identify the specific pathways of cyclotron component activation and to assess the probable personnel radiation exposure during handling of the activated cyclotron parts. The cool-down (radioactive decay) of the activated cyclotron components was estimated experimentally at different target bombardment conditions using the wall mounted gamma area monitors interfaced to the Health Physics Data Acquisition System. The gamma dose equivalent rates at contact with various locations of interest at the target irradiation station and at the typical work areas of the maintenance personnel were carefully recorded with a radiation (gamma) survey instrument during the three years operation period of the cyclotron. A

  19. The Cyclotron Center of the Slovak Republic

    International Nuclear Information System (INIS)

    Podhorsky, D.; Ruzicka, J.; Macasek, F.; Makaiova, I.; Saro, S.; Kristiak, J.; Fulup, M.

    2001-01-01

    The Cyclotron Center of the Slovak Republic was established at the beginning of August 1999 - within the Slovak-Office of Standards, Metrology and Testing (SOSMT), in Bratislava, Slovak Republic. It will have two cyclotrons - a large heavy and light cyclotron DC-72, which will be constructed by the Joint Institute for Nuclear Research (JINR), Dubna, Russian Federation, and a small commercial light ion cyclotron IBA 18/9. The heavy ion source of the electron resonance type (DECRS-2M) will be used for low and medium energy experiments in physics. The small electron accelerator is planned for different applications, including improving the properties of plastics, increasing the resistance of cables to fire and temperature, the sterilization of medical disposables in the CC SR. The main purpose of the Cyclotron Center of the Slovak Republic (CC SR) is to catch the present approach and trends in the area of improving of inhabitants life and health quality using the progressive technology, which is introduced by bringing into practice of the physical equipment - accelerators, producing beams of high energy particles. Experts of nuclear physics and of the related branches have no experimental basis in Slovakia, as after dissolution of the former the Czech and Slovak Federal Republic all bigger nuclear equipment were left in the Czech Republic. The Slovak Republic is one of the European countries where cancer and cardiovascular diseases have a rapidly increasing tendency (the rate of new oncological cases is approximately 20,000/year at the population of 5 million inhabitants) - early diagnostics of population is necessary to be updated urgently. The Slovak Republic use a great part of electricity (about 60 %) from its own nuclear power stations and thus it is in need of education of rising generations of experts from different nuclear fields. The Government of the Slovak republic on June 18, 1996 approved the strategic aim of building up the Cyclotron Laboratory at the

  20. Conceptual design of pulsed high voltage and high precision power supply for a cyclotron auto-resonance maser (CARM) for plasma heating

    International Nuclear Information System (INIS)

    Zito, Pietro; Maffia, Giuseppe; Lampasi, Alessandro

    2015-01-01

    Highlights: • ENEA started a project to develop a cyclotron auto-resonance maser (CARM). • This facility requires an advanced pulsed high voltage power supply (HVPS). • The conceptual design answers to the performances requested for CARM HVPS. • The pulse transformer parameters were estimated according to IEEE standards. • PWM PID-based controller has been optimized to follow very fast rectangular pulses. - Abstract: Due to the high electron temperature during the plasma burning, both a higher power (>1 MW) and a higher frequency (up to 300 GHz) are required for plasma heating in future fusion experiments like DEMO. For this task, ENEA started a project to develop a cyclotron auto-resonance maser (CARM) able to produce an electron radiation in synchronism with the electromagnetic field and to transfer the electron beam kinetic energy to the plasma. This facility requires an advanced pulsed high voltage power supply (HVPS) with the following technical characteristics: variable output voltage up to 700 kV; variable pulse length in the range 5–50 μs; overshoot < 2%; rise time < 1 μs; voltage accuracy (including drop, ripple and stability) <0.1%. This paper describes the conceptual design and the technical solutions adopted to achieve the performance requested for the CARM HVPS.

  1. Conceptual design of pulsed high voltage and high precision power supply for a cyclotron auto-resonance maser (CARM) for plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Zito, Pietro, E-mail: pietro.zito@enea.it; Maffia, Giuseppe; Lampasi, Alessandro

    2015-10-15

    Highlights: • ENEA started a project to develop a cyclotron auto-resonance maser (CARM). • This facility requires an advanced pulsed high voltage power supply (HVPS). • The conceptual design answers to the performances requested for CARM HVPS. • The pulse transformer parameters were estimated according to IEEE standards. • PWM PID-based controller has been optimized to follow very fast rectangular pulses. - Abstract: Due to the high electron temperature during the plasma burning, both a higher power (>1 MW) and a higher frequency (up to 300 GHz) are required for plasma heating in future fusion experiments like DEMO. For this task, ENEA started a project to develop a cyclotron auto-resonance maser (CARM) able to produce an electron radiation in synchronism with the electromagnetic field and to transfer the electron beam kinetic energy to the plasma. This facility requires an advanced pulsed high voltage power supply (HVPS) with the following technical characteristics: variable output voltage up to 700 kV; variable pulse length in the range 5–50 μs; overshoot < 2%; rise time < 1 μs; voltage accuracy (including drop, ripple and stability) <0.1%. This paper describes the conceptual design and the technical solutions adopted to achieve the performance requested for the CARM HVPS.

  2. Electron-cyclotron heating in the Constance 2 mirror experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mauel, Michael E.

    1982-09-01

    Electron cyclotron heating of a highly-ionized plasma in mirror geometry is investigated. The experimental diagnosis of the electron energy distribution and the comparison of the results of this diagnosis with a two dimensional, time-dependent Fokker-Planck simulation are accomplished in four steps. (1) First, the power balance of the heated and unheated Constance 2 plasma is analyzed experimentally. It is concluded that the heated electrons escape the mirror at a rate dominated by a combination of the influx of cool electrons from outside the mirror and the increased loss rate of the ions. (2) The microwave parameters at the resonance zones are then calculated by cold-plasma ray tracing. High N/sub parallel/ waves are launched and for these waves, strong first-pass absorption is predicted. The absorption strength is qualitatively checked in the experiment by surrounding the plasma with non-reflecting liners. (3) A simplified quasilinear theory including the effect of N/sub parallel/ is developed to model the electrons. An analytic expression is derived for the RF-induced pump-out of the magnetically-confined warm electrons. Results of the Fokker-Planck simulations show the development of the electron energy distribution for several plasma conditions and verify the scaling of the analytic expression for RF-induced diffusion into the loss cone. (4) Sample x-ray and endloss data are presented, and the overall comparison between the simulation and experiment is discussed. The x-ray signals indicate that, for greater RF power, the hot electrondensity increases more rapidly than its temperature. The time history of the endloss data, illustrating RF-enhancement, suggests the predicted scaling for warm-electron pump-out. Finally, a comparison between the measured and predicted energy distribution shows that the bulk, warm and hot components of the heated Constance 2 electrons are indeed reproduced by the simulation.

  3. Electron-cyclotron heating in the Constance 2 mirror experiment

    International Nuclear Information System (INIS)

    Mauel, M.E.

    1982-09-01

    Electron cyclotron heating of a highly-ionized plasma in mirror geometry is investigated. The experimental diagnosis of the electron energy distribution and the comparison of the results of this diagnosis with a two dimensional, time-dependent Fokker-Planck simulation are accomplished in four steps. (1) First, the power balance of the heated and unheated Constance 2 plasma is analyzed experimentally. It is concluded that the heated electrons escape the mirror at a rate dominated by a combination of the influx of cool electrons from outside the mirror and the increased loss rate of the ions. (2) The microwave parameters at the resonance zones are then calculated by cold-plasma ray tracing. High N/sub parallel/ waves are launched and for these waves, strong first-pass absorption is predicted. The absorption strength is qualitatively checked in the experiment by surrounding the plasma with non-reflecting liners. (3) A simplified quasilinear theory including the effect of N/sub parallel/ is developed to model the electrons. An analytic expression is derived for the RF-induced pump-out of the magnetically-confined warm electrons. Results of the Fokker-Planck simulations show the development of the electron energy distribution for several plasma conditions and verify the scaling of the analytic expression for RF-induced diffusion into the loss cone. (4) Sample x-ray and endloss data are presented, and the overall comparison between the simulation and experiment is discussed. The x-ray signals indicate that, for greater RF power, the hot electrondensity increases more rapidly than its temperature. The time history of the endloss data, illustrating RF-enhancement, suggests the predicted scaling for warm-electron pump-out. Finally, a comparison between the measured and predicted energy distribution shows that the bulk, warm and hot components of the heated Constance 2 electrons are indeed reproduced by the simulation

  4. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    DEFF Research Database (Denmark)

    Oosterbeek, J.W.; Bürger, A.; Westerhof, E.

    2008-01-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) bea...

  5. Design of a Fluorine-18 Production System at ORNL Cyclotron Facility. Part 2

    International Nuclear Information System (INIS)

    Chu, Y.E.; Engstrom, S.D.; Sundberg, D.G.

    1977-01-01

    A fluorine-18 recovery system using an anion-exchange side-stream column was designed for the H 2 18 O target at the ORNL 86-inch cyclotron. The extent of radiolysis was determined and a catalyst vessel, containing a palladium catalyst, was incorporated to recombine the radiolysis product gases. The preliminary design of an externally bombarded gas target for the production of 18 F 2 from 18 O 2 was also completed

  6. Commercial compact cyclotrons in the 90's

    International Nuclear Information System (INIS)

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. We will also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA. (author)

  7. Commercial compact cyclotrons in the 90's

    International Nuclear Information System (INIS)

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. The authors also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA

  8. Effect of ion clouds micromotion on measured signal in Fourier transform ion cyclotron resonance: Computer simulation.

    Science.gov (United States)

    Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene

    2017-08-01

    Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.

  9. Material science experiments on the Atlas Facility

    International Nuclear Information System (INIS)

    Keinigs, Rhonald K.; Atchison, Walter L.; Faehl, Rickey J.; Lindemuth, Irvin R.; Anderson, Wallace E.; Bartsch, Robert Richard; Flower-Maudlin, Elane C.; Hammerberg, James E.; Holtkamp, David B.; Jones, Michael E.; Kyrala, George A.; Oro, David M.; Parker, Jerald V.; Preston, Dean L.; Reinovsky, Robert E.; Scudder, David W.; Sheehey, Peter T.; Shlacter, Jack S.; Stokes, John L.; Taylor, Antoinette J.; Tonks, Davis L.; Turchi, Peter J.

    2001-01-01

    Three material properties experiments that are to be performed on the Atlas pulsed power facility are described; friction at sliding metal interfaces, spallation and damage in convergent geomety, and plastic flow at high strain and high strain rate. Construction of this facility has been completed and experiments in high energy density hydrodynamics and material dynamics will begin in 2001.

  10. Development of Cyclotron Beam Technology for Applications in Materials Science and Biotechnology at JAERI-TIARA

    International Nuclear Information System (INIS)

    Ohara, Y.; Arakawa, K.; Fukuda, M.; Kamiya, T.; Kurashima, S.; Nakamura, Y.; Okumura, S.; Saidoh, M.; Tajima, S.

    2003-01-01

    Recent progress of cyclotron ion beam development for applications in materials science and biotechnology at the ion-irradiation research facility TIARA of the Japan Atomic Energy Research Institute(JAERI) is overviewed. The AVF cyclotron in TIARA can accelerate protons and heavy ions up to 90 MeV and 27.5 MeV/n, respectively. In order to conform to the requirement of a reliable tuning of microbeam formation, the cyclotron beam current has been stabilized by controlling the temperature of the magnet yoke and pole within +/-0.5 deg. and hence by decreasing the variation of the magnetic field ΔB/B below 10-5. A heavy ion microbeam with energy of hundreds MeV is a significantly useful probe for researches on biofunctional elucidation in biotechnology. Production of the microbeam with spot size as small as 1μm by quadrupole lenses requires the energy spread of the beam ΔE/E < 2 x 10-4. In order to minimize the energy spread of the cyclotron beam, the fifth-harmonic voltage waveform has been successfully superposed on the fundamental one to make energy gain uniform

  11. Ion-cyclotron-resonance- and Fourier-transform-ion-cyclotron-resonance spectroscopy: technology and application

    International Nuclear Information System (INIS)

    Luederwald, I.

    1977-01-01

    Instrumentation and technology of Ion-Cyclotron-Resonance and Fourier-Transform-Ion-Cyclotron-Resonance Spectroscopy are described. The method can be applied to studies of ion/molecule reactions in gas phase, to obtain thermodynamic data as gas phase acidity or basicity, proton and electron affinity, and to establish reaction mechanisms and ion structures. (orig.) [de

  12. Reactions of metal ions and their clusters in the gas phase using laser ionization: ion cyclotron resonance spectroscopy

    International Nuclear Information System (INIS)

    Freiser, B.S.

    1981-04-01

    Two subjects are discussed in this report: advances in proposed studies on metal ion chemistry and expansion of laboratory facilities. The development of a combined pulsed laser source-ion cyclotron resonance spectrometer has proven to be a convenient and powerful method for generating metal ions and for studying their subsequent chemistry in the gas phase. The main emphasis of this research has been on the application of metal ions as a selective chemical ionization reagents and progress in this area are discussed. The goal is to identify trends in reactivity i.e. mechanisms useful in interpreting the chemical ionization spectra of unknown compounds and to test for the functional group selectivity of the various metal ions. The feasibility of these goals have been demonstrated in extensive studies on Cu + with esters and ketones, on Fe + with ethers, ketones, and hydrocarbons, and on Ti + with hydrocarbons. In addition, preliminary results on sulfur containing compounds and on a variety of other metallic ions have been obtained. Laboratory facilities were expanded from one ion cyclotron resonance (ICR) spectrometer to two, plus a third instrument the Fourier Transform Ion Cyclotron Resonance (FTICR) spectrometer

  13. Operating procedures: Fusion Experiments Analysis Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, R.A.; Carey, R.W.

    1984-03-20

    The Fusion Experiments Analysis Facility (FEAF) is a computer facility based on a DEC VAX 11/780 computer. It became operational in late 1982. At that time two manuals were written to aid users and staff in their interactions with the facility. This manual is designed as a reference to assist the FEAF staff in carrying out their responsibilities. It is meant to supplement equipment and software manuals supplied by the vendors. Also this manual provides the FEAF staff with a set of consistent, written guidelines for the daily operation of the facility.

  14. Operating procedures: Fusion Experiments Analysis Facility

    International Nuclear Information System (INIS)

    Lerche, R.A.; Carey, R.W.

    1984-01-01

    The Fusion Experiments Analysis Facility (FEAF) is a computer facility based on a DEC VAX 11/780 computer. It became operational in late 1982. At that time two manuals were written to aid users and staff in their interactions with the facility. This manual is designed as a reference to assist the FEAF staff in carrying out their responsibilities. It is meant to supplement equipment and software manuals supplied by the vendors. Also this manual provides the FEAF staff with a set of consistent, written guidelines for the daily operation of the facility

  15. Characterizing experiments of the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the results of the characterizing test series in 2007 with the scaled down PPOOLEX facility designed and constructed at Lappeenranta University of Technology. Air and steam/air mixture was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool (wet well). Altogether eight air and four steam/air mixture experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the general behavior of the facility and the performance of basic instrumentation. Proper operation of automation, control and safety systems was also tested. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. The facility is equipped with high frequency measurements for capturing different aspects of the investigated phenomena. The general behavior of the PPOOLEX facility differs significantly from that of the previous POOLEX facility because of the closed two-compartment structure of the test vessel. Heat-up by several tens of degrees due to compression in both compartments was the most obvious evidence of this. Temperatures also stratified. Condensation oscillations and chugging phenomenon were encountered in those tests where the fraction of non-condensables had time to decrease significantly. A radical change from smooth condensation behavior to oscillating one occurred quite abruptly when the air fraction of the blowdown pipe flow dropped close to zero. The experiments again demonstrated the strong diminishing effect that noncondensable gases have on dynamic unsteady loadings experienced by submerged pool structures. BWR containment like behavior related to the beginning of a postulated steam line break accident was observed in the PPOOLEX test facility during the steam/air mixture experiments. The most important task of the research project, to produce experimental data for code simulation purposes, can be

  16. Road rage: an exploratory study on aggressive driving experience on Indian roads.

    Science.gov (United States)

    Sagar, Rajesh; Mehta, Manju; Chugh, Geetanjali

    2013-06-01

    Driving on Indian roads is a stressful experience. A lacuna of research on aggressive driving experiences in the Indian set-up highlights the need to address this growing concern for individuals, society and mental health professionals. To explore and compare driving-related anger triggers and anger expression among high- and low-angry Indian drivers. Two hundred randomly chosen drivers from the city of Delhi were administered a semi-structured questionnaire intended to understand driving-related aggression. Honking, overtaking from the wrong side, loud music in other cars and hot and humid climate significantly increased the risk of experiencing anger among high-angry drivers. High-angry drivers were significantly more likely to engage in direct and aggressive expression of anger, including overtaking, verbal abuse, yelling and arguing, not giving space to other drivers, fighting, and hitting and bumping other cars in protest. Passive anger expressions such as holding grudges against other drivers and eating or drinking something to cool down were significantly more likely to be used by low-angry drivers. Drivers who are high on anger have a significantly higher risk of experiencing anger triggered by a variety of individual and environmental factors on Indian roads and are more susceptible to engage in aggressive driving behaviour.

  17. 20 years Rossendorf cyclotron

    International Nuclear Information System (INIS)

    1978-08-01

    On the occasion of the 20th anniversary of initiating of the Rossendorf cyclotron accounts are given of most important works and results in the field of accelerator engineering and utilization of this machine. The reports show the trend of development and actual spectrum of application. The enclosed literature lists give a survey of technical and experimental works at cyclotron. (author)

  18. Proposal on ''standardized high current solid targets for cyclotron production of diagnostic and therapeutic radionuclides''

    International Nuclear Information System (INIS)

    Suparman, Ibon

    2000-01-01

    The Center for the Development of Radioisotopes and Radiopharmaceuticals - National Nuclear Energy Agency (P2RR-BATAN) has one Cyclotron type CS-30 with maximum 30 MeV proton energy. It is used since 1990 for 201 Tl production. The main use of 201 Tl in Indonesia is for diagnosis and assessment of myocardial ischaemia, especially diagnosis of coronary artery disease, viability of the heart muscle and forecasting the outcome for patients with coronary disease. The Cyclotron facility is supported with a solid target station, two hot cells and the chemical equipment for electroplating. The yield of 201 Tl production currently achieved around 40-50%. The irradiation technique and chemical separation should be improved. We are also very interested in the development of the production of 103 Pd via 103 Rh (p,n) 103 Pd reaction. The objective of this proposal will support the main program of the National Nuclear Energy Agency (BATAN) in enhancement of health care and in providing Cyclotron produced radiopharmaceuticals for hospitals

  19. Medical cyclotrons

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1976-01-01

    Cyclotrons as tools for therapy and for the production of radionuclides for use in nuclear medicine have been extensively reviewed in the literature. The current world status with respect to cyclotrons used primarily for research, development and application in nuclear medicine is reviewed here in the context of geographical distribution and type of use, presently available commercial types, machine characteristics and trends. Aspects of design requirements from a user perspective such as machine, beam and target characteristics are covered. Some special problems concerning many factors which can lead to effective production of the desired radionuclide or product are considered in light of machine characteristics. Consideration is also given to future directions for accelerators in nuclear medicine

  20. [Cyclotron based nuclear science

    International Nuclear Information System (INIS)

    1993-07-01

    The period 1 April 1992--31 March 1993 saw the initial runs of three new spectrometers, which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP) (data from which are shown on the cover of this document), the Mass Achroniat Recoil Mass Spectrometer (MARS), and the Multipole Dipole Multipole (MDM) Particle Spectrometer. The ECR-K500 cyclotron combination operated 5,849 hours. The beam was on target 39% of this time. Studies of nuclear dynamics and nuclear thermodynamics using the neutron ball have come to fruition. A critical re-evaluation of the available data on the giant monopole resonance indicated that the incompressibility is not specified to a range smaller than 200--350 MeV by those data. New systematic experiments using the MDM spectrometer are now underway. The MEGA collaboration obtained the first data on the μ → eγ decay rate and determination of the Michel parameter in normal μ decay. Experiments appear to confirm the existence of monoenergetic pair peaks even for relatively low Z projectile -- Z target combinations. Studies of the (α,2α) knockout reaction indicate that this reaction may prove to be a valuable tool for determination of reaction rates of astrophysical interest. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. New measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported. The research is presented in nearly 50 brief summaries usually including data and references

  1. Application of superconductivity in cyclotron construction

    International Nuclear Information System (INIS)

    Blosser, H.G.

    1982-01-01

    This paper reviews major concepts and design features of the new class of cyclotrons which use superconducting coils to provide main magnet excitation. The discussion begins with a brief historical review tracing the evolution of these ''superconducting'' cyclotrons and the impact of this application of superconductivity in pushing back traditional cyclotron construction limits. This is followed by a review of the principal phenomena which come into play to set new limits on the operating regime, and the nature of these limits, some of which arise from orbit properties and some of which result from construction intricacies in the coil and in the rf system. Conclusions anticipate a future widely encompassing role in the application of superconductivity to cyclotron

  2. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    Energy Technology Data Exchange (ETDEWEB)

    Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Kuechler, D.; Toivanen, V. [CERN, BE/ABP/HSL, 1211 Geneva 23 (Switzerland)

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  3. Seeking conception: experiences of urban Indian women with in vitro fertilisation.

    Science.gov (United States)

    Widge, Anjali

    2005-12-01

    This paper reports on a study of involuntarily childless Indian women/couples seeking in vitro fertilisation (IVF). The focus is on the social context of infertility and on women's perceptions of and experiences with IVF. Twenty-two childless women/couples who sought IVF. The sample was drawn from consenting clients of clinics in two major Indian cities, viz. New Delhi and Mumbai. In-depth interviews revealed that infertility is deeply feared, women's status and security are affected, and they experience stigmatisation and isolation. IVF was pursued after less intrusive avenues had been exhausted. Inadequate information/counselling is provided, success rates are low, IVF is commercialised and the process is physiologically, emotionally and financially stressful. In Indian society fertility defines womanhood and motherhood, and infertility is stigmatised. Women faced a lot of pressures to produce a biological child, and go through all kinds of treatments, including the expensive ARTs, to have a child. Integration of infertility services into the state's reproductive health programme and disseminate information on infertility and to offer other appropriate choices, such as adoption. Effective counselling on coping with psychosocial/sexual problems. Monitoring of the prevalence of sex preselection.

  4. An ion source upgrade for an axial injection based commercial cyclotron

    International Nuclear Information System (INIS)

    Dehnel, M.P.; Stewart, T.; Roeder, M.; Le Du, K.

    2005-01-01

    The TRIUMF H - volume-cusp ion source technology licensed by Dehnel Consulting Ltd ranges in output current from 1 to 15 mA with beam energies in the 22-30 keV range. For those Cyclone 30 cyclotrons installed with an early 1980's style Lawrence Berkeley Lab (LBL) volume-cusp ion source, an upgrade to a 5 mA TRIUMF H - volume-cusp ion source would pay dividends in terms of longer filament, filament post and ion source lens lifetime, as well as less eroded material build-up in the source. In addition, the 5 mA ion source would approximately double the beam current available to inject into the cyclotron while reducing the emittance by about a factor of four. The new system has the potential to significantly boost radioisotope production at Cyclone 30 facilities utilizing the older style LBL ion source

  5. National Medical Cyclotron

    International Nuclear Information System (INIS)

    Boyd, Rex.

    1991-01-01

    The National Medical Cyclotron, under construction at Sydney's Royal Prince Alfred Hospital(RPAH) is to be operated by the Australian Nuclear Science and Technology Organization in collaboration with the hospital. Its main purpose is to produce radioisotopes on commercial basis for distribution to hospitals through Australia as well as short-lived radioisotopes (2 minutes to 2 hours) for immediate application at RPAH in Positron Emission Tomography, to study the dynamics of human physiology and metabolism in organs, bones and soft tissues. A list of the principal cyclotron-produced radionuclides is provided. ills

  6. How cyclotrons work

    International Nuclear Information System (INIS)

    Nolan, D.

    1992-01-01

    The operating principles of a cyclic accelerator are presented based on the IBA Cyclone 30 negative ion cyclotron, selected for the Australia's first medical cyclotron. Its main features are: acceleration with variable energy of between 15-30 million electron volts, the capability of extracting two beams simultaneously, low power consumption, easy maintenance. Other aspects not directly related to the principle of operation discussed include the vacuum and the radio-frequency systems as well as the complex computerized control system used to automatically control start-up and shut-down operations. ills

  7. Accelerator mass spectrometry with the Grenoble and Orsay cyclotrons

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Yiou, F.

    1981-01-01

    Three and one half years ago, at the Rochester meeting, we presented our first accelerator mass spectrometry measurements of 10 Be using the external ion source of the Grenoble cyclotron. Since that time the technique has been used to measure 10 Be in more than 100 geophysical samples. We have also used the ALICE accelerator facility (linear accelerator plus cyclotron) at Orsay to detect 26 Al (half-life 730,000 years) and 41 Ca (100,000 years). While the latter measurements have so far been carried out only with enriched samples, they did demonstrate the feasibility of eliminating interference from lower atomic number isobars by analyzing fully stripped ions of the species being sought. We describe here the present experimental status of these two techniques, following closely two papers presented recently at another conference. We would like to stress that these techniques have not been developed arbitrarily, or as goals in themselves, but rather with certain applications in mind. It is therefore perhaps useful to first briefly outline these applications, which can be divided into three areas

  8. CYGNE, Foundation for Cyclotron Applications in Medicine, Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    van de Bosch, R L.P. [Technische Hogeschool Eindhoven (Netherlands). Afdeling Technische Natuurkunde; Smithuis, L O.M.J. [St. Lambertusziekenhuis, Helmond (Netherlands). Afd. Nucleaire Geneeskunde

    1981-01-01

    At the Technical University of Eindhoven (Netherlands) a Foundation named CYGNE is established with the purpose to further the use of the research cyclotrons present in the country for the production of short-living radioisotopes specifically on behalf of nuclear medicine. The cooperation with a hospital and its pharmacist are procured for the production of various radiopharmaceuticals. This is the first time such a facility is available in the Netherlands. The foundation has four working groups to do research on radionuclides for positron emission tomography, neutron therapy, trace element analysis, and routine production or new production methods.

  9. Cyclotron targetry for production of short-lived positron emitters

    International Nuclear Information System (INIS)

    Schlyer, D.J.

    1989-01-01

    The basic concepts of cyclotron target design are presented along with the relevant practical experience gained by workers in this field over the years. Results are presented from several recent studies on the temperature and density distribution inside gas and liquid targets. 5 refs., 3 figs

  10. Cyclotrons and positron emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs

  11. A new cyclotron for biomedical research

    International Nuclear Information System (INIS)

    Wolber, G.

    1988-01-01

    This paper presents the rationale for replacing the old AEG Compact Cyclotron (built in 1969/71) of the Institute for Radiology and Pathophysiology at the German Cancer Research Center by a 30 MeV H - /15 MeV D - cyclotron. A status report is followed by the scientific and technical reasoning as well as budgetary and organizational considerations. In the appendix we tried to explain the function of a cyclotron in a simple and comprehensive manner. (orig.) [de

  12. Cyclotron Phase-Coherent Ion Spatial Dispersion in a Non-Quadratic Trapping Potential is Responsible for FT-ICR MS at the Cyclotron Frequency

    Science.gov (United States)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2018-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) at the cyclotron frequency instead of the reduced cyclotron frequency has been experimentally demonstrated using narrow aperture detection electrode (NADEL) ICR cells. Here, based on the results of SIMION simulations, we provide the initial mechanistic insights into the cyclotron frequency regime generation in FT-ICR MS. The reason for cyclotron frequency regime is found to be a new type of a collective motion of ions with a certain dispersion in the initial characteristics, such as pre-excitation ion velocities, in a highly non-quadratic trapping potential as realized in NADEL ICR cells. During ion detection, ions of the same m/z move in phase for cyclotron ion motion but out of phase for magnetron (drift) ion motion destroying signals at the fundamental and high order harmonics that comprise reduced cyclotron frequency components. After an initial magnetron motion period, ion clouds distribute into a novel type of structures - ion slabs, elliptical cylinders, or star-like structures. These structures rotate at the Larmor (half-cyclotron) frequency on a plane orthogonal to the magnetic field, inducing signals at the true cyclotron frequency on each of the narrow aperture detection electrodes. To eliminate the reduced cyclotron frequency peak upon dipolar ion detection, a number of slabs or elliptical cylinders organizing a star-like configuration are formed. In a NADEL ICR cell with quadrupolar ion detection, a single slab or an elliptical cylinder is sufficient to minimize the intensity of the reduced cyclotron frequency components, particularly the second harmonic. [Figure not available: see fulltext.

  13. Cyclotrons and positron emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  14. LMFBR safety experiment facility planning and analysis

    International Nuclear Information System (INIS)

    Stevenson, M.G.; Scott, J.H.

    1976-01-01

    In the past two years considerable effort has been placed on the planning and design of new facilities for the resolution of LMFBR safety issues. The paper reviews the key issues, the experiments needed to resolve them, and the design aspects of proposed new facilities. In addition, it presents a decision theory approach to selecting an optimal combination of modified and new facilities

  15. Commercialization of Plasma-Assisted Technologies: The Indian Experience

    Science.gov (United States)

    John, P. I.

    The paper describes an initiative by the Institute for Plasma Research (IPR), India in establishing links with the Indian industry for developing and commercialising advanced plasma-based industrial technologies. This has culminated in the creation of a self-financing technology development, incubation, demonstration and delivery facility. A business plan for converting the knowledge base to commercially viable technologies conceived technology as a product and the industry as the market and addressed issues like resistance to new technologies, the key role of entrepreneur, thrust areas and the necessity of technology incubation and delivery. Success of this strategy is discussed in a few case studies. We conclude by identifying the cost, environmental, strategic and techno-economic aspects, which would be the prime drivers for plasma-assisted manufacturing technology in India.

  16. Cyclotron method for heavy ion acceleration

    International Nuclear Information System (INIS)

    Gikal, B.N.; Gul'bekyan, G.G.; Kutner, V.B.; Oganesyan, R.Ts.

    1984-01-01

    Studies on heavy ion beams in a wide range of masses (up to uranium) and energies disclose essential potential opportunities for solution of both fundamental scientific and significant economical problems. A cyclotron method for heavy ion acceleration is considered. Development of low and medium energy heavy ion accelerators is revealed. The design of a complex comprising two isochronous cyclotrons which is planned to be constrdcted 1n the JINR is described. The cyclotron complex includes the U-400 and the U-400 M cyclotrons and it is intended for acceleration of both 35-20 MeV/nucleon superheavy ions such as Xe-U and 120 MeV/nucleon light ions. Certain systems of the accelerators are described. Prospects of the U-400 and the U-400 M development are displayed

  17. Electron cyclotron heating (ECH) of tokamak plasmas

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi

    1990-01-01

    Electron cyclotron heating (ECH) is one of the intense methods of plasma heating, and which utilizes the collisionless electron-cyclotron-resonance-interaction between the launched electromagnetic waves (called electron cyclotron waves) and electrons which are one of the constituents of the high temperature plasmas. Another constituent, namely the ions which are subject to nuclear fusion, are heated indirectly but strongly and instantly (in about 0.1 s) by the collisions with the ECH-heated electrons in the fusion plasmas. The recent progress on the development of high-power and high-frequency millimeter-wave-source enabled the ECH experiments in the middle size tokamaks such as JFT-2M (Japan), Doublet III (USA), T-10 (USSR) etc., and ECH has been demonstrated to be the sure and intense plasma heating method. The ECH attracts much attention for its remarkable capabilities; to produce plasmas (pre-ionization), to heat plasmas, to drive plasma current for the plasma confinement, and recently especially by the localization and the spatial controllability of its heating zone, which is beneficial for the fine controls of the profiles of plasma parameters (temperature, current density etc.), for the control of the magnetohydrodynamic instabilities, or for the optimization/improvement of the plasma confinement characteristics. Here, the present status of the ECH studies on tokamak plasmas are reviewed. (author)

  18. 40. anniversary of cyclotron of Institute of Nuclear Physics, Tashkent

    International Nuclear Information System (INIS)

    Umerov, R.A.; Uzakov, J.M.; Gulamov, I.R.

    2004-01-01

    Full text: The Cyclotron U-150-II of Institute of Nuclear Physics was projected in middle of the last century for nuclear-physical researches in a scientific research institute of electro physical equipment in Leningrad. The Cyclotron can accelerate positive ions with beam energy of the protons 18 MeV, deuterons 20 MeV, alpha particles 40 MeV. Intensity of a beam a little some microampere. The building of a Cyclotron represents an impressive three-floor construction in volume of 2000 m 3 . The capital equipment, the high-frequency generator, sources of power supplies, vacuum pumps and other technological units are placed on the first and socle floors of a building. The second and third floors served for accommodation of scientific laboratories. A building of a Cyclotron has three experimental halls, where it was possible to carry out physical researches. They have divided from each other, and the main thing from the accelerator, concrete walls with the purpose of reduction of the big radiating background at the working accelerator, preventing realization of experiments. It provided also biological protection of the on duty personnel. The first some years of operation of the Cyclotron have revealed a line of lacks of this machine. For example, for change of energy of a beam of a Cyclotron it took 2-3 weeks. Also, for transition of acceleration of one particles to others it take same time. Time parameters of a beam were unstable. In 1968 reconstruction of the Cyclotron has been started that has allowed to bring in basic changes to parameters U-150-II. The time took on change of an operating mode of a Cyclotron was sharply reduced, and it was possible to reduce it till 10-20 hours, to improve the energy and time resolution of a beam many times over, to reduce angular straggling of particles in a beam. And, all this enormous amount of works was spent by forces of institute. In 70 th years the big development was received with works on radiating stability of materials

  19. In-pile experiments and test facilities proposed for fast reactor safety

    International Nuclear Information System (INIS)

    Grolmes, M.A.; Avery, R.; Goldman, A.J.; Fauske, H.K.; Marchaterre, J.F.; Rose, D.; Wright, A.E.

    1976-01-01

    The role of in-pile experiments in support of the resolution of fast breeder reactor safety and licensing issues has been re-examined, with emphasis on key safety issues. Experiment needs have been related to the specific characteristics of these safety issues and to realistic requirements for additional test facility capabilities which can be achieved and utilized within the next ten years. It is found that those safety issues related to the energetics of core disruptive accidents have the largest impact on new facility requirements. However, utilization of existing facilities with modifications can provide for a continuing increase in experiment capability and experiment results on a timely bases. Emphasis has been placed upon maximum utilization of existing facilities and minimum requirements for new facilities. This evaluation has concluded that a new Safety Test Facility, STF, along with major modifications to the EBR II facility, improvement in TREAT capabilities, the existing Sodium Loop Safety Facility and corresponding Support Facilities provide the essential elements of the Safety Research Experiment Facilities (SAREF) required for resolution of key issues

  20. [Cyclotron based nuclear science

    International Nuclear Information System (INIS)

    1991-08-01

    This report contains descriptions of research programs carried out by Institute staff, as well as progress on new instrumentation during the period, April 1, 1990, to March 31, 1991. The K500 cyclotron and ECR source provided beam for 4140 hours during the period. The beam was actually available for experiments 1927.50 hours and 1110.50 hours was devoted to developing new beams and exploring cyclotron performance. A wide range of beams from protons to Xe with energies from 2.4 MeV/u to 60 MeV/U have been used in experiments. The highest total energy beam accelerated was 35 MeV/u 63 Cu. The ECR source, made a tremendous improvement in accelerator performance and reliability. Substantial amounts of beam time were devoted to investigations of hot nuclei, electron-positron, giant resonances, atomic effects of high velocity ion beams, astrophysics related reactions and proton and alpha bremsstrahlung. Scientific accomplishments included determination of the heat capacity of nuclei through new insight into the level densities and establishing a lower limit for electron positron resonances a factor of ten better than previous measurements. The proton spectrometer, constructed for studies of the Gamow-Teller interaction is complete, and initial physics measurements will be made in the next few months. All of the BaF 2 crystals have been delivered and acceptance tests are underway. A K=315 MDM spectrometer has been obtained from Oxford University and is scheduled for installation in Spring 1992, after removal of the K=150 Enge split pole spectrometer. Institute groups continue participation in MEGA, instrumentation projects for RHIC, and few nucleon studies at LAMPF and KEK. Reports of these activities are included

  1. PHYSICS OF ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D

    International Nuclear Information System (INIS)

    PETTY, C.C.; PRATER, R.; LUCE, T.C.; ELLIS, R.A.; HARVEY, R.W.; KINSEY, J.E.; LAO, L.L.; LOHR, J.; MAKOWSKI, M.A.

    2002-01-01

    OAK A271 PHYSICS OF ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D. Recent experiments on the DIII-D tokamak have focused on determining the effect of trapped particles on the electron cyclotron current drive (ECCD) efficiency. The measured ECCD efficiency increases as the deposition location is moved towards the inboard midplane or towards smaller minor radius for both co and counter injection. The measured ECCD efficiency also increases with increasing electron density and/or temperature. The experimental ECCD is compared to both the linear theory (Toray-GA) as well as a quasilinear Fokker-Planck model (CQL3D). The experimental ECCD is found to be in better agreement with the more complete Fokker-Planck calculation, especially for cases of high rf power density and/or loop voltage

  2. Tritium monitoring equipments for animal experiment facilities

    International Nuclear Information System (INIS)

    Sato, Hiroo

    1980-01-01

    Animal experiment facilities using tritium are described with reference to laws and regulations concerning radiological safety. Usual breeding facilities and surrounding conditions at non-radioactive animal experiments are summarized on feasible and effective designs of tritium monitors. Characteristics and desirable arrangements of various kinds of tritium monitors such as ionization chambers, proportional counters and liquid scintillation detectors are discussed from the standpoint of monitoring for room, glove-box, stack, liquid waste and personnel. (J.P.N.)

  3. Status of RIB facilities in Asia

    International Nuclear Information System (INIS)

    Tanihata, Isao

    1998-01-01

    Radioactive Ion Beam Facilities in Asia are presented. In China, in-flight separation type facilities are in operation at the Institute of Modern Physics in Lanzhou and the other at Tandem facility in China Institute of Atomic Energy in Beijing. The storage-ring facility is proposed and approved in Lanzhou. In India, the Variable Energy Cyclotron Facility in Calcutta start to construct an ISOL-type facility. In Japan, in-flight separation type facilities are working at Research Center for Nuclear Physics in Osaka, and at RIKEN. Also a separator start its operation in medical facility in Chiba. In RIKEN, the construction of RI Beam Factory has been started. An ISOL-type facility is proposed in the Japan Hadron Facility in KEK. Table I summarize these facilities

  4. Commercial cyclotrons. Part I: Commercial cyclotrons in the energy range 10 30 MeV for isotope production

    Science.gov (United States)

    Papash, A. I.; Alenitsky, Yu. G.

    2008-07-01

    A survey of commercial cyclotrons for production of medical and industrial isotopes is presented. Compact isochronous cyclotrons which accelerate negative hydrogen ions in the energy range 10 30 MeV have been widely used over the last 25 years for production of medical isotopes and other applications. Different cyclotron models for the energy range 10 12 MeV with moderate beam intensity are used for production of 11C, 13N, 15O, and 18F isotopes widely applied in positron emission tomography. Commercial cyclotrons with high beam intensity are available on the market for production of most medical and industrial isotopes. In this work, the physical and technical parameters of different models are compared. Possibilities of improving performance and increasing intensity of H- beams up to 2 3 mA are discussed.

  5. Solid targetry for compact cyclotrons

    International Nuclear Information System (INIS)

    Comor, J.

    2004-01-01

    In this presentation authors present experimental results of solid targetry for compact cyclotrons. It is concluded: Solid targetry is not restricted to large accelerator centers anymore; Small and medium scale radioisotope production is feasible with compact cyclotrons; The availability of versatile solid target systems is expected to boost the radiochemistry of 'exotic' positron emitters

  6. Nonlinear Cyclotron absorption of a hole doppleron in cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Voloshin, I.F.; Bugal' ter, G.A.; Demikhovskii, V.Y.; Fisher, L.M.; Yudin, V.A.

    1977-10-01

    We investigated experimentally the nonlinear behavior of the impedance of a cadmium plate in the region of existence of the hole doppleron. It is shown theoretically that this phenomenon can be attributed to nonlinear cyclotron absorption of the wave in the metal. A theory of nonlinear cyclotron absorption of a hole doppleron in cadmium is constructed. The nonlinearity is due to the influence of the wave magnetic field H that alters the trajectories of the resonant electrons responsible for the cyclotron asorption. The Lorentz force connected with the field H modulates the particle velocity along the magnetic field at a characteristic frequency ..omega../sub 0/ proportional to the square root of the wave amplitude. The modulation of the longitudinal particle velocity leads to violation of the condition of their resonant interaction with the wave, as a result of which the absorption coefficient decreases. The nonlinearity is significant when the frequency ..omega../sub 0/ is large compared with the electron-collision frequency. A decrease of the cyclotron absorption changes radically the picture of the surface-impedance oscillations of the plate in the magnetic field. We studied in the experiment the influence of the temperature, of the angle of inclination of the magnetic field, and of the frequency on the nonlinear-effect threshold field that separates the regions of linear and nonlinear behavior of the sample impedance. The measurement results are in qualitative agreement with the conclusions of the theory.

  7. Ponderomotive force near cyclotron resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Mitsuo; Sanuki, Heiji

    1987-01-01

    The ponderomotive force, which is involved in the excitation of macroscopic behaviors of plasma caused by wave motion, plays an important role in various non-linear wave motion phenomena. In the present study, equations for the pondermotive force for plasma in a uniform magnetic field is derived using a renormalization theory which is based on the Vlasov equation. It is shown that the pondermotive force, which diverges at the cyclotron resonence point according to adiabatic approximation, can be expressed by a non-divergent equation by taking into account the instability of the cyclotron orbit due to high-order scattering caused by a wave. This is related with chaotic particle behaviors near cyclotron resonance, where the pondermotive force is small and the diffusion process prevails. It is assumed here that the amplitude of the high-frequency electric field is not large and that the broadening of cyclotron levels is smaller than the distance between the levels. A global chaos will be created if the amplitude of the electric field becomes greater to allow the broadening to exceed the distance between the levels. (Nogami, K.).

  8. Cyclotron transitions of bound ions

    Science.gov (United States)

    Bezchastnov, Victor G.; Pavlov, George G.

    2017-06-01

    A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.

  9. Indian boarding school experience, substance use, and mental health among urban two-spirit American Indian/Alaska natives.

    Science.gov (United States)

    Evans-Campbell, Teresa; Walters, Karina L; Pearson, Cynthia R; Campbell, Christopher D

    2012-09-01

    Systematic efforts of assimilation removed many Native children from their tribal communities and placed in non-Indian-run residential schools. To explore substance use and mental health concerns among a community-based sample of 447 urban two-spirit American Indian/Alaska Native adults who had attended boarding school as children and/or who were raised by someone who attended boarding school. Eighty-two respondents who had attended Indian boarding school as children were compared to respondents with no history of boarding school with respect to mental health and substance use. Former boarding school attendees reported higher rates of current illicit drug use and living with alcohol use disorder, and were significantly more likely to have attempted suicide and experienced suicidal thoughts in their lifetime compared to non-attendees. About 39% of the sample had been raised by someone who attended boarding school. People raised by boarding school attendees were significantly more likely to have a general anxiety disorder, experience posttraumatic stress disorder symptoms, and have suicidal thoughts in their lifetime compared to others.

  10. arXiv Cyclotrons: Magnetic Design and Beam Dynamics

    CERN Document Server

    Zaremba, Simon

    Classical, isochronous, and synchro-cyclotrons are introduced. Transverse and longitudinal beam dynamics in these accelerators are covered. The problem of vertical focusing and iscochronism in compact isochronous cyclotrons is treated in some detail. Different methods for isochronization of the cyclotron magnetic field are discussed. The limits of the classical cyclotron are explained. Typical features of the synchro-cyclotron, such as the beam capture problem, stable phase motion, and the extraction problem are discussed. The main design goals for beam injection are explained and special problems related to a central region with an internal ion source are considered. The principle of a Penning ion gauge source is addressed. The issue of vertical focusing in the cyclotron centre is briefly discussed. Several examples of numerical simulations are given. Different methods of (axial) injection are briefly outlined. Different solutions for beam extraction are described. These include the internal target, extracti...

  11. Recent development and progress of IBA cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Kleeven, W., E-mail: Willem.Kleeven@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Abs, M., E-mail: Michel.Abs@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Delvaux, J.L., E-mail: Jean-Luc.Delvaux@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Forton, E., E-mail: Eric.Forton@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Jongen, Y., E-mail: Yves.Jongen@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Medeiros Romao, L., E-mail: Luis.MedeirosRomao@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Nactergal, B., E-mail: Benoit.Nactergal@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Nuttens, V., E-mail: Vincent.Nuttens@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Servais, T., E-mail: Thomas.Servais@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Vanderlinden, T., E-mail: Thierry.Vanderlinden@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Zaremba, S., E-mail: Simon.Zaremba@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium)

    2011-12-15

    Several cyclotron development projects were recently realized by Ion Beam Applications S.A. (IBA). This contribution presents three of them: (i) the intensity enhancement of the Cyclone 30 cyclotron, a machine mainly used for the production of SPECT isotopes. This project is related with the increased demand for {sup 201}Tl because of the shortage of Mo/Tc generators from nuclear reactors, (ii) development of a new versatile multiple-particle K = 30 isotope-production cyclotron (the Cyclone 30XP) being able to accelerate H{sup -}, D{sup -} and also {alpha}-particles. The {alpha}-beam of this cyclotron will allow the production of new therapeutic isotopes (e.g. {sup 211}At) and (iii) commissioning of the Cyclone 70 cyclotron installed for Arronax in France. This machine is similar to the C30XP but provides higher energy (K = 70) and allows research on new types of medical isotopes.

  12. Visual assistance system for cyclotron operation

    International Nuclear Information System (INIS)

    Okamura, Tetsuya; Tachikawa, Toshiki; Murakami, Tohru.

    1994-01-01

    A computer-based operation system for a cyclotron which assists operators has been developed. It is the operation assistance system depending on visual sense to indicate beam parameters to operators. First, the mental model of operators at the time of beam adjustment was analyzed, and it was presumed to be composed of five partial mental models, that is, beam behavior model, feasible setting region model, parameter sensitivity model, parameter interrelation model and status map model. Next, three visual interfaces were developed. Beam trajectory is rapidly calculated and graphically displayed whenever operators change parameters. Feasible setting regions (FSR) for parameters that satisfy the beam acceptance criteria of a cyclotron are indicated. The distribution of beam current values which are the quantity for evaluating adjustment is indicated as search history. Finally, for evaluating the system effectiveness, the search time required to reach the optimum conditions was measured. In addition, the system usability was evaluated by written questionnaires. The result of experiment showed the reduction of search time by about 65%. The written questionnaires survey showed the operators highly evaluate system usability. (K.I.)

  13. Synchro-cyclotron

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    The electromagnetic coil which forms the first section of the proton extraction channel in the improved synchro-cyclotron. The photograph shows the positioning gear and the current septum. An extraction efficiency above 50% is expected.

  14. The Indian Gaming Regulatory Act and Its Effects on American Indian Economic Development

    OpenAIRE

    Randall K. Q. Akee; Katherine A. Spilde; Jonathan B. Taylor

    2015-01-01

    The Indian Gaming Regulatory Act (IGRA), passed by the US Congress in 1988, was a watershed in the history of policymaking directed toward reservation-resident American Indians. IGRA set the stage for tribal government-owned gaming facilities. It also shaped how this new industry would develop and how tribal governments would invest gaming revenues. Since then, Indian gaming has approached commercial, state-licensed gaming in total revenues. Gaming operations have had a far-reaching and trans...

  15. Los Alamos Critical Experiments Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1991-01-01

    The Critical Experiments Facility of the Los Alamos National Laboratory has been in existence for 45 years. In that period of time, thousands of measurements have been made on assemblies containing every fissionable material in various configurations that included bare metal and compounds of the nitrate, sulfate, fluoride, carbide, and oxide. Techniques developed or applied include Rossi-α, source-jerk, rod oscillator, and replacement measurements. Many of the original measurements of delay neutrons were performed at the site, and a replica of the Hiroshima weapon was operated at steady state to assist in evaluating the relative biological effectiveness (RBE) of neutrons. Solid, liquid, and gas fissioning systems were run at critical. Operation of this original critical facility has demonstrated the margin of safety that can be obtained through remote operation. Eight accidental excursions have occurred on the site, ranging from 1.5 x 10 16 to 1.2 x 10 17 fissions, with no significant exposure to personnel or damage to the facility beyond the machines themselves -- and in only one case was the machine damaged beyond further use. The present status of the facility, operating procedures, and complement of machines will be described in the context of programmatic activity. New programs will focus on training, validation of criticality alarm systems, experimental safety assessment of process applications, and dosimetry. Special emphasis will be placed on the incorporation of experience from 45 years of operation into present procedures and programs. 3 refs

  16. Compact superconducting cyclotron C400 for hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y.; Abs, M.; Blondin, A.; Kleeven, W.; Zaremba, S.; Vandeplassche, D. [IBA, Chemin du Cyclotron 3, B-1348 Louvain-la-Neuve (Belgium); Aleksandrov, V.; Gursky, S.; Karamyshev, O. [JINR, Joliot-Curie 6, 141980 Dubna, Moscow region (Russian Federation); Karamysheva, G., E-mail: gkaram@nu.jinr.r [JINR, Joliot-Curie 6, 141980 Dubna, Moscow region (Russian Federation); Kazarinov, N.; Kostromin, S.; Morozov, N.; Samsonov, E.; Shirkov, G.; Shevtsov, V.; Syresin, E.; Tuzikov, A. [JINR, Joliot-Curie 6, 141980 Dubna, Moscow region (Russian Federation)

    2010-12-01

    The compact superconducting isochronous cyclotron C400 has been designed by the IBA-JINR collaboration. It will be the first cyclotron in the world capable of delivering protons, carbon and helium ions for cancer treatment. The cyclotron construction is started this year within the framework of the Archade project (Caen, France). {sup 12}C{sup 6+} and {sup 4}He{sup 2+} ions will be accelerated to 400 MeV/uu energy and extracted by the electrostatic deflector, H{sub 2}{sup +} ions will be accelerated to the energy of 265 MeV/uu and extracted by stripping. The magnet yoke has a diameter of 6.6 m, the total weight of the magnet is about 700 t. The designed magnetic field corresponds to 4.5 T in the hills and 2.45 T in the valleys. Superconducting coils will be enclosed in a cryostat; all other parts of the cyclotron will be warm. Three external ion sources will be mounted on the switching magnet on the injection line located below the cyclotron. The main parameters of the cyclotron, its design, the current status of the development work on the cyclotron systems are presented.

  17. Palliative care services for Indian migrants in Australia: Experiences of the family of terminally Ill patients

    Directory of Open Access Journals (Sweden)

    Sujatha Shanmugasundaram

    2009-01-01

    Full Text Available Background: The way that health care systems in developing countries like India care for dying patients, has an impact on the expectations of such care for those who migrate to other countries faces. At the end of life, cultural issues may impact on the quality of life remaining and for that reason, it is important that particular cultural practices are understood. This paper describes a study that investigated the cultural issues of access to palliative care services for Indian migrants in Australia. Purpose of the Study: To investigate the experiences of the family members of terminally ill Indian migrants in Victoria, Australia. Objective of the Study: To explore the issues related to accessing palliative care services for Indian migrants; to identify the effectiveness of palliative care in supporting the patient and family and to recommend strategies for improving this care. Materials and Methods: A qualitative descriptive design was utilized. Up to 6 family members were selected for in-depth interviews in understanding cultural issues related to the palliative care services for a family member. Results: Analysis of the interviews revealed that families of Indian patients experience difficulties whilst receiving palliative care services, which fell into three main categories: Indian support systems, cultural issues, and caring experiences. Although each of these issues had a direct influence on the experience of terminal care that their family member received, cultural issues and support systems also influenced the caring experiences. Conclusion: Despite the successful implementation of palliative care services across Australia, there are still problems in accessing and receiving the services among minority and disadvantaged groups like various cultural groups.

  18. Cyclotron-produced radioisotopes and their clinical use at the Austin PET Centre

    International Nuclear Information System (INIS)

    Tochon-Danguy, H.J.

    1997-01-01

    A Centre for Positron Emission Tomography (PET) has been established within the Department of Nuclear Medicine at the Austin and Repatriation Medical Centre in Melbourne. PET is a non-invasive technique based on the use of biologically relevant compounds labelled with short-lived positron-emitting radionuclides such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18. The basic equipment consists of a medical cyclotron (10 MeV proton and 5 MeV deuteron), six lead-shielded hot cells with associated radiochemistry facilities and a whole body PET scanner. During its first five years of operation, the Melbourne PET Centre, has pursued a strong radiolabelling development program, leading to an ambitious clinical program in neurology, oncology and cardiology. This presentation will describe the basic principles of the PET technique and review the cyclotron-produced radioisotopes and radiopharmaceuticals. Radiolabelling development programs and clinical applications are also addressed

  19. Electron cyclotron heating calculations for ATF

    International Nuclear Information System (INIS)

    Goldfinger, R.C.; Batchelor, D.B.

    1986-03-01

    The RAYS geometrical optics code has been used to calculate electron cyclotron wave propagation and heating in the Advanced Toroidal Facility (ATF) device under construction at Oak Ridge National Laboratory (ORNL). The intent of this work is to predict the outcome of various heating scenarios and to give guidance in designing an optimum heating system. Particular attention is paid to the effects of wave polarization and antenna location. We investigate first and second harmonic cyclotron heating with the parameters predicted for steady-state ATF operation. We also simulate the effect of wall reflections by calculating a uniform, isotropic flux of power radiating from the wall. These results, combined with the first-pass calculations, give a qualitative picture of the heat deposition profiles. From these results we identify the compromises that represent the optimum heating strategies for the ATF model considered here. Our basic conclusions are that second harmonic heating with the extraordinary mode (X-mode) gives the best result, with fundamental ordinary mode (O-mode) heating being slightly less efficient. Assuming the antenna location is restricted to the low magnetic field side, the antenna should be placed at phi = 0 0 (the toroidal angle where the helical coils are at the sides) for fundamental heating and at phi = 15 0 (where the helical coils are at the top and bottom) for second harmonic heating. These recommendations come directly from the ray tracing results as well as from a theoretical identification of the relevant factors affecting the heating

  20. Directory of cyclotrons used for radionuclide production in Member States

    International Nuclear Information System (INIS)

    1998-03-01

    The directory of cyclotrons used for radionuclide production is an update of the data base on cyclotrons that was compiled in 1983 by the International Atomic Energy Agency. The directory contains technical, utilization and administrative information supplied to the IAEA as of October 1997. The directory was prepared through information collected by questionnaires sent to institutions that either have a cyclotron, or that were identified to be in the process of installation of a cyclotron. The directory contains 206 entries for cyclotrons operating in 34 Member States. The largest concentration of cyclotrons for radionuclide production are located in the United States of America (66), Japan (33) and Germany (22). The largest number of cyclotrons for a single country is the United States of America. The expansion in number of cyclotrons during the last decade has been driven by the advent of advances in medical imaging instrumentation (PET, SPET and more recently 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons from several companies that manufacture cyclotrons; and recent decisions that 15 O-oxygen PET studies in Japan, and 18 F-FDG PET studies in Germany are eligible for reimbursement by government or insurance companies

  1. Directory of cyclotrons used for radionuclide production in Member States

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The directory of cyclotrons used for radionuclide production is an update of the data base on cyclotrons that was compiled in 1983 by the International Atomic Energy Agency. The directory contains technical, utilization and administrative information supplied to the IAEA as of October 1997. The directory was prepared through information collected by questionnaires sent to institutions that either have a cyclotron, or that were identified to be in the process of installation of a cyclotron. The directory contains 206 entries for cyclotrons operating in 34 Member States. The largest concentration of cyclotrons for radionuclide production are located in the United States of America (66), Japan (33) and Germany (22). The largest number of cyclotrons for a single country is the United States of America. The expansion in number of cyclotrons during the last decade has been driven by the advent of advances in medical imaging instrumentation (PET, SPET and more recently 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons from several companies that manufacture cyclotrons; and recent decisions that {sup 15}O-oxygen PET studies in Japan, and {sup 18}F-FDG PET studies in Germany are eligible for reimbursement by government or insurance companies.

  2. Estimation of exposure quantity of gamma and neutron in 13 MeV proton cyclotron for radioisotope production of 18F

    International Nuclear Information System (INIS)

    Sunardi; Silakhuddin

    2015-01-01

    Quantitative estimation of gamma and neutron exposure in 13 MeV proton cyclotron for radioisotope of 18 F has been done. The aim of this study is to know the exposure of gamma and neutron that will be generated by 13 MeV proton cyclotron The method that was used is the determine of gamma and neutron quantity exposure that produced by proton beam collision with matter in the cyclotron chamber and cyclotron target. The analysis result showed that the reactions occur at chamber are 63 Cu(p,n) 63 Zn, 65 Cu(p,n) 65 Zn and 56 Fe(p,n) 56 Co,, while at the target is 18 O(p,n) 18 F. The calculation result of neutron flux at the chamber and the target facility are 7,34×10 7 n/cm 2 dt and 1.10×10 9 n/cm 2 dt, respectively. The gamma activity at the chamber for reaction 63 Cu(p,n) 63 Zn, 65 Cu(p,n) 65 Zn and 56 Fe(p,n) 56 Co are 3,0×10 8 Bq, 4,54×10 5 Bq and 1,13×10 9 Bq respectively, while the gamma activity at the cyclotron target is 1,84×10 8 Bq. The data can be used as a basis for designing the cyclotron radiation shielding. (author)

  3. Researches at hadron experiment facility

    International Nuclear Information System (INIS)

    Sawada, Shinya

    2006-01-01

    Some of the nuclear, hadron and elementary particle experiments proposed to hadron experiment facility to use the extracted slow proton beam at J-PARC are overviewed. Characteristic feature of the facility is the secondary beam obtained from the intense proton beam. Nuclear hadron physics experiments and kaon rare decay experiments are presented here as the typical ones. Hypernuclear spectroscopy with S=-2 state is expected to be started as soon as the beam becomes available. The kaon bound systems not only with three nucleons like K-pnn but also more numerous like Li and Be are to be studied systematically. Bound states of two kaons using (K - , K + ) reaction will be challenged. Pentaquark will be searched for and its properties will be studied if it really exists. Nuclear structure studies from the view point of large Bjorken x are planned to be studied by irradiating hydrogen, deuteron or heavier targets with primary proton beam and analyzing generated muon pairs. Properties of vector mesons in nuclear matter are to be studied with the primary beam. Neutral kaon rare decay will be investigated to study CP nonconservation. Large progress of elementary particle physics is anticipated by using the intense proton beam at J-PARC. (S. Funahashi)

  4. Status report on cyclotron operation

    International Nuclear Information System (INIS)

    Kovacs, P.; Szuecs, I.; Ander, I.; Lakatos, T.; Fenyvesi, A.; Ditroi, F.; Takacs, S.; Tarkanyi, F.

    2004-01-01

    The operation of the cyclotron in 2003 was again concentrated to 9 months; January, July and August were reserved for maintenance, renewal works and holidays. The overall working time of the accelerator was 4051 hours. The cyclotron was available for users for 3682 hours. In order to improve the circumstances of the irradiations renewal and improvements were done. (N.T.)

  5. Life Sciences at the Cyclotron Center of the Slovak Republic

    International Nuclear Information System (INIS)

    Podhorsky, D.; Kovac, P.; Macasek, F.

    2004-01-01

    In this presentation the history and present status of the Cyclotron Center of the Slovak (CC SR) are presented. A state run scientific center and production facility ensuring: - the basic and applied research in nuclear physics, chemistry, biology and medicine; - production of radionuclides and radiopharmaceuticals; - and applications of heavy ions and electron accelerator technologies in medicine and material science. Current financial status of the CC SR is following: Deblocation of the Russian; Federation debt to the Slovak Republic (94 %); State budget of the Slovak Republic (3 %); IAEA (3 %)

  6. Slow wave cyclotron maser

    International Nuclear Information System (INIS)

    Kho, T.H.; Lin, A.T.

    1988-01-01

    Cyclotron masers such as Gyrotrons and the Autoresonance Masers, are fast wave devices: the electromagnetic wave's phase velocity v rho , is greater than the electron beam velocity, v b . To be able to convert the beam kinetic energy into radiation in these devices the beam must have an initial transverse momentum, usually obtained by propagating the beam through a transverse wiggler magnet, or along a nonuniform guide magnetic field before entry into the interaction region. Either process introduces a significant amount of thermal spread in the beam which degrades the performance of the maser. However, if the wave phase velocity v rho v b , the beam kinetic energy can be converted directly into radiation without the requirement of an initial transverse beam momentum, making a slow wave cyclotron maser a potentially simpler and more compact device. The authors present the linear and nonlinear physics of the slow wave cyclotron maser and examine its potential for practical application

  7. Cooperation, decision time, and culture: Online experiments with American and Indian participants.

    Directory of Open Access Journals (Sweden)

    Akihiro Nishi

    Full Text Available Two separate bodies of work have examined whether culture affects cooperation in economic games and whether cooperative or non-cooperative decisions occur more quickly. Here, we connect this work by exploring the relationship between decision time and cooperation in American versus Indian subjects. We use a series of dynamic social network experiments in which subjects play a repeated public goods game: 80 sessions for a total of 1,462 subjects (1,059 from the United States, 337 from India, and 66 from other countries making 13,560 decisions. In the first round, where subjects do not know if connecting neighbors are cooperative, American subjects are highly cooperative and decide faster when cooperating than when defecting, whereas a majority of Indian subjects defect and Indians decide faster when defecting than when cooperating. Almost the same is true in later rounds where neighbors were previously cooperative (a cooperative environment except decision time among Indian subjects. However, when connecting neighbors were previously not cooperative (a non-cooperative environment, a large majority of both American and Indian subjects defect, and defection is faster than cooperation among both sets of subjects. Our results imply the cultural background of subjects in their real life affects the speed of cooperation decision-making differentially in online social environments.

  8. Alignment of mapping system for magnet cyclotron DECY-13

    International Nuclear Information System (INIS)

    Idrus Abdul Kudus; Taufik; Kurnia Wibowo

    2016-01-01

    A cyclotron is composed of some main and specific components, such as magnet system, ion source, RF system and extractor. A magnet is one of important component in a cyclotron that serves as ion beam bending so the ion beam trajectory is circular. Magnet design should with the requirement of cyclotron that proton energy is 13 MeV. In the construction of the cyclotron magnet, a mapping tool of the magnetic field is required for analysis in shimming process in order to optimize the magnetic field. The magnetic field mapping process is carried out in the median plane of the magnet poles. The magnetic field mapping is carried out repeatedly during the shimming process. During this process, the mapping tool is possible to experience a shift or change in position, for that it is necessary to alignment in order to make sure that the probe is in the median plane of magnet poles and to ensure their positions are always the same on each repetition mapping. During this process, it is possible to experience a shift mapping tool or change the position, for this it is needed to process alignment to ensure the position of the probe is in the median plane magnetic poles and ensure their positions are always the same on each repetition mapping. Alignment on the mapping tool are the height position, zeroing tesla meter and two hall probe mapping. The parameters form the basis for magnetic field measurements based on the three elements: an alignment system on the engine mapping, mapping tool reference point and stage movement of x-y coordinates. Shifts occur due to change in elevation mapping tool table and center coordinates x and y in the mapping process. Changes made to shift mapping coordinates can be shifted as far as 1 to 2 mm for each hall probe in the x and y coordinates with altitude changes 0.05° mapping table and measurement of tesla meter changes in 0.002 T. (author)

  9. SUMMARY AND EVALUATION OF STARTUP AND OPERATING EXPERIENCE AT INDIAN POINT STATION

    Energy Technology Data Exchange (ETDEWEB)

    Freyberg, R. H.; Prestele, J. A.

    1963-09-15

    A description of the Indian Point Power Station is given aiong with a summary and evaluation of startup and operating experience. Equipment failures and problems and various corrective measures are also outlined. (C.E.S.)

  10. Proceedings of the 12. Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating

    International Nuclear Information System (INIS)

    Giruzzi, Gerardo

    2003-01-01

    The 12. Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating was held in Aix-en-Provence (France) from 13 to 16 May 2002. The meeting was hosted by the Association Euratom-CEA sur la Fusion (CEA/Cadarache, France), with additional financial support from: - Region Provence-Alpes Cote d'Azur - The City of Aix-en-Provence - Communaute de l'Agglomeration du Pays d'Aix - Thales Electron Devices (France) - Alstom Magnets and Superconductors (France) - Spinner GmbH (Germany). The members of the local organizing committee were: G. Giruzzi, M. Lennholm, R. Magne and V. Poli, from CEA/Cadarache. The composition of the International Programme Committee was the following: M. Bornatici (Italy), A. Costley (ITER), E. de la Luna (Spain), G. Giruzzi (France), W. Kasparek (Germany), B. Lloyd (UK), J. Lohr (USA), K. Sakamoto (Japan). The subjects of the meeting were classified in four main topics: Electron Cyclotron Theory; Electron Cyclotron Emission; Electron Cyclotron Heating and Current Drive Experiments; Electron Cyclotron Technology. The results presented in these topics have been summarised in the closing session by E. Westerhof, A. Kraemer-Flecken, T. Goodman and G. Bosia, respectively. The workshop was attended by 85 participants from 18 countries, providing 10 invited talks, 30 oral presentations and 50 posters. The success of the workshop is mainly due to the amount and quality of their work and of their presentations. The generosity of the sponsors, the selection and advice work of the International Programme Committee, as well as the contribution of the chairmen and of the summary speakers should also be warmly acknowledged. The papers in this collection have been reproduced directly from the authors' manuscripts, provided either as camera-ready texts or as pdf files. The constraints on the papers lengths and formats have been kept to a minimum, on purpose. This series of workshops has now reached a good level of maturity, with well established

  11. Cryogenic test facility at VECC, Kolkata

    International Nuclear Information System (INIS)

    Sarkar, Amit; Bhunia, Uttam; Pradhan, J.; Sur, A.; Bhandari, R.K.; Ranganathan, R.

    2003-01-01

    In view of proposed K-500 superconducting cyclotron project, cryogenic test facility has been set up at the centre. The facility can broadly be categorized into two- a small scale test facility and a large scale test facility. This facility has been utilized for the calibration of liquid helium level probe, cryogenic temperature probe, and I-B plot for a 7 T superconducting magnet. Spiral-shaped superconducting short sample with specific dimension and specially designed stainless steel sample holder has already been developed for the electrical characterisation. The 1/5 th model superconducting coil along with its quench detection circuit and dump resistor has also been developed

  12. Decontamination of the activation product based on a legal revision of the cyclotron vault room on the non-self-shield compact medical cyclotron

    International Nuclear Information System (INIS)

    Komiya, Isao; Umezu, Yoshiyuki; Fujibuchi, Toshiou; Nakamura, Kazumasa; Baba, Shingo; Honda, Hiroshi

    2016-01-01

    The non-self-shield compact medical cyclotron and the cyclotron vault room were in operation for 27 years. They have now been decommissioned. We efficiently implemented a technique to identify an activation product in the cyclotron vault room. Firstly, the distribution of radioactive concentrations in the concrete of the cyclotron vault room was estimated by calculation from the record of the cyclotron operation. Secondly, the comparison of calculated results with an actual measurement was performed using a NaI scintillation survey meter and a high-purity germanium detector. The calculated values were overestimated as compared to the values measured using the Nal scintillation survey meter and the high-purity germanium detector. However, it could limit the decontamination area. By simulating the activation range, we were able to minimize the concrete core sampling. Finally, the appropriate range of radioactivated area in the cyclotron vault room was decontaminated based on the results of the calculation. After decontamination, the radioactive concentration was below the detection limit value in all areas inside the cyclotron vault room. By these procedures, the decommissioning process of the cyclotron vault room was more efficiently performed. (author)

  13. The booster linac of the Sparkle Company 18 MeV Cyclotron: main design elements

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.

    2009-01-01

    The Sparkle Company (Casarano, Le) that is setting up a centre for production and research on radioisotopes for medical use, has requested to the ENEA Accelerator Laboratory a specific design of a linear accelerator for boosting the energy of its commercial cyclotron from 18 to 24 MeV, with the aim of implementing a small proton irradiation facility for radiobiology studies. This is the first case of coupling a cyclotron beam to a linac, that, if successful, can give rise to a new class of accelerators for proton therapy. The linac can accelerate only a very small portion of the cyclotron beam, due to the intrinsic mismatching of the two kind of accelerators both in the vertical and in the longitudinal phase planes. A beam transport line has been studied that besides matching at best the beam to the linac in the transverse plane, is equipped with a chopping system to lower drastically the primary beam power in order to protect the linac structure. The linac is SCDTL type, and operates at 3 GHz. In the following the results of the design are presented. [it

  14. Radiochemical studies using a 42 MeV cyclotron. Final report, September 1, 1983-February 28, 1986

    International Nuclear Information System (INIS)

    Tilbury, R.S.; Kolar, A.J.

    1986-01-01

    The cyclotron is working well for neutron production and has been used in the past year for radiation therapy of patients and radiobiology experiments. Good progress has been made with three projects described here. 13 irradiations on the University of Texas Health Science Center cyclotron have been used for the production of bromine radioisotopes and Ba-131, which have been used in these studies

  15. Status of the low frequency facility experiment

    International Nuclear Information System (INIS)

    Bracci, L; Calamai, G; Cuoco, E; Dominici, P; Fabbroni, L; Guidi, G; Losurdo, G; Martelli, F; Mazzoni, M; Stanga, R; Vetrano, F; Porzio, A; Ricciardi, I; Solimeno, S; Ballardin, G; Braccini, S; Bradaschia, C; Casciano, C; Cavalieri, R; Cecchi, R; Cella, G; Dattilo, V; Virgilio, A Di; Fazzi, M; Ferrante, I; Fidecaro, F; Frasconi, F; Gennaro, G; Giazotto, A; Holloway, L; Penna, P La; Lomtadze, T; Nenci, F; Nicolosi, L; Lelli, F; Paoletti, F; Pasqualetti, A; Passaquieti, R; Passuello, D; Poggiani, R; Raffaelli, F; Taddei, R; Vicere, A; Zhang, Z; Frasca, S; Majorana, E; Palomba, C; Perciballi, M; Puppo, P; Rapagnani, P; Ricci, F

    2002-01-01

    The low frequency facility is a VIRGO R and D experiment having the goal of performing a direct measurement of the thermal noise of the VIRGO suspensions by means of a two-mirror Fabry-Perot cavity suspended to the last stage of the attenuating chain. The present status of advancement of this experiment is reported: the apparatus, including mechanical and optical parts, has been completely built and put into operation. Vacuum facilities and the first control loops are active. First measurements on the suspended cavity are in progress

  16. Status of the low frequency facility experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bracci, L [Dipartimento di Fisica, Universita di Firenze, Florence (Italy); Calamai, G [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Cuoco, E [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Dominici, P [Dipartimento di Fisica, Universita di Firenze, Firenze (Italy); Fabbroni, L [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Guidi, G [Dipartimento di Fisica, Universita di Urbino, Urbino (Italy); Losurdo, G [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Martelli, F [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Mazzoni, M [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Stanga, R [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Vetrano, F [Dipartimento di Fisica, Universita di Urbino, Urbino (Italy); Porzio, A [Istituto Nazionale di Fisica Nucleare, Sez Naples (Italy); Ricciardi, I [Istituto Nazionale di Fisica Nucleare, Sez Naples (Italy); Solimeno, S [Istituto Nazionale di Fisica Nucleare, Sez Naples (Italy); Ballardin, G [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Braccini, S [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Bradaschia, C [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Casciano, C [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Cavalieri, R [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Cecchi, R [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Cella, G [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Dattilo, V [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Virgilio, A Di [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Fazzi, M [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Ferrante, I [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Fidecaro, F [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy)] [and others

    2002-04-07

    The low frequency facility is a VIRGO R and D experiment having the goal of performing a direct measurement of the thermal noise of the VIRGO suspensions by means of a two-mirror Fabry-Perot cavity suspended to the last stage of the attenuating chain. The present status of advancement of this experiment is reported: the apparatus, including mechanical and optical parts, has been completely built and put into operation. Vacuum facilities and the first control loops are active. First measurements on the suspended cavity are in progress.

  17. Summary on electron cyclotron theory

    International Nuclear Information System (INIS)

    Westerhof, E.

    2003-01-01

    The papers presented within the Theory Sessions of the conference clearly reflect the general trends of the research field. The growing use of Electron Bernstein Waves (EBW) for plasma heating and current drive in overdense plasmas goes hand in hand with an increased theoretical understanding of EBW excitation. While the expanding number of devices with powerful ECRH systems allowing ever more detailed experiments is reflected in the increased detail of modelling and consequent understanding of the experimental results. Apart from these general trends, some more fundamental contributions to the field of electron cyclotron wave propagation are highlighted. (author)

  18. Experimental investigation of iodine removal and containment depressurization in containment spray system test facility of 700 MWe Indian pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Manish [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Kandar, T.K.; Vhora, S.F.; Mohan, Nalini [Directorate of Technology Development, Nuclear Power Corporation of India Limited, Mumbai (India); Iyer, K.N. [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Prabhu, S.V., E-mail: svprabhu@iitb.ac.in [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India)

    2017-05-15

    Highlights: • Depressurization rate in a scaled down vessel filled with air and steam is studied. • Iodine removal rate in a scaled down vessel filled with steam/air is investigated. • Effect of SMD and vessel pressure on depressurization rate is studied. • Depressurization rate decreases with the increase in the droplet size (590 μm – 1 mm) • Decrease in pressure and iodine concentration with time follow exponential trend. - Abstract: As an additional safety measure in the new 700 MWe Indian pressurized heavy water reactors, the first of a kind system called containment Spray System is introduced. The system is designed to cater/mitigate the conditions after design basis accidents i.e., loss of coolant accident and main steam line break. As a contribution to the safety analysis of condition following loss-of-coolant accidents, experiments are carried out to establish the performance of the system. The loss of coolant is simulated by injecting saturated steam and iodine vapors into the containment vessel in which air is enclosed at atmospheric and room temperature, and then the steam-air mixture is cooled by sprays of water. The effect of water spray on the containment vessel pressure and the iodine scrubbing in a scaled down facility is investigated for the containment spray system of Indian pressurized heavy water reactors. The experiments are carried out in the scaled down vessel of the diameter of 2.0 m and height of 3.5 m respectively. Experiments are conducted with water at room temperature as the spray medium. Two different initial vessel pressure i.e. 0.7 bar and 1.0 bar are chosen for the studies as they are nearing the loss of coolant accident & main steam line break pressures in Indian pressurized heavy water reactors. These pressures are chosen based on the containment resultant pressures after a design basis accident. The transient temperature and pressure distribution of the steam in the vessel are measured during the depressurization

  19. Imagining difference : The experiences of 'transnational' Indian IT-professionals in Germany

    NARCIS (Netherlands)

    Meijering, L; van Hoven, B

    In this paper we explore the motivations to migrate and the migration experiences of 22 Indian IT professionals in Germany. When studying skilled migration, Germany is an interesting case as it struggled with waves of extreme right activities whilst trying to attract IT professionals from outside

  20. Diffusion induced by cyclotron resonance heating

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Tajima, T.; Hatori, T.; Pfirsch, D.

    1985-09-01

    The wave induced particle transport during the ion cyclotron resonance heating is studied in collisionless toroidal plasmas. It is shown that the previously neglected non-conservation of the toroidal angular momentum IP/sub phi/ caused by the toroidal wave component E/sub phi/ is necessary to allow particle diffusion and yields the leading diffusive contribution. While the induced ion transport for the rf power in contemporary experiments is of the order of the neoclassical value, that of fast alpha particles is quite large if resonance is present

  1. 10 GHz ECRIS for Warsaw Cyclotron

    CERN Document Server

    Sudlitz, K

    1999-01-01

    Cusp type, 10 GHz ECRIS has been built and tested earlier. For obtaining intensive beams, more relevant for cyclotron, cusp geometry has been replaced by hexapole. Discharge chamber (stainless steel, 50 mm diameter, 250 mm long) is an extension of a coaxial line, feeding RF (9,6 GHz, up to 200 W) to the plasma. The NdFeB hexapole (0,52 T on the surface) has been used. The axial magnetic field is created by water cooled coils. The axial injection line dedicated to K160 isochronous heavy ion cyclotron has been constructed. The line consists of Glaser lenses, double focusing magnet, solenoid and mirror type inflector. The system provides sufficient transmission of the beam from ECR ion source to the firsts orbits of the cyclotron for m/q ranging from 7 to 2. After successful initial tests which were done in July 1997 the ECRIS serves as an external source for Warsaw Cyclotron.

  2. Oak Ridge rf Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; McCurdy, H.C.; McManamy, T.J.; Moeller, J.A.; Ryan, P.M.

    1985-01-01

    The rf Test Facility (RFTF) of Oak Ridge National Laboratory (ORNL) provides a national facility for the testing and evaluation of steady-state, high-power (approx.1.0-MW) ion cyclotron resonance heating (ICRH) systems and components. The facility consists of a vacuum vessel and two fully tested superconducting development magnets from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program. These are arranged as a simple mirror with a mirror ratio of 4.8. The axial centerline distance between magnet throat centers is 112 cm. The vacuum vessel cavity has a large port (74 by 163 cm) and a test volume adequate for testing prototypic launchers for Doublet III-D (DIII-D), Tore Supra, and the Tokamak Fusion Test Reactor (TFTR). Attached to the internal vessel walls are water-cooled panels for removing the injected rf power. The magnets are capable of generating a steady-state field of approx.3 T on axis in the magnet throats. Steady-state plasmas are generated in the facility by cyclotron resonance breakdown using a dedicated 200-kW, 28-GHz gyrotron. Available rf sources cover a frequency range of 2 to 200 MHz at 1.5 kW and 3 to 18 MHz at 200 kW, with several sources at intermediate parameters. Available in July 1986 will be a >1.0-MW, cw source spanning 40 to 80 MHz. 5 figs

  3. Electron cyclotron harmonic wave acceleration

    Science.gov (United States)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  4. Electron cyclotron harmonic wave acceleration

    International Nuclear Information System (INIS)

    Karimabadi, H.; Menyuk, C.R.; Sprangle, P.; Vlahos, L.; Salonika Univ., Greece)

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts. 31 references

  5. Diagnostic system for the nuclear medicine with baby cyclotron

    International Nuclear Information System (INIS)

    Kashihara, Masao; Wakasa, Shyuichiro

    1982-01-01

    The system of cyclotron nuclear medicine consists of ''RI-production by using the cyclotron'', ''production of radio-pharmaceuticals labeled with RI'', ''positron tomography''. On the other hand, Ultra compact cyclotron (Baby cyclotron) itself, RI production technique and positron tomography have been rapidly developed and advanced. We think that these three functions must be balance in the development in order to spread this system into the routine work in the hospital. However, since the technology of the synthesis for the labeled compounds is not so developed so far, more advance can be strongly expected. In this report, construction of the cyclotron nuclear medicine, utility for the practical use of RI produced by using the cyclotron, technique of RI production, and the studies on automated and efficient productions of radio-pharmaceuticals labeled with short-lived positron emitters for medical diagnostic use are described. (author)

  6. Cyclotron-produced radioisotopes and their clinical use at the Austin PET Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tochon-Danguy, H.J. [Centre for PET, Melbourne, VIC (Australia). Austin and Repatriation Medical Centre

    1997-12-31

    A Centre for Positron Emission Tomography (PET) has been established within the Department of Nuclear Medicine at the Austin and Repatriation Medical Centre in Melbourne. PET is a non-invasive technique based on the use of biologically relevant compounds labelled with short-lived positron-emitting radionuclides such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18. The basic equipment consists of a medical cyclotron (10 MeV proton and 5 MeV deuteron), six lead-shielded hot cells with associated radiochemistry facilities and a whole body PET scanner. During its first five years of operation, the Melbourne PET Centre, has pursued a strong radiolabelling development program, leading to an ambitious clinical program in neurology, oncology and cardiology. This presentation will describe the basic principles of the PET technique and review the cyclotron-produced radioisotopes and radiopharmaceuticals. Radiolabelling development programs and clinical applications are also addressed. 30 refs., 1 tab., 1 fig.

  7. High temperature engineering research facilities and experiments in Russia

    International Nuclear Information System (INIS)

    Kodochigov, N.G.; Kuzavkov, N.G.; Sukharev, Y.P.; Chudin, A.G.

    1998-01-01

    An overview is given of the characteristics of the experimental facilities and experiments in the Russian Federation: the HTGR neutron-physical investigation facilities ASTRA and GROG; facilities for fuel, graphite and other elements irradiation; and thermal hydraulics experimental facilities. The overview is presented in the form of copies of overhead sheets

  8. High power plasma heating experiments on the Proto-MPEX facility

    Science.gov (United States)

    Bigelow, T. S.; Beers, C. J.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Diem, S. J.; Goulding, R. H.; Green, D. L.; Kafle, N.; Rapp, J.; Showers, M. A.

    2017-10-01

    Work is underway to maximize the power delivered to the plasma that is available from heating sources installed on the Prototype Materials Plasma Exposure eXperiment (Proto-MPEX) at ORNL. Proto-MPEX is a linear device that has a >100 kW, 13.56 MHz helicon plasma generator available and is intended for material sample exposure to plasmas. Additional plasma heating systems include a 10 kW 18 GHz electron cyclotron heating (ECH) system, a 25 kW 8 MHz ion cyclotron heating ICH system, and a 200 kW 28 GHz electron Bernstein wave (EBW) and ECH system. Most of the heating systems have relatively good power transmission efficiency, however, the 28 GHz EBW system has a lower efficiency owing to stringent requirements on the microwave launch characteristics for EBW coupling combined with the lower output mode purity of the early-model gyrotron in use and its compact mode converter system. A goal for the Proto-MPEX is to have a combined heating power of 200 kW injected into the plasma. Infrared emission diagnostics of the target plate combined with Thomson Scattering, Langmuir probe, and energy analyzer measurements near the target are utilized to characterize the plasmas and coupling efficiency of the heating systems. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  9. Cyclotron radiation by a multi-group method

    International Nuclear Information System (INIS)

    Chu, T.C.

    1980-01-01

    A multi-energy group technique is developed to study conditions under which cyclotron radiation emission can shift a Maxwellian electron distribution into a non-Maxwellian; and if the electron distribution is non-Maxwellian, to study the rate of cyclotron radiation emission as compared to that emitted by a Maxwellian having the same mean electron density and energy. The assumptions in this study are: the electrons should be in an isotropic medium and the magnetic field should be uniform. The multi-group technique is coupled into a multi-group Fokker-Planck computer code to study electron behavior under the influence of cyclotron radiation emission in a self-consistent fashion. Several non-Maxwellian distributions were simulated to compare their cyclotron emissions with the corresponding energy and number density equivalent Maxwellian distribtions

  10. The South African isotope facility project

    Science.gov (United States)

    Bark, R. A.; Barnard, A. H.; Conradie, J. L.; de Villiers, J. G.; van Schalkwyk, P. A.

    2018-05-01

    The South African Isotope Facility (SAIF) is a project in which iThemba LABS plans to build a radioactive-ion beam (RIB) facility. The project is divided into the Accelerator Centre of Exotic Isotopes (ACE Isotopes) and the Accelerator Centre for Exotic Beams (ACE Beams). For ACE Isotopes, a high-current, 70 MeV cyclotron will be acquired to take radionuclide production off the existing Separated Sector Cyclotron (SSC). A freed up SSC will then be available for an increased tempo of nuclear physics research and to serve as a driver accelerator for the ACE Beams project, in which protons will be used for the direct fission of Uranium, producing beams of fission fragments. The ACE Beams project has begun with "LeRIB" - a Low Energy RIB facility, now under construction. In a collaboration with INFN Legnaro, the target/ion-source "front-end" will be a copy of the front-end developed for the SPES project. A variety of targets may be inserted into the SPES front-end; a uranium-carbide target has been designed to produce up to 2 × 1013 fission/s using a 70 MeV proton beam of 150 µA intensity.

  11. TASCC newsletter volume 6 no. 11

    International Nuclear Information System (INIS)

    Thomson, L.

    1992-01-01

    A newsletter produced by Chalk River's Tandem Accelerator Superconducting Cyclotron Facility. Included in this issue is a report on Canadians at the Eurogam spectrometer, cyclotron beam report, facility report and operating record, a listing of experiments conducted

  12. Intensity limits of the PSI Injector II cyclotron

    Science.gov (United States)

    Kolano, A.; Adelmann, A.; Barlow, R.; Baumgarten, C.

    2018-03-01

    We investigate limits on the current of the PSI Injector II high intensity separate-sector isochronous cyclotron, in its present configuration and after a proposed upgrade. Accelerator Driven Subcritical Reactors, neutron and neutrino experiments, and medical isotope production all benefit from increases in current, even at the ∼ 10% level: the PSI cyclotrons provide relevant experience. As space charge dominates at low beam energy, the injector is critical. Understanding space charge effects and halo formation through detailed numerical modelling gives clues on how to maximise the extracted current. Simulation of a space-charge dominated low energy high intensity (9.5 mA DC) machine, with a complex collimator set up in the central region shaping the bunch, is not trivial. We use the OPAL code, a tool for charged-particle optics calculations in large accelerator structures and beam lines, including 3D space charge. We have a precise model of the present (production) Injector II, operating at 2.2 mA current. A simple model of the proposed future (upgraded) configuration of the cyclotron is also investigated. We estimate intensity limits based on the developed models, supported by fitted scaling laws and measurements. We have been able to perform more detailed analysis of the bunch parameters and halo development than any previous study. Optimisation techniques enable better matching of the simulation set-up with Injector II parameters and measurements. We show that in the production configuration the beam current scales to the power of three with the beam size. However, at higher intensities, 4th power scaling is a better fit, setting the limit of approximately 3 mA. Currents of over 5 mA, higher than have been achieved to date, can be produced if the collimation scheme is adjusted.

  13. Material Processing Facility - Skylab Experiment M512

    Science.gov (United States)

    1972-01-01

    This chart details Skylab's Materials Processing Facility experiment (M512). This facility, located in the Multiple Docking Adapter, was developed for Skylab and accommodated 14 different experiments that were carried out during the three marned missions. The abilities to melt and mix without the contaminating effects of containers, to suppress thermal convection and buoyancy in fluids, and to take advantage of electrostatic and magnetic forces and otherwise masked by gravitation opened the way to new knowledge of material properties and processes. This beginning would ultimately lead to the production of valuable new materials for use on Earth.

  14. Team Update on North American Proton Facilities for Radiation Testing

    Science.gov (United States)

    Label, Kenneth A.; Turflinger, Thomas; Haas, Thurman; George, Jeffrey; Moss, Steven; Davis, Scott; Kostic, Andrew; Wie, Brian; Reed, Robert; Guertin, Steven; hide

    2016-01-01

    In the wake of the closure of the Indiana University Cyclotron Facility (IUCF), this presentation provides an overview of the options for North American proton facilities. This includes those in use by the aerospace community as well as new additions from the cancer therapy regime. In addition, proton single event testing background is provided for understanding the criteria needed for these facilities for electronics testing.

  15. Operation of the Karlsruhe Isochronous Cyclotron in 1975

    International Nuclear Information System (INIS)

    Schulz, F.; Schweickert, H.

    1976-06-01

    The operation of the Karlsruhe Isochronous Cyclotron in 1975 is briefly surveyed. The main reasons for a very short period for maintenance, repair and installation, and several additional efforts to improve the reliability of the accelerator installation, are discussed. The status and the results of several technical developments for the cyclotron are described: 1) the axial injection system; 2) computer aided cyclotron operation; 3) ion source development; 4) capacitive current measurement at the external beam; 5) new correction coils for the cyclotron; 6) improvement of the neutron time-of-flight spectrometer. As there is an increasing interest in using this type of accelerator for research in fields other than nuclear physics, it was felt appropriate to present short surveys on investigations at our cyclotron in 1975 in the fields of: 1) solid state physics; 2) engineering; 3) materials research; 4) nuclear medicine; 5) nuclear chemistry. (orig.) [de

  16. Design of a 18F production system at ORNL 86-inch cyclotron

    International Nuclear Information System (INIS)

    Shaeffer, M.C.; Barreto, F.; Datesh, J.R.; Goldstein, B.R.

    1977-01-01

    A target system for the production of 18 F by proton bombardment of H 2 18 O was designed for the ORNL 86-inch cyclotron facility. The system consists of concentric titanium and aluminum cylinders. Oxygen-18-enriched H 2 O circulates through the inner titanium cylinder and through an external heat exchanger with cooling water flowing in the annulus. Yields of 5.0 curies are expected for a 250-μA proton beam current and 24-min irradiation time

  17. Present and future superconducting cyclotrons

    International Nuclear Information System (INIS)

    Nolen, J.A. Jr.

    1987-01-01

    This paper begins with a brief review of the status of present superconducting (SC) cyclotron projects, including the two which are currently operating and the six which are under construction. The next section summarizes the main features shared by five of these machines, while the third section presents recent developments and new concepts introduced in the other three ''second generation'' SC cyclotrons. Projects in early stages of development are discussed in the fourth section

  18. Knowledge based operation assist system for JAERI AVF cyclotron

    International Nuclear Information System (INIS)

    Agematsu, T.; Okumura, S.; Yokota, W.; Arakawa, K.; Murakami, T.; Okamura, T.

    1992-01-01

    We have developed two operation assist systems for easy and rapid operation of the JAERI AVF cyclotron. One is a knowledge based expert system guiding the sequence of parameter adjustment to inexperienced cyclotron operators. The other is a real-time simulation of the beam trajectories which are calculated from actual operating parameters. It graphically indicates feasible setting range of parameters that satisfies the acceptance of the cyclotron. These systems provide a human interface to adjust the parameters of the cyclotron. (author)

  19. The capacitor banks for the text diagnostic neutral beam and electron cyclotron heating experiments

    International Nuclear Information System (INIS)

    Nelin, K.; Jagger, J.; Baker, M.; Ourou, A.; De Turk, P.

    1986-01-01

    The Texas Experimental Tokamak (TEXT) has been operational since November of 1980. Since that time, many experimental systems have been added to the machine. Currently, two major experiments are being added to compliment the diagnostics already online. These systems, the Diagnostic Neutral Beam (DNB) and the Electron Cyclotron Heating (ECH) experiments are described in separate papers. A set of five modular, bipolar capacitor banks are used to power both the DNB and the ECH. The total capacitance of the banks is 92μF. The stored energy is about 500kJ at+or-100kV. The banks are built as five identical, interchangeable modules. One module is adequate to run the DNB. Up to four banks are used to power the ECH. The banks are portable so that they can be moved to the open end of the laboratory for maintenance. This gives much better access for repair work and allows the experiments to continue to run with the remaining banks. Due to budgetary constraints, these banks were constructed in the most economical manner possible consistent with worker safety and long term reliability. The capacitors themselves are on loan from Los Alamos National Labs. They are rated at 1.85μF at 60kV. Our application requires that they be used in a series/parallel configuration with a peak voltage of 50kV each. This paper describes the electrical, mechanical and control design considerations required to achieve a working set of banks

  20. Isochronous cyclotron for thermonuclear reactors driving

    International Nuclear Information System (INIS)

    Alenitskij, Yu.G.

    1998-01-01

    The main requirements to an accelerator as a part of an electronuclear power plant are considered. The range of the parameters of the accelerated proton and deuteron beams, for which the isochronous cyclotron is the most profitable, is proposed. An opportunity of using the cyclotron to drive the research reactors of various types is considered

  1. Activation of air and concrete in medical isotope production facilities

    Science.gov (United States)

    Dodd, Adam C.; Shackelton, R. J.; Carr, D. A.; Ismail, A.

    2017-05-01

    Medical isotope facilities operating in the 10 to 25 MeV proton energy range have long been used to generate radioisotopes for medical diagnostic imaging. In the last few years the beam currents available in commercially available cyclotrons have increased dramatically, and so the activation of the materials within cyclotron vaults may now pose more serious radiological hazards. This will impact the regulatory oversight of cyclotron operations, cyclotron servicing and future decommissioning activities. Air activation could pose a hazard to cyclotron staff. With the increased cyclotron beam currents it was necessary to examine the issue more carefully. Therefore the ways in which radioactivity may be induced in air by neutron reactions and neutron captures were considered and it was found that the dominant mechanism is neutron capture on Ar-40. A study of the activation of the air by neutron capture on Ar-40 within a cyclotron vault was performed using the MCNP Monte Carlo code. The neutron source energy spectrum used was from the production of the widely used F-18 PET isotope. The results showed that the activation of the air within a cyclotron vault does not pose a significant radiological hazard at the beam intensities currently in use and shows how ventilation affects the results. A second MCNP study on the activation of ordinary concrete in cyclotron vaults by neutron capture was made with a view to determining the optimum thickness of borated polyethylene to reduce neutron activation on both the inner surfaces of the vault and around production targets. This is of importance in decommissioning cyclotrons and therefore in the design of new cyclotron vaults. The distribution of activation on the walls as a function of the source position was also studied. Results are presented for both borated and regular polyethylene, and F-18 and Tc-99 neutron spectra.

  2. Shuttle Laser Technology Experiment Facility (LTEF)-to-airplane lasercom experiment: Airplane considerations

    Science.gov (United States)

    Kalil, Ford

    1990-01-01

    NASA is considering the use of various airplanes for a Shuttle Laser Technology Experiment Facility (LTEF)-to-Airplane laser communications experiment. As supporting documentation, pertinent technical details are included about the potential use of airplanes located at Ames Research Center and Wallops Flight Facility. The effects and application of orbital mechanics considerations are also presented, including slant range, azimuth, elevation, and time. The pros and cons of an airplane equipped with a side port with a bubble window versus a top port with a dome are discussed.

  3. Cyclotron to Oslo University

    International Nuclear Information System (INIS)

    Sandstad, J.

    1978-01-01

    The new cyclotron was delivered to Oslo University on September 21st 1978, and was mannfactured by A/B Scandtronix of Uppsala, Sweden. The contract price was 6,8 million Norwegian kroner and installation will cost a further 4 million. The main specifications are given. The energy will be 36 MeV for protons and alpha particles, 18 MeV deuterons and 48 MeV for helium 3. The principle of a cyclotron is briefly described. While the primary purpose of the machine is nuclear research it is also planned to produce short-lived radioisotopes, primarily iodine 123. (JIW)

  4. Improving the thermal performance of the MGC-20 cyclotron accelerator ion source

    International Nuclear Information System (INIS)

    Azab, A.M.N

    2010-01-01

    The ion source is the heart of the cyclotron accelerator machine. It feeds the electrons to start the plasma generation, and consequently the formation of the ions to be accelerated in the cyclotron's chamber. In addition, it controls the ion beam current and intensity. The performance of the ion source is one of the important factors, which determines the durability, and the production efficiency of the cyclotron. The ion source should have a long stable working life in order to provide particles for isotope production.The regular isotope production program in Egypt's cyclotron facility has been interrupted several times by the sudden break down of the traditional tantalum filament cathode of the ion source. This has been the cause of equipment downtime, for filament replacement. A study for the improvement of the ion source lifetime of the MGC-20 cyclotron accelerator has been carried out by selecting three suitable materials for the ion source filament and compare between them. The cathode material plays a very important role for the production of intense ion beams; hence investigation on other low work-function materials is needed to further enhance the source performance. Two materials were selected for the filament, namely tungsten and molybdenum, in addition to the original tantalum filament. The selected materials for the filament have a high melting point and give low wearing rate during the plasma production, since the filament lifetime of the Livingston source, which is the type used in Egypt's Cyclotron, is usually limited due to the high plasma densities near the filament. In the present work, the effect of the normal operation parameters of the MGC-20 cyclotron on the filament's lifetime is studied for solving the lifetime problem of the MGC-20 cyclotron's ion source.The new types of the filaments were machined from wires, 2.5 mm in diameter, to take the same shape and dimensions as the original tantalum (Ta) filament. The three types of filaments

  5. Distribution of residual long-lived radioactivity in the inner concrete walls of a compact medical cyclotron vault room.

    Science.gov (United States)

    Fujibuchi, Toshioh; Nohtomi, Akihiro; Baba, Shingo; Sasaki, Masayuki; Komiya, Isao; Umedzu, Yoshiyuki; Honda, Hiroshi

    2015-01-01

    Compact medical cyclotrons have been set up to generate the nuclides necessary for positron emission tomography. In accelerator facilities, neutrons activate the concrete used to construct the vault room; this activation increases with the use of an accelerator. The activation causes a substantial radioactive waste management problem when facilities are decommissioned. In the present study, several concrete cores from the walls, ceiling and floor of a compact medical cyclotron vault room were samples 2 years after the termination of operations, and the radioactivity concentrations of radionuclides were estimated. Cylindrical concrete cores 5 cm in diameter and 10 cm in length were bored from the concrete wall, ceiling and floor. Core boring was performed at 18 points. The gamma-ray spectrum of each sample was measured using a high-purity germanium detector. The degree of activation of the concrete in the cyclotron vault room was analyzed, and the range and tendency toward activation in the vault room were examined. (60)Co and (152)Eu were identified by gamma-ray spectrometry of the concrete samples. (152)Eu and (60)Co are produced principally from the stable isotopes of europium and cobalt by neutron capture reactions. The radioactivity concentration did not vary much between the surface of the concrete and at a depth of 10 cm. Although the radioactivity concentration near the target was higher than the clearance level for radioactive waste indicated in IAEA RS-G-1.7, the mean radioactivity concentration in the walls and floor was lower than the clearance level. The radioactivity concentration of the inner concrete wall of the medical cyclotron vault room was not uniform. The areas exceeding the clearance level were in the vicinity of the target, but most of the building did not exceed the clearance levels.

  6. Cyclotron for industrial production of radioisotopes: relevants characteristics

    International Nuclear Information System (INIS)

    Lima, Wanderley de

    1997-01-01

    The industrial production of radioisotopes requests cyclotrons with easy maintenance services, high productivity and low operation costs. To obtain this performance the experts on the have achieved excellent results, taking advantage of modern resources in calculation and modeling. Only by the maximum exploitation of the azimutal variation of the magnetic field, a physical concept introduced in 1967 with the isocronous cyclotrons, it was possible to construct cyclotrons with only 30% of the electrical consumption required by the former cyclotrons. On the other hand, the acceleration of negative ions enable the 100% accelerated beam utilization, without internal energy dissipation, obtaining beam intensities up to 1mA in continuous running which represents an increased factor of 15. Other construction parameters were optimized aiming at reliability and reduction in the components activation. Concerning energy consumption and the beam intensity supplied, a present cyclotron with 30 MeV and 300μA of protons current is 15 times more efficient than its precedent. (author). 6 refs., 1 fig., 2 tabs

  7. Export of radiopharmaceuticals and establishment of export base of cyclotron

    International Nuclear Information System (INIS)

    Jung, Kyungil; Kim, Youngsik

    2006-01-01

    Sam young Unit ech has seized an opportunity to advance into the radiopharmaceuticals market through successful transfer of radiopharmaceuticals manufacturing technology and medical cyclotron, an original technology in nuclear medicine that is the core of less developed areas in nuclear-related fields. The company has continued to push for research development and establishment of market base through industry-academia-research center cooperation with an aim to complement relatively less developed domestic technology and market than in advanced countries, and is making efforts to establish export base in the overseas market based on stabilized supply in the domestic market. As for radiopharmaceuticals, the company is exporting Tc-99m generator to Vietnam, Thailand and the Philippines and preparing itself to export manufacture facilities for Tc-99m generator to Syria and Kazakhstan. In addition, it plans to export 13Mev Cyclotron that has been commercialized after being developed in the domestic market to the U. S. The company plans to grow up to play a pivotal role in the domestic RT area by conducting proactive business activities with an aim to revitalize the domestic market and further domestic original technologies and products in the global market

  8. Present situation of 'baby cyclotron'

    International Nuclear Information System (INIS)

    Yamada, Teruo

    1981-01-01

    A ''baby cyclotron'' has been developed by the Japan Steel Works, Ltd. Its No. 1 model (proton 9.4 MeV) was delivered to the Nakano Hospital of National Sanatorium in March, 1979. It is being used successfully for the production of 11 C, 13 N and 15 O and labeled compounds. The proton or deuteron particles accelerated in the cyclotron collide on target materials. The target box, which is automatically changeable, is directly installed to the accelerating box, thereby taking the safety measures for any leaking radiation. The following matters are described: the production of short-lived radioisotopes (RI yields and treatment); the processes of production in the Nakano Hospital, with No. 1 baby cyclotron, including the photosynthesis of labeled compounds such as 11 C-labeled glucose; the research on the automation in the synthesis of organic labeled compounds like 11 C-palmitic acid. (J.P.N.)

  9. Cryogenic system for VECC K500 superconducting cyclotron

    CERN Document Server

    Pal, G; Bhattacharyya, T K; Bhandari, R K

    2009-01-01

    VEC Centre, Kolkata in India is at an advanced stage of commissioning a K500 superconducting cyclotron. The superconducting coil of the magnet for cyclotron is cooled by liquid helium. Three liquid helium cooled cryopanels, placed inside the Dees of the radiofrequency system, maintain the vacuum in the acceleration region of the superconducting cyclotron. The cryogenic system for magnet for cyclotron has been tested by cooling the coil and energizing the magnet. The cryogenic system for cryopanels has also been tested. Heater and temperature sensor were placed on the liquid helium cold head for cryopanel. The temperature of the cold head was observed to be below 20 K upto a heat load of 11.7 watt.

  10. Critical experiments facility and criticality safety programs at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Takeshita, Isao; Suzaki, Takenori; Miyoshi, Yoshinori; Nomura, Yasushi

    1985-10-01

    The nuclear criticality safety is becoming a key point in Japan in the safety considerations for nuclear installations outside reactors such as spent fuel reprocessing facilities, plutonium fuel fabrication facilities, large scale hot alboratories, and so on. Especially a large scale spent fuel reprocessing facility is being designed and would be constructed in near future, therefore extensive experimental studies are needed for compilation of our own technical standards and also for verification of safety in a potential criticality accident to obtain public acceptance. Japan Atomic Energy Research Institute is proceeding a construction program of a new criticality safety experimental facility where criticality data can be obtained for such solution fuels as mainly handled in a reprocessing facility and also chemical process experiments can be performed to investigate abnormal phenomena, e.g. plutonium behavior in solvent extraction process by using pulsed colums. In FY 1985 detail design of the facility will be completed and licensing review by the government would start in FY 1986. Experiments would start in FY 1990. Research subjects and main specifications of the facility are described. (author)

  11. The SPES project of INFN: Facility and detectors

    Directory of Open Access Journals (Sweden)

    de Angelis G.

    2015-01-01

    Full Text Available The SPES Radioactive Ion Beam facility at INFN-LNL is presently in the construction phase. The facility is based on the Isol (Isotope separation on-line method with an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced Uranium fission at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting Linac at energies of 10A MeV for masses in the region A = 130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES project is to provide a facility for high intensity radioactive ion beams for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam.

  12. Nuclear astrophysics experiments with Pohang neutron facility

    International Nuclear Information System (INIS)

    Kim, Yeong Duk; Yoo, Gwang Ho

    1998-01-01

    Nuclear astrophysics experiments for fundamental understanding of Big Bang nucleosynthesis was performed at Pohang Neutron Facility. Laboratory experiments, inhomogeneous Big Bang nucleosynthesis and S-process were used for nucleosynthesis. For future study, more study on S-process for the desired data and nuclear network calculation are necessary

  13. The Birmingham Irradiation Facility

    International Nuclear Information System (INIS)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Wilson, J.

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1×1 cm 2 ) silicon sensors

  14. The Birmingham Irradiation Facility

    CERN Document Server

    Dervan, P; Hodgson, P; Marin-Reyes, H; Wilson, J

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1 x 1 cm^2 ) silicon sensors.

  15. Variable-Energy Cyclotron for Proton Therapy Application

    CERN Document Server

    Alenitsky, Yu G; Vorozhtsov, A S; Glazov, A A; Mytsyn, G V; Molokanov, A G; Onishchenko, L M

    2004-01-01

    The requirements to characteristics of the beams used for proton therapy are considered. The operation and proposed cyclotrons for proton therapy are briefly described. The technical decisions of creation of the cyclotron with energy variation in the range 70-230 MeV and with current up to 100 nA are estimated. Taking into account the fact, that the size and cost of the cyclotron are approximately determined by the maximum proton energy, it is realistically offered to limit the maximum proton energy to 190 MeV and to elaborate a cyclotron project with a warm winding of the magnet for acceleration of H^{-} ions. The energy of the extracted protons for each run is determined by a stripped target radius in the vacuum chamber of the accelerator, and the radiation dose field for the patient is created by the external devices using the developed techniques.

  16. Power Reactor Thoria Reprocessing Facility (PRTRF), Trombay

    International Nuclear Information System (INIS)

    Dhami, P.S; Yadav, J.S; Agarwal, K.

    2017-01-01

    Exploitation of the abundant thorium resources to meet sustained energy demand forms the basis of the Indian nuclear energy programme. To gain reprocessing experience in thorium fuel cycle, thoria was irradiated in research reactor CIRUS in early sixties. Later in eighties, thoria bundles were used for initial flux flattening in some of the pressurized heavy water reactors (PHWRs). The research reactor irradiated thoria contained small content (∼ 2-3ppm) of "2"3"2U in "2"3"3U product, which did not pose any significant radiological problems during processing in Uranium Thorium Separation Facility (UTSF), Trombay. Thoria irradiated in PHWRs on discharge contained (∼ 0.5-1.5% "2"3"3U with significant "2"3"2U content (100-500 ppm) requiring special radiological attention. Based on the experience from UTSF, a new facility viz. Power Reactor Thoria Reprocessing Facility (PRTRF), Trombay was built which was hot commissioned in the year 2015

  17. Cyclotron Production of Technetium-99m

    Science.gov (United States)

    Gagnon, Katherine M.

    Technetium-99m (99mTc) has emerged as the most widely used radionuclide in medicine and is currently obtained from a 99Mo/ 99mTc generator system. At present, there are only a handful of ageing reactors worldwide capable of producing large quantities of the parent isotope, 99Mo, and owing to the ever growing shutdown periods for maintenance and repair of these ageing reactors, the reliable supply 99mTc has been compromised in recent years. With an interest in alternative strategies for producing this key medical isotope, this thesis focuses on several technical challenges related to the direct cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction. In addition to evaluating the 100Mo(p,2n)99mTc and 100Mo(p,x)99Mo reactions, this work presented the first experimental evaluation of the 100Mo(p,2n) 99gTc excitation function in the range of 8-18 MeV. Thick target calculations suggested that large quantities of cyclotron-produced 99mTc may be possible. For example, a 6 hr irradiation at 500 μA with an energy window of 18→10 MeV is expected to yield 1.15 TBq of 99mTc. The level of coproduced 99gTc contaminant was found to be on par with the current 99Mo/99mTc generator standard eluted with a 24 hr frequency. Highly enriched 100Mo was required as the target material for 99mTc production and a process for recycling of this expensive material is presented. An 87% recovery yield is reported, including metallic target preparation, irradiation, 99mTc extraction, molybdate isolation, and finally hydrogen reduction to the metal. Further improvements are expected with additional optimization experiments. A method for forming structurally stable metallic molybdenum targets has also been developed. These targets are capable of withstanding more than a kilowatt of beam power and the reliable production and extraction of Curie quantities of 99mTc has been demonstrated. With the end-goal of using the cyclotron-produced 99mTc clinically, the quality of the cyclotron

  18. Implementation of a computer-controlled monitoring system at the Princeton AVF Cyclotron

    International Nuclear Information System (INIS)

    Moore, W.H.

    1984-01-01

    Stability in the parameters of the beams from cyclotrons is often crucial to the experiments laboratories perform. For example, when running a high-resolution experiment with Princeton's QDDD Spectrograph, there are 42 magnetic elements between the ion source and the detector. Instability or drift in any of these elements can easily nullify the sophisticated dispersion matching and kinematic correction that make such experiments possible with machines. At the Princeton Cyclotron they have purchased a commercial computer-controlled measurement system and interfaced it to 20 elements of their beamline. While this project is still far from complete, the authors have satisfied two of the conditions that must be met for such a system to be useful. These are, firstly, that measurements can be made under the conditions of a working laboratory to 1 part in 100,000, and secondly that the results can be presented in a form useful both to the experimenter concerned with the quality of his data and to the technical staff who must maintain and develop the equipment

  19. Indian deep-sea environment experiment (INDEX): Monitoring the restoration of marine enviroment after artificial disturbance to simulate deep-sea mining in central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    the restoration of marine environment after artificial disturbance to simulate deep-sea mining in Central Indian Basin Guest Editor Rahul Sharma Note from guest editor A special issue on Indian Deep-sea Environment Experiment (INDEX) conducted by the scientists... in Geochemical Associations in Artificially Disturbed Deep-Sea Sediments B. Nagender Nath, G. Parthiban, S. Banaulikar, and Subhadeep Sarkar Marine Georesources and Geotechnology, 24:61–62, 2006 Copyright # Taylor & Francis Group, LLC ISSN: 1064-119X print/1521...

  20. Neutron field inside a PET Cyclotron vault room

    International Nuclear Information System (INIS)

    Vega C, H.R.; Mendez, R.; Iniguez, M.P.; Climent, J.M.; Penuelas, I.; Barquero, R.

    2006-01-01

    The neutron field around a Positron Emission Tomography cyclotron was investigated during 18 F radioisotope production with an 18 MeV proton beam. In this study the Ion Beam Application cyclotron, model Cyclone 18/9, was utilized. Measurements were carried out with a Bonner sphere neutron spectrometer with pairs of thermoluminescent dosemeters (TLD600 and TLD700) as thermal neutron detector. The TLDs readouts were utilized to unfold the neutron spectra at three different positions inside the cyclotron's vault room. With the spectra the Ambient dose equivalent was calculated. Neutron spectra unfolding were performed with the BUNKIUT code and the UTA4 response matrix. Neutron spectra were also determined by Monte Carlo calculations using a detailed model of cyclotron and vault room. (Author)

  1. Ramifide resonators for cyclotrons

    International Nuclear Information System (INIS)

    Smirnov, Yu.V.

    2000-01-01

    The resonators with the conductors ramified form for cyclotrons are systematized and separated into the self-contained class - the ramified resonators for cyclotrons (Carr). The ramified resonators are compared with the quarter-wave and half-wave nonramified resonators, accomplished from the transmitting lines fragments. The CRR are classified into two types: ones with the additional structural element, switched in parallel and in series. The CRR may include several additional structural elements. The CRR calculations may be concluded by analytical methods - the method of matrix calculation or the method of telegraph equations and numerical methods - by means of the ISFEL3D, MAFIA and other programs [ru

  2. Status Report on Cyclotron Operation

    International Nuclear Information System (INIS)

    Kovacs, P.; Szuecs, I.; Ander, I.; Lakatos, T.; Tarkanyi, F.

    2004-01-01

    Complete text of publication follows. The operation of the cyclotron in 2004 was concentrated to the usual 9 months; January, July and August were reserved for maintenance and holidays. The overall working time of the accelerator was 3554 hours, the time used for systematic maintenance was 450 hours. The breakdown periods amounted to 70 hours last year, included in it a 50 hours repair of RF control module under guarantee. The cyclotron was available for users during 3034 hours. The effectively used beam-on-target time statistics is summarized in Table 1. Developments: A new measuring site with a HPGe detector based gamma spectrometer is under installation in the basement of the Cyclotron Laboratory. A two channel pneumatic rabbit system is also under development to enable fast transport of samples between the new measuring site and two irradiation sites (the low intensity fast neutron irradiation site and the beam line used for Thin Layer Activation). (author)

  3. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  4. Radioisotope production with a medical cyclotron

    International Nuclear Information System (INIS)

    Silvester, D.J.

    1974-01-01

    The cyclotron of Hammersmith hospital in England was completed and started the operation in 1955. The feature is in its design operable at high beam current, reaching 500μA in internal beam and 300μA in external beam. In 1960's, twelve nuclides of radioactive pharmaceuticals were produced with the cyclotron. C-11, N-13 and O-15 have been used in the form of radioactive gases such as CO or H 2 O to test lung functions. F-18 has been used for bone scanning. K-43 is employed in the research of electrolyte balancing together with Na-24 and Br-77. Fe-52 is utilized in iron ion researches as a tracer. Cs-129 is highly evaluated as an isotope for imaging cardiac clogging part. Radioisotopes must be much more used in the examination of in vivo metabolic function. For this purpose, peculiarly labelled compounds should be further developed. It is welcome that the persons paying attention to the medical prospect of cyclotrons are increasing. The author hopes to continue his endeavour to find new products made with the cyclotron for human welfare. (Wakatsuki, Y.)

  5. Status of the PHOENIX electron cyclotron resonance charge breeder at ISOLDE, CERN.

    Science.gov (United States)

    Barton, Charles; Cederkall, Joakim; Delahaye, Pierre; Kester, Oliver; Lamy, Thierry; Marie-Jeanne, Mélanie

    2008-02-01

    We report here on the last progresses made with the PHOENIX electron cyclotron resonance charge breeder test bench at ISOLDE. Recently, an experiment was performed to test the trapping of (61)Fe daughter nuclides from the decay of (61)Mn nuclides. Preliminary results are given.

  6. Status of the PHOENIX electron cyclotron resonance charge breeder at ISOLDE, CERN

    International Nuclear Information System (INIS)

    Barton, Charles; Cederkall, Joakim; Delahaye, Pierre; Kester, Oliver; Lamy, Thierry; Marie-Jeanne, Melanie

    2008-01-01

    We report here on the last progresses made with the PHOENIX electron cyclotron resonance charge breeder test bench at ISOLDE. Recently, an experiment was performed to test the trapping of 61 Fe daughter nuclides from the decay of 61 Mn nuclides. Preliminary results are given

  7. A research experience for American Indian undergraduates: Utilizing an actor–partner interdependence model to examine the student–mentor dyad

    Science.gov (United States)

    Griese, Emily R.; McMahon, Tracey R.; Kenyon, DenYelle Baete

    2016-01-01

    The majority of research examining Undergraduate Research Experiences focuses singularly on student-reported outcomes, often overlooking assessment of the mentor role in student learning and outcomes following these experiences. The goal of the current study was to examine the student-mentor dyad at the beginning and end of a 10-week summer research experience for American Indian undergraduates utilizing a series of actor-partner interdependence models within SEM. Participants included 26 undergraduate interns (50% American Indian; 50% American Indian and White; M age = 24) and 27 mentors (89% White; M age = 47). Findings indicated that in accounting for all potential paths between students and mentors, the partner path between mentor beliefs at the beginning of the program and students’ skills related to autonomy (β =.59, p = .01) and academic resilience (β =.44, p = .03) at the end of the program were significant. These findings suggest the important impact of mentor beliefs on student outcomes, a relationship that should be adequately assessed and continue to be important focus of undergraduate research experiences. Findings further indicate the important role of mentors for American Indian undergraduates. PMID:28289486

  8. Considerations, measurements and logistics associated with low-energy cyclotron decommissioning

    International Nuclear Information System (INIS)

    Sunderland, J. J.; Erdahl, C. E.; Bender, B. R.; Sensoy, L.; Watkins, G. L.

    2012-01-01

    The University of Iowa’s 20-year-old 17 MeV Scanditronix cyclotron underwent decommissioning in the summer of 2011. To satisfy local, state and federal regulations defining removal, transportation and long-term safe and environmentally secure disposal of the 22 ton activated cyclotron, a series of nuclear spectroscopic measurements were performed to characterize the nature and extent of proton and neutron activation of the 22-ton cyclotron, its associated targets, and the concrete wall that was demolished to remove the old cyclotron. Neutron activation of the concrete wall was minimal and below exempt concentrations resulting in standard landfill disposal. The cyclotron assessment revealed the expected array of short and medium-lived radionuclides. Subsequent calculations suggest that meaningful levels residual activity will have decayed virtually to background after 15 years, with the total residual activity of the entire cyclotron dropping below 37 MBq (1 mCi).

  9. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Prater, R.; Petty, C.C.; Pinsker, R.I.

    1993-01-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency. (Author)

  10. Verification of effectiveness of borated water shield for a cyclotron type self-shielded; Verificacao da eficacia da blindagem de agua borada construida para um acelerador ciclotron do tipo autoblindado

    Energy Technology Data Exchange (ETDEWEB)

    Videira, Heber S.; Burkhardt, Guilherme M.; Santos, Ronielly S., E-mail: heber@cyclopet.com.br [Cyclopet Radiofarmacos Ltda., Curitiba, PR (Brazil); Passaro, Bruno M.; Gonzalez, Julia A.; Santos, Josefina; Guimaraes, Maria I.C.C. [Universidade de Sao Paulo (HCFMRP/USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Hospital das Clinicas; Lenzi, Marcelo K. [Universidade Federal do Parana (UFPR), Curitina (Brazil). Programa de Pos-Graduacao em Engenharia Quimica

    2013-04-15

    The technological advances in positron emission tomography (PET) in conventional clinic imaging have led to a steady increase in the number of cyclotrons worldwide. Most of these cyclotrons are being used to produce {sup 18}F-FDG, either for themselves as for the distribution to other centers that have PET. For there to be safety in radiological facilities, the cyclotron intended for medical purposes can be classified in category I and category II, ie, self-shielded or non-shielded (bunker). Therefore, the aim of this work is to verify the effectiveness of borated water shield built for a cyclotron accelerator-type Self-shielded PETtrace 860. Mixtures of water borated occurred in accordance with the manufacturer’s specifications, as well as the results of the radiometric survey in the vicinity of the self-shielding of the cyclotron in the conditions established by the manufacturer showed that radiation levels were below the limits. (author)

  11. The commissioning of the BRISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Tang, B., E-mail: tangb364@126.com; Cui, B.; Chen, L.; Huang, Q.; Ma, R.; Ma, Y.; Ma, X.; Zhang, T.; Jiang, W.

    2016-06-01

    The Beijing Radioactive ion beam facility Isotope Separator On-Line (BRISOL) is a radioactive ion beam facility based on a 100 MeV cyclotron providing 100 μA proton beam bombarding a thick target to produce radioactive nuclei, which are transferred into an ion source to produce a singly-charged ion beam. The construction and installation of BRISOL was completed in March 2014. The commissioning of the BRISOL facility with stable beams has been carried out in the last year. The ion source, the separator and the beam-line were tested with a {sup 39}K{sup +} stable beam. The tests and the current status of the BRISOL facility will be presented in this paper.

  12. Cyclotron operating mode determination based on intelligent methods

    International Nuclear Information System (INIS)

    Ouda, M.M.E.M.

    2011-01-01

    Particle accelerators are generators that produce beams of charged particles with energies depending on the accelerator type. The MGC-20 cyclotron is a cyclic particle accelerator used for accelerating protons, deuterons, alpha particles, and helium-3 to different energies. Main applications are isotopes production, nuclear reactions studies, and mass spectroscopy studies and other industrial applications. The cyclotron is a complicated machine depends on using a strong magnetic field and high frequency-high voltage electric field together to accelerate and bend charged particles inside the accelerating chamber. It consists of the following main parts, the radio frequency system, the main magnet with the auxiliary concentric and harmonic coils, the electrostatic deflector, and the ion source, the beam transport system, and high precision and high stability DC power supplies.To accelerate a particle to certain energy, one has to adjust the cyclotron operating parameters to be suitable to accelerate this particle to that energy. If the cyclotron operating parameters together are adjusted to accelerate a charged particle to certain energy, then these parameters together are named the operating mode to accelerate this particle to that energy. For example the operating mode to accelerate protons to 18 MeV is named the (18 MeV protons operating mode). The operating mode includes many parameters that must be adjusted together to be successful to accelerate, extract, focus, steer a particle from the ion source to the experiment. Due to the big number of parameters in the operating modes, 19 parameters have been selected in this thesis to be used in an intelligent system based on feed forward back propagation neural network to determine the parameters for new operating modes. The new intelligent system depends on the available information about the currently used operating modes.The classic way to determine a new operating mode was depending on trial and error method to

  13. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  14. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: emmazhang103@gmail.com [China Institute of Atomic Energy (China); Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming [China Institute of Atomic Energy (China); Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir [BEST Cyclotron Inc (Canada)

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN–LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  15. Development of baby cyclotron for PET in Korea

    International Nuclear Information System (INIS)

    Chai, J.S.; Kim, Y.S.; Hu, J.Y.; Shin, Y.C.; Yoon, M.H.

    2001-01-01

    Development of a 13 MeV cyclotron for Positron Emission Tomography (PET) has been in progress since April 1999 at the Korea Cancer Center Hospital (KCCH). The study has been carried out in a joint collaboration between KCCH and the Pohang University of Science and Technology (POSTECH). Increasing desire for an uninterrupted, reliable and timely supply of the isotopes to customers has prompted obtaining a dedicated 5-13 MeV cyclotron for PET applications and pursuing the purchase of another 30MeV medical cyclotron in the very near future. A decision has been made to design the PET cyclotron in Korea. This will not only ease the problems associated with maintenance during operation but also keep the door open for continuous upgrading of the machine in the future

  16. Development of fusion first-wall radiation damage facilities

    International Nuclear Information System (INIS)

    McElroy, R.J.; Atkins, T.

    1986-11-01

    The report describes work performed on the development of fusion-reactor first-wall simulation facilities on the Variable Energy Cyclotron, at Harwell, United Kingdom. Two irradiation facilities have been constructed: i) a device for helium and hydrogen filling up to 1000 ppm for post-irradiation mechanical properties studies, and ii) a helium implantation and damage facility for simultaneous injection of helium and radiation damage into a specimen under stress. These facilities are now fully commissioned and are available for investigations of first-wall radiation damage and for intercorrelation of fission- and fusion -reactor materials behaviour. (U.K.)

  17. An experimental study on cyclotron-Cherenkov radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C Y; Masuzaki, M; Yoshida, H; Toyosugi, N; Kamada, K; Ando, R [Kanazawa Univ. (Japan). Department of Physics

    1997-12-31

    Dielectric-loaded cylindrical waveguide configurations with an injected electron beam in which the growth rate of the cyclotron-Cherenkov instability surpasses that of the Cherenkov instability were sought by numerical treatment, and one configuration of this kind was found. This configuration consists of a metallic core and an outer metallic cylinder with a dielectric liner on the inner surface. Based on the calculations, an experimental device was designed and assembled to investigate experimentally radiation due to the cyclotron-Cherenkov instability. Beam propagation in the dielectric-loaded coaxial waveguide and microwave radiation due to the cyclotron-Cherenkov instability and the Cherenkov instability were studied. (author). 6 figs., 10 refs.

  18. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2007-06-28

    Jun 28, 2007 ... Outside the framework of hierarchical clustering, different gene ordering algorithms are applied on the whole data set, and the domain of partitive ... Center for Soft Computing Research: A National Facility, Indian Statistical Institute, Kolkata 700 108, India; Machine Intelligence Unit, Indian Statistical Institute, ...

  19. Recent improvements of the tandem facility at LNS

    International Nuclear Information System (INIS)

    Ciavola, G.; Calabretta, L.; Cuttone, G.; Gammino, S.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Scuderi, V.

    1993-01-01

    The Laboratorio Nazionale del Sud (LNS) of Catania is equipped with an upgraded 15 MV SMP tandem that is going to be coupled to a k=800 superconducting cyclotron. The status of the facility and the performances of the upgraded tandem are presented. (orig.)

  20. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    International Nuclear Information System (INIS)

    Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.

    2015-01-01

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities

  1. Initial operation of the cyclotron CYTRACK

    International Nuclear Information System (INIS)

    Denisov, Yu.N.; Dolya, S.N.; Kalinichenko, V.V.; Karamysheva, G.A.; Kostromin, S.A.; Fedorenko, S.B.

    2005-01-01

    The industrial cyclotron CYTRACK is dedicated to produce the track membranes. It is the basic instrument for the industry of membrane products to be consumed in medicine, biotechnology, pharmacology, microelectronics and many other industries. Cyclotron CYTRACK started working in August 2002. Argon ions were accelerated to the project energy - 2.4 MeV/nucleon, the extracted beam intensity was about 200 nA, the extraction efficiency totaled ∼50%

  2. Manufacturing on the radiopharmaceuticals produced by cyclotron

    International Nuclear Information System (INIS)

    Ueda, Nobuo

    1994-01-01

    Radiopharmaceutical (RP) produced by cyclotrons are widely used for the in vivo diagnosis of various diseases such as cancer, cerebral vascular disorders and cardiac diseases. The nuclides used as RPs and their nuclear reactions, and the quantity of RPs supplied in Japan in the last five years are shown. These RPs are delivered to about 1,100 hospitals in Japan. Thallium-201 and iodine-123 showed very high growth rate. Recently, two new I-123 RPs, BMIPP and MIBG which are heart-imaging agents, have been supplied. It suggests that the quantity of I-123 will increase much more in future. The image diagnostic method using RPs is called in vivo nuclear medicine, and has become the indispensable means for medical institutions together with X-ray CT, nuclear magnetic resonance imaging and ultrasonic diagnosis. The RPs for in vivo diagnosis generally used at present are classified into those labeled with the RIs produced with cyclotrons and those labeled with Tc-99m formed by the decay of Mo-99. The quantity being used is overwhelmingly more in the latter, but the former shows the tendency of growth. The commercial production of cyclotron RIs for medical use, the chemical forms and the diagnostic purposes of the RPs using cyclotron RIs, and the state of use of the cyclotron-produced RPs are reported. (K.I.)

  3. Electron cyclotron emission measurements during 28 GHz electron cyclotron resonance heating in Wendelstein WVII-A stellarator

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Gasparino, U.; Tutter, M.; Brakel, R.; Cattanei, G.; Dorst, D.; Elsner, A.; Engelhardt, K.; Erckmann, V.; Grieger, G.; Grigull, P.; Hacker, H.; Jaeckel, H.; Jaenicke, R.; Junker, J.; Kick, M.; Kroiss, H.; Kuehner, G.; Maassberg, H.; Mahn, C.; Mueller, G.; Ohlendorf, W.; Rau, F.; Renner, H.; Ringler, H.; Sardei, F.; Weller, A.; Wobig, H.; Wuersching, E.; Zippe, M.; Kasparek, W.; Mueller, G.A.; Raeuchle, E.; Schueller, P.G.; Schwoerer, K.; Thumm, M.

    1987-11-01

    Electron cyclotron emission measurements have been carried out on electron cyclotron resonance heated plasmas in the WENDELSTEIN VII-A Stellarator. Blackbody radiation from the thermalized plasma main body as well as radiation from a small amount of weakly relativistic suprathermal electrons has been detected. In addition sideband emission has been observed near the second harmonic of the heating line source. Harmonic generation and parametric wave decay at the upper hybrid layer may be a reasonable explanation. (orig.)

  4. (p,2p) experiments at the University of Maryland cyclotron

    International Nuclear Information System (INIS)

    Roos, P.G.

    1976-11-01

    Some of the (p,2p) work which has been carried out at the Maryland Cyclotron is discussed. A brief introduction to the (p,2p) reaction is presented, and the types of experimental techniques utilized in (p,2p) studies are discussed. A brief introduction is given to the various theoretical treatments presently available to analyze (p,2p) reaction data. Secondly, experimental and theoretical studies of (p,2p) on d, 3 He, and 4 He carried out by the Maryland group are presented. Thirdly, (p,2p) results are discussed for 6 Li, 7 Li, and 12 C at 100 MeV. Fourthly, the effects of distortion on the experimental data are considered by presenting theoretical calculations for 12 C and 40 Ca at various bombarding energies

  5. Nonlinear parametric phenomena in plasma during radio frequency heating in the ion cyclotron frequency range

    International Nuclear Information System (INIS)

    Stepanov, K.N.

    1996-01-01

    Parametric phenomena in plasma which occur due to varying electric fields with the ion cyclotron frequency are reviewed. Beam-like lower hybrid instability emerges in strong pumping fields provided that the transverse relative velocity of particles is larger than the ion thermal speed (υ Ti ). The resulting turbulence and the following numerous manifestations observed experimentally are addressed. The turbulence may prove important for experiments aimed at plasma production or radio frequency (RF) cleaning of metallic surfaces of vacuum chambers in stellarators, tokamaks and helicon devices. In contrast, for a weak field (U Ti ) the kinetic parametric instabilities of ion cyclotron oscillations arise due to electrons. The issues of the turbulence, mathematical modelling, its role in turbulent heating observed on the torsatron Uragan-3M, decay instabilities associated with ion cyclotron oscillations and the triggering of ion quasimodes are considered. (author)

  6. Environmental radiation monitoring results for the period 1984-95 in and around Variable Energy Cyclotron Centre, Calcutta

    International Nuclear Information System (INIS)

    Basu, A.S.; Khasnabis, B.K.; Bar, M.

    1997-04-01

    Variable Energy Cyclotron (VEC) located at Bidhan Nagar, Calcutta is being used for accelerating charged particles and does not contribute to any radioactive releases to the environment. However, it being a nuclear facility, the area surrounding the facility is being routinely monitored for background radiation exposure using thermoluminescent dosimeters. This report gives the summary of the results of the survey carried out over a period of 12 years, 1984-1995. It is observed that the general radiation background in areas far removed from the facility (up to 25 km) is higher than that existing within the boundaries of VEC centre (160±21 mR/year as against 121±20 mR/year)

  7. Tokamak start-up with electron-cyclotron heating

    International Nuclear Information System (INIS)

    Holly, D.J.; Prager, S.C.; Shepard, D.A.; Sprott, J.C.

    1981-01-01

    Experiments are described in which the start-up voltage in a tokamak is reduced by about a factor of two by the use of a modest amount of electron cyclotron resonance heating power for pre-ionization. The solution of the zero-dimensional start-up equations indicates that the effect is due to the high initial density which increases the rate at which the conductivity increases in the neutral-dominated initial plasma. The effect extrapolates favourably to larger tokamaks. A 50% reduction in the start-up volt-second requirement and impurity reflux is also observed. (author)

  8. Tokamak start-up with electron-cyclotron heating

    Energy Technology Data Exchange (ETDEWEB)

    Holly, D J; Prager, S C; Shepard, D A; Sprott, J C [Wisconsin Univ., Madison (USA)

    1981-11-01

    Experiments are described in which the start-up voltage in a tokamak is reduced by about a factor of two by the use of a modest amount of electron cyclotron resonance heating power for pre-ionization. The solution of the zero-dimensional start-up equations indicates that the effect is due to the high initial density which increases the rate at which the conductivity increases in the neutral-dominated initial plasma. The effect extrapolates favourably to larger tokamaks. A 50% reduction in the start-up volt-second requirement and impurity reflux is also observed.

  9. First years of operation of the LNS superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Rifuggiato, D.; Calabretta, L.; Cuttone, G.; Gammino, S.; Raia, G.; Rovelli, A. [Instituto Nazionale di Fisica Nucleare, Lab. Nazionali del Sud, Catania (Italy)

    1999-07-01

    The K800 Superconducting Cyclotron was commissioned in 1994 and has been in continuous operation since then. In 1996 many efforts were made to reach a condition of reliable operation. Several ion types have been accelerated and delivered to experimental halls. The demand for different beams has given the opportunity to explore several regions of the operating diagram of the machine: different magnetic field values have been set, as well as several RF frequencies have been used. The results demonstrate that the Cyclotron allows to accomplish a large variety of nuclear physics experiments, even if the maximum performance has not yet been achieved. A few sub-systems are being upgraded in view of the 'high intensity' operation (which is required for radioactive beam production) and in order to reach the maximum performance: upgrading is planned on the RF system and on the electrostatic deflectors. A new axial injection system has been designed to operate the machine in stand-alone mode. (authors)

  10. First years of operation of the LNS superconducting cyclotron

    International Nuclear Information System (INIS)

    Rifuggiato, D.; Calabretta, L.; Cuttone, G.; Gammino, S.; Raia, G.; Rovelli, A.

    1999-01-01

    The K800 Superconducting Cyclotron was commissioned in 1994 and has been in continuous operation since then. In 1996 many efforts were made to reach a condition of reliable operation. Several ion types have been accelerated and delivered to experimental halls. The demand for different beams has given the opportunity to explore several regions of the operating diagram of the machine: different magnetic field values have been set, as well as several RF frequencies have been used. The results demonstrate that the Cyclotron allows to accomplish a large variety of nuclear physics experiments, even if the maximum performance has not yet been achieved. A few sub-systems are being upgraded in view of the 'high intensity' operation (which is required for radioactive beam production) and in order to reach the maximum performance: upgrading is planned on the RF system and on the electrostatic deflectors. A new axial injection system has been designed to operate the machine in stand-alone mode. (authors)

  11. Use of maze in cyclotron hoppers; Utilizacao de labirinto em bunker de ciclotron

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Fernando A.; Alves, Juliano S.; Fochesatto, Cintia; Cerioli, Luciane; Borges, Joao Alfredo; Gonzalez, Delfin; Silva, Daniel C., E-mail: fernandofernandes@biofarmaco.com.br [Delfin Farmacos e Derivados (Biofarmaco Marcadores Moleculares), Lauro de Freitas, BA (Brazil)

    2013-07-01

    Introduction: the increasing number of cyclotrons in Brazil due to constitutional amendment 49 /06 that enabled the production of radiopharmaceuticals with a short half - life by private companies. The radionuclides used for PET - CT require production centers near or within the diagnostic centers. In order to minimize maintenance and operating risks, gaining efficiency, our facility was the first in Brazil to use the access to a cyclotron bunker via maze, rather than armored door stopper type. Materials: the design calculations were based on the Monte Carlo method (MCNP5 - Monte Carlo N-Particletransportcode version 5). At the ends of the labyrinth are installed a door of polyethylene, for thermalization of neutrons, and other of wood for limiting access. Both legs of the maze have wall thickness of 100cm. In inspection Brazilian CNEN realize measures of dose rate for neutrons and gamma 9 points: 7 around the bunker, 1 over the bunker and 1 in the exhaust with the cyclotron operating with maximum load, double beam of 50uA for 2 hours. After commissioning were carried out around the bunker, the following measures: cumulative dose in three months with dosimeters for neutron rate dose with a gas proportional detector type filled with {sup 3}He and polyethylene neutron moderator and dose rate with a Geiger - Mueller detector for gamma radiation. Readings with neutron detectors were classified as background radiation and dose rates were always below the limits established in standard EN 3.01, and the calculation of the predicted regardless of the intensity of irradiation inside the bunker. Conclusion: the use of labyrinths as a way to access the bunkers cyclotron has been shown to be effective as the radiation shielding and efficient by allowing quick and easy access, virtually eliminating the maintenance.

  12. [Cyclotron based nuclear science

    International Nuclear Information System (INIS)

    1989-06-01

    This report contains papers on the following topics: Heavy ion reactors, nuclear structure and fundamental interactions; atomic and materials studies; nuclear theory; and superconducting cyclotron and instrumentation

  13. A new generation of medical cyclotrons for the 90's

    International Nuclear Information System (INIS)

    Milton, B.F.

    1995-08-01

    Cyclotrons continue to be efficient accelerators for use in radio-isotope production. In recent years, developments in accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology as they relate to the new generation of commercial cyclotrons. Existing and potential markets for these cyclotrons will be presented. They will also discuss the possibility of systems capable of extracted energies up to 150 MeV and extracted beam currents of up to 2.0 mA

  14. A new generation of medical cyclotrons for the 90's

    International Nuclear Information System (INIS)

    Milton, B.F.

    1995-08-01

    Cyclotrons continue to be efficient accelerators for use in radio-isotope production. In recent years, developments in accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology as they relate to the new generation of commercial cyclotrons. Existing and potential markets for these cyclotrons will be presented. We will also discuss the possibility of systems capable of extracted energies up to 150 MeV and extracted beam currents of up to 2.0 mA. (author)

  15. Operating experience of steam generator test facility

    International Nuclear Information System (INIS)

    Sureshkumar, V.A.; Madhusoodhanan, G.; Noushad, I.B.; Ellappan, T.R.; Nashine, B.K.; Sylvia, J.I.; Rajan, K.K.; Kalyanasundaram, P.; Vaidyanathan, G.

    2006-01-01

    Steam Generator (SG) is the vital component of a Fast Reactor. It houses both water at high pressure and sodium at low pressure separated by a tube wall. Any damage to this barrier initiates sodium water reaction that could badly affect the plant availability. Steam Generator Test Facility (SGTF) has been set up in Indira Gandhi Centre for Atomic Research (IGCAR) to test sodium heated once through steam generator of 19 tubes similar to the PFBR SG dimension and operating conditions. The facility is also planned as a test bed to assess improved designs of the auxiliary equipments used in Fast Breeder Reactors (FBR). The maximum power of the facility is 5.7 MWt. This rating is arrived at based on techno economic consideration. This paper covers the performance of various equipments in the system such as Electro magnetic pumps, Centrifugal sodium pump, in-sodium hydrogen meters, immersion heaters, and instrumentation and control systems. Experience in the system operation, minor modifications, overall safety performance, and highlights of the experiments carried out etc. are also brought out. (author)

  16. The cyclotron gas stopper project at the NSCL

    Energy Technology Data Exchange (ETDEWEB)

    Guenaut, C., E-mail: guenaut@nscl.msu.edu; Bollen, G.; Chouhan, S.; Marti, F.; Morrissey, D. J.; Lawton, D.; Ottarson, J.; Pang, G. K.; Schwarz, S.; Sherrill, B. M. [Michigan State University (United States); Wada, M. [RIKEN (Japan); Zeller, A. F. [Michigan State University (United States)

    2006-11-15

    Gas stopping is becoming the method of choice for converting beams of rare isotopes obtained via projectile fragmentation and in-flight separation into low-energy beams. These beams allow ISOL-type experiments, such as mass measurements with traps or laser spectroscopy, to be performed with projectile fragmentation products. Current gas stopper systems for high-energy beams are based on linear gas cells filled with 0.1-1 bar of helium. While already used successfully for experiments, it was found that space charge effects induced by the ionization of the helium atoms during the stopping process pose a limit on the maximum beam rate that can be used. Furthermore, the extraction time of stopped ions from these devices can exceed 100 ms causing substantial decay losses for very short-lived isotopes. To avoid these limitations, a new type of gas stopper is being developed at the NSCL/MSU. The new system is based on a cyclotron-type magnet with a stopping chamber filled with Helium buffer gas at low pressure. RF-guiding techniques are used to extract the ions. The space charge effects are considerably reduced by the large volume and due to a separation between the stopping region and the region of highest ionization. Cyclotron gas stopper systems of different sizes and with different magnetic field strengths and field shapes are presently investigated.

  17. The cyclotron gas stopper project at the NSCL

    International Nuclear Information System (INIS)

    Guenaut, C.; Bollen, G.; Chouhan, S.; Marti, F.; Morrissey, D. J.; Lawton, D.; Ottarson, J.; Pang, G. K.; Schwarz, S.; Sherrill, B. M.; Wada, M.; Zeller, A. F.

    2006-01-01

    Gas stopping is becoming the method of choice for converting beams of rare isotopes obtained via projectile fragmentation and in-flight separation into low-energy beams. These beams allow ISOL-type experiments, such as mass measurements with traps or laser spectroscopy, to be performed with projectile fragmentation products. Current gas stopper systems for high-energy beams are based on linear gas cells filled with 0.1-1 bar of helium. While already used successfully for experiments, it was found that space charge effects induced by the ionization of the helium atoms during the stopping process pose a limit on the maximum beam rate that can be used. Furthermore, the extraction time of stopped ions from these devices can exceed 100 ms causing substantial decay losses for very short-lived isotopes. To avoid these limitations, a new type of gas stopper is being developed at the NSCL/MSU. The new system is based on a cyclotron-type magnet with a stopping chamber filled with Helium buffer gas at low pressure. RF-guiding techniques are used to extract the ions. The space charge effects are considerably reduced by the large volume and due to a separation between the stopping region and the region of highest ionization. Cyclotron gas stopper systems of different sizes and with different magnetic field strengths and field shapes are presently investigated.

  18. 25 CFR 170.806 - What is an IRR Transportation Facilities Maintenance Management System?

    Science.gov (United States)

    2010-04-01

    ... AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.806 What is an IRR Transportation Facilities Maintenance Management System? An IRR Transportation Facilities Maintenance Management... 25 Indians 1 2010-04-01 2010-04-01 false What is an IRR Transportation Facilities Maintenance...

  19. Electron-Cyclotron Waves

    NARCIS (Netherlands)

    Westerhof, E.

    1994-01-01

    The essential elements of the theory of electron cyclotron waves are reviewed, The two main electro-magnetic modes of propagation are identified and their dispersion and absorption properties are discussed. The importance of the use of the relativistic resonance condition is stressed.

  20. Lower-hybrid absorption at the ion cyclotron harmonics

    International Nuclear Information System (INIS)

    Puri, S.

    1975-01-01

    In the presence of magnetic field gradients, the lower-hybrid wave can be absorbed through linear collisionless damping at the location of cyclotron or cyclotron harmonic resonances acting as singular turning points in the path of the advancing wave-front. (Auth.)

  1. Brookhaven Reactor Experiment Control Facility, a distributed function computer network

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

    1975-11-01

    A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented

  2. Stability and nonlinear dynamics of gyrotrons at cyclotron harmonics

    International Nuclear Information System (INIS)

    Saraph, G.P.; Nusinovich, G.S.; Antonsen, T.M. Jr.; Levush, B.

    1992-01-01

    Gyrotrons operating at higher harmonics of the cyclotron frequency can overcome the frequency limitations caused by achievable strength of the magnetic field. However, the excitation of modes at the fundamental frequency exhibit a major problem for stable operation of harmonic gyrotron at high power with high efficiency. Therefore the issues of stability of gyrotron operation at the cyclotron harmonics and nonlinear dynamics of mode interaction are of great importance. The results of the authors stability analysis and multimode simulation are presented here. A detailed nonlinear theory of steady state single mode operation at cyclotron harmonics has been presented previously, taking into account beam-wave coupling and nonlinear gain function at cyclotron harmonics. A set of equations describing low gain regime interaction of modes resonant at different cyclotron harmonics was studied before. The multifrequency time-dependent nonlinear analysis presented here is based on previous gyrotron studies and beam-wave interaction at cyclotron harmonics. The authors have determined the parameter space for stable single mode operation at the second harmonic. The nonlinear dynamics of mode evolution and mode interaction for a harmonic gyrotron is presented. A new nonlinear effect in which the parasite at the fundamental harmonic helps excite the operating mode at the second harmonic has been demonstrated

  3. A mobile superconducting cyclotron for PET and neutron radiography

    International Nuclear Information System (INIS)

    Griffiths, R.

    1988-01-01

    The report addresses the development of a mobile superconducting cyclotron for PET (positron emission tomography) and neutron radiography. Proposals for an ultralight cyclotron were made by Finlan et al., who suggested a novel technique of utilising a superconducting magnet with RF acceleration and iron sectors contained within the room temperature bore of the magnet. Detailed design of a cyclotron based on this concept has progressed well at Oxford Instruments. The main design priorities were to minimise the weight and power consumption of the cyclotron. The cyclotron required a large amount of shielding to reduce either radiation background levels or stray magnetic field. Thus low background levels of radiation and magnetic field are key design criteria. The superconducting magnet has a mean field of 2.35 Tesla and a room temperature bore diameter of 500 mm. Three pairs of profiled iron sectors placed in the center of the warm bore of the magnet provide an azimuthally varying magnetic field. This permits the use of high beam currents with low background. A novel technique is incorporated to reduce the stray magnetic field and radiation from the cyclotron. The RF system consists of three pairs of resonators mounted within the warm bore of the magnet between the iron sectors. (Nogami, K.)

  4. Fabrication of beam diagnostic components for Superconducting Cyclotron at Kolkata

    International Nuclear Information System (INIS)

    Roy, S.; Bhattacharya, S.; Das, T.; Bhattacharyya, T.K.; Pal, S.; Pal, G.; Mallik, C.; Bhandari, R.K.

    2009-01-01

    The viewer probe and main probe are used for determining the position and current of charged particles as it is accelerated inside the superconducting cyclotron. The viewer probe is used to visually observe the shape of the charged particle beam inside the cyclotron with the help of a borescope. The main probe measures the distribution of charged particles. The viewer probe and main probe are bellow sealed. They can be positioned with an accuracy of 0.5 mm at different radii within the superconducting cyclotron. M9 slit is placed after the exit flange of the cyclotron. It determines the position of the beam leaving the cyclotron. The beam line has slits, faraday cup, beam viewers, collimators, etc. for beam diagnostics. This paper presents the mechanical design and details of beam diagnostic components. (author)

  5. Neutron radiography by using JSW baby cyclotron

    International Nuclear Information System (INIS)

    Toda, Yojiro

    1995-01-01

    At present, JSW baby cyclotrons are mostly used for the production of the radioisotopes for medical use. The attempt to use this baby cyclotron for neutron radiography began already in 1981. The feasibility of the neutron radiography for the explosives in metallic cases which are used for H1 rockets was investigated. In 1983, it was shown that the neutron radiography by using the baby cyclotron in Muroran Works, Japan Steel Works, Ltd. was able to be carried out as a routine work. Since then, the nondestructive inspection by neutron radiography has been performed for rocket pyrotechnic articles, and contributed to heighten their reliability. Further, the radiography by using fast neutrons was developed and put to practical use for recent large H2 rockets. The JSW baby cyclotron BC 168 which has been used for neutron radiography can accelerate 16 MeV protons or 8 MeV deuterons up to 50 μA. The principle of thermal neutron radiography is the generation of fast neutrons by irradiating a Be target with the proton beam accelerated by a baby cyclotron, the moderation of the fast neutrons, the formation of the thermal neutron flux of uniform distribution with a collimator, the thermal neutron flux hitting the Gd plate in a film cassette through an object, and the exposure of an X-ray film to electrons from the Gd plate. Fast neutron radiography apparatus, and commercial neutron radiography are described. (K.I.)

  6. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Prater, R.; Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.; Harvey, R.W.; Ikel, H.; Lin-Liu, Y.R.; Luce, T.C.; James, R.A.; Porkolab, M.; Baity, F.W.; Goulding, R.H.; Hoffmann, D.J.; Kawashima, H.; Trukhin, V.

    1992-09-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency, 0.015 x 10 20 MA/MW/m 2

  7. Plasma-Materials Interactions Test Facility

    International Nuclear Information System (INIS)

    Uckan, T.

    1986-11-01

    The Plasma-Materials Interactions Test Facility (PMITF), recently designed and constructed at Oak Ridge National Laboratory (ORNL), is an electron cyclotron resonance microwave plasma system with densities around 10 11 cm -3 and electron temperatures of 10-20 eV. The device consists of a mirror cell with high-field-side microwave injection and a heating power of up to 0.8 kW(cw) at 2.45 GHz. The facility will be used for studies of plasma-materials interactions and of particle physics in pump limiters and for development and testing of plasma edge diagnostics

  8. Graphical user interface for yield and dose estimations for cyclotron-produced technetium.

    Science.gov (United States)

    Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A

    2014-07-07

    The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  9. Summarisation of construction and commissioning experience for nuclear power integrated test facility

    International Nuclear Information System (INIS)

    Xiao Zejun; Jia Dounan; Jiang Xulun; Chen Bingde

    2003-01-01

    Since the foundation of Nuclear Power Institute of China, it has successively designed various engineering experimental facilities, and constructed nuclear power experimental research base, and accumulated rich construction experiences of nuclear power integrated test facility. The author presents experience on design, construction and commissioning of nuclear power integrated test facility

  10. MC-50 AVF cyclotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jong Seo; Lee, Dong Hoon; Kim, You Seok; Park, Chan Won; Lee, Yong Min; Hong, Sung Seok; Lee, Min Yong

    1995-12-01

    The first cyclotron in Korea, MC-59 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-70 .mu.A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed. (author). 8 tabs., 17 figs., 10 refs.

  11. MC-50 AVF cyclotron operation

    International Nuclear Information System (INIS)

    Kim, Yu Seok; Chai, Jong Seo; Bak, Seong Ki; Park, Chan Won; Jo, Young Ho; Hong, Seong Seok; Lee, Min Yong; Jang Ho Ha

    2000-01-01

    The first cyclotron in Korea, MC-50 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-60μA. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23 days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed

  12. MC-50 AVF cyclotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seok; Chai, Jong Seo; Bak, Seong Ki; Park, Chan Won; Jo, Young Ho; Hong, Seong Seok; Lee, Min Yong; Jang Ho Ha

    2000-01-01

    The first cyclotron in Korea, MC-50 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-60{mu}A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23 days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed.

  13. MC-50 AVF cyclotron operation

    International Nuclear Information System (INIS)

    Chae, Jong Seo; Lee, Dong Hoon; Kim, You Seok; Park, Chan Won; Lee, Yong Min; Hong, Sung Seok; Lee, Min Yong.

    1995-12-01

    The first cyclotron in Korea, MC-59 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-70 .mu.A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed. (author). 8 tabs., 17 figs., 10 refs

  14. TASCC newsletter volume 5 no. 10

    International Nuclear Information System (INIS)

    Thomson, L.

    1991-10-01

    A newsletter produced by Chalk River's Tandem Accelerator Superconducting Cyclotron Facility. Included in this October issue is a report on the commissioning of the cyclotron, a new AMS test method for Chlorine 36 beam, a facility report and operating record and a listing of experiments conducted in October

  15. Cyclotron beam dynamic simulations in MATLAB

    International Nuclear Information System (INIS)

    Karamysheva, G.A.; Karamyshev, O.V.; Lepkina, O.E.

    2008-01-01

    MATLAB is useful for beam dynamic simulations in cyclotrons. Programming in an easy-to-use environment permits creation of models in a short space of time. Advanced graphical tools of MATLAB give good visualization features to created models. The beam dynamic modeling results with an example of two different cyclotron designs are presented. Programming with MATLAB opens wide possibilities of the development of the complex program, able to perform complete block of calculations for the design of the accelerators

  16. Development of a low-level RF control system for PET cyclotron CYCIAE-14

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengzhan, E-mail: lipengzhan@ciae.ac.cn; Yin, Zhiguo; Ji, Bin; Zhang, Tianjue; Zhao, Zhenlu

    2014-01-21

    The project of a 14 MeV PET cyclotron aiming at medical diagnosis and treatment was proposed and started at CIAE in 2010. The low-level RF system is designed to stabilize acceleration voltage and control the resonance of the cavity. Based on the experience of the existing CRM Cyclotron in CIAE, a new start-up sequence is developed and tested. The frequency sweeping is used to activate the RF system. Before the tuner is put into use, a new state called “DDS tuning” is applied to trace the resonance frequency to the designed value. This new option state helps to cover the tuning range, if a large frequency variation occurs because of a thermal cavity deformation. The logic control unit detects the spark, reflection, Pulse/CW state and the frequency of the RF source to perform all kinds of protection and state operations. The test bench and on-line test are carried out to verify the initial design. -- Highlights: • The low-level RF system is designed and verified for PET cyclotron CYCIAE-14. • The frequency sweeping is used to activate the RF system. • A new state called “DDS tuning” is applied to trace the resonance frequency. • This new option state helps to cover the tuning range. • Protection module allows a quick restart after an alarm and improves cyclotron's efficiency.

  17. Safety Research Experiment Facility Project. Conceptual design report. Volume II. Building and facilities

    International Nuclear Information System (INIS)

    1975-12-01

    The conceptual design of Safety Research Experiment Facility (SAREF) site system includes a review and evaluation of previous geotechnical reports for the area where SAREF will be constructed and the conceptual design of access and in-plant roads, parking, experiment-transport-vehicle maneuvering areas, security fencing, drainage, borrow area development and restoration, and landscaping

  18. The environmental impact assessment process for nuclear facilities: An examination of the Indian experience

    International Nuclear Information System (INIS)

    Ramana, M.V.; Rao, Divya Badami

    2010-01-01

    India plans to construct numerous nuclear plants and uranium mines across the country, which could have significant environmental, health, and social impacts. The national Environmental Impact Assessment process is supposed to regulate these impacts. This paper examines how effective this process has been, and the extent to which public inputs have been taken into account. In addition to generic problems associated with the EIA process for all kinds of projects in India, there are concerns that are specific to nuclear facilities. One is that some nuclear facilities are exempt from the environmental clearance process. The second is that data regarding radiation baseline levels and future releases, which is the principle environmental concern with respect to nuclear facilities, is controlled entirely by the nuclear establishment. The third is that members of the nuclear establishment take part in almost every level of the environmental clearance procedure. For these reasons and others, the EIA process with regard to nuclear projects in India is of dubious quality. We make a number of recommendations that could address these lacunae, and more generally the imbalance of power between the nuclear establishment on the one hand, and civil society and the regulatory agencies on the other.

  19. INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH ION CYCLOTRON RESONANCE FREQUENCY WAVES

    International Nuclear Information System (INIS)

    CHOI, M.; CHAN, V.S.; CHIU, S.C.; OMELCHENKO, Y.A.; SENTOKU, Y.; STJOH, H.E.

    2003-01-01

    OAK B202 INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH CYCLOTRON RESONANCE FREQUENCY WAVES. Existing tokamaks such as DIII-D and future experiments like ITER employ both NB injection (NBI) and ion-cyclotron resonance heating (ICRH) for auxiliary heating and current drive. The presence of energetic particles produced by NBI can result in absorption of the Ion cyclotron radio frequency (ICRF) power. ICRF can also interact with the energetic beam ions to alter the characteristics of NBI momentum deposition and resultant impact on current drive and plasma rotation. To study the synergism between NBI and ICRF, a simple physical model for the slowing-down of NB injected fast ions is implemented in a Monte-Carlo rf orbit code. This paper presents the first results. The velocity space distributions of energetic ions generated by ICRF and NBI are calculated and compared. The change in mechanical momentum of the beam and an estimate of its impact on the NB-driven current are presented and compared with ONETWO simulation results

  20. Magnet design and test of positron emission tomography cyclotron

    International Nuclear Information System (INIS)

    Wei Tao; Yang Guojun; He Xiaozhong; Pang Jian; Zhao Liangchao; Zhang Kaizhi

    2012-01-01

    An 11 MeV H - compact cyclotron used for medical radioactive isotope production is under construction in Institute of Fluid Physics, CAEP. The cyclotron magnet adopts the design of small valley gaps and coulee structure which can provide high average magnetic field and strong focus ability. To achieve 5 × 10 -4 measuring accuracy, a magnetic field mapping system has been developed. After iterative correction using field measurement data, the total phase excursion of the cyclotron is within ± 9° and the first harmonic is less than 10 -3 T, which are all acceptable. Furthermore, the beam testing declares the successful construction of the cyclotron magnet. Besides, some magnetic field influence factors were discussed, including the magnetic field distortion and measurement error. (authors)

  1. Studies of electron cyclotron emission on text

    International Nuclear Information System (INIS)

    Gandy, R.F.

    1990-07-01

    The Auburn University electron cyclotron emission (ECE) system has made many significant contributions to the TEXT experimental program during the past five years. Contributions include electron temperature information used in the following areas of study: electron cyclotron heating (ECH), pellet injection, and impurity/energy transport. Details of the role which the Auburn ECE system has played will now be discussed

  2. Cyclotrons for the production of radioactive beams

    International Nuclear Information System (INIS)

    Clark, D.J.

    1990-01-01

    This paper describes the characteristics and design choices for modern cyclotrons. Cyclotrons can be used in 3 areas in the radioactive beam field: the production of high energy heavy ion beams for use in fragmentation, the spallation of targets with high energy protons, and the acceleration of radioactive beams from low energy to the MeV/u range. 16 refs., 6 figs

  3. Wave fronts of electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.

    1982-01-01

    In an inhomogeneous high-density magnetized plasma, the spatial properties of the wave fronts and ray trajectories of electromagnetic ordinary and extraordinary cyclotron harmonic waves are investigated. Those waves which are radiated from a local source are found to have wave fronts which are almost parallel to the magnetic field. Also, the reflective properties of the electromagnetic cyclotron harmonic waves are confirmed

  4. JSW's baby cyclotron

    International Nuclear Information System (INIS)

    Toda, Y.; Kaneda, Y.; Satoh, Y.; Suzukawa, I.; Yamada, T.

    1983-01-01

    Designed by The Japan Steel Works, Ltd., specially for installation in a hospital's medical department and nuclear research laboratory, '' JSW BABY CYCLOTRON '' has been developed to produce short-lived radioisotopes such as 11C, 13N, 15O and 18F. JSW's Baby Cyclotron has some design features. 1) Fixed energy and four sector azimuthally varying field. 2) Compact figure desired for hospital's nuclear medical department 3) A bitter type magnet yoke shielding activity 4) Simple control and operation 5) Easy maintenance without skilled personnel. Type BC105 (P:10MeV, d:5MeV), BC107 (P:10MeV, d:7MeV), BC168 (P:16MeV, d:8MeV) and BC1710 (P:17MeV, d:10MeV) are available according to required amount of radioisotopes. In our radioisotope production test, yield and purity of 11C, 13N, 15O and 18F are usable to clinical diagnosis

  5. Cyclotron produced radiopharmaceuticals

    International Nuclear Information System (INIS)

    Kopicka, K.; Fiser, M.; Hradilek, P.; Hanc, P.; Lebeda, O.

    2003-01-01

    Some of the cyclotron-produced radionuclides may serve as important materials for the production of radiopharmaceuticals. This lecture deals with basic information relating to various aspects of these compounds. In comparison with radionuclides /compounds used for non-medical purposes, radiopharmaceuticals are subject to a broader scale of regulations, both from the safety and efficacy point of view; besides that, there are both radioactive and medical aspects that must be taken into account for any radiopharmaceutical. According to the regulations and in compliance with general rules of work with radioactivity, radiopharmaceuticals should only be prepared/manufactured under special conditions, using special areas and special equipment and applying special procedures (e.g. sterilisation, disinfection, aseptic work). Also, there are special procedures for cleaning and maintenance. Sometimes the requirements for the product safety clash with those for the safety of the personnel; several examples of solutions pertaining to these cases are given in the lecture. Also, the specific role of cyclotron radiopharmaceuticals is discussed. (author)

  6. Neutron field characterization and dosimetry at the TRIUMF proton therapy facility

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: In 1972 the 500 MeV H' Cyclotron of the TRIUMF (Tri University Meson Factory) located in Vancouver, Canada became operational. Beside Meson Physics, high-energy protons of various energy and beam current levels from the TRIUMF Cyclotron are used for scientific research and biomedical applications. Recently, a 500 MeV proton beam from the cyclotron was used as the booster beam for the radioactive ion beam facility, ISAC (Isotope Separator Accelerator) and a second beam as primary irradiation source for the Proton Irradiation Facility (PIF). The major commercial applications of the PIF are the provision of high-energy proton beams for radiation hardness testing of electronic components used in space applications (NASA) and proton therapy of ocular tumors (British Columbia Proton Therapy Facility). The PIF vault was constructed within the main accelerator hall of the TRIUMF using stacks of large concrete blocks. An intense field of fast neutrons is produced during the interaction of high-energy proton beam with target materials, such as, beam stops, collimators and beam energy degraders. The leakage of such neutrons due to insufficient radiological shielding or through the shielding discontinuities may constitute a major share of the personnel radiation exposure of the radiation workers. The neutron energy distribution and dose equivalent near a lead beam stopper bombarded with 116 MeV and 65 MeV collimated proton beams at the Ocular Tumor irradiation facility were evaluated using a Bonner-Sphere Spectrometer and a REM counter respectively. The results were utilized to investigate efficacy of the existing radiological shielding of the PIF. This paper highlights experimental methods to analyze the high-energy accelerator produced neutron beam and basic guideline for the radiological shielding designs of irradiation vault of Proton Therapy facilities

  7. Adjustment guidance for cyclotron by real-time display of feasible setting regions

    International Nuclear Information System (INIS)

    Okamura, Tetsuya; Murakami, Tohru

    1990-01-01

    A computer aided operation system for start-up of cyclotron is being developed in order to support operators who, through their experiences and intuition, adjust dozens of components to maximize extracted beam current. This paper describes a guidance method using real-time display of feasible setting regions of adjustment parameters. It is a function of the beam adjustment support system. The followings are the key points of this paper. (1) It is proposed that a cyclotron can be modeled as a series of mapping of beam condition. In this model, the adjustment is consider to be a searching process for a mapping which maps the beam condition into the acceptance of cyclotron. (2) The searching process is formulated as a nonlinear minimization problem. In order to solve this problem, a fast search algorithm composed of a line search method (golden section search) and an image processing method (border following) is developed. The solutions are the feasible setting regions. (3) A human interface which displays feasible setting regions and a search history is realized for the beam adjustment support system It enables that the operators and the computers cooperate the operation of beam adjustment. (author)

  8. 25 CFR Appendix A to Subpart G - List of Activities Eligible for Funding Under BIA Transportation Facility Maintenance Program

    Science.gov (United States)

    2010-04-01

    ... Transportation Facility Maintenance Program A Appendix A to Subpart G Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance Pt. 170... Transportation Facility Maintenance Program The following activities are eligible for BIA Transportation Facility...

  9. Technical requirement of experiments and facilities for fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.; Tillak, M.; Gierszwski, P.; Grover, J.; Puigh, R.; Sze, D.K.; Berwald, D.

    1986-06-01

    The technical issues and requirements of experiments and facilities for fusion nuclear technology (FNT) have been investigated. The nuclear subsystems addressed are: a) blanket, b) radiation shield, c) tritium processing system, and d) plasma interactive components. Emphasis has been placed on the important and complex development problems of the blanket. A technical planning process for FNT has been developed and applied, including four major elements: 1) characterization of issues, 2) quantification of testing requirements, 3) evaluation of facilities, and 4) development of a test plan to identify the role, timing, characteristics and costs of major experiments and facilities

  10. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    Science.gov (United States)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  11. The Burning Plasma Experiment conventional facilities

    International Nuclear Information System (INIS)

    Commander, J.C.

    1991-01-01

    The Burning Program Plasma Experiment (BPX) is phased to start construction of conventional facilities in July 1994, in conjunction with the conclusion of the Tokamak Fusion Test Reactor (TFTR) project. This paper deals with the conceptual design of the BPX Conventional Facilities, for which Functional and Operational Requirements (F ampersand ORs) were developed. Existing TFTR buildings and utilities will be adapted and used to satisfy the BPX Project F ampersand ORs to the maximum extent possible. However, new conventional facilities will be required to support the BPX project. These facilities include: The BPX building; Site improvements and utilities; the Field Coil Power Conversion (FCPC) building; the TFTR modifications; the Motor Generation (MG) building; Liquid Nitrogen (LN 2 ) building; and the associated Instrumentation and Control (I ampersand C) systems. The BPX building will provide for safe and efficient shielding, housing, operation, handling, maintenance and decontamination of the BPX and its support systems. Site improvements and utilities will feature a utility tunnel which will provide a space for utility services--including pulse power duct banks and liquid nitrogen coolant lines. The FCPC building will house eight additional power supplied for the Toroidal Field (TF) coils. The MG building will house the two MG sets larger than the existing TFTR MG sets. This paper also addresses the conventional facility cost estimating methodology and the rationale for the construction schedule developed. 6 figs., 1 tab

  12. 42 CFR 136.110 - Facilities construction.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Facilities construction. 136.110 Section 136.110..., DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH Grants for Development, Construction, and Operation of Facilities and Services § 136.110 Facilities construction. In addition to other requirements of this subpart...

  13. Beam stability of cyclotron accelerator for therapy at National Cancer Center Hospital East

    International Nuclear Information System (INIS)

    Nishio, T.; Ogino, T.; Shinbo, M.; Ikeda, H.; Tachikawa, T.; Kumata, Y.

    2000-01-01

    In 1997, the proton-treatment facility that has the therapeutic AVF cyclotron accelerator (C235), is constructed at National Cancer Center Hospital East. The facility has 3-irradiation ports (rooms) that are 2-rotationg gantry ports and 1-horizontal fixed port. The C235 can accelerate proton to 235 MeV with the beam intensity of 300 nA. The external diameter is a very compact with about 4 m. The radio frequency is 106 MHz, the accelerating voltage is about 60 kV, and the harmonic number is 4. A beam stability of the C235 has an important relation with the uniformity of an irradiation field and is a very difficulty. The measured result indicated that the incident beam position must be into the 0.5-mmφ circle. (author)

  14. Regulatory Compliance to Assure the Safety of the Operation of a Medical Cyclotron

    International Nuclear Information System (INIS)

    Dela Cruz, Joselito

    2015-01-01

    Khealth Corporation, in Partnership with the National Kidney and Transplant Institute, has established a medical cyclotron facility to accommodate the up-and-coming needs of tracers for PET/CT in different centers and hospitals all over the country. This facility houses a 16.5 MeV GE PET trace 880 particle accelerator that can produce 14 Ci (518 GBq) of Fluorine-18. Its structure has adopted global standard designs in meeting the safety during its use, radiopharmaceutical production and distribution. Compliances were remarkably fulfilled from the building construction, machine acquisition, commissioning, operations up to the quality control and assurance. Furthermore, various regulatory challenges during the current standardization of radiopharmaceutical utilization were encountered however time dedication and efforts were wielded until all have been successfully justified and acquired. (author)

  15. Technical Note: Defining cyclotron-based clinical scanning proton machines in a FLUKA Monte Carlo system.

    Science.gov (United States)

    Fiorini, Francesca; Schreuder, Niek; Van den Heuvel, Frank

    2018-02-01

    Cyclotron-based pencil beam scanning (PBS) proton machines represent nowadays the majority and most affordable choice for proton therapy facilities, however, their representation in Monte Carlo (MC) codes is more complex than passively scattered proton system- or synchrotron-based PBS machines. This is because degraders are used to decrease the energy from the cyclotron maximum energy to the desired energy, resulting in a unique spot size, divergence, and energy spread depending on the amount of degradation. This manuscript outlines a generalized methodology to characterize a cyclotron-based PBS machine in a general-purpose MC code. The code can then be used to generate clinically relevant plans starting from commercial TPS plans. The described beam is produced at the Provision Proton Therapy Center (Knoxville, TN, USA) using a cyclotron-based IBA Proteus Plus equipment. We characterized the Provision beam in the MC FLUKA using the experimental commissioning data. The code was then validated using experimental data in water phantoms for single pencil beams and larger irregular fields. Comparisons with RayStation TPS plans are also presented. Comparisons of experimental, simulated, and planned dose depositions in water plans show that same doses are calculated by both programs inside the target areas, while penumbrae differences are found at the field edges. These differences are lower for the MC, with a γ(3%-3 mm) index never below 95%. Extensive explanations on how MC codes can be adapted to simulate cyclotron-based scanning proton machines are given with the aim of using the MC as a TPS verification tool to check and improve clinical plans. For all the tested cases, we showed that dose differences with experimental data are lower for the MC than TPS, implying that the created FLUKA beam model is better able to describe the experimental beam. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists

  16. Selection of the DC-60 cyclotron as the basic facility for the Inter-disciplinary research complex in the L.N. Gumilev Eurasian State University. Chapter 2

    International Nuclear Information System (INIS)

    2003-01-01

    In the Chapter 2 the DC-60 specialized accelerator project of the Inter-disciplinary research complex in the L.N. Gumilev Eurasian State University is described. The DC-60 cyclotron is intended for applied studies which can be accomplished on both the ion beams of the electron cyclotron resonance source with voltage up to 25 kV and the accelerated ions from carbon to xenon. The cyclotron is design on the base of compact magnet with weight about 74 tonnes, and it mean magnetic field is 1.6 T, section angle - 50 Deg. Design of the Inter-disciplinary research complex building in the L.N. Gumilev Eurasian State University is described as well. Technical performances of the building and their parameters are given

  17. Status report on the cyclotron

    International Nuclear Information System (INIS)

    Kormany, Z.

    2002-01-01

    Complete text of publication follows. The operation of the cyclotron in 2001 was again concentrated to the usual 9 months; January, July and August were reserved for maintenance and holidays. The overall working time of the accelerator was 4300 hours, the breakdown periods amounted to 66 hours last year. The cyclotron was available for users during 3751 hours, the effectively used beam-on-target time is summarized in Table 1. The total time required for machine setup and beam tuning or spent waiting for the start of an irradiation was 272 hours. The control of the adjustable collimators applied in the beam transport system of the cyclotron was renewed during the winter maintenance period. They have been connected to the programmable logic controllers (PLC) and their new control code frees the operators from the long and slow manual setting process. The successful renewal of the control of this and other subsystems (cyclotron and beam transport power supplies) made lots of adjusting and measuring elements on the original control desk needless. To provide more space for the control PCs and remove all unnecessary devices, the unused part of the control desk has been dismantled. The short beam line used mainly for radiation hardness studies was equipped with a new oil-diffusion vacuum system during the summer maintenance. Its components are also connected to the PLC and the same automatic control has been provided like for the other vacuum stands of- the beam transport system. Another short beam line - basically a mirror image of the first one - has also been installed and successfully tested by trial irradiations. (R.P.)

  18. Statistical fluctuations in cooperative cyclotron radiation

    Science.gov (United States)

    Anishchenko, S. V.; Baryshevsky, V. G.

    2018-01-01

    Shot noise is the cause of statistical fluctuations in cooperative cyclotron radiation generated by an ensemble of electrons oscillating in magnetic field. Autophasing time - the time required for the cooperative cyclotron radiation power to peak - is the critical parameter characterizing the dynamics of electron-oscillators interacting via the radiation field. It is shown that premodulation of charged particles leads to a considerable narrowing of the autophasing time distribution function for which the analytic expression is obtained. When the number of particles Ne exceeds a certain value that depends on the degree to which the particles have been premodulated, the relative root-mean-square deviation (RMSD) of the autophasing time δT changes from a logarithmic dependence on Ne (δT ∼ 1 / lnNe) to square-root (δT ∼ 1 /√{Ne }). A slight energy spread (∼4%) results in a twofold drop of the maximum attainable power of cooperative cyclotron radiation.

  19. Cyclotron resonance cooling by strong laser field

    International Nuclear Information System (INIS)

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-01-01

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers

  20. Three-wave interaction during electron cyclotron resonance heating and current drive

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Jacobsen, Asger Schou; Hansen, Søren Kjer

    2016-01-01

    Non-linear wave-wave interactions in fusion plasmas, such as the parametric decay instability (PDI) of gyrotron radiation, can potentially hamper the use of microwave diagnostics. Here we report on anomalous scattering in the ASDEX Upgrade tokamak during electron cyclotron resonance heating...... experiments. The observations can be linked to parametric decay of the gyrotron radiation at the second harmonic upper hybrid resonance layer....

  1. Ion source and injection line for high intensity medical cyclotron

    Science.gov (United States)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  2. Experiments with the HORUS-II test facility

    Energy Technology Data Exchange (ETDEWEB)

    Alt, S.; Lischke, W. [Univ. for Applied Sciences Zittau/Goerlitz, Zittau (Germany). Dept. of Nuclear Engineering

    1997-12-31

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA`s fourth phase at the original plant. 4 refs.

  3. Experiments with the HORUS-II test facility

    Energy Technology Data Exchange (ETDEWEB)

    Alt, S; Lischke, W [Univ. for Applied Sciences Zittau/Goerlitz, Zittau (Germany). Dept. of Nuclear Engineering

    1998-12-31

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA`s fourth phase at the original plant. 4 refs.

  4. Experiments with the HORUS-II test facility

    International Nuclear Information System (INIS)

    Alt, S.; Lischke, W.

    1997-01-01

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA's fourth phase at the original plant

  5. Cyclotron will not survive yet this year without state support

    International Nuclear Information System (INIS)

    Marcan, P.

    2005-01-01

    In this paper the project of the Cyclotron Center of the Slovak republic is described. On the basis of this project the state joint-stock company Biont was constituted. Small cyclotron is in operation; big cyclotron is in process of manufacture and it will be put in operation in 2007. Small cyclotron will be used for production of radiopharmaceuticals. Positron emission tomograph (PET) in Oncological Institute of St. Elizabeth (in Bratislava) and gamma camera in Central Military Hospital (in Ruzomberok) are constituents of the Biont. The PET will be also in Biont. The hadron therapy of ophthalmic tumors is planned. Financial plans of the Biont up to 2009 are presented

  6. The problems of high efficient extraction from the isochronous cyclotron

    International Nuclear Information System (INIS)

    Schwabe, J.

    1994-06-01

    The problem of high efficient extraction (η ≥ 50%) from isochronous cyclotrons (with the exception of the stripping method) is not completely solved up to this day. This problem is specifically important, because these cyclotrons are being also applied in the production of medical radioisotopes, labeled pharmaceuticals as well as in neutron therapy (oncology), machine industry, agriculture (plant mutagenesis), etc. The aim of the proposed topic is to solve this problem on the AIC-144 isochronous cyclotron in the INP (Institute of Nuclear Physics). Lately, a beam of 20 MeV deuterons with an efficiency of ca. 15% was extracted from this cyclotron. (author). 25 refs, 14 figs

  7. Influence of constant, alternating and cyclotron low-intensity electromagnetic fields on fibroblast proliferative activity in vitro.

    Science.gov (United States)

    Afinogenov, Gennadi; Afinogenova, Anna; Kalinin, Andrey

    2009-12-16

    Available data allow assuming the presence of stimulation of reparative processes under influence of low-intensity electromagnetic field, commensurable with a magnetic field of the Earth. Research of effects of low-intensity electromagnetic fields on fibroblast proliferative activity in human lungs in cell culture was performed.The influence of a constant electromagnetic field, an alternating electromagnetic field by frequency of 50 Hz and cyclotron electromagnetic field with identical intensity for all kinds of fields - 80 mcTl - on value of cellular mass and a correlation of live and dead cells in culture is investigated in three series of experiments. We used the universal electromagnetic radiator generating all three kinds of fields and supplied by a magnetometer which allows measuring the intensity of accurate within 0.1 mcTl including taking into account the Earth's magnetic field intensity.The peak value for stimulation cellular proliferation in the present experiences was two-hour influence by any of the specified kinds of electromagnetic fields. The irradiation by cyclotron electromagnetic field conducts positive dynamics in growth of live cells (up to 206+/-22%) and decreases the number of dead cells (down to 31+/-6%). Application of cyclotron magnetic fields promoted creation of optimum conditions for proliferation. As a result of researches we observed the reliable 30% increase of nitro-tetrazolium index (in nitro-tetrazolium blue test) after irradiation by cyclotron electromagnetic field in experience that testifies to strengthening of the cell breathing of living cells.In our opinion, it is necessary to pay attention not only to a pure gain of cells, but also to reduction of number dead cells that can be criterion of creation of optimum conditions for their specific development and valuable functioning.

  8. Thermal Stabilization of Cryogenic System in Superconducting Cyclotron

    International Nuclear Information System (INIS)

    Shin, Seung Jae; Kim, Kyung Min; Cho, Hyung Hee; Hong, Bong Hwan; Kang, Joon Sun; Ahn, Dong Hyun

    2011-01-01

    Radiology has some useful applications for medical purpose. For cancer therapy, the superconducting cyclotron should generate heavy ion beams. It radiates heavy ion beams to cancer patients. In order to make cyclotron system stable, the cryogenic system which makes superconducting state should work constantly. However, radiation heat transfer of cryogenic system should be considered because liquid helium's boiling point is extremely low and there is huge temperature difference between the cryogenic system and ambient temperature. Accordingly, thermal analysis should be carried out. In this paper, the numerical analysis of the cryogenic system in practical superconducting cyclotron show temperature distribution and suggest the number of coolers using ANSYS Workbench program

  9. A radioisotope production cyclotron designed to minimize dose

    International Nuclear Information System (INIS)

    Szlavik, F.F.; Moritz, L.E.

    1992-01-01

    This paper describes a radioisotope production cyclotron which has been designed to minimize the dose to personnel during operation and maintenance. The design incorporates lessons learned from the operation of a CP42 cyclotron and has resulted in a reduction of the dose by a factor of more than 10. (author)

  10. Inside launch electron cyclotron heating and current drive on DITE

    International Nuclear Information System (INIS)

    Ashraf, M.; Deliyanakis, N.

    1989-01-01

    Electron cyclotron resonance heating at 60 GHz has been carried out on DITE (R = 1.2 m, a = 0.24 m) to investigate heating and current drive using the extraordinary mode launched with finite k parallel from the high field side. The first clear evidence of Doppler shifted resonance absorption in a near-thermal plasma is obtained. The heating efficiency is observed to fall sharply at densities above cut-off for the wave. At lower densities the increment in power to the limiter is measured during ECRH and is compared with that expected from the global power balance. The degradation in particle confinement often associated with ECRH is observed as an increased particle flux at the boundary driven by local electrostatic fluctuations. Initial experiments on the electron cyclotron wave driven current at the second harmonic show effects that are consistent with the low efficiency expected from theory including trapped particle effects. (author). 9 refs, 4 figs

  11. Health physics aspects of the 1.5M cyclotron

    International Nuclear Information System (INIS)

    Song, W.J.; Du, H.L.; Wei, Z.Q.; Xia, X.S.; Zheng, H.Z.; Jiang, G.F.; Liu, Y.Y.

    1987-01-01

    The 1.5m cyclotron in Institute of Modern Physics, Academia Sinica had operated for about 20 years until 1984 then converted to 1.7m sector focusing cyclotron. In this period it mainly used for fast neutron physics, light ion induced nucleus reactions, radioisotope production and heavy ion reactions. The health physics performed on this cyclotron including personnel dose monitoring, area monitoring (radiation field, radioactive aerosol, surface contamination and activated components etc.), maintenance inspection, environment survey and waste disposal is presented in this paper

  12. Electromagnetic Ion Cyclotron Waves in the Helium Branch Induced by Multiple Electromagnetic Ion Cyclotron Triggered Emissions

    Science.gov (United States)

    Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  13. TASCC newsletter volume 9 no. 2

    International Nuclear Information System (INIS)

    Thomson, L.

    1995-02-01

    A newsletter produced by Chalk River's Tandem Accelerator Superconducting Cyclotron Facility. Included in this February issue of TASCC is an update of the facility, beams to simulate the cosmic-ray environment in space, personnel changes at TASCC, modular approach to rebuilding cyclotron rf control electronics and a listing of February's experiments. 1 fig

  14. Chinese and Indian women's experience with alternative medications for menopause related symptoms: A qualitative analysis.

    Science.gov (United States)

    Ohn Mar, Saw; Malhi, Fatehpal Singh; Syed Rahim, Syed Hamid; Soe, Myint Myint

    2017-09-15

    To explore women's rationalization for using alternative medications, their experience and view on safety of long-term use. Two focus group discussions, involving 5 participants each for Chinese and Indian groups, were conducted separately. Participant's personal information was collected anonymously. The discussion covered 5 areas: determinants for taking medications; reason for choosing alternative medications rather than hormone replacement therapy (HRT); how these medications help them; their view on cost-effectiveness and concerns over long-term use. The discussions were audio-taped, transcribed and analyzed. Chinese participants took supplements for controlling symptoms while Indian participants used herbs as a preventive measure during menopause according to their tradition. Women of both groups mentioned that they did not take HRT because of fear of side effects. Chinese group mentioned that medications remarkably improved their symptoms whereas Indian participants appreciated their herbals more for improvement in general wellbeing than for specific symptoms. All members agreed that using alternative medication was cost-effective. Both Chinese and Indian participants were quite confident in saying that long-term use will not be associated with any side effects. However, Indian group emphasized that proper preparation of herbal compound using different types of leaves, is essential in order to avoid untoward effects. Chinese and Indian women used alternative medicine in prevention and treatment of menopause-related problems even as they were avoiding HRT because of the fear of side effects. They believed that their supplements were effective, safe and cost-beneficial even with long-term use.

  15. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  16. Calculation of particle dynamics in CI-10 cyclotron

    International Nuclear Information System (INIS)

    Samsonov, E.V.; Karamysheva, G.A.; Vorozhtsov, S.B.

    1999-01-01

    The calculations of beam dynamic characteristics of High-Intensity Cyclotron-Injector CI-10 for deuteron beam of 15 MeV energy are presented. Analytical estimations of space charge effects are given. In order to increase the intensity of the accelerator beam some ideas about the cyclotron design modification are given too. (author)

  17. Design of RF system for CYCIAE-230 superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-11

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push–pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  18. Design of RF system for CYCIAE-230 superconducting cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  19. The permittivity of a plasma at cyclotron resonance in large amplitude e.m. fields

    NARCIS (Netherlands)

    Schram, D.C.

    1970-01-01

    The permittivity of a collisionless plasma as a function of field parameters is measured in standing and in travelling waves. In both experiments the permittivity remains finite at cyclotron resonance; the resonance is broadened and shifted towards higher values of the magnetic field strength. The

  20. Neutron skyshine measurement at a K1200 superconducting heavy ion cyclotron using bubble dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, B. [Safety Div., Australian Nuclear Science and Technology Organisation, Menai (Australia); Ronningen, R.M. [Michigan State Univ., National Superconducting Cyclotron Lab., East Lansing, MI (United States); Rossi, P. [Michigan State Univ., Office of Radiation, Chemical and Biological Safety, East Lansing, MI (United States)

    1999-07-01

    Understanding the characteristics of the neutron skyshine radiation is necessary for an accurate assessment of the environmental dose in the vicinity of the containment of a high-energy particle accelerator. At the National Superconducting Cyclotron Laboratory (NSCL), neutron skyshine was measured, using beams of 140 MeV/nucleon {sup 4}He and 80 MeV/nucleon {sup 22}Ne ions from the K1200 superconducting cyclotron. After passing through a radioactive-beam production target, the ion beam stopped in a solid aluminium stopping bar inside of a dipole magnet, resulting in the production of high energy fragmentation as well as evaporation neutrons in the NSCL Analysis Hall. The neutron dose equivalent and energy spectrum at the 1.37 m thick concrete roof of the Analysis Hall, directly above the aluminium target bar (reference point), were estimated, using a spherical 'rem-counter' and a set of seven Bonner-spheres, respectively. The skyshine dose, from neutrons transmitted through 21.5-cm local iron 'shielding' of the dipole magnet and the concrete roof, were evaluated using superheated bubble dosimeters at 50 m, 75 m, 100 m and 115 m from the reference point. The neutron doses beyond the extremity of the NSCL facility were extrapolated from the results of this investigation and were used to predict the exposure to members of the public by considering the operation schedule of the K1200 cyclotron. (authors)