WorldWideScience

Sample records for cyclotron emission diagnostic

  1. TFTR vertically viewing electron cyclotron emission diagnostic

    International Nuclear Information System (INIS)

    Taylor, G.

    1990-01-01

    The Tokamak Fusion Test Reactor (TFTR) Michelson interferometer has a spectral coverage of 75--540 GHz, allowing measurement of the first four electron cyclotron harmonics. Until recently the instrument has been configured to view the TFTR plasma on the horizontal midplane, primarily in order to measure the electron temperature profile. Electron cyclotron emission (ECE) extraordinary mode spectra from TFTR Supershot plasmas exhibit a pronounced, spectrally narrow feature below the second harmonic. A similar feature is seen with the ECE radiometer diagnostic below the electron cyclotron fundamental frequency in the ordinary mode. Analysis of the ECE spectra indicates the possibility of a non-Maxwellian 40--80 keV tail on the electron distribution in or near the core. During 1990 three vertical views with silicon carbide viewing targets will be installed to provide a direct measurement of the electron energy distribution at major radii of 2.54, 2.78, and 3.09 m with an energy resolution of approximately 20% at 100 keV. To provide the maximum flexibility, the optical components for the vertical views will be remotely controlled to allow the Michelson interferometer to be reconfigured to either the midplane horizontal view or one of the three vertical views between plasma shots

  2. Alcator C vertical viewing electron cyclotron emission diagnostic

    International Nuclear Information System (INIS)

    Kato, K.; Hutchinson, I.H.

    1986-03-01

    Electron cyclotron emission measured vertically through the center of a tokamak plasma yields detailed information about the electron velocity distribution. A diagnostic developed for this purpose on Alcator C tokamak uses specialized focusing optics to obtain a well collimated viewing chord, a compact viewing dump made of pyrex or Macor to reduce the effects of wall reflection and depolarization, and a rapid-scan polarizing Michelson interferometer - InSb detector system for the spectrum measurement; all constrained by the limited access and the compact size of Alcator C. Results of diffraction analysis are used to evaluate the theoretical performance of the optical system

  3. Vertical one-dimensional electron cyclotron emission imaging diagnostic for HT-7 tokamak

    International Nuclear Information System (INIS)

    Wang Jun; Xu Xiaoyuan; Wen Yizhi; Yu Changxuan; Wan Baonian; Luhmann, N.C.; Wang, Jian; Xia, Z.G.

    2005-01-01

    A vertical resolved 16-channel electron cyclotron emission imaging (ECEI) diagnostic has been developed and installed on the HT7 Tokamak for measuring plasma electron cyclotron emission with a temporal resolution of 0.5 us. The system is working on a fixed frequency 97.5 GHz in the first stage. The sample volumes of the system are aligned vertically with a vertical channel spacing of 11 mm, and can be shifted across the plasma cross-section by varying the toroidal magnetic field. The high spatial resolution of the system is achieved by utilizing a low cost linear mixer/receiver array and an optical imaging system. The focus location may be shifted horizontally via translation of one of the optical imaging elements. The detail of the system design and laboratory testing of the ECE Imaging optics are presented, together with HT7 plasma data. (author)

  4. Calibration and use cases of the electron cyclotron emission diagnostic at Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Hoefel, Udo; Hirsch, Matthias; Ewert, Karsten; Hartfuss, Hans-Juergen; Laqua, Heinrich Peter; Stange, Torsten; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Collaboration: the W7-X Team

    2016-07-01

    The world's largest stellarator, Wendelstein 7-X (W7-X), is equipped with a 140 GHz electron cyclotron resonance heating (ECRH) system providing up to 5 MW absorbed power in the first operation phase OP1.1. The foreseen X2-heating scenario uses the high absorption of the second harmonic extraordinary electron cyclotron waves, which leads on the other hand to a black body electron cyclotron emission (ECE) being proportional to the local electron temperature. ECE is one of the fundamental operating diagnostics and is planned to yield the electron temperature profile from the very first discharges onwards. Unlike most other ECE diagnostics, the 32 channel ECE radiometer diagnostic (with additional 16 channels with higher radial resolution) at W7-X is absolutely calibrated. It is planned to use this diagnostic for intensive studies on electron heat transport in the upcoming operational phases of W7-X. Simple switch-off experiments for the determination of the energy confinement time should already be possible within the first plasma shots. Due to the high temporal and radial resolution the ECE will be used also to determine the power deposition by modulation of the heating gyrotron. or the localization of a power modulated ECRH to optimize the power deposition. If reasonably equilibrated plasma conditions could be generated in the first operational phase (OP 1.1), first studies on electron thermal diffusivity could also be possible.

  5. Design of a correlation electron cyclotron emission diagnostic for Alcator C-Moda)

    Science.gov (United States)

    Sung, C.; White, A. E.; Irby, J. H.; Leccacorvi, R.; Vieira, R.; Oi, C. Y.; Peebles, W. A.; Nguyen, X.

    2012-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been installed in Alcator C-Mod. In order to measure electron temperature fluctuations, this diagnostic uses a spectral decorrelation technique. Constraints obtained with nonlinear gyrokinetic simulations guided the design of the optical system and receiver. The CECE diagnostic is designed to measure temperature fluctuations which have kθ ≤ 4.8 cm-1 (kθρs < 0.5) using a well-focused beam pattern. Because the CECE diagnostic is a dedicated turbulence diagnostic, the optical system is also flexible, which allows for various collimating lenses and antenna to be used. The system overview and the demonstration of its operability as designed are presented in this paper.

  6. Correlation electron cyclotron emission diagnostic and improved calculation of turbulent temperature fluctuation levels on ASDEX Upgrade

    Science.gov (United States)

    Creely, A. J.; Freethy, S. J.; Burke, W. M.; Conway, G. D.; Leccacorvi, R.; Parkin, W. C.; Terry, D. R.; White, A. E.

    2018-05-01

    A newly upgraded correlation electron cyclotron emission (CECE) diagnostic has been installed on the ASDEX Upgrade tokamak and has begun to perform experimental measurements of electron temperature fluctuations. CECE diagnostics measure small amplitude electron temperature fluctuations by correlating closely spaced heterodyne radiometer channels. This upgrade expanded the system from six channels to thirty, allowing simultaneous measurement of fluctuation level radial profiles without repeat discharges, as well as opening up the possibility of measuring radial turbulent correlation lengths. Newly refined statistical techniques have been developed in order to accurately analyze the fluctuation data collected from the CECE system. This paper presents the hardware upgrades for this system and the analysis techniques used to interpret the raw data, as well as measurements of fluctuation spectra and fluctuation level radial profiles.

  7. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, W. L., E-mail: w.l.rowan@austin.utexas.edu; Houshmandyar, S.; Phillips, P. E.; Austin, M. E. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Beno, J. H.; Ouroua, A. [Center for Electromechanics, The University of Texas at Austin, Austin, Texas 78712 (United States); Hubbard, A. E. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Khodak, A.; Taylor, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct view of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.

  8. Improved operation of the Michelson interferometer electron cyclotron emission diagnostic on DIII-D

    International Nuclear Information System (INIS)

    Austin, M.E.; Ellis, R.F.; Doane, J.L.; James, R.A.

    1997-01-01

    The measurement of accurate temperature profiles is critical for transport analysis and equilibrium reconstruction in the DIII-D tokamak. Recent refinements in the Michelson interferometer diagnostic have produced more precise electron temperature measurements from electron cyclotron emission and made them available for a wider range of discharge conditions. Replacement of a lens-relay with a low-loss corrugated waveguide transmission system resulted in an increase in throughput of 6 dB and a reduction of calibration error from 15% to 5%. The waveguide exhibits a small polarization scrambling fraction of 0.05 at the quarter-wavelength frequency and very stable transmission characteristics over time. Further reduction in error was realized through special signal processing of the calibration and plasma interferograms. copyright 1997 American Institute of Physics

  9. Analysis Tools for the Ion Cyclotron Emission Diagnostic on DIII-D

    Science.gov (United States)

    Del Castillo, C. A.; Thome, K. E.; Pinsker, R. I.; Meneghini, O.; Pace, D. C.

    2017-10-01

    Ion cyclotron emission (ICE) waves are excited by suprathermal particles such as neutral beam particles and fusion products. An ICE diagnostic is in consideration for use at ITER, where it could provide important passive measurement of fast ions location and losses, which are otherwise difficult to determine. Simple ICE data analysis codes had previously been developed, but more sophisticated codes are required to facilitate data analysis. Several terabytes of ICE data were collected on DIII-D during the 2015-2017 campaign. The ICE diagnostic consists of antenna straps and dedicated magnetic probes that are both digitized at 200 MHz. A suite of Python spectral analysis tools within the OMFIT framework is under development to perform the memory-intensive analysis of this data. A fast and optimized analysis allows ready access to data visualizations as spectrograms and as plots of both frequency and time cuts of the data. A database of processed ICE data is being constructed to understand the relationship between the frequency and intensity of ICE and a variety of experimental parameters including neutral beam power and geometry, local and global plasma parameters, magnetic fields, and many others. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  10. New Electron Cyclotron Emission Diagnostic Based Upon the Electron Bernstein Wave

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Hosea, J.C.; Kaita, R.; Majeski, R.; Taylor, G.

    1999-01-01

    Most magnetically confined plasma devices cannot take advantage of standard Electron Cyclotron Emission (ECE) diagnostics to measure temperature. They either operate at high density relative to their magnetic field or they do not have sufficient density and temperature to reach the blackbody condition. The standard ECE technique measures the electromagnetic waves emanating from the plasma. Here we propose to measure electron Bernstein waves (EBW) to ascertain the local electron temperature in these plasmas. The optical thickness of EBW is extremely high because it is an electrostatic wave with a large k(subscript i). One can reach the blackbody condition with a plasma density approximately equal to 10(superscript 11) cm(superscript -3) and electron temperature approximately equal to 1 eV. This makes it attractive to most plasma devices. One serious issue with using EBW is the wave accessibility. EBW may be accessible by either direct coupling or mode conversion through an extremely narrow layer (approximately 1-2 mm) in low field devices

  11. Electron cyclotron emission imaging in tokamak plasmas

    NARCIS (Netherlands)

    Munsat, T.; Domier, C.W.; Kong, X. Y.; Liang, T. R.; N C Luhmann Jr.,; Tobias, B. J.; Lee, W.; Park, H. K.; Yun, G.; Classen, I.G.J.; Donne, A. J. H.

    2010-01-01

    We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the

  12. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations.

    Science.gov (United States)

    White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A

    2008-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.

  13. Real-time control of tearing modes using a line-of-sight electron cyclotron emission diagnostic

    International Nuclear Information System (INIS)

    Hennen, B A; Westerhof, E; De Baar, M R; Bongers, W A; Thoen, D J; Nuij, P W J M; Steinbuch, M; Oosterbeek, J W; Buerger, A

    2010-01-01

    The stability and performance of tokamak plasmas are limited by instabilities such as neoclassical tearing modes. This paper reports on an experimental proof of principle of a feedback control approach for real-time, autonomous suppression and stabilization of tearing modes in a tokamak. The system combines an electron cyclotron emission diagnostic for sensing of the tearing modes in the same sight line with a steerable electron cyclotron resonance heating and current drive (ECRH/ECCD) antenna. A methodology for fast detection of q = m/n = 2/1 tearing modes and retrieval of their location, rotation frequency and phase is presented. Set-points to establish alignment of the ECRH/ECCD deposition location with the centre of the tearing mode are generated in real time and forwarded in closed loop to the steerable launcher and as a modulation pulse train to the gyrotron. Experimental results demonstrate the capability of the control system to track externally perturbed tearing modes in real time.

  14. Electron cyclotron-electron Bernstein wave emission diagnostics for the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Zajac, Jaromír; Preinhaelter, Josef; Urban, Jakub; Žáček, František; Šesták, David; Nanobashvili, S.

    2010-01-01

    Roč. 81, č. 10 (2010), 10D911-10D911 ISSN 0034-6748. [TOPICAL CONFERENCE ON HIGH-TEMPERATURE PLASMA DIAGNOSTICS/18th./. Wildwood, New Jersey, 16.05.2010-20.05.2010] R&D Projects: GA ČR GA202/08/0419 Institutional research plan: CEZ:AV0Z20430508 Keywords : antenna radiation patterns * antennas in plasma * plasma diagnostics * Tokamak Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.598, year: 2010 http://link.aip.org/link/?RSI/81/10D911

  15. Ion cyclotron emission by spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa, O [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Gresillon, D [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises

    1994-07-01

    The goal of the study is to examine whether the spontaneous emission can account for ICE (ion cyclotron emission) experimental results, or part of them. A straightforward approach to plasma emission is chosen, investigating the near equilibrium wave radiation by gyrating ions, and thus building from the majority and fast fusion ions the plasma fluctuations and emission on the fast magnetoacoustic or compressional Alfven wave mode in the IC frequency range. Similarities with the ICE experiments are shown: the emission temperature in the presence of fast ions (even in a very small amount), the strong fast ion emission increase with the harmonic, the fine double-line splitting of each peak, the linear but not proportional increase of the peak width with the harmonic. 3 refs., 2 figs.

  16. Ion cyclotron emission by spontaneous emission

    International Nuclear Information System (INIS)

    Da Costa, O.; Gresillon, D.

    1994-01-01

    The goal of the study is to examine whether the spontaneous emission can account for ICE (ion cyclotron emission) experimental results, or part of them. A straightforward approach to plasma emission is chosen, investigating the near equilibrium wave radiation by gyrating ions, and thus building from the majority and fast fusion ions the plasma fluctuations and emission on the fast magnetoacoustic or compressional Alfven wave mode in the IC frequency range. Similarities with the ICE experiments are shown: the emission temperature in the presence of fast ions (even in a very small amount), the strong fast ion emission increase with the harmonic, the fine double-line splitting of each peak, the linear but not proportional increase of the peak width with the harmonic. 3 refs., 2 figs

  17. Studies of electron cyclotron emission on text

    International Nuclear Information System (INIS)

    Gandy, R.F.

    1990-07-01

    The Auburn University electron cyclotron emission (ECE) system has made many significant contributions to the TEXT experimental program during the past five years. Contributions include electron temperature information used in the following areas of study: electron cyclotron heating (ECH), pellet injection, and impurity/energy transport. Details of the role which the Auburn ECE system has played will now be discussed

  18. Modular beam diagnostics instrument design for Cyclotrons

    International Nuclear Information System (INIS)

    Chaddha, N.; Bhole, R.B.; Sahoo, S.; Nandy, P.P.; Pal, S.

    2012-01-01

    The Cyclotrons at VECC, Kolkata i.e. Room Temperature Cyclotron (RTC) and Superconducting Cyclotron (SCC) comprise of internal and external Beam Diagnostic systems. These systems provide the beam developer with position, intensity, beam profile, a visual impression of the size and shape of ion beam, and operational control over diagnostic components like 3-finger probe, Beam Viewer probe, Deflector probe, Faraday cup, X-Y slit, Beam viewer etc. Automation of these components was initially done using customised modules for individual sub-system. An expansion of this facility and various levels of complexity demand modular design to cater easy modification and upgradation. The overall requirements are analysed and modular cards are developed based on basic functionalities like valve operation, probe/slit/viewer control, position read-out, Interlock, aperture control of beam line and communication. A 32-bit Advanced RISC Machine (ARM) based card with embedded EPICS is chosen as the master controller and FPGA/microcontroller is used for functional modules. The paper gives a comprehensive description of all modules and their integration with the control system. (author)

  19. Electron cyclotron emission from thermal plasmas

    International Nuclear Information System (INIS)

    Fidone, I.; Granata, G.

    1978-02-01

    Electron cyclotron radiation from a warm inhomogeneous plasma is investigated. A direct calculation of the emissive power of a plasma slab is performed using Rytov's method and the result is compared with the solution of the transfer equation. It is found that, for arbitrary directions of emission, the two results differ, which reflects the fact that Kirchhoff's law is not generally obeyed

  20. Electron cyclotron emission from the PLT tokamak

    International Nuclear Information System (INIS)

    Hosea, J.; Arunasalam, V.; Cano, R.

    1977-07-01

    Experimental measurements of electron cyclotron emission from the PLT tokamak plasma reveal that black-body emission occurs at the fundamental frequency. Such emission, not possible by direct thermal excitation of electromagnetic waves, is herein attributed to thermal excitation of electrostatic (Bernstein) waves which then mode convert into electromagnetic waves. The local feature of the electrostatic wave generation permits spatially and time resolved measurements of electron temperature as for the second harmonic emission

  1. First results of correlation electron cyclotron emission on Tore Supra

    OpenAIRE

    Udintsev, V. S.; Goniche, M.; Ségul, J.L.; Giruzzi, G.; Molina, D.; Turco, F.; Huysmans, G. T. A.; Maget, P.; Krämer-Flecken, A.

    2006-01-01

    Measurements of electron temperature fluctuations by means of correlation electron cyclotron emission (ECE) diagnostics aid in understanding the nature of the turbulent transport infusion plasmas. On Tore Supra tokamak, a 32-channel heterodyne ECE radiometer has been upgraded to include two channels for temperature fluctuation measurements. The central frequency of the yttrium iron garnet filter on each channel is remotely monitored by a driver, allowing one to shift the observation volume in...

  2. Oblique electron cyclotron emission for electron distribution studies (invited)

    International Nuclear Information System (INIS)

    Preische, S.; Efthimion, P.C.; Kaye, S.M.

    1997-01-01

    Electron cyclotron emission (ECE) at an oblique angle to the magnetic field provides a means of probing the electron distribution function both in energy and physical space through changes in and constraints on the relativistic electron cyclotron resonance condition. Diagnostics based on this Doppler shifted resonance are able to study a variety of electron distributions through changes in the location of the resonance in physical or energy space accomplished by changes in the viewing angle and frequency, and the magnetic field. For the case of observation across a changing magnetic field, such as across the tokamak midplane, the constraint on the resonance condition for real solutions to the dispersion relation can constrain the physical location of optically thin emission. A new Oblique ECE diagnostic was installed and operated on the PBX-M tokamak for the study of energetic electrons during lower hybrid current drive. It has a view 33 degree with respect to perpendicular in the tokamak midplane, receives second harmonic X-mode emission, and is constrained to receive single pass emission by SiC viewing dumps on the tokamak walls. Spatial localization of optically thin emission from superthermal electrons (50 endash 100 keV) was obtained by observation of emission upshifted from a thermal cyclotron harmonic. The localized measurements of the electron energy distribution and the superthermal density profile made by this diagnostic demonstrate its potential to study the spatial transport of energetic electrons on fast magnetohydrodynamic time scales or anomalous diffusion time scales. Oblique ECE can also be used to study electron distributions that may have a slight deviation from a Maxwellian by localizing the emission in energy space. (Abstract Truncated)

  3. Electron cyclotron emission measurement in Tore Supra

    International Nuclear Information System (INIS)

    Javon, C.

    1991-06-01

    Electron cyclotron radiation from Tore-Supra is measured with Michelson and Fabry-Perot interferometers. Calibration methods, essential for this diagnostic, are developed allowing the determination of electron temperature in the plasma. In particular the feasibility of Fabry-Perot interferometer calibration by an original method is demonstrated. A simulation code is developed for modelling non-thermal electron population in these discharges using measurements in non-inductive current generation regime [fr

  4. Interpretation of ion cyclotron emission from fusion and space plasmas

    International Nuclear Information System (INIS)

    Dendy, R.O.

    1994-01-01

    Superthermal ion cyclotron emission (ICE) is observed in both fusion and space plasma. Typical spectra display strong peaks at sequential multiple ion cyclotron harmonics, and distinct energetic ion populations are present in the emitting regions. In JET and TFTR, for example, ICE appears to be driven by fusion products or by injected beam ions in the outer mid plane; and in the Earth's ring current, radiation belts, and bow shock, ICE has been observed by the spacecraft OGO 3, GEOS 1 and 2 and AMPTE/IRM, often in conjunction with highly non-Maxwellian proton populations. Common emission mechanisms, arising from collective relaxation of energetic ion populations, appear to operate in both the fusion and space plasma environments. These are reviewed here, and the potential role of ICE as a diagnostic of energetic ion populations is also examined. (Author)

  5. Diagnostic system for the nuclear medicine with baby cyclotron

    International Nuclear Information System (INIS)

    Kashihara, Masao; Wakasa, Shyuichiro

    1982-01-01

    The system of cyclotron nuclear medicine consists of ''RI-production by using the cyclotron'', ''production of radio-pharmaceuticals labeled with RI'', ''positron tomography''. On the other hand, Ultra compact cyclotron (Baby cyclotron) itself, RI production technique and positron tomography have been rapidly developed and advanced. We think that these three functions must be balance in the development in order to spread this system into the routine work in the hospital. However, since the technology of the synthesis for the labeled compounds is not so developed so far, more advance can be strongly expected. In this report, construction of the cyclotron nuclear medicine, utility for the practical use of RI produced by using the cyclotron, technique of RI production, and the studies on automated and efficient productions of radio-pharmaceuticals labeled with short-lived positron emitters for medical diagnostic use are described. (author)

  6. Fabrication of beam diagnostic components for Superconducting Cyclotron at Kolkata

    International Nuclear Information System (INIS)

    Roy, S.; Bhattacharya, S.; Das, T.; Bhattacharyya, T.K.; Pal, S.; Pal, G.; Mallik, C.; Bhandari, R.K.

    2009-01-01

    The viewer probe and main probe are used for determining the position and current of charged particles as it is accelerated inside the superconducting cyclotron. The viewer probe is used to visually observe the shape of the charged particle beam inside the cyclotron with the help of a borescope. The main probe measures the distribution of charged particles. The viewer probe and main probe are bellow sealed. They can be positioned with an accuracy of 0.5 mm at different radii within the superconducting cyclotron. M9 slit is placed after the exit flange of the cyclotron. It determines the position of the beam leaving the cyclotron. The beam line has slits, faraday cup, beam viewers, collimators, etc. for beam diagnostics. This paper presents the mechanical design and details of beam diagnostic components. (author)

  7. Proceedings of the 12. Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating

    International Nuclear Information System (INIS)

    Giruzzi, Gerardo

    2003-01-01

    The 12. Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating was held in Aix-en-Provence (France) from 13 to 16 May 2002. The meeting was hosted by the Association Euratom-CEA sur la Fusion (CEA/Cadarache, France), with additional financial support from: - Region Provence-Alpes Cote d'Azur - The City of Aix-en-Provence - Communaute de l'Agglomeration du Pays d'Aix - Thales Electron Devices (France) - Alstom Magnets and Superconductors (France) - Spinner GmbH (Germany). The members of the local organizing committee were: G. Giruzzi, M. Lennholm, R. Magne and V. Poli, from CEA/Cadarache. The composition of the International Programme Committee was the following: M. Bornatici (Italy), A. Costley (ITER), E. de la Luna (Spain), G. Giruzzi (France), W. Kasparek (Germany), B. Lloyd (UK), J. Lohr (USA), K. Sakamoto (Japan). The subjects of the meeting were classified in four main topics: Electron Cyclotron Theory; Electron Cyclotron Emission; Electron Cyclotron Heating and Current Drive Experiments; Electron Cyclotron Technology. The results presented in these topics have been summarised in the closing session by E. Westerhof, A. Kraemer-Flecken, T. Goodman and G. Bosia, respectively. The workshop was attended by 85 participants from 18 countries, providing 10 invited talks, 30 oral presentations and 50 posters. The success of the workshop is mainly due to the amount and quality of their work and of their presentations. The generosity of the sponsors, the selection and advice work of the International Programme Committee, as well as the contribution of the chairmen and of the summary speakers should also be warmly acknowledged. The papers in this collection have been reproduced directly from the authors' manuscripts, provided either as camera-ready texts or as pdf files. The constraints on the papers lengths and formats have been kept to a minimum, on purpose. This series of workshops has now reached a good level of maturity, with well established

  8. Electron cyclotron emission spectroscopy on thermonuclear plasmas

    International Nuclear Information System (INIS)

    Tubbing, B.J.D.

    1987-01-01

    Analysis of electron cyclotron emission (ECE) enables one to infer the radial profile of the electron temperature in tokamaks. The Dutch FOM institute for plasma physics has designed, built, installed and operated a grating polychromator for ECE measurements at JET. This thesis deals with a few instrumental aspects of this project and with applications of ECE measurements in tokamak physics studies. Ch. 3 and 4 deal with the wave transport in ECE systems. In Ch. 3 a method is developed to infer the mode conversion, which is a source for transmission losses, in a waveguide component from the antenna pattern of its exit aperture. In Ch. 4 the design and manufacture of the waveguide transition system to the grating polychromator are described. In Ch. 5 a method is reported for calibration of the spectrometers, based on the use of a microwave source which simulates a large area blackbody of very high temperature. The feasibility of the method is tested by applying it to two different ECE systems. In Ch. 6 a study of heat pulse propagation in tokamak plasma's, based on measurement of the electron temperature with the grating polychromator, is presented. 105 refs.; 48 figs.; 8 tabs

  9. Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams

    Science.gov (United States)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-05-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q, but increase with the magnetic mirror ratio σ as well as with the steepness index δ. Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  10. ELECTRON CYCLOTRON MASER EMISSIONS FROM EVOLVING FAST ELECTRON BEAMS

    International Nuclear Information System (INIS)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-01-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q , but increase with the magnetic mirror ratio σ as well as with the steepness index δ . Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  11. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    DEFF Research Database (Denmark)

    Oosterbeek, J.W.; Bürger, A.; Westerhof, E.

    2008-01-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) bea...

  12. Electron cyclotron emission measurements at the stellarator TJ-K

    Energy Technology Data Exchange (ETDEWEB)

    Sichardt, Gabriel; Ramisch, Mirko [Institut fuer Grenzflaechenverfahrenstechnik und Plasmatechnologie, Universitaet Stuttgart (Germany); Koehn, Alf [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2016-07-01

    Electron temperature (T{sub e}) measurements in the magnetised plasmas of the stellarator TJ-K are currently performed by means of Langmuir probes. The use of these probes is restricted to relatively low temperatures and the measurement of temperature profiles requires the acquisition of the local current-voltage characteristics which limits strongly the sampling rate. As an alternative, T{sub e} can be measured using the electron cyclotron emission (ECE) that is generated by the gyration of electrons in magnetised plasmas. Magnetic field gradients in the plasma lead to a spatial distribution of emission frequencies and thus the measured intensity at a given frequency can be related to its point of origin. The T{sub e} dependence of the intensity then leads to a temperature profile along the line of sight for Maxwellian velocity distributions. A diagnostic system for T{sub e} measurements using ECE is currently being set up at TJ-K. When non-thermal electrons are present the emission spectrum changes dramatically. Therefore, the ECE can also be used to investigate the contribution of fast electrons to previously observed toroidal net currents in TJ-K. Simulations are used to examine the role of electron drift orbits in generating these currents.

  13. Proceedings of eighth joint workshop on electron cyclotron emission and electron cyclotron resonance heating. Vol. 1

    International Nuclear Information System (INIS)

    1993-03-01

    The theory of electron cyclotron resonance phenomena is highly developed. The main theoretical tools are well established, generally accepted and able to give a satisfactory description of the main results obtained in electron cyclotron emission, absorption and current drive experiments. In this workshop some advanced theoretical and numerical tools have been presented (e.g., 3-D Fokker-Planck codes, treatment of the r.f. beam as a whole, description of non-linear and finite-beam effects) together with the proposal for new scenarios for ECE and ECA measurements (e.g., for diagnosing suprathermal populations and their radial transport). (orig.)

  14. Proceedings of eighth joint workshop on electron cyclotron emission and electron cyclotron resonance heating. Vol. 2

    International Nuclear Information System (INIS)

    1993-03-01

    The theory of electron cyclotron resonance phenomena is highly developed. The main theoretical tools are well established, generally accepted and able to give a satisfactory description of the main results obtained in electron cyclotron emission, absorption and current drive experiments. In this workshop some advanced theoretical and numerical tools have been presented (e.g., 3-D Fokker-Planck codes, treatment of the r.f. beam as a whole, description of non-linear and finite-beam effects) together with the proposal for new scenarios for ECE and ECA measurements (e.g., for diagnosing suprathermal populations and their radial transport). (orig.)

  15. Polarized electron cyclotron emission in the Tokapole II Tokamak

    International Nuclear Information System (INIS)

    Sengstacke, M.A.; Dexter, R.N.; Prager, S.C.

    1984-06-01

    To examine the effect of wall reflections we have measured the polarization of second harmonic cyclotron emission (at omega = 2 omega/sub ce/) in the Tokapole II tokamak both with and without a microwave absorber installed within the field of view of the receiving antenna. Indeed, the local elimination of wall reflections markedly enhances the polarization, as described in section II. Section III describes observations consistent with right-hand cutoff effects and an attempt to infer the electron temperature from cyclotron emission in an optically thin plasma

  16. Electromagnetic Ion Cyclotron Waves in the Helium Branch Induced by Multiple Electromagnetic Ion Cyclotron Triggered Emissions

    Science.gov (United States)

    Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  17. Linear and nonlinear physics of the magnetoacoustic cyclotron instability of fusion-born ions in relation to ion cyclotron emission

    Energy Technology Data Exchange (ETDEWEB)

    Carbajal, L., E-mail: L.Carbajal-Gomez@warwick.ac.uk; Cook, J. W. S. [Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Dendy, R. O. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB, Oxfordshire (United Kingdom); Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Chapman, S. C. [Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Department of Mathematics and Statistics, University of Tromsø, N-9037, Tromsø (Norway); Max Planck Institute for the Physics of Complex Systems, D-01187, Dresden (Germany)

    2014-01-15

    The magnetoacoustic cyclotron instability (MCI) probably underlies observations of ion cyclotron emission (ICE) from energetic ion populations in tokamak plasmas, including fusion-born alpha-particles in JET and TFTR [Dendy et al., Nucl. Fusion 35, 1733 (1995)]. ICE is a potential diagnostic for lost alpha-particles in ITER; furthermore, the MCI is representative of a class of collective instabilities, which may result in the partial channelling of the free energy of energetic ions into radiation, and away from collisional heating of the plasma. Deep understanding of the MCI is thus of substantial practical interest for fusion, and the hybrid approximation for the plasma, where ions are treated as particles and electrons as a neutralising massless fluid, offers an attractive way forward. The hybrid simulations presented here access MCI physics that arises on timescales longer than can be addressed by fully kinetic particle-in-cell simulations and by analytical linear theory, which the present simulations largely corroborate. Our results go further than previous studies by entering into the nonlinear stage of the MCI, which shows novel features. These include stronger drive at low cyclotron harmonics, the re-energisation of the alpha-particle population, self-modulation of the phase shift between the electrostatic and electromagnetic components, and coupling between low and high frequency modes of the excited electromagnetic field.

  18. Control philosophy and diagnostic systems of Superconducting Cyclotron

    International Nuclear Information System (INIS)

    Roy, Anindya; Bhattacharjee, Tanushyam; Chaddha, N.; Bhole, R.B.; Pal, Sarbajit; Samanta, N.C.; Dutta, C.D.; Mukhopadhyay, B.; Panda, U.S.; Sarkar, B.; Nabhiraj, P.Y.; Sarkar, D.

    2009-01-01

    The control system has the primary task of monitoring and control of all the important parameters of a machine comprises of various sub-systems. The paper describes the philosophy of the distributed control system of Superconducting Cyclotron implemented with the support of reliable and fast control network. The paper also describes the field hardware interfaced with various software platforms at different levels of individual sub-systems e.g. Main Magnet Power Supply, Trim-coil Power Supplies, He Liquefier/Refrigerator Plant, Cryogen Delivery System, RF System, ECR Ion source, Vacuum System, Radiation Monitoring System, Alarm Annunciation System, LCW System of SC Cyclotron. The database management system facilitating the exchange of control data among the sub-systems, serving as primary source of information to understand the behavior of the cyclotron, is also discussed. A brief description of various beam diagnostic instruments and their respective control systems e.g. Main Probe, Borescope, Beam viewer, Magnetic channel control system, Beam line slit control system, are briefly described. (author)

  19. Fundamental harmonic electron cyclotron emission for hot, loss-cone type distributions

    International Nuclear Information System (INIS)

    Bornatici, M.; Ruffina, U.; Westerhof, E.

    1988-01-01

    Electron cyclotron emission (ECE) is an important diagnostic tool for the study of hot plasmas. ECE can be used not only to measure the electron temperature but also to obtain information about non-thermal characteristics of the electron distribution function. One such a nonthermal characteristic is a loss-cone anisotropy. Loss-cone anisotropy can give rise to unstable growth of electro-magnetic waves around the harmonics of the electron cyclotron resonance and to increased emissivity of electron cyclotron waves. In case of high electron temperatures, also the dispersion properties of the extraordinary (X-) mode arond the fundamental electron cyclotron resonance are changed due to loss-cone anisotropy. The consequences of these dispersion properties for the emissivity of the fundamental harmonic X-mode are analyzed for perpendicular propagation. The emissivity, is calculated for two types of distribution functions having a loss-cone anisotropy. These distribution functions are a relativistic Dory-Guest-Harris type distribution function and modified relativistic Maxwellian distribution having a loss-cone with rounded edges (author). 9 refs.; 2 figs

  20. Clinical diagnostic system using a small cyclotron for medical use

    International Nuclear Information System (INIS)

    Yonekura, Y.; Magata, Y.; Konishi, J.

    1990-01-01

    Since a small cyclotron and a positron emission tomography (PET) scanner have been installed at the Kyoto University Hospital in 1983, a great deal of effort has been directed to the clinical application of the PET-cyclotron system. This paper outlines the experience with PET in the clinical setting, including the facility, equipments and staff involved, weekly schedule, typical clinical protocols, and some results from the patients. The system consists of small cyclotron for production of the short-lived positron emitting radionuclides, fully automated synthesis system for labeling various compounds, scanning for measurement of radioactivities, and data analysis system for calculating physiological parameters. A resolving cylinder target system with eight smaller cylinders is equipped for production of C-11, N-13, O-15, and F-18. Labeled compounds are quickly delivered to the PET scanner room by two systems--the continuous delivery system for the labeled gas and the rapid delivery system for the liquid compounds by compressed air. A PET scanner devoted for clinical studies is a multislice whole-body PET scanner. Ten PET studies are performed weekly on the average for measuring blood flow and oxygen and glucose metabolism in the brain, blood flow and glucose and fatty acid metabolism in the heart, blood flow and amino acid uptake in the pancreas, lung ventilation, and tumor glucose metabolism. The availability of PET-cyclotron system is still limited in view of cost. The previous clinical studies suggest the contribution of PET to the the understanding of the mechanism of disease pathophysiology. (N.K.)

  1. Perpendicular electron cyclotron emission from hot electrons in TMX-U

    International Nuclear Information System (INIS)

    James, R.A.; Ellis, R.F.; Lasnier, C.J.; Casper, T.A.; Celata, C.M.

    1984-01-01

    Perpendicular electron cyclotron emission (PECE) from the electron cyclotron resonant heating of hot electrons in TMX-U is measured at 30 to 40 and 50 to 75 GHz. This emission is optically thin and is measured at the midplane, f/sub ce/ approx. = 14 GHz, in either end cell. In the west end cell, the emission can be measured at different axial positions thus yielding the temporal history of the hot electron axial profile. These profiles are in excellent agreement with the axial diamagnetic signals. In addition, the PECE signal level correlates well with the diamagnetic signal over a wide range of hot electron densities. Preliminary results from theoretical modeling and comparisons with other diagnostics are also presented

  2. Diagnosis of mildly relativistic electron velocity distributions by electron cyclotron emission in the Alcator C tokamak

    International Nuclear Information System (INIS)

    Kato, K.

    1986-09-01

    Mildly relativistic electron velocity distributions are diagnosed from measurements of the first few electron cyclotron emission harmonics in the Alcator C tokamak. The approach employs a vertical viewing chord through the center of the tokamak plasma terminating at a compact, high-performance viewing dump. The cyclotron emission spectra obtained in this way are dominated by frequency downshifts due to the relativistic mass increase, which discriminates the electrons by their total energy. In this way a one-to-one correspondence between the energy and the emission frequency is accomplished in the absence of harmonic superpositions. The distribution, described by f/sub p/, the line-averaged phase space density, and Λ, the anisotropy factor, is determined from the ratio of the optically thin harmonics or polarizations. Diagnosis of spectra in the second and the third harmonic range of frequencies obtained during lower hybrid heating, current drive, and low density ohmic discharges are carried out, using different methods depending on the degree of harmonic superposition present in the spectrum and the availability of more than one ratio measurement. Discussions of transient phenomena, the radiation temperature measurement from the optically thick first harmonic, and the measurements compared to the angular hard x-ray diagnostic results illuminate the capabilities of the vertically viewing electron cyclotron emission diagnostic

  3. Superthermal electron distribution measurements from polarized electron cyclotron emission

    International Nuclear Information System (INIS)

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs

  4. Radially localized measurements of superthermal electrons using oblique electron cyclotron emission

    International Nuclear Information System (INIS)

    Preische, S.; Efthimion, P.C.; Kaye, S.M.

    1996-05-01

    It is shown that radial localization of optically tin Electron Cyclotron Emission from superthermal electrons can be imposed by observation of emission upshifted from the thermal cyclotron resonance in the horizontal midplane of a tokamak. A new and unique diagnostic has been proposed and operated to make radially localized measurements of superthermal electrons during Lower Hybrid Current Drive on the PBX-M tokamak. The superthermal electron density profile as well as moments of the electron energy distribution as a function of radius are measured during Lower Hybrid Current Drive. The time evolution of these measurements after the Lower Hybrid power is turned off are given and the observed behavior reflects the collisional isotropization of the energy distribution and radial diffusion of the spatial profile

  5. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    Energy Technology Data Exchange (ETDEWEB)

    Houshmandyar, S., E-mail: houshmandyar@austin.utexas.edu; Phillips, P. E.; Rowan, W. L. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Yang, Z. J. [Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Hubbard, A. E.; Rice, J. E.; Hughes, J. W.; Wolfe, S. M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02129 (United States)

    2016-11-15

    Calibration is a crucial procedure in electron temperature (T{sub e}) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔT{sub e}/T{sub e} is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of T{sub e} gradient. B{sub T}-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement of electron temperature gradient scale length.

  6. Modelling of non-thermal electron cyclotron emission during ECRH

    International Nuclear Information System (INIS)

    Tribaldos, V.; Krivenski, V.

    1990-01-01

    The existence of suprathermal electrons during Electron Cyclotron Resonance Heating experiments in tokamaks is today a well established fact. At low densities the creation of large non-thermal electron tails affects the temperature profile measurements obtained by 2 nd harmonic, X-mode, low-field side, electron cyclotron emission. At higher densities suprathermal electrons can be detected by high-field side emission. In electron cyclotron current drive experiments a high energy suprathermal tail, asymmetric in v, is observed. Non-Maxwellian electron distribution functions are also typically observed during lower-hybrid current drive experiments. Fast electrons have been observed during ionic heating by neutral beams as well. Two distinct approaches are currently used in the interpretation of the experimental results: simple analytical models which reproduce some of the expected non-Maxwellian characteristics of the electron distribution function are employed to get a qualitative picture of the phenomena; sophisticated numerical Fokker-Planck calculations give the electron distribution function from which the emission spectra are computed. No algorithm is known to solve the inverse problem, i.e. to compute the electron distribution function from the emitted spectra. The proposed methods all relay on the basic assumption that the electron distribution function has a given functional dependence on a limited number of free parameters, which are then 'measured' by best fitting the experimental results. Here we discuss the legitimacy of this procedure. (author) 7 refs., 5 figs

  7. Electron cyclotron emission measurements during 28 GHz electron cyclotron resonance heating in Wendelstein WVII-A stellarator

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Gasparino, U.; Tutter, M.; Brakel, R.; Cattanei, G.; Dorst, D.; Elsner, A.; Engelhardt, K.; Erckmann, V.; Grieger, G.; Grigull, P.; Hacker, H.; Jaeckel, H.; Jaenicke, R.; Junker, J.; Kick, M.; Kroiss, H.; Kuehner, G.; Maassberg, H.; Mahn, C.; Mueller, G.; Ohlendorf, W.; Rau, F.; Renner, H.; Ringler, H.; Sardei, F.; Weller, A.; Wobig, H.; Wuersching, E.; Zippe, M.; Kasparek, W.; Mueller, G.A.; Raeuchle, E.; Schueller, P.G.; Schwoerer, K.; Thumm, M.

    1987-11-01

    Electron cyclotron emission measurements have been carried out on electron cyclotron resonance heated plasmas in the WENDELSTEIN VII-A Stellarator. Blackbody radiation from the thermalized plasma main body as well as radiation from a small amount of weakly relativistic suprathermal electrons has been detected. In addition sideband emission has been observed near the second harmonic of the heating line source. Harmonic generation and parametric wave decay at the upper hybrid layer may be a reasonable explanation. (orig.)

  8. Ion cyclotron emission in tokamak plasmas; Emission cyclotronique ionique dans les plasmas de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Fraboulet, D.

    1996-09-17

    Detection of {alpha}(3.5 MeV) fusion products will be of major importance for the achievement of self sustained discharges in fusion thermonuclear reactors. Due to their cyclotronic gyration in the confining magnetic field of a tokamak, {alpha} particles are suspected to radiate in the radio-frequency band [RF: 10-500 MHz]. Our aim is to determine whether detection of RF emission radiated from a reactor plasma can provide information concerning those fusion products. We observed experimentally that the RF emission radiated from fast ions situated in the core of the discharge is detectable with a probe located at the plasma edge. For that purpose, fast temporal acquisition of spectral power was achieved in a narrow frequency band. We also propose two complementary models for this emission. In the first one, we describe locally the energy transfer between the photon population and the plasma and we compute the radiation equilibrium taking place in the tokamak. {alpha} particles are not the unique species involved in the equilibrium and it is necessary to take into account all other species present in the plasma (Deuterium, Tritium, electrons,...). Our second model consists in the numerical resolution of the Maxwell-Vlasov with the use of a variational formulation, in which all polarizations are considered and the 4 first cyclotronic harmonics are included in a 1-D slab geometry. The development of this second model leads to the proposal for an experimental set up aiming to the feasibility demonstration of a routine diagnostic providing the central {alpha} density in a reactor. (author). 166 refs.

  9. Interpretation of the electron cyclotron emission of hot ASDEX upgrade plasmas at optically thin frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Denk, Severin Sebastian; Stroth, Ulrich [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, 85748 Garching (Germany); Fischer, Rainer; Poli, Emanuele; Willensdorfer, Matthias; Maj, Omar; Stober, Joerg; Suttrop, Wolfgang [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Collaboration: The ASDEX Upgrade Team

    2016-07-01

    The electron cyclotron emission diagnostic (ECE) provides routinely electron temperature (T{sub e}) measurements. ''Kinetic effects'' (relativistic mass shift and Doppler shift) can cause the measured radiation temperatures (T{sub rad}) to differ from T{sub e} at cold resonance position complicating the determination of T{sub e} from the measured radiation temperature profile (T{sub rad}). For the interpretation of such ECE measurements an electron cyclotron forward model solving the radiation transport equation for given T{sub e} and electron density profiles is in use in the framework of Integrated Data Analysis at ASDEX Upgrade. While the original model lead to improved T{sub e} profiles near the plasma edge in moderately hot H-mode discharges, vacuum approximations in the model lead to inaccuracies given large T{sub e}. In hot plasmas ''wave-plasma interaction'', i.e. the dielectric effect of the background plasma onto the electron cyclotron emission, becomes important at optical thin measured frequencies. Additionally, given moderate electron densities and large T{sub e}, the refraction of the line of sight has to be considered for the interpretation of ECE measurements with low optical depth.

  10. Band rejection filter for measurement of electron cyclotron emission during electron cyclotron heating

    International Nuclear Information System (INIS)

    Iwase, Makoto; Ohkubo, Kunizo; Kubo, Shin; Idei, Hiroshi.

    1996-05-01

    For the measurement of electron cyclotron emission from the high temperature plasma, a band rejection filter in the range of 40-60 GHz is designed to reject the 53.2 GHz signal with large amplitude from the gyrotron for the purpose of plasma electron heating. The filter developed with ten sets of three quarters-wavelength coupled by TE 111 mode of tunable resonant cavity has rejection of 50 dB and 3 dB bandwidth of 500 MHz. The modified model of Tschebysheff type for the prediction of rejection is proposed. It is confirmed that the measured rejection as a function of frequency agrees well with the experimental results for small coupling hole, and also clarified that the rejection ratio increases for the large coupling hole. (author)

  11. Momentum distribution dependence of induced electron-cyclotron emission

    International Nuclear Information System (INIS)

    Ziebell, L.F.; Dillenburg, D.

    1983-01-01

    The dependence of the electron-cyclotron wave amplification in an inhomogeneous plasma slab on the electron momentum distribution is investigated. Two types of distributions are considered, both featuring a loss cone and a Maxwellian component. It is shown that the perpendicular emission at the fundamental frequency is in general greatly reduced by the presence of a Maxwellian component and situations occur in which a layer in the slab very effectively absorbs all the radiation amplified elsewhere. The transition from the pure loss cone to the pure Maxwellian case is accompanied by a peculiar behaviour of the dielectric tensor components, which may invalidate the geometrical optics approximation in the calculation of the emission and the commonly held belief that the real part of the refractive index is insensitive to the shape of the momentum distribution function. (Author) [pt

  12. Atmospheric tracer study of the emissions from the University of Michigan Cyclotron/PET Facility

    International Nuclear Information System (INIS)

    Scofield, P.A.

    1986-01-01

    The University of Michigan (U of M) Cyclotron/Positron Emission Tomography (PET) facility consists of a cyclotron (Model CS-30, The Cyclotron Corporation), radiochemistry laboratory, and Pet scanner. Accelerator-produced radioactive materials, such as, carbon-11 and oxygen-15 are typically emitted from the Cyclotron/PET facility through short stacks located on the roof. This project studied the dispersion of emissions from the facility within the medical complex. To achieve this purpose, the research project had three phases: a physical modeling study; a preliminary field smoke release study; and, a field study using a tracer gas to simulate emission dispersion from the U of M Cyclotron/PET facility vault stack. The objective was to determine normalized concentrations, under selected wind directions and speeds, for use in establishing radionuclide concentrations at the air intakes of the Cyclotron/PET facility and surrounding buildings and at selected ground-level locations

  13. Lectures in plasma diagnostics

    International Nuclear Information System (INIS)

    Hutchinson, I.H.

    1990-06-01

    This paper discusses the following topics on plasma diagnostics: Electric probes in flowing and magnetized plasmas; Electron cyclotron emission absorption; Magnetic diagnostics; Spectroscopy; and Thomson Scattering

  14. Polarization of electron cyclotron emission spectra in LHD

    International Nuclear Information System (INIS)

    Vries, P.C. de; Nagayama, Y.; Kawahata, K.; Inagaki, S.; Sasao, H.; Nagasaki, K.

    1999-07-01

    Electron cyclotron emission (ECE) can be used to determine the electron temperature profile in magnetized plasmas. The complex structure of the magnetic field configuration in the Large Helical Device (LHD), which has a large shear, complicates the analysis of the ECE spectrum. In a sheared magnetic field the propagation of X and O-mode polarization through the plasma are coupled, causing mode conversion and polarization rotation. Mode scrambling is also caused by wall reflections. In this report, this mode conversion in LHD is numerically analyzed. It was found that at low density mode conversion scrambles the ECE spectra. However, at higher density (n eo > 1.0·10 19 m -3 ) the polarization mode is found to rotate with the sheared magnetic field, yielding only a negligible mode conversion. Wall reflections are found to depolarize the ECE spectrum. Notwithstanding the LHD magnetic configuration, it is shown that temperature profiles could be revealed from the ECE spectra. (author)

  15. Data acquisition and processing system of the electron cyclotron emission imaging system of the KSTAR tokamak

    International Nuclear Information System (INIS)

    Kim, J. B.; Lee, W.; Yun, G. S.; Park, H. K.; Domier, C. W.; Luhmann, N. C. Jr.

    2010-01-01

    A new innovative electron cyclotron emission imaging (ECEI) diagnostic system for the Korean Superconducting Tokamak Advanced Research (KSTAR) produces a large amount of data. The design of the data acquisition and processing system of the ECEI diagnostic system should consider covering the large data production and flow. The system design is based on the layered structure scalable to the future extension to accommodate increasing data demands. Software architecture that allows a web-based monitoring of the operation status, remote experiment, and data analysis is discussed. The operating software will help machine operators and users validate the acquired data promptly, prepare next discharge, and enhance the experiment performance and data analysis in a distributed environment.

  16. Modelling ion cyclotron emission from KSTAR tokamak and LHD helical device plasmas

    Science.gov (United States)

    Dendy, Richard; Chapman, Ben; Reman, Bernard; Chapman, Sandra; Akiyama, Tsuyoshi; Yun, Gunsu

    2017-10-01

    New high quality measurements of ion cyclotron emission (ICE) from KSTAR and LHD greatly extend the scope and diversity of plasma conditions under which ICE is observed. Variables include the origin (fusion reactions or neutral beam injection) and energy (sub- or super-Alfvénic) of the minority energetic ions that drive ICE; the composition of the bulk plasma (hydrogen or deuterium) which supports the modes excited; plasma density in the emitting region, and the timescale on which it changes; and toroidal magnetic field geometry (tokamak or helical device). Future exploitation of ICE as a diagnostic for energetic ion populations in JET D-T plasmas and in ITER rests on quantitative understanding of the physics of the emission. This is tested and extended by current KSTAR and LHD measurements of ICE. We report progress on direct numerical simulation using full orbit ion kinetic codes that solve the Maxwell-Lorentz equations for hundreds of millions of particles. In the saturated regime, these simulations yield excited field spectra that correspond directly to the measured ICE spectra under diverse KSTAR and LHD regimes. At early times, comparison of simulation outputs with linear analytical theory confirms the magnetoacoustic cyclotron instability as the basic driver of ICE. Supported by RCUK Energy Programme Grant EP/P012450/1, NRF Korea Grant 2014M1A7A1A03029881, NIFS budget ULHH029 and Euratom.

  17. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature.

    Science.gov (United States)

    Schmuck, S; Fessey, J; Gerbaud, T; Alper, B; Beurskens, M N A; de la Luna, E; Sirinelli, A; Zerbini, M

    2012-12-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron temperature is determined from the measurements. The current state of the interferometer hardware, the calibration setup, and the analysis technique for calibration and plasma operation are described. A new, full-system, absolute calibration employing continuous data acquisition has been performed recently and the calibration method and results are presented. The noise level in the measurement is very low and as a result the electron cyclotron emission spectrum and thus the spatial profile of the electron temperature are determined to within ±5% and in the most relevant region to within ±2%. The new calibration shows that the absolute response of the system has decreased by about 15% compared to that measured previously and possible reasons for this change are presented. Temperature profiles measured with the Michelson interferometer are compared with profiles measured independently using Thomson scattering diagnostics, which have also been recently refurbished and recalibrated, and agreement within experimental uncertainties is obtained.

  18. Solid targets and irradiation facilities for production of diagnostic and therapeutic radionuclides at the Debrecen cyclotron

    International Nuclear Information System (INIS)

    Tarkanyi, F.; Ando, L.; Szucs, Z.; Mahunka, I.; Kovacs, Z.

    2000-01-01

    The MGC-20E (NIIEFA, Leningrad, USSR) variable energy compact cyclotron (k=20) was installed in ATOMKI (Debrecen, Hungary) in 1985. Protons, deuterons, 3 He- and α-particles can be accelerated with currents up to 300 μA for internal irradiation and up to 50 μA for external beams. The establishment of the Cyclotron Laboratory was partly supported by the International Atomic Energy Agency. The application of the cyclotron is multipurpose: basic nuclear research, application of activation technique for analytical and wear studies, application of intense fast neutron source for agro-biological, bio-medical application and for radiation damage test of electronic components, and finally radioisotope production for medical diagnostics and for other scientific and applied fields. The cyclotron laboratory has six target rooms, a radiochemistry laboratory and a medical unit equipped with PET

  19. The importance of plasma effects on electron-cyclotron maser-emission from flaring loops

    Science.gov (United States)

    Sharma, R. R.; Vlahos, L.; Papadopoulos, K.

    1982-01-01

    Electron cyclotron maser instability has been suggested as the cause of the observed short (10-20 msec), intense (an approximate brightness temperature of 10 to the 15th K) and up to 100% polarized microwave solar emission. It is shown that plasma effects and thermal cyclotron damping, ignored in previous theories, play an important role in controlling the frequency range of the emission. The radio emission is suppressed for ratios of the plasma frequency to the cyclotron frequency smaller than 0.4. An examination of the cyclotron damping, reveals that the maser action is suppressed unless a large fraction (i.e., over 10%) of the accelerated electrons participates in the emission process.

  20. Plasma density measurements on COMPASS-C tokamak from electron cyclotron emission cutoffs

    International Nuclear Information System (INIS)

    Chenna Reddy, D.; Edlington, T.

    1996-01-01

    Electron cyclotron emission (ECE) is a standard diagnostic in present day tokamak devices for temperature measurement. When the plasma density is high enough the emission at some frequencies is cut off. Of these cutoff frequencies, the first frequency to cut off depends on the shape of the density profile. If the density profile can be described by a few parameters, in some circumstances, this first cutoff frequency can be used to obtain two of these parameters. If more than two parameters are needed to describe the density profile, then additional independent measurements are required to find all the parameters. We describe a technique by which it is possible to obtain an analytical relation between the radius at which the first cutoff occurs and the profile parameters. Assuming that the shape of the profile does not change as the average density rises after the first cutoff, one can use the cutoffs at other frequencies to obtain the average density at the time of these cutoffs. The plasma densities obtained with this technique using the data from a 14 channel ECE diagnostic on COMPASS-C tokamak are in good agreement with those measured by a standard 2 mm interferometer. The density measurement using the ECE cutoffs is an independent measurement and requires only a frequency calibration of the ECE diagnostic. copyright 1996 American Institute of Physics

  1. Electron-cyclotron maser emission during solar and stellar flares

    International Nuclear Information System (INIS)

    Winglee, R.M.

    1985-01-01

    Radio bursts, with high brightness temperature 10 to the 10th power K and high degree of polarization, and the heating of the solar and stellar coronae during flares have been attributed to emission from the semirelativistic maser instability. In plasmas where the electron-plasma frequency, p, omega sub p, and the electron-cyclotron frequency, Omega sub e, are such that omega sup 2 sub p/Omega sup 2 sub e 1, x-mode growth dominates while z-mode growth dominates if omega sup 2 sub p/Omega sup 2 sub e is of order unity. The actual value of omega sup 2 sub p/Omega sup 2 sub e at which x-mode growth dominates is shown to be dependent on the plasma temperature with x-mode growth dominating at higher omega sub p/Omega sub e as the plasma temperature increases. Observations from a set of 20 impulsive flares indicate that the derived conditions for the dominance of x-mode growth are satisfied in about 75 percent of the flares

  2. Electron cyclotron emission measurements by means of a grating polychromator on the large helical device

    International Nuclear Information System (INIS)

    Vries, P.C. de; Kawahata, K.; Nagayama, Y.; Inagaki, S.; Sasao, H.; Ito, Y.

    2001-01-01

    The electron cyclotron emission (ECE) spectrum at the large helical device (LHD) is measured by a 14-channel grating polychromator. During standard operation, the polychromator monitors second harmonic frequencies (100-150 GHz). At sufficient high density, the second harmonic X-mode polarisation is optically thick and can be used to determine the temperature profile. However, the large magnetic field shear in LHD affects the ECE polarisation. This effect has been studied numerically. The wave polarisation was found to rotate in the laboratory frame. Experiments have been carried out by means of a polarisation rotator in the diagnostic waveguide system, which confirmed the calculations. By a proper setting of the polarisation rotator, the rotation can be corrected and pure X-mode is detected. Temperature profiles have been measured successfully by the polychromator

  3. Second harmonic electron cyclotron emission studies of Tokapole-II plasmas

    International Nuclear Information System (INIS)

    Sengstacke, M.A.

    1984-03-01

    The electron temperature is an important parameter in plasma physics. The intensity of electron cyclotron emission (ECE) is a function of the electron temperature. This function reduces to a direct proportionality for optically thick plasmas. Thus a study of ECE can help us understand various plasma properties. The principal diagnostic used is a radiometer consisting of a microwave superheterodyne receiver operating in the K band, (26.5,40) GHz, and fed by a three inch parabolic mirror with a spot size of about 4.4 cm. The entire microwave assembly can be rotated through 90 0 about the mirror axis to facilitate polarization measurements. A ray tracing analysis of Tokapole-II shows that refraction is significant for plasmas observed in this work

  4. Electron cyclotron emission measurements by means of a grating polychromator on the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Vries, P.C. de; Kawahata, K.; Nagayama, Y.; Inagaki, S.; Sasao, H.; Ito, Y. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-03-01

    The electron cyclotron emission (ECE) spectrum at the Large Helical Device (LHD) is measured by a 14-channel grating polychromator. During standard operation the polychromator monitors 2nd harmonic frequencies (100-150 GHz) with a spectral resolution of 1.5 GHz. At sufficient high density the 2nd harmonic X-mode polarization is optically thick and can be used to determine the temperature profile. However, the large magnetic field shear in LHD affects the ECE polarization. This effect has been studied numerically. The wave polarization was found to rotate in the laboratory frame. Experiments have been carried out by means of a polarization rotator in the diagnostic waveguide system, which confirmed the calculations. By a proper setting of the polarization rotator, the rotation can be corrected and pure X-mode is detected. Temperature profiles have been measured successfully by the polychromator. (author)

  5. Electron cyclotron emission measurements by means of a grating polychromator on the Large Helical Device

    International Nuclear Information System (INIS)

    Vries, P.C. de; Kawahata, K.; Nagayama, Y.; Inagaki, S.; Sasao, H.; Ito, Y.

    2000-01-01

    The electron cyclotron emission (ECE) spectrum at the Large Helical Device (LHD) is measured by a 14-channel grating polychromator. During standard operation the polychromator monitors 2nd harmonic frequencies (100-150 GHz) with a spectral resolution of 1.5 GHz. At sufficient high density the 2nd harmonic X-mode polarization is optically thick and can be used to determine the temperature profile. However, the large magnetic field shear in LHD affects the ECE polarization. This effect has been studied numerically. The wave polarization was found to rotate in the laboratory frame. Experiments have been carried out by means of a polarization rotator in the diagnostic waveguide system, which confirmed the calculations. By a proper setting of the polarization rotator, the rotation can be corrected and pure X-mode is detected. Temperature profiles have been measured successfully by the polychromator. (author)

  6. Ion cyclotron emission calculations using a 2D full wave numerical code

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Jaeger, E.F.; Colestock, P.L.

    1987-01-01

    Measurement of radiation in the HF band due to cyclotron emission by energetic ions produced by fusion reactions or neutral beam injection promises to be a useful diagnostic on large devices which are entering the reactor regime of operation. A number of complications make the modelling and interpretation of such measurements difficult using conventional geometrical optics methods. In particular the long wavelength and lack of high directivity of antennas in this frequency regime make observation of a single path across the plasma into a viewing dump impractical. Pickup antennas effectively see the whole plasma and wall reflection effects are important. We have modified our 2D full wave ICRH code 2 to calculate wave fields due to a distribution of energetic ions in tokamak geometry. The radiation is modeled as due to an ensemble of localized source currents distributed in space. The spatial structure of the coherent wave field is then calculated including cyclotron harmonic damping as compared to the usual procedure of incoherently summing powers of individual radiators. This method has the advantage that phase information from localized radiating currents is globally retained so the directivity of the pickup antennas is correctly represented. Also standing waves and wall reflections are automatically included

  7. Summary of EC-17: the 17th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (Deurne, The Netherlands, 7-10 May 2012)

    NARCIS (Netherlands)

    Westerhof, E.; Austin, M. E.; Kubo, S.; Lin-Liu, Y. R.; Plaum, B.

    2013-01-01

    An overview is given of the papers presented at the 17th Joint Workshop on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH). The meeting covered all aspects of the research field ranging from theory to enabling technologies. From the workshop, advanced control by

  8. Magnet design and test of positron emission tomography cyclotron

    International Nuclear Information System (INIS)

    Wei Tao; Yang Guojun; He Xiaozhong; Pang Jian; Zhao Liangchao; Zhang Kaizhi

    2012-01-01

    An 11 MeV H - compact cyclotron used for medical radioactive isotope production is under construction in Institute of Fluid Physics, CAEP. The cyclotron magnet adopts the design of small valley gaps and coulee structure which can provide high average magnetic field and strong focus ability. To achieve 5 × 10 -4 measuring accuracy, a magnetic field mapping system has been developed. After iterative correction using field measurement data, the total phase excursion of the cyclotron is within ± 9° and the first harmonic is less than 10 -3 T, which are all acceptable. Furthermore, the beam testing declares the successful construction of the cyclotron magnet. Besides, some magnetic field influence factors were discussed, including the magnetic field distortion and measurement error. (authors)

  9. Electron-cyclotron maser emission during flares: emission in various modes and temporal variations

    International Nuclear Information System (INIS)

    Winglee, R.M.; Dulk, G.A.

    1986-01-01

    Absorption of radiation at the electron-cyclotron frequency, OMEGA sub e, generated by the electron-cyclotron maser instability was proposed as a possible mechanism for transporting energy and heating of the corona during flares. Radiation from the same instability but at harmonics of OMEGA sub e is believed to be the source of solar microwave spike bursts. The actual mode and frequency of the dominant emission from the maser instability is shown to be dependent on: (1) the plasma temperature, (2) the form of the energetic electron distribution, and (3) on the ratio of the plasma frequency omega sub p to OMEGA sub e. As a result, the emission along a flux tube can vary, with emission at harmonics being favored in regions where omega sub p/OMEGA sub e approx. equal to or greater than 1. Changes in the plasma density and temperature in the source region associated with the flare can also cause the characteristics of the emission to change in time

  10. Research of the Electron Cyclotron Emission with Vortex Property excited by high power high frequency Gyrotron

    Science.gov (United States)

    Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori

    2017-10-01

    Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.

  11. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak.

    Science.gov (United States)

    Pan, X M; Yang, Z J; Ma, X D; Zhu, Y L; Luhmann, N C; Domier, C W; Ruan, B W; Zhuang, G

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  12. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X. M.; Yang, Z. J., E-mail: yangzj@hust.edu.cn; Ma, X. D.; Ruan, B. W.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhu, Y. L. [School of Physics, University of Science and Technology of China, Anhui 230026 (China); Luhmann, N. C.; Domier, C. W. [Davis Millimeter Wave Research Center, University of California, Davis, California 95616 (United States)

    2016-11-15

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  13. Extraordinary mode absorption at the electron cyclotron harmonic frequencies as a Tokamak plasma diagnostic

    International Nuclear Information System (INIS)

    Pachtman, A.

    1986-09-01

    Measurements of Extraordinary mode absorption at the electron cyclotron harmonic frequencies are of unique value in high temperature, high density Tokamak plasma diagnostic applications. An experimental study of Extraordinary mode absorption at the semi-opaque second and third harmonics has been performed on the ALCATOR C Tokamak. A narrow beam of submillimeter laser radiation was used to illuminate the plasma in a horizontal plane, providing a continuous measurement of the one-pass, quasi-perpendicular transmission

  14. Cyclotron absorption and emission in mode conversion layers emdash a new paradigm

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1995-01-01

    When the analysis of absorption with mode conversion effects included began to mature in recent years, the study of the corresponding effects on emission began and has led to some surprising results. The classical expressions for cyclotron or synchrotron emission from a harmonic resonance were originally derived from models that did not include mode conversion or its attendant reflection, and classical expressions for the optical depth and opacity were obtained. When mode conversion was included, the principal surprise was that the transmission coefficient, which was understood as being due to absorption, is totally independent of absorption and due exclusively to tunneling. The other surprise from the mode conversion analysis is that the observed emission arises from two distinct sources, one direct and one from an indirect Bernstein wave source which is partially converted in the cyclotron layer to outgoing electromagnetic waves, with the net result that mode conversion cancels out for the electron case, but not for ions. The only corrections to electron cyclotron emission are then due to reflection effects, and these have been shown to be small for many laboratory plasmas, leading to the validation of the classical formula for these cases, but via an entirely new paradigm in its interpretation. This review includes a summary of the absorption process for both electron and ion cyclotron harmonics, and reviews carefully the emission physics, including both potential error estimates and a discussion of the emission source distribution in space

  15. A method to measure the suprathermal density distribution by electron cyclotron emission

    International Nuclear Information System (INIS)

    Tutter, M.

    1986-05-01

    Electron cyclotron emission spectra of suprathermal electrons in a thermal main plasma are calculated. It is shown that for direction of observation oblique to the magnetic field, which decays in direction to the receiver, one may obtain information on the spatial density distribution of the suprathermal electrons from those spectra. (orig.)

  16. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature

    NARCIS (Netherlands)

    Schmuck, S.; Fessey, J.; Gerbaud, T.; Alper, B.; Beurskens, M. N. A.; de la Luna, E.; Sirinelli, A.; Zerbini, M.

    2012-01-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron

  17. Electron cyclotron emission radiometer upgrade on the J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z. J.; Pan, X. M., E-mail: panxiaoming@hust.edu.cn; Ma, X. D.; Ruan, B. W.; Zhou, R. B.; Zhang, C. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2016-11-15

    To meet experimental requirements, the J-TEXT electron cyclotron emission (ECE) diagnostic is being upgraded. The front end antenna and transmission line have been modified and a new 8-channel W-band detecting unit has been developed. The improved ECE system will extend the frequency range from 94.5-124.5 GHz to 80.5-124.5 GHz. This will enable the system to cover the most plasma in the radius direction for B{sub T} = 1.8–2.2 T, and it even can cover almost the whole plasma range ρ = − 0.8–0.9 (minus means the high field side) at B{sub T} = 1.8 T. A new auxiliary channel bank with 8 narrow band, tunable yttrium iron garnet filters is planned to add to the ECE system. Due to observations along a major radius, perpendicular to B{sub T}, and relatively low electron temperature, Doppler and relativistic broadening are minimal and thus high spatial resolution measurements can be made at variable locations with these tunable channels.

  18. A study of tearing modes via electron cyclotron emission from tokamak plasmas

    International Nuclear Information System (INIS)

    Ren, C.

    1998-07-01

    This thesis studies several tearing mode problems from both theoretical and experimental points of view. A major part of this thesis is to demonstrate that Electron Cyclotron Emission (ECE) is an excellent diagnostic for studying an MHD mode structure and its properties in a tokamak plasma. It is shown that an MHD mode can be detected from the electron temperature fluctuations measured by ECE. The amplitude and phase profiles of the fluctuations contain detailed information about the mode structure. The ECE fluctuation phase profile indicates the magnetic island deformation due to the combination of sheared flow and viscosity. A model is presented to relate qualitatively the observed phase gradient to the local magnetic field, flow velocity shear and viscosity in a 2D slab geometry, using an ideal Ohm's law and the plasma momentum equation including flow and viscosity. Numerical solution of the resultant Grad-Shafranov-like equation describing the deformed island shows that the experimentally observed value of the phase gradient can be obtained under realistic parameters for the shear in the flow velocity and viscosity. A new approach to the tearing mode stability boundary and saturation level is also presented

  19. A study of tearing modes via electron cyclotron emission from tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Chuang [Univ. of Wisconsin, Madison, WI (United States)

    1998-07-01

    This thesis studies several tearing mode problems from both theoretical and experimental points of view. A major part of this thesis is to demonstrate that Electron Cyclotron Emission (ECE) is an excellent diagnostic for studying an MHD mode structure and its properties in a tokamak plasma. It is shown that an MHD mode can be detected from the electron temperature fluctuations measured by ECE. The amplitude and phase profiles of the fluctuations contain detailed information about the mode structure. The ECE fluctuation phase profile indicates the magnetic island deformation due to the combination of sheared flow and viscosity. A model is presented to relate qualitatively the observed phase gradient to the local magnetic field, flow velocity shear and viscosity in a 2D slab geometry, using an ideal Ohm`s law and the plasma momentum equation including flow and viscosity. Numerical solution of the resultant Grad-Shafranov-like equation describing the deformed island shows that the experimentally observed value of the phase gradient can be obtained under realistic parameters for the shear in the flow velocity and viscosity. A new approach to the tearing mode stability boundary and saturation level is also presented.

  20. New Cyclotron Targetry to Enhance F-18 clinical Position Emission Tomography

    International Nuclear Information System (INIS)

    Doster, J. Michael

    2008-01-01

    This project proposes to develop cyclotron targets that produce F-18 for clinical Positron Emission Tomography (PET) at significantly higher rates than that available from current targetry. This production rate of 18F is directly proportional to the beam current. Higher beam currents would result in increased 18F production but would be accompanied by higher heat loads to the target. The beam power available in most commercial cyclotrons exceeds the heat removal capacity of current target technology by a factor of two to four, significantly limiting the production rate of Fluorine-18

  1. Analysis of recent results of electron cyclotron emission measurements on T.F.R

    International Nuclear Information System (INIS)

    1977-05-01

    Recently reported measurements of the electron cyclotron emission from the TFR Tokamak plasma are analyzed and compared to theoretical predictions. The line shape of an optically thick harmonic in a vertical observation is explained by wall reflections, plasma-detector arrangement and reabsorption. Non thermal emission at the electron plasma frequency is related to the presence of a high energy tail in the electron distribution function and might be the cause of the observed reduced runaway creation rate

  2. Electron cyclotron emission from optically thin plasma in compact helical system

    International Nuclear Information System (INIS)

    Idei, Hiroshi; Kubo, Shin; Hosokawa, Minoru; Iguchi, Harukazu; Ohkubo, Kunizo; Sato, Teruyuki.

    1994-01-01

    A frequency spectrum of second harmonic electron cyclotron emission was observed for an optically thin plasma produced by fundamental electron cyclotron heating in a compact helical system. A radial electron temperature profile deduced from this spectrum neglecting the multiple reflections effect shows a clear difference from that measured by Thomson scattering. We relate the spectrum with the electron temperature profile by the modified emission model including the scrambling effect. The scrambling effect results from both mode conversion and change in the trajectory due to multiple reflections of the emitting ray at the vessel wall. The difference between the two temperature profiles is explained well by using the modified emission model. Reconstruction of the electron temperature profile from the spectrum using this model is also discussed. (author)

  3. Ion cyclotron and spin-flip emissions from fusion products in tokamaks

    International Nuclear Information System (INIS)

    Arunasalam, V.; Greene, G.J.; Young, K.M.

    1993-02-01

    Power emission by fusion products of tokamak plasmas in their ion cyclotron range of frequencies (ICRF) and at their spin-flip resonance frequency is calculated for some specific model fusion product velocity-space distribution functions. The background plasma of say deuterium (D) is assumed to be in equilibrium with a Maxwellian distribution both for the electrons and ions. The fusion product velocity distributions analyzed here are: (1) A monoenergetic velocity space ring distribution. (2) A monoenergetic velocity space spherical shell distribution. (3) An anisotropic Maxwellian distribution with T perpendicular ≠ T parallel and with appreciable drift velocity along the confining magnetic field. Single ''dressed'' test particle spontaneous emission calculations are presented first and the radiation temperature for ion cyclotron emission (ICE) is analyzed both for black-body emission and nonequilibrium conditions. Thresholds for instability and overstability conditions are then examined and quasilinear and nonlinear theories of the electromagnetic ion cyclotron modes are discussed. Distinctions between ''kinetic or causal instabilities'' and ''hydrodynamic instabilities'' are drawn and some numerical estimates are presented for typical tokamak parameters. Semiquantitative remarks are offered on wave accessibility, mode conversion, and parametric decay instabilities as possible for spatially localized ICE. Calculations are carried out both for k parallel = 0 for k parallel ≠ 0. The effects of the temperature anisotropy and large drift velocities in the parallel direction are also examined. Finally, proton spin-flip resonance emission and absorption calculations are also presented both for thermal equilibrium conditions and for an ''inverted'' population of states

  4. Particle induced X-ray emission for quantitative trace-element analysis using the Eindhoven cyclotron

    International Nuclear Information System (INIS)

    Kivits, H.

    1980-01-01

    Development of a multi-elemental trace analysis technique using PIXE (Particle Induced X-ray Emission), was started almost five years ago at the Eindhoven University of Technology, in the Cyclotron Applications Group of the Physics Department. The aim of the work presented is to improve the quantitative aspects of trace-element analysis with PIXE, as well as versatility, speed and simplicity. (Auth.)

  5. Variational theory of cyclotron emission from nonuniformly magnetized plasmas

    International Nuclear Information System (INIS)

    Shvets, V.F.; Swanson, D.G.

    1992-01-01

    Whereas direct calculations of emission from a source model in both homogeneous and weakly inhomogeneous media have been previously executed, there are no previous theories of the source distribution function from nonuniformly magnetized plasmas where mode conversion phenomena must be taken into account. Whenever the emitting layer is localized due to gradients of the external magnetic field, mode conversion leads to the Generalized Kirchhoff's Law (GKL) E 1 /A 1 = E 2 /A 2 = E 3 /A 3 , where A j represents the absorbed fraction on the j-th wave branch and E j is the corresponding emitted energy along j-th branch. Recently integral expressions for A j and E j in terms of arbitrary localized sink and source distributions have been obtained. The GKL relating absorption to emission along each branch of coexisting in the inhomogeneous mode conversion layer affects the shape of source distribution through a functional of the emissivity. Moreover, E j /A j ≡ I bb , where I bb is a black body radiated power. Accordingly, the distributed emission source function should be an extremal of the emissivity functional. The authors have developed the corresponding variational analysis with nontrivial GKL constraints. As a result they have discovered the correct representation of the ratio of source and sink distributions in the form of an expansion in linearly independent adjoint wave solutions of the absorption problem. Finally, unknown coefficients have been found numerically by further maximization taking account of both source boundedness and the GKL constraints. Calculations performed for a broad variety of plasma parameters will be presented

  6. Generation of auroral hectometer radio emission at the laser cyclotron resonance (ωp≥ωH)

    International Nuclear Information System (INIS)

    Vlasov, V.G.

    1992-01-01

    Generation of auroral hectometer (AHR) and kilometer (AKR) radio emission at a maser cyclotron resonance (MCR) in a relatively dense plasma (ω p ≥ω H ) is theoretically studied. The conclusion is made that availability of two-dimensional small-scale inhomogeneity of plasma density is the basic condition for the AHR generation at the MCR by auroral electron beams. The small-scale inhomogeneity of the auroral plasma, measured on satelites, meets by its parameters the conditions for the generation of auroral radio emission

  7. Ion cyclotron and spin-flip emissions from fusion products in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Arunasalam, V.; Greene, G.J.; Young, K.M.

    1993-02-01

    Power emission by fusion products of tokamak plasmas in their ion cyclotron range of frequencies (ICRF) and at their spin-flip resonance frequency is calculated for some specific model fusion product velocity-space distribution functions. The background plasma of say deuterium (D) is assumed to be in equilibrium with a Maxwellian distribution both for the electrons and ions. The fusion product velocity distributions analyzed here are: (1) A monoenergetic velocity space ring distribution. (2) A monoenergetic velocity space spherical shell distribution. (3) An anisotropic Maxwellian distribution with T [perpendicular] [ne] T[parallel]and with appreciable drift velocity along the confining magnetic field. Single dressed'' test particle spontaneous emission calculations are presented first and the radiation temperature for ion cyclotron emission (ICE) is analyzed both for black-body emission and nonequilibrium conditions. Thresholds for instability and overstability conditions are then examined and quasilinear and nonlinear theories of the electromagnetic ion cyclotron modes are discussed. Distinctions between kinetic or causal instabilities'' and hydrodynamic instabilities'' are drawn and some numerical estimates are presented for typical tokamak parameters. Semiquantitative remarks are offered on wave accessibility, mode conversion, and parametric decay instabilities as possible for spatially localized ICE. Calculations are carried out both for k[parallel] = 0 for k[parallel] [ne] 0. The effects of the temperature anisotropy and large drift velocities in the parallel direction are also examined. Finally, proton spin-flip resonance emission and absorption calculations are also presented both for thermal equilibrium conditions and for an inverted'' population of states.

  8. Extreme ultraviolet narrow band emission from electron cyclotron resonance plasmas

    International Nuclear Information System (INIS)

    Zhao, H. Y.; Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Li, X. X.; Zhu, Y. H.; Sheng, L. S.; Zhang, G. B.; Tian, Y. C.

    2008-01-01

    Extreme ultraviolet lithography (EUVL) is considered as the most promising solution at and below dynamic random access memory 32 nm half pitch among the next generation lithography, and EUV light sources with high output power and sufficient lifetime are crucial for the realization of EUVL. However, there is no EUV light source completely meeting the requirements for the commercial application in lithography yet. Therefore, ECR plasma is proposed as a novel concept EUV light source. In order to investigate the feasibility of ECR plasma as a EUV light source, the narrow band EUV power around 13.5 nm emitted by two highly charged ECR ion sources--LECR2M and SECRAL--was measured with a calibrated EUV power measurement tool. Since the emission lines around 13.5 nm can be attributed to the 4d-5p transitions of Xe XI or the 4d-4f unresolved transition array of Sn VIII-XIII, xenon plasma was investigated. The dependence of the EUV throughput and the corresponding conversion efficiency on the parameters of the ion source, such as the rf power and the magnetic confinement configurations, were preliminarily studied

  9. Field emission studies of silver nanoparticles synthesized by electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Purohit, Vishwas; Mazumder, Baishakhi; Bhise, A.B.; Poddar, Pankaj; Joag, D.S.; Bhoraskar, S.V.

    2011-01-01

    Field emission has been studied for silver nanoparticles (25-200 nm), deposited within a cylindrical silver target in an electron cyclotron resonance (ECR) plasma. Particle size distribution was controlled by optimum biasing voltages between the chamber and the target. Presence of non-oxidized silver was confirmed from the X-Ray diffraction analysis; however, thin protective layer of oxide was identified from the selective area electron diffraction pattern obtained with transmission electron microscopy. The silver nanoparticles were seen to exhibit hilly pointed like structures when viewed under the atomic force microscopy (AFM). The emissive properties of these particles were investigated by field emission microscopy. It is found that this technique of deposition is ideal for formation of nanoparticles films on different substrate geometries with size controllability as well as its application to emission devices.

  10. Identification of minority ion cyclotron emission during radio frequency heating in the JET tokamak

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    1999-11-01

    First measurements and identification of Minority Ion Cyclotron Emission (MICE) during ICRF (H)D minority heating in the JET tokamak are presented. An inner wall radiofrequency (rf) probe shows the new single MICE spectral line, downshifted from the heating, frequency and appearing ∼ 400 ms after the ICRH switch-on. The line is narrow (Δω / ω) ∼ 0.04), characterised by the ion cyclotron frequency of minority protons in the outer edge mid-plane plasma and is observed irrespective of whether single or multi-frequency ICRH is applied. Threshold conditions for MICE are: coupled RF power to the plasma P rf ≥ 4.5 MW; total fast ion energy content W fast ≥ 0.6 MJ. At the time of the rapid switch-on of MICE, the measured power loss from the energetic minority ions is ∼ 0.1 ± 0.1 MW, constituting rf . The observations are consistent with the classical evolution and population of the plasma edge with ∼ 3 MeV ICRH protons on orbits near the outboard limiters. Particle loss and energy filtering contribute to a local non-Maxwellian energetic ion distribution which is susceptible to ion cyclotron instability

  11. The capacitor banks for the text diagnostic neutral beam and electron cyclotron heating experiments

    International Nuclear Information System (INIS)

    Nelin, K.; Jagger, J.; Baker, M.; Ourou, A.; De Turk, P.

    1986-01-01

    The Texas Experimental Tokamak (TEXT) has been operational since November of 1980. Since that time, many experimental systems have been added to the machine. Currently, two major experiments are being added to compliment the diagnostics already online. These systems, the Diagnostic Neutral Beam (DNB) and the Electron Cyclotron Heating (ECH) experiments are described in separate papers. A set of five modular, bipolar capacitor banks are used to power both the DNB and the ECH. The total capacitance of the banks is 92μF. The stored energy is about 500kJ at+or-100kV. The banks are built as five identical, interchangeable modules. One module is adequate to run the DNB. Up to four banks are used to power the ECH. The banks are portable so that they can be moved to the open end of the laboratory for maintenance. This gives much better access for repair work and allows the experiments to continue to run with the remaining banks. Due to budgetary constraints, these banks were constructed in the most economical manner possible consistent with worker safety and long term reliability. The capacitors themselves are on loan from Los Alamos National Labs. They are rated at 1.85μF at 60kV. Our application requires that they be used in a series/parallel configuration with a peak voltage of 50kV each. This paper describes the electrical, mechanical and control design considerations required to achieve a working set of banks

  12. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    International Nuclear Information System (INIS)

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen; Vander Stappen, François; Janssens, Guillaume; Prieels, Damien; Bawiec, Christopher R.; Lewin, Peter A.; Sehgal, Chandra M.

    2015-01-01

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring

  13. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, B., E-mail: bjtobias@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y. [University of California at Davis, Davis, California 95616 (United States)

    2016-11-15

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50–150 GHz) to an intermediate frequency (IF) band (e.g. 0.1–18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  14. Thermal and nonthermal electron cyclotron emission by high-temperature tokamak plasmas

    International Nuclear Information System (INIS)

    Airoldi, A.; Ramponi, G.

    1997-01-01

    An analysis of the electron cyclotron emission (ECE) spectra emitted by a high-temperature tokamak plasma in the frequency range of the second and third harmonic of the electron cyclotron frequency is made, both in purely Maxwellian and in non-Maxwellian cases (i.e., in the presence of a current-carrying superthermal tail). The work is motivated mainly by the experimental observations made in the supershot plasmas of the Tokamak Fusion Test Reactor (TFTR), where a systematic disagreement is found between the T e measurements by second-harmonic ECE and Thomson scattering. We show that, by properly taking into account the overlap of superthermals-emitted third harmonic with second-harmonic bulk emission, the radiation temperature observed about the central frequency of the second harmonic may be enhanced up to 30%endash 40% compared to the corresponding thermal value. Moreover we show that, for parameters relevant to the International Thermonuclear Experimental Reactor (ITER) with T e (0)>7 keV, the overlap between the second and the downshifted third harmonic seriously affects the central plasma region, so that the X-mode emission at the second harmonic becomes unsuitable for local T e measurements. copyright 1997 American Institute of Physics

  15. Modeling of neutron emission spectroscopy in JET discharges with fast tritons from (T)D ion cyclotron heating

    International Nuclear Information System (INIS)

    Tardocchi, M.; Gorini, G.; Andersson Sunden, E.; Conroy, S.; Ericsson, G.; Gatu Johnson, M.; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Kaellne, J.; Ronchi, E.; Sjoestrand, H.; Weiszflog, M.; Johnson, T.; Lamalle, P. U.

    2006-01-01

    The measurement of fast ion populations is one of the diagnostic capabilities provided by neutron emission spectroscopy (NES). NES measurements were carried out during JET trace tritium campaign with the magnetic proton recoil neutron spectrometer. A favorable plasma scenario is (T)D where the resulting 14 MeV neutron yield is dominated by suprathermal emission from energetic tritons accelerated by radio frequency at their fundamental cyclotron frequency. Information on the triton distribution function has been derived from NES data with a simple model based on two components referred to as bulk (B) and high energy (HE). The HE component is based on strongly anisotropic tritium distribution that can be used for routine best-fit analysis to provide tail temperature values (T HE ). This article addresses to what extent the T HE values are model dependent by comparing the model above with a two-temperature (bi-) Maxwellian model featuring parallel and perpendicular temperatures. The bi-Maxwellian model is strongly anisotropic and frequently used for radio frequency theory

  16. Diagnostics of microwave assisted electron cyclotron resonance plasma source for surface modification of nylon 6

    Science.gov (United States)

    More, Supriya E.; Das, Partha Sarathi; Bansode, Avinash; Dhamale, Gayatri; Ghorui, S.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Mathe, Vikas L.

    2018-01-01

    Looking at the increasing scope of plasma processing of materials surface, here we present the development and diagnostics of a microwave assisted Electron Cyclotron Resonance (ECR) plasma system suitable for surface modification of polymers. Prior to the surface-treatment, a detailed diagnostic mapping of the plasma parameters throughout the reactor chamber was carried out by using single and double Langmuir probe measurements in Ar plasma. Conventional analysis of I-V curves as well as the elucidation form of the Electron Energy Distribution Function (EEDF) has become the source of calibration of plasma parameters in the reaction chamber. The high energy tail in the EEDF of electron temperature is seen to extend beyond 60 eV, at much larger distances from the ECR zone. This proves the suitability of the rector for plasma processing, since the electron energy is much beyond the threshold energy of bond breaking in most of the polymers. Nylon 6 is used as a representative candidate for surface processing in the presence of Ar, H2 + N2, and O2 plasma, treated at different locations inside the plasma chamber. In a typical case, the work of adhesion is seen to almost get doubled when treated with oxygen plasma. Morphology of the plasma treated surface and its hydrophilicity are discussed in view of the variation in electron density and electron temperature at these locations. Nano-protrusions arising from plasma treatment are set to be responsible for the hydrophobicity. Chemical sputtering and physical sputtering are seen to influence the surface morphology on account of sufficient electron energies and increased plasma potential.

  17. Study of optically thin electron cyclotron emission from TFTR using a Michelson interferometer

    International Nuclear Information System (INIS)

    Stauffer, F.J.; Boyd, D.A.

    1986-01-01

    The TFTR Michelson interferometer, which is used as an electron temperature diagnostic, has a spectral range of 75-540 GHz. This range is adequate for measuring at least the first three cyclotron harmonics, and it spans both optically thick and thin portions of the ECE spectrum. During the most recent opening of the TFTR vacuum vessel, a concave, carbon reflector was installed on the back wall of the vessel, opposite the light collecting optic of the Michelson system. The reflector is designed to prevent the observation of optically thin ECE that originates from a location that is outside the field of view of the light collecting optic. If this is achieved, it should be possible to derive the electron density profile from measurements of either the extraordinary mode third harmonic or the ordinary mode second harmonic. An analysis of ECE spectra that have been measured before and after installation of the reflector is presented

  18. Fast-scanning heterodyne receiver for measurement of the electron cyclotron emission from high-temperature plasmas

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Arunasalam, V.; Bitzer, R.; Campbell, L.; Hosea, J.C.

    1979-03-01

    A fast-scanning heterodyne receiver was developed that measures the fundamental cyclotron emission from the PLT plasma and thus ascertains the time evolution of the electron temperature profile. The receiver scans 60 to 90 GHz every 10 milliseconds and is interfaced to a computer for completely automated calibrated temperature measurements

  19. Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere

    Science.gov (United States)

    Omura, Yoshiharu; Pickett, Jolene; Grison, Benjamin; Santolik, Ondrej; Dandouras, Iannis; Engebretson, Mark; Décréau, Pierrette M. E.; Masson, Arnaud

    2010-07-01

    We develop a nonlinear wave growth theory of electromagnetic ion cyclotron (EMIC) triggered emissions observed in the inner magnetosphere. We first derive the basic wave equations from Maxwell's equations and the momentum equations for the electrons and ions. We then obtain equations that describe the nonlinear dynamics of resonant protons interacting with an EMIC wave. The frequency sweep rate of the wave plays an important role in forming the resonant current that controls the wave growth. Assuming an optimum condition for the maximum growth rate as an absolute instability at the magnetic equator and a self-sustaining growth condition for the wave propagating from the magnetic equator, we obtain a set of ordinary differential equations that describe the nonlinear evolution of a rising tone emission generated at the magnetic equator. Using the physical parameters inferred from the wave, particle, and magnetic field data measured by the Cluster spacecraft, we determine the dispersion relation for the EMIC waves. Integrating the differential equations numerically, we obtain a solution for the time variation of the amplitude and frequency of a rising tone emission at the equator. Assuming saturation of the wave amplitude, as is found in the observations, we find good agreement between the numerical solutions and the wave spectrum of the EMIC triggered emissions.

  20. Oblique electron-cyclotron-emission radial and phase detector of rotating magnetic islands applied to alignment and modulation of electron-cyclotron-current-drive for neoclassical tearing mode stabilization

    International Nuclear Information System (INIS)

    Volpe, F.; Austin, M. E.; Campbell, G.; Deterly, T.

    2012-01-01

    A two channel oblique electron cyclotron emission (ECE) radiometer was installed on the DIII-D tokamak and interfaced to four gyrotrons. Oblique ECE was used to toroidally and radially localize rotating magnetic islands and so assist their electron cyclotron current drive (ECCD) stabilization. In particular, after manipulations operated by the interfacing analogue circuit, the oblique ECE signals directly modulated the current drive in synch with the island rotation and in phase with the island O-point, for a more efficient stabilization. Apart from the different toroidal location, the diagnostic view is identical to the ECCD launch direction, which greatly simplified the real-time use of the signals. In fact, a simple toroidal extrapolation was sufficient to lock the modulation to the O-point phase. This was accomplished by a specially designed phase shifter of nearly flat response over the 1–7 kHz range. Moreover, correlation analysis of two channels slightly above and below the ECCD frequency allowed checking the radial alignment to the island, based on the fact that for satisfactory alignment the two signals are out of phase.

  1. The Positron Emission Tomography. A diagnostic technique

    International Nuclear Information System (INIS)

    Salvadori, P.

    2001-01-01

    Positron Emission Tomography (PET) is a new imaging modality, which is able to assess non-invasively the biochemical mechanisms, underlying physiological and pathophysiological processes in vivo in humans. The technique relies on the administration of radioactive tracers labeled with short-lived positron emitters, which need to be produced on site via a particle accelerator (cyclotron). Radionuclides are produced upon request and formulated into biologically active organic molecules having precise pharmacokinetics and specificity. The radiotracer can be detected by the PET scanner and represented as tomographic sections (images of body sections) showing its regional distribution and concentration. This makes it possible to address clinical questions concerning occurrence and evolution of many diseases as well as their response to therapy. The ability to image (measure) biological processes and not only anatomy enables PET to explore diseases in the very early stage, including those diseases which are not related to modifications of organ structure (e.g. psychiatric diseases, metabolic disorders, biochemical disfunction). PET plays a major role, in conjunction with the other imaging modalities, to improve diagnosis capabilities and disease mechanism understanding [it

  2. Simulation of electromagnetic ion cyclotron triggered emissions in the Earth's inner magnetosphere

    Science.gov (United States)

    Shoji, Masafumi; Omura, Yoshiharu

    2011-05-01

    In a recent observation by the Cluster spacecraft, emissions triggered by electromagnetic ion cyclotron (EMIC) waves were discovered in the inner magnetosphere. We perform hybrid simulations to reproduce the EMIC triggered emissions. We develop a self-consistent one-dimensional hybrid code with a cylindrical geometry of the background magnetic field. We assume a parabolic magnetic field to model the dipole magnetic field in the equatorial region of the inner magnetosphere. Triggering EMIC waves are driven by a left-handed polarized external current assumed at the magnetic equator in the simulation model. Cold proton, helium, and oxygen ions, which form branches of the dispersion relation of the EMIC waves, are uniformly distributed in the simulation space. Energetic protons with a loss cone distribution function are also assumed as resonant particles. We reproduce rising tone emissions in the simulation space, finding a good agreement with the nonlinear wave growth theory. In the energetic proton velocity distribution we find formation of a proton hole, which is assumed in the nonlinear wave growth theory. A substantial amount of the energetic protons are scattered into the loss cone, while some of the resonant protons are accelerated to higher pitch angles, forming a pancake velocity distribution.

  3. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; McClements, K.G.; Lashmore Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-01-01

    Ion cyclotron emission (ICE) has been observed from neutral beam heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer midplane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution that is anisotropic and sharply peaked. Fusion product driven ICE can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed: for fusion products in the outer midplane edge of TFTR supershots, υ birth A ; for alpha particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha particles that are present in the outer midplane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product driven ICE in JET persists for longer than fusion product driven ICE in TFTR. A separate mechanism is proposed for the excitation of beam driven ICE in TFTR: electrostatic ion cyclotron harmonic waves, supported by strongly sub-Alfvenic beam ions, can be destabilized by a low concentration of such ions with a very anrrow spread of velocities in the parallel direction. 25 refs, 14 figs

  4. Excitation of contained modes by high energy nuclei and correlated cyclotron emission

    International Nuclear Information System (INIS)

    Coppi, B.; Penn, G.; Riconda, C.

    1997-01-01

    In experiments with fusing plasmas, enhanced radiation emission at the harmonics of the cyclotron frequency of fusion reaction products has been observed. A theory is presented that explains key features of these observations and indicates the possibility of extracting significant information about the fusion product population distribution, both in velocity space and over the plasma cross section. The considered model is consistent in particular with the fact that, in DT plasmas, the radiation peaks occur at frequencies corresponding to harmonics of the α particles cyclotron frequency Ω a evaluated at the outer edge of the plasma column, and that a transition to a open-quotes continuumclose quotes spectrum at high frequencies (ω approx-gt 7Ω α ) can be identified. In this model, the radiation is the result of the excitation of radially open-quotes containedclose quotes modes which are driven unstable by the fusion products. The modes considered to be responsible for the discrete part of the spectrum are spatially localized near the plasma edge. The radial containment, which is associated mainly with the inhomogeneity of the plasma density, is in fact a fundamental characteristic since only contained modes can grow out of a relatively weak mode-particle interaction and justify the detected emission power levels. The contained mode is a solution to a set of macroscopic equations, in which the electron motion is tied to that of the magnetic field (Hall effect). The growth rate has been evaluated considering the particle orbits in a toroidal confinement configuration and modelling the distribution function of the interacting particles with the energy at birth before slowing down occurs. The growth rate depends linearly on the α-particle density and can be larger than, or of the order of, the bounce frequency of the magnetically trapped α-particles, which can have a resonant interaction with the mode. According to the theoretical model presented, the discrete

  5. Broadband measurements of electron cyclotron emission in TFTR [Tokamak Fusion Test Reactor] using a quasi-optical light collection system and a polarizing Michelson interferometer

    International Nuclear Information System (INIS)

    Stauffer, F.J.; Boyd, D.A.; Cutler, R.C.; Diesso, M.; McCarthy, M.P.; Montague, J.; Rocco, R.

    1988-04-01

    For the past three years, a Fourier transform spectrometer diagnostic system, employing a fast-scanning polarizing Michelson interferometer, has been operating on the TFTR tokamak at Princeton Plasma Physics Laboratory. It is used to measure the electron cyclotron emission spectrum over the range 2.5 to 18 cm/sup /minus/1/ (75-540 GHz) with a resolution of 0.123 cm/sup /minus/1/(3.7 GHz), at a rate of 72 spectra per second. The quasi-optical system for collecting the light and transporting it through the interferometer to the detector has been designed using the concepts of both Gaussian and geometrical optics in order to produce a system that is efficient over the entire spectral range. The commerical Michelson interferometer was custom-made for this project and is at the state of the art for this type of specialized instrument. Various pre-installation and post-installation tests of the optical system and the interferometer were performed and are reported here. An error propagation analysis of the absolute calibration process is given. Examples of electron cyclotron emission spectra measured in two polarization directions are given, and electron temperature profiles derived from each of them are compared. 34 refs., 17 figs

  6. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    Science.gov (United States)

    Truong, D D; Austin, M E

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.

  7. Application of surface activation of machine elements in a cyclotron aiming at tribological diagnostics

    International Nuclear Information System (INIS)

    Kosinova, M.

    1989-01-01

    The results of estimation of wear of machine elements using their activation with charged particles accelerated in the cyclotron are presented. The results of bench tests are given. It is shown that wear of sleeves, hominged with plateau formation, is twice less than that of sleeves hominged in a standard way. 7 refs.; 3 figs

  8. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; Clements, K.G.; Lashmore-Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-06-01

    Ion cyclotron emission (ICE) has been observed from neutral beam-heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer mid-plane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution which is anisotropic and sharply peaked. Fusion product-driven ICE in both TFTR and JET can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed:for fusion products in the outer midplane edge of TFTR, υ birth A ; for alpha-particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha-particles which are present in the outer mid-plane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product-driven ICE in JET persists for longer than fusion product-driven ICE in TFTR. (Author)

  9. Electron temperature fluctuation in the HT-7 tokamak plasma observed by electron cyclotron emission imaging

    International Nuclear Information System (INIS)

    Xiao-Yuan, Xu; Jun, Wang; Yi, Yu; Yi-Zhi, Wen; Chang-Xuan, Yu; Wan-Dong, Liu; Bao-Nian, Wan; Xiang, Gao; Luhmann, N. C.; Domier, C. W.; Wang, Jian; Xia, Z. G.; Shen, Zuowei

    2009-01-01

    The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number k-bar θ is calculated to be about 1.58 cm −1 , or k-bar θρ s thickapprox 0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation. (fluids, plasmas and electric discharges)

  10. Generation of auroral kilometric radio emission at the cyclotron maser resonance

    International Nuclear Information System (INIS)

    Vlasov, V.G.

    1992-01-01

    A linear mechanism of auroral kilometric radiation (AKR) generation at the maser cyclotron resonance (MCR) in an inhomogeneous multidimensional plasma is developed. The model distribution functions introduced by the author for longitudinal and transverse electron beams allow one to obtain x- and O-mode growth rates in the form of elementary functions. The key idea of the study is the MCR time taking into account all processes leading to the emission of waves from the MCR. It is shown that the MCR time can be sufficient for AKR generation in isolated regions of the auroral plasma. For the X-mode these are the parts of the plasma where the longitudinal gradient of the geomagnetic field is compensated by the plasma density gradient. The O-mode is generated only in those local regions where there is an extremely small longitudinal plasma density gradient. The theoretical minimum width of the AKR spectral line obtained coincides with the minimal measured line width of 5 Hz. It is concluded that the discrete AKR spectrum is related to the inhomogeneous structure of the auroral plasma

  11. Ion cyclotron emission due to the newly-born fusion products induced fast Alfven wave radiative instabilities in tokamaks

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1995-08-01

    The velocity distribution functions of the newly born (t = 0) charged fusion products of tokamak discharges can be approximated by a monoenergetic ring distribution with a finite v parallel such that v perpendicular ∼ v parallel ∼ v j where (M j V j 2 /2) = E j , the directed birth energy of the charged fusion product species j of mass M j . As the time t progresses these distribution functions will evolve into a Gaussian in velocity with thermal spreadings given by the perpendicular and parallel temperatures T perpendicularj (t) = T parallelj (t) with T j (t) increasing as t increases and finally reaches an isotropic saturation value of T perpendicularj (t ∼ τ j ) = T parallelj (t ∼ τ j ) = T j (t ∼ τ j ) ∼ [M j T d E j /(M j + M)] 1/2 , where T d is the temperature of the background deuterium plasma ions, M is the mass of a triton or a neutron for j = protons and alpha particles, respectively, and τ j ∼ τ sj /4 is the thermalization time of the fusion product species j in the background deuterium plasma and τ sj is the slowing-down time. For times t of the order of τ j their distributions can be approximated by a Gaussian in their total energy. Then for times t ≥ τ sj the velocity distributions of these fusion products will relax towards their appropriate slowing-down distributions. Here the authors will examine the radiative stability of all these distributions. The ion cyclotron emission from energetic ion produced by fusion reactions or neutral beam injection promises to be a useful diagnostic tool

  12. Proposal on ''standardized high current solid targets for cyclotron production of diagnostic and therapeutic radionuclides''

    International Nuclear Information System (INIS)

    Suparman, Ibon

    2000-01-01

    The Center for the Development of Radioisotopes and Radiopharmaceuticals - National Nuclear Energy Agency (P2RR-BATAN) has one Cyclotron type CS-30 with maximum 30 MeV proton energy. It is used since 1990 for 201 Tl production. The main use of 201 Tl in Indonesia is for diagnosis and assessment of myocardial ischaemia, especially diagnosis of coronary artery disease, viability of the heart muscle and forecasting the outcome for patients with coronary disease. The Cyclotron facility is supported with a solid target station, two hot cells and the chemical equipment for electroplating. The yield of 201 Tl production currently achieved around 40-50%. The irradiation technique and chemical separation should be improved. We are also very interested in the development of the production of 103 Pd via 103 Rh (p,n) 103 Pd reaction. The objective of this proposal will support the main program of the National Nuclear Energy Agency (BATAN) in enhancement of health care and in providing Cyclotron produced radiopharmaceuticals for hospitals

  13. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Truong, D. D., E-mail: dtruong@wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas, 78712 (United States)

    2014-11-15

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ∼2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  14. Performance of the RI exhaust filter at Chosun university cyclotron facility and {sup 18}F emission reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Cheol Ki; Jang, Han; Lee, Goung Jin [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2017-03-15

    Recently, the number of PET cyclotrons has increased in Korea. A cyclotron mainly produces {sup 18}F, which is used for the production of [{sup 18}F]FDG, a cancer diagnostic radiopharmaceutical. For radiation protection, the discharge control standard under the Nuclear Safety Act limits the radioactive concentration of {sup 18}F in the exhaust discharged from a nuclear power utilization facility to below 2,000 Bq m-3. However, the radioactive concentration of 18F discharged during [18F]FDG production at the cyclotron facility at Chosun University is maintained at about 1,500 Bq m{sup -3} on average, which is 75% of the concentration limit of the discharge control standard, and temporarily exceeds the standard as per the real-time monitoring results. This study evaluated the performance of the exhaust flter unit of the cyclotron facility at Chosun University by assessing the concentration of {sup 18}F in the exhaust, and an experiment was conducted on the discharge reduction, where {sup 18}F is discharged without reacting with the FDG precursors during [{sup 18}F]FDG synthesis and is immediately captured by the [{sup 18}F]FDG automatic synthesis unit. Based on the performance evaluation results of the exhaust flter at the cyclotron facility of Chosun University, the measured capture effciency before and after the flter was found to be 92%. Furthermore, the results of the discharge reduction experiment, where the exhaust {sup 18}F was immediately captured by the [{sup 18}F]FDG synthesizer, showed a very satisfactory 94.3% reduction in the concentration of discharge compared to the existing discharge concentration.

  15. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J. [Purple Mountain Observatory, CAS, Nanjing 210008 (China); Yan, Y. H., E-mail: djwu@pmo.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, CAS, Beijing 100012 (China)

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  16. Environmental impact assessment for the apparatus of positron emission tomograph and cyclotron

    International Nuclear Information System (INIS)

    Yu Shui; Gu Hongkun; Wu Songhuan; Zhang Wenying; Zhao Fa; Wang Gongpeng

    2000-01-01

    Cyclotron, type RDS 111, produced by CTI incorporation, was used as an example. According to the characteristic of the radiation source term, the environmental impacts of the apparatus working in normal and abnormal conditions were assessed

  17. A light, superconducting H- cyclotron for medical diagnostics and neutron radiography

    International Nuclear Information System (INIS)

    Finlan, M.F.; Kruip, M.; Wilson, M.N.

    1987-01-01

    Oxford Instruments, working in close collaboration with Amersham International are developing a compact, lightweight, low radiation field superconducting cyclotron. The combination of superconductivity, H - acceleration and no internal yoke as such makes this possible. It is intended for use as a generator of short half lived isotopes for use in hospitals for PET and other imaging procedures, for use in industrial PET imaging, and as a neutron generator for neutron radiography. With a weight of 2000 kg, it is transportable and comparitively easy to handle and is capable in the 17 MeV version of generating 1.8 10 13 neutrons/second for neutron radiography. (author)

  18. Effect of Alfvén waves on the growth rate of the electron-cyclotron maser emission

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-06-15

    By using the non-relativistic approximation for the calculation of growth rates, but taking account of the weakly relativistic modification for the electron-cyclotron resonance condition, it is shown that the effect of Alfvén waves (AWs) on the electron-cyclotron maser emission leads to the significant increase of the O-mode growth rate, but has little effect on the X-mode growth rate. We propose that this is because the O-mode wave has the field-aligned polarization sense in the same as the field-aligned oscillatory current, which is created by the field-aligned oscillatory motion of the energetic electrons caused via the presence of AWs. It is this field-aligned oscillatory current that contributes a novel growth rate to the O-mode wave but has little effect on the X-mode wave.

  19. First meeting on the CRP 'standardized high current solid targets for cyclotron production of diagnostic and therapeutic radionuclides'

    International Nuclear Information System (INIS)

    Winkel, P. van den

    2000-01-01

    The Cyclotron Department of the VUB has three groups performing research in the field of target development, production of radionuclides and their application in nuclear medicine. 1. The Physics Group is busy on the optimization of beam parameters, on the determination of cross sections and on neutron spectrometry. 2. The Inorganic Radiochemistry Group performs research on solid target electroplating (Tl, Zn, Cd, Rh ... ), on optimisation of target carrier geometry and cooling and on automated PC-controlled radiochemistry (Tl-201, Ga-67, In-111) and recovery systems and the associated software written in Modula-2 and Visual Basic. 3. The Organic Radiochemistry Group develops new techniques for radiolabelling of organic molecules (fatty acids, neuroleptics, synthetic polypeptides...) useful in diagnostic and therapeutic nuclear medicine. All three groups take part in bulk productions of radionuclides

  20. Electron precipitation and VLF emissions associated with cyclotron resonance interactions near the plasmapause

    International Nuclear Information System (INIS)

    Foster, J.C.; Rosenberg, T.J.

    1976-01-01

    Correlated bursts of bremsstrahlung X rays and VLF emissions were recorded for approx.25 min at Siple Station, Antarctica, on January 2, 1971. The burst occurred quasi-periodically with spectral power predominantly in the period range 4--12 s. A typical VLF burst consisted of 3--5 rising elements of approx.0.1-s duration separated by approx.0.15 s and was confined to the frequency range 1.5--3.8 kHz. Evidence is presented to show that the bursts were triggered by the low-frequency tail of whistlers propagating from the northern hemisphere. The interpretation of the observations in terms of an equatorial cyclotron resonance interaction occurring at the outer edge of the plasmapause on the L=4.2 field line, offered initially by Rosenberg et al. (1971), is given further support by the more extensive analysis presented here of the electron energy-wave frequency relationship in the bursts and the propagation times for the resonant waves and electrons. It is inferred from the X ray data that the equatorial flux of trapped electrons was probably anisotropic and near the stable trapping limit at the time of this event. It is suggested that an important effect of the trigger signal is the increase of the anisotropy of the resonant electrons. Wave growth rates calculated in the random phase approximation for electron pitch angle distributions that might apply in this event can explain certain features of the VLF and precipitation data during and between the bursts

  1. How expanded ionospheres of Hot Jupiters can prevent escape of radio emission generated by the cyclotron maser instability

    Science.gov (United States)

    Weber, C.; Lammer, H.; Shaikhislamov, I. F.; Chadney, J. M.; Khodachenko, M. L.; Grießmeier, J.-M.; Rucker, H. O.; Vocks, C.; Macher, W.; Odert, P.; Kislyakova, K. G.

    2017-08-01

    We present a study of plasma conditions in the atmospheres of the Hot Jupiters HD 209458b and HD 189733b and for an HD 209458b like planet at orbit locations between 0.2 and 1 au around a Sun-like star. We discuss how these conditions influence the radio emission we expect from their magnetospheres. We find that the environmental conditions are such that the cyclotron maser instability (CMI), the process responsible for the generation of radio waves at magnetic planets in the Solar system, most likely will not operate at Hot Jupiters. Hydrodynamically expanding atmospheres possess extended ionospheres whose plasma densities within the magnetosphere are so large that the plasma frequency is much higher than the cyclotron frequency, which contradicts the condition for the production of radio emission and prevents the escape of radio waves from close-in exoplanets at distances produce radio emission. However, even if the CMI could operate, the extended ionospheres of Hot Jupiters are too dense to allow the radio emission to escape from the planets.

  2. Development of Beam Diagnostic Tools for Monitoring Cyclotron Beams at Production Intensities

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Mikael [Hevesy Laboratory, Risoe-DTU National Laboratory, DK-4000 Roskilde (Denmark)

    2009-07-01

    This final report for the IAEA-CRP on “Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes” reports the progress made as part of the Danish participation in the above CRP. Some of the work is the result of international, multi-institutional collaboration and/or research student education, and credit is hereby given to my former students Helge Thisgaard and Jesper Jørgensen, Katie Gagnon, student of Tom Ruth at Triumf, Canada, and, last but not least, to Tom himself. The people at the Edmonton PET centre, for beam time. David Schlyer and Rick Carson of BNL for access to the Tandem accelerator calibration shots. (author)

  3. Status and perspectives at the cyclotron IFIN-HH Bucharest for diagnostic and therapeutic radionuclides production

    International Nuclear Information System (INIS)

    Dudu, Dorin; Racolta, Petru Mihai

    2000-01-01

    All the radioisotopes used in nuclear medicine are produced artificially using either a nuclear reactor or a cyclotron. By attaching suitable chemical labels to the radioisotopes, radiopharmaceuticals are obtained, which can be made to seek a desired organ by taking part in the metabolic processes. When radiopharmaceuticals are injected into the human body and specifically taken up by an organ of choice, a lack of uptake, or delay in uptake, denotes loss of function in the organ. There are 297 operating research reactors listed in the 1994 IAEA reactor database and this number has been declining over the last ten years. Of these, only 20-25 reactors have the appropriate performance specifications, appropriate operating schedules and the motivation to support the regular 7-day and regular 4-week schedules required for production of nuclides. In numerical terms, it can be argued that there is a vast global over-capacity of neutrons and target positions, but, in practice, the availability of such irradiation positions is significantly compromised by the reactors' own schedules and maintenance shutdowns. This capacity position will be gradually eroded over the next ten years, as many research reactors reach an age beyond which they become economically viable as research tools, and government-based funding programs disappear. Although the majority of the radioisotopes used in nuclear medicine have been produced from research reactors for over 45 years and the methods are generally well established, several new initiatives and developments have occurred recently. One example is 103 Pd which is one of the few accelerator generated isotopes to be in common use for therapy, in this case as a short-lived isotope for permanent implant treatment of prostate cancer. Historically, 103 Pd used to be generated via the 102 Pd(n,γ) 103 Pd reaction which relied on the availability of 1% naturally abundant 102 Pd, in an enriched form and its moderately high neutron capture cross

  4. Development of Beam Diagnostic Tools for Monitoring Cyclotron Beams at Production Intensities

    International Nuclear Information System (INIS)

    Jensen, Mikael

    2009-01-01

    This final report for the IAEA-CRP on “Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes” reports the progress made as part of the Danish participation in the above CRP. Some of the work is the result of international, multi-institutional collaboration and/or research student education, and credit is hereby given to my former students Helge Thisgaard and Jesper Jørgensen, Katie Gagnon, student of Tom Ruth at Triumf, Canada, and, last but not least, to Tom himself. The people at the Edmonton PET centre, for beam time. David Schlyer and Rick Carson of BNL for access to the Tandem accelerator calibration shots. (author)

  5. Cyclotron produced {sup 67}Ga, a potential radionuclide for diagnostic and therapeutic applications

    Energy Technology Data Exchange (ETDEWEB)

    Khandaker, Mayeen Uddin, E-mail: mu-khandaker@um.edu.my; Kassim, Hasan Abu [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Haba, Hiromitsu [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-04-29

    Production cross-sections of the {sup nat}Zn(d,x){sup 67}Ga reactions have been measured from a 24-MeV deuteron energy down to the threshold by using a stacked-foil activation technique combined with HPGe γ-ray spectrometry. An overall good agreement is found with some of the earlier measurements, whereas a partial agreement is obtained with the theoretical data extracted from the TENDL-2013 library. Physical thick target yield for the {sup 67}Ga radionuclide was deduced using the measured cross-sections, and found in agreement with the directly measured yield available in the literature. This study reveals that a low deuteron energy (<11 MeV) cyclotron and an enriched {sup 66}Zn target could be used to obtain {sup 67}Ga in no carrier added form.

  6. Mechanical design control and implementation of a new movable diagnostic probe for the TRIUMF cyclotron

    International Nuclear Information System (INIS)

    Ries, T.C.

    1993-11-01

    A new movable probe has been installed into the TRIUMF H - cyclotron. It is intended to measure the distribution of betatron amplitudes, in the vertical plane, of the circulating beam and to scrape halo. The probe, however, may also be scanned in the radial direction. The head may be positioned vertically and horizontally to an accuracy of .002 in. The device is mechanically modular to facilitate fast and easy handling for maintenance in a radioactive area. The beam sensor on the probe head is a 1.25 in. x 3 in. x 0.003 in. tantalum foil and its overall coverage is 3.00 in. X 7.25 in. in a vertical plane orthogonal to, and crossing through the beam orbit plane. Presently its radial centre line location corresponds to a proton beam energy of about 430 MeV at radius 296 in., however, the probe device may be easily relocated to operate from any 4 in. port, and, with an adaptor port flange, may be installed into any port in the cyclotron vacuum tank. A stationary catcher below the probe path collects those electrons stripped from the H - beam and scattered out from the probe head. The probe axis is vertical and the tank aperture is narrow so a worm gear arrangement combined with a modified 'Evans' - parallel linkage mechanism is used to transform vertical rotary motion into horizontal linear motion. The actuators are dc servo motors with tachometers driven by pulse width modulated servo amplifiers. Position sensing is done by variable reluctance type absolute rotary encoders and the higher level positioning is performed by TRIMAC based control software. The precision of movement and jitter was measured in the laboratory. Examples will be given of the probe use with beam. (author). 5 refs., 3 figs

  7. Effects on Ion Cyclotron Emission of the Orbit Topology Changes from the Wave-Particle Interactions

    International Nuclear Information System (INIS)

    Hellsten, T.; Holmstroem, K.; Johnson, T.; Bergkvist, T.; Laxaback, M.

    2006-01-01

    It is known that non-relaxed distribution functions can give rise to excitation of magnetosonic waves by ion cyclotron interactions when the distribution function increases with respect to the perpendicular velocity. We have found that in a toroidal plasma also collisional relaxed distribution functions of central peaked high-energy ions can destabilise magnetosonic eigenmodes by ion cyclotron interactions, due to the change in localisation of the orbits establishing inverted distribution functions with respect to energy along the characteristics describing the cyclotron interactions. This can take place by interactions with barely co-passing and marginally trapped high-energy ions at the plasma boundary. The interactions are enhanced by tangential interactions, which can also prevent the interactions to reach the stable part of the characteristics where they interact with more deeply trapped orbits. (author)

  8. Least squares autoregressive (maximum entropy) spectral estimation for Fourier spectroscopy and its application to the electron cyclotron emission from plasma

    International Nuclear Information System (INIS)

    Iwama, N.; Inoue, A.; Tsukishima, T.; Sato, M.; Kawahata, K.

    1981-07-01

    A new procedure for the maximum entropy spectral estimation is studied for the purpose of data processing in Fourier transform spectroscopy. The autoregressive model fitting is examined under a least squares criterion based on the Yule-Walker equations. An AIC-like criterion is suggested for selecting the model order. The principal advantage of the new procedure lies in the enhanced frequency resolution particularly for small values of the maximum optical path-difference of the interferogram. The usefulness of the procedure is ascertained by some numerical simulations and further by experiments with respect to a highly coherent submillimeter wave and the electron cyclotron emission from a stellarator plasma. (author)

  9. Medical cyclotron facilities

    International Nuclear Information System (INIS)

    1984-09-01

    This report examines the separate proposals from the Austin Hospital and the Australian Atomic Energy Commission for a medical cyclotron facility. The proponents have argued that a cyclotron facility would benefit Australia in areas of patient care, availability and export of radioisotopes, and medical research. Positron emission tomography (PET) and neutron beam therapy are also examined

  10. Asymmetric electron cyclotron emission from superthermal electrons in the TFR Tokamak

    International Nuclear Information System (INIS)

    1981-03-01

    Measurements of electron cyclotron radiation near the fundamental frequency on the high and low magnetic field side of the TFR Tokamak are reported. In the presence of a superthermal electron component the measured intensities are asymmetric. A theoretical explanation based on the combined effects of the electron relativistic mass variation and the 1/R variation of the tokamak magnetic field is discussed

  11. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67

    Science.gov (United States)

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.

    2012-01-01

    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  12. 40 CFR 1033.110 - Emission diagnostics-general requirements.

    Science.gov (United States)

    2010-07-01

    ... emission-control systems and you choose to base your emission-related maintenance instructions on such... engine operation. (d) Record and store in computer memory any diagnostic trouble codes showing a... component as uniquely as possible. Make these codes available through the data link connector as described...

  13. Requirement for radiation shields of transportation pipe for on line inhalation gases from compact cyclotron in positron emission tomography

    International Nuclear Information System (INIS)

    Hachiya, Takenori; Hagami, Eiichi; Shoji, Yasuaki; Aizawa, Yasuo; Kanno, Iwao; Uemura, Kazuo; Handa, Masahiko; Mori, Junichi; Fukagawa, Akihisa.

    1989-01-01

    In the unit housing of a compact cyclotron and positron emission CT (PET), positron emitting gas such as 15 O, 11 C, C 15 O 2 , C 15 O etc. is supplied from a cyclotron to a PET room through a transportation pipe with an appropriate shield to reduce positron annihilation radiation. This paper discribes the effect of lead and concrete shields with various thickness. Using lead or concrete shield blocks with various thicknesses, radiation leakage through the shield was measured by an ionization chamber type survey meter during continuous and constant supply of 15 O gas of 1.85 GBq/min concentration which is the maximum dose for clinical use. The leakage radiation measured was 213.7, 56.0, 15.3, 5.0 μSv/week for lead shield with 1, 2, 3, and 4 cm thickness, respectively, and 193.3, 30.5 and 5.1 μSv/week for concrete shields with thickness of 10, 20, and 30 cm, respectively. The present study shows that to keep less than 300 μSv/week, which is the permissible dose rate of the boundary zone around the radiation controlled area by Japan Science and Technology Agency, it is required to use more than 8 mm thick lead shield or 7 cm thick concrete for continuous supply of 1.85 GBq/min 15 O gas. (author)

  14. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Brookman, M. W., E-mail: brookmanmw@fusion.gat.com [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Austin, M. E.; McLean, A. G. [Lawrence Livermore National Lab, Livermore, California 94500 (United States); Carlstrom, T. N.; Hyatt, A. W.; Lohr, J. [General Atomics, San Diego, California 92122 (United States)

    2016-11-15

    Thomson scattering produces n{sub e} profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n{sub e} ∝ I{sub TS}, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n{sub e} calibration is adjusted against an absolute n{sub e} from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n{sub e} from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as “ECH pump-out” generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.

  15. Electron Bernstein wave emission based diagnostic on National Spherical Torus Experiment (invited)

    International Nuclear Information System (INIS)

    Diem, S.; Taylor, G.; Caughman, John B.; Efthimion, P.C.; Kugel, H.; LeBlanc, B.; Preinhaelter, J.; Sabbagh, S.A.; Urban, J.

    2008-01-01

    National Spherical Torus Experiment (NSTX) is a spherical tokamak (ST) that operates with n(e) up to 10(20) m(-3) and B-T less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for T-e measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local T-e measurements in the ST. Practically, a robust T-e(R,t) EBE diagnostic requires EBW transmission efficiencies of >90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While T-e(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge n(e) scale length resulted in >20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency during H modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when T-e < 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H modes have shown that evaporated lithium can increase T-e inside the B-X-O MC layer, significantly increasing B-X-O transmission.

  16. Electron Bernstein Wave Emission Based Diagnostic on National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Diem, S.; Taylor, G.; Caughman, John B.; Efthimion, P.C.; Kugel, H.; LeBlanc, B.; Preinhaelter, J.; Sabbagh, S.A.; Urban, J.; Wilgen, John B.

    2008-01-01

    National Spherical Torus Experiment (NSTX) is a spherical tokamak (ST) that operates with n(e) up to 10(20) m(-3) and B(T) less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for T(e) measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local T(e) measurements in the ST. Practically, a robust T(e)(R,t) EBE diagnostic requires EBW transmission efficiencies of >90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While T(e)(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge n(e) scale length resulted in >20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency during H modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when T(e)< 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H modes have shown that evaporated lithium can increase T(e) inside the B-X-O MC layer, significantly increasing B-X-O transmission.

  17. Measurement of peripheral electron temperature by electron cyclotron emission during the H-mode transition in JFT-2M tokamak

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Yamamoto, Takumi; Kawashima, Hisato

    1987-01-01

    Time evolution and profile of peripheral electron temperature during the H-mode like transition in a tokamak plasma is measured using the second and third harmonic of electron cyclotron emission (ECE). The so called ''H-mode'' state which has good particle/energy confinement is characterized by sudden decrease in the spectral line intensity of deuterium molecule. Such a sudden decrease in the line intensity of D α with good energy confinement is found not only in divertor discharges, but also in limiter dischargs in JFT-2M tokamak. It is found by the measurement of ECE that the peripheral electron temperature suddenly increases in both of such phases. The relation between H-transition and the peripheral electron temperature or its profile is investigated. (author)

  18. Review of Cyclotrons for the Production of Radioactive Isotopes for Medical and Industrial Applications

    Science.gov (United States)

    Schmor, Paul

    2011-02-01

    Radioactive isotopes are used in a wide range of medical, biological, environmental and industrial applications. Cyclotrons are the primary tool for producing the shorter-lived, proton-rich radioisotopes currently used in a variety of medical applications. Although the primary use of the cyclotron-produced short-lived radioisotopes is in PET/CT (positron emission tomography/computed tomography) and SPECT (single photon emission computed tomography) diagnostic medical procedures, cyclotrons are also producing longer-lived isotopes for therapeutic procedures as well as for other industrial and applied science applications. Commercial suppliers of cyclotrons are responding by providing a range of cyclotrons in the energy range of 3-70MeV for the differing needs of the various applications. These cyclotrons generally have multiple beams servicing multiple targets. This review article presents some of the applications of the radioisotopes and provides a comparison of some of the capabilities of the various current cyclotrons. The use of nuclear medicine and the number of cyclotrons supplying the needed isotopes are increasing. It is expected that there will soon be a new generation of small "tabletop" cyclotrons providing patient doses on demand.

  19. PAH diagnostic ratios for the identification of pollution emission sources

    International Nuclear Information System (INIS)

    Tobiszewski, Marek; Namieśnik, Jacek

    2012-01-01

    Polycyclic aromatic hydrocarbon (PAH) diagnostic ratios have recently come into common use as a tool for identifying and assessing pollution emission sources. Some diagnostic ratios are based on parent PAHs, others on the proportions of alkyl-substituted to non-substituted molecules. The ratios are applicable to PAHs determined in different environmental media: air (gas + particle phase), water, sediment, soil, as well as biomonitor organisms such as leaves or coniferous needles, and mussels. These ratios distinguish PAH pollution originating from petroleum products, petroleum combustion and biomass or coal burning. The compounds involved in each ratio have the same molar mass, so it is assumed they have similar physicochemical properties. Numerous studies show that diagnostic ratios change in value to different extents during phase transfers and environmental degradation. The paper reviews applications of diagnostic ratios, comments on their use and specifies their limitations. - Highlights: ► PAH diagnostic ratios may identify pollution coming from petroleum spills, fuel combustion and coal or biomass burning. ► They are sensitive to changes during PAHs environmental fate processes. ► Some diagnostic ratios are of limited value due to fast photodegradation of one of the compounds. - The paper reviews PAH diagnostic ratios that are applied to identify pollution emission originating from petroleum products, fuel combustion or coal and biomass burning.

  20. Cyclotron Acceleration of Relativistic Electrons through Landau Resonance with Obliquely Propagating Whistler Mode Chorus Emissions

    Science.gov (United States)

    Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.

    2017-12-01

    A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear

  1. Observation of Poincaré-Andronov-Hopf Bifurcation in Cyclotron Maser Emission from a Magnetic Plasma Trap

    Science.gov (United States)

    Shalashov, A. G.; Gospodchikov, E. D.; Izotov, I. V.; Mansfeld, D. A.; Skalyga, V. A.; Tarvainen, O.

    2018-04-01

    We report the first experimental evidence of a controlled transition from the generation of periodic bursts of electromagnetic radiation into the continuous-wave regime of a cyclotron maser formed in magnetically confined nonequilibrium plasma. The kinetic cyclotron instability of the extraordinary wave of weakly inhomogeneous magnetized plasma is driven by the anisotropic electron population resulting from electron cyclotron plasma heating in a MHD-stable minimum-B open magnetic trap.

  2. One-D full-wave description of plasma emission and absorption in the ion cyclotron range of frequency in tokamaks

    International Nuclear Information System (INIS)

    Fraboulet, D.; Becoulet, A.; Nguyen, F.

    1998-11-01

    To maintain the ignition state in a tokamak fusion reactor, a control must be performed on the population of alpha-products, and this implies the ability to diagnose those α-particles. It is studied here whether the detection of emission radiated in the ion cyclotron range of frequency be a reactor plasma can provide useful information concerning fusion products, especially concerning their density profile. It is shown that the detection of the radiation emitted by the fast alpha particles along their cyclotron motion can give access to moments of their distribution function. This requires to compute the phase of the emitted field, using a full-wave approach. Such a technique allows to set in a convenient way the inverse problem of the determination of the emitting α-particles distribution through the radiation detection. A brief analysis of the expected situation in a reactor-relevant plasma is given. In parallel, the 1-D full-wave code developed in this frame is also useful for studying the physics of Fast Wave plasma heating. It enables to take into account the mode conversion of the Fast Wave into the Ion Bernstein Wave that appears near each ion cyclotron resonance. Results show that higher order terms may significantly alter the energy partitioning, in hot plasma cases involving mode conversion heating and/or ion cyclotron high harmonics heating. (author)

  3. Study of electron temperature evolution during sawtoothing and pellet injection using thermal electron cyclotron emission in the Alcator C tokamak

    International Nuclear Information System (INIS)

    Gomez, C.C.

    1986-05-01

    A study of the electron temperature evolution has been performed using thermal electron cyclotron emission. A six channel far infrared polychromator was used to monitor the radiation eminating from six radial locations. The time resolution was <3 μs. Three events were studied, the sawtooth disruption, propagation of the sawtooth generated heatpulse and the electron temperature response to pellet injection. The sawtooth disruption in Alcator takes place in 20 to 50 μs, the energy mixing radius is approx. 8 cm or a/2. It is shown that this is inconsistent with single resonant surface Kadomtsev reconnection. Various forms of scalings for the sawtooth period and amplitude were compared. The electron heatpulse propagation has been used to estimate chi e(the electron thermal diffusivity). The fast temperature relaxation observed during pellet injection has also been studied. Electron temperature profile reconstructions have shown that the profile shape can recover to its pre-injection form in a time scale of 200 μs to 3 ms depending on pellet size

  4. A novel fast-scanning microwave heterodyne radiometer system for electron cyclotron emission measurements in the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Kuang, G.L.; Gao, X.; Zhang, X.D.; Wan, B.N.; Wang, K.J.; Mao, J.S.; Gong, X.Z.; Qin, P.J.

    2000-01-01

    Two sets of fast-scanning microwave heterodyne radiometer receiver systems employing backward-wave oscillators in the 78-118 GHz and 118-178 GHz ranges were developed for electron cyclotron emission measurements (ECE) on the HT-7 superconducting tokamak. The double-sideband radiometer in the 78-118 GHz range measures 16 ECE frequency points with a scanning period of 0.65 ms. The novel design of the 2 mm fast-scanning heterodyne radiometer in the 118-178 GHz range enables the unique system to measure 48 ECE frequency points in 0.65 ms periodically. The plasma profile consistency in reproducible ohmic plasmas was used to relatively calibrate each channel by changing the toroidal magnetic field shot-by-shot. The absolute temperature value was obtained by a comparison with the results from the soft x-ray pulse height analysis measurements and Thomson scattering system. A preliminary temperature profile measurement result in pellet injection plasma is presented. (author)

  5. Neutron emissivity profile camera diagnostics considering present and future tokamaks

    International Nuclear Information System (INIS)

    Forsberg, S.

    2001-12-01

    This thesis describes the neutron profile camera situated at JET. The profile camera is one of the most important neutron emission diagnostic devices operating at JET. It gives useful information of the total neutron yield rate but also about the neutron emissivity distribution. Data analysis was performed in order to compare three different calibration methods. The data was collected from the deuterium campaign, C4, in the beginning of 2001. The thesis also includes a section about the implication of a neutron profile camera for ITER, where the issue regarding interface difficulties is in focus. The ITER JCT (Joint Central Team) proposal of a neutron camera for ITER is studied in some detail

  6. Neutron emissivity profile camera diagnostics considering present and future tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, S. [EURATOM-VR Association, Uppsala (Sweden)

    2001-12-01

    This thesis describes the neutron profile camera situated at JET. The profile camera is one of the most important neutron emission diagnostic devices operating at JET. It gives useful information of the total neutron yield rate but also about the neutron emissivity distribution. Data analysis was performed in order to compare three different calibration methods. The data was collected from the deuterium campaign, C4, in the beginning of 2001. The thesis also includes a section about the implication of a neutron profile camera for ITER, where the issue regarding interface difficulties is in focus. The ITER JCT (Joint Central Team) proposal of a neutron camera for ITER is studied in some detail.

  7. Medical Cyclotrons

    Science.gov (United States)

    Friesel, D. L.; Antaya, T. A.

    Particle accelerators were initially developed to address specific scientific research goals, yet they were used for practical applications, particularly medical applications, within a few years of their invention. The cyclotron's potential for producing beams for cancer therapy and medical radioisotope production was realized with the early Lawrence cyclotrons and has continued with their more technically advanced successors — synchrocyclotrons, sector-focused cyclotrons and superconducting cyclotrons. While a variety of other accelerator technologies were developed to achieve today's high energy particles, this article will chronicle the development of one type of accelerator — the cyclotron, and its medical applications. These medical and industrial applications eventually led to the commercial manufacture of both small and large cyclotrons and facilities specifically designed for applications other than scientific research.

  8. Cyclotrons and positron emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  9. Cyclotrons and positron emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs

  10. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  11. Diagnostic and Prognostic Significance of Methionine Uptake and Methionine Positron Emission Tomography Imaging in Gliomas

    Directory of Open Access Journals (Sweden)

    Kamalakannan Palanichamy

    2017-11-01

    Full Text Available The present most common image diagnostic tracer in clinical practice for glioma is 18F-fluorodeoxyglucose (FDG positron emission tomography (PET for brain tumors diagnosis and prognosis. PET is a promising molecular imaging technique, which provides real-time information on the metabolic behavior of the tracer. The diffusive nature of glioblastoma (GBM and heterogeneity often make the radiographic detection by FDG-PET inaccurate, and there is no gold standard. FDG-PET often leads to several controversies in making clinical decisions due to their uptake by normal surrounding tissues, and pose a challenge in delineating treatment-induced necrosis, edema, inflammation, and pseudoprogression. Thus, it is imperative to find new criteria independent of conventional morphological diagnosis to demarcate normal and tumor tissues. We have provided proof of concept studies for 11C methionine-PET (MET-PET imaging of gliomas, along with prognostic and diagnostic significance. MET-PET is not widely used in the United States, though clinical trials from Japan and Germany suggesting the diagnostic ability of MET-PET imaging are superior to FDG-PET imaging for brain tumors. A major impediment is the availability of the onsite cyclotron and isotopic carbon chemistry facilities. In this article, we have provided the scientific rationale and advantages of the use of MET-PET as GBM tracers. We extend our discussion on the expected pitfalls of using MET-PET and ways to overcome them by incorporating a translational component of profiling gene status in the methionine metabolic pathway. This translational correlative component to the MET-PET clinical trials can lead to a better understanding of the existing controversies and can enhance our knowledge for future randomization of GBM patients based on their tumor gene signatures to achieve better prognosis and treatment outcome.

  12. Cyclotrons: 1978

    International Nuclear Information System (INIS)

    Martin, J.A.

    1978-01-01

    A compilation is presented of the experimental facilities of the world's cyclotrons including history and status, staff and operation, research staff, target facilities, magnet, acceleration system, vacuum system, characteristic beams, beam properties, and a plan view of the facility for each cyclotron

  13. National Medical Cyclotron

    International Nuclear Information System (INIS)

    Boyd, Rex.

    1991-01-01

    The National Medical Cyclotron, under construction at Sydney's Royal Prince Alfred Hospital(RPAH) is to be operated by the Australian Nuclear Science and Technology Organization in collaboration with the hospital. Its main purpose is to produce radioisotopes on commercial basis for distribution to hospitals through Australia as well as short-lived radioisotopes (2 minutes to 2 hours) for immediate application at RPAH in Positron Emission Tomography, to study the dynamics of human physiology and metabolism in organs, bones and soft tissues. A list of the principal cyclotron-produced radionuclides is provided. ills

  14. First results from EBW emission diagnostics on COMPASS

    Czech Academy of Sciences Publication Activity Database

    Zajac, Jaromír; Preinhaelter, Josef; Urban, Jakub; Aftanas, Milan; Bílková, Petra; Böhm, Petr; Fuchs, Vladimír; Nanobashvili, S.; Weinzettl, Vladimír; Žáček, František

    2012-01-01

    Roč. 83, č. 10 (2012), 10E327-10E327 ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics/19./. Monterey, 06.05.2012-10.05.2012] R&D Projects: GA ČR GA202/08/0419; GA MŠk 7G10072 Institutional research plan: CEZ:AV0Z20430508 Keywords : Overdense plasma * Conversion * Emission * Tokamaks * Elektron Bernstein waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.602, year: 2012 http://dx.doi.org/10.1063/1.4733530

  15. Diagnostic value of sectional images obtained by emission tomography

    International Nuclear Information System (INIS)

    Roucayrol, J.C.

    1981-01-01

    It is now possible to obtain clear images of the various planes in and around a structure with ultra-sounds (echotomography), X-rays (computerized tomography) and recently, gamma-rays from radioactive substances (emission tomography). Axial transverse tomography, which is described here, is to conventional scintigraphy what CT scan is to radiography. It provides images of any structure capable of concentrating sufficiently a radioactive substance administered intravenously. These images are perpendicular to the longitudinal axis of the body. As shown by examples in the liver, lungs and myocardium, lesions which had passed unnoticed with other exploratory techniques can now be demonstrated, and the location, shape and extension of known lesions can be more accurately assessed. Emission tomography already has its place in modern diagnostic procedures side by side with echotomography and CT scan [fr

  16. Medical cyclotron: why, where, how

    International Nuclear Information System (INIS)

    Scheer, Kurt; Comar, Dominique; Kellershohn, Claude

    1976-01-01

    Cyclotrons for medical purposes are particularly useful for the production of radioactive isotopes of elements normally constituting organic matter ( 15 O, 13 N, 11 C). The short half-life and positron emission of those elements are of great interest in medical diagnosis. Many others carrier-free radioisotopes can be produced by cyclotrons. Three categories of cyclotrons are mentioned. Desk top cyclotron only adapted to the production of short-lived radioisotopes in a hospital; low energy and average energy cyclotrons which require well-entrained personnel for their operation and are best adapted to the production of radioelements on a regional or even national scale. Examples relative to the interest of short-lived radioisotopes in lung and brain investigations and tumor detection are given

  17. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    International Nuclear Information System (INIS)

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-01-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k // ) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k tor ). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k // as strap phasing is moved away from the dipole configuration. This result is the opposite of the k tor trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k // , as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas’ operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue

  18. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    Science.gov (United States)

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k//) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (ktor). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k// as strap phasing is moved away from the dipole configuration. This result is the opposite of the ktor trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k//, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  19. Determination of the time evolution of the electron-temperature profile of reactor-like plasmas from the measurement of blackbody electron-cyclotron emission

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Arunasalam, V.; Bitzer, R.A.; Hosea, J.C.

    1982-04-01

    Plasma characteristics (i.e., n/sub e/ greater than or equal to 1 x 10 13 cm -3 , T/sub e/ greater than or equal to 10 7 0 K, B/sub psi/ greater than or equal to 20 kG) in present and future magnetically confined plasma devices, e.g., Princeton Large Torus (PLT) and Tokamak Fusion Test Reactor (TFTR), meet the conditions for blackbody emission near the electron cyclotron frequency and at few harmonics. These conditions, derived from the hot plasma dielectric tensor, have been verified by propagation experiments on PLT and the Princeton Model-C Stellarator. Blackbody emission near the fundamental electron cyclotron frequency and the second harmonic have been observed in PLT and is routinely measured to ascertain the time evolution of the electron temperature profile. These measurements are especially valuable in the study of auxiliary heating of tokamak plasma. Measurement and calibration techniques will also be discussed with special emphasis on our fast-scanning heterodyne receiver concept

  20. Comparison Between In-Beam and Offline Positron Emission Tomography Imaging of Proton and Carbon Ion Therapeutic Irradiation at Synchrotron- and Cyclotron-Based Facilities

    International Nuclear Information System (INIS)

    Parodi, Katia; Bortfeld, Thomas; Haberer, Thomas

    2008-01-01

    Purpose: The benefit of using dedicated in-beam positron emission tomography (PET) detectors in the treatment room instead of commercial tomographs nearby is an open question. This work quantitatively compares the measurable signal for in-beam and offline PET imaging, taking into account realistic acquisition strategies at different ion beam facilities. Both scenarios of pulsed and continuous irradiation from synchrotron and cyclotron accelerators are considered, because of their widespread use in most carbon ion and proton therapy centers. Methods and Materials: A mathematical framework is introduced to compare the time-dependent amount and spatial distribution of decays from irradiation-induced isotope production. The latter is calculated with Monte Carlo techniques for real proton treatments of head-and-neck and paraspinal tumors. Extrapolation to carbon ion irradiation is based on results of previous phantom experiments. Biologic clearance is modeled taking into account available data from previous animal and clinical studies. Results: Ratios between the amount of physical decays available for in-beam and offline detection range from 40% to 60% for cyclotron-based facilities, to 65% to 110% (carbon ions) and 94% to 166% (protons) at synchrotron-based facilities, and increase when including biologic clearance. Spatial distributions of decays during irradiation exhibit better correlation with the dose delivery and reduced influence of biologic processes. Conclusions: In-beam imaging can be advantageous for synchrotron-based facilities, provided that efficient PET systems enabling detection of isotope decays during beam extraction are implemented. For very short (<2 min) irradiation times at cyclotron-based facilities, a few minutes of acquisition time after the end of irradiation are needed for counting statistics, thus affecting patient throughput

  1. A near infra-red video system as a protective diagnostic for electron cyclotron resonance heating operation in the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Preynas, M.; Laqua, H. P.; Marsen, S.; Reintrog, A. [Max-Planck-Institut für Plasmaphysik (IPP), D-17491 Greifswald (Germany); Corre, Y.; Moncada, V.; Travere, J.-M. [IRFM, CEA-Cadarache, 13108 Saint Paul lez Durance Cedex (France)

    2015-11-15

    The Wendelstein 7-X stellarator is a large nuclear fusion device based at Max-Planck-Institut für Plasmaphysik in Greifswald in Germany. The main plasma heating system for steady state operation in W7-X is electron cyclotron resonance heating (ECRH). During operation, part of plama facing components will be directly heated by the non-absorbed power of 1 MW rf beams of ECRH. In order to avoid damages of such components made of graphite tiles during the first operational phase, a near infra-red video system has been developed as a protective diagnostic for safe and secure ECRH operation. Both the mechanical design housing the camera and the optical system are very flexible and respect the requirements of steady state operation. The full system including data acquisition and control system has been successfully tested in the vacuum vessel, including on-line visualization and data storage of the four cameras equipping the ECRH equatorial launchers of W7-X.

  2. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Science.gov (United States)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  3. Balloon observation of the binary X-ray source Her X-1 1.24 sec pulsation and cyclotron line emission

    International Nuclear Information System (INIS)

    Pietsch, W.; Reppin, C.; Truemper, J.; Voges, W.; Kendziorra, E.; Staubert, R.; Tuebingen Univ.

    1978-01-01

    During a balloon observation from Palestine, Texas, the authors detected for the first time the 1.24 sec pulsation of Hercules X-1 in the hard X-ray range up to 70 keV and discovered strong line emission in its spectrum at 58 keV. They estimated a line flux of 3x10 -3 photons cm -2 sec -1 and a line width of less than 12 keV. The phenomenon is interpreted as electron cyclotron emission at the basic frequency emitted by the hot polar plasma of the rotating neutron star. The line measured leads to a magnetic field strength of 5.3x10 12 gauss. In further observations during a balloon campaign in Sept./Oct. 1977 the authors confirmed the existence of the line emission and for the first time found pulsed X-ray emission above 15 keV during the 'short on' - and 'off'-state of the Her X-1 35 day cycle. The pulse to interpulse ratio seems to vary with the 35 day phase

  4. Observation of short time-scale spectral emissions at millimeter wavelengths with the new CTS diagnostic on the FTU tokamak

    DEFF Research Database (Denmark)

    Bruschi, A.; Alessi, E.; Bin, W.

    2017-01-01

    On the FTU tokamak, the collective Thomson scattering (CTS) diagnostic was renewed for investigating the possible excitation of parametric decay instabilities (PDI) by electron cyclotron (EC) or CTS probe beams in presence of magnetic islands and measure their effects on the EC power absorption...

  5. Medical cyclotrons

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1976-01-01

    Cyclotrons as tools for therapy and for the production of radionuclides for use in nuclear medicine have been extensively reviewed in the literature. The current world status with respect to cyclotrons used primarily for research, development and application in nuclear medicine is reviewed here in the context of geographical distribution and type of use, presently available commercial types, machine characteristics and trends. Aspects of design requirements from a user perspective such as machine, beam and target characteristics are covered. Some special problems concerning many factors which can lead to effective production of the desired radionuclide or product are considered in light of machine characteristics. Consideration is also given to future directions for accelerators in nuclear medicine

  6. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    International Nuclear Information System (INIS)

    Bonomo, F.; Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D.; Barbisan, M.; Pasqualotto, R.; Serianni, G.; Cristofaro, S.

    2015-01-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H α light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H α spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region

  7. Radiation safety and operational health physics of hospital based medical cyclotrons

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: Compact, low energy, high current Medical Cyclotrons are now primarily used to produce large activities of short lived, neutron deficient, positron- emitting radioisotopes. These isotopes constitute the key ingredients of important PET (Positron Emission Tomography) radiopharmaceuticals used in diagnostic nuclear medicine. The PET-radioisotope producing Medical Cyclotrons are now increasingly installed in modern urban hospitals in many countries of the world. Modern Medical Cyclotrons run at a very high beam current (∼100-200 micro Amp) level and thereby produce intense fields of parasitic gamma rays and neutrons, causing the activation of cyclotron components, ambient air and radiation exposure to patients and members of the public. This report highlights the important operational aspects and the characteristics of the radiation fields produced by Medical Cyclotrons. The pathways of personnel radiation exposure are also analyzed. The above information constitutes the scientific basis of a sound operational health physics service, which is manifested in an effective dose reduction and an enhanced radiological safety of the Medical Cyclotron facility within the framework of ALARA

  8. Radiation shielding analysis of medical cyclotron at Radiation Medicine Centre, Parel

    International Nuclear Information System (INIS)

    Gathibandhe, M.V.; Agrawal, R.A.; Utge, C.G.

    2003-01-01

    Full text: PET (Positron Emission Tomography) is a diagnostic method to obtain 3-D functional images of the distribution of radio-nuclides introduced in the human body as tracers for specific biological processes. Tracers are produced by bombardment of different target nuclides by protons and deuterons of high energy produced in the cyclotron. A Wipro-GE medical cyclotron was installed in the basement of RMC, Parel. Shielding around the cyclotron is provided in the form of borated concrete walls of required thickness to limit dose rates to design values as per AERB criteria. The roof of the cyclotron room is made of heavy concrete. Entry in to the room is through a maze. Shielding analysis for the cyclotron room has been carried out using computer code ANISN. The maze has been analyzed using code MCNP. Based on the analysis carried out additional shielding was recommended to meet the design requirements. The paper discusses the shielding analysis carried out for the cyclotron room and the maze. Dose rate estimated at various locations are highlighted

  9. Advanced Diagnostics for the Study of Linearly Polarized Emission. II. Application to Diffuse Interstellar Radio Synchrotron Emission

    Science.gov (United States)

    Herron, C. A.; Burkhart, Blakesley; Gaensler, B. M.; Lewis, G. F.; McClure-Griffiths, N. M.; Bernardi, G.; Carretti, E.; Haverkorn, M.; Kesteven, M.; Poppi, S.; Staveley-Smith, L.

    2018-03-01

    Diagnostics of polarized emission provide us with valuable information on the Galactic magnetic field and the state of turbulence in the interstellar medium, which cannot be obtained from synchrotron intensity alone. In Paper I, we derived polarization diagnostics that are rotationally and translationally invariant in the Q–U plane, similar to the polarization gradient. In this paper, we apply these diagnostics to simulations of ideal magnetohydrodynamic turbulence that have a range of sonic and Alfvénic Mach numbers. We generate synthetic images of Stokes Q and U for these simulations for the cases where the turbulence is illuminated from behind by uniform polarized emission and where the polarized emission originates from within the turbulent volume. From these simulated images, we calculate the polarization diagnostics derived in Paper I for different lines of sight relative to the mean magnetic field and for a range of frequencies. For all of our simulations, we find that the polarization gradient is very similar to the generalized polarization gradient and that both trace spatial variations in the magnetoionic medium for the case where emission originates within the turbulent volume, provided that the medium is not supersonic. We propose a method for distinguishing the cases of emission coming from behind or within a turbulent, Faraday rotating medium and a method to partly map the rotation measure of the observed region. We also speculate on statistics of these diagnostics that may allow us to constrain the physical properties of an observed turbulent region.

  10. A national medical cyclotron facility: report to the Minister of Health by the Medical Cyclotron Committee

    International Nuclear Information System (INIS)

    1985-01-01

    Research and training in nuclear medicine in Australia are both limited by the lack of a medical cyclotron facility. The Committee recommends the establishment of a national medical cyclotron to provide a supply of short-lived radioisotopes for research in relevant fields of medicine, and for diagnostic use in nuclear medicine

  11. 2-D time evolution of T/sub e/ during sawtooth crash based on fast ECE [electron cyclotron emission] measurements on TFTR

    International Nuclear Information System (INIS)

    Kuo-Petravic, G.

    1988-12-01

    Electron cyclotron emission measurements taken at 20 locations in the horizontal midplane during a sawtooth crash have been analysed based on the assumption of fast rigid rotation of the plasma. Due to this fast rotation (∼100μsec), which remains fairly constant throughout the sawtooth crash, we have been able to make time-to-space reconstructions of half the poloidal plane using points which are separated in time by not more than 40μsec. The existence of a temperature flattening in the precursor phase, which we interpret as an m = 1 temperature island, is clearly demonstrated, and its location and width agree well with local emissivity measurements from soft x-ray tomography viewing the same poloidal plane. The rotating temperature island in the precursor phase, the outward movement of the region of high T/sub c/ during the crash phase, and the shape of T/sub e/ during the crash phase, and the shape of T/sub e/ distribution after the crash during the successor phase have all been documented in a time sequence of color contours. 4 refs., 10 figs

  12. Electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Hamamatsu, K.

    1981-09-01

    Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)

  13. In-house cyclotron and nuclear medicine

    International Nuclear Information System (INIS)

    Tateno, Yukio; Shishido, Fumio; Yamazaki, Toshiro

    1982-01-01

    In-house cyclotron produced radioisotopes and positron computed tomography provide a unique technique which gives cross-sectional bodyimages of various kinds of physiological activities of living human body. Applications of the technique to clinical study might throw a new light on the etiologically unknown disorders of human central nervous system and etc. However, some difficulties should be settled before the establishment of this technique as an useful research and diagnostic tool. One of them was spatial resolution of positron computed tomography, and another was selection and development of really effective labeled compounds for the disease in question. A rotary positron emission computed tomography device was developed by our physicist team, and our chemist team developed various kinds of radiopharmaceuticals. Clinical applications of the technique started in our institute in November 1979, using the positron computed tomography machine named Positrologica I and the pharmaceuticals, 13sup( n h3, )11sup( C o and )18 F-2-fluoro-deoxy-glucose. (author)

  14. Trends in cyclotrons for radionuclide production

    International Nuclear Information System (INIS)

    Vera Ruiz, H.; Lambrecht, R.M.

    1999-01-01

    The IAEA recently concluded a worldwide survey of the cyclotrons used for radionuclide production. Most of the institutions responded to the questionnaire. The responses identified technical, utilisation and administrative information for 206 cyclotrons. Compiled data includes the characteristics, performance and popularity of each of the different commercial cyclotrons. Over 20 cyclotrons are scheduled for installation in 1998. The expansion in the number of cyclotron installations during the last decade was driven by the advent of advances in medical imaging instrumentation (namely, positron emission tomography (PET), and more recently by 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons; and recent governmental decisions that permit reimbursement for cyclotron radiopharmaceutical studies by the government or insurance companies. The priorities for the production of clinical, commercial and research radionuclides were identified. The emphasis is on radionuclides used for medical diagnosis with SPET (e.g. 123 I, 201 Tl) and PET (e.g. 11 C, 13 N, 15 O, 18 F) radiopharmaceuticals, and for individualized patient radiation treatment planning (e.g. 64 Cu, 86 Y, 124 I) with PET. There is an emerging trend to advance the cyclotron as an alternative method to nuclear reactors for the production of neutron-rich radionuclides (e.g. 64 Cu, 103 Pd, 186 Re) needed for therapeutic applications. (authors)

  15. Morphological Processing of Ultraviolet Emissions of Electrical Corona Discharge for Analysis and Diagnostic Use

    Science.gov (United States)

    Schubert, Matthew R.; Moore, Andrew J.

    2015-01-01

    Electron cascades from electrical discharge produce secondary emissions from atmospheric plasma in the ultraviolet band. For a single point of discharge, these emissions exhibit a stereotypical discharge morphology, with latent information about the discharge location. Morphological processing can uncover the location and therefore can have diagnostic utility.

  16. Emission spectroscopy for coal-fired cyclone furnace diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrmeyer, J.A.; Boll, D.E.; Smith, R. [Vanderbilt University, Nashville, TN (United States). Dept. of Mechanical Engineering

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuellean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and 02 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths.

  17. Standardized high current solid targets for cyclotron production of radionuclides

    International Nuclear Information System (INIS)

    Al-Jammaz, Ibrahim

    2000-01-01

    The Cyclotron and Radiopharmaceuticals Department (CRP) is an advanced and modern facility that encompasses two essential components: radioisotope research, and radiopharmaceuticals manufacturing. Radiopharmaceuticals manufacturing program is not only quite unique, but also an essential component of King Faisal Specialist Hospital and Research Center (KFSH and RC) in providing quality patient care for the population of the Kingdom. Accurate diagnosis and therapy with medical imaging equipment requires quality radiopharmaceuticals that are available readily and with reliability. The CRP Department provides that quality and reliability. Research activities of the CRP Department are focused on developing new radiotracers with potential usefulness in biomedical research and clinical applications. Research projects consist of: developing cyclotron targetry for radioisotope production; developing synthesis methods for radiolabeling biomolecules; and developing analytical methods for quality control. The CRP Department operates a semi-commercial radiopharmaceuticals manufacturing program that supplies the diagnostic radioactive products to several hospitals in the Kingdom and neighboring countries. These products for clinical applications are produced according to the international standards of Good Manufacturing Practices of quality and efficacy. At the heart of the radioisotope program is a medium energy cyclotron capable of accelerating a number of particles for transformation of non-radioactive atoms into radionuclides that are the primary sources for research and development activities, and for preparing radiopharmaceuticals. In addition to having the only cyclotron facility in the region, KFSH and RC also has the only Positron Emission Tomography Center (PET) in this part of the world. This combination of cyclotron and the ultra modern PET facility translates into advanced and specialized care for the patients at KFSH and RC

  18. The diagnostic accuracy of integrated positron emission tomography ...

    African Journals Online (AJOL)

    The PET-CT findings, including maximum standardised uptake value (SUVmax), were compared with the gold standard (tissue or microbiological diagnosis). The sensitivity, specificity, positive and negative predictive values and diagnostic accuracy for malignant disease were calculated according to the SUVmax cut-off of ...

  19. Developing the smallest possible medical cyclotron

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Imagine a portable medical cyclotron operated in a conventional radioactive facility at a hospital. Imagine a nurse or technician switching it on and producing isotopes at the patient’s bedside. Sounds like science fiction? Think again.   CERN has teamed up with Spain’s national scientific research centre (CIEMAT) to develop an avant-garde cyclotron to be used for Positron Emission Tomography (PET). “We plan to make a cyclotron that doesn't need an insulated building or ‘vault’: a cyclotron small enough to fit inside a hospital lift,” explains Jose Manuel Perez, who is leading the CIEMAT/CERN collaboration. “It will be the smallest possible medical cyclotron for single patient dose production and will dramatically reduce costs for hospitals.” While PET technology has transformed imaging techniques, many of its medical benefits have remained confined to highly specialised hospitals. “Studies have foun...

  20. Emission Line Correlations as Diagnostics of Quasar Winds

    Science.gov (United States)

    Sheldon, Keziah; Richards, Gordon

    2018-01-01

    We investigate correlations between UV and optical emission line properties for a sample of z~0.5 SDSS (Sloan Digital Sky Survey) quasars that have recently been observed by HST. The sample is designed to be comparable in luminosity to the existing reverberation mapping (RM) sample, but less biased in terms of their "eigenvector 1" properties. We seek to understand the conditions under which high-ionization emission lines become dominated by a wind. Our analysis takes advantage of spectral decomposition through Independent Component Analysis (ICA) and archival UV HST spectroscopy of SDSS quasars. With these data we will clarify the needs for RM analysis of quasars with wind-dominated emission features.

  1. The radioprotection management of a PET department with a cyclotron and radiopharmacy laboratory, in accordance with Italian legislation

    International Nuclear Information System (INIS)

    Russo, A. A.; Ferrari, P.; Casale, M.; Delia, R.

    2011-01-01

    The possibility of setting up a positron emission tomography (PET) facility with a cyclotron and radiopharmaceutical laboratory in situ, at a feasible price and in a very restricted space, has led to a steady increase both in the use of the PET technique in diagnostic clinical routine imaging and in the number of cyclotrons for drug production. Owing to the progress made in the PET procedures, it is now possible to have not only a highly innovative system of diagnostic examination, with a remarkable improvement in the diagnostic quality and patient care, but also a considerable increase in the number of daily examinations. In this paper, the authors show how the acquired know-how, with respect to radioprotection, has applied to the planning, running and management of the PET/CT unit, installed in the Imaging Diagnostic Dept. of the Policlinico Tor Vergata (PTV), at Tor Vergata Univ., Rome. (authors)

  2. Generation of auroral hectometer radio emission at the laser cyclotron resonance ([omega][sub p][>=][omega][sub H]). Generatsiya avroral'nogo gektometrovogo radioizlucheniya na mazernom tsiklotronnom rezonatore ([omega][sub p]>or approx. [omega][sub H])

    Energy Technology Data Exchange (ETDEWEB)

    Vlasov, V G [Irkutskij Politekhnicheskij Inst., Irkutsk (Russian Federation)

    1992-06-01

    Generation of auroral hectometer (AHR) and kilometer (AKR) radio emission at a maser cyclotron resonance (MCR) in a relatively dense plasma ([omega][sub p][>=][omega][sub H]) is theoretically studied. The conclusion is made that availability of two-dimensional small-scale inhomogeneity of plasma density is the basic condition for the AHR generation at the MCR by auroral electron beams. The small-scale inhomogeneity of the auroral plasma, measured on satelites, meets by its parameters the conditions for the generation of auroral radio emission.

  3. A new diagnostic for spheromaks

    International Nuclear Information System (INIS)

    Boyd, D.A.

    1986-01-01

    Electron cyclotron emission from a spheromak plasma may be able to provide information about the confining magnetic field of the system. Emission generated in the extraordinary mode wit hits electric vector perpendicular to the local magnetic field at sufficiently high frequency will propagate out of the plasma while retaining the original orientation if its electric vector. Thus, a measurement of the orientation of the emergent electric vector and the emission frequency will allow one to deduce the orientation and strength of the magnetic field at the radiation source. In this paper, simple models of the Maryland spheromak are used to examine the practicality of such a diagnostic

  4. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Park, H.; Chang, C.C.; Deng, B.H.; Domier, C.W.; Donni, A.J.H.; Kawahata, K.; Liang, C.; Liang, X.P.; Lu, H.J.; Luhmann, N.C. Jr.; Mase, A.; Matsuura, H.; Mazzucato, E.; Miura, A.; Mizuno, K.; Munsat, T.; Nagayama, K.; Nagayama, Y.; Pol, M.J. van de; Wang, J.; Xia, Z.G.; Zhang, W-K.

    2002-01-01

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  5. Positron emission tomography

    International Nuclear Information System (INIS)

    Marchenkov, N.S.

    2000-01-01

    The foundations of the positron emission tomography (PET), widely used for the medical diagnostics, are considered. The brief description of the cyclotron for production of radionuclides, applied in the PET, the target devices for manufacturing the position emitters, the moduli for the radiopharmaceuticals synthesis (RPS) for the PET is presented. The necessity and concept of complete automation of the RPS for the PET are discussed [ru

  6. Emissions from heavy current carrying high density plasma and their diagnostics

    International Nuclear Information System (INIS)

    Hirano, Katsumi

    1987-06-01

    Workshop on ''Emissions from heavy current carrying high density plasma and diagnostics'' was held at Institute of Plasma Physics, Nagoya University on 3. and 4. December 1986 under a collaborating research Program. The workshop was attended by 43 researchers from 19 labolatories. A total of 22 papers were submitted and are presented in these proceedings. The largest group of papers was that on soft X-ray emission. It seems this topic is a foremost interest for groups which engaged in research of the Z pinch and the plasma focus. A variety of problems in pinched dense plasmas, namely spectroscopy, diagnostics, pinch dynamics, and related engineering aspects were also discussed. (author)

  7. A study on the heating and diagnostic of a tokamak plasma by electromagnetic waves of the electron cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi

    1989-09-01

    A study on the heating and diagnosis of tokamak plasma by electromagnetic waves of electron cyclotron range of frequency is summarized. The main results obtained are as follows. On the engineering and technology, the technology of injecting high frequency, large power millimeter waves into tokamak plasma was established by carrying out the design, manufacture and test of a 60 GHz, 400 kW high frequency heating system, and the design, manufacture and test of a heterodyne type electron cyclotron radiation multi-channel mealsuring system were carried out, and the technology of measuring the radiation from tokamak plasma with the time resolution of 10 μs in multi-channel was established. On nuclear fusion reactor core engineering and plasma physics, the high efficiency electron heating of tokamak plasma by the incidence of fundamental irregular and regular waves at electron cyclotron frequency was verified. The discovery and analysis of the heating by electrostatic waves arising due to mode transformation from electromagnetic waves in upper hybrid resonance layer were carried out. By the incidence of second harmonic waves, the high efficiency electron heating of tokamak plasma was verified, and the heating characteristics were clarified. And others. (K.I.) 179 refs

  8. Self-calibrating magnetic field diagnostics in beam emission spectroscopy

    International Nuclear Information System (INIS)

    Voslamber, D.

    1995-01-01

    Magnetic field diagnostics in tokamaks using the motional Stark effect in fast neutral beams have been based on two kinds of polarimetry which we call ''static'' and ''dynamic.'' A detailed analysis shows that static polarimetry presents a number of advantages over dynamic polarimetry, provided it is made complete in the sense that a sufficient number of polarization analyzers are installed and different parts of the spectrum are explored to yield full information on the set of unknowns inherent in the problem. A detailed scheme of complete static polarimetry is proposed, including the case where an in-vessel mirror with changing characteristics (coating by impurities) is placed in front of the optical detection system. The main merit of this scheme relies on the fact that it is self-calibrating with respect to both the characteristics of the mirror and the transmission of the different polarization channels, the latter item implying that it is uniquely based on relative measurements of spectra. Further advantages are a greater flexibility with regard to different kinds of diagnostics and the circumstance that the technical equipment is less involved. The above scheme is based on a detection system of moderate etendue exploiting a large spectral domain, which is the regime where static polarimetry usually operates. It is also possible, however, to work with large etendue and a small spectral domain, such as commonly adopted in dynamic polarimetry. Using such a regime, static polarimetry loses the advantages mentioned above but gains, as a new advantage, the benefit of a comparatively lower level of photon noise. copyright 1995 American Institute of Physics

  9. Production, administration and disposal of cyclotron produced shortlived radioactive gases for positron emission tomography studies at the Austin Repatriation Medical Centre, Melbourne

    Energy Technology Data Exchange (ETDEWEB)

    Egan, G.F.; O`Keefe, G. [Austin Hospital, Heidelberg, VIC (Australia); Tochon-Danguy, H.J.; Midgley, S.; Phana, K.S.; Sachinidis, J.; Chan, J.G. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1995-01-01

    Positron Emission Tomography (PET) Centre is operational at the Austin Repatriation Medical Centre, Melbourne. The major equipment consists of a 10 MeV cyclotron and a whole body PET scanner. Radioactive gases produced and used directly in clinical studies include [{sup 15}O]O{sub 2}, [{sup 15}O]CO, and [{sup 15}O]CO{sub 2}, whilst [{sup 11}C]CO{sub 2} is also produced for use in radiochemistry syntheses. Radioactivity delivery rates of 3.7, 3.3, and 1.6 GBq/min to the scanner suite have been achieved for [{sup 15}O]O{sub 2}, [{sup 15}O]CO{sub 2}, and [{sup 15}O]CO respectively, and batch productions of 36.3 GBq of [{sup 11}C]CO{sub 2} have been produced. The production. patient administration and disposal of the short-lived radioactive gases has been achieved in compliance with radiation protection principles. Radioactive gas doses of 1.7 GBq are administered to patients with less than 0.02 MBq/m{sup 3} leakage into the scanner suite. Less than 13 MBq of [ {sup 15}O]-labelled gases are released into the environment per patient study at a concentration of 0.018 MBq/m{sup 3}. Annually less than 2 GBq is expected to be released into the environment. The centre design and first four months` experience of radioactive gas production, administration and disposal is presented. 5 refs., 4 tab., 1 fig.

  10. Cyclotrons as mass spectrometers

    International Nuclear Information System (INIS)

    Clark, D.J.

    1984-04-01

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures

  11. Future perspectives: Diagnostic possibilities with positron emission tomography

    International Nuclear Information System (INIS)

    Schelbert, H.R.; California Univ., Los Angeles; California Univ., Los Angeles

    1990-01-01

    While evaluation of regional myocardial metabolism for diagnostic purposes is currently confined to ischemic heart disease, the emergence and implementation of new tracer approaches is likely to expand the scope of clinical applications. Evaluation of neuronal control of the heart with tracers of adrenergic neuron densities and β-adrenergic and cholinergic post-synaptic activity promises to be useful in patients with electrical instability and with cardio-myopathies as well as for verifying responses to therapeutic interventions. The possibility to measure regional oxidative metabolism should further prove useful for distinguishing between residual oxidative and anaerobic metabolism in ischemia and thus prove useful for more accurate characterization of the ischemic injury. The method should further become useful for examining cardiac efficiency and detecting the effect of therapeutic interventions. Lastly, techniques for measurements of protein synthesis are likely to become important for defining myocardial maturation, compensatory adjustment of the myocardium to increased pressure and volume loading as well as assessment of repair processes after injury to myocardium. (orig.) [de

  12. PIXE analysis by baby cyclotron

    International Nuclear Information System (INIS)

    Yoshida, Hyogo; Tanaka, Teruaki; Ito, Takashi; Toda, Yohjiro; Wakasa, Hideichiro

    1988-01-01

    The Japan Steel Works, Ltd. has been supplying a very small sized cyclotron (Baby Cyclotron) to hospitals and research facilities. The cyclotron is designed to produce short-lived radioisotopes for medical use. In the present study, this cyclotron is modified so that it can serve for PIXE analysis. The PIXE (particle induced X-ray emission) technique has the following features: (1) Down to 1 ng of trace material in a sample (mg - μg) can be detected, (2) An analysis run is completed in one to ten minutes, permitting economical analysis for a large number of samples, (3) Several elements can be analyzed simultaneously, with an almost constant sensitivity for a variety of elements ranging from aluminum to heavy metals, (4) Analysis can be performed nondestructively without a chemical process, and (5) The use of microbeam can provide data on the distribution of elements with a resolution of several μm. Software for analysis is developed to allow the modified equipment to perform peak search, background fitting, and identification and determination of peaks. A study is now being conducted to examine the performance of the equipment for PIXE analysis of thin samples. Satisfactory results have been obtained. The analysis time, excluding the background correction, is 5-10 min. (Nogami, K.)

  13. Cyclotron waves in plasma

    International Nuclear Information System (INIS)

    Lominadse, D.G.

    1975-01-01

    The book deals with fundamental physical concepts of the theory of cyclotron waves and cyclotron instabilities conditioned by the presence in plasma of direct or alternating electric currents passing in it perpendicularily to a magnetic field. A great variety of problems is considered connected with the linear theory of cyclotron oscillations in equilibrium and electron plasma of metals and semiconductors. Parametric excitations of electron cyclotron oscillations of plasma in an alternating electric field are studied. Particular attention is paid to the investigation of plasma turbulence arising as a result of development of cyclotron instabilities. Experimental data are discussed and compared with theoretical results

  14. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  15. A Diagnostic Test for Determining the Location of the GeV Emission in Powerful Blazars

    Science.gov (United States)

    Dotson, Amanda; Georganopoulos, Markos; Kazanas, Demosthenes; Perlman, Eric

    2011-01-01

    An issue currently under debate in the literature is how far from the black hole is the Fermi-observed GeV emission of powerful blazars emitted. Here we present a clear diagnostic tool for testing whether the Ge V emission site is located within the sub-pc broad emission line (BLR) region or further out in the few pc scale molecular torus (MT) environment. Within the BLR the scatteri takes place at the onset of the Klein-Nishina regime, causing the electron cooling time to become almost energy independent and as a result, the variation of high-energy emission is expected to be achromatic. Contrarily, if the emission site is located outside the BLR, the expected GeY variability is energy-dependent and with amplitude increasing with energy. We demonstrate this using time-dependent numerical simulations of blazar variability.

  16. Diagnostic of the temperature and differential emission measure (DEM based on Hinode/XRT data

    Directory of Open Access Journals (Sweden)

    P. Rudawy

    2008-10-01

    Full Text Available We discuss here various methodologies and an optimal strategy of the temperature and emission measure diagnostics based on Hinode X-Ray Telescope data. As an example of our results we present the determination of the temperature distribution of the X-rays emitting plasma using a filters ratio method and three various methods of the calculation of the differential emission measure (DEM. We have found that all these methods give results similar to the two filters ratio method. Additionally, all methods of the DEM calculation gave similar solutions. We can state that the majority of the pairs of the Hinode filters allows one to derive the temperature and emission measure in the isothermal plasma approximation using standard diagnostics based on the two filters ratio method. In cases of strong flares one can also expect good conformity of the results obtained using a Withbroe – Sylwester, genetic algorithm and least-squares methods of the DEM evaluation.

  17. SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexíco, Unidad Académica en Ensenada, Km 103 Carr. Tijuana-Ensenada, 22860 Ensenada BC (Mexico); Lada, Elizabeth A., E-mail: jybarra@astro.unam.mx [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States)

    2014-10-20

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H{sub 2} and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H{sub 2} emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster.

  18. SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G.; Lada, Elizabeth A.

    2014-01-01

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H 2 and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H 2 emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster

  19. Chromatic-free spatially resolved optical emission spectroscopy diagnostics for microplasma

    International Nuclear Information System (INIS)

    Zhu Liguo; Chen Wencong; Zhu Ximing; Pu Yikang; Li Zeren

    2009-01-01

    A chromatic-free spatially resolved diagnostic system for microplasma measurement is proposed and demonstrated, which consists of an optical chromatic-free microscope mirror system, an electron multiplying charge coupled device (EMCCD), and bandpass filters. The diagnostic system free of chromatic aberrations with a spatial resolution of about 6 μm is achieved. The factors that limit the resolution of this diagnostic system have been analyzed, which are optical diffraction, the pixel size of the EMCCD, and the thickness of the microplasma. In this paper, the optimal condition for achieving a maximum resolution power has been analyzed. With this diagnostic system, we revealed the spatial nonuniformity of a microwave atmospheric-pressure argon microplasma. Furthermore, the spatial distribution of the time-averaged effective electron temperature has been estimated from the intensity distributions of 750.4 and 415.8 nm emissions.

  20. Fusion plasma diagnostics with mm-waves an introduction

    CERN Document Server

    Hartfuss, Hans-Jürgen

    2013-01-01

    Filling a gap in the literature, this introduction to the topic covers the physics of the standard microwave diagnostics established on modern fusion experiments, and the necessary technological background from the field of microwave engineering. Written by well-known mm-wave diagnosticians in the field of fusion physics, the textbook includes such major diagnostic techniques as electron cyclotron emission, interferometry, reflectometry, polarimetry, and scattering.

  1. Cyclotron will not survive yet this year without state support

    International Nuclear Information System (INIS)

    Marcan, P.

    2005-01-01

    In this paper the project of the Cyclotron Center of the Slovak republic is described. On the basis of this project the state joint-stock company Biont was constituted. Small cyclotron is in operation; big cyclotron is in process of manufacture and it will be put in operation in 2007. Small cyclotron will be used for production of radiopharmaceuticals. Positron emission tomograph (PET) in Oncological Institute of St. Elizabeth (in Bratislava) and gamma camera in Central Military Hospital (in Ruzomberok) are constituents of the Biont. The PET will be also in Biont. The hadron therapy of ophthalmic tumors is planned. Financial plans of the Biont up to 2009 are presented

  2. Medical applications of cyclotrons

    International Nuclear Information System (INIS)

    Jean, R.; Fauchet, M.

    1978-01-01

    Isochronous cyclotrons used to accelerate different charged particles (protons, deuterons, alphas...) at variable energies, have important medical applications, for neutron teletherapy, in vivo or in vitro activation analysis or production of short-lived radioisotopes for nuclear medicine. The characteristics of the cyclotron presently available are described for these three applications (low energy 'compact' cyclotrons, cyclotrons of intermediate and high energies), and their advantages are discussed from the points of view of the medical requirements, the financial investments and the results obtained. (orig.) [de

  3. MICHIGAN: Cyclotron conference

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    A sense of excitement was in the air as cyclotron physicists and engineers from 17 countries convened on 30 April for the opening of the Tenth International Conference on Cyclotrons and Their Applications. Some 50 years after its invention, the redoubtable cyclotron remains a topic of compelling current interest. Cyclotron experts gathered at Michigan State University's Kellogg Center to hear of latest developments, of progress and successes on new machines which had come into operation, of new projects which were underway, and of dreams which lay ahead

  4. MICHIGAN: Cyclotron conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-10-15

    A sense of excitement was in the air as cyclotron physicists and engineers from 17 countries convened on 30 April for the opening of the Tenth International Conference on Cyclotrons and Their Applications. Some 50 years after its invention, the redoubtable cyclotron remains a topic of compelling current interest. Cyclotron experts gathered at Michigan State University's Kellogg Center to hear of latest developments, of progress and successes on new machines which had come into operation, of new projects which were underway, and of dreams which lay ahead.

  5. [Cyclotron based nuclear science

    International Nuclear Information System (INIS)

    1989-06-01

    This report contains papers on the following topics: Heavy ion reactors, nuclear structure and fundamental interactions; atomic and materials studies; nuclear theory; and superconducting cyclotron and instrumentation

  6. Directory of cyclotrons used for radionuclide production in Member States

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The directory of cyclotrons used for radionuclide production is an update of the data base on cyclotrons that was compiled in 1983 by the International Atomic Energy Agency. The directory contains technical, utilization and administrative information supplied to the IAEA as of October 1997. The directory was prepared through information collected by questionnaires sent to institutions that either have a cyclotron, or that were identified to be in the process of installation of a cyclotron. The directory contains 206 entries for cyclotrons operating in 34 Member States. The largest concentration of cyclotrons for radionuclide production are located in the United States of America (66), Japan (33) and Germany (22). The largest number of cyclotrons for a single country is the United States of America. The expansion in number of cyclotrons during the last decade has been driven by the advent of advances in medical imaging instrumentation (PET, SPET and more recently 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons from several companies that manufacture cyclotrons; and recent decisions that {sup 15}O-oxygen PET studies in Japan, and {sup 18}F-FDG PET studies in Germany are eligible for reimbursement by government or insurance companies.

  7. Directory of cyclotrons used for radionuclide production in Member States

    International Nuclear Information System (INIS)

    1998-03-01

    The directory of cyclotrons used for radionuclide production is an update of the data base on cyclotrons that was compiled in 1983 by the International Atomic Energy Agency. The directory contains technical, utilization and administrative information supplied to the IAEA as of October 1997. The directory was prepared through information collected by questionnaires sent to institutions that either have a cyclotron, or that were identified to be in the process of installation of a cyclotron. The directory contains 206 entries for cyclotrons operating in 34 Member States. The largest concentration of cyclotrons for radionuclide production are located in the United States of America (66), Japan (33) and Germany (22). The largest number of cyclotrons for a single country is the United States of America. The expansion in number of cyclotrons during the last decade has been driven by the advent of advances in medical imaging instrumentation (PET, SPET and more recently 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons from several companies that manufacture cyclotrons; and recent decisions that 15 O-oxygen PET studies in Japan, and 18 F-FDG PET studies in Germany are eligible for reimbursement by government or insurance companies

  8. Manufacturing on the radiopharmaceuticals produced by cyclotron

    International Nuclear Information System (INIS)

    Ueda, Nobuo

    1994-01-01

    Radiopharmaceutical (RP) produced by cyclotrons are widely used for the in vivo diagnosis of various diseases such as cancer, cerebral vascular disorders and cardiac diseases. The nuclides used as RPs and their nuclear reactions, and the quantity of RPs supplied in Japan in the last five years are shown. These RPs are delivered to about 1,100 hospitals in Japan. Thallium-201 and iodine-123 showed very high growth rate. Recently, two new I-123 RPs, BMIPP and MIBG which are heart-imaging agents, have been supplied. It suggests that the quantity of I-123 will increase much more in future. The image diagnostic method using RPs is called in vivo nuclear medicine, and has become the indispensable means for medical institutions together with X-ray CT, nuclear magnetic resonance imaging and ultrasonic diagnosis. The RPs for in vivo diagnosis generally used at present are classified into those labeled with the RIs produced with cyclotrons and those labeled with Tc-99m formed by the decay of Mo-99. The quantity being used is overwhelmingly more in the latter, but the former shows the tendency of growth. The commercial production of cyclotron RIs for medical use, the chemical forms and the diagnostic purposes of the RPs using cyclotron RIs, and the state of use of the cyclotron-produced RPs are reported. (K.I.)

  9. Diagnostic utility of fluorodeoxyglucose positron emission tomography/computed tomography in pyrexia of unknown origin

    International Nuclear Information System (INIS)

    Singh, Nidhi; Kumar, Rakesh; Malhotra, Arun; Bhalla, Ashu Seith; Kumar, Uma; Sood, Rita

    2005-01-01

    The present study was undertaken to evaluate the diagnostic utility of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) in patients presenting as pyrexia of unknown origin (PUO). Forty-seven patients (31 males and 16 females; mean age of 42.7 ± 19.96 years) presenting as PUO to the Department of Medicine at the All India Institute of Medical Sciences, New Delhi over a period of 2 years underwent F-18 FDG PET/CT. PET ⁄ CT was considered supportive when its results correlated with the final definitive diagnosis. Final diagnosis was made on the basis of combined evaluation of history, clinical findings, investigations, and response to treatment. Thirty-five PET/CT studies (74.5%) were positive. However, only 18 (38.3%) were supportive of the final diagnosis. In three patients (6.4%), PET/CT was considered diagnostic as none of the other investigations including contrast-enhanced computed tomography of chest and abdomen, and directed tissue sampling could lead to the final diagnosis. All these three patients were diagnosed as aortoarteritis. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography is an important emerging modality in the workup of PUO. It supported the final diagnosis in 38% of our patients and was diagnostic in 6.4% of patients. Thus, PET/CT should only be considered as second-line investigation for the diagnostic evaluation of PUO; especially in suspected noninfectious inflammatory disorders

  10. 20 years Rossendorf cyclotron

    International Nuclear Information System (INIS)

    1978-08-01

    On the occasion of the 20th anniversary of initiating of the Rossendorf cyclotron accounts are given of most important works and results in the field of accelerator engineering and utilization of this machine. The reports show the trend of development and actual spectrum of application. The enclosed literature lists give a survey of technical and experimental works at cyclotron. (author)

  11. Vancouver Cyclotron Conference

    International Nuclear Information System (INIS)

    Clark, David J.

    1993-01-01

    Although no longer on the high energy frontier, the cyclotron field is still a major scientific growth area. Its progress is highlighted at the international conference on cyclotron design, development and utilization held at intervals of about three years, under the auspices of the International Union of Pure and Applied Physics (IUPAP). Vancouver, surrounded by mountains, water and some cyclotrons, provided a pleasant setting for the 13th Conference, held last summer. With over 200 cyclotrons in operation around the world, the attendance, 241 delegates and 26 industrial exhibitors, was a near record, reflecting the flourishing state of the field. The early sessions covered the initial operation of new or upgraded cyclotron facilities. Major facilities completed since the previous Conference in Berlin in May 1989 included the 400 MeV ring cyclotron at Osaka, the U400M cyclotron at Dubna which will be coupled to the U400 to give 20 MeV nucléon uranium beams, the 130 MeV cyclotron at Jyvaskyla (in Finland, the furthest north!), the 110 MeV JAERI machine in Japan, and the 65 MeV proton therapy cyclotron in Nice. Among the facility upgrades were the KFA cyclotron at Julich which will inject the 2.5 GeV storage ring COSY, and the addition of an FM mode to the K=200 CW mode at Uppsala to give protons up to 180 MeV. The impressive current of 1.5 mA at 72 MeV obtained from the PSI Injector II will soon be injected into the 590 MeV ring

  12. Comparison of Diagnostic Performance of Three-Dimensional Positron Emission Mammography versus Whole Body Positron Emission Tomography in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Dong Dai

    2017-01-01

    Full Text Available Objective. To compare the diagnostic performance of three-dimensional (3D positron emission mammography (PEM versus whole body positron emission tomography (WBPET for breast cancer. Methods. A total of 410 women with normal breast or benign or highly suspicious malignant tumors were randomized at 1 : 1 ratio to undergo 3D-PEM followed by WBPET or WBPET followed by 3D-PEM. Lumpectomy or mastectomy was performed on eligible participants after the scanning. Results. The sensitivity and specificity of 3D-PEM were 92.8% and 54.5%, respectively. WBPET showed a sensitivity of 95.7% and specificity of 56.8%. After exclusion of the patients with lesions beyond the detecting range of the 3D-PEM instrument, 3D-PEM showed higher sensitivity than WBPET (97.0% versus 95.5%, P = 0.913, particularly for small lesions (<1 cm (72.0% versus 60.0%, P = 0.685. Conclusions. The 3D-PEM appears more sensitive to small lesions than WBPET but may fail to detect lesions that are beyond the detecting range. This study was approved by the Ethics Committee (E2012052 at the Tianjin Medical University Cancer Institute and Hospital (Tianjin, China. The instrument positron emission mammography (PEMi was approved by China State Food and Drug Administration under the registration number 20153331166.

  13. Cyclotron radiation by a multi-group method

    International Nuclear Information System (INIS)

    Chu, T.C.

    1980-01-01

    A multi-energy group technique is developed to study conditions under which cyclotron radiation emission can shift a Maxwellian electron distribution into a non-Maxwellian; and if the electron distribution is non-Maxwellian, to study the rate of cyclotron radiation emission as compared to that emitted by a Maxwellian having the same mean electron density and energy. The assumptions in this study are: the electrons should be in an isotropic medium and the magnetic field should be uniform. The multi-group technique is coupled into a multi-group Fokker-Planck computer code to study electron behavior under the influence of cyclotron radiation emission in a self-consistent fashion. Several non-Maxwellian distributions were simulated to compare their cyclotron emissions with the corresponding energy and number density equivalent Maxwellian distribtions

  14. Tachyonic cyclotron radiation

    International Nuclear Information System (INIS)

    Tomaschitz, R.

    2006-01-01

    We study superluminal cyclotron emission by electrons and muons in semiclassical orbits. The tachyonic line spectra of hydrogenic ions such as H, 56 Fe 25+ , and 238 U 91+ , as well as their muonic counterparts pμ - , 56 Fe 26+ μ - and 238 U 92+ μ - are calculated, in particular the tachyonic power transversally and longitudinally radiated, the total intensity, and the power radiated in the individual harmonics. We also investigate tachyonic continuum radiation from electrons and protons cycling in the surface and light cylinder fields of γ -ray and millisecond pulsars, such as the Crab pulsar, PSR B1509-58, and PSR J0218 + 4232. The superluminal spectral densities generated by non-relativistic, mildly relativistic and ultra-relativistic source particles are derived. We study the parameters determining the global shape of the transversal and longitudinal densities and the energy scales of the broadband spectrum. The observed cutoff frequency in the γ-ray band of the pulsars is used to infer the upper edge of the orbital energy, and we conclude that electrons and nuclei cycling in the surface fields can reach energies beyond the ''ankle'' of the cosmic ray spectrum. This suggests γ-ray pulsars as sources of ultra-high energy cosmic rays. (orig.)

  15. Health physics considerations at a neutron therapy facility cyclotron

    International Nuclear Information System (INIS)

    Kleck, J.H.; Krueger, D.J.; Mc Laughlin, J.E.; Smathers, J.B.

    1987-01-01

    The U.C.L.A. Neutron Therapy Facility (NTF) is one of four such facilities in the United States currently involved in NCI sponsored trials of neutron therapy and reflects the present interest in the use of high energy neutron beams for treating certain types of human cancers. The NTF houses a CP-45 negative ion cyclotron which accelerates a 46 MeV proton beam for production of neutrons from a beryllium target. In addition to patient treatment, the NTF is involved in the production of positron emitting radioisotopes for diagnostic use in Positron Emission Tomography (PET). The activation of therapy treatment collimators, positron and neutron target systems, and a high and rapidly varying external radiation environment in a clinical setting have contributed to the need for a comprehensive radiation control program in which patient care is balanced with the maintenance of occupational exposures to ALARA levels

  16. Development of cyclotron solid targetry

    International Nuclear Information System (INIS)

    D'Souza, J.; Deans, T.; Cryer, D.; Price, R.

    2004-01-01

    bunker. Electrometers were attached to measure beam current obtained on the target and on the beam line. This was to ensure that the ratio of current hitting the target position is optimised compared to the current hitting the beam line. Teflon (mp: 285-295 deg C) was used in order to electrically isolate the target from the beam line. The cyclotron roughing pump was used to pull the beam line down to 10 -3 bar. The isolation valve between the beam line and the cyclotron was opened. The cyclotron was run for 10 minutes at a low current During the first trial of the beam line two main problems arose: 1. Although the beam line was brought down to 10 3 bar prior to the isolation valve being opened, the large volume within the beam line (compared with that in the regularly used liquid targets) contained enough air to cause flow into the cyclotron, sufficient to rupture the strippers. 2. The bombardment melted the Teflon insulator. Due to these faults the design of the beam line was changed. A diffusion pump was fitted to the beam line which evacuated the beam line to 10 -7 bar. The beam line was fitted onto the cyclotron and the port isolation valve opened. There was no loss of stripper integrity. This design improvement of including the diffusion pump on the beam line was therefore successful. The target body was electrically isolated from the beam line further away from the target and also incorporated water cooling via a water flow system, therefore the temperature of this component will not reach its melting point. The next step is to bombard the target to verify that the new cooling system is successful. Once this bombardment has been conducted successfully, the next step in the project is to irradiate a disc of known substance and get a profile of the beam at the target position by measuring the emissions from the disc using radiographic film. Considerable progress has been achieved in the design of a facility for bombarding solid targets, using the medical cyclotron

  17. Infrared emission as a diagnostic for a collapsing gas shell < pinch

    International Nuclear Information System (INIS)

    Jones, L.A.; Kania, D.R.; Shephard, R.L.; Maestas, M.D.

    1985-01-01

    The shape and absolute intensity of the infrared emission as a function of wavelength can yield information about the conditions in a plasma. This diagnostic technique has been reviewed by Zwicker, who gives several examples of its application to low density plasmas. They have applied this diagnostic, for the first time, to a high density (∼ 10 20 cm -3 ) plasma, a collapsing gas (argon) shell Z pinch. Using a fast Au doped Ge detector and infrared notch filters they have scanned the emitted spectrum from ∼ 0.5 to 8.2 μm with 1-ns time resolution. This spectral range encompasses the optically thin-to-thick transition as well as the plasma frequency at the time of peak compression. The authors will present this data along with an interpretation which allows us to follow the development of the pinched column during the thermalization stage

  18. 'Beam-emission spectroscopy' diagnostics also measure edge fast-ion light

    International Nuclear Information System (INIS)

    Heidbrink, W W; Bortolon, A; McKee, G R; Smith, D R

    2011-01-01

    Beam-emission spectroscopy (BES) diagnostics normally detect fluctuations in the light emitted by an injected neutral beam. Under some circumstances, however, light from fast ions that charge exchange in the high neutral-density region at the edge of the plasma make appreciable contributions to the BES signals. This 'passive' fast-ion D α (FIDA) light appears in BES signals from both the DIII-D tokamak and the National Spherical Torus Experiment (NSTX). One type of passive FIDA light is associated with classical orbits that traverse the edge. Another type is caused by instabilities that expel fast ions from the core; this light can complicate measurement of the instability eigenfunction.

  19. X-ray emission as a diagnostic from pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, D., E-mail: david.bowes@strath.ac.uk [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H.; He, W.; Zhang, L.; Cross, A.W.; Ronald, K.; Phelps, A.D.R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Chen, D.; Zhang, P. [Computed Tomography Lab, School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Chen, X.; Li, D. [Department of Electronic Engineering, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-09-15

    X-ray emission has been achieved using an electron beam generated by a pseudospark low-pressure discharge and utilised as a diagnostic for beam detection. A 300 A, 34 kV PS-sourced electron beam pulse of 3 mm diameter impacting on a 0.1 mm-thick molybdenum target generated X-rays which were detected via the use of a small, portable X-ray detector. Clear X-ray images of a micro-sized object were captured using an X-ray photodetector. This demonstrates the inducement of proton induced X-ray emission (PIXE) not only as an indicator of beam presence but also as a future X-ray source for small-spot X-ray imaging of materials.

  20. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    Science.gov (United States)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  1. Diesel combustion and emissions formation using multiple 2-D imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dec, J.E. [Sandia National Labs., Livermore, CA (United States)

    1997-12-31

    Understanding how emissions are formed during diesel combustion is central to developing new engines that can comply with increasingly stringent emission standards while maintaining or improving performance levels. Laser-based planar imaging diagnostics are uniquely capable of providing the temporally and spatially resolved information required for this understanding. Using an optically accessible research engine, a variety of two-dimensional (2-D) imaging diagnostics have been applied to investigators of direct-injection (DI) diesel combustion and emissions formation. These optical measurements have included the following laser-sheet imaging data: Mie scattering to determine liquid-phase fuel distributions, Rayleigh scattering for quantitative vapor-phase-fuel/air mixture images, laser induced incandescence (LII) for relative soot concentrations, simultaneous LII and Rayleigh scattering for relative soot particle-size distributions, planar laser-induced fluorescence (PLIF) to obtain early PAH (polyaromatic hydrocarbon) distributions, PLIF images of the OH radical that show the diffusion flame structure, and PLIF images of the NO radical showing the onset of NO{sub x} production. In addition, natural-emission chemiluminescence images were obtained to investigate autoignition. The experimental setup is described, and the image data showing the most relevant results are presented. Then the conceptual model of diesel combustion is summarized in a series of idealized schematics depicting the temporal and spatial evolution of a reacting diesel fuel jet during the time period investigated. Finally, recent PLIF images of the NO distribution are presented and shown to support the timing and location of NO formation hypothesized from the conceptual model.

  2. Cyclotrons for isotope production

    International Nuclear Information System (INIS)

    Milton, B.F.; Stevenson, N.R.

    1995-06-01

    Cyclotrons continue to be efficient accelerators for radioisotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology, and isotope production, as they relate to the new generation of commercial cyclotrons. We will also discuss the possibility of systems capable of extracted energies up to 100 MeV and extracted beam currents of up to 2.0 mA. (author). 6 refs., 2 tabs., 3 figs

  3. Synchro-cyclotron

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    The electromagnetic coil which forms the first section of the proton extraction channel in the improved synchro-cyclotron. The photograph shows the positioning gear and the current septum. An extraction efficiency above 50% is expected.

  4. Diagnostics

    DEFF Research Database (Denmark)

    Donné, A.J.H.; Costley, A.E.; Barnsley, R.

    2007-01-01

    of the measurements—time and spatial resolutions, etc—will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems...... on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R......&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. The starting point in the development of diagnostics for ITER is to define the measurement requirements and develop their justification. It is necessary to include all...

  5. Study of a high power hydrogen beam diagnostic based on secondary electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Department of Management and Engineering, University di Padova strad. S. Nicola 3, 36100 Vicenza (Italy); Panasenkov, A. [NRC, Kurchatov Institute, 1, Kurchatov Sq, Moscow 123182 (Russian Federation); Veltri, P. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); INFN-LNL, viale dell’Università n. 2, 35020 Legnaro (Italy); Serianni, G.; Pasqualotto, R. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-11-15

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.

  6. Ultrafast two-dimensional lithium beam emission spectroscopy diagnostic on the EAST tokamak

    Science.gov (United States)

    Zoletnik, S.; Hu, G. H.; Tál, B.; Dunai, D.; Anda, G.; Asztalos, O.; Pokol, G. I.; Kálvin, S.; Németh, J.; Krizsanóczi, T.

    2018-06-01

    A diagnostic instrument is described for the Experimental Advanced Superconducting Tokamak (EAST) for the measurement of the edge plasma electron density profile and plasma turbulence properties. An accelerated neutral lithium beam is injected into the tokamak and the Doppler shifted 670.8 nm light emission of the Li2p-2s transition is detected. A novel compact setup is used, where the beam injection and observation take place from the same equatorial diagnostic port and radial-poloidal resolution is achieved with microsecond time resolution. The observation direction is optimized in order to achieve a sufficient Doppler shift of the beam light to be able to separate from the strong edge lithium line emission on this lithium coated device. A 250 kHz beam chopping technique is also demonstrated for the removal of background light. First results show the capability of measuring turbulence and its poloidal flow velocity in the scrape-off layer and edge region and the resolution of details of transient phenomena like edge localized modes with few microsecond time resolution.

  7. [Cyclotron based nuclear science

    International Nuclear Information System (INIS)

    1993-07-01

    The period 1 April 1992--31 March 1993 saw the initial runs of three new spectrometers, which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP) (data from which are shown on the cover of this document), the Mass Achroniat Recoil Mass Spectrometer (MARS), and the Multipole Dipole Multipole (MDM) Particle Spectrometer. The ECR-K500 cyclotron combination operated 5,849 hours. The beam was on target 39% of this time. Studies of nuclear dynamics and nuclear thermodynamics using the neutron ball have come to fruition. A critical re-evaluation of the available data on the giant monopole resonance indicated that the incompressibility is not specified to a range smaller than 200--350 MeV by those data. New systematic experiments using the MDM spectrometer are now underway. The MEGA collaboration obtained the first data on the μ → eγ decay rate and determination of the Michel parameter in normal μ decay. Experiments appear to confirm the existence of monoenergetic pair peaks even for relatively low Z projectile -- Z target combinations. Studies of the (α,2α) knockout reaction indicate that this reaction may prove to be a valuable tool for determination of reaction rates of astrophysical interest. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. New measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported. The research is presented in nearly 50 brief summaries usually including data and references

  8. Diagnostic accuracy of single photon emission CT in Alzheimer-type dementia

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, Haruki; Abe, Shinei; Arai, Hisayuki; Asano, Tetsuichi; Iwamoto, Toshihiko; Takasaki, Masaru; Suzuki, Takanari [Tokyo Medical Coll. (Japan)

    1992-06-01

    To determine the diagnostic accuracy of single photon emission computed tomography (SPECT) with [sup 123]I-IMP in Alzheimer-type dementia (ATD), we studied 46 ATD patients and 23 healthy controls. The patients fulfilled the NINCDS-ADRDA criteria for probable or definite ATD and were classified as having mild, moderate, and severe ATD by neuropsychological examinations. To assess regional cerebral blood flow, we performed qualitative SPECT image analysis without any knowledge of the subject's clinical classification. The image was regarded as abnormal if cerebral blood flow was reduced in the unlilateral or bilateral temporoparietal association areas, with or without any reduction of flow in other brain regions. The diagnostic sensitivity (abnormal image/ patient) of [sup 123]I-IMP SPECT in mild, moderate and severe ATD was 67%, 86% and 92%, because an abnormal image was found in only 2/23 healthy controls. Eight ATD patients without reduced temporoparietal perfusion showed normal perfusion or frontal hypoperfusion. These results suggest that [sup 123]I-IMP SPECT may provide an accurate and sensitive diagnostic marker for ATD. The detection of these characteristic abnormalities of cerebral perfusion could well be applied to the clinical diagnosis of ATD. (author).

  9. Diagnostic accuracy of single photon emission CT in Alzheimer-type dementia

    International Nuclear Information System (INIS)

    Hanyu, Haruki; Abe, Shinei; Arai, Hisayuki; Asano, Tetsuichi; Iwamoto, Toshihiko; Takasaki, Masaru; Suzuki, Takanari

    1992-01-01

    To determine the diagnostic accuracy of single photon emission computed tomography (SPECT) with 123 I-IMP in Alzheimer-type dementia (ATD), we studied 46 ATD patients and 23 healthy controls. The patients fulfilled the NINCDS-ADRDA criteria for probable or definite ATD and were classified as having mild, moderate, and severe ATD by neuropsychological examinations. To assess regional cerebral blood flow, we performed qualitative SPECT image analysis without any knowledge of the subject's clinical classification. The image was regarded as abnormal if cerebral blood flow was reduced in the unlilateral or bilateral temporoparietal association areas, with or without any reduction of flow in other brain regions. The diagnostic sensitivity (abnormal image/ patient) of 123 I-IMP SPECT in mild, moderate and severe ATD was 67%, 86% and 92%, because an abnormal image was found in only 2/23 healthy controls. Eight ATD patients without reduced temporoparietal perfusion showed normal perfusion or frontal hypoperfusion. These results suggest that 123 I-IMP SPECT may provide an accurate and sensitive diagnostic marker for ATD. The detection of these characteristic abnormalities of cerebral perfusion could well be applied to the clinical diagnosis of ATD. (author)

  10. An Impurity Emission Survey in the near UV and Visible Spectral Ranges of Electron Cyclotron Heated (ECH) Plasma in the TJ-II Stellarator

    International Nuclear Information System (INIS)

    McCarthy, K. J.; Zurro, B.; Baciero, A.

    2001-01-01

    We report on a near-ultraviolet and visible spectroscopic survey (220-600 nm) of electron cyclotron resonance (ECR) heated plasmas created in the TJ-II stellarator, with central electron temperatures up to 2 keV and central electron densities up to 1.7 x 10 ''19 m''-3. Approximately 1200 lines from thirteen elements have been identified. The purpose of the work is to identify the principal impurities and spectral lines present in TJ-II plasmas, as well as their possible origin to search for transitions from highly ionised ions. This work will act as a base for identifying suitable transitions for following the evolution of impurities under different operating regimens and multiplet systems for line polarisation studies. It is intended to use the database creates as a spectral line reference for comparing spectra under different operating and plasma heating regimes. (Author)

  11. A New Diagnostic Diagram of Ionization Sources for High-redshift Emission Line Galaxies

    Science.gov (United States)

    Zhang, Kai; Hao, Lei

    2018-04-01

    We propose a new diagram, the kinematics–excitation (KEx) diagram, which uses the [O III] λ5007/Hβ line ratio and the [O III] λ5007 emission line width (σ [O III]) to diagnose the ionization source and physical properties of active galactic nuclei (AGNs) and star-forming galaxies (SFGs). The KEx diagram is a suitable tool to classify emission line galaxies at intermediate redshift because it uses only the [O III] λ5007 and Hβ emission lines. We use the main galaxy sample of SDSS DR7 and the Baldwin‑Phillips‑Terlevich (BPT) diagnostic to calibrate the diagram at low redshift. The diagram can be divided into three regions: the KEx-AGN region, which consists mainly of pure AGNs, the KEx-composite region, which is dominated by composite galaxies, and the KEx-SFG region, which contains mostly SFGs. LINERs strongly overlap with the composite and AGN regions. AGNs are separated from SFGs in this diagram mainly because they preferentially reside in luminous and massive galaxies and have higher [O III]/Hβ than SFGs. The separation between AGNs and SFGs is even cleaner thanks to the additional 0.15/0.12 dex offset in σ [O III] at fixed luminosity/stellar mass. We apply the KEx diagram to 7866 galaxies at 0.3 Survey, and compare it to an independent X-ray classification scheme using Chandra observations. X-ray AGNs are mostly located in the KEx-AGN region, while X-ray SFGs are mostly located in the KEx-SFG region. Almost all Type 1 AGNs lie in the KEx-AGN region. These tests support the reliability of this classification diagram for emission line galaxies at intermediate redshift. At z ∼ 2, the demarcation line between SFGs and AGNs is shifted by ∼0.3 dex toward higher values of σ [O III] due to evolution effects.

  12. Tomography feasibility study on the optical emission spectroscopy diagnostic for the negative ion source of the ELISE test facility

    International Nuclear Information System (INIS)

    Bonomo, F; Agostini, M; Brombin, M; Pasqualotto, R; Fantz, U; Franzen, P; Wünderlich, D

    2014-01-01

    A feasibility study of a spectroscopic tomographic diagnostic for the emissivity reconstruction of the plasma parameters in the large negative ion source of the test facility ELISE is described. Tomographic tools are developed to be applied to the measurements of the ELISE optical emission spectroscopy (OES) diagnostic, in order to reconstruct the emissivity distribution from hydrogen (or deuterium) plasma close to the plasma grid, where negative ions are produced and extracted to be accelerated. Various emissivity phantoms, both symmetric and asymmetric, reproducing different plasma experimental conditions have been simulated to test the tomographic algorithm. The simultaneous algebraic reconstruction technique has been applied, accounting for the OES geometrical layout together with a suitable pixel representation. Even with a limited number of 14 lines of sight (LoSs), the plasma emissivity distribution expected on the ELISE source can be successfully reconstructed. In particular, asymmetries in the emissivity pattern can be detected and reproduced with low errors. A systematic investigation of different geometrical layouts of the LoSs as well as of the pixel arrangements has been carried out, and a final configuration has been identified. Noise on the simulated experimental spectroscopic measurements has been tested, confirming the reliability of the adopted tomographic tools for the plasma emissivity reconstructions of the source plasma in ELISE with the actual OES diagnostic system. (paper)

  13. Slow wave cyclotron maser

    International Nuclear Information System (INIS)

    Kho, T.H.; Lin, A.T.

    1988-01-01

    Cyclotron masers such as Gyrotrons and the Autoresonance Masers, are fast wave devices: the electromagnetic wave's phase velocity v rho , is greater than the electron beam velocity, v b . To be able to convert the beam kinetic energy into radiation in these devices the beam must have an initial transverse momentum, usually obtained by propagating the beam through a transverse wiggler magnet, or along a nonuniform guide magnetic field before entry into the interaction region. Either process introduces a significant amount of thermal spread in the beam which degrades the performance of the maser. However, if the wave phase velocity v rho v b , the beam kinetic energy can be converted directly into radiation without the requirement of an initial transverse beam momentum, making a slow wave cyclotron maser a potentially simpler and more compact device. The authors present the linear and nonlinear physics of the slow wave cyclotron maser and examine its potential for practical application

  14. The Medical Cyclotron Facility in RMC, Parel, BARC

    International Nuclear Information System (INIS)

    Gopalakrishna, Arjun; Banerjee, Sharmila

    2017-01-01

    The Medical Cyclotron Facility in Radiation Medicine Centre (RMC) is the first one of its kind, installed in 2002. "1"8F based radiotracers are produced in this facility on a routine basis for Positron Emission Tomography (PET), of in-house patients, as well as for supply to other nuclear medicine centers in Mumbai as well as Pune. The facility consists of the following sub parts - Cyclotron and support equipment; Radiochemistry synthesis laboratory; Quality control (QC) laboratory

  15. Cyclotron to Oslo University

    International Nuclear Information System (INIS)

    Sandstad, J.

    1978-01-01

    The new cyclotron was delivered to Oslo University on September 21st 1978, and was mannfactured by A/B Scandtronix of Uppsala, Sweden. The contract price was 6,8 million Norwegian kroner and installation will cost a further 4 million. The main specifications are given. The energy will be 36 MeV for protons and alpha particles, 18 MeV deuterons and 48 MeV for helium 3. The principle of a cyclotron is briefly described. While the primary purpose of the machine is nuclear research it is also planned to produce short-lived radioisotopes, primarily iodine 123. (JIW)

  16. How cyclotrons work

    International Nuclear Information System (INIS)

    Nolan, D.

    1992-01-01

    The operating principles of a cyclic accelerator are presented based on the IBA Cyclone 30 negative ion cyclotron, selected for the Australia's first medical cyclotron. Its main features are: acceleration with variable energy of between 15-30 million electron volts, the capability of extracting two beams simultaneously, low power consumption, easy maintenance. Other aspects not directly related to the principle of operation discussed include the vacuum and the radio-frequency systems as well as the complex computerized control system used to automatically control start-up and shut-down operations. ills

  17. Ramifide resonators for cyclotrons

    International Nuclear Information System (INIS)

    Smirnov, Yu.V.

    2000-01-01

    The resonators with the conductors ramified form for cyclotrons are systematized and separated into the self-contained class - the ramified resonators for cyclotrons (Carr). The ramified resonators are compared with the quarter-wave and half-wave nonramified resonators, accomplished from the transmitting lines fragments. The CRR are classified into two types: ones with the additional structural element, switched in parallel and in series. The CRR may include several additional structural elements. The CRR calculations may be concluded by analytical methods - the method of matrix calculation or the method of telegraph equations and numerical methods - by means of the ISFEL3D, MAFIA and other programs [ru

  18. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    Directory of Open Access Journals (Sweden)

    Yongzhi Qu

    2014-01-01

    Full Text Available In recent years, acoustic emission (AE sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  19. Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors--a comparative study.

    Science.gov (United States)

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-14

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  20. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    Science.gov (United States)

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-01

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467

  1. Diagnostics of helium plasma by collisional-radiative modeling and optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonwook; Kwon, Duck-Hee [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Optical diagnostics for the electron temperature (T{sub e}) and the electron density (n{sub e}) of fusion plasma is important for understanding and controlling the edge and the divertor plasmas in tokamak. Since the line intensity ratio method using the collisional-radiative modeling and OES (optical emission spectroscopy) is simple and does not disturb the plasma, many fusion devices with TEXTOR, JET, JT-60U, LHD, and so on, have employed the line intensity ratio method as a basic diagnostic tool for neutral helium (He I). The accuracy of the line intensity ratio method depends on the reliability of the cross sections and rate coefficients. We performed state-of-the-art R-matrix calculations including couplings up to n=7 states and the distorted wave (DW) calculations for the electron-impact excitation (EIE) cross sections of He I using the flexible atomic code (FAC). The collisional-radiative model for He I was constructed using the calculated the cross sections. The helium collisional-radiative model for He I was constructed to diagnose the electron temperature and the electron density of the plasma. The electron temperature and density were determined by using the line intensity ratio method.

  2. Diagnostic accuracy of fluorine-18-fluorodeoxyglucose positron emission tomography in gallbladder cancer: A meta-analysis.

    Science.gov (United States)

    Annunziata, Salvatore; Pizzuto, Daniele Antonio; Caldarella, Carmelo; Galiandro, Federica; Sadeghi, Ramin; Treglia, Giorgio

    2015-10-28

    To meta-analyze published data about the diagnostic accuracy of fluorine-18-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (PET/CT) in the evaluation of primary tumor in patients with gallbladder cancer (GBCa). A comprehensive literature search of studies published through 30(th) June 2014 regarding the role of (18)F-FDG PET and PET/CT in the evaluation of primary gallbladder cancer (GBCa) was performed. All retrieved studies were reviewed. Pooled sensitivity and specificity of (18)F-FDG PET or PET/CT in the evaluation of primary GBCa were calculated. The area under the summary receiving operator characteristics curve (AUC) was calculated to measure the accuracy of these methods. Sub-analyses considering the device used (PET vs PET/CT) were carried out. Twenty-one studies comprising 495 patients who underwent (18)F-FDG PET or PET/CT for suspicious GBCa were selected for the systematic review. The meta-analysis of 13 selected studies provided the following results: sensitivity 87% (95%CI: 82%-92%), specificity 78% (95%CI: 68%-86%). The AUC was 0.88. Improvement of sensitivity and specificity was observed when PET/CT was used. (18)F-FDG-PET and PET/CT demonstrated to be useful diagnostic imaging methods in the assessment of primary tumor in GBCa patients, nevertheless possible sources of false-negative and false-positive results should be kept in mind. PET/CT seems to have a better diagnostic accuracy than PET alone in this setting.

  3. Diagnostics of Polymer Composite Materials and Analysis of Their Production Technology by Using the Method of Acoustic Emission

    Science.gov (United States)

    Bashkov, O. V.; Protsenko, A. E.; Bryanskii, A. A.; Romashko, R. V.

    2017-09-01

    The strength properties of glass-fiber-reinforced plastics produced by vacuum and vacuum autoclave molding techniques are studied. Based on acoustic emission data, a method of diagnostic and prediction of the bearing capacity of polymer composite materials by using data from three-point bending tests is developed. The method is based on evaluating changes in the exponent of a power function relating the total acoustic emission to the test stress.

  4. Radiation protection of cyclotron vault with maze in PET Cyclotron Center

    International Nuclear Information System (INIS)

    Fueloep, Marko

    2003-01-01

    The PET Cyclotron center (PCC) is a complex for production, research and application of positron radiopharmaceuticals for PET (Positron Emission Tomography), which was commissioned this year (2004) in Bratislava, Slovak Republic. Positron radionuclides are produced by 18/9 MeV proton/deuteron cyclotron CYCLONE 18/9. Radiation protection of personnel and inhabitants against ionizing radiation in the PCC is solved with regard to the ICRP recommendations and Slovak regulatory system, protection rules and criteria and optimization of radiation protection. In the article comparisons of calculated and measured neutron and gamma dose equivalent rates around the CYCLONE 18/9 and at various points behind the shielding of cyclotron vault with maze are presented. Description of the CYCLONE 18/9 as a source of angular distribution of neutron energy spectra (production of 18 F was considered) was simulated by Monte Carlo code MCNPX. Code MCNP4B was used for shielding calculation of cyclotron vault with maze. Neutron energy spectra behind the shielding were measured by Bonner spectrometer. The values of neutron dose equivalent, which were calculated and measured around the CYCLONE 18/9 and at various points behind the shielding of cyclotron vault with maze, are within the range of factor 2. (authors)

  5. Development of HM12 cyclotron for PET

    International Nuclear Information System (INIS)

    Morita, Takuzo; Kawama, Tetsuo; Fujii, Kazuo

    2000-01-01

    In Japan, there are at present more than 30 PET (Positron Emission Tomography) facilities. The movements of medical insurance application to the PET diagnosis using [ 18 F] FDG (2-[ 18 F]-fluoro-2-deoxy-glucose) by the Ministry of Health and Welfare are being enhanced by PET related people. Therefore, more clinical centers using PET system are expected to be built in the near future. HM12 cyclotron was developed to meet such market demands for PET, and the prototype machine has been rent to Cyclotron Radio Isotope Center (CYRIC) of Tohoku University since Oct. 1998 for their use of clinical research with positron emitters like 11 C, 13 N, 15 O and 18 F. We got many technical data of HM12 Cyclotron on the clinical base. The data was enough to establish the reliability of HM12 system operation under the clinical condition. The first commercial product of HM12 Cyclotron was delivered to National Cancer Center in March 2000. The final performance test will be finished by the end of June 2000. (author)

  6. Emergency situation in a medical cyclotron facility

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Bhat, M.K.; Singh, D.K.; Pthania, B.S.; Pandit, A.G.; Jacob, M.J.

    2010-01-01

    Full text: Medical cyclotron is a particle accelerator used in producing short lived radioisotopes such as 18 F, 11 C, 15 O, 13 N, 18 F-2 gas etc. Positron Emission Tomography (PET) is a nuclear imaging modality that has rapidly gained favour. 18 F-FDG is the most widely used radiopharmaceutical with a half-life of 109.8 min. Having more than five years experience in this field we face lots of emergency conditions in the medical cyclotron facility. On the basis of harm we have divided in to three categories i.e. Harm of (a) working personnel, (b) Equipment and (c) environment. Radioactive gas leak and Target foil rupture is considered as the major emergency situations during medical cyclotron operations because there is a potential of over exposure to the working personnel. Radiation protection survey of a self-shielded medical cyclotron installation was carried out during normal and emergency conditions. It is found that the induced activity in the target foil increases with its successive usages. Recommendations have also been made to reduce personal exposure while handling the radioactive gas leak and target foil rupture conditions

  7. Electron-Cyclotron Waves

    NARCIS (Netherlands)

    Westerhof, E.

    1994-01-01

    The essential elements of the theory of electron cyclotron waves are reviewed, The two main electro-magnetic modes of propagation are identified and their dispersion and absorption properties are discussed. The importance of the use of the relativistic resonance condition is stressed.

  8. Biomedical cyclotron facility

    International Nuclear Information System (INIS)

    MacDonald, N.S.; Birdsall, R.; Takahaski, J.; McConnel, L.; Wood, R.; Wakakuwa, S.

    1976-01-01

    During the fifth year of operation the mechanical performance of the cyclotron and accessory equipment was excellent. Major items put into operation were a small computer system interfaced with Ge-Li gamma spectrometer and a pneumatic-tube system for fast delivery of short-lived radionuclides. A table is presented listing the radionuclides produced

  9. Development of baby cyclotron for PET in Korea

    International Nuclear Information System (INIS)

    Chai, J.S.; Kim, Y.S.; Hu, J.Y.; Shin, Y.C.; Yoon, M.H.

    2001-01-01

    Development of a 13 MeV cyclotron for Positron Emission Tomography (PET) has been in progress since April 1999 at the Korea Cancer Center Hospital (KCCH). The study has been carried out in a joint collaboration between KCCH and the Pohang University of Science and Technology (POSTECH). Increasing desire for an uninterrupted, reliable and timely supply of the isotopes to customers has prompted obtaining a dedicated 5-13 MeV cyclotron for PET applications and pursuing the purchase of another 30MeV medical cyclotron in the very near future. A decision has been made to design the PET cyclotron in Korea. This will not only ease the problems associated with maintenance during operation but also keep the door open for continuous upgrading of the machine in the future

  10. Neutron field inside a PET Cyclotron vault room

    International Nuclear Information System (INIS)

    Vega C, H.R.; Mendez, R.; Iniguez, M.P.; Climent, J.M.; Penuelas, I.; Barquero, R.

    2006-01-01

    The neutron field around a Positron Emission Tomography cyclotron was investigated during 18 F radioisotope production with an 18 MeV proton beam. In this study the Ion Beam Application cyclotron, model Cyclone 18/9, was utilized. Measurements were carried out with a Bonner sphere neutron spectrometer with pairs of thermoluminescent dosemeters (TLD600 and TLD700) as thermal neutron detector. The TLDs readouts were utilized to unfold the neutron spectra at three different positions inside the cyclotron's vault room. With the spectra the Ambient dose equivalent was calculated. Neutron spectra unfolding were performed with the BUNKIUT code and the UTA4 response matrix. Neutron spectra were also determined by Monte Carlo calculations using a detailed model of cyclotron and vault room. (Author)

  11. Commercial cyclotrons. Part I: Commercial cyclotrons in the energy range 10 30 MeV for isotope production

    Science.gov (United States)

    Papash, A. I.; Alenitsky, Yu. G.

    2008-07-01

    A survey of commercial cyclotrons for production of medical and industrial isotopes is presented. Compact isochronous cyclotrons which accelerate negative hydrogen ions in the energy range 10 30 MeV have been widely used over the last 25 years for production of medical isotopes and other applications. Different cyclotron models for the energy range 10 12 MeV with moderate beam intensity are used for production of 11C, 13N, 15O, and 18F isotopes widely applied in positron emission tomography. Commercial cyclotrons with high beam intensity are available on the market for production of most medical and industrial isotopes. In this work, the physical and technical parameters of different models are compared. Possibilities of improving performance and increasing intensity of H- beams up to 2 3 mA are discussed.

  12. Goodbye Synchro-Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-12-15

    On 17 December, after having seen many other physics machines come and go during its 33-year career, CERN's 600 MeV SynchroCyclotron (SC) is being shut down. Judged simply by its length (to say nothing of its quality), the research career of this machine testifies to the wisdom and imagination of the CERN pioneers who proposed it in the early 1950s.

  13. Goodbye Synchro-Cyclotron

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    On 17 December, after having seen many other physics machines come and go during its 33-year career, CERN's 600 MeV SynchroCyclotron (SC) is being shut down. Judged simply by its length (to say nothing of its quality), the research career of this machine testifies to the wisdom and imagination of the CERN pioneers who proposed it in the early 1950s

  14. Cyclotrons in developing countries

    International Nuclear Information System (INIS)

    Vera Ruiz, Hernan

    2004-01-01

    Cyclotron accelerators are prolific sources of charged particle for the production of radionuclides and have become an essential tool in the practice of modern nuclear medicine by providing reliable radiotracers for SPECT and PET studies. In a recent survey conducted by the IAEA in 2001, the growth in the number of cyclotron facilities installed in laboratories and hospitals in developed as well as developing countries was recorded. This trend, which started in the late 70's, continues in the present time also and all indications are that it will continue in the next five to ten years. The reasons for this growth are several: technology involved has become more user or 'hospital friendly', third party reimbursement for several clinical studies based on F-18 PET radiopharmaceuticals at least in some of the advanced countries started in 1998 and above all, the clear irrefutable and demonstrable conclusion of the positive cost/benefit outcomes of PET studies in the field of oncology to a lesser degree, thus far, for cardiology and neurology. It is however recognizable that the overall financial cost of the technology, which comprises the premises to house the facility, the cyclotron accelerator, the corresponding radiochemistry and quality control equipment and the PET cameras can be nevertheless an expensive proposition that requires careful advance planning. This fact is even more relevant when the facility is planned for installation in a developing country, which, frequently, in addition to having a lack of sufficient financial resources, do have shortage of qualified human resources to efficiently run the facility. In spite of the above, it is fact that more and more public as well as private organizations in the developing countries are setting up cyclotron/PET programmes or are seriously considering the installation of such a facility

  15. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    Science.gov (United States)

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D α . The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  16. 13. TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    International Nuclear Information System (INIS)

    Barnes, C.

    2000-01-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. ω pe >> (Omega) ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K i . This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B 0 ∼ 2 kG, e > ∼ 10 13 cm -3 and T e ∼ 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤ T e and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T e . Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ω pe >> (Omega) ce

  17. Electron Bernstein wave electron temperature profile diagnostic (invited)

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.; Jones, B.; Munsat, T.; Spaleta, J.; Hosea, J.; Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either ''overdense,'' operating at high density relative to the magnetic field (e.g., ω pe >>Omega ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ>2). Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers as a result of their large k perp . In this article we report on measurements of EBW emission on the CDX-U spherical torus, where B 0 ∼2kG, e >∼10 13 cm -3 and T e ∼10--200eV. Results are presented for electromagnetic measurements of EBW emission, mode converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multipoint Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤T e and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in the edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ω pe >>Omega ce

  18. Startup work on Inshas cyclotron

    International Nuclear Information System (INIS)

    Vorogushin, M.F.; Strokach, A.P.; Shikhov, V.Ya.; Galchuk, A.V.; Soliman, A.N.; El-Abyad, M.; Comsan, M.N.H.; Saleh, Z.A.; Azzam, A.N.

    2001-01-01

    Startup works on the MGC-20 variable energy cyclotron in the Inshas Nuclear Research Center (Egypt) are described. The cyclotron is intended for acceleration of hydrogen and helium ions in a wide energy range (for protons - from 5 to 20 MeV). Main units of the cyclotron and results of computer experimental acceleration of protons to 18 MeV are described. The prospects of furthers investigations are presented [ru

  19. Optical emission spectroscopy diagnostics of an atmospheric pressure direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Sismanoglu, B.N., E-mail: bogos@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Amorim, J., E-mail: jayr.amorim@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Souza-Correa, J.A., E-mail: jorge.correa@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Oliveira, C., E-mail: carlosf@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Gomes, M.P., E-mail: gomesmp@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil)

    2009-11-15

    This paper is about the use of optical emission spectroscopy as a diagnostic tool to determine the gas discharge parameters of a direct current (98% Ar-2% H{sub 2}) non-thermal microplasma jet, operated at atmospheric pressure. The electrical and optical behaviors were studied to characterize this glow discharge. The microplasma jet was investigated in the normal and abnormal glow regimes, for current ranging from 10 to 130 mA, at approx 220 V of applied voltage for copper cathode. OH (A {sup 2}SIGMA{sup +}, nu = 0 -> X {sup 2}PI, nu' = 0) rotational bands at 306.357 nm and also the 603.213 nm Ar I line, which is sensitive to van der Waals broadening, were used to determine the gas temperature, which ranges from 550 to 800 K. The electron number densities, ranging from 6.0 x 10{sup 14} to 1.4 x 10{sup 15} cm{sup -3}, were determined through a careful analysis of the main broadening mechanisms of the H{sub beta} line. From both 603.213 nm and 565.070 nm Ar I line broadenings, it was possible to obtain simultaneously electron number density and temperature (approx 8000 K). Excitation temperatures were also measured from two methods: from two Cu I lines and from Boltzmann-plot of 4p-4s and 5p-4s Ar I transitions. By employing H{sub alpha} line, the hydrogen atoms' H temperature was estimated (approx 18,000 K) and found to be surprisingly hotter than the excitation temperature.

  20. A mobile superconducting cyclotron for PET and neutron radiography

    International Nuclear Information System (INIS)

    Griffiths, R.

    1988-01-01

    The report addresses the development of a mobile superconducting cyclotron for PET (positron emission tomography) and neutron radiography. Proposals for an ultralight cyclotron were made by Finlan et al., who suggested a novel technique of utilising a superconducting magnet with RF acceleration and iron sectors contained within the room temperature bore of the magnet. Detailed design of a cyclotron based on this concept has progressed well at Oxford Instruments. The main design priorities were to minimise the weight and power consumption of the cyclotron. The cyclotron required a large amount of shielding to reduce either radiation background levels or stray magnetic field. Thus low background levels of radiation and magnetic field are key design criteria. The superconducting magnet has a mean field of 2.35 Tesla and a room temperature bore diameter of 500 mm. Three pairs of profiled iron sectors placed in the center of the warm bore of the magnet provide an azimuthally varying magnetic field. This permits the use of high beam currents with low background. A novel technique is incorporated to reduce the stray magnetic field and radiation from the cyclotron. The RF system consists of three pairs of resonators mounted within the warm bore of the magnet between the iron sectors. (Nogami, K.)

  1. Ion source and injection line for high intensity medical cyclotron

    Science.gov (United States)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  2. Lesson of the month 1: Large vessel vasculitis - a diagnostic challenge and the role of 18-fluorodeoxyglucose positron emission tomography.

    Science.gov (United States)

    Allard, Andrew; Mootoo, Ramesh

    2017-07-01

    Large vessel vasculitis can pose a significant diagnostic challenge. It may be insidious in onset with the only presenting symptoms consisting of constitutional compromise. It may mimic other pathologies and the only serological abnormalities may be abnormal inflammatory markers. Conventional imaging modalities may not be diagnostic. We present a case of large vessel vasculitis that proved a significant diagnostic challenge with diagnosis established on 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) computerised tomography (CT) imaging. This is one of five cases of large vessel vasculitis that were diagnosed in the rheumatology department at our trust over a 12-month period with diagnosis established with the use of 18F-FDG PET CT. We discuss the advantages of 18F-FDG PET CT over more conventional imaging modalities in diagnosing large vessel vasculitis. © Royal College of Physicians 2017. All rights reserved.

  3. Isotope separation by ionic cyclotron resonance

    International Nuclear Information System (INIS)

    Compant La Fontaine, A.; Gil, C.; Louvet, P.

    1986-10-01

    The principle of the process of isotopic separation by ionic cyclotron resonance is explained succinctly. The theoretical calculation of the isotopic effect is given as functions of the electric and magnetic fields in the frame of single particle approximation and of plasma collective theory. Then, the main parts of the demonstration device which is in operation at the CEA, are described here: the supraconducting magnetic field, the used diagnostics, the principle of the source and the collecting apparatus. Some experimental results are given for chromium. The application of the process to ponderal separation of metal isotopes, as chromium, nickel and molybdenum is discussed in view of production of medical, structural and irradiation isotopes

  4. Ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Tajima, T.

    1982-01-01

    Ion cyclotron resonance heating of plasmas in tokamak and EBT configurations has been studied using 1-2/2 and 2-1/2 dimensional fully self-consistent electromagnetic particle codes. We have tested two major antenna configurations; we have also compared heating efficiencies for one and two ion species plasmas. We model a tokamak plasma with a uniform poloidal field and 1/R toroidal field on a particular q surface. Ion cyclotron waves are excited on the low field side by antennas parallel either to the poloidal direction or to the toroidal direction with different phase velocities. In 2D, minority ion heating (vsub(perpendicular)) and electron heating (vsub(parallel),vsub(perpendicular)) are observed. The exponential electron heating seems due to the decay instability. The minority heating is consistent with mode conversion of fast Alfven waves and heating by electrostatic ion cyclotron modes. Minority heating is stronger with a poloidal antenna. The strong electron heating is accompanied by toroidal current generation. In 1D, no thermal instability was observed and only strong minority heating resulted. For an EBT plasma we model it by a multiple mirror. We have tested heating efficiency with various minority concentrations, temperatures, mirror ratios, and phase velocities. In this geometry we have beach or inverse beach heating associated with the mode conversion layer perpendicular to the toroidal field. No appreciable electron heating is observed. Heating of ions is linear in time. For both tokamak and EBT slight majority heating above the collisional rate is observed due to the second harmonic heating. (author)

  5. Use of maze in cyclotron hoppers

    International Nuclear Information System (INIS)

    Fernandes, Fernando A.; Alves, Juliano S.; Fochesatto, Cintia; Cerioli, Luciane; Borges, Joao Alfredo; Gonzalez, Delfin; Silva, Daniel C.

    2013-01-01

    Introduction: the increasing number of cyclotrons in Brazil due to constitutional amendment 49 /06 that enabled the production of radiopharmaceuticals with a short half - life by private companies. The radionuclides used for PET - CT require production centers near or within the diagnostic centers. In order to minimize maintenance and operating risks, gaining efficiency, our facility was the first in Brazil to use the access to a cyclotron bunker via maze, rather than armored door stopper type. Materials: the design calculations were based on the Monte Carlo method (MCNP5 - Monte Carlo N-Particletransportcode version 5). At the ends of the labyrinth are installed a door of polyethylene, for thermalization of neutrons, and other of wood for limiting access. Both legs of the maze have wall thickness of 100cm. In inspection Brazilian CNEN realize measures of dose rate for neutrons and gamma 9 points: 7 around the bunker, 1 over the bunker and 1 in the exhaust with the cyclotron operating with maximum load, double beam of 50uA for 2 hours. After commissioning were carried out around the bunker, the following measures: cumulative dose in three months with dosimeters for neutron rate dose with a gas proportional detector type filled with 3 He and polyethylene neutron moderator and dose rate with a Geiger - Mueller detector for gamma radiation. Readings with neutron detectors were classified as background radiation and dose rates were always below the limits established in standard EN 3.01, and the calculation of the predicted regardless of the intensity of irradiation inside the bunker. Conclusion: the use of labyrinths as a way to access the bunkers cyclotron has been shown to be effective as the radiation shielding and efficient by allowing quick and easy access, virtually eliminating the maintenance

  6. Solid targetry for compact cyclotrons

    International Nuclear Information System (INIS)

    Comor, J.

    2004-01-01

    In this presentation authors present experimental results of solid targetry for compact cyclotrons. It is concluded: Solid targetry is not restricted to large accelerator centers anymore; Small and medium scale radioisotope production is feasible with compact cyclotrons; The availability of versatile solid target systems is expected to boost the radiochemistry of 'exotic' positron emitters

  7. Status report on cyclotron operation

    International Nuclear Information System (INIS)

    Kovacs, P.; Szuecs, I.; Ander, I.; Lakatos, T.; Fenyvesi, A.; Ditroi, F.; Takacs, S.; Tarkanyi, F.

    2004-01-01

    The operation of the cyclotron in 2003 was again concentrated to 9 months; January, July and August were reserved for maintenance, renewal works and holidays. The overall working time of the accelerator was 4051 hours. The cyclotron was available for users for 3682 hours. In order to improve the circumstances of the irradiations renewal and improvements were done. (N.T.)

  8. Estimation of edge electron temperature profiles via forward modelling of the electron cyclotron radiation transport at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Rathgeber, S K; Barrera, L; Eich, T; Fischer, R; Suttrop, W; Wolfrum, E; Nold, B; Willensdorfer, M

    2013-01-01

    We present a method to obtain reliable edge profiles of the electron temperature by forward modelling of the electron cyclotron radiation transport. While for the core of ASDEX Upgrade plasmas, straightforward analysis of electron cyclotron intensity measurements based on the optically thick plasma approximation is usually justified, reasonable analysis of the steep and optically thin plasma edge needs to consider broadened emission and absorption profiles and radiation transport processes. This is carried out in the framework of integrated data analysis which applies Bayesian probability theory for joint analysis of the electron density and temperature with data of different interdependent and complementary diagnostics. By this means, electron cyclotron radiation intensity delivers highly spatially resolved electron temperature data for the plasma edge. In H-mode, the edge gradient of the electron temperature can be several times higher than the one of the radiation temperature. Furthermore, we are able to reproduce the ‘shine-through’ peak—the observation of increased radiation temperatures at frequencies resonant in the optically thin scrape-off layer. This phenomenon is caused by strongly down-shifted radiation of Maxwellian tail electrons located in the H-mode edge region and, therefore, contains valuable information about the electron temperature edge gradient. (paper)

  9. A compact cost-effective beamline for a PET Cyclotron

    International Nuclear Information System (INIS)

    Dehnel, M.P.; Jackle, P.; Roeder, M.; Stewart, T.; Theroux, J.; Brasile, J.P.; Sirot, P.; Buckley, K.R.; Bedue, M.

    2007-01-01

    Most commercial PET Cyclotrons have targets mounted on or near the main cyclotron vacuum chamber. There is often little or no system capability for centering or focusing the extracted beam on target to achieve maximum production. This paper describes the ion-optics, design and development of a compact cost-effective beamline comprised of low activation and radiation resistant materials. The beamline, complete with suitable diagnostic devices, permits the extracted proton beam to be centered (X-Y steering magnet), and focused (quadrupole doublet) on target eliminating unnecessary beamspill and ensuring high production

  10. JSW's baby cyclotron

    International Nuclear Information System (INIS)

    Toda, Y.; Kaneda, Y.; Satoh, Y.; Suzukawa, I.; Yamada, T.

    1983-01-01

    Designed by The Japan Steel Works, Ltd., specially for installation in a hospital's medical department and nuclear research laboratory, '' JSW BABY CYCLOTRON '' has been developed to produce short-lived radioisotopes such as 11C, 13N, 15O and 18F. JSW's Baby Cyclotron has some design features. 1) Fixed energy and four sector azimuthally varying field. 2) Compact figure desired for hospital's nuclear medical department 3) A bitter type magnet yoke shielding activity 4) Simple control and operation 5) Easy maintenance without skilled personnel. Type BC105 (P:10MeV, d:5MeV), BC107 (P:10MeV, d:7MeV), BC168 (P:16MeV, d:8MeV) and BC1710 (P:17MeV, d:10MeV) are available according to required amount of radioisotopes. In our radioisotope production test, yield and purity of 11C, 13N, 15O and 18F are usable to clinical diagnosis

  11. Cyclotron produced radiopharmaceuticals

    International Nuclear Information System (INIS)

    Kopicka, K.; Fiser, M.; Hradilek, P.; Hanc, P.; Lebeda, O.

    2003-01-01

    Some of the cyclotron-produced radionuclides may serve as important materials for the production of radiopharmaceuticals. This lecture deals with basic information relating to various aspects of these compounds. In comparison with radionuclides /compounds used for non-medical purposes, radiopharmaceuticals are subject to a broader scale of regulations, both from the safety and efficacy point of view; besides that, there are both radioactive and medical aspects that must be taken into account for any radiopharmaceutical. According to the regulations and in compliance with general rules of work with radioactivity, radiopharmaceuticals should only be prepared/manufactured under special conditions, using special areas and special equipment and applying special procedures (e.g. sterilisation, disinfection, aseptic work). Also, there are special procedures for cleaning and maintenance. Sometimes the requirements for the product safety clash with those for the safety of the personnel; several examples of solutions pertaining to these cases are given in the lecture. Also, the specific role of cyclotron radiopharmaceuticals is discussed. (author)

  12. On 'conflict of conservation laws in cyclotron radiation'

    International Nuclear Information System (INIS)

    DasGupta, P.

    1984-01-01

    It is shown that conservation of energy, linear momentum and angular momentum are all compatible with each other in the case of an electron undergoing cyclotron emission in a uniform and constant magnetic field. The flaw in the argument of previous workers claiming the incompatibility of the conservation principles is also pointed out. (author)

  13. Status of Chandigarh variable energy cyclotron and present experimental programmes

    International Nuclear Information System (INIS)

    Govil, I.M.

    2005-01-01

    The paper describes the status report of the Chandigarh variable energy cyclotron and some of the recent modifications which has improved the stability and performance of the machine considerably. The machine is now used for Proton Induced X-Ray Emission (PIXE) for trace element analysis along with nuclear irradiation for material science research and Nuclear Spectroscopy using (p, n γ) reaction. (author)

  14. The Cyclotron Center of the Slovak Republic

    International Nuclear Information System (INIS)

    Podhorsky, D.; Ruzicka, J.; Macasek, F.; Makaiova, I.; Saro, S.; Kristiak, J.; Fulup, M.

    2001-01-01

    The Cyclotron Center of the Slovak Republic was established at the beginning of August 1999 - within the Slovak-Office of Standards, Metrology and Testing (SOSMT), in Bratislava, Slovak Republic. It will have two cyclotrons - a large heavy and light cyclotron DC-72, which will be constructed by the Joint Institute for Nuclear Research (JINR), Dubna, Russian Federation, and a small commercial light ion cyclotron IBA 18/9. The heavy ion source of the electron resonance type (DECRS-2M) will be used for low and medium energy experiments in physics. The small electron accelerator is planned for different applications, including improving the properties of plastics, increasing the resistance of cables to fire and temperature, the sterilization of medical disposables in the CC SR. The main purpose of the Cyclotron Center of the Slovak Republic (CC SR) is to catch the present approach and trends in the area of improving of inhabitants life and health quality using the progressive technology, which is introduced by bringing into practice of the physical equipment - accelerators, producing beams of high energy particles. Experts of nuclear physics and of the related branches have no experimental basis in Slovakia, as after dissolution of the former the Czech and Slovak Federal Republic all bigger nuclear equipment were left in the Czech Republic. The Slovak Republic is one of the European countries where cancer and cardiovascular diseases have a rapidly increasing tendency (the rate of new oncological cases is approximately 20,000/year at the population of 5 million inhabitants) - early diagnostics of population is necessary to be updated urgently. The Slovak Republic use a great part of electricity (about 60 %) from its own nuclear power stations and thus it is in need of education of rising generations of experts from different nuclear fields. The Government of the Slovak republic on June 18, 1996 approved the strategic aim of building up the Cyclotron Laboratory at the

  15. Thermal effects on the cyclotron line formation process in X-ray pulsars

    International Nuclear Information System (INIS)

    Kirk, J.G.; Meszaros, P.

    1980-01-01

    We derive expressions for the scattering and absorption cross sections in a hot plasma including the effects of vacuum polarisation. These expressions are then used in a radiative transfer calculation for frequencies in the neighbourhood of the cyclotron resonance using a simplified model atmosphere for accreting magnetised X-ray pulsars. Cyclotron emission and absorption line model fits are discussed, the conclusion being that an emission line interpretation appears at this stage more likely. (orig.)

  16. Applied research with cyclotrons

    International Nuclear Information System (INIS)

    Apel, P.; Dmitriev, S.; Gulbekian, G.; Gikal, B.; Ivanov, O.; Reutov, V.; Skuratov, V.

    2005-01-01

    During the past three decades the Flerov laboratory carried out research and development of a number of applications that have found or may find use in modern technologies. One of the applications is the so-called ion track technology enabling us to create micro- and nano-structured materials. Accelerated heavy ion beams are the unique tools for structuring insulating solids in a controllable manner. At FLNR JINR the U-400 cyclotron and the IC-100 cyclotron are employed for irradiation of materials to be modified by the track-etch technique. For practical applications, U-400 delivers the 86 Kr ion beams with total energies of 250, 350, 430 and 750 MeV, and the 136 Xe ion beams with the energy of 430 MeV. The cyclotron is equipped with a specialized channel for irradiation of polymer foils. IC-100 is a compact accelerator specially designed for the technological uses. High-intensity krypton ion beams with the energy of ∼ 1 MeV/u are available now at IC-100. Production of track-etch membranes is an example of mature technology based on irradiation with accelerated ions. The track-etch membranes offer distinct advantages over other types of membranes due to their precisely determined structure. One-pore, oligo-pore and multi-pore samples can serve as models for studying the transport of liquids, gases, particles, solutes, and electrolytes in narrow channels. Track-etch pores are also used as templates for making nano wires, nano tubes or array of nano rods. The microstructures obtained this way may find use in miniaturized devices such as sensors for biologically important molecules. Bulk and surface modification for the production of new composites and materials with special optical properties can be performed with ion beams. Flexible printed circuits, high-performance heat transfer modules, X-ray filters, and protective signs are examples of products developed in collaboration with research and industrial partners. Some recent achievements and promising ideas that

  17. EMISSION SIGNATURES FROM SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES. I. DIAGNOSTIC POWER OF BROAD EMISSION LINES

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Khai; Bogdanović, Tamara [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta GA 30332 (United States)

    2016-09-10

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.

  18. EMISSION SIGNATURES FROM SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES. I. DIAGNOSTIC POWER OF BROAD EMISSION LINES

    International Nuclear Information System (INIS)

    Nguyen, Khai; Bogdanović, Tamara

    2016-01-01

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.

  19. Isochronous cyclotron data base description

    International Nuclear Information System (INIS)

    Kiyan, I.N.; Vorozhtsov, S.B.; Tarashkevich, R.

    2004-01-01

    The relational data base of the control parameters of the isochronous cyclotron, Isochronous Cyclotron Data Base (ICDB), is described. The relational data base under consideration, written in Transact SQL for the MS SQL Server 2000 with the use of MS Enterprise Manager and MS Query Analyzer, was installed on the server of the AIC144 isochronous cyclotron in Krakow, which operates under the control of the operating system MS Windows Server 2003 (Standard Edition). The interface of the data base under considerations is written in C++ with the use of Visual C++ .NET and is built in the Cyclotron Operator Help Program (COHP), which is used for modeling the operational modes of the isochronous cyclotron. Communication between the COHP and the relational data base is realised on the base of the Open Data Base Connectivity protocol. The relational data base of the control parameter of the isochronous cyclotron is intended: firstly, for systematization and automatic use of all measured and modelled magnetic field maps in the process of modeling the operational modes; secondly, for systematization and convenient access to the stored operational modes; thirdly, for simplifying the operator's work. The relational data base of the control parameter of the isochronous cyclotron reflects its physical structure and the logic of its operator's work. (author)

  20. Mid-IR Properties of an Unbiased AGN Sample of the Local Universe. 1; Emission-Line Diagnostics

    Science.gov (United States)

    Weaver, K. A.; Melendez, M.; Muhotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth. E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; hide

    2010-01-01

    \\Ve compare mid-IR emission-lines properties, from high-resolution Spitzer IRS spectra of a statistically-complete hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 microns, [Ne II] 12.81 microns, [Ne III] 15.56 microns and [Ne V] 14.32 microns, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, although six newly discovered BAT AGNs are shown to be under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compared the mid-IR emission-lines in the BAT AGNs with those from published studies of star-forming galaxies and LINERs. We found that the BAT AGN fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] quantities. From this we found that sources that have been previously classified in the mid-infrared/optical as AGN have smaller emission line ratios than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. Overall, we present a different set of emission line diagnostics to distinguish between AGN and star forming galaxies that can be used as a tool to find new AGN.

  1. [Cyclotron based nuclear science

    International Nuclear Information System (INIS)

    1991-08-01

    This report contains descriptions of research programs carried out by Institute staff, as well as progress on new instrumentation during the period, April 1, 1990, to March 31, 1991. The K500 cyclotron and ECR source provided beam for 4140 hours during the period. The beam was actually available for experiments 1927.50 hours and 1110.50 hours was devoted to developing new beams and exploring cyclotron performance. A wide range of beams from protons to Xe with energies from 2.4 MeV/u to 60 MeV/U have been used in experiments. The highest total energy beam accelerated was 35 MeV/u 63 Cu. The ECR source, made a tremendous improvement in accelerator performance and reliability. Substantial amounts of beam time were devoted to investigations of hot nuclei, electron-positron, giant resonances, atomic effects of high velocity ion beams, astrophysics related reactions and proton and alpha bremsstrahlung. Scientific accomplishments included determination of the heat capacity of nuclei through new insight into the level densities and establishing a lower limit for electron positron resonances a factor of ten better than previous measurements. The proton spectrometer, constructed for studies of the Gamow-Teller interaction is complete, and initial physics measurements will be made in the next few months. All of the BaF 2 crystals have been delivered and acceptance tests are underway. A K=315 MDM spectrometer has been obtained from Oxford University and is scheduled for installation in Spring 1992, after removal of the K=150 Enge split pole spectrometer. Institute groups continue participation in MEGA, instrumentation projects for RHIC, and few nucleon studies at LAMPF and KEK. Reports of these activities are included

  2. Electron cyclotron waves, transport and instabilities in hot plasmas

    International Nuclear Information System (INIS)

    Westerhof, E.

    1987-01-01

    A number of topics relevant to the magnetic confinement approach to the thermonuclear fusion is addressed. The absorption and emission of electron cyclotron waves in a thermal plasma with a small population of supra-thermal, streaming electrons is examined and the properties of electron cyclotron waves in a plasma with a pure loss-cone distribution are studied. A report is given on the 1-D transport code simulations that were performed to assist the interpretation of the electron cyclotron heating experiments on the TFR tokamak. Transport code simulations of sawteeth discharges in the T-10 tokamak are discussed in order to compare the predictions of different models for the sawtooth oscillations with the experimental findings. 149 refs.; 69 figs.; 7 tabs

  3. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission

    Science.gov (United States)

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.

    2016-11-01

    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  4. Ion Cyclotron Resonance Facility (ICR)

    Data.gov (United States)

    Federal Laboratory Consortium — his facility is charged with developing and exploiting the unique capabilities of Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, and leads the...

  5. Superconducting cyclotron magnet coil short

    International Nuclear Information System (INIS)

    Mallory, M.L.; Blosser, H.G.; Clark, D.J.; Launer, H.; Lawton, D.; Miller, P.; Resmini, F.

    1982-01-01

    In February 1981, a short circuit appeared in the superconducting coil of the K500 cyclotron. The short is resistive in character and therefore has no effect on steady state operation of the magnet. The resistance of the short varies, sometimes being below threshold of detection as a heat load on the cooling system and sometimes being significant. The resistance under certain conditions shows approximately cyclic phenomena with time constants in the range of seconds and other approximately cyclic phenomena which correlate with gross operating parameters of the magnet (shifting current from one coil to another at high field and lowering and raising the liquid helium level). A number of diagnostic studies of the short have been made, using 1) an array of flux sensing loops to sense the magnetic effect of the short, 2) voltage comparisons between upper and lower sections of the coil, 3) comparisons of forces in the nine member coil support system and 4) the effect of the short on the thermal charactersitics of the coil. Insulation failure or a metal chip shorting out turns have been explored in some detail but a convincing determination of the exact cause of the short may never be available, (even the extreme step of unwinding the coil having a significant probability that an imperfection with the observed characteristics would pass unnoticed). Analysis of the characteristics of the short indicated that the most serious consequence would be failure of the coils mechanical support system in the event that the magnet was quickly discharged, as in a dump or quench. To deal with this hazard, the support system has been modified by installing solid supports which prevent the coil from moving by an amount sufficient to damage the support system. We have also reexamined the data and calculations used in the original coil design and have made some additional measurements of the properties of the materials (yield strength, friction coefficient, Young's modulus) used in the

  6. Diagnostics of the Solar Wind and Global Heliosphere with Lyman-α Emission Measurements

    Science.gov (United States)

    Provornikova, E. P.; Izmodenov, V. V.; Laming, J. M.; Strachan, L.; Wood, B. E.; Katushkina, O. A.; Ko, Y.-K.; Tun Beltran, S.; Chakrabarti, S.

    2018-02-01

    We propose to develop an instrument measuring full sky intensity maps and spectra of interplanetary Lyman-α emission to reveal the global solar wind variability and the nature of the heliosphere and the local interstellar medium.

  7. Present and future superconducting cyclotrons

    International Nuclear Information System (INIS)

    Nolen, J.A. Jr.

    1987-01-01

    This paper begins with a brief review of the status of present superconducting (SC) cyclotron projects, including the two which are currently operating and the six which are under construction. The next section summarizes the main features shared by five of these machines, while the third section presents recent developments and new concepts introduced in the other three ''second generation'' SC cyclotrons. Projects in early stages of development are discussed in the fourth section

  8. Betatron emission as a diagnostic for injection and acceleration mechanisms in laser plasma accelerators

    International Nuclear Information System (INIS)

    Corde, S; Thaury, C; Phuoc, K Ta; Lifschitz, A; Lambert, G; Lundh, O; Brijesh, P; Sebban, S; Rousse, A; Faure, J; Malka, V; Arantchuk, L

    2012-01-01

    Betatron x-ray emission in laser plasma accelerators is a promising compact source that may be an alternative to conventional x-ray sources, based on large scale machines. In addition to its potential as a source, precise measurements of betatron emission can reveal crucial information about relativistic laser–plasma interaction. We show that the emission length and the position of the x-ray emission can be obtained by placing an aperture mask close to the source, and by measuring the beam profile of the betatron x-ray radiation far from the aperture mask. The position of the x-ray emission gives information on plasma wave breaking and hence on the laser non-linear propagation. Moreover, the measurement of the longitudinal extension helps one to determine whether the acceleration is limited by pump depletion or dephasing effects. In the case of multiple injections, it is used to retrieve unambiguously the position in the plasma of each injection. This technique is also used to study how, in a capillary discharge, the variations of the delay between the discharge and the laser pulse affect the interaction. The study reveals that, for a delay appropriate for laser guiding, the x-ray emission only occurs in the second half of the capillary: no electrons are injected and accelerated in the first half. (paper)

  9. Injection and extraction for cyclotrons

    International Nuclear Information System (INIS)

    Heikkinen, P.

    1994-01-01

    External ion sources for cyclotrons are needed for polarised and heavy ions. This calls for injection systems, either radial or axial. Radial injection is also needed when a cyclotron works as a booster after another cyclotron or a linear accelerator (usually tandem). Requirements for injection differ from separated sector cyclotrons where there is plenty of room to house inflectors and/or strippers, to superconducting cyclotrons where the space is limited by a small magnet gap, and high magnetic field puts other limitations to the inflectors. Several extraction schemes are used in cyclotrons. Stripping injection is used for H - and also for heavy ions where the q/m ratio is usually doubled. For other cases, electric and magnetic deflection has to be used. To increase the turn separation before the first deflector, both resonant and non-resonant schemes are used. In this lecture, external injection systems are surveyed and some rules to thumb for injection parameters are given. Extraction schemes are also reviewed. (orig.)

  10. Report on the 1st research co-ordination meeting of the co-ordinated research project on standardized high current solid targets for cyclotron production of diagnostic and therapeutic radionuclides

    International Nuclear Information System (INIS)

    2000-01-01

    Radioisotopes produced with a cyclotron and their corresponding radiopharmaceuticals have already been shown to be extremely valuable in basic medical research, disease diagnosis and radiotherapy treatment. There are more than 200 cyclotron facilities worldwide and the number is growing every year. A number of the Member States have acquired cyclotrons for the purpose of producing radioisotopes for nuclear medicine and a number of others have expressed an interest in acquiring such facilities. This report is concerned with the production of four radiotracers: Iodine-123, Iodine-124, Thallium-201 and Palladium-103. Iodine-123 is already widely used in SPECT studies, I-124 has shown great promise and can be used for PET studies as well as in radiotherapy. Tl-201 is widely used throughout the world as 201 Tl + for measuring cardiac blood flow. It is a routine tool that is needed for the Nuclear Medicine communities and can be made available by those countries possessing a cyclotron facility with 30 MeV protons. Moreover, as preliminary results dealing with the labelling of chelated polypeptides with trivalent cationic Tl-201 are very promising; the nuclide can also be tried as a potential substitute for Indium tracers in SPECT diagnosis involving polypeptides. Palladium-103, an Auger electron emitter, has become an extremely important radionuclide for therapy. The Co-ordinated Research Programme (CRP) focuses on the optimisation and standardisation of solid phase cyclotron target technology for the production of I-123, I-124, Tl-201 and Pd-103. In particular, as originally proposed and further discussed and agreed upon during the 1st Research Co-ordination Meeting, the main technical goals of the CRP are described as follows: (i) to investigate the possibility of using electrodeposited tellurium and melted tellurium oxide as target material for the production of I-123 and I-124. For the oxide target, the following parameters and techniques will be explored: 1) methods

  11. Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes

    Science.gov (United States)

    Vlahos, Loukas; Sprangle, Phillip

    1987-01-01

    The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail.

  12. Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes

    International Nuclear Information System (INIS)

    Vlahos, L.; Sprangle, P.

    1987-01-01

    The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail. 31 references

  13. ECE diagnostic for the TARA tandem mirror machine using a fast-scanning Michelson interferometer

    International Nuclear Information System (INIS)

    Guharay, S.K.; Boyd, D.A.; Ellis, R.F.

    1986-01-01

    This ECE (electron cyclotron emission) diagnostic utilizes a fast-scanning Michelson interferometer to determine two parameters, the temperature and the loss cone angle, of the distribution function of the hot electrons (Tapprox. >100 keV) generated in the axisymmetric plug plasma of the TARA tandem mirror device. The radiation transport system employs a lens relay and a low-pass grating filter in order to transmit the synchrotron radiation over a spectral range of 2.9--18.6 cm -1 . This enables us to study the emitted radiation spectrum up to the 40th harmonic of the electron--cyclotron frequency in the plug plasma (B = 5 kG). Details of the design principles and the development of the diagnostic at TARA will be presented

  14. Positron emission tomography

    International Nuclear Information System (INIS)

    Iio, Masahiro

    1982-01-01

    Utilization of positron emission tomography was reviewed in relation to construction and planned construction of small-size medical cyclotrons, planned construction of positron cameras and utilization of short-lived radionuclides. (Chiba, N.)

  15. Modern compact cyclotrons for nuclear medicine designed and manufactured in NIIEFA

    International Nuclear Information System (INIS)

    Bogdanov, P.V.; Vasilchenko, I.N.; Gavrish, Yu.N.; Galchuk, A.V.; Grigorenko, S.V.; Kuzhlev, A.N.; Menshov, Yu.D.; Mudroyubov, V.G.; Ponomarenko, V.I.; Strokach, A.P.

    2012-01-01

    A series of compact cyclotrons, the CC-12, CC-18/9 and MCC-30/15, intended for the production of radionuclides for diagnostics and therapy directly in medical institutions has been designed and manufactured in NIIEFA. These cyclotrons provide the acceleration of negative hydrogen and deuterium ions injected from external sources. Beams of accelerated particles are extracted by stripping negative ions to protons and deuterons by carbon foils. Shielding-type electromagnets with the vertically located median plane are applied in these cyclotrons.

  16. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  17. Positron emission tomography of malignant tumours at head and neck. Evaluation of the diagnostic value of positron emission tomography by comparison with computed tomography

    International Nuclear Information System (INIS)

    Kettler, Nele

    2011-01-01

    Imaging methods for early, accurate diagnosis and aftercare of malignant growths is currently one of the most important research topics. The objective of this thesis is to evaluate the diagnostic value of FDG-positron emission tomography by comparison with computed tomography for patients with squamous cell carcinoma, malignant melanoma or sarcoma at head and neck. Measurement criteria are sensitivity and specificity. A retrospective evaluation of 100 examinations on 85 patients of University clinic Aachen was performed. The examination reports were supported by reports from histology, positron emission tomography and computed tomography. In each case, the histological results were assumed to provide a reliable benchmark. Sensitivity and specificity for the primary tumour site, metastatic lymphatic nodes and defined anatomic structures were compared across all patients. Comparisons were also performed on sub groups separated by gender, cancer type and the time and frequency at which tumours arose. The statistic analysis was done with MedCalc. Results: The results for sensitivity and specificity of the primary tumour site were 86.42% and 42.86%, and 64.71% and 66.07%, for positron emission tomography and computed tomography respectively. The results for the lymphatic nodes were 51.52% and 92.86% and 64.71% and 66.07%. When the constituent anatomic structures were evaluated separately, the specificity was significantly higher. The separation by gender showed no difference. Because the classification by tumor type resulted in samples that were of varying size, a comparison was difficult. For the diagnosis of primary tumours, the examination with positron emission tomography was superior, whereas computed tomography proved more effective for the diagnosis of recurrent tumours. For the diagnosis of the main tumour site, both methods were shown to be equally suitable. For the assessment of lymphatic nodes, positron emission tomography was superior to computed tomography

  18. Major upgrades of the high frequency B-dot probe diagnostic suite on ASDEX Upgrade

    Directory of Open Access Journals (Sweden)

    Ochoukov Roman

    2017-01-01

    Full Text Available The high frequency B-dot (HFB probe diagnostic on the ASDEX Upgrade tokamak has undergone a considerable upgrade during the 2016 opening of the torus. The probe coverage is now greatly expanded toroidally, as well as radially with the addition of probes on the high field side and the removable manipulator head. A new 2-channel fast digitizer now allows to examine and record radio frequency (RF wave emissions emanating from the plasma in the ion cyclotron range of frequencies (ICRF. Possible studies that can be achieved now include: a study of core ICRF power absorption efficiency; a study of ion cyclotron emissions from the plasma generated by energetic ions; and study of ICRF wave/plasma turbulence interactions in the scrape-off layer region.

  19. 13th TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    C. BARNES

    2000-07-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG, {approx} 10{sup 13} cm{sup -3} and T{sub e} {approx} 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be {le} T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T{sub e}. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where {omega}{sub pe} >> {Omega}{sub ce}.

  20. Space- and time-resolved diagnostics of soft x-ray emission from laser plasmas

    International Nuclear Information System (INIS)

    Richardson, M.C.; Jaanimagi, P.A.; Chen, H.

    1988-01-01

    The analysis of soft x-ray emission from plasmas created by intense short-wavelength laser radiation can provide much useful information on the density, temperature and ionization distribution of the plasma. Until recently, limitations of sensitivity and the availability of suitable x-ray optical elements have restricted studies of soft x-ray emission from laser plasmas. In this paper, the authors describe novel instrumentation which provides high sensitivity in the soft x-ray spectrum with spatial and temporal resolution in the micron and picosecond ranges respectively. These systems exploit advances made in soft x-ray optic and electro-optic technology. Their application in current studies of laser fusion, x-ray lasers, and high density atomic physics are discussed

  1. Mechanical design of the two dimensional beam emission spectroscopy diagnostics on mast

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Istvan Gabor, E-mail: kiss.istvan.gabor@rmki.kfki.hu [Association EURATOM, KFKI-RMKI, P.O. Box 49, H-1525 Budapest (Hungary); Meszaros, Botond; Dunai, Daniel; Zoletnik, Sandor; Krizsanoczi, Tibor [Association EURATOM, KFKI-RMKI, P.O. Box 49, H-1525 Budapest (Hungary); Field, Anthony R.; Gaffka, Rob [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2011-10-15

    A two dimensional beam emission spectroscopy (BES) system optimized for density turbulence measurements has recently been installed on the MAST tokamak. This system observes the emission of a Deuterium heating beam using a rotatable mirror to view from the plasma centre to the outboard edge (0.7-1.5 m), although the optics is optimized for core region (1.2 m). The beam is imaged onto a 4x8 pixel Avalanche Photodiode (APD) array detector, enabling measurements with 1 MHz bandwidth at photon-flux level of few times 10{sup 11} photons/s. This article will present the mechanical design of MAST BES equipment with special emphasis on its in-vessel components.

  2. Next customers to cyclotron center meanwhile are not entered

    International Nuclear Information System (INIS)

    Bato, R.; Zackova, K.

    2004-01-01

    In this paper the financial aspects of construction of the Cyclotron Centre of the Slovak Republic (CC SR) are analysed. This building represents the problems of exploitation of commodity deblocation of Russian Federation debt to Slovakia. The estimated expenses have risen from original planned 2 billion Slovak crowns to 6 billion Slovak crowns. Devices which should be part of centre - a cyclotron used for radiopharmaceuticals production for oncological purposes and a big cyclotron for industrial purposes, a centre of positron emissive tomography (PET), a laboratory of nano-technologies, a source of heavy ions - they indicates that the oncological institutes, departments of health service, of education, of economy, of defence, of environment, also Nuclear Regulatory Authority of Slovak Republic and Slovak Academy of Sciences should become the customers principally. Around 2.2 billion of Slovak crowns from deblocation have been spent for a construction of Cyclotron Centre of SR yet. The national budget has contributed by 95 million Slovak crowns; 90.5 million USD will be obtained from deblocation of Russian debt yet. IAEA has supported this centre by grant of almost 800 thousand USD. Budget of Cyclotron Centre of SR is still rising also because of rising of VAT from 10 percent to 19 percent. VAT will be paid also for goods imported within the framework of deblocation after integration of Slovak Republic to European Union; besides also 10 percent duty is paid. Project of CC SR has not passed the state expert opinion. Agreement for construction of Cyclotron Centre of SR was issued by State Health Institute of Bratislava, therefore it was confirmed also by the main hygienist of Slovak Republic

  3. Emission-line diagnostics of nearby H II regions including interacting binary populations

    Science.gov (United States)

    Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.

    2018-06-01

    We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.

  4. POLYCYCLIC AROMATIC HYDROCARBON EMISSION IN SPITZER/IRS MAPS. I. CATALOG AND SIMPLE DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Stock, D. J.; Choi, W. D.-Y.; Moya, L. G. V.; Otaguro, J. N.; Sorkhou, S.; Peeters, E. [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada); Allamandola, L. J. [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-0001 (United States); Tielens, A. G. G. M., E-mail: dstock4@uwo.ca [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA (Netherlands)

    2016-03-01

    We present a sample of resolved galactic H ii regions and photodissociation regions (PDRs) observed with the Spitzer infrared spectrograph in spectral mapping mode between the wavelengths of 5–15 μm. For each object we have spectral maps at a spatial resolution of ∼4″ in which we have measured all of the mid-infrared emission and absorption features. These include the polycyclic aromatic hydrocarbon (PAH) emission bands, primarily at 6.2, 7.7, 8.6, 11.2, and 12.7 μm, as well as the spectral emission lines of neon and sulfur and the absorption band caused by silicate dust at around 9.8 μm. In this work we describe the data in detail, including the data reduction and measurement strategies, and subsequently present the PAH emission band intensity correlations for each of the objects and the sample as a whole. We find that there are distinct differences between the sources in the sample, with two main groups: the first comprising the H ii regions and the second the reflection nebulae (RNe). Three sources—the reflection nebula NGC 7023, the Horsehead nebula PDR (an interface between the H ii region IC 434 and the Orion B molecular cloud), and M17—resist this categorization, with the Horsehead PDR points mimicking the RNe and the NGC 7023 fluxes displaying a unique bifurcated appearance in our correlation plots. These discrepancies seem to be due to the very low radiation field experienced by the Horsehead PDR and the very clean separation between the PDR environment and a diffuse environment in the NGC 7023 observations.

  5. Recent developments of ECE diagnostics at JET

    Energy Technology Data Exchange (ETDEWEB)

    Luna, E. de la; Sanchez, J. [Association Euratom-Ciemat para Fusion, Ciemant (Spain); Cientoli, C.; Blanchard, P.; Joffrin, E.; Mazon, D. [Association Euratom-ENEA sulla Fusione, IFP-CNR, Milano (Italy); Riva, M.; Zerbini, M. [Association Euratom-ENEA sulla Fusione Centro Ricerche Energia Frascati (Italy); Conway, G. [IPP-Euratom Association, Garching (Germany); Felton, R.; Fessey, J.; Gowers, C. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Murari, A. [Consorzio RFX, Association Euratom-ENEA sulla Fusione, Padova (Italy)

    2004-07-01

    In JET, two types of ECE (electron cyclotron emission) instruments are routinely operated to provide electron temperature measurements: a Michelson interferometer and a heterodyne radiometer. ECE diagnostics are able to provide time-resolved electron temperature profiles with high spatial and temporal resolution, and have proven to play a fundamental role in the investigation and development of internal transport barriers (ITBs) in JET. In this paper we report on the major upgrade of the ECE diagnostics systems currently in progress at JET. Diagnostic developments include an upgrade of the multi-channel heterodyne radiometer, aimed at extending the radial region over which T{sub e} measurement can be performed, and the installation of a new Michelson interferometer with fast scanning capability, to improve the frequency and temporal resolution of the multi-harmonic ECE measurements at JET. Moreover, a future extension of the ECE system, an oblique ECE diagnostic to measure the ECE spectra at different angles with respect to the normal to the magnetic field, is being developed. This diagnostic is expected to give valuable insight into the interpretation of ECE measurements in high T{sub e}-plasmas and should be available for measurements once JET resumes operation in 2005.In this paper, the recent developments in the JET ECE diagnostic system will be described and illustrated with some recent results, with an emphasis on issues related with calibration stability, high-Te plasmas and ITB studies. Some of these issues will be discussed in the context of ITER.

  6. Electron cyclotron harmonic wave acceleration

    Science.gov (United States)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  7. Electron cyclotron harmonic wave acceleration

    International Nuclear Information System (INIS)

    Karimabadi, H.; Menyuk, C.R.; Sprangle, P.; Vlahos, L.; Salonika Univ., Greece)

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts. 31 references

  8. Present situation of 'baby cyclotron'

    International Nuclear Information System (INIS)

    Yamada, Teruo

    1981-01-01

    A ''baby cyclotron'' has been developed by the Japan Steel Works, Ltd. Its No. 1 model (proton 9.4 MeV) was delivered to the Nakano Hospital of National Sanatorium in March, 1979. It is being used successfully for the production of 11 C, 13 N and 15 O and labeled compounds. The proton or deuteron particles accelerated in the cyclotron collide on target materials. The target box, which is automatically changeable, is directly installed to the accelerating box, thereby taking the safety measures for any leaking radiation. The following matters are described: the production of short-lived radioisotopes (RI yields and treatment); the processes of production in the Nakano Hospital, with No. 1 baby cyclotron, including the photosynthesis of labeled compounds such as 11 C-labeled glucose; the research on the automation in the synthesis of organic labeled compounds like 11 C-palmitic acid. (J.P.N.)

  9. Status Report on Cyclotron Operation

    International Nuclear Information System (INIS)

    Kovacs, P.; Szuecs, I.; Ander, I.; Lakatos, T.; Tarkanyi, F.

    2004-01-01

    Complete text of publication follows. The operation of the cyclotron in 2004 was concentrated to the usual 9 months; January, July and August were reserved for maintenance and holidays. The overall working time of the accelerator was 3554 hours, the time used for systematic maintenance was 450 hours. The breakdown periods amounted to 70 hours last year, included in it a 50 hours repair of RF control module under guarantee. The cyclotron was available for users during 3034 hours. The effectively used beam-on-target time statistics is summarized in Table 1. Developments: A new measuring site with a HPGe detector based gamma spectrometer is under installation in the basement of the Cyclotron Laboratory. A two channel pneumatic rabbit system is also under development to enable fast transport of samples between the new measuring site and two irradiation sites (the low intensity fast neutron irradiation site and the beam line used for Thin Layer Activation). (author)

  10. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.; Bigler, R.E.

    1978-01-01

    Progress is reported on biomedical studies using cyclotron-produced 18 F, 15 O, 11 C, 13 N, 52 Fe, 38 K, 206 Bi, 73 Se, 53 Co, and 43 K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; 38 K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments

  11. Development of Medical Cyclotron in KIRAMS

    International Nuclear Information System (INIS)

    Chai, Jong Seo; Jung, In Su; An, Dong Hyun

    2005-01-01

    This paper is presented on the development and status of medical cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS) at present. We have developed medical cyclotron which is KIRAMS-13. And the improvement of KIRAMS-13 is presented. Furthermore, the design of new cyclotrons, such as KIRAMS-5 and KIRAMS-30 cyclotron, are presented, and R and D studies for future plan of heavy ion accelerator are discussed

  12. MC-50 AVF cyclotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jong Seo; Lee, Dong Hoon; Kim, You Seok; Park, Chan Won; Lee, Yong Min; Hong, Sung Seok; Lee, Min Yong

    1995-12-01

    The first cyclotron in Korea, MC-59 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-70 .mu.A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed. (author). 8 tabs., 17 figs., 10 refs.

  13. MC-50 AVF cyclotron operation

    International Nuclear Information System (INIS)

    Kim, Yu Seok; Chai, Jong Seo; Bak, Seong Ki; Park, Chan Won; Jo, Young Ho; Hong, Seong Seok; Lee, Min Yong; Jang Ho Ha

    2000-01-01

    The first cyclotron in Korea, MC-50 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-60μA. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23 days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed

  14. MC-50 AVF cyclotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seok; Chai, Jong Seo; Bak, Seong Ki; Park, Chan Won; Jo, Young Ho; Hong, Seong Seok; Lee, Min Yong; Jang Ho Ha

    2000-01-01

    The first cyclotron in Korea, MC-50 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-60{mu}A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23 days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed.

  15. The development of cyclotron radiopharmaceuticals

    International Nuclear Information System (INIS)

    Yang, Seung Dae; Chun, K. W.; Suh, Y. S.; Lee, J. D.; Ahn, S. H. and others

    1999-03-01

    The purpose of this project is to develop the radiopharmaceuticals and automatic synthetic unit for labelled compounds, and to establish mass production system of radiopharmaceuticals. These will contribute to the early diagnosis of the disease hard to cure. The contents of this project are as follows, the development of the radiopharmaceutical for imaging of cancer, the development of automatic synthesizer for the synthesis of radio-pharmaceuticals, the development of hormone derivatives labelled with 12 '3I, the development of the radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for imaging of myocardial metabolism

  16. MC-50 AVF cyclotron operation

    International Nuclear Information System (INIS)

    Chae, Jong Seo; Lee, Dong Hoon; Kim, You Seok; Park, Chan Won; Lee, Yong Min; Hong, Sung Seok; Lee, Min Yong.

    1995-12-01

    The first cyclotron in Korea, MC-59 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-70 .mu.A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed. (author). 8 tabs., 17 figs., 10 refs

  17. Operational experience and recent developments at the National Medical Cyclotron

    International Nuclear Information System (INIS)

    Conard, E.; Pac, B.; Arnott, D.W.

    1994-01-01

    The National Medical Cyclotron is a radioisotope production facility run by ANSTO and located on the grounds of the Royal Prince Alfred Hospital in Sydney, Australia. A CYCLONE 30 (IBA) cyclotron is used in the production of short-lived PET radiopharmaceuticals required by the hospital's PET Scanner and also to produce a number of bulk radiochemicals for processing and distribution throughout Australasia. Following commissioning of the cyclotron and beam lines in October 1991, and the overcoming of a number of early open-quote teething close-quote problems especially relating to the reliability of the r.f. and solid target transport systems, a steady program of improvements has been pursued. These improvements have included development of new beam diagnostics and the design and installation of a new beam line for SPECT radioisotope production. The current operations schedule includes the production of 18 FDG, 13 NH 3 , 15 O 2 and 201 Tl, 67 Ga and 123 I. This paper will discuss the process of development of the cyclotron to ably meet the present demands on it, and the problems resolved in the pursuit of this goal

  18. Dust Emission at 8 and 24 μ m as Diagnostics of H ii Region Radiative Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Oey, M. S.; López-Hernández, J.; Kellar, J. A. [Department of Astronomy, University of Michigan, 311 West Hall, 1085 South University Avenue, Ann Arbor, MI, 48109-1107 (United States); Pellegrini, E. W. [Institut für Theoretische Astrophysik, Albert-Überle-Str. 2, D-69120 Heidelberg (Germany); Gordon, K. D.; Meixner, M.; Roman-Duval, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Jameson, K. E. [Astronomy Department and Laboratory for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Li, A. [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Madden, S. C. [Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d’Astrophysique, Bat. 709, F-91191 Gif-sur-Yvette (France); Bot, C. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 Rue de l’Université, F-67000 Strasbourg (France); Rubio, M. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Tielens, A. G. G. M. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300RA Leiden (Netherlands)

    2017-07-20

    We use the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) survey of the Magellanic Clouds to evaluate the relationship between the 8 μ m polycyclic aromatic hydrocarbon (PAH) emission, 24 μ m hot dust emission, and H ii region radiative transfer. We confirm that in the higher-metallicity Large Magellanic Cloud, PAH destruction is sensitive to optically thin conditions in the nebular Lyman continuum: objects identified as optically thin candidates based on nebular ionization structure show six times lower median 8 μ m surface brightness (0.18 mJy arcsec{sup −2}) than their optically thick counterparts (1.2 mJy arcsec{sup −2}). The 24 μ m surface brightness also shows a factor of three offset between the two classes of objects (0.13 versus 0.44 mJy arcsec{sup −2}, respectively), which is driven by the association between the very small dust grains and higher density gas found at higher nebular optical depths. In contrast, PAH and dust formation in the low-metallicity Small Magellanic Cloud is strongly inhibited such that we find no variation in either 8 μ m or 24 μ m emission between our optically thick and thin samples. This is attributable to extremely low PAH and dust production together with high, corrosive UV photon fluxes in this low-metallicity environment. The dust mass surface densities and gas-to-dust ratios determined from dust maps using Herschel HERITAGE survey data support this interpretation.

  19. ORIGIN OF THE GALACTIC DIFFUSE X-RAY EMISSION: IRON K-SHELL LINE DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Nobukawa, Masayoshi [Department of Teacher Training and School Education, Nara University of Education, Takabatake-cho, Nara, 630-8528 (Japan); Uchiyama, Hideki [Faculty of Education, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 (Japan); Nobukawa, Kumiko K.; Koyama, Katsuji [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 (Japan); Yamauchi, Shigeo, E-mail: nobukawa@nara-edu.ac.jp [Department of Physics, Nara Women’s University, Kitauoyanishimachi, Nara, 630-8506 (Japan)

    2016-12-20

    This paper reports detailed K-shell line profiles of iron (Fe) and nickel (Ni) of the Galactic Center X-ray Emission (GCXE), Galactic Bulge X-ray Emission (GBXE), Galactic Ridge X-ray Emission (GRXE), magnetic Cataclysmic Variables (mCVs), non-magnetic Cataclysmic Variables (non-mCVs), and coronally Active Binaries (ABs). For the study of the origin of the GCXE, GBXE, and GRXE, the spectral analysis is focused on equivalent widths of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α  lines. The global spectrum of the GBXE is reproduced by a combination of the mCVs, non-mCVs, and ABs spectra. On the other hand, the GRXE spectrum shows significant data excesses at the Fe i-K α and Fe xxv-He α  line energies. This means that additional components other than mCVs, non-mCVs, and ABs are required, which have symbiotic phenomena of cold gas and very high-temperature plasma. The GCXE spectrum shows larger excesses than those found in the GRXE spectrum at all the K-shell lines of iron and nickel. Among them the largest ones are the Fe i-K α , Fe xxv-He α , Fe xxvi-Ly α , and Fe xxvi-Ly β  lines. Together with the fact that the scale heights of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α lines are similar to that of the central molecular zone (CMZ), the excess components would be related to high-energy activity in the extreme envelopment of the CMZ.

  20. Safety and protection problems in the management of a plant with cyclotron, radiopharmacy laboratory and PET/CT equipment

    International Nuclear Information System (INIS)

    Russo, A.; Speranza, A.; Panico, M.; Delia, R.; Casale, M.; Salvatore, M.

    2006-01-01

    The importance of Positron Emission Tomography (PET) is spreading and increasing in many clinical diagnostic fields, as well as the oncology, the cardiology, the neurology and so on. A strong input to the diffusion of this imaging technique from the research field to clinical one has been given either by the development of knowledge about PET or the modern technologies, which allow to set up at very suitable prices and in very little volumes, like in an hospital site, complete systems, which consist of: Cyclotron; Radiopharmacy Laboratory; one or more either PET or PET/CT. Such set-up arrangement allows to carry out highly innovative diagnostic examinations with a remarkable achievement of diagnostic quality and large number of daily examinations. In this paper the authors show the achieved know-how with respect to radioprotection for the set-up and running management of two systems such as PET/CT tomography unit, cyclotron and radiopharmacy laboratory, installed one in the Imaging Diagnostic Department of the Hospital of Naples University and used only for medical and research purposes, and the other one in A.C.O.M. (Advanced Center of Oncology in Macerata), used for commercial and research purposes. The following safety problems have been considered: the facility lay-out; the optimisation of the paths either for the operator, or the patients and the radiotracers; the guide lines for the protection and the safety of the patients, operators and general population, in relation to the utilization and the management of either the more common radiotracers (18 F and 11 C) or those in research progress, for example 64 Cu and 124 I; the protocol set up for the image quality control in relation to the patient protection and safety. The above problems have also been considered, taking into account the Italian regulation and the International Recommendations. (authors)

  1. Safety and protection problems in the management of a plant with cyclotron, radiopharmacy laboratory and PET/CT equipment

    Energy Technology Data Exchange (ETDEWEB)

    Russo, A.; Speranza, A.; Panico, M. [University Federico-2, National Research Council - Institute of Biostructures and Bioimaging and Dept. of Bio-morphological and Functional Sciences, Napoli (Italy); Delia, R. [University La Sapienza - sez. Rieti, Faculty of Medicine, Rome (Italy); Casale, M. [University Federico-2, Dept. of Physics - Health Physics School, Napoli (Italy); Salvatore, M. [University Federico-2 and National Research Council - Institute of Biostructures and Bioimaging, Dept. of Bio-morphological and Functional Sciences, Napoli (Italy)

    2006-07-01

    The importance of Positron Emission Tomography (PET) is spreading and increasing in many clinical diagnostic fields, as well as the oncology, the cardiology, the neurology and so on. A strong input to the diffusion of this imaging technique from the research field to clinical one has been given either by the development of knowledge about PET or the modern technologies, which allow to set up at very suitable prices and in very little volumes, like in an hospital site, complete systems, which consist of: Cyclotron; Radiopharmacy Laboratory; one or more either PET or PET/CT. Such set-up arrangement allows to carry out highly innovative diagnostic examinations with a remarkable achievement of diagnostic quality and large number of daily examinations. In this paper the authors show the achieved know-how with respect to radioprotection for the set-up and running management of two systems such as PET/CT tomography unit, cyclotron and radiopharmacy laboratory, installed one in the Imaging Diagnostic Department of the Hospital of Naples University and used only for medical and research purposes, and the other one in A.C.O.M. (Advanced Center of Oncology in Macerata), used for commercial and research purposes. The following safety problems have been considered: the facility lay-out; the optimisation of the paths either for the operator, or the patients and the radiotracers; the guide lines for the protection and the safety of the patients, operators and general population, in relation to the utilization and the management of either the more common radiotracers (18 F and 11 C) or those in research progress, for example 64 Cu and 124 I; the protocol set up for the image quality control in relation to the patient protection and safety. The above problems have also been considered, taking into account the Italian regulation and the International Recommendations. (authors)

  2. Cyclotron spectra from inhomogeneous accretion columns. II. Polarization

    International Nuclear Information System (INIS)

    Wu, K.; Chanmugam, G.

    1989-01-01

    Circularly and linearly polarized radiation from inhomogeneous cyclotron emission regions with uniform magnetic field and temperature but different electron density profiles are studied. Calculations show that the inhomogeneous models generally produce larger polarization for low harmonics and smaller polarization for high harmonics compared to the homogeneous models. Polarization light curves for different inhomogeneous models with a wide variety of parameters are presented, providing handy theoretical results to compare with observations. The observed polarization light curves of ST LMi, EF Eri, and BL Hydri are fitted using an inhomogeneous model for the first time, and good fits are obtained, supporting the hypothesis that the cyclotron emission regions of AM Her systems have a complicated structure. 37 refs

  3. Diagnostics of flexible workpiece using acoustic emission, acceleration and eddy current sensors in milling operation

    Science.gov (United States)

    Filippov, A. V.; Tarasov, S. Yu.; Filippova, E. O.; Chazov, P. A.; Shamarin, N. N.; Podgornykh, O. A.

    2016-11-01

    Monitoring of the edge clamped workpiece deflection during milling has been carried our using acoustic emission, accelerometer and eddy current sensors. Such a monitoring is necessary in precision machining of vital parts used in air-space engineering where a majority of them made by milling. The applicability of the AE, accelerometers and eddy current sensors has been discussed together with the analysis of measurement errors. The appropriate sensor installation diagram has been proposed for measuring the workpiece elastic deflection exerted by the cutting force.

  4. Diagnostic accuracy of exercise thallium-201 single-photon emission computed tomography in patients with left bundle branch block

    International Nuclear Information System (INIS)

    Larcos, G.; Gibbons, R.J.; Brown, M.L.

    1991-01-01

    Recent reports have proposed that abnormal apical or anterior wall perfusion with exercise thallium-201 imaging may increase diagnostic accuracy for disease of the left anterior descending artery in patients with left bundle branch block (LBBB). To evaluate these suggestions, 83 patients with LBBB who underwent thallium-201 single-photon emission computed tomography and coronary angiography within an interval of 3 months were retrospectively reviewed. There were 59 men and 24 women aged 33 to 84 years (mean 65). Myocardial perfusion to the apex, anterior wall and anterior septum were scored qualitatively by consensus of 2 experienced observers and by quantitative analysis in comparison with a normal data base. The sensitivity, specificity and accuracy of perfusion defects in these segments were then expressed according to angiographic findings. Significant stenosis of vessels within the left anterior descending artery territory was present in 38 patients. By receiver-operator characteristic analysis, a fixed or reversible defect within the apex by the qualitative method was the best criterion for coronary artery disease. However, although highly sensitive (79 and 85% by the qualitative and quantitative methods, respectively), an apical defect was neither specific (38 and 16%, respectively), nor accurate (57 and 46%, respectively). Perfusion abnormalities in the anterior wall and septum were also of limited diagnostic accuracy. Thus, modified interpretative criteria in patients with LBBB are not clinically useful in the assessment of left anterior descending artery disease

  5. The 200 MeV cyclotron facility

    International Nuclear Information System (INIS)

    1987-01-01

    Beams of protons with several different energies have now been successfully transported between the injector cyclotron SPC1 and the SSC. Some small modifications to the placement of steering magnets and diagnostic equipment have been made in the light of our operational experience, which should improve the ease of tuning this beamline. Proton beams up to 200 MeV in energy have been transported to the experimental areas, where experiments in nuclear physics have been successful conducted. Three of the experimental beamlines are now in operation. Beams of 66 MeV protons have also been transported to targets in the isotope production vault, without difficulty. Field mapping of the remaining quadrupoles on site has been completed. Installation of and alignment of magnets up to the beam swinger is also complete, although the beam tube itself, plus vacuum and diagnostic equipment must still be tackled. The beam swinger has been designed and detailed in the drawing office, and is now being manufactured locally. The beamline elements for the sepctrometer beamline remain to be purchased. A personal computer has been purchased for controlling the field-mapping equipment for the spectrometer magnets, which are being manufactured in this country. A number of computer programs have been written for conversion of calibrated quadrupole and dipole magnet field data to absolute current values for the control system. Other programs permit diagnostic measurements of beam profiles to be used to calculated the beam emittance, or to set steering magnets so that the beam is correctly aligned

  6. Design of the PST: A Diagnostic for 1-D Imaging of Fast Z-Pinch Power Emissions

    International Nuclear Information System (INIS)

    Rochau, Gregory A.; Derzon, Mark S.; Chandler, Gordon A.; Lazier, Steven Earl

    2000-01-01

    Fast Z-pinch technology developed on the Z machine at Sandia National Laboratories can produce up to 230 TW of thermal x-ray power for applications in inertial confinement fusion (ICF) and weapons physics experiments. During implosion, these Z-pinches develop Rayleigh-Taylor (R-T) instabilities which are very difficult to diagnose and which functionally diminish the overall pinch quality. The Power-Space-Time (PST) instrument is a newly configured diagnostic for measuring the pinch power as a function of both space and time in a Z-pinch. Placing the diagnostic at 90 degrees from the Z-pinch axis, the PST provides a new capability in collecting experimental data on R-T characteristics for making meaningful comparisons to magneto-hydrodynamic computer models. This paper is a summary of the PST diagnostic design. By slit-imaging the Z-pinch x-ray emissions onto a linear scintillator/fiber-optic array coupled to a streak camera system, the PST can achieve ∼100 microm spatial resolution and ∼1.3 ns time resolution. Calculations indicate that a 20 microm thick scintillating detection element filtered by 1,000 angstrom of Al is theoretically linear in response to Plankian x-ray distributions corresponding to plasma temperatures from 40 eV to 150 eV, By calibrating this detection element to x-ray energies up to 5,000 eV, the PST can provide pinch power as a function of height and time in a Z-pinch for temperatures ranging from ∼40 eV to ∼400 eV. With these system pm-meters, the PST can provide data for an experimental determination of the R-T mode number, amplitude, and growth rate during the late-time pinch implosion

  7. Comparison between different methods of magnetic field diagnostics in beam emission spectroscopy

    International Nuclear Information System (INIS)

    Voslamber, D.

    1995-01-01

    Magnetic field diagnostics in tokamaks using the motional Stark effect in fast neutral beams have been based on two kinds of polarimetry which are called 'static' and 'dynamic'. It is shown that static polarimetry presents a number of advantages over dynamic polarimetry, provided it is made complete in the sense that a sufficient number of polarisation analysers is installed and different parts of the spectrum are explored to yield full information on the set of unknowns inherent in the problem. A detailed scheme of self-calibrating static polarimetry is proposed, including the case where an in-vessel mirror with changing characteristics (coating by impurities) is placed in front of the optical detection system. (author) 5 refs.; 2 figs

  8. VUV emission spectroscopy diagnostics of a 14 GHz ECR negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, R., E-mail: duo0364@mail4.doshisha.ac.jp; Ichikawa, T.; Kasuya, T.; Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Nishiura, M. [Graduate School of Frontier Sciences The University of Tokyo, Kashiwara, Chiba 277-8561 (Japan); Shimozuma, T. [National lnstitute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2015-04-08

    Vacuum Ultra Violet(VUV) emission from a 4 cm diameter 2 cm long compact ion source excited by 14 GHz microwave has been investigated. Intensity ratio of band spectrum emission near Ly-α to Ly-α line spectrum is determined from the measured spectrum. which shows preferential excitation of molecules near the entrance of microwave input power. The ratio does not depend strongly upon pressure nor the input microwave power when the intensity is integrated over the volume of the plasma. The spatial distribution of the spectrum intensity ratio exhibits concentrations near microwave inlet and the opposite side where the microwave matching structure is located. The ratio at these peripheral regions is about two times as high as that of the central region. The ratio increased in proportion to the ion source pressure up to about 3.0 Pa, indicating efficient production of high energy electrons by ECR up to this pressure.

  9. Emission spectroscopy diagnostics of rare gases in the PNX-U facility

    International Nuclear Information System (INIS)

    Vetrov, S. I.; Spitsyn, A. V.; Shuvaev, D. A.; Yanchenkov, S. V.

    2006-01-01

    Results are presented from measurements of the electron temperature and neutral atom density in a low-temperature microwave plasma by the method of emission spectroscopy. The measurements were conducted in the PNX-U facility-a magnetic confinement system with a 'magnetic wall.' Multichord measurements of plasma radiation at a wavelength of 750.37 nm were performed with the help of an absolutely calibrated monochromator. The neutral atom density was calculated using the collisional-radiative model. The degree of plasma ionization near the axis of the facility was found to be close to unity. The electron temperature of the argon plasma was measured from the relative intensities of the spectral lines of neutral helium injected in small amounts into the plasma (the so-called helium thermometer method). At a low microwave heating power, the results of these measurements agree well with the results of probe measurements

  10. Dynamic effects on cyclotron scattering in pulsar accretion columns

    International Nuclear Information System (INIS)

    Brainerd, J.J.; Meszaros, P.

    1991-01-01

    A resonant scattering model for photon reprocessing in a pulsar accretion column is presented. The accretion column is optically thin to Thomson scattering and optically thick to resonant scattering at the cyclotron frequency. Radiation from the neutron star surface propagates freely through the column until the photon energy equals the local cyclotron frequency, at which point the radiation is scattered, much of it back toward the star. The radiation pressure in this regime is insufficient to stop the infall. Some of the scattered radiation heats the stellar surface around the base of the column, which adds a softer component to the spectrum. The partial blocking by the accretion column of X-rays from the surface produces a fan beam emission pattern. X-rays above the surface cyclotron frequency freely escape and are characterized by a pencil beam. Gravitational light bending produces a pencil beam pattern of column-scattered radiation in the antipodal direction, resulting in a strongly angle-dependent cyclotron feature. 31 refs

  11. Princeton Cyclotron QDDD spectrograph system

    International Nuclear Information System (INIS)

    Kouzes, R.T.

    1985-01-01

    A review of experiments involving the Princeton Quadrupole-Dipole-Dipole- Dipole (QDDD) spectrograph is given. The QDDD is a high resolution, large solid angle device which is combined with the azymuthally varying field (AVF) cyclotron. Some reactions involving 3 He beams are discussed

  12. Ion sources for cyclotron applications

    International Nuclear Information System (INIS)

    Leung, K.N.; Bachman, D.A.; McDonald, D.S.; Young, A.T.

    1992-07-01

    The use of a multicusp plasma generator as an ion source has many advantages. The development of both positive and negative ion beams based on the multicusp source geometry is presented. It is shown that these sources can be operated at steady state or cw mode. As a result they are very suitable for cyclotron operations

  13. Ponderomotive force near cyclotron resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Mitsuo; Sanuki, Heiji

    1987-01-01

    The ponderomotive force, which is involved in the excitation of macroscopic behaviors of plasma caused by wave motion, plays an important role in various non-linear wave motion phenomena. In the present study, equations for the pondermotive force for plasma in a uniform magnetic field is derived using a renormalization theory which is based on the Vlasov equation. It is shown that the pondermotive force, which diverges at the cyclotron resonence point according to adiabatic approximation, can be expressed by a non-divergent equation by taking into account the instability of the cyclotron orbit due to high-order scattering caused by a wave. This is related with chaotic particle behaviors near cyclotron resonance, where the pondermotive force is small and the diffusion process prevails. It is assumed here that the amplitude of the high-frequency electric field is not large and that the broadening of cyclotron levels is smaller than the distance between the levels. A global chaos will be created if the amplitude of the electric field becomes greater to allow the broadening to exceed the distance between the levels. (Nogami, K.).

  14. Cyclotron transitions of bound ions

    Science.gov (United States)

    Bezchastnov, Victor G.; Pavlov, George G.

    2017-06-01

    A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.

  15. Status report on cyclotron operation

    CERN Document Server

    Kovács, P; Ander, I; Lakatos, T; Fenyvesi, A; Ditrói, F; Takács, S; Tarkanyi, F

    2003-01-01

    The operation of the cyclotron in 2002 was concentrated to 9 months; January, July and August were reserved for maintenance and holidays. The overall working time of the accelerator was 4084 hours, the breakdown periods amounted to 15 hours last year. In order to improve the circumstances of the irradiations, several following improvements were done. (R.P.)

  16. Synchrotron emission diagnostic of full-orbit kinetic simulations of runaway electrons in tokamaks plasmas

    Science.gov (United States)

    Carbajal Gomez, Leopoldo; Del-Castillo-Negrete, Diego

    2017-10-01

    Developing avoidance or mitigation strategies of runaway electrons (RE) for the safe operation of ITER is imperative. Synchrotron radiation (SR) of RE is routinely used in current tokamak experiments to diagnose RE. We present the results of a newly developed camera diagnostic of SR for full-orbit kinetic simulations of RE in DIII-D-like plasmas that simultaneously includes: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We observe a strong dependence of the SR measured by the camera on the pitch angle distribution of RE, namely we find that crescent shapes of the SR on the camera pictures relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of RE with larger pitch angles. A weak dependence of the SR measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is found. Furthermore, we observe that oversimplifying the angular distribution of the SR changes the synchrotron spectra and overestimates its amplitude. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U. S. DoE.

  17. ECR heavy-ion source for the LBL 88-inch cyclotron

    International Nuclear Information System (INIS)

    Clark, D.J.; Kalnins, J.G.; Lyneis, C.M.

    1983-03-01

    An Electron Cyclotron Resonance (ECR) heavy-ion source is under construction at the LBL 88-Inch Cyclotron. This source will produce very-high-charge-state heavy ions, such as 0 8 + and Ar 12 + , which will increase cyclotron energies by a factor of 2-4, up to A = 80. It is a two-stage source using room-temperature coils, a permanent-magnet sextupole, and a 6-9 GHz microwave system. Design features include adjustable first-to-second-stage plasma coupling, a variable second-stage mirror ratio, high-conductance radial pumping of the second stage, and a beam-diagnostic system. A remotely movable extraction electrode will optimize extraction efficiency. The project includes construction of a transport line and improvements to the cyclotron axial-injection system. The construction period is expected to be two years

  18. [Acoustic emission diagnostic techniques for high-field high current-density super inducting poles

    International Nuclear Information System (INIS)

    1990-01-01

    Acoustic emission technology was introduced in the late 1970's to monitor superconducting magnets. It has now been firmly established that acoustic signals in superconducting magnets are emitted principally by mechanical events such as conductor strain, conductor motion, frictional motion, and epoxy cracking. Despite earlier suggestions, flux motion, except during flux jumping, does not appear to be an important source of AE signals in superconducting magnets. Of these several potential sources of AE signals in superconducting magnets, mechanical disturbances have been identified to be most important in high-performance, ''adiabatic'' magnets such as the dipoles used in accelerators. These mechanical disturbances are transitory, each generating a packet of AE signals that can be located with sensors. Source identification and location has been achieved with a number of superconducting magnets. In this section, the basic principle for the operation of adiabatic magnets is discussed, followed by presentation of some of the important experimental results relevant to the question of premature quench obtained at MIT

  19. Electronic cyclotron radiation amplification in thermonuclear plasmas

    International Nuclear Information System (INIS)

    Ziebell, L.F.

    1983-01-01

    The amplified emission of electron cyclotron radiation near the fundamental frequency from an inhomogeneous, anisotropic plasma slab is investigated in a linear theory. Plasma polarization effects are consistently included. Expressions are developed in the WKB approximation for emission in the ordinary and the extraordinary modes, for propagation perpendicular to the magnetic field. Numerical results are given for the extraordinary mode, for which effects are strongest. For the case of a loss-cone-type electron momentum distribution, it is shown that the amplification is sensitively dependent on the ratio of parallel-to-perpendicular temperature and on inhomogeneities in the magnetic field. The dependence of the amplification on the distribution is further investigated by considering superpositions of loss-cone and Maxwellian components. It is show that the presence of a Maxwellian component in general reduces the emission relative to the pure loss-cone case, and situations occur in which a layer in the slab very effectively absorbs all the radiation amplified elsewhere. A peculiar behaviour of the refractive index, which occurs in the transition from the pure loss-cone to the pure Maxwellian case, is discussed. (author)

  20. Positron emission tomography as a diagnostic tool in infection: present role and future possibilities.

    Science.gov (United States)

    Basu, Sandip; Chryssikos, Timothy; Moghadam-Kia, Siamak; Zhuang, Hongming; Torigian, Drew A; Alavi, Abass

    2009-01-01

    The past decade has witnessed the emergence of yet another promising application of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging in the detection and management of patients with infection and inflammatory disorders. This phenomenon is quite evident when the peer-reviewed scientific literature is searched for on this topic. Among these scientific communications, the 6 conditions in which FDG-PET has demonstrated its greatest utility include (1) chronic osteomyelitis, (2) complicated lower-limb prostheses, (3) complicated diabetic foot, (4) fever of unknown origin, (5) acquired immunodeficiency syndrome (ie, AIDS), and (6) vascular graft infection and fistula. On the basis of published literature, orthopedic infections, particularly those related to implanted prostheses and osteomyelitis (including that occurring in the setting of a complicated diabetic foot), can be detected successfully by the use of FDG-PET and, therefore, this modality has great promise for becoming the study of choice in these complex settings. Increasingly, this technique is being used to detect infection in soft tissues, including those representing the sources of fever of unknown origin. The ability of FDG-PET to diagnose vascular graft infection and fistula, even when the anatomical imaging modalities are inconclusive, is of considerable interest to practitioners of vascular surgery. Combined PET/computed tomography (CT) imaging has the potential to determine the sites of infection or inflammation with high precision. The data on the role of PET/CT imaging in the assessment of infection and inflammation is sparse, but this combined modality approach may prove to be the study of choice in foreseeable future for precise localization of involved sites. However, the role of PET/CT may be limited in the presence of metallic artifacts (such as those caused by prostheses) adjacent to the sites of infection.

  1. Radiation dose reduction through combining positron emission tomography/computed tomography (PET/CT) and diagnostic CT in children and young adults with lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zhihua; Gates, Erica L.; Trout, Andrew T. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); O' Brien, Maureen M. [Cincinnati Children' s Hospital Medical Center, Division of Oncology, Cancer and Blood Disease Institute, Cincinnati, OH (United States)

    2018-02-15

    Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (P<0.0001). Average dose savings with the combined approach was 24.8±17.8% (2.60±2.51 mSv [range: 0.32-4.72 mSv]) of total CT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations. (orig.)

  2. Radiation dose reduction through combining positron emission tomography/computed tomography (PET/CT) and diagnostic CT in children and young adults with lymphoma

    International Nuclear Information System (INIS)

    Qi, Zhihua; Gates, Erica L.; Trout, Andrew T.; O'Brien, Maureen M.

    2018-01-01

    Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (P<0.0001). Average dose savings with the combined approach was 24.8±17.8% (2.60±2.51 mSv [range: 0.32-4.72 mSv]) of total CT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations. (orig.)

  3. Radiation dose reduction through combining positron emission tomography/computed tomography (PET/CT) and diagnostic CT in children and young adults with lymphoma.

    Science.gov (United States)

    Qi, Zhihua; Gates, Erica L; O'Brien, Maureen M; Trout, Andrew T

    2018-02-01

    Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (PCT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations.

  4. Role of Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Diagnostic Evaluation of Carcinoma Urinary Bladder: Comparison with Computed Tomography

    International Nuclear Information System (INIS)

    Chakraborty, Dhritiman; Mittal, Bhagwant Rai; Kashyap, Raghava; Mete, Utham Kumar; Narang, Vikram; Das, Ashim; Bhattacharya, Anish; Khandelwal, Niranjan; Mandal, Arup K.

    2014-01-01

    Bladder carcinoma is the most frequent tumor of the urinary tract and accounts 7% of all malignancies in men and 2% of all malignancies in women. This retrospective study was carried out to assess the diagnostic utility of F18-fludeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in the imaging evaluation of bladder carcinoma. Seventy-seven consecutive patients diagnosed to have carcinoma urinary bladder referred for F18-FDG PET/CT were included in this study. Thirty-four patients were for initial staging after transurethral biopsy and remaining 43 patients were for restaging. All patients also underwent CT scan of the abdomen and pelvis. PET/CT findings were correlated with diagnostic CT scan and histopathological findings. In 30 of the 34 patients for initial staging, both PET/CT and CT confirmed the primary lesion in the bladder. Histopathology report was available in 23 patients. Lymph nodes FDG uptake reported to be metastatic in 10/23 patients while CT detected lymph node metastasis in 12 patients. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy have been calculated to be 87.5%, 80%, 70%, 92%, 82% for PET/CT and 66%, 57%, 50%, 72%, 60% for CT respectively. PET/CT detected metastatic disease in 8 patients whereas CT detected in 4 patients. Of the 43 patients for restaging, local recurrence was detected in 24 patients on both PET/CT and CT. Histopathology report was available in 17 patients. Sensitivity, specificity, PPV, NPV and accuracy were 85%, 60%, 60%, 85%, 70% for PET/CT and 80%, 50%, 40%, 85%, 58% for CT respectively. Nineteen patients were detected to have metastatic disease by PET/CT, whereas CT detected metastases in 11 patients. F-18 FDG PET/CT is a very useful modality in pre-operative staging and monitoring after surgery, chemotherapy or radiotherapy of patients with carcinoma urinary bladder

  5. Ion extraction in the cyclotron geometry

    International Nuclear Information System (INIS)

    Rodenburg, R.E.

    1985-01-01

    The detailed physics of ion beam extraction from a plasma column by intense sinusoidal radio frequency (rf) electric fields at the ion cyclotron frequency omega/sub ci/ and its harmonics is experimentally studied. Results describe the instantaneous relationship - within one rf period of approx. = 3009 nsec - between applied rf, the plasma response and the ions expelled by rf and plasma fields. Reflex discharges in H 2 , D 2 , and He with ion and electron densities greater than or equal to10 11 cm -3 are subjected to 0-5 kV zero-to-peak rf electric fields E vector and 0.65-9.00 kG background magnetic fields B 0 vector with E vector perpendicular to B 0 vector. Ion currents up to 200 μA are extracted. Nonperturbing optical diagnostics measure the relative amplitude and phase of instantaneous ion and electron density fluctuations induced by the rf during each rf cycle and the time variation of extracted ion bursts, the latter made possible by the use of a phosphor beam-stop. Detailed dependences on external electric and magnetic fields are reported. The plasma density fluctuations are in good agreement with the dispersion relation for electrostatic ion cyclotron waves (EICW), and the beam data show current enhancement at the second harmonic over that at the fundamental and evidence for a radically different mechanism for the rf-driven ion extraction process than conventional wisdom assumes. This work represents the first detailed, systematic study of the ac ion extraction process

  6. Nuclear data relevant to the production and application of diagnostic radionuclides

    International Nuclear Information System (INIS)

    Qaim, S.M.

    2002-01-01

    The types of nuclear data and their quality required in the production and application of diagnostic radionuclides are outlined. The radioactive decay data determine the suitability of a radioisotope for in vivo tracer studies, both from the imaging and internal radiation dose considerations. The nuclear reaction cross section data allow optimisation of production routes. Both reactors and cyclotrons are used for production purposes. The nuclear data needed in the two cases and their present status are discussed. Special attention is paid to radionuclides suitable for emission tomography (PET and SPECT). The controversy about reactor vs cyclotron production of the widely used sup 9 sup 9 Mo/ sup 9 sup 9 sup m Tc generator system is discussed. Some special considerations in cyclotron production of radionuclides are outlined. The need of accurate data near reaction thresholds, the constraint of available particles and their energies at a small cyclotron, the influence of increasing incident particle energy, and the formation of isomeric impurities are discussed in detail. The role of nuclear model calculations in predicting unknown data is considered. (author)

  7. Neutron radiography with the cyclotron

    International Nuclear Information System (INIS)

    Tazawa, Shuichi; Asada, Yorihisa; Yano, Munehiko; Nakanii, Takehiko.

    1985-01-01

    Neutron radiography is well recognized as a powerful tool in nondestructive testing, but not widely used yet owing to lack of high intense thermal neutron source convenient for practical use. This article presents a new neutron radiograph facility, utilizing a sub-compact cyclotron as neutron source and is equipped with vertical and horizontal irradiation ports. The article describes a series of experiments, we conducted using beams of a variable energy cyclotron at Tohoku University to investigate the characteristics of thermal neutron obtained from 9 Be(p, n) reaction and thermalized by elastic scattering process. The article also describes a computer simulation of neutron moderator to analyze conditions getting maximal thermal neutron flux. Further, some of practical neutron radiograph examinations of aero-space components and museum art objects of classic bronze mirror and an attempt realizing real time imaging technique, are introduced in the article. (author)

  8. The development of cyclotron radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Dae; Chun, K. W.; Suh, Y. S.; Lee, J. D.; Ahn, S. H. and others

    1999-03-01

    The purpose of this project is to developthe radiopharmaceuticals and automatic synthetic unit for labelled compounds, and to establish mass production system of radiopharmaceuticals. These will contribute to the early diagnosis of the disease hard to cure. The contents of this project are as follows, the development of the radiopharmaceutical for imaging of cancer, the development of automatic synthesizer for the synthesis of radio-pharmaceuticals, the development of hormone derivatives labelled with {sup 12}'3I, the development of the radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for imaging of myocardial metabolism.

  9. Cyclotron radiation from hot plasmas

    International Nuclear Information System (INIS)

    Pohl, F.; Henning, J.; Duechs, D.

    1975-11-01

    In calculating the energy transport and losses due to cyclotron radiation there are two major requirements: the absorption coefficient has to be known and the proper geometry of the plasma has to be taken into account. In this report Trubnikov's integral formulae for the absorption coefficient have been evaluated numerically and compared with the approximative formulas of previous authors. Deviations by a factor of 2 - 10 in various frequency regimes are not unusual. With these coefficients the rate of change of the energy density due to cyclotron radiation in a plasma as well as the radiation density at a plasma surface are computed for plasma slab and plasma cylinder. Sometimes considerable differences to the results of previons papers can found. Many simple formulae interpolating the numerical results are given in the text, and the FORTRAN computer programs have been reproduced in the appendices. (orig.) [de

  10. Cyclotron production of Cu-61

    Czech Academy of Sciences Publication Activity Database

    Lebeda, Ondřej; Ráliš, Jan; Seifert, Daniel

    2013-01-01

    Roč. 40, 2 Supplement (2013), S323-S323 ISSN 1619-7070. [Annual Congress of the European Association of Nuclear Medicine (EANM). 19.10.2013-23.10.2013, Lyon] R&D Projects: GA TA ČR TA02010797 Institutional support: RVO:61389005 Keywords : cyclotron U-120M * PET * Cu-61 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  11. Status report on the cyclotron

    International Nuclear Information System (INIS)

    Kormany, Z.

    2002-01-01

    Complete text of publication follows. The operation of the cyclotron in 2001 was again concentrated to the usual 9 months; January, July and August were reserved for maintenance and holidays. The overall working time of the accelerator was 4300 hours, the breakdown periods amounted to 66 hours last year. The cyclotron was available for users during 3751 hours, the effectively used beam-on-target time is summarized in Table 1. The total time required for machine setup and beam tuning or spent waiting for the start of an irradiation was 272 hours. The control of the adjustable collimators applied in the beam transport system of the cyclotron was renewed during the winter maintenance period. They have been connected to the programmable logic controllers (PLC) and their new control code frees the operators from the long and slow manual setting process. The successful renewal of the control of this and other subsystems (cyclotron and beam transport power supplies) made lots of adjusting and measuring elements on the original control desk needless. To provide more space for the control PCs and remove all unnecessary devices, the unused part of the control desk has been dismantled. The short beam line used mainly for radiation hardness studies was equipped with a new oil-diffusion vacuum system during the summer maintenance. Its components are also connected to the PLC and the same automatic control has been provided like for the other vacuum stands of- the beam transport system. Another short beam line - basically a mirror image of the first one - has also been installed and successfully tested by trial irradiations. (R.P.)

  12. An approach to demonstrating cost-effectiveness of diagnostic imaging modalities in Australia illustrated by positron emission tomography

    International Nuclear Information System (INIS)

    Miles, K.A.

    2001-01-01

    The aim of this study was to develop a framework in which the cost-effectiveness of new imaging technologies could be evaluated using data from other countries, while assessing the impact that any differences between the study populations and Australia may have upon the results. Publications reporting the cost-effectiveness or therapeutic impact of positron emission tomography (PET) were re-worked using Australian cost structures. PET was assigned a cost of $950. The effects of potential differences between the populations studied and the Australian population were evaluated by applying sensitivity analysis to those publications that describe decision tree methodology. The parameters included in the sensitivity analysis were disease prevalence and specificity of PET. The Australian cost savings per patient examined by PET were $505.50-$912.41 for investigation of solitary pulmonary nodules, $34.65-$360.03 for lung cancer staging, $550.08 for axillary staging of breast cancer, $230.75-$2301.27 for assessment of recurrent colorectal cancer and $300.24-$2069.65 for assessment of myocardial viability. Significant differences in disease prevalence and PET specificity could occur while the cost-effectiveness of PET was preserved. Decision tree sensitivity analysis can demonstrate the cost-effectiveness of diagnostic imaging modalities in Australia and provides indications that PET is cost-effective for a range of clinical indications. Copyright (2001) Blackwell Science Pty Ltd

  13. Line and continuum spectroscopy as diagnostic tools for gamma ray bursts

    International Nuclear Information System (INIS)

    Liang, E.P.

    1990-12-01

    We review the theoretical framework of both line and continuum spectra formation in gamma ray bursts. These include the cyclotron features at 10's of keV, redshifted annihilation features at ∼400 keV, as well as other potentially detectable nuclear transition lines, atomic x-ray lines, proton cyclotron lines and plasma oscillation lines. By combining the parameters derived from line and continuum modeling we can try to reconstruct the location, geometry and physical conditions of the burst emission region, thereby constraining and discriminating the astrophysical models. Hence spectroscopy with current and future generations of detectors should provide powerful diagnostic tools for gamma ray bursters. 48 refs., 10 figs., 4 tabs

  14. Diagnostic performance of fluorodeoxyglucose positron emission tomography/magnetic resonance imaging fusion images of gynecological malignant tumors. Comparison with positron emission tomography/computed tomography

    International Nuclear Information System (INIS)

    Nakajo, Kazuya; Tatsumi, Mitsuaki; Inoue, Atsuo

    2010-01-01

    We compared the diagnostic accuracy of fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and PET/magnetic resonance imaging (MRI) fusion images for gynecological malignancies. A total of 31 patients with gynecological malignancies were enrolled. FDG-PET images were fused to CT, T1- and T2-weighted images (T1WI, T2WI). PET-MRI fusion was performed semiautomatically. We performed three types of evaluation to demonstrate the usefulness of PET/MRI fusion images in comparison with that of inline PET/CT as follows: depiction of the uterus and the ovarian lesions on CT or MRI mapping images (first evaluation); additional information for lesion localization with PET and mapping images (second evaluation); and the image quality of fusion on interpretation (third evaluation). For the first evaluation, the score for T2WI (4.68±0.65) was significantly higher than that for CT (3.54±1.02) or T1WI (3.71±0.97) (P<0.01). For the second evaluation, the scores for the localization of FDG accumulation showing that T2WI (2.74±0.57) provided significantly more additional information for the identification of anatomical sites of FDG accumulation than did CT (2.06±0.68) or T1WI (2.23±0.61) (P<0.01). For the third evaluation, the three-point rating scale for the patient group as a whole demonstrated that PET/T2WI (2.72±0.54) localized the lesion significantly more convincingly than PET/CT (2.23±0.50) or PET/T1WI (2.29±0.53) (P<0.01). PET/T2WI fusion images are superior for the detection and localization of gynecological malignancies. (author)

  15. Commercial compact cyclotrons in the 90's

    International Nuclear Information System (INIS)

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. We will also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA. (author)

  16. Commercial compact cyclotrons in the 90's

    International Nuclear Information System (INIS)

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. The authors also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA

  17. Method and apparatus for ion cyclotron spectrometry

    Science.gov (United States)

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  18. Future cyclotron systems : an industrial perspective

    International Nuclear Information System (INIS)

    Stevenson, N.R.; Dickie, W.J.

    1995-09-01

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modem cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired decisions regarding their replacement are made based on several factors including the market's potential and the cyclotron system's abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, we investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century. (author)

  19. Future cyclotron systems: An industrial perspective

    International Nuclear Information System (INIS)

    Stevenson, N.R.; Dickie, W.J.

    1995-09-01

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modern cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired, decisions regarding their replacement are made based on several factors including the market's potential and the cyclotron system's abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, the authors investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century

  20. A new cyclotron for biomedical research

    International Nuclear Information System (INIS)

    Wolber, G.

    1988-01-01

    This paper presents the rationale for replacing the old AEG Compact Cyclotron (built in 1969/71) of the Institute for Radiology and Pathophysiology at the German Cancer Research Center by a 30 MeV H - /15 MeV D - cyclotron. A status report is followed by the scientific and technical reasoning as well as budgetary and organizational considerations. In the appendix we tried to explain the function of a cyclotron in a simple and comprehensive manner. (orig.) [de

  1. Directory of cyclotrons used for radionuclide production in Member States [2006 update

    International Nuclear Information System (INIS)

    2006-10-01

    The present directory of cyclotron facilities used for the production of radionuclides in Member States is an update of the one compiled by the International Atomic Energy Agency (IAEA) in late 2001 and published in 2002. This directory was prepared through information collected by questionnaires that the IAEA sent to known institutions operating cyclotrons for radionuclide production. Technical as well as administrative data supplied to the IAEA as of November 2005 were taken into account. The directory is considered to include most of the cyclotrons of the world that are used at least partially for radionuclide production. There are 262 entries for cyclotrons operating in 39 Member States of the IAEA. This is an increase of 7% over the 246 reported in the 2002 cyclotron directory. This can be compared to the 350 or so cyclotrons believed to be presently operating in the world, which are involved in some aspects of radionuclide production. The increase has been in the number of cyclotrons in developed countries, but even more so in the developing countries. The increase in number during the last four years was driven by several factors, i.e. advent of advances in medical imaging, introduction of compact, user friendly medical cyclotron, and a recent decision that costs for 15 O-oxygen position emission tomography (PET) studies in Japan and 18 F-FDG PET studies in Germany and the United States of America are eligible for reimbursement by government or health insurance companies. There is no doubt that the fastest growing segment of the market is in the commercial distribution of FDG to local hospitals. The IAEA is promoting cyclotron technology as applied to nuclear medicine. Requests for cyclotron technology is steadily increasing; many developing Member States are interested in this technology. There is need to stimulate, build and maintain consulting capability in interested developing Member States. There are good reasons to believe that the number of cyclotron

  2. Advances in superconducting cyclotrons at MSU

    International Nuclear Information System (INIS)

    Blosser, H.; Antaya, T.; Au, R.

    1987-01-01

    Intensive work on superconducting cyclotrons began at MSU in late 1973 (a brief earlier study had occurred in the early 1960's) and continues vigorously at present. One large cyclotron, the ''K500'', has been operating for a number of years, a second, the ''K800'', is nearing completion, the first operating tests of its magnet having occurred at the time of the previous conference, and a third, the ''medical cyclotron'', is now also nearing completion with first operation of its magnet expected just after the present conference. These cyclotrons like other superconducting cyclotrons are all dramatically smaller than comparable room temperature machines; overall weight is typically about 1/20th of that of room temperature cyclotrons of the same energy. This large reduction in the quantities of materials is partially offset by added complexity, but finally, a net overall cost savings of 50 to 70 % typically results; as a consequence the superconducting cyclotron is widely viewed as the cyclotron of the future. The thirteen years of experience at MSU involving three of these cyclotrons, together with much important work at other laboratories, gives a rather clear view of the advantages and disadvantages of various design approaches including by now a rather significant period of long term evaluation. This paper reviews highlights of this program. (author)

  3. Detailed Performance Assessment for the ITER ECE Diagnostic

    Science.gov (United States)

    Rowan, W.; Austin, M.; Houshmandyar, S.; Phillips, P.; Beno, J.; Bryant, A.; Ouroua, A.; Weeks, D.; Hubbard, A.; Taylor, G.

    2017-10-01

    One of the primary diagnostics for electron temperature (Te) measurement on ITER is based on the detection of electron cyclotron emission (ECE) Here we describe the predicted performance of the newly completed ECE diagnostic design by quantitatively following the emission from the plasma to the instruments and including the calibration method to assess accuracy. Operation of the diagnostic at 5.3 T is the main interest here but critical features of the emission spectra for 2.65 T and 1.8 T will be described. ECE will be collected by two very similar optical systems: one a radial view, the other an oblique view. Both measurements are used for Te while the oblique view also allows detection of non-thermal distortion in the electron distribution. An in-vacuum calibration source is included in the front end of each view to calibrate out the effect of any degradation of in-vessel optics. Following collection, the emission is split into orthogonal polarizations and transmitted to the detection instruments via waveguides filled with dry nitrogen, a choice that simplifies construction and analysis. Near the instruments, a switchyard is used to select which polarization and view is detected by each instrument. The design for the radiometer used for 5.3 T will be described in detail. Supported by PPPL/US-DA via subcontract S013464-H to UT Austin.

  4. Diagnostic performance of {sup 18}F-dihydroxyphenylalanine positron emission tomography in patients with paraganglioma: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Treglia, Giorgio; Cocciolillo, Fabrizio; Castaldi, Paola; Rufini, Vittoria; Giordano, Alessandro [Catholic University of the Sacred Heart, Institute of Nuclear Medicine, Rome (Italy); De Waure, Chiara; Di Nardo, Francesco; Gualano, Maria Rosaria [Catholic University of the Sacred Heart, Institute of Hygiene, Rome (Italy)

    2012-07-15

    The aim of this study was to systematically review and conduct a meta-analysis of published data about the diagnostic performance of {sup 18}F-dihydroxyphenylalanine (DOPA) positron emission tomography (PET) in patients with paraganglioma (PG). A comprehensive computer literature search of studies published through 30 June 2011 regarding {sup 18}F-DOPA PET or PET/computed tomography (PET/CT) in patients with PG was performed in PubMed/MEDLINE, Embase and Scopus databases. Pooled sensitivity and specificity of {sup 18}F-DOPA PET or PET/CT in patients with PG on a per patient- and on a per lesion-based analysis were calculated. The area under the receiver-operating characteristic (ROC) curve was calculated to measure the accuracy of {sup 18}F-DOPA PET or PET/CT in patients with PG. Furthermore, a sub-analysis taking into account the different genetic mutations in PG patients was also performed. Eleven studies comprising 275 patients with suspected PG were included in this meta-analysis. The pooled sensitivity of {sup 18}F-DOPA PET and PET/CT in detecting PG was 91% [95% confidence interval (CI) 87-94%] on a per patient-based analysis and 79% (95% CI 76-81%) on a per lesion-based analysis. The pooled specificity of {sup 18}F-DOPA PET and PET/CT in detecting PG was 95% (95% CI 86-99%) on a per patient-based analysis and 95% (95% CI 84-99%) on a per lesion-based analysis. The area under the ROC curve was 0.95 on a per patient- and 0.94 on a per lesion-based analysis. Heterogeneity between the studies about sensitivity of {sup 18}F-DOPA PET or PET/CT was found. A significant increase in sensitivity of {sup 18}F-DOPA PET or PET/CT was observed when a sub-analysis excluding patients with succinate dehydrogenase subunit B (SDHB) gene mutations was performed. In patients with suspected PG {sup 18}F-DOPA PET or PET/CT demonstrated high sensitivity and specificity. {sup 18}F-DOPA PET or PET/CT are accurate methods in this setting. Nevertheless, possible sources of false

  5. Diagnostic performance of 18F-dihydroxyphenylalanine positron emission tomography in patients with paraganglioma: a meta-analysis

    International Nuclear Information System (INIS)

    Treglia, Giorgio; Cocciolillo, Fabrizio; Castaldi, Paola; Rufini, Vittoria; Giordano, Alessandro; De Waure, Chiara; Di Nardo, Francesco; Gualano, Maria Rosaria

    2012-01-01

    The aim of this study was to systematically review and conduct a meta-analysis of published data about the diagnostic performance of 18 F-dihydroxyphenylalanine (DOPA) positron emission tomography (PET) in patients with paraganglioma (PG). A comprehensive computer literature search of studies published through 30 June 2011 regarding 18 F-DOPA PET or PET/computed tomography (PET/CT) in patients with PG was performed in PubMed/MEDLINE, Embase and Scopus databases. Pooled sensitivity and specificity of 18 F-DOPA PET or PET/CT in patients with PG on a per patient- and on a per lesion-based analysis were calculated. The area under the receiver-operating characteristic (ROC) curve was calculated to measure the accuracy of 18 F-DOPA PET or PET/CT in patients with PG. Furthermore, a sub-analysis taking into account the different genetic mutations in PG patients was also performed. Eleven studies comprising 275 patients with suspected PG were included in this meta-analysis. The pooled sensitivity of 18 F-DOPA PET and PET/CT in detecting PG was 91% [95% confidence interval (CI) 87-94%] on a per patient-based analysis and 79% (95% CI 76-81%) on a per lesion-based analysis. The pooled specificity of 18 F-DOPA PET and PET/CT in detecting PG was 95% (95% CI 86-99%) on a per patient-based analysis and 95% (95% CI 84-99%) on a per lesion-based analysis. The area under the ROC curve was 0.95 on a per patient- and 0.94 on a per lesion-based analysis. Heterogeneity between the studies about sensitivity of 18 F-DOPA PET or PET/CT was found. A significant increase in sensitivity of 18 F-DOPA PET or PET/CT was observed when a sub-analysis excluding patients with succinate dehydrogenase subunit B (SDHB) gene mutations was performed. In patients with suspected PG 18 F-DOPA PET or PET/CT demonstrated high sensitivity and specificity. 18 F-DOPA PET or PET/CT are accurate methods in this setting. Nevertheless, possible sources of false-negative results should be kept in mind. Furthermore

  6. Diagnostic performance of 18F-dihydroxyphenylalanine positron emission tomography in patients with paraganglioma: a meta-analysis.

    Science.gov (United States)

    Treglia, Giorgio; Cocciolillo, Fabrizio; de Waure, Chiara; Di Nardo, Francesco; Gualano, Maria Rosaria; Castaldi, Paola; Rufini, Vittoria; Giordano, Alessandro

    2012-07-01

    The aim of this study was to systematically review and conduct a meta-analysis of published data about the diagnostic performance of (18)F-dihydroxyphenylalanine (DOPA) positron emission tomography (PET) in patients with paraganglioma (PG). A comprehensive computer literature search of studies published through 30 June 2011 regarding (18)F-DOPA PET or PET/computed tomography (PET/CT) in patients with PG was performed in PubMed/MEDLINE, Embase and Scopus databases. Pooled sensitivity and specificity of (18)F-DOPA PET or PET/CT in patients with PG on a per patient- and on a per lesion-based analysis were calculated. The area under the receiver-operating characteristic (ROC) curve was calculated to measure the accuracy of (18)F-DOPA PET or PET/CT in patients with PG. Furthermore, a sub-analysis taking into account the different genetic mutations in PG patients was also performed. Eleven studies comprising 275 patients with suspected PG were included in this meta-analysis. The pooled sensitivity of (18)F-DOPA PET and PET/CT in detecting PG was 91% [95% confidence interval (CI) 87-94%] on a per patient-based analysis and 79% (95% CI 76-81%) on a per lesion-based analysis. The pooled specificity of (18)F-DOPA PET and PET/CT in detecting PG was 95% (95% CI 86-99%) on a per patient-based analysis and 95% (95% CI 84-99%) on a per lesion-based analysis. The area under the ROC curve was 0.95 on a per patient- and 0.94 on a per lesion-based analysis. Heterogeneity between the studies about sensitivity of (18)F-DOPA PET or PET/CT was found. A significant increase in sensitivity of (18)F-DOPA PET or PET/CT was observed when a sub-analysis excluding patients with succinate dehydrogenase subunit B (SDHB) gene mutations was performed. In patients with suspected PG (18)F-DOPA PET or PET/CT demonstrated high sensitivity and specificity. (18)F-DOPA PET or PET/CT are accurate methods in this setting. Nevertheless, possible sources of false-negative results should be kept in mind

  7. Diagnostic method based on the analysis of vibration and acoustic emission. Monitoring of emergency diesel NPP Garona

    International Nuclear Information System (INIS)

    Paniagua, L.; Munoz, M.; Moreno, F.; Arroyo, J.; Monne, C.

    2014-01-01

    Maintenance Technicians, more and more, must dispose of predictive tools to diagnose the state of the equipment, especially if they are responsible for the emergency diesel in a Nuclear Power Plant. the use of these tools should be understood as a complement to more classic Preventive Maintenance of the equipment, thus increasing their availability because the parameters necessary for evaluating motor behaviour are taken while the engine is in operation. In this way, it facilitates the decision-making on whether to carry out certain preventive tasks. The basic information about this diagnostic tool presented in this article is based on the reading, recording and analysis of pressure, vibrations and acoustic emission in each engine cylinder during its operating cycle. A nice addition to the above diagnosis is carrying out and endoscopy of each cylinder, which enables the observation of: water leaks, injector leaks, the spraying of each injector, valve leaks,... etc. This article describes the fundamentals of a non-intrusive, easy to use and low cost tool, used to check the function of Emergency Diesel engines, as well as the experience of its use in the St. Maria Garona Nuclear Plant. The article also describes the case of a fault which occurred in the Nuclear Power plant in Garona that would hardly have been possible to detect by other means. This tool was developed jointly by the Engines Laboratory of the Department of Mechanical Engineering at the University of Zaragoza and the St. Maria Garona Nuclear Plant. It has been further improved, extended and optimized over the more than 10 years of its use. (Author)

  8. Diagnostic Performance of Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography in the Postchemotherapy Management of Patients with Seminoma: Systematic Review and Meta-Analysis

    OpenAIRE

    Giorgio Treglia; Ramin Sadeghi; Salvatore Annunziata; Carmelo Caldarella; Francesco Bertagna; Luca Giovanella

    2014-01-01

    Objective. To meta-analyze published data about the diagnostic performance of fluorine-18-Fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and PET/computed tomography (PET/CT) in the postchemotherapy management of patients with seminoma. Methods. A comprehensive literature search of studies published through January 2014 on this topic was performed. All retrieved studies were reviewed and qualitatively analyzed. Pooled sensitivity and specificity, positive and negative predicti...

  9. Two-stream cyclotron radiative instabilities due to the marginally mirror-trapped fraction for fustion alphas in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Arunasalam, V.

    1995-07-01

    It is shown here that the marginally mirror-trapped fraction of the newly-born fusion alpha particles in the deuterium-tritium (DT) reaction dominated tokamak plasmas can induce a two-stream cyclotron radiative instability for the fast Alfven waves propagating near the harmonics of the alpha particle cyclotron frequency {omega}{sub c{alpha}}. This can explain both the experimentally observed time behavior and the spatially localized origin of the fusion product ion cyclotron emission (ICE) in TFTR at frequencies {omega} {approx} m{omega}{sub c{alpha}}.

  10. Two-stream cyclotron radiative instabilities due to the marginally mirror-trapped fraction for fustion alphas in tokamaks

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1995-07-01

    It is shown here that the marginally mirror-trapped fraction of the newly-born fusion alpha particles in the deuterium-tritium (DT) reaction dominated tokamak plasmas can induce a two-stream cyclotron radiative instability for the fast Alfven waves propagating near the harmonics of the alpha particle cyclotron frequency ω cα . This can explain both the experimentally observed time behavior and the spatially localized origin of the fusion product ion cyclotron emission (ICE) in TFTR at frequencies ω ∼ mω cα

  11. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp [Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Ito, N. [Department of Intelligent System Engineering, Ube National College of Technology, Ube, Yamaguchi 755-8555 (Japan); Nagayama, Y. [Department of Helical Plasma Research, National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yoshinaga, T. [Department of Applied Physics, National Defense Academy, Yokosuka, Kanagawa 239-0811 (Japan); Yamaguchi, S. [Department of Pure and Applied Physics, Kansai University, Suita, Osaka 564-8680 (Japan); Yoshikawa, M.; Kohagura, J. [Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugito, S. [Equipment Development Center, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Kogi, Y. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  12. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    Science.gov (United States)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  13. Summary on electron cyclotron theory

    International Nuclear Information System (INIS)

    Westerhof, E.

    2003-01-01

    The papers presented within the Theory Sessions of the conference clearly reflect the general trends of the research field. The growing use of Electron Bernstein Waves (EBW) for plasma heating and current drive in overdense plasmas goes hand in hand with an increased theoretical understanding of EBW excitation. While the expanding number of devices with powerful ECRH systems allowing ever more detailed experiments is reflected in the increased detail of modelling and consequent understanding of the experimental results. Apart from these general trends, some more fundamental contributions to the field of electron cyclotron wave propagation are highlighted. (author)

  14. The cyclotron laboratory and the RFQ accelerator in Bern

    International Nuclear Information System (INIS)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M.; Scampoli, P.; Bremen, K. von

    2013-01-01

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study

  15. Emittance Measurement for Beamline Extension at the PET Cyclotron

    Directory of Open Access Journals (Sweden)

    Sae-Hoon Park

    2016-01-01

    Full Text Available Particle-induced X-ray emission is used for determining the elemental composition of materials. This method uses low-energy protons (of several MeV, which can be obtained from high-energy (of tens MeV accelerators. Instead of manufacturing an accelerator for generating the MeV protons, the use of a PET cyclotron has been suggested for designing the beamline for multipurpose applications, especially for the PIXE experiment, which has a dedicated high-energy (of tens MeV accelerator. The beam properties of the cyclotron were determined at this experimental facility by using an external beamline before transferring the ion beam to the experimental chamber. We measured the beam profile and calculated the emittance using the pepper-pot method. The beam profile was measured as the beam current using a wire scanner, and the emittance was measured as the beam distribution at the beam dump using a radiochromic film. We analyzed the measurement results and are planning to use the results obtained in the simulations of external beamline and aligned beamline components. We will consider energy degradation after computing the beamline simulation. The experimental study focused on measuring the emittance from the cyclotron, and the results of this study are presented in this paper.

  16. The cyclotron laboratory and the RFQ accelerator in Bern

    Energy Technology Data Exchange (ETDEWEB)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Scampoli, P. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland and Department of Physical Sciences, University Federico II, Via Cintia, I-60126 Napoli (Italy); Bremen, K. von [SWAN Isotopen AG, Inselspital, CH-3010 Bern (Switzerland)

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  17. Neutron spectra due 13N production in a PET cyclotron

    International Nuclear Information System (INIS)

    Benavente, J.A.; Vega-Carrillo, H.R.; Lacerda, M.A.S.; Fonseca, T.C.F.; Faria, F.P.; Silva, T.A. da

    2015-01-01

    Monte Carlo and experimental methods have been used to characterize the neutron radiation field around PET (Positron Emission Tomography) cyclotrons. In this work, the Monte Carlo code MCNPX was used to estimate the neutron spectra, the neutron fluence rates and the ambient dose equivalent (H*(10)) in seven locations around a PET cyclotron during 13 N production. In order to validate these calculations, H*(10) was measured in three sites and were compared with the calculated doses. All the spectra have two peaks, one above 0.1 MeV due to the evaporation neutrons and another in the thermal region due to the room-return effects. Despite the relatively large difference between the measured and calculated H*(10) for one point, the agreement was considered good, compared with that obtained for 18 F production in a previous work. - Highlights: • MCNPX code was used to estimate the neutron spectra in a PET cyclotron. • Neutrons were estimated when 13 N is produced. • Neutron spectra show evaporation and room-return neutrons. • Calculated H*(10) were compared with measured H*(10)

  18. Cyclotrons for the production of radioactive beams

    International Nuclear Information System (INIS)

    Clark, D.J.

    1990-01-01

    This paper describes the characteristics and design choices for modern cyclotrons. Cyclotrons can be used in 3 areas in the radioactive beam field: the production of high energy heavy ion beams for use in fragmentation, the spallation of targets with high energy protons, and the acceleration of radioactive beams from low energy to the MeV/u range. 16 refs., 6 figs

  19. Isochronous cyclotron for thermonuclear reactors driving

    International Nuclear Information System (INIS)

    Alenitskij, Yu.G.

    1998-01-01

    The main requirements to an accelerator as a part of an electronuclear power plant are considered. The range of the parameters of the accelerated proton and deuteron beams, for which the isochronous cyclotron is the most profitable, is proposed. An opportunity of using the cyclotron to drive the research reactors of various types is considered

  20. Wave fronts of electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.

    1982-01-01

    In an inhomogeneous high-density magnetized plasma, the spatial properties of the wave fronts and ray trajectories of electromagnetic ordinary and extraordinary cyclotron harmonic waves are investigated. Those waves which are radiated from a local source are found to have wave fronts which are almost parallel to the magnetic field. Also, the reflective properties of the electromagnetic cyclotron harmonic waves are confirmed

  1. Recent development and progress of IBA cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Kleeven, W., E-mail: Willem.Kleeven@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Abs, M., E-mail: Michel.Abs@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Delvaux, J.L., E-mail: Jean-Luc.Delvaux@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Forton, E., E-mail: Eric.Forton@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Jongen, Y., E-mail: Yves.Jongen@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Medeiros Romao, L., E-mail: Luis.MedeirosRomao@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Nactergal, B., E-mail: Benoit.Nactergal@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Nuttens, V., E-mail: Vincent.Nuttens@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Servais, T., E-mail: Thomas.Servais@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Vanderlinden, T., E-mail: Thierry.Vanderlinden@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium); Zaremba, S., E-mail: Simon.Zaremba@iba-group.com [Ion Beam Applications s.a. Chemin du Cyclotron 3, Louvain-la-Neuve (Belgium)

    2011-12-15

    Several cyclotron development projects were recently realized by Ion Beam Applications S.A. (IBA). This contribution presents three of them: (i) the intensity enhancement of the Cyclone 30 cyclotron, a machine mainly used for the production of SPECT isotopes. This project is related with the increased demand for {sup 201}Tl because of the shortage of Mo/Tc generators from nuclear reactors, (ii) development of a new versatile multiple-particle K = 30 isotope-production cyclotron (the Cyclone 30XP) being able to accelerate H{sup -}, D{sup -} and also {alpha}-particles. The {alpha}-beam of this cyclotron will allow the production of new therapeutic isotopes (e.g. {sup 211}At) and (iii) commissioning of the Cyclone 70 cyclotron installed for Arronax in France. This machine is similar to the C30XP but provides higher energy (K = 70) and allows research on new types of medical isotopes.

  2. Computer design of a compact cyclotron

    International Nuclear Information System (INIS)

    Bing Wang; Huanfeng Hao; Qinggao Yao; Jinquan Zhang; Mingtao Song; Vorozhtsov, S.B.; Smirnov, V.L.; Hongwei Zhao

    2011-01-01

    Here we present results of the computer design of the structural elements of a compact cyclotron by the example of HITFiL cyclotron selected as the driving accelerator that is under construction at the Institute of Modern Physics (Lanzhou, China). In the article a complex approach to modeling of the compact cyclotron, including calculation of electromagnetic fields of the structural elements and beam dynamics calculations, is described. The existing design data on the axial injection, magnetic, acceleration and extraction systems of the cyclotron are used as a starting point in the simulation. Some of the upgrades of the cyclotron structural elements were proposed, which led to substantial improvement of the beam quality and transmission

  3. Soft x-ray virtual diagnostics for tokamak simulations

    Science.gov (United States)

    Kim, J. S.; Zhao, L.; Bogatu, I. N.; In, Y.; Turnbull, A.; Osborne, T.; Maraschek, M.; Comer, K.

    2009-11-01

    The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma density and temperature radial profiles needed in the soft x-ray signal modeling are obtained from experimental data, i.e., from Thomson scattering and electron cyclotron emission. The virtual soft x-ray diagnostics for the equilibriums have a good agreement with the experimental data. The virtual diagnostics based on an ideal linear instability also agree reasonably well with the experimental data. The agreements are good enough to justify the methodology presented here for utilizing virtual diagnostics for routine comparison of experimental data. The agreements also motivate further detailed simulations with improved physical models such as the nonideal magnetohydrodynamics contributions (resistivity, viscosity, nonaxisymmetric error fields, etc.) and other nonlinear effects, which can be tested by virtual diagnostics with various stability modeling.

  4. Soft x-ray virtual diagnostics for tokamak simulations

    International Nuclear Information System (INIS)

    Kim, J. S.; Zhao, L.; Bogatu, I. N.; In, Y.; Turnbull, A.; Osborne, T.; Maraschek, M.; Comer, K.

    2009-01-01

    The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma density and temperature radial profiles needed in the soft x-ray signal modeling are obtained from experimental data, i.e., from Thomson scattering and electron cyclotron emission. The virtual soft x-ray diagnostics for the equilibriums have a good agreement with the experimental data. The virtual diagnostics based on an ideal linear instability also agree reasonably well with the experimental data. The agreements are good enough to justify the methodology presented here for utilizing virtual diagnostics for routine comparison of experimental data. The agreements also motivate further detailed simulations with improved physical models such as the nonideal magnetohydrodynamics contributions (resistivity, viscosity, nonaxisymmetric error fields, etc.) and other nonlinear effects, which can be tested by virtual diagnostics with various stability modeling.

  5. Neutron transport calculation for Activation Evaluation for Decommissioning of PET cyclotron Facility

    Science.gov (United States)

    Nobuhara, Fumiyoshi; Kuroyanagi, Makoto; Masumoto, Kazuyoshi; Nakamura, Hajime; Toyoda, Akihiro; Takahashi, Katsuhiko

    2017-09-01

    In order to evaluate the state of activation in a cyclotron facility used for the radioisotope production of PET diagnostics, we measured the neutron flux by using gold foils and TLDs. Then, the spatial distribution of neutrons and induced activity inside the cyclotron vault were simulated with the Monte Calro calculation code for neutron transport and DCHAIN-SP for activation calculation. The calculated results are in good agreement with measured values within factor 3. Therefore, the adaption of the advanced evaluation procedure for activation level is proved to be important for the planning of decommissioning of these facilities.

  6. Beam transfer lines for the Tandem-superconducting cyclotron at Lab. Nazionale del Sud

    International Nuclear Information System (INIS)

    Calabretta, L.; Cuttone, G.; DiBernardo, P.; Giove, D.; Raia, G.; Yan, C.; Cao, L.; Liu, K.

    1988-01-01

    At the L.N.S. an MP-Tandem will be used as injector for the Superconducting Cyclotron. This paper describes the handling beam system for the Superconducting Cyclotron. All the lines are designed to be achromatic. Home made beam profile monitor is the main diagnostic device and its design and preliminary tests are presented. The distributed computer control for all the beam lines and bunching system is described too. The status of beam transfer line from tandem to S.C. and of bunching system is presented

  7. Cyclotron-Resonance-Maser Arrays

    International Nuclear Information System (INIS)

    Kesar, A.; Lei, L.; Dikhtyar, V.; Korol, M.; Jerby, E.

    1999-01-01

    The cyclotron-resonance-maser (CRM) array [1] is a radiation source which consists of CRM elements coupled together under a common magnetic field. Each CRM-element employs a low-energy electron-beam which performs a cyclotron interaction with the local electromagnetic wave. These waves can be coupled together among the CRM elements, hence the interaction is coherently synchronized in the entire array. The implementation of the CRM-array approach may alleviate several technological difficulties which impede the development of single-beam gyro-devices. Furthermore, it proposes new features, such as the phased-array antenna incorporated in the CRM-array itself. The CRM-array studies may lead to the development of compact, high-power radiation sources operating at low-voltages. This paper introduces new conceptual schemes of CRM-arrays, and presents the progress in related theoretical and experimental studies in our laboratory. These include a multi-mode analysis of a CRM-array, and a first operation of this device with five carbon-fiber cathodes

  8. Production of radiopharmaceuticals by cyclotrons

    International Nuclear Information System (INIS)

    Schmitz, F.; Van Naemen, J.; Monclus, M.; Van Gansbeke, B.; Kadiata, M.; Ekelmans, D.; Moray, M.; Penninckx, R.; Goldman, S.

    2004-01-01

    Companies specialized in the development and installation of accelerator-based systems dedicated to the medical applications brought on the market cyclotrons well fitted to the requests of the industrial community or universities and so covering every segment of the market. These machines are fully automatic, and need reduced maintenance; they are highly specialized for defined tasks. They can produce high beam intensity and realize dual beam irradiation. Also the prices are reducing considerably. The targets and the automatic system follow the same trend. Unfortunately, the flexibility of these devices for new area of research and development has been dramatically reduced. The growing number of PET cameras has increased the popularity of PET tracers used for nuclear imaging. Consequently, there is a growing demand for these radiopharmaceuticals compounds labeled with short-lived radioisotopes for clinical applications. From a research and development tool in the eighties, PET has now grown up to a clinical tool. Moreover, depending of the social welfare, reimbursement of some PET examinations is granted, which accelerates the trend for an extended use of PET tracers. Regulatory affairs try to establish and standardize the control on these radiopharmaceutical compounds produced in a growing number of local radio pharmacies owning a baby cyclotron. On the other hand, the attention of equipment suppliers was brought in the setting up of a total quality control follow up. These efforts were successively achieved by getting for instance the ISO 9001 certificate

  9. Medical cyclotron basic concepts and its applications

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Sonkawade, R.G.

    2012-01-01

    More than 3000 nuclides are known, of which approximately 2700 are radioactive, and rest are stable. The majority of radionuclides are artificially produced in the reactor and cyclotron. In a cyclotron, Charge particle such as proton, Deuteron, á (Alpha) particle, 3 He particles and so forth are accelerated in circular paths within the Dees under vacuum by means of an electromagnetic field. These accelerated particles can possess few KeV to several BeV of kinetic energy depending on the design of the cyclotron. At our setup we have an 11 MeV dual beam multi target cyclotron which is capable producing 11 C, 13 N, 15 O, 18 F and 2 F radioisotopes and all have been successfully produced and tested in our lab. Earlier cyclotrons were the best source of high-energy beams for nuclear physics experiments; several cyclotrons are still in use for this type of research. Cyclotrons can be used to treat cancer. Ion beams from cyclotrons can be used, as in proton therapy. The positron emitting isotopes are suitable for PET imaging. As discussed we are producing mainly Carbon-11, Nitrogen-13, Oxygen-15, and Fluorine-18: These are positron emitters used in PET for studying brain physiology and pathology, in particular for localizing epileptic focus, and in dementia, psychiatry and neuropharmacology studies. So these are having significant role in diagnosis of Oncological, Neurological and Cardiological disorder. More than ninety percent we are producing 18 F in FDG. 18 F in FDG (Flouro-Deoxy-glucose) has become very important in detection of cancers and the monitoring of progress in their treatment, using PET. Medical cyclotron is complex equipment requiring delicate handling by highly trained personnel. The aim of this article is to highlight few finer aspects of Medical cyclotron operation, including precautions for safety and smooth functioning of this sophisticated equipment. (author)

  10. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  11. The effect of plasma drift on the electromagnetic cyclotron instability

    International Nuclear Information System (INIS)

    Kulkarni, V.H.; Rycroft, M.J.

    1979-01-01

    It is shown that the drift of plasma across a homogeneous magnetic field causes the generation of a wave electric field which, for waves propagating along the magnetic field in the whistler mode, is in the direction of the magnetic field. This leads to Landau damping of the wave field by the background electron distribution, simultaneously with amplification via the electromagnetic cyclotron instability. The drift velocity of the plasma for zero net growth of a whistler mode signal is calculated. It is suggested that such a process occurs in the equatorial region of the magnetosphere during a geomagnetic storm and accounts for the missing band of emissions at half the equatorial gyrofrequency. (Auth.)

  12. CYGNE, Foundation for Cyclotron Applications in Medicine, Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    van de Bosch, R L.P. [Technische Hogeschool Eindhoven (Netherlands). Afdeling Technische Natuurkunde; Smithuis, L O.M.J. [St. Lambertusziekenhuis, Helmond (Netherlands). Afd. Nucleaire Geneeskunde

    1981-01-01

    At the Technical University of Eindhoven (Netherlands) a Foundation named CYGNE is established with the purpose to further the use of the research cyclotrons present in the country for the production of short-living radioisotopes specifically on behalf of nuclear medicine. The cooperation with a hospital and its pharmacist are procured for the production of various radiopharmaceuticals. This is the first time such a facility is available in the Netherlands. The foundation has four working groups to do research on radionuclides for positron emission tomography, neutron therapy, trace element analysis, and routine production or new production methods.

  13. Update on the status of the ITER ECE diagnostic design

    Directory of Open Access Journals (Sweden)

    Taylor G.

    2017-01-01

    Full Text Available Considerable progress has been made on the design of the ITER electron cyclotron emission (ECE diagnostic over the past two years. Radial and oblique views are still included in the design in order to measure distortions in the electron momentum distribution, but the oblique view has been redirected to reduce stray millimeter radiation from the electron cyclotron heating system. A major challenge has been designing the 1000 K calibration sources and remotely activated mirrors located in the ECE diagnostic shield module (DSM in the equatorial port plug #09. These critical systems are being modeled and prototypes are being developed. Providing adequate neutron shielding in the DSM while allowing sufficient space for optical components is also a significant challenge. Four 45-meter long low-loss transmission lines transport the 70–1000 GHz ECE from the DSM to the ECE instrumentation room. Prototype transmission lines are being tested, as are the polarization splitter modules that separate O-mode and X-mode polarized ECE. A highly integrated prototype 200–300 GHz radiometer is being tested on the DIII-D tokamak in the USA. Design activities also include integration of ECE signals into the ITER plasma control system and determining the hardware and software architecture needed to control and calibrate the ECE instruments.

  14. Active galactic nuclei emission line diagnostics and the mass-metallicity relation up to redshift z ∼ 2: The impact of selection effects and evolution

    International Nuclear Information System (INIS)

    Juneau, Stéphanie; Bournaud, Frédéric; Daddi, Emanuele; Elbaz, David; Duc, Pierre-Alain; Gobat, Raphael; Jean-Baptiste, Ingrid; Le Floc'h, Émeric; Pannella, Maurilio; Schreiber, Corentin; Charlot, Stéphane; Lehnert, M. D.; Pacifici, Camilla; Trump, Jonathan R.; Brinchmann, Jarle; Dickinson, Mark

    2014-01-01

    Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish active galactic nuclei (AGN) from purely star-forming galaxies. However, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z ∼ 0 reference sample built from ∼300,000 Sloan Digital Sky Survey galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predict the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z ∼ 1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal interstellar medium (ISM) properties out to z ∼ 1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies and may be more important starting at z ≳ 2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams and the MZ relation as a function of emission line luminosity limits is made publicly available.

  15. Active galactic nuclei emission line diagnostics and the mass-metallicity relation up to redshift z ∼ 2: The impact of selection effects and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Juneau, Stéphanie; Bournaud, Frédéric; Daddi, Emanuele; Elbaz, David; Duc, Pierre-Alain; Gobat, Raphael; Jean-Baptiste, Ingrid; Le Floc' h, Émeric; Pannella, Maurilio; Schreiber, Corentin [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Charlot, Stéphane; Lehnert, M. D.; Pacifici, Camilla [UPMC-CNRS, UMR 7095, Institut d' Astrophysique de Paris, F-75014 Paris (France); Trump, Jonathan R. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Brinchmann, Jarle [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Dickinson, Mark, E-mail: stephanie.juneau@cea.fr [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2014-06-10

    Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish active galactic nuclei (AGN) from purely star-forming galaxies. However, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z ∼ 0 reference sample built from ∼300,000 Sloan Digital Sky Survey galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predict the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z ∼ 1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal interstellar medium (ISM) properties out to z ∼ 1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies and may be more important starting at z ≳ 2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams and the MZ relation as a function of emission line luminosity limits is made publicly available.

  16. Status of the design of the ITER ECE diagnostic

    International Nuclear Information System (INIS)

    Taylor, G.; Austin, M. E.; Beno, J. H.; Danani, S.; Ellis, R. F.; Feder, R.; Hesler, J. L.; Hubbard, A. E.; Johnson, D. W.; Kumar, R.; Kumar, S.; Kumar, V.; Ouroua, A.; Pandya, H. K. B.; Phillips, P. E.; Roman, C.; Rowan, W. L.; Udintsev, V.; Vayakis, G.; Walsh, M.; Kubo, S.

    2015-01-01

    In this study, the baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation in the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system

  17. Phase-space resolved measurement of 2nd harmonic ion cyclotron heating using FIDA tomography at the ASDEX Upgrade tokamak

    DEFF Research Database (Denmark)

    Weiland, M.; Bilato, R.; Geiger, B.

    2017-01-01

    Recent upgrades to the FIDA (fast-ion D-alpha) diagnostic at ASDEX Upgrade allow to reconstruct the fast-ion phase space at several radial positions with decent energy and pitch resolution. These new diagnostic capabilities are applied to study the physics of 2nd harmonic ion cyclotron heating, w....... Furthermore, comparisons to other fast-ion diagnostics (neutron yield and neutral particle analyzers) are discussed....

  18. Plasma Diagnostics in High Density Reactors

    International Nuclear Information System (INIS)

    Daltrini, A. M.; Moshkalyov, S.; Monteiro, M. J. R.; Machida, M.; Kostryukov, A.; Besseler, E.; Biasotto, C.; Diniz, J. A.

    2006-01-01

    Langmuir electric probes and optical emission spectroscopy diagnostics were developed for applications in high density plasmas. These diagnostics were employed in two plasma sources: an electron cyclotron resonance (ECR) plasma and an RF driven inductively coupled plasma (ICP) plasma. Langmuir probes were tested using a number of probing dimensions, probe tip materials, circuits for probe bias and filters. Then, the results were compared with the optical spectroscopy measurements. With these diagnostics, analyses of various plasma processes were performed in both reactors. For example, it has been shown that species like NH radicals generated in gas phase can have critical impact on films deposited by ECR plasmas. In the ICP source, plasmas in atomic and molecular gases were shown to have different spatial distributions, likely due to nonlocal electron heating. The low-to-high density transitions in the ICP plasma were also studied. The role of metastables is shown to be significant in Ar plasmas, in contrast to plasmas with additions of molecular gases

  19. ECE diagnostics for RTO/RC ITER

    International Nuclear Information System (INIS)

    Vayakis, G.; Bartlett, D.V.; Costley, A.E.

    2001-01-01

    This paper presents the current status of the Electron Cyclotron Emission (ECE) diagnostic on the Reduced Technical Objectives/Reduced Cost International Thermonuclear Experimental Reactor (RTO/RC ITER). It discusses the implications of the new machine design on the measurement requirements, the ability of the diagnostic technique to meet these, and the changes in the implementation imposed by the new layout. Finally, it outlines the physics studies, design and R and D work required prior to the detailed design and construction of the diagnostic. Key results are: (i) that the localisation of the measurement is similar to that in ITER-FDR (40-100 mm in X-mode, 60-200 mm in O-mode for the reference scenario), so that the relative spatial resolution degrades in this, smaller, machine, and (ii) the expected effect of transport barriers on the temperature profile in the high temperature region will be poorly resolved, because the effect of the temperature gradient on the outboard side is to degrade the resolution to (∼250 mm in X-mode, ∼350 mm in O-mode). Nevertheless ECE will be able to make a unique and useful contribution to the RTO/RC ITER measurement set

  20. Health physics and quality control management of a cyclotron-based PET facility

    International Nuclear Information System (INIS)

    Jerabek, P.A.

    1995-01-01

    This paper provides an overview of the operation and management of a Positron Emission Tomography (PET) facility at the University of Texas. The facility components are discussed from an operations perspective with an emphasis on devices, and on practices and procedures which are implemented to ensure that personnel exposures are as low as reasonably achievable. The cyclotron-based PET facility uses in-house production of PET radioisotopes for preparation of radiopharmaceuticals. A combination of specially designed cyclotron equipped devices, radiopharmaceutical preparation devices, and shielded devices along with health physics practices have helped to make PET operations become routine

  1. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.; Bigler, R.E.

    1978-09-30

    Progress is reported on biomedical studies using cyclotron-produced /sup 18/F, /sup 15/O, /sup 11/C, /sup 13/N, /sup 52/Fe, /sup 38/K, /sup 206/Bi, /sup 73/Se, /sup 53/Co, and /sup 43/K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; /sup 38/K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments. (HLW)

  2. Electron cyclotron resonance plasma photos

    Energy Technology Data Exchange (ETDEWEB)

    Racz, R.; Palinkas, J. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary); University of Debrecen, H-4010 Debrecen, Egyetem ter 1 (Hungary); Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary)

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  3. Electron cyclotron resonance plasma photos

    International Nuclear Information System (INIS)

    Racz, R.; Palinkas, J.; Biri, S.

    2010-01-01

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  4. Channeling experiments at IPNE Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, F; Dumitru, M; Ivan, A [Cyclotron Laboratory, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, R-76900 Bucharest, P.O.Box MG-6, (Romania)

    1992-01-01

    Channeling experiments have been performed at the I.P.N.E Cyclotron using a 3 MeV alpha beam. A slide system cut the beam up to 5 minutes spatial resolution with a maximum 60 nA beam current on the target. The two-axis goniometer, fully computer-controlled, moves the target, a silicon wafer, with 2.5 minute resolution, while an alpha particle sensitive solid state detector, monitors the backscattered particle fluence. In the first stage, channeling appears to be a simple, fast and reliable method for precise monocrystal orientation. A reduction of the host yield by a factor of two allowed impurities and defects to be studied. (Author).

  5. Cyclotron resonance in bilayer graphene.

    Science.gov (United States)

    Henriksen, E A; Jiang, Z; Tung, L-C; Schwartz, M E; Takita, M; Wang, Y-J; Kim, P; Stormer, H L

    2008-02-29

    We present the first measurements of cyclotron resonance of electrons and holes in bilayer graphene. In magnetic fields up to B=18 T, we observe four distinct intraband transitions in both the conduction and valence bands. The transition energies are roughly linear in B between the lowest Landau levels, whereas they follow square root[B] for the higher transitions. This highly unusual behavior represents a change from a parabolic to a linear energy dispersion. The density of states derived from our data generally agrees with the existing lowest order tight binding calculation for bilayer graphene. However, in comparing data to theory, a single set of fitting parameters fails to describe the experimental results.

  6. Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging in Patients With Carcinoma of the Nasopharynx: Diagnostic Accuracy and Impact on Clinical Management

    International Nuclear Information System (INIS)

    Gordin, Arie; Golz, Avishay; Daitzchman, Marcello; Keidar, Zohar; Bar-Shalom, Rachel; Kuten, Abraham; Israel, Ora

    2007-01-01

    Purpose: To assess the value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in patients with nasopharyngeal carcinoma as compared with PET and conventional imaging (CI) alone, and to assess the impact of PET/CT on further clinical management. Methods and Materials: Thirty-three patients with nasopharyngeal carcinoma had 45 PET/CT examinations. The study was a retrospective analysis. Changes in patient care resulting from the PET/CT studies were recorded. Results: Positron emission tomography/computed tomography had sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 92%, 90%, 90%, 90%, and 91%, respectively, as compared with 92%, 65%, 76%, 86%, and 80% for PET and 92%, 15%, 60%, 60%, and 60% for CI. Imaging with PET/CT altered further management of 19 patients (57%). Imaging with PET/CT eliminated the need for previously planned diagnostic procedures in 11 patients, induced a change in the planned therapeutic approach in 5 patients, and guided biopsy to a specific metabolically active area inside an edematous region in 3 patients, thus decreasing the chances for tissue sampling errors and avoiding damage to nonmalignant tissue. Conclusions: In cancer of the nasopharynx, the diagnostic performance of PET/CT is better than that of stand-alone PET or CI. Positron emission tomography/computed tomography had a major impact on further clinical management in 57% of patients

  7. Focusing and bunching of ion beam in axial injection channel of IPHC cyclotron TR24

    Science.gov (United States)

    Adam, T.; Ivanenko, I.; Kazarinov, N.; Osswald, F.; Traykov, E.

    2017-07-01

    The CYRCe cyclotron (CYclotron pour la ReCherche et l’Enseignement) is used at IPHC (Institut Pluridisciplinaire Hubert Curien) for the production of radio-isotopes for diagnostics, medical treatments and fundamental research in radiobiology. The TR24 cyclotron produced and commercialized by ACSI (Canada) delivers a 16-25 MeV proton beam with intensity from few nA up to 500 μA. The solenoidal focusing instead of existing quadrupole one is proposed in this report. The changing of the focusing elements will give the better beam matching with the acceptance of the spiral inflector of the cyclotron. The parameters of the focusing solenoid are found. Additionally, the main parameters of the bunching system are evaluated in the presence of the beam space charge. This system consists of the buncher installed in the axial injection beam line of the cyclotron. The using of the grid-less multi harmonic buncher may increase the accelerated beam current and will give the opportunity to new proton beam applications.

  8. All-magnetic extraction for cyclotron beam reacceleration

    Science.gov (United States)

    Hudson, E.D.; Mallory, M.L.

    1975-07-22

    An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)

  9. Design study of an ultra-compact superconducting cyclotron for isotope production

    Science.gov (United States)

    Smirnov, V.; Vorozhtsov, S.; Vincent, J.

    2014-11-01

    A 12.5 MeV, 25 μA, proton compact superconducting cyclotron for medical isotope production has been designed and is currently in fabrication. The machine is initially aimed at producing 13N ammonia for Positron Emission Tomography (PET) cardiology applications. With an ultra-compact size and cost-effective price point, this system will offer clinicians unprecedented access to the preferred radiopharmaceutical isotope for cardiac PET imaging. A systems approach that carefully balanced the subsystem requirements coupled to precise beam dynamics calculations was followed. The system is designed to irradiate a liquid target internal to the cyclotron and to minimize the need for radiation shielding. The main parameters of the cyclotron, its design, and principal steps of the development work are presented here.

  10. Gaseous radioactive effluent restrictions, measurement, and minimization at a PET/cyclotron facility

    International Nuclear Information System (INIS)

    Plascjak, P.S.; Kim, K.K.; Googins, S.W.; Meyer, W.C. Jr.

    1993-01-01

    In the US, restrictions on the release of radioactive effluents from PET (positron emission tomography)/cyclotron facilities are typically imposed by State regulatory agencies and may be based on various methodologies and limits published by numerous agencies. This work presents suitable effluent concentration limits for various chemical forms of radioisotopes routinely produced in PET/cyclotron facilities. They were determined by application of metabolic models defined by ICRP 53 and ICRP 26/30 which will result in compliance with effective dose equivalent limits of 100 mrem per year at the release point. The NIH Cyclotron Facility effluent air monitoring system, environmental dosimetry program, and simple, effective systems for radioactive effluent minimization are also described. (orig.)

  11. Evaluating real-world CO2 and NOX emissions for public transit buses using a remote wireless on-board diagnostic (OBD) approach.

    Science.gov (United States)

    Yang, Liuhanzi; Zhang, Shaojun; Wu, Ye; Chen, Qizheng; Niu, Tianlin; Huang, Xu; Zhang, Shida; Zhang, Liangjun; Zhou, Yu; Hao, Jiming

    2016-11-01

    The challenge to mitigate real-world emissions from vehicles calls for powerful in-use compliance supervision. The remote on-board diagnostic (OBD) approach, with wireless data communications, is one of the promising next-generation monitoring methods. We collected second-by-second profiles of carbon dioxide (CO 2 ) and nitrogen oxides (NO X ) emissions, driving conditions and engine performance for three conventional diesel and three hybrid diesel buses participating in a remote OBD pilot program in Nanjing, China. Our results showed that the average CO 2 emissions for conventional diesel and hybrid diesel buses were 816 ± 83 g km -1 and 627 ± 54 g km -1 , respectively, under a typical driving pattern. An operating mode binning analysis indicated that CO 2 emissions reduction by series-parallel hybrid technology was largely because of the significant benefits of the technology under the modes of low speed and low power demand. However, significantly higher CO 2 emissions were observed for conventional diesel buses during rush hours, higher than 1200 g km -1 . The OBD data suggested no improvement in NO X emission reduction for hybrid buses compared with conventional buses; both were approximately 12 g km -1 because of poor performance of the selective catalyst reduction (SCR) systems in the real world. Speed-dependent functions for real-world CO 2 and NO X emissions were also constructed. The CO 2 emissions of hybrid buses were much less sensitive to the average speed than conventional buses. If the average speed decreased from 20 km h -1 to 10 km h -1 , the estimated CO 2 emission factor for conventional buses would be increased by 34%. Such a change in speed would increase NO X emissions for conventional and hybrid buses by 38% and 56%, respectively. This paper demonstrates the useful features of the remote OBD system and can inform policy makers how to take advantage of these features in monitoring in-use vehicles. Copyright © 2016 Elsevier

  12. Post transplant urinary tract infection in Autosomal dominant polycystic kidney disease a perpetual diagnostic dilema - 18-fluorodeoxyglucose - Positron emission computerized tomography - A valuable tool

    International Nuclear Information System (INIS)

    Sainaresh, VV; Jain, SH; Patel, HV; Shah, PR; Vanikar, AV; Trivedi, HL

    2011-01-01

    Urinary tract infection (UTI) is the most common infection contracted by renal allograft recipients. In patients of autosomal dominant polycystic kidney disease (ADPKD), cyst infection presents a complex diagnostic and therapeutic challenge especially in the post transplant period. Accurate diagnosis forms the cornerstone in salvaging the graft from potentially catastrophic outcome. We describe a case of xanthogranulomatous pyelonephritis (XPN) in the native kidney in a patient of post transplant ADPKD which presented as frequently relapsing UTI with graft dysfunction where in accurate diagnosis was made possible with the aid of 18-fluorodeoxyglucose (FDG) - Positron emission computerized tomography (PET/CT)

  13. Method and apparatuses for ion cyclotron spectrometry

    Science.gov (United States)

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  14. NORTICA - a new code for cyclotron analysis

    International Nuclear Information System (INIS)

    Gorelov, D.; Johnson, D.; Marti, F.

    2001-01-01

    The new package NORTICA (Numerical ORbit Tracking In Cyclotrons with Analysis) of computer codes for beam dynamics simulations is under development at NSCL. The package was started as a replacement for the code MONSTER developed in the laboratory in the past. The new codes are capable of beam dynamics simulations in both CCF (Coupled Cyclotron Facility) accelerators, the K500 and K1200 superconducting cyclotrons. The general purpose of this package is assisting in setting and tuning the cyclotrons taking into account the main field and extraction channel imperfections. The computer platform for the package is Alpha Station with UNIX operating system and X-Windows graphic interface. A multiple programming language approach was used in order to combine the reliability of the numerical algorithms developed over the long period of time in the laboratory and the friendliness of modern style user interface. This paper describes the capability and features of the codes in the present state

  15. Development of a Medical Cyclotron Production Facility

    Science.gov (United States)

    Allen, Danny R.

    2003-08-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.

  16. Development of a Medical Cyclotron Production Facility

    International Nuclear Information System (INIS)

    Allen, Danny R.

    2003-01-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes

  17. 10 GHz ECRIS for Warsaw Cyclotron

    CERN Document Server

    Sudlitz, K

    1999-01-01

    Cusp type, 10 GHz ECRIS has been built and tested earlier. For obtaining intensive beams, more relevant for cyclotron, cusp geometry has been replaced by hexapole. Discharge chamber (stainless steel, 50 mm diameter, 250 mm long) is an extension of a coaxial line, feeding RF (9,6 GHz, up to 200 W) to the plasma. The NdFeB hexapole (0,52 T on the surface) has been used. The axial magnetic field is created by water cooled coils. The axial injection line dedicated to K160 isochronous heavy ion cyclotron has been constructed. The line consists of Glaser lenses, double focusing magnet, solenoid and mirror type inflector. The system provides sufficient transmission of the beam from ECR ion source to the firsts orbits of the cyclotron for m/q ranging from 7 to 2. After successful initial tests which were done in July 1997 the ECRIS serves as an external source for Warsaw Cyclotron.

  18. Application of superconductivity in cyclotron construction

    International Nuclear Information System (INIS)

    Blosser, H.G.

    1982-01-01

    This paper reviews major concepts and design features of the new class of cyclotrons which use superconducting coils to provide main magnet excitation. The discussion begins with a brief historical review tracing the evolution of these ''superconducting'' cyclotrons and the impact of this application of superconductivity in pushing back traditional cyclotron construction limits. This is followed by a review of the principal phenomena which come into play to set new limits on the operating regime, and the nature of these limits, some of which arise from orbit properties and some of which result from construction intricacies in the coil and in the rf system. Conclusions anticipate a future widely encompassing role in the application of superconductivity to cyclotron

  19. Progress report: Variable Energy Cyclotron Centre, Calcutta

    International Nuclear Information System (INIS)

    1999-01-01

    This volume of the progress report brings out the scientific and technical activities of Variable Energy Cyclotron Centre, Calcutta during the year 1999. This includes brief review of the various R and D activities of the Centre and outside users of the cyclotron from the universities and other research institutes. The operational activities of the cyclotron with ECR ion sources, accelerator oriented research activities, activities on detector, target and electronics are reported. The activities of the Computer and Informatics group are described. The status report of the ongoing projects is also provided. The main activities of the superconducting cyclotron project, radioactive ion beam project, heavy ion experimental facility, advanced computational facility, recovery and analysis of helium from hot springs and material science research are described

  20. Cyclotron/PET project in Uruguay

    International Nuclear Information System (INIS)

    Engler, H.

    2006-01-01

    The Positron Computed Tomography (PET) is a tri dimensional image technique which shows biochemical information. PET is used in neurology and cardiology diseases. The National Center Cyclotron PET has been found to research, development and health science applications.

  1. Cyclotron method for heavy ion acceleration

    International Nuclear Information System (INIS)

    Gikal, B.N.; Gul'bekyan, G.G.; Kutner, V.B.; Oganesyan, R.Ts.

    1984-01-01

    Studies on heavy ion beams in a wide range of masses (up to uranium) and energies disclose essential potential opportunities for solution of both fundamental scientific and significant economical problems. A cyclotron method for heavy ion acceleration is considered. Development of low and medium energy heavy ion accelerators is revealed. The design of a complex comprising two isochronous cyclotrons which is planned to be constrdcted 1n the JINR is described. The cyclotron complex includes the U-400 and the U-400 M cyclotrons and it is intended for acceleration of both 35-20 MeV/nucleon superheavy ions such as Xe-U and 120 MeV/nucleon light ions. Certain systems of the accelerators are described. Prospects of the U-400 and the U-400 M development are displayed

  2. On the origin of cyclotron lines in the spectra of X-ray pulsars

    Directory of Open Access Journals (Sweden)

    Mushtukov A. A.

    2014-01-01

    Full Text Available Cyclotron resonance scattering features are observed in the spectra of some X-ray pulsars and show significant changes in the line energy with the pulsar luminosity. In a case of bright sources, the line centroid energy is anti-correlated with the luminosity. Such a behaviour is often associated with the onset and growth of the accretion column, which is believed to be the origin of the observed emission and the cyclotron lines. However, this scenario inevitably implies large gradient of the magnetic field strength within the line-forming region, and it makes the formation of the observed line-like features problematic. Moreover, the observed variation of the cyclotron line energy is much smaller than could be anticipated for the corresponding luminosity changes. We argue that a more physically realistic situation is that the cyclotron line forms when the radiation emitted by the accretion column is reflected from the neutron star surface. The idea is based on the facts that a substantial part of column luminosity is intercepted by the neutron star surface and the reflected radiation should contain absorption features. The reflection model is developed and applied to explain the observed variations of the cyclotron line energy in a bright X-ray pulsar V 0332+53 over a wide range of luminosities.

  3. RECENT DEVELOPMENTS ON THE 110 GHz ELECTRON CYCLOTRON INSTATLLATION ON THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    PONCE, D.; CALLIS, R.W.; CARY, W.P.; FERRON, J.R.; GREEN, M.; GRUNLOH, H.J.; GORELOV, Y.; LOHR, J.; ELLIS, R.A.

    2002-01-01

    OAK A271 RECENT DEVELOPMENTS ON THE 110 GHZ ELECTRON CYCLOTRON INSTALLATION ON THE DIII-D TOKAMAK. Significant improvements are being implement4ed to the capability of the 110 GHz electron cyclotron system on the DIII-D tokamak. Chief among these is the addition of the fifth and sixth 1 MW class gyrotrons, increasing the power available for auxiliary heating and current drive by nearly 60%. These tubes use artificially grown diamond rf output windows to obtain high power with long pulse capability. The beams from these tubes are nearly Gaussian, facilitating coupling to the waveguide. A new fully articulating dual launcher capable of high speed spatial scanning has been designed and tested. The launcher has two axis independent steering for each waveguide. the mirrors can be rotated at up to 100 o /s. A new feedback system linking the DIII-D Plasma Control System (PCS) with the gyrotron beam voltage waveform generators permits real-time feedback control of some plasma properties such as electron temperature. The PCS can use a variety of plasma monitors to generate its control signal, including electron cyclotron emission and Mirnov probes. Electron cyclotron heating and electron cyclotron current drive (ECH and ECCD) were used during this year's DIII-D experimental campaign to control electron temperature, density, and q profiles, induce an ELM-free H-mode, and suppress the m=2/n=1 neoclassical tearing mode. The new capabilities have expanded the role of EC systems in tokamak plasma control

  4. Progress report on the Milan superconducting cyclotron

    International Nuclear Information System (INIS)

    Acerbi, E.; Alessandria, F.; Baccaglioni, G.; Bellomo, G.; Birattari, C.; Bosotti, A.; Broggi, F.; Cortesi, G.; DeMartinis, C.; Fabrici, E.; Ferrari, A.; Giove, D.; Giussani, A.; Giussani, W.; Michelato, P.; Pagani, C.; Rivoltella, G.; Rossi, L.; Serafini, L.; Sussetto, A.; Torri, V.; Varisco, G.; Cuttone, G.; Raia, G.; Kai, L.

    1988-01-01

    This paper reports on the construction of the K800 superconducting cyclotron at the University of Milan underway since February 1981. The delay in the construction of the new building and a defect of the weldings of the helium vessel have caused a shift in the project schedule of about two years. Currently, the cyclotron magnet and the cryogenic plant have been completed and installed. First operation of the magnet and magnetic field mapping are to begin shortly

  5. Building 211 cyclotron characterization survey report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-30

    The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.

  6. NIRS-Chiba isochronous cyclotron 1975

    International Nuclear Information System (INIS)

    Ogawa, H.; Kumamoto, Y.; Yamada, T.; Hiramoto, T.

    1976-02-01

    The cyclotron facility installed according to the recommendation of the Atomic Energy Committee of Japan is used for neutron therapy and production of short-lived radioisotopes. Construction on the facility was started in the autumn of 1972, and completed in March 1974. Described are the following: beam transport and the experimental hall, machine research and improvement, machine time sharing and the particles and energies, characteristics of the cyclotron, and facility personnel. (auth.)

  7. Initial operation of the cyclotron CYTRACK

    International Nuclear Information System (INIS)

    Denisov, Yu.N.; Dolya, S.N.; Kalinichenko, V.V.; Karamysheva, G.A.; Kostromin, S.A.; Fedorenko, S.B.

    2005-01-01

    The industrial cyclotron CYTRACK is dedicated to produce the track membranes. It is the basic instrument for the industry of membrane products to be consumed in medicine, biotechnology, pharmacology, microelectronics and many other industries. Cyclotron CYTRACK started working in August 2002. Argon ions were accelerated to the project energy - 2.4 MeV/nucleon, the extracted beam intensity was about 200 nA, the extraction efficiency totaled ∼50%

  8. Cyclotron beam dynamic simulations in MATLAB

    International Nuclear Information System (INIS)

    Karamysheva, G.A.; Karamyshev, O.V.; Lepkina, O.E.

    2008-01-01

    MATLAB is useful for beam dynamic simulations in cyclotrons. Programming in an easy-to-use environment permits creation of models in a short space of time. Advanced graphical tools of MATLAB give good visualization features to created models. The beam dynamic modeling results with an example of two different cyclotron designs are presented. Programming with MATLAB opens wide possibilities of the development of the complex program, able to perform complete block of calculations for the design of the accelerators

  9. MID-INFRARED PROPERTIES OF THE SWIFT BURST ALERT TELESCOPE ACTIVE GALACTIC NUCLEI SAMPLE OF THE LOCAL UNIVERSE. I. EMISSION-LINE DIAGNOSTICS

    International Nuclear Information System (INIS)

    Weaver, K. A.; Melendez, M.; Mushotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth, E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; Winter, L. M.; Armus, L.

    2010-01-01

    We compare mid-infrared emission-line properties from high-resolution Spitzer spectra of a hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) active galactic nuclei (AGNs) detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission lines, [O IV] 25.89 μm, [Ne II] 12.81 μm, [Ne III] 15.56 μm, and [Ne V] 14.32/24.32 μm, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations; however, six newly discovered BAT AGNs are under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT fluxes and luminosities suggests that the emission lines primarily arise in gas ionized by the AGNs. We also compare the mid-infrared emission lines in the BAT AGNs with those from published studies of ULIRGs, Palomar-Green quasars, star-forming galaxies, and LINERs. We find that the BAT AGN sample falls into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] ratios. These line ratios are lower in sources that have been previously classified in the mid-infrared/optical as AGNs than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGNs represent the main contribution to the observed line emission. These ratios represent a new emission line diagnostic for distinguishing between AGNs and star-forming galaxies.

  10. Cyclotron vault design for PET complex of C CSR

    International Nuclear Information System (INIS)

    Fiilop, M.

    2004-01-01

    The Cyclotron center of the Slovak Republic will be built in two building (pavilion I and J), In the pavilion I there is planed to build up a complex for production, research and application of positron radiopharmaceuticals for PET (Positron Emission Tomography). Production of radiopharmaceuticals for SPECT (Single Photon Emission Computerized Tomography) and radiotherapy is situated in the pavilion J of Slovak Institute of Metrology. The radiation protection of personal and inhabitants against ionizing radiation in the PET Complex is solved with regard to the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources [1], ICRP recommendations [2] and Slovak regulatory system, protection rules and criteria and optimization of radiation protection

  11. Theoretical and experimental study of cyclotronic waves in a fusion plasma; Etude theorique et experimentale des ondes cyclotroniques electroniques dans un plasma de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Vezard, D

    1994-12-20

    This thesis presents a study concerning cyclotronic waves in a plasma. It starts with an illustration of the elementary interaction between electromagnetic waves and matter.It shows that electrons from tokamak absorbs waves at cyclotronic frequency. Cyclotronic waves are studied by solving the dispersion relation in plasma; it concerns polarisation, absorption, dispersion, extinction. Then, classical theories are reminded in order to speak about decoupled electrons and their interactions. Absorption and emission properties of cyclotronic waves by electrons from a queue are described. After that, cyclotronic waves propagation is studied taking into account resonance. The last part of this thesis is dedicated to the electronic distribution function that is made by a wave spectra at a inferior hybrid frequency. (TEC). 129 refs., 75 figs.

  12. Papers presented at the Tenth Topical Conference on High-Temperature Plasma Diagnostics

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains papers on the following topics: Effects of limited spatial resolution on fluctuation measurements; vertical viewing of electron-cyclotron radiation in Text-U; measurement of temperature fluctuations from electron-cyclotron emission; a varying cross section magnetic coil diagnostic used in digital feedback control of plasma position in Text-Upgrade; high-sensitivity, high resolution measurements of radiated power on Text-U; wave launching as a diagnostic tool to investigate plasma turbulence; edge parameters from an energy analyzer and particle transport on Text-U; initial results from a charge exchange q-Diagnostic on Text-U; a method for neutral spectra analysis taking ripple-trapped particle losses into account; application of a three sample volume S(k,ω ) estimate to optical measurements of turbulence on Text; initial operation of the 2D Firsis on Text-Upgrade; horizontal-view interferometer on Text-Upgrade; plasma potential measurements on Text-Upgrade with A 2 MeV heavy ion beam; fluctuation measurements using the 2 MeV heavy ion beam probe on Text-U; the time domain triple probe method; a phase contrast imaging system for Text-U; and development of rugged corner cube detectors for the Text-U-Fir interferometer. These papers have been placed on the database elsewhere

  13. Ion-cyclotron-resonance- and Fourier-transform-ion-cyclotron-resonance spectroscopy: technology and application

    International Nuclear Information System (INIS)

    Luederwald, I.

    1977-01-01

    Instrumentation and technology of Ion-Cyclotron-Resonance and Fourier-Transform-Ion-Cyclotron-Resonance Spectroscopy are described. The method can be applied to studies of ion/molecule reactions in gas phase, to obtain thermodynamic data as gas phase acidity or basicity, proton and electron affinity, and to establish reaction mechanisms and ion structures. (orig.) [de

  14. 57 Co produced in cyclotron

    International Nuclear Information System (INIS)

    Landini, Liliane; Osso Junior, Joao Alberto

    2000-01-01

    The Cyclotron CV-28 of IPEN-CNEN/SP is a particle accelerator, used mainly in the radioisotope production, applied in 'in vivo' diagnosis in nuclear medicine. Some of them are employed in the calibration of Diagnosis equipment, such as gamma and X-rays detectors. Co-57 is an example of this application. A natural nickel foil was used as target and irradiated with proton beams of 24 MeV energy. The radioactivity analysis of the irradiated target was performed by Gamma Spectroscopy with a HPGe detector. A 259,74MBq (7,02 mCi) Co-57 source was prepared, 67 days after the last bombardment, with impurity levels of 1.13% for Co-56 and 1.29% for Co-58. The thick target yields for Co-57 and for the main radionuclidic impurities were measured, after the chemical separation of the irradiated target, extrapolated to the last EOB: 1.076 MBq (29.09 mCi)/mA.h, 0.012 MBq (0.33 mCi)/mA.h and 0.014 MBq (0.37 mCi)/mA.h, for Co-57, Co-56 and Co-58, respectively. (author)

  15. Electron cyclotron heating of plasmas

    International Nuclear Information System (INIS)

    Guest, Gareth

    2009-01-01

    As nuclear fusion becomes an increasingly important potential energy source in these times of global oil and energy crises, the development of technologies that can lead to the realization of this virtually inexhaustible source of energy takes on ever greater urgency. Over the past decade electron cyclotron heating has undergone a significant maturation and has emerged as an essential component of the major approaches to achieving controlled nuclear fusion. The gyrotron, first developed in the Soviet Union, has made it possible to employ ECH in large tokamak and stellarator fusion devices by providing megawatts of microwave power at frequencies above 100 GHz. A contemporary VGT-8110 gyrotron, for example, shown here with Kevin Felch and Pat Cahalan of Communications and Power Industries, is capable of delivering 10 second pulses of 1 MW of power at 110 GHz. The present monograph addresses the ECH physics critical to the international fusion reactor experiment, ITER, but also presents the fundamentals of ECH that are essential to its successful implementation in applications that range from active experiments in planetary magnetospheres to commercial plasma sources for the manufacture of computer chips. The book seeks to convey the physics of ECH in an orderly and coherent fashion to a professional audience by presenting the basic theoretical foundations and then using the theory to interpret a number of established experimental results. Exercises are included to aid the reader in making the theory more concrete. (orig.)

  16. Cyclotron tubes - a theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Mourier, G

    1980-12-01

    The introduction presents a general discussion of electron cyclotron masers (ECM): resonance, relativistic effects, elementary quantum aspects, the classical relativistic bunching and the optimum value of the electric field. The practical structure - in particular that of the gyrotron - is specified only insofar as it is useful for understanding the following chapters. The main parameters are discussed. Section 2 develops a nonlinear adiabatic or orbital theory of electron motion which alleviates calculations considerably while keeping numerical errors low enough for many practical cases. Its results are compared to a rigorous integration in one case. Other cases show the importance of the electric field profile inside the resonant cavity. Section 3 is devoted to space charge phenomena, and, for the most part, to a linear theory with space charge. In its limited range of validity (low-energy electrons), the theory indicates a strong impact of space charge for low a.c. fields and exhibits a pure beam instability. Section 4 is devoted to circuit equations with emphasis on the special features of cavities consisting of a long waveguide near cutoff. The conclusion indicates some trends of gyrotron development and corresponding theoretical problems.

  17. Diagnostic Performance of a Cadmium-Zinc-Telluride Single-Photon Emission Computed Tomography System With Low-Dose Technetium-99m as Assessed by Fractional Flow Reserve.

    Science.gov (United States)

    Chikamori, Taishiro; Hida, Satoshi; Tanaka, Nobuhiro; Igarashi, Yuko; Yamashita, Jun; Shiba, Chie; Murata, Naotaka; Hoshino, Kou; Hokama, Yohei; Yamashina, Akira

    2016-04-25

    Although stress single-photon emission computed tomography (SPECT) using a cadmium-zinc-telluride (CZT) camera facilitates radiation dose reduction, only a few studies have evaluated its diagnostic accuracy in Japanese patients by applying fractional flow reserve (FFR) measurements. We prospectively evaluated 102 consecutive patients with suspected or known coronary artery disease with a low-dose stress/rest protocol ((99m)Tc radiotracer 185/370 MBq) using CZT SPECT. Within 3 months, coronary angiography was performed and a significant stenosis was defined as ≥90% diameter narrowing on visual estimation, or as a lesion of <90% and ≥ 50% stenosis with FFR ≤0.80. To detect individual coronary stenosis, the respective sensitivity, specificity, and accuracy were 86%, 75%, and 82% for left anterior descending artery stenosis, 76%, 81%, and 79% for left circumflex artery stenosis, and 87%, 92%, and 90% for right coronary artery stenosis. When limited to 92 intermediate stenotic lesions in which FFR was measured, stress SPECT showed 77% sensitivity, 91% specificity, and 84% accuracy, whereas the diagnostic value decreased to 52% sensitivity, 68% specificity, and 58% accuracy based only on visual estimation of ≥75% diameter narrowing. CZT SPECT demonstrated a good diagnostic yield in detecting hemodynamically significant coronary stenoses as assessed by FFR, even when using a low-dose (99m)Tc protocol with an effective dose ≤5 mSv. (Circ J 2016; 80: 1217-1224).

  18. A direct indication of plasma potential diagnostic with fast time response and high accuracy based on a differential emissive probe

    International Nuclear Information System (INIS)

    Yao, W.E.; Hershkowitz; Intrator, T.

    1985-01-01

    The floating potential of the emissive probe has been used to directly measure the plasma potential. The authors have recently presented another method for directly indicating the plasma potential with a differential emissive probe. In this paper they describe the effects of probe size, plasma density and plasma potential fluctuation on plasma potential measurements and give methods for reducing errors. A control system with fast time response (α 20 μs) and high accuracy (the order of the probe temperature T/sub w//e) for maintaining a differential emissive probe at plasma potential has been developed. It can be operated in pulsed discharge plasma to measure plasma potential dynamic characteristics. A solid state optical coupler is employed to improve circuit performance. This system was tested experimentally by measuring the plasma potential in an argon plasma device an on the Phaedrus tandem mirror

  19. A direct indication of plasma potential diagnostic with fast time response and high accuracy based on a differential emissive probe

    International Nuclear Information System (INIS)

    Yao, W.E.; Hershkowitz, N.; Intrator, T.

    1985-01-01

    The floating potential of the emissive probe has been used to directly measure the plasma potential. The authors have recently presented another method for directly indicating the plasma potential with a differential emissive probe. In this paper they describe the effects of probe size, plasma density and plasma potential fluctuation on plasma potential measurements and give methods for reducing errors. A control system with fast time response (≅ 20 μs) and high accuracy (the order of the probe temperature T/sub w//e) for maintaining a differential emissive probe at plasma potential has been developed. It can be operated in pulsed discharge plasma to measure plasma potential dynamic characteristics. A solid state optical coupler is employed to improve circuit performance. This system was tested experimentally by measuring the plasma potential in an argon plasma device and on the Phaedrus tandem mirror

  20. Cyclotron facilities in Brazil: Current status and licensing aspects

    International Nuclear Information System (INIS)

    Facure, A.; Carvalho, S.M.; Di Prinzio, R.; Silveira, C.S.; Gasparian, P.B.R.; Franca, W.F.

    2017-01-01

    Positron Emission Tomography (PET) is a highly sensitive and accurate nuclear medicine imaging technology but the major problem of this technique is the use of radioisotopes with short half-life, less than two hours. The production and selling of short half-life radioisotopes used to be monopoly of the Brazilian Government. In 2006, a Constitutional Amendment revoked the state monopoly due to the need for the use of short half-life radioisotopes in nuclear medicine centers very far from the government production facilities. The aim of this study is to describe the current status of short half-life radioisotopes production in Brazil and discuss some licensing process. In Brazil, as has been occurring worldwide, the number of nuclear medicine centers is increasing. Currently there are 123 services performing PET scans in Brazil. There are 14 cyclotrons operating in Brazil. The type of licensing process conducted in Brazil does not take into account the population density of each state, with a free competition model being adopted. Because of this there is a lot of equipment concentrated in the Southeast and no cyclotrons operating in the Northern part of the country. One of the biggest obstacles during the licensing process is the designation of qualified personnel as operation workers and radiation safety officers. The number of cyclotron accelerators and PET/CT equipment increased in recent years. However, a number of external factors such as the distance from the nuclear medicine centers, and qualified personnel have proved crucial for the economic viability of this type of facility. (author)

  1. Cyclotron facilities in Brazil: Current status and licensing aspects

    Energy Technology Data Exchange (ETDEWEB)

    Facure, A.; Carvalho, S.M.; Di Prinzio, R.; Silveira, C.S.; Gasparian, P.B.R.; Franca, W.F., E-mail: facure@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-09-01

    Positron Emission Tomography (PET) is a highly sensitive and accurate nuclear medicine imaging technology but the major problem of this technique is the use of radioisotopes with short half-life, less than two hours. The production and selling of short half-life radioisotopes used to be monopoly of the Brazilian Government. In 2006, a Constitutional Amendment revoked the state monopoly due to the need for the use of short half-life radioisotopes in nuclear medicine centers very far from the government production facilities. The aim of this study is to describe the current status of short half-life radioisotopes production in Brazil and discuss some licensing process. In Brazil, as has been occurring worldwide, the number of nuclear medicine centers is increasing. Currently there are 123 services performing PET scans in Brazil. There are 14 cyclotrons operating in Brazil. The type of licensing process conducted in Brazil does not take into account the population density of each state, with a free competition model being adopted. Because of this there is a lot of equipment concentrated in the Southeast and no cyclotrons operating in the Northern part of the country. One of the biggest obstacles during the licensing process is the designation of qualified personnel as operation workers and radiation safety officers. The number of cyclotron accelerators and PET/CT equipment increased in recent years. However, a number of external factors such as the distance from the nuclear medicine centers, and qualified personnel have proved crucial for the economic viability of this type of facility. (author)

  2. SDSS-IV MaNGA: the impact of diffuse ionized gas on emission-line ratios, interpretation of diagnostic diagrams and gas metallicity measurements

    Science.gov (United States)

    Zhang, Kai; Yan, Renbin; Bundy, Kevin; Bershady, Matthew; Haffner, L. Matthew; Walterbos, René; Maiolino, Roberto; Tremonti, Christy; Thomas, Daniel; Drory, Niv; Jones, Amy; Belfiore, Francesco; Sánchez, Sebastian F.; Diamond-Stanic, Aleksandar M.; Bizyaev, Dmitry; Nitschelm, Christian; Andrews, Brett; Brinkmann, Jon; Brownstein, Joel R.; Cheung, Edmond; Li, Cheng; Law, David R.; Roman Lopes, Alexandre; Oravetz, Daniel; Pan, Kaike; Storchi Bergmann, Thaisa; Simmons, Audrey

    2017-04-01

    Diffuse ionized gas (DIG) is prevalent in star-forming galaxies. Using a sample of 365 nearly face-on star-forming galaxies observed by Mapping Nearby Galaxies at APO, we demonstrate how DIG in star-forming galaxies impacts the measurements of emission-line ratios, hence the interpretation of diagnostic diagrams and gas-phase metallicity measurements. At fixed metallicity, DIG-dominated low ΣHα regions display enhanced [S II]/Hα, [N II]/Hα, [O II]/Hβ and [O I]/Hα. The gradients in these line ratios are determined by metallicity gradients and ΣHα. In line ratio diagnostic diagrams, contamination by DIG moves H II regions towards composite or low-ionization nuclear emission-line region (LI(N)ER)-like regions. A harder ionizing spectrum is needed to explain DIG line ratios. Leaky H II region models can only shift line ratios slightly relative to H II region models, and thus fail to explain the composite/LI(N)ER line ratios displayed by DIG. Our result favours ionization by evolved stars as a major ionization source for DIG with LI(N)ER-like emission. DIG can significantly bias the measurement of gas metallicity and metallicity gradients derived using strong-line methods. Metallicities derived using N2O2 are optimal because they exhibit the smallest bias and error. Using O3N2, R23, N2 = [N II]/Hα and N2S2Hα to derive metallicities introduces bias in the derived metallicity gradients as large as the gradient itself. The strong-line method of Blanc et al. (IZI hereafter) cannot be applied to DIG to get an accurate metallicity because it currently contains only H II region models that fail to describe the DIG.

  3. Diagnostics of pre-breakdown light emission in a helium coplanar barrier discharge: the presence of neutral bremsstrahlung

    Science.gov (United States)

    Navrátil, Zdeněk; Morávek, Tomáš; Ráheľ, Jozef; Čech, Jan; Lalinský, Ondřej; Trunec, David

    2017-05-01

    Weak light emission (˜10-3 of active discharge signal; average count rate ˜ 1 photon s-1 nm-1) associated with surface charge relaxation during the dark phase of a helium diffuse coplanar barrier discharge was studied by optical emission spectroscopy, using a technique of phase-resolved single photon counting. The optical emission spectra of the dark phase contained luminescent bands of the dielectrics used (Al2O3, AlN) and spectral lines from the gas constituents (OH*, {{{N}}}2* , {{{N}}}2+* , He*, He{}2* , O*). During the charge relaxation event, a broad continuum appeared in the optical emission spectra, consisting of bremsstrahlung radiation and amplified luminescence of the dielectric barrier. The analysis presented suggests that the bremsstrahlung radiation originated from slow electrons colliding with neutral helium atoms. The fitting procedure we developed reproduced well the observed shape of the continuum. Moreover, it provided a method for the determination of electric field strength in the discharge during this particular phase. The electric field reached 1 kV cm-1 during the charge relaxation event.

  4. Clinical applications of positron emission tomography at Montreal Neurological Institute

    International Nuclear Information System (INIS)

    Morgan, P.P.

    1983-01-01

    The Montreal Neurological Institute occupies a leading position in positron emission tomography (PET) of the brain with the help of the following three techological gains: they have acquired a 'Therascan' positron emission tomograph manufactured by Atomic Energy of Canada Ltd.; also, a 'Baby Cyclotron' manufactured by Japan Steel Works Ltd.; and they have written a computer program to display the results in colour. Four short-lived isotopes are used; 11 C, 15 O, 18 F, 13 N. Studies of the oxygen uptake of tumours, their glucose metabolism (as monitored by 18 F labelled 2-fluoro-2-deoxyglucose), and their uptake of therapeutic agents, provide valuable research and diagnostic information. PET is also being used to study epilepsy and cerebrovascular disease

  5. Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: a receiver operating characteristic analysis

    International Nuclear Information System (INIS)

    Fintel, D.J.; Links, J.M.; Brinker, J.A.; Frank, T.L.; Parker, M.; Becker, L.C.

    1989-01-01

    Qualitative interpretation of tomographic and planar scintigrams, a five point rating scale and receiver operating characteristic analysis were utilized to compare single photon emission computed tomography and conventional planar imaging of myocardial thallium-201 uptake in the accuracy of the diagnosis of coronary artery disease and individual vessel involvement. One hundred twelve patients undergoing cardiac catheterization and 23 normal volunteers performed symptom-limited treadmill exercise, followed by stress and redistribution imaging by both tomographic and planar techniques, with the order determined randomly. Paired receiver operating characteristic curves revealed that single photon emission computed tomography was more accurate than planar imaging over the entire range of decision thresholds for the overall detection and exclusion of coronary artery disease and involvement of the left anterior descending and left circumflex coronary arteries. Tomography offered relatively greater advantages in male patients and in patients with milder forms of coronary artery disease, who had no prior myocardial infarction, only single vessel involvement or no lesion greater than or equal to 50 to 69%. Tomography did not appear to provide improved diagnosis in women or in detection of disease in the right coronary artery. Although overall detection of coronary artery disease was not improved in patients with prior myocardial infarction, tomography provided improved identification of normal and abnormal vascular regions. These results indicate that single photon emission computed tomography provides improved diagnostic performance compared with planar imaging in many clinical subgroups

  6. A real-time intercepting beam-profile monitor for a medical cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Hendriks, C.; Uittenbosch, T.; Cameron, D.; Kellogg, S.; Gray, D.; Buckley, K.; Schaffer, P.; Verzilov, V.; Hoehr, C. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada)

    2013-11-15

    There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.

  7. Three-wave interaction during electron cyclotron resonance heating and current drive

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Jacobsen, Asger Schou; Hansen, Søren Kjer

    2016-01-01

    Non-linear wave-wave interactions in fusion plasmas, such as the parametric decay instability (PDI) of gyrotron radiation, can potentially hamper the use of microwave diagnostics. Here we report on anomalous scattering in the ASDEX Upgrade tokamak during electron cyclotron resonance heating...... experiments. The observations can be linked to parametric decay of the gyrotron radiation at the second harmonic upper hybrid resonance layer....

  8. Neutron radiography by using JSW baby cyclotron

    International Nuclear Information System (INIS)

    Toda, Yojiro

    1995-01-01

    At present, JSW baby cyclotrons are mostly used for the production of the radioisotopes for medical use. The attempt to use this baby cyclotron for neutron radiography began already in 1981. The feasibility of the neutron radiography for the explosives in metallic cases which are used for H1 rockets was investigated. In 1983, it was shown that the neutron radiography by using the baby cyclotron in Muroran Works, Japan Steel Works, Ltd. was able to be carried out as a routine work. Since then, the nondestructive inspection by neutron radiography has been performed for rocket pyrotechnic articles, and contributed to heighten their reliability. Further, the radiography by using fast neutrons was developed and put to practical use for recent large H2 rockets. The JSW baby cyclotron BC 168 which has been used for neutron radiography can accelerate 16 MeV protons or 8 MeV deuterons up to 50 μA. The principle of thermal neutron radiography is the generation of fast neutrons by irradiating a Be target with the proton beam accelerated by a baby cyclotron, the moderation of the fast neutrons, the formation of the thermal neutron flux of uniform distribution with a collimator, the thermal neutron flux hitting the Gd plate in a film cassette through an object, and the exposure of an X-ray film to electrons from the Gd plate. Fast neutron radiography apparatus, and commercial neutron radiography are described. (K.I.)

  9. 83-inch cyclotron research program. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.C.

    1983-07-01

    In June of 1960 the US Atomic Energy Commission authorized the construction of a modern variable energy cyclotron facility at The University of Michigan to be used for research in nuclear spectroscopy. The Legislature of the State of Michigan made available funds for construction of a building to house the 83-inch cyclotron and auxiliary equipment as well as the University's remodeled 42-inch cyclotron. The research program centered around the 83-inch cyclotron was funded by the AEC and its successors, the Energy Research and Development Administration (ERDA) and the Department of Energy (DOE), from September 1964 through March 1977. The program represented a continuation of the research effort using the 42-inch cyclotron facility which had been supported continuously by the AEC since February 1950. This final report to DOE briefly describes the research facility, the research program, and highlights the principal accomplishments of the effort. It begins with a historical note to place this effort within the context of nuclear physics research in the Department of Physics of the University of Michigan

  10. Low energy cyclotron for radiocarbon dating

    International Nuclear Information System (INIS)

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity 14 C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate 14 C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect 14 C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible

  11. Recycling and recommissioning a used biomedical cyclotron

    International Nuclear Information System (INIS)

    Carroll, L.R.; Ramsey, F.; Armbruster, J.; Montenero, M.

    2001-01-01

    Biomedical Cyclotrons have a very long life, but there eventually comes a time when any piece of equipment has to be retired from service. From time to time, we have the opportunity to help find new homes for used cyclotrons which, with relatively modest overhaul and refurbishment, can have many additional years of productive service, and thus represent a very valuable asset. The reasons for retiring a cyclotron vary, of course, but in our experience it is often due to an institution's changing priorities or changing needs, rather than the due to any fundamental age-related deficiency in the cyclotron itself. In this paper we will report on the relocation and successful restoration of a used TCC CP-42 cyclotron, which was moved from M.D. Anderson Hospital in Houston to Denton, Texas in early 1998, where it is presently being used for R and D and commercial production of biomedical isotopes. Ownership of the machine has been transferred to the University of North Texas; facility, manpower, and operational resources are provided by International Isotopes, Inc

  12. Plasma heating by radiofrequency in the electron cyclotron resonance (ECR)

    International Nuclear Information System (INIS)

    Cunha Raposo, C. da; Aihara, S.; Universidade Estadual de Campinas

    1982-01-01

    The characteristics of the experimental set-up mounted in the Physical Institute of UFF (Brazil) to produce the gas ionization by radio-frequency are shown and its behaviour when confined by a mirror-geometry magnetic field is studied. The diagnostic is made by a langmuir probe and a prisme spectrogaph is used in order to verify the nature of the ionized helium gas and the degree of purity through its spectral lines. The argon ionization by R.f. is produced in the 'LISA' machine obtain a plasma column of approximatelly 60 cm length and with the Langmuir probe the study of the profile distribution of the plasma parameters such as: electron temperature and density and floating potencial in function of the magnetic field variation is made. The main focus is given to the fundamental electron cyclotron resonance (ECR). A new expression on the ion saturation current (I sub(is)) produced by radiofrequency is developed. (L.C.) [pt

  13. RF current generation near the ion cyclotron frequency

    International Nuclear Information System (INIS)

    Watkins, J.G.

    1982-01-01

    An experiment has been conducted to measure unipolar currents driven by directional radio frequency waves in a cylindrical plasma mirror machine near the ion cyclotron frequency. The directional waves were launched using a four phase helical coupler which allowed the selection of both azimuthal mode number (m = +1) and direction of wave propagation. Plasma diagnostics include electron density measurements (4 mm microwave interferometer), electron temperature measurements (floating double probe), wave amplitude and coupling measurements (magnetic probes). RF power measurements (RF voltage and current probes) and RF driven plasma current measurements (Rogowski loops and current transformers). End electrodes provided a necessary external return path and an alternate method for measuring the current. Theoretical work includes an analytic approximation to the nonlinear problem of a particle in a traveling wave and computer simulations that extend this result. Nonlinear particle drifts other than trapping were found both with and without the presence of particle collisions

  14. THE ROLE OF THE CYCLOTRON IN MEDICAL RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Joseph G.

    1950-04-19

    The uses of radioactive isotopes in medical research can be conveniently divided into three principal categories; namely, the applications as tracers for the study of metabolic phenomena, as diagnostic aids in clinical medicine, and finally their role in therapy. Frequently radioisotopes available from the chain-reacting pile do not have a sufficient degree of specific activity for satisfactory use. A number of radioisotopes which can be produced with high specific activity in the pile possess half-lives too short to be of any practical value. Then, there are a few cases in which the desired radioisotope may be made in the pile with high specific activity, but concomitantly there is formed another radioisotope of the same element whose half-life is of such duration as to render its use hazardous in man. Finally, there are several elements of biological and medical interest whose radioactive isotopes can be produced only by the cyclotron.

  15. Space- and time-resolved diagnostic of line emission from the separatrix region in JET X-point plasmas

    International Nuclear Information System (INIS)

    Chabert, P.; Breton, C.; DeMichelis, C.; Mattioli, M.; Ramette, J.; Saoutic, B.; Denne, B.; Giannella, R.; Gottardi, N.; Magyar, G.

    1989-01-01

    The SPEX GISMO VUV spectrometer installed on JET has appeared to be appropriate to study the impurities radiation during X-point operation. Preliminary results have been obtained with 2 of the 3 spectrometers. They concern mainly the light impurities emission, CIII, O VI in the vicinity of the X-point during the transition from L to H mode. The results are reported for both single X and double X discharges and future prospects are assessed. (author) 4 refs., 6 figs

  16. Radiation shielding and health physics instrumentation for PET medical cyclotrons

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: Modern Medical Cyclotrons produce a variety of short-lived positron emitting PET radioisotopes, and as a result are the source of intense neutron and gamma radiations. Since such cyclotrons are housed within hospitals or medical clinics, there is significant potential for un-intentional exposure to staff or patients in proximity to cyclotron facilities. Consequently, the radiological hazards associated with Cyclotrons provide the impetus for an effective radiological shielding and continuous monitoring of various radiation levels in the cyclotron environment. Management of radiological hazards is of paramount importance for the safe operation of a Medical Cyclotron facility. This work summarised the methods of shielding calculations for a compact hospital based Medical Cyclotron currently operating in Canada, USA and Australia. The design principle and operational history of a real-time health physics monitoring system (Watchdog) operating at a large multi-energy Medical Cyclotron is also highlighted

  17. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, P.J.A. [Birmingham Univ. (United Kingdom); Adams, J.M.; Bond, D.S.; Watkins, N. [AEA Technology, Harwell (United Kingdom); Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-12-31

    Ion Cyclotron Resonant Heating (ICRH) that is tuned to minority fuel ions can induce an energy diffusion of the heated species and create high energy tail temperatures of {approx} 1 MeV. The most energetic of these accelerated minority ions can undergo nuclear reactions with impurity Be and C that produces {gamma}-ray emission from the decay of the excited product nuclei. This RF-induced {gamma}-ray emission has been recorded using the JET neutron emission profile diagnostic which is capable of distinguishing neutrons and {gamma}-rays. Appropriate data processing has enabled the RF-induced {gamma}-ray emission signals to be isolated from the {gamma}-ray emission signals associated with neutron interactions in the material surrounding the profile monitor. The 2-d {gamma}-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. (author) 6 refs., 4 figs.

  18. Statistical fluctuations in cooperative cyclotron radiation

    Science.gov (United States)

    Anishchenko, S. V.; Baryshevsky, V. G.

    2018-01-01

    Shot noise is the cause of statistical fluctuations in cooperative cyclotron radiation generated by an ensemble of electrons oscillating in magnetic field. Autophasing time - the time required for the cooperative cyclotron radiation power to peak - is the critical parameter characterizing the dynamics of electron-oscillators interacting via the radiation field. It is shown that premodulation of charged particles leads to a considerable narrowing of the autophasing time distribution function for which the analytic expression is obtained. When the number of particles Ne exceeds a certain value that depends on the degree to which the particles have been premodulated, the relative root-mean-square deviation (RMSD) of the autophasing time δT changes from a logarithmic dependence on Ne (δT ∼ 1 / lnNe) to square-root (δT ∼ 1 /√{Ne }). A slight energy spread (∼4%) results in a twofold drop of the maximum attainable power of cooperative cyclotron radiation.

  19. Decommissioning analyzis of a university cyclotron

    International Nuclear Information System (INIS)

    Eggermont, G.X.; Buls, N.; Hermanne, A.

    1996-01-01

    In the widespread use of some medical nuclear facilities, such as cyclotrons for isotope production, Life cycle analyzis, including decommissioning, was not taken into account. The structural materials of an accelerator and the concrete shielding of the bunker are activated by neutrons. This could yield a considerable volume of nuclear waste and needs radiation protection concern for occupational workers and the environment during some decennia. At the university of Brussels (WB) a prospective radiation protection and waste analyzis is being made for the later decommissioning of their cyclotron. Only few similar studies have been published. In Belgium future nuclear dismantling operations will be submitted to a radiation protection authorization procedure. Meanwhile the nuclear waste authorities insist on dismantling planning, including financial provisioning. An optimization exercise was made at the VUB-cyclotron, taking into account international trends to clearance levels for low level nuclear waste. Conceptual prevention opportunities e.g. selective material choice could be identified for future accelerator constructions. (author)

  20. Scientific instruments, scientific progress and the cyclotron

    International Nuclear Information System (INIS)

    Baird, David; Faust, Thomas

    1990-01-01

    Philosophers speak of science in terms of theory and experiment, yet when they speak of the progress of scientific knowledge they speak in terms of theory alone. In this article it is claimed that scientific knowledge consists of, among other things, scientific instruments and instrumental techniques and not simply of some kind of justified beliefs. It is argued that one aspect of scientific progress can be characterized relatively straightforwardly - the accumulation of new scientific instruments. The development of the cyclotron is taken to illustrate this point. Eight different activities which promoted the successful completion of the cyclotron are recognised. The importance is in the machine rather than the experiments which could be run on it and the focus is on how the cyclotron came into being, not how it was subsequently used. The completed instrument is seen as a useful unit of scientific progress in its own right. (UK)

  1. A Study of Ignition Effects on Thruster Performance of a Multi-Electrode Capillary Discharge Using Visible Emission Spectroscopy Diagnostics

    Science.gov (United States)

    2009-09-01

    there was only a stack of journal articles on my desk. The bulk of this work, like most other research experiments, is based on the diagnostics. I was...capillary setup there are other facter involved. Looking at the inner edge of the cathode at the exit plan, a curled jagged edge was observed, similar...a full collapse. The lip seal at the cathode ripped and caused more damage, and mass loss, to the cathode. In addition a hole was made close to the

  2. Radiation exposure to workers at cyclotron facilities

    International Nuclear Information System (INIS)

    Ribeiro, M.S.; Sanches, M.P.; Sanchez, A.S.; Rodrigues, D.L.

    2001-01-01

    Radiopharmaceuticals quickly furnish the information doctors need to establish a precise diagnosis of the patient's condition, and therefore to prescribe the most effective therapy. In cancerology, F18-FDG, the most widely used PET imaging tracer, excels in the early detection of cancer tumors, even very tiny ones, which it locates and clearly distinguishes from healthy surrounding tissues. IPEN-CNEN/SP has two cyclotron accelerators used mainly for radioisotope production to be utilized in nuclear medicine for diagnosis and therapy. The first is a CV-28 cyclotron, variable energy that came into operation in 1982, which was used to produce F18-FDG and Iodine 123 up to 1998. The second, a Cyclone 30 cyclotron, 30 MeV, commenced operation in 1998 for certification purpose, and due to increase demand for radiopharmaceuticals in Brazil, started F18-FDG production in 1999. Cyclotron Laboratory will be a reference Research and Developing Center in our country and will help the Brazilian and Latin-American community. It is necessary to have an adequate database to allow regular follow up and analysis of the individual dose distributions for each group involved in the cyclotron activities. These databases are also important means to assess the effectiveness of efforts in order to maintain doses ALARA and reduce inequalities. The official individual occupational dosimetry is provided by certified Laboratory of Thermoluminescent Dosimetry at IPEN-CNEN/SP. This paper describes the occupational doses distribution in Laboratory of Cyclotrons at IPEN-CNEN/SP from January, 1998 to July, 2000 and propose improvements for the future. (author)

  3. Knowledge based operation assist system for JAERI AVF cyclotron

    International Nuclear Information System (INIS)

    Agematsu, T.; Okumura, S.; Yokota, W.; Arakawa, K.; Murakami, T.; Okamura, T.

    1992-01-01

    We have developed two operation assist systems for easy and rapid operation of the JAERI AVF cyclotron. One is a knowledge based expert system guiding the sequence of parameter adjustment to inexperienced cyclotron operators. The other is a real-time simulation of the beam trajectories which are calculated from actual operating parameters. It graphically indicates feasible setting range of parameters that satisfies the acceptance of the cyclotron. These systems provide a human interface to adjust the parameters of the cyclotron. (author)

  4. Commissioning of cryogen delivery system for superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Pal, G.; Nandi, C.; Bhattacharyya, T.K.; Chaudhuri, J.; Bhandari, R.K.

    2005-01-01

    A K-500 superconducting cyclotron is being constructed at VECC Kolkata. The cryogen delivery system distributes liquid helium and liquid nitrogen to the superconducting cyclotron. Liquid helium is required to cool the cyclotron magnet and cryopanels. Liquid nitrogen is used to reduce the capacity of the helium liquefier. This paper describes the system, the current status and the commissioning experiences of cryogen delivery system for cyclotron magnet. (author)

  5. ECR ion source for variable energy cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Bose, D K; Taki, G S; Nabhiraj, P Y; Pal, G; Dasgupta, B; Mallik, C; Das, S K; Bandopadhaya, D K; Bhandari, R K [Variable Energy Cyclotron Centre, Calcutta (India)

    1995-09-01

    Some performance characteristics of 6.4 GHz two stage ECR ion source which was under development at this centre is presented. The present ion source will facilitate acceleration of light heavy ions with the existing k=130 variable energy cyclotron. Multiply charged heavy ion (MCHI) beam from the source will also be utilized for atomic physics studies. Oxygen beam has already been used for ion implantation studies. The external injection system under development is nearing completion. Heavy ion beam from cyclotron is expected by end of 1995. (author).

  6. Cyclotron Lines in Accreting Neutron Star Spectra

    Science.gov (United States)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  7. Simulation and interpretation codes for the JET ECE diagnostic. Part 1: physics of the codes' operation

    International Nuclear Information System (INIS)

    Bartlett, D.V.

    1983-06-01

    The codes which have been developed for the analysis of electron cyclotron emission measurements in JET are described. Their principal function is to interpret the spectra measured by the diagnostic so as to give the spatial distribution of the electron temperature in the poloidal cross-section. Various systematic effects in the data are corrected using look-up tables generated by an elaborate simulation code. The part of this code responsible for the accurate calculation of single-pass emission and refraction has been written at CNR-Milan and is described in a separate report. The present report is divided into two parts. This first part describes the methods used for the simulation and interpretation of spectra, the physical/mathematical basis of the codes written at CEA-Fontenay and presents some illustrative results

  8. Combined optical emission and resonant absorption diagnostics of an Ar-O{sub 2}-Ce-reactive magnetron sputtering discharge

    Energy Technology Data Exchange (ETDEWEB)

    El Mel, A.A. [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Institut des Matériaux Jean Rouxel, Université de Nantes, CNRS, 2 rue de la Houssinière B.P. 32229, Nantes Cedex 3 44322 (France); Ershov, S. [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Britun, N., E-mail: nikolay.britun@umons.ac.be [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Ricard, A. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, Toulouse Cedex 9 F-31062 (France); Konstantinidis, S. [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Snyders, R. [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Materia Nova Research Center, Parc Initialis, Avenue Copernic 1, Mons B-7000 (Belgium)

    2015-01-01

    We report the results on combined optical characterization of Ar-O{sub 2}-Ce magnetron sputtering discharges by optical emission and resonant absorption spectroscopy. In this study, a DC magnetron sputtering system equipped with a movable planar magnetron source with a Ce target is used. The intensities of Ar, O, and Ce emission lines, as well as the absolute densities of Ar metastable and Ce ground state atoms are analyzed as a function of the distance from the magnetron target, applied DC power, O{sub 2} content, etc. The absolute number density of the Ar{sup m} is found to decrease exponentially as a function of the target-to-substrate distance. The rate of this decrease is dependent on the sputtering regime, which should be due to the different collisional quenching rates of Ar{sup m} by O{sub 2} molecules at different oxygen contents. Quantitatively, the absolute number density of Ar{sup m} is found to be equal to ≈ 3 × 10{sup 8} cm{sup −3} in the metallic, and ≈ 5 × 10{sup 7} cm{sup −3} in the oxidized regime of sputtering, whereas Ce ground state densities at the similar conditions are found to be few times lower. The absolute densities of species are consistent with the corresponding deposition rates, which decrease sharply during the transition from metallic to poisoned sputtering regime. - Highlights: • Optical emission and resonant absorption spectroscopy are employed to study Ar-O{sub 2}-Ce magnetron sputtering discharges. • The density of argon metastables is found to decrease exponentially when increasing the target-to-substrate distance. • The collision-quenching rates of Ar{sup m} by O{sub 2} molecules at different oxygen contents is demonstrated. • The deposition rates of cerium and cerium oxide thin films decrease sharply during the transition from the metallic to the poisoned sputtering regime.

  9. ROKCY-12 (KCCH PET-dedicated cyclotron): main features and improvements

    International Nuclear Information System (INIS)

    Chai, J. S.; Kim, Y. S.; Yang, Y. T.; Jung, I. S.; Hong, S. S.; Lee, M. Y.; Jang, H. S.; Kim, J. H.

    2002-01-01

    In this paper, we describe the development of 13 MeV cyclotron (ROKCY-12) that can be used for a Position Emission Tomography(PET) purpose. This cyclotron with a maximum beam energy of 13 MeV can produce radio isotopes especially 18 F which has a relatively short half lifetime of 110 minutes. First, we show the beam characteristics can be used to carry out the operation of ROCKY-12. Based on this, a computer program has been developed to determine main cyclotron parameters such as cyclotron magnet, RF system, ion source, vacuum system and other cyclotron operation parameters. And then we show the result of design and manufacturing feature of ROKCY-12. By using this design program, one can determines magnet yoke geometry and the average magnetic fields etc. And then the three-dimensional computer program OPERA-3D has been invoked to determine magnet pole tips. Validity of the design can be seen by investigating magnetic fields, radial and vertical focusing frequencies as a function of the beam energy. In this paper, we show the results of cyclotron beam by ROCKY-12. We designed 77.3 MHz RF system and ion source system. We tested RF resonance each coupling methods. We show the result of RF design and prototype operation. Developed ion source is PIG type. We described our design methods and implementation. We report the result of getting negative hydrogen ion. Cyclotron controller asks inputs of every sensor and output of every instrument for notifying current condition to operator. It has independent controllers, for example DC power supply, vacuum system, beam profile system, beam extraction system, RF system, ion source, cooling unit and so on. Basically, each control system uses RS-485 for communication to main control computer. Consumers reward products and services that feature quality, originality, a distinct personality and charm. The International Standardization Organization (ISO) requires, as its mission, that we achieve competitive superiority by

  10. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in the postchemotherapy management of patients with seminoma: systematic review and meta-analysis.

    Science.gov (United States)

    Treglia, Giorgio; Sadeghi, Ramin; Annunziata, Salvatore; Caldarella, Carmelo; Bertagna, Francesco; Giovanella, Luca

    2014-01-01

    To meta-analyze published data about the diagnostic performance of fluorine-18-Fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (PET/CT) in the postchemotherapy management of patients with seminoma. A comprehensive literature search of studies published through January 2014 on this topic was performed. All retrieved studies were reviewed and qualitatively analyzed. Pooled sensitivity and specificity, positive and negative predictive values (PPV and NPV), accuracy, and area under the summary ROC curve (AUC) of (18)F-FDG-PET or PET/CT on a per examination-based analysis were calculated. Subgroup analyses considering the size of residual/recurrent lesions were carried out. Nine studies including 375 scans were selected. The pooled analysis provided the following results: sensitivity 78% (95% confidence interval (95% CI): 67-87%), specificity 86% (95% CI: 81-89%), PPV 58% (95% CI: 48-68%), NPV 94% (95% CI: 90-96%), and accuracy 84% (95% CI: 80-88%). The AUC was 0.90. A better diagnostic accuracy of (18)F-FDG-PET or PET/CT in evaluating residual/recurrent lesions >3 cm compared to those sources of false-negative and false-positive results should be considered. The literature focusing on this setting still remains limited and cost-effectiveness analyses are warranted.

  11. Diagnostic performance of fluorine-18-dihydroxyphenylalanine positron emission tomography in diagnosing and localizing the focal form of congenital hyperinsulinism: a meta-analysis.

    Science.gov (United States)

    Treglia, Giorgio; Mirk, Paoletta; Giordano, Alessandro; Rufini, Vittoria

    2012-11-01

    We performed a meta-analysis on published data on the diagnostic performance of fluorine-18 dihydroxyphenylalanine ((18)F-DOPA) positron emission tomography (PET) in diagnosing and localizing focal congenital hyperinsulinism (CHI). A comprehensive computer literature search of studies published up to 31 January 2012 regarding (18)F-DOPA PET or PET/CT in patients with CHI was performed. Pooled sensitivity and specificity, area under the ROC curve and diagnostic odds ratio (DOR) of (18)F-DOPA PET or PET/CT in diagnosing focal CHI were calculated. The localization accuracy of focal CHI was also estimated. Seven studies comprising 195 CHI patients were included. The pooled sensitivity and specificity of (18)F-DOPA PET or PET/CT in differentiating between focal and diffuse CHI were 89% (95% confidence interval [CI]:81-95%) and 98% (95% CI:89-100%), respectively. The DOR was 74.5 (95% CI:18-307). The area under the ROC curve was 0.95. The pooled accuracy of these functional imaging methods in localizing focal CHI was 80% (95% CI:71-88%). In CHI patients, (18)F-DOPA PET or PET/CT demonstrated high sensitivity and specificity in differentiating between focal and diffuse CHI. (18)F-DOPA PET or PET/CT are accurate methods of localizing focal CHI. Nevertheless, possible sources of false-negative results for focal CHI should be kept in mind.

  12. New applications of elemental analysis methods using X-rays at the INPE Cyclotron

    International Nuclear Information System (INIS)

    Constantinescu, B.; Constantin, F.; Dima, S.; Plostinaru, D.; Popa-Simil, L.

    1990-01-01

    Some results in various samples elemental analysis using PIXE(Particle Induced X-ray Emission) method at INPE U-120 Cyclotron are presented. The main purpose of the research was the determination of metal concentration (Ca,Cr,Mn,Fe,Ni,Cu,Zn) in drug industry materials and products, some tree seeds as environmental pollution indicator, mineral oil and gasoline used in mechanical engineering, cooling water for oil industry equipment. (Author)

  13. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in the assessment of pleural abnormalities in cancer patients: a systematic review and a meta-analysis.

    Science.gov (United States)

    Treglia, Giorgio; Sadeghi, Ramin; Annunziata, Salvatore; Lococo, Filippo; Cafarotti, Stefano; Prior, John O; Bertagna, Francesco; Ceriani, Luca; Giovanella, Luca

    2014-01-01

    To systematically review and meta-analyze published data about the diagnostic performance of Fluorine-18-Fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (PET/CT) in the assessment of pleural abnormalities in cancer patients. A comprehensive literature search of studies published through June 2013 regarding the role of (18)F-FDG-PET and PET/CT in evaluating pleural abnormalities in cancer patients was performed. All retrieved studies were reviewed and qualitatively analyzed. Pooled sensitivity, specificity, positive and negative likelihood ratio (LR+ and LR-) and diagnostic odd ratio (DOR) of (18)F-FDG-PET or PET/CT on a per patient-based analysis were calculated. The area under the summary ROC curve (AUC) was calculated to measure the accuracy of these methods in the assessment of pleural abnormalities. Sub-analyses considering (18)F-FDG-PET/CT and patients with lung cancer only were carried out. Eight studies comprising 360 cancer patients (323 with lung cancer) were included. The meta-analysis of these selected studies provided the following results: sensitivity 86% [95% confidence interval (95%CI): 80-91%], specificity 80% [95%CI: 73-85%], LR+ 3.7 [95%CI: 2.8-4.9], LR- 0.18 [95%CI: 0.09-0.34], DOR 27 [95%CI: 13-56]. The AUC was 0.907. No significant improvement considering PET/CT studies only and patients with lung cancer was found. (18)F-FDG-PET and PET/CT demonstrated to be useful diagnostic imaging methods in the assessment of pleural abnormalities in cancer patients, nevertheless possible sources of false-negative and false-positive results should be kept in mind. The literature focusing on the use of (18)F-FDG-PET and PET/CT in this setting remains still limited and prospective studies are needed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Diagnostic performance of fluorodeoxyglucose-positron emission tomography/computed tomography of breast cancer in detecting axillary lymph node metastasis. Comparison with ultrasonography and contrast-enhanced CT

    International Nuclear Information System (INIS)

    Monzawa, Shuichi; Adachi, Shuji; Suzuki, Kayo; Hirokaga, Koichi; Takao, Shintaro; Sakuma, Toshiko; Hanioka, Keisuke

    2009-01-01

    The purpose of this retrospective study was to evaluate the diagnostic performance of positron emission tomography/computed tomography (PET/CT) with fluorine-18-labeled 2-fluoro-2-deoxy-D-glucose (FDG) in comparison with that of ultrasonography and contrast-enhanced computed tomography (CT) in detecting axillary lymph node metastasis in patients with breast cancer. Fifty patients with invasive breast cancer were recruited. They had received no neoadjuvant chemotherapy and underwent PET/CT, ultrasonography and contrast-enhanced CT before mastectomy. The clinical stage was I in 34 patients, II in 15 patients, and III in one patient. The images of these modalities were interpreted in usual practice before surgery and the diagnostic reports were reviewed for analysis. Sensitivity, specificity, positive predictive value, and negative predictive value of each modality were obtained taking histopathological results of axillary lymph node dissection or sentinel lymph node biopsy as the reference standard. Axillary lymph node metastasis was confirmed in 15 of 50 patients by histopathological studies. PET/CT identified lymph node metastasis in three of these 15 patients. The overall sensitivity and specificity, positive predictive value, and negative predictive value of PET/CT in the diagnosis of axillary lymph node metastasis were 20, 97, 75, and 74%, and those of ultrasonography were 33, 94, 71, and 77% and those of contrast-enhanced CT were 27, 97, 80, and 76%, respectively. PET/CT showed poor sensitivity and high specificity in the detection of axillary lymph node metastasis of breast cancer. Diagnostic performance of PET/CT was not superior to that of ultrasonography and contrast-enhanced CT. (author)

  15. The Electron Cyclotron Resonance Light Source Assembly of PTB - ELISA

    CERN Document Server

    Gruebling, P; Ulm, G

    1999-01-01

    In the radiometry laboratory of the Physikalisch-Technische,Bundesanstalt at the Berlin electron storage ring BESSY I, radiation sources for radiometric applications in industry and basic research in the vacuum ultraviolet (VUV) spectral range are developed, characterized and calibrated. Established sources such as deuterium lamps, Penning and hollow cathode discharge sources have limited spectral ranges and in particular their stability and life time suffers from the erosion of the cathode material. To overcome these limitations we have developed a radiation source based on the principle of the electron cyclotron resonance ion source. ELISA is a 10 GHz monomode source with a compact design featuring a tunable cavity and axially positionable permanent magnets. The radiation emission of the source can be detected simultaneously in the VUV and X-ray spectral range via a toroidal grating monochromator and a Si(Li)-detector. The special design of the source allows spectroscopic investigations of the plasma in dep...

  16. Possibilities of 140Nd production by the VINCY cyclotron

    International Nuclear Information System (INIS)

    Comor, J.J.; Dakovic, M.

    2000-01-01

    Application of positron emission tomography (PET) in modern medical diagnosis relies on the application of short lived radionuclides 11 C, 13 N, 15 O and 18 F, presuming their production in the close vicinity of the PET camera. Application of long-lived positron emitters would enable the regional distribution of PET radiopharmaceuticals, which would significantly lower the price of PET diagnosis, as well as enable its application in fields currently inhibited by the short half-life of available positron emitters. One of the candidates for application in PET is the generator system 140 Nd/ 140 Pr, due to the long half-life of 140 Nd (3,37 days). Theoretical calculations confirm that this radionuclide can be produced with high yields by protons accelerated to energies bellow 30 MeV. Due to its optimal operating parameters, the VINCY Cyclotron could produce enough 140 Nd for its regional distribution to a number of PET centers (author)

  17. Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions

    Science.gov (United States)

    Anderson, B. J.; Hamilton, D. C.

    1993-01-01

    AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.

  18. Positron emission tomography: Physics, instrumentation, and image analysis

    International Nuclear Information System (INIS)

    Porenta, G.

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources. PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and userfriendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center. (author)

  19. Study of ion cyclotron fluctuations. Application to the measurement of the ion temperature

    International Nuclear Information System (INIS)

    Lehner, T.

    1982-02-01

    A diagnostic technique for measuring the ion temperature of tokamak-type plasmas was developed. A theoretical study was made of the form factor associated with the ion cyclotron waves; the influence of Te/Ti on the frequency of the extrema of the dispersion relations was demonstrated. The different effects able to modify the spectral density (in particular the drift velocity and the impurities) were investigated. The mechanisms of suprathermal excitation of cylotron waves in tokamaks were reviewed together with the various effects stabilizing the spectrum: collisions, shear of the magnetic field lines. The experimental realization of the diagnostic technique is based on Thomson scattering by the electron density fluctuations [fr

  20. Industrial activity, gas emissions and environmental urban management. Operative condition's diagnostic of smelting activities in Tandil, Argentina

    International Nuclear Information System (INIS)

    Soledad Sosa, Beatriz; Guerrero, Elsa Marcela; Banda Noriega, Roxana

    2013-01-01

    Amongst urban environmental problems, those associated to industry are of particular interest in environmental management. Tandil, a city in Argentina, owes its economic and urban growth to metalworking activity, especially to smelting. Despite the crisis in the sector, activity continues to be the axis of local economic and urban growth. The present research characterizes, in production, operative and environmental terms, local smelting industries and assesses operative conditions of gas emissions management during 2010. There were analyzed 25 industries over 30. The sample was representative of five productive processes: aluminum (Al), aluminum/iron (Al Fe), aluminum/bronze (Al Cu+Sn), aluminum/iron/bronze (Al Fe Cu+Sn), and iron (Fe). The variables analyzed were: primary fusion mater, oven used and industry size. To obtain production data we applied structured interviews, and for industry sizes we used surveys. It was possible to describe the productive prospect of the sector at a local level: for most industries the destination of their production is automotive sector. Taking into account the relation between the size and the type of industry, the aluminum smelting companies are small. Regarding iron industries, all three company sizes are present in the sample and exists a medium size industry that occupies between 51 and 230 employees. The operative conditions and their compliance with current legislation regarding control of gas emissions require to identify monitoring indicators for the melting stage that allow knowing precisely the resulting contaminants and their environmental effects.

  1. Atmospheric dayglow diagnostics involving the O2(b-X) Atmospheric band emission: Global Oxygen and Temperature (GOAT) mapping

    Science.gov (United States)

    Slanger, T. G.; Pejaković, D. A.; Kostko, O.; Matsiev, D.; Kalogerakis, K. S.

    2017-03-01

    The terrestrial dayglow displays prominent emission features from the 0-0 and 1-1 bands of the O2 Atmospheric band system in the 760-780 nm region. We present an analysis of observations in this wavelength region recorded by the Space Shuttle during the Arizona Airglow Experiment. A major conclusion is that the dominant product of O(1D) + O2 energy transfer is O2(b, v = 1), a result that corroborates our previous laboratory studies. Moreover, critical to the interpretation of dayglow is the possible interference by N2 and N2+ bands in the 760-780 nm region, where the single-most important component is the N2 1PG 3-1 band that overlaps with the O2(b-X) 0-0 band. When present, this background must be accounted for to reveal the O2(b-X) 0-0 and 1-1 bands for altitudes at which the O2 and N2/N2+ emissions coincide. Finally, we exploit the very different collisional behavior of the two lowest O2(b) vibrational levels to outline a remote sensing technique that provides information on Atmospheric composition and temperature from space-based observations of the 0-0 and 1-1 O2 atmospheric bands.

  2. Building on TR-24 success. Advanced Cyclotron Systems Inc. launches a new cyclotron model

    International Nuclear Information System (INIS)

    Russell Watt; William Gyles; Alexander Zyuzin

    2015-01-01

    ACSI is designing a new 30 MeV cyclotron based on the TR-24. While minimizing changes from the proven TR-24, including maintaining the same outer dimensions, the energy of the cyclotron will be increased to 30 MeV, which will make it the most compact, non-superconducting, 30 MeV cyclotron design to date. Maximum beam current will match the TR-24 at 1 mA. With the size and footprint of a typical low energy PET cyclotron, this system will offer users a cost effective solution for a diversified facility capable of producing a wide spectrum of PET and SPECT radioisotopes for research and commercial distribution. (author)

  3. Evaluation of {sup 18}F radioactive concentration in exhaust at cyclotron facility at Chosun University

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Cheol Ki; Jang, Han; Lee, Goung Jin [Dept. of Nuclear Engineering, Chsoun University, Gwangju (Korea, Republic of)

    2016-11-15

    the recent prevalence of PET examinations in Korea has led to an increase in the number of cyclotrons. the medical isotope 18F produced in most cyclotron facilities currently operating in Korea is emitted into the environment during the production of [{sup 18}F]FdG, a cancerdiagnosis reagent. the amount of [{sup 18}F]FdG synthesized determines the radioactive concentration of {sup 18}F in the exhaust. at some facilities, this amount temporarily exceeds the emission limit. In this study, we evaluated the {sup 18}F radioactivity concentration in the exhaust from the cyclotron facility at chosun university. the {sup 18}F radioactivity concentration was measured using an air sampler and a hPGe semiconductor detector. the measurements showed that the radioactive concentration of {sup 18}F in the exhaust at the cyclotron facility at Chosun university was the highest during [{sup 18}F]FdG synthesis but remained under the legal limit of 2,000 Bq m{sup -3}.

  4. Graphical user interface for yield and dose estimations for cyclotron-produced technetium.

    Science.gov (United States)

    Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A

    2014-07-07

    The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  5. Recent developments on the 110 GHz electron cyclotron installation on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Ponce, D.; Callis, R.W.; Cary, W.P.; Ferron, J.R.; Green, M.; Grunloh, H.J.; Gorelov, Y.; Lohr, J.; Ellis, R.A.

    2003-01-01

    Significant improvements are being implemented to the capability of the 110 GHz electron cyclotron system on the DIII-D tokamak. Chief among these is the addition of the fifth and sixth 1 MW class gyrotrons, increasing the power available for auxiliary heating and current drive by nearly 60%. These tubes use artificially grown diamond r.f. output windows to obtain high power with long pulse capability. The beams from these tubes are nearly Gaussian, facilitating coupling to the waveguide. A new fully articulating dual launcher capable of high speed spatial scanning has been designed and tested. The launcher has two axis independent steering for each waveguide. The mirrors can be rotated at up to 100 deg./s. A new feedback system linking the DIII-D Plasma Control System (PCS) with the gyrotron beam voltage waveform generators permits real-time feedback control of some plasma properties such as electron temperature. The PCS can use a variety of plasma monitors to generate its control signal, including electron cyclotron emission and Mirnov probes. Electron cyclotron heating and electron cyclotron current drive were used during this year's DIII-D experimental campaign to control electron temperature, density, and q profiles, induce an ELM-free H-mode, and suppress the m=2/n=1 neoclassical tearing mode. The new capabilities have expanded the role of EC systems in tokamak plasma control

  6. Tokamak startup with electron cyclotron heating

    International Nuclear Information System (INIS)

    Holly, D.J.; Prager, S.C.; Shepard, D.A.; Sprott, J.C.

    1980-04-01

    Experiments are described in which the startup voltage in a tokamak is reduced by approx. 60% by the use of a modest amount of electron cyclotron resonance heating power for preionization. A 50% reduction in volt-second requirement and impurity reflux are also observed

  7. Passive cyclotron current drive for fusion plasmas

    International Nuclear Information System (INIS)

    Kernbichler, W.

    1995-01-01

    The creation of toroidal current using cyclotron radiation in a passive way is, together with the well known bootstrap current, an interesting method for stationary current drive in high-temperature fusion reactors. Here, instead of externally applied RF-waves, fish-scale like structures at the first wall help to create enough asymmetry in the self generated cyclotron radiation intensity to drive a current within the plasma. The problem of computing passive cyclotron current drive consists of actually two linked problems, which are the computation of the electron equilibrium under the presence of self-generated radiation, and the computation of the photon equilibrium in a bounded system with a distorted electron distribution. This system of integro-differential equations cannot be solved directly in an efficient way. Therefore a linearization procedure was developed to decouple both sets of equations, finally linked through a generalized local current drive efficiency. The problem of the exact accounting for the wall profile effects was reduced to the solution of a Fredholm-type integral equation of the 2 nd -kind. Based on all this an extensive computer code was developed to compute the passively driven current as well as radiation losses, radiation transport and overall efficiencies. The results therefrom give an interesting and very detailed insight into the problems related to passive cyclotron current drive

  8. Radioisotope production with a medical cyclotron

    International Nuclear Information System (INIS)

    Silvester, D.J.

    1974-01-01

    The cyclotron of Hammersmith hospital in England was completed and started the operation in 1955. The feature is in its design operable at high beam current, reaching 500μA in internal beam and 300μA in external beam. In 1960's, twelve nuclides of radioactive pharmaceuticals were produced with the cyclotron. C-11, N-13 and O-15 have been used in the form of radioactive gases such as CO or H 2 O to test lung functions. F-18 has been used for bone scanning. K-43 is employed in the research of electrolyte balancing together with Na-24 and Br-77. Fe-52 is utilized in iron ion researches as a tracer. Cs-129 is highly evaluated as an isotope for imaging cardiac clogging part. Radioisotopes must be much more used in the examination of in vivo metabolic function. For this purpose, peculiarly labelled compounds should be further developed. It is welcome that the persons paying attention to the medical prospect of cyclotrons are increasing. The author hopes to continue his endeavour to find new products made with the cyclotron for human welfare. (Wakatsuki, Y.)

  9. Ion-cyclotron instability in magnetic mirrors

    International Nuclear Information System (INIS)

    Pearlstein, L.D.

    1987-01-01

    This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits

  10. The Data Cyclotron query processing scheme

    NARCIS (Netherlands)

    Goncalves, R.; Kersten, M.

    2011-01-01

    A grand challenge of distributed query processing is to devise a self-organizing architecture which exploits all hardware resources optimally to manage the database hot set, minimize query response time, and maximize throughput without single point global coordination. The Data Cyclotron

  11. The Data Cyclotron query processing scheme.

    NARCIS (Netherlands)

    R.A. Goncalves (Romulo); M.L. Kersten (Martin)

    2011-01-01

    htmlabstractA grand challenge of distributed query processing is to devise a self-organizing architecture which exploits all hardware resources optimally to manage the database hot set, minimize query response time, and maximize throughput without single point global coordination. The Data Cyclotron

  12. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  13. <600> MeV synchro-cyclotron

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    One of the 14 pancakes of the new magnet coils for the 600 MeV synchro-cyclotron which were wound and coated with epoxy resin on the CERN site. These new coils will replace the present ones which have been in use for more than 14 years but are now showing signs of deteriorations.

  14. Helical axial injection concept for cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E.D.

    1981-01-01

    A concept for an external beam injection system using a helical beam path centered on the cyclotron axis is described. This system could be used to couple two accelerator stages, with or without intermediate stripping, in cases where conventional axial injection or radial injection are not practical.

  15. Helical axial injection concept for cyclotrons

    International Nuclear Information System (INIS)

    Hudson, E.D.

    1981-01-01

    A concept for an external beam injection system using a helical beam path centered on the cyclotron axis is described. This system could be used to couple two accelerator stages, with or without intermediate stripping, in cases where conventional axial injection or radial injection are not practical

  16. Automated cyclotron tuning using beam phase measurements

    International Nuclear Information System (INIS)

    Timmer, J.H.; Roecken, H.; Stephani, T.; Baumgarten, C.; Geisler, A.

    2006-01-01

    The ACCEL K250 superconducting cyclotron is specifically designed for the use in proton therapy systems. The compact medical 250 MeV proton accelerator fulfils all present and future beam requirements for fast scanning treatment systems and is delivered as a turn key system; no operator is routinely required. During operation of the cyclotron heat dissipation of the RF system induces a small drift in iron temperature. This temperature drift slightly detunes the magnetic field and small corrections must be made. A non-destructive beam phase detector has been developed to measure and quantify the effect of a magnetic field drift. Signal calculations were made and the design of the capacitive pickup probe was optimised to cover the desired beam current range. Measurements showed a very good agreement with the calculated signals and beam phase can be measured with currents down to 3 nA. The measured phase values are used as input for a feedback loop controlling the current in the superconducting coil. The magnetic field of the cyclotron is tuned automatically and online to maintain a fixed beam phase. Extraction efficiency is thereby optimised continuously and activation of the cyclotron is minimised. The energy and position stability of the extracted beam are well within specification

  17. A visual assistance environment for cyclotron operation

    International Nuclear Information System (INIS)

    Okamura, Tetsuya; Murakami, Tohru; Agematsu, Takashi; Okumura, Susumu; Arakawa, Kazuo.

    1993-01-01

    A computer-based operation system for a cyclotron which assists inexperienced operators has been developed. Cyclotron start-up operations require dozens of adjustable parameters to be finely tuned to maximize extracted beam current. The human interfaces of the system provide a visual environment designed to enhance beam parameter adjustments. First, the mental model of operators is analyzed. It is supposed to be composed of five partial mental models: beam behavior model, feasible setting regions model, parameter sensitivity model, parameter mutual relation model, and status map model. Next, based on these models, three visual interfaces are developed, i.e., (1) Beam trajectory is rapidly calculated and graphically displayed whenever the operators change the cyclotron parameters. (2) Feasible setting regions (FSR) of the parameters that satisfy the cyclotron's beam acceptance criteria are indicated. (3) Search traces, being a historical visual map of beam current values, are superimposed on the FSRs. Finally, to evaluate system effectiveness, the search time required to reach maximum beam current conditions was measured. In addition, system operability was evaluated using written questionnaires. Results of the experiment showed that the search time to reach specific beam conditions was reduced by approximately 65% using these interfaces. The written questionnaires survey showed the operators highly evaluate system operability. (author)

  18. Microwave power coupling with electron cyclotron resonance ...

    Indian Academy of Sciences (India)

    600 W microwave power with an average electron density of ∼ 6 × 1011 cm. −3 ... the angular frequency of the cyclotron motion, e is the electron charge, m is the mass of .... is also suitable for ECR plasma-based applications like high-quality ...

  19. Electron cyclotron heating and associated parallel cooling

    International Nuclear Information System (INIS)

    Rapozo, C. da C.; Assis, A.S. de; Busnardo Neto, J.

    1990-01-01

    It has been experimentally observed that during the electron-cyclotron heating the electron longitudinal temperature drops as the perpendicular temperature increases. The experiment was carried in a linear mirror machine with a low density (10 10 cm -3 ) weakly ionized (< 1.0 %) plasma. (Author)

  20. On Resonant Heating Below the Cyclotron Frequency

    International Nuclear Information System (INIS)

    Chen, Liu; Lin, Zhihong; White, R.

    2001-01-01

    Resonant heating of particles by an electrostatic wave propagating perpendicular to a confining uniform magnetic field is examined. It is shown that, with a sufficiently large wave amplitude, significant perpendicular stochastic heating can be obtained with wave frequency at a fraction of the cyclotron frequency