WorldWideScience

Sample records for cyclooxygenase-2 gene expression

  1. Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer.

    Science.gov (United States)

    Kennedy, Brian M; Harris, Randall E

    2018-05-07

    We examined the expression of major inflammatory genes, cyclooxygenase-1 and 2 (COX1, COX2) and arachidonate 5-lipoxygenase (ALOX5) in 1090 tumor samples of invasive breast cancer from The Cancer Genome Atlas (TCGA). Mean cyclooxygenase expression (COX1 + COX2) ranked in the upper 99th percentile of all 20,531 genes and surprisingly, the mean expression of COX1 was more than tenfold higher than COX2. Highly significant correlations were observed between COX2 with eight tumor-promoting genes (EGR2, IL6, RGS2, B3GNT5, SGK1, SLC2A3, SFRP1 and ETS2) and between ALOX5 and ten tumor promoter genes (CD33, MYOF1, NLRP1, GAB3, CD4, IFR8, CYTH4, BTK, FGR, CD37). Expression of CYP19A1 (aromatase) was significantly correlated with COX2, but only in tumors positive for ER, PR and HER2. Tumor-promoting genes correlated with the expression of COX1, COX2, and ALOX5 are known to effectively increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the pathogenesis of breast cancer.

  2. Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.

    Science.gov (United States)

    Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio

    2012-02-01

    Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.

  3. Cyclooxygenase-2 expression in the normal human eye and its expression pattern in selected eye tumours

    DEFF Research Database (Denmark)

    Wang, Jinmei; Wu, Yazhen; Heegaard, Steffen

    2011-01-01

    Purpose: Cyclooxygenase-2 (COX-2) is an enzyme involved in neoplastic processes. The purpose of the present study is to investigate COX-2 expression in the normal human eye and the expression pattern in selected eye tumours involving COX-2 expressing cells. Methods: Immunohistochemical staining...... using antibodies against COX-2 was performed on paraffin sections of normal human eyes and selected eye tumours arising from cells expressing COX-2. Results: Cyclooxygenase-2 expression was found in various structures of the normal eye. Abundant expression was seen in the cornea, iris, ciliary body...... and retina. The COX-2 expression was less in tumours deriving from the ciliary epithelium and also in retinoblastoma. Conclusion: Cyclooxygenase-2 is constitutively expressed in normal human eyes. The expression of COX-2 is much lower in selected eye tumours involving COX-2 expressing cells....

  4. Changes in the Expression of Cyclooxygenase-2 in Polycystic Ovary Syndrome in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Karimzadeh L

    2011-12-01

    Full Text Available Background: Cyclooxygenase 2 is a key enzyme which converts arachidonic acid into prostaglandins. Cyclooxygenase 2 is triggered by inflammatory stimuli, such as cytokines. Its expression increases in tumors and Alzheimer's disease and ovarian hyperstimulation syndrome. Polycystic ovarian syndrome is a heterogeneous disease characterized by pathological angiogenesis and chronic anovulation. In the present study, the probable role of cyclooxygenase 2 in Wistar rats with polycystic ovarian syndrome was investigated.Methods: Thirty female Wistar rats (170-200 gr were equally divided into three groups: 2 mg estradiol valerate was intramuscularly administered to each rat in the experiment group or group 1; the rats in group 2 were regarded as the sham group and received sesame oil injections and group 3 or the control group received no injections. After 60 days of treatment, animals were anaesthetized with chloroform and killed by decapitation. Ovaries were collected for histological and immunohistochemical evaluations. All the experiments were repeated three times.Results: Morphologically, ovaries from the control group exhibited follicles in various stages of development and many fresh corpus luteum. In estradiol valerate group small follicles in early development were observed in addition to follicles showing evidence of atresia and many large cysts with thickened theca cell layer. Corpus luteum was rare or absent in group 2. The immunohistochemical analysis for cyclooxygenase 2 expression showed an increased expression of cyclooxygenase 2 enzyme in group 1.Conclusion: The results suggested the involvement of cyclooxygenase 2 in the progression to polycystic ovarian syndrome in a rat model.

  5. A Soft Coral Natural Product, 11-Episinulariolide Acetate, Inhibits Gene Expression of Cyclooxygenase-2 and Interleukin-8 through Attenuation of Calcium Signaling

    Directory of Open Access Journals (Sweden)

    Wei-Chiao Chang

    2013-06-01

    Full Text Available Epidermal growth factor receptor (EGFR is overexpressed in many types of cancer cells. EGFR-mediated signaling involves inflammatory gene expression including cyclooxygenase (COX-2 and interleukin (IL-8, and is associated with cancer pathogenesis. In a search of phytochemicals with anti-inflammatory activity, the COX-2 and IL-8 inhibitory activities of some marine compounds were examined. After screening these compounds 11-episinulariolide acetate (1 from soft coral exhibited the most potent activity. Reverse-transcription PCR; western blotting; ELISA and luciferase assays were used to test the effect of compound 1 on EGF-stimulated expressions of COX-2 and IL-8 in A431 human epidermoid carcinoma cells. After exposure to 10 μM of compound 1, expression levels of COX-2 and IL-8 were reduced. In addition; intracellular Ca2+ increase and Ca2+-dependent transcription factor activation were blocked by compound 1. Thus, compound 1 can potentially serve as a lead compound for targeting Ca2+ signaling-dependent inflammatory diseases.

  6. Cyclooxygenase expression in canine platelets and Madin-Darby canine kidney cells.

    Science.gov (United States)

    Kay-Mugford, P A; Benn, S J; LaMarre, J; Conlon, P D

    2000-12-01

    To examine cyclooxygenase (COX) expression in canine platelets and Madin-Darby canine kidney (MDCK) cells in culture. Canine platelets and MDCK cells. Total RNA was recovered from isolated canine platelets and MDCK cells. Northern blot analysis and reverse transcription-polymerase chain reaction (RT-PCR), using complementary DNA probes and primers designed from the human COX sequences, were used to determine COX-1 and -2 (cyclooxygenase isoforms 1 and 2) messenger RNA (mRNA) expression. Following northern blot analysis, canine platelets were found to express only the 2.8-kb COX-1 transcript; COX-2 was not detected. Canine MDCK cells expressed the 4.5-kb COX-2 transcript, in addition to the 2.8-kb COX-1 transcript. A single DNA band of 270 base pairs was identified following gel electrophoresis of the product obtained from RT-PCR of mRNA from canine platelets. Sequencing revealed that this PCR product was 90% homologous to a portion of the human COX-1 gene (Genbank M59979). Detection of COX-1 by RT-PCR of RNA obtained from canine platelets is a novel finding. The 90% homology of the PCR product with the human sequence suggests strong conservation between the canine and human COX-1 gene. Cloning and sequencing of the canine gene will be required to fully characterize homologous regions. Because of the importance of COX in the inflammatory process and as a potential target of currently available nonsteroidal anti-inflammatory drugs (NSAID), a better understanding of canine COX may improve our ability to use NSAID appropriately, achieve efficacy, and avoid potential adverse drug effects in dogs.

  7. Cyclooxygenase 2 and neuronal nitric oxide synthase expression in the renal cortex are not interdependent in states of salt deficiency

    DEFF Research Database (Denmark)

    Castrop, H; Kammerl, M; Mann, Birgitte

    2000-01-01

    Neuronal nitric oxide synthase (nNOS) and cyclooxygenase-2 (COX-2) expression in the kidney are localized to the cortical thick ascending limb of the loop of Henle (cTALH), including the macula region, and increase after salt restriction. Because of the similar localization and regulation of n...... excretion. These findings suggest that under these conditions the control of nNOS and COX-2 gene expression in the macula densa regions of the kidney cortex are not dependent on each other....

  8. Platelet cyclooxygenase expression in normal dogs.

    Science.gov (United States)

    Thomason, J; Lunsford, K; Mullins, K; Stokes, J; Pinchuk, L; Wills, R; McLaughlin, R; Langston, C; Pruett, S; Mackin, A

    2011-01-01

    Human platelets express both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Variation in COX-2 expression could be a mechanism for variable response to aspirin. The hypotheses were that circulating canine platelets express COX-1 and COX-2, and that aspirin alters COX expression. The objective was to identify changes in platelet COX expression and in platelet function caused by aspirin administration to dogs. Eight female, intact hounds. A single population, repeated measures design was used to evaluate platelet COX-1 and COX-2 expression by flow cytometry before and after aspirin (10 mg/kg Q12h for 10 days). Platelet function was analyzed via PFA-100(®) (collagen/epinephrine), and urine 11-dehydro-thromboxane B(2) (11-dTXB(2)) was measured and normalized to urinary creatinine. Differences in COX expression, PFA-100(®) closure times, and urine 11-dTXB(2 ): creatinine ratio were analyzed before and after aspirin administration. Both COX-1 and COX-2 were expressed in canine platelets. COX-1 mean fluorescent intensity (MFI) increased in all dogs, by 250% (range 63-476%), while COX-2 expression did not change significantly (P = 0.124) after aspirin exposure, with large interindividual variation. PFA-100(®) closure times were prolonged and urine 11-dTXB(2) concentration decreased in all dogs after aspirin administration. Canine platelets express both COX isoforms. After aspirin exposure, COX-1 expression increased despite impairment of platelet function, while COX-2 expression varied markedly among dogs. Variability in platelet COX-2 expression should be explored as a potential mechanism for, or marker of, variable aspirin responsiveness. Copyright © 2011 by the American College of Veterinary Internal Medicine.

  9. Cyclooxygenase-2 Expression in Chronic Gastritis and Gastric Carcinoma, Correlation with Prognostic Parameters

    International Nuclear Information System (INIS)

    Samaka, R.M.; Abdou, A.G.; Abd El-Wahed, M.M.; Kandil, M.A.; El-Kady, N.M.

    2006-01-01

    Background: Cyclooxygenase-2 (Cox-2) is the inducible form of cyclooxygenase enzyme. Cox-2 is induced in numerous processes such as cellular growth, differentiation, inflammation and tumorigenesis. Purpose: Assessment of Cox-2 expression in chronic gastritis s and gastric carcinoma. Material and Methods: Sixteen chronic gastritis (CG) and 43 gastric carcinoma cases were subjected to an immunohistochemical approach using anti Cox-2 antibody. Results: All CG cases displayed positive epithelial Cox-2 expression with only 25% positivity for stromal expression. Eighty six percent of gastric carcinoma showed epithelial Cox-2 expression that was significantly correlated with lymph node involvement (p=0.01), advanced stage (p=0.01), high micro vessel density (MVD) (p=0.0001), vascular invasion (p=0.002), peri neural invasion (p=0.0 I) and low apoptotic count (p<0.0001). Stromal Cox-2 expression was seen in 79% of gastric carcinoma cases and was significantly associated with low apoptotic count (p=0.0007), vascular invasion (p=0.001) and high micro vessel density (MVD) (p=0.0003). Only stromal Cox2 expression was significantly higher in gastric carcinoma than chronic gastritis (p=0.0001). Conclusions: Cox-2 appears to be involved in gastric carcinoma progression as it promotes angio genesis, suppresses apoptosis and facilitates invasion and metastasis Double expression of Cox-2 in gastric carcinoma epithelium and stroma and significant association between them demonstrate a paracrine cross effect between stromal and malignant epithelium

  10. Predictive utility of cyclo-oxygenase-2 expression by colon and rectal cancer.

    Science.gov (United States)

    Lobo Prabhu, Kristel C; Vu, Lan; Chan, Simon K; Phang, Terry; Gown, Allen; Jones, Steven J; Wiseman, Sam M

    2014-05-01

    Cyclo-oxygenase-2 (COX-2), an inducible enzyme expressed in areas of inflammation, is a target of interest for colorectal cancer therapy. Currently, the predictive significance of COX-2 in colorectal cancer remains unclear. Tissue microarrays were constructed using 118 colon cancer and 85 rectal cancer specimens; 44 synchronous metastatic colon cancer and 22 rectal cancer lymph nodes were also evaluated. COX-2 expression was assessed by immunohistochemistry. Univariate analysis was used to determine the predictive significance of clinicopathologic variables. Overall survival, disease-specific survival, and disease-free survival were the main outcomes examined. COX-2 was found to be expressed in 93% of colon cancers and 87% of rectal cancers. Decreased COX-2 expression was related to decreased disease-specific survival (P = .016) and decreased disease-free survival (P = .019) in the rectal cancer cohort but not in the colon cancer cohort. COX-2 expression has predictive utility for management of rectal but not colon cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Radiation Therapy Overcomes Adverse Prognostic Role of Cyclooxygenase-2 Expression on Reed-Sternberg Cells in Early Hodgkin Lymphoma

    International Nuclear Information System (INIS)

    Mestre, Francisco; Gutiérrez, Antonio; Rodriguez, Jose; Ramos, Rafael; Garcia, Juan Fernando; Martinez-Serra, Jordi; Casasus, Marta; Nicolau, Cristina; Bento, Leyre; Herraez, Ines; Lopez-Perezagua, Paloma; Daumal, Jaime; Besalduch, Joan

    2015-01-01

    Purpose: To analyze the role of radiation therapy (RT) on the adverse prognostic influence of cyclooxygenase-2 (COX-2) expression on Reed-Sternberg (RS) cells, in the setting of early Hodgkin lymphoma (HL) treated with ABVD (adriamycin, vinblastine, bleomycin, dacarbazine). Methods and Materials: In the present study we retrospectively investigated the prognostic value of COX-2 expression in a large (n=143), uniformly treated early HL population from the Spanish Network of HL using tissue microarrays. Univariate and multivariate analyses were done, including the most recognized clinical variables and the potential role of administration of adjuvant RT. Results: Median age was 31 years; the expression of COX-2 defined a subgroup with significantly worse prognosis. Considering COX-2 + patients, those who received RT had significantly better 5-year progression-free survival (PFS) (80% vs 54% if no RT; P=.008). In contrast, COX-2 − patients only had a modest, nonsignificant benefit from RT in terms of 5-year PFS (90% vs 79%; P=.13). When we compared the outcome of patients receiving RT considering the expression of COX-2 on RS cells, we found a nonsignificant 10% difference in terms of PFS between COX-2 + and COX-2 − patients (P=.09), whereas the difference between the 2 groups was important (25%) in patients not receiving RT (P=.04). Conclusions: Cyclooxygenase-2 RS cell expression is an adverse independent prognostic factor in early HL. Radiation therapy overcomes the worse prognosis associated with COX-2 expression on RS cells, acting in a chemotherapy-independent way. Cyclooxygenase-2 RS cell expression may be useful for determining patient candidates with early HL to receive consolidation with RT

  12. Kupffer cell ablation attenuates cyclooxygenase-2 expression after trauma and sepsis.

    Science.gov (United States)

    Keller, Steve A; Paxian, Marcus; Lee, Sun M; Clemens, Mark G; Huynh, Toan

    2005-03-01

    Prostaglandins, synthesized by cyclooxygenase (COX), play an important role in the pathophysiology of inflammation. Severe injuries result in immunosuppression, mediated, in part, by maladaptive changes in macrophages. Herein, we assessed Kupffer cell-mediated cyclooxygenase-2 (COX-2) expression on liver function and damage after trauma and sepsis. To ablate Kupffer cells, Sprague Dawley rats were treated with gadolinium chloride (GdCl3) 48 and 24 h before experimentation. Animals then underwent femur fracture (FFx) followed 48 h later by cecal ligation and puncture (CLP). Controls received sham operations. After 24 h, liver samples were obtained, and mRNA and protein expression were determined by PCR, Western blot, and immunohistochemistry. Indocyanine-Green (ICG) clearance and plasma alanine aminotransferase (ALT) levels were determined to assess liver function and damage, respectively. One-way analysis of variance (ANOVA) with Student-Newman-Keuls test was used to assess statistical significance. After CLP alone, FFx+CLP, and GdCl3+FFx+CLP, clearance of ICG decreased. Plasma ALT levels increased in parallel with severity of injury. Kupffer cell depletion attenuated the increased ALT levels after FFx+CLP. Femur fracture alone did not alter COX-2 protein compared with sham. By contrast, COX-2 protein increased after CLP and was potentiated by sequential stress. Again, Kupffer cell depletion abrogated the increase in COX-2 after sequential stress. Immunohistochemical data confirmed COX-2 positive cells to be Kupffer cells. In this study, sequential stress increased hepatic COX-2 protein. Depletion of Kupffer cells reduced COX-2 and attenuated hepatocellular injuries. Our data suggest that Kupffer cell-dependent pathways may contribute to the inflammatory response leading to increased mortality after sequential stress.

  13. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice.

    Science.gov (United States)

    Kim, Joohwee; Vaish, Vivek; Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub

    2016-10-07

    Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.

  14. Radiation Therapy Overcomes Adverse Prognostic Role of Cyclooxygenase-2 Expression on Reed-Sternberg Cells in Early Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, Francisco [Service of Radiation Therapy, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Gutiérrez, Antonio, E-mail: antoniom.gutierrez@ssib.es [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Rodriguez, Jose [MD Anderson Cancer Center, Madrid (Spain); Ramos, Rafael [Service of Pathology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Garcia, Juan Fernando [Spanish National Cancer Research Centre, Madrid (Spain); Martinez-Serra, Jordi [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Casasus, Marta; Nicolau, Cristina [Service of Radiation Therapy, Policlinica Miramar, Palma de Mallorca (Spain); Bento, Leyre; Herraez, Ines [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Lopez-Perezagua, Paloma [Service of Radiology, IDISPA, Palma de Mallorca (Spain); Daumal, Jaime [Service of Nuclear Medicine, IDISPA, Palma de Mallorca (Spain); Besalduch, Joan [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain)

    2015-05-01

    Purpose: To analyze the role of radiation therapy (RT) on the adverse prognostic influence of cyclooxygenase-2 (COX-2) expression on Reed-Sternberg (RS) cells, in the setting of early Hodgkin lymphoma (HL) treated with ABVD (adriamycin, vinblastine, bleomycin, dacarbazine). Methods and Materials: In the present study we retrospectively investigated the prognostic value of COX-2 expression in a large (n=143), uniformly treated early HL population from the Spanish Network of HL using tissue microarrays. Univariate and multivariate analyses were done, including the most recognized clinical variables and the potential role of administration of adjuvant RT. Results: Median age was 31 years; the expression of COX-2 defined a subgroup with significantly worse prognosis. Considering COX-2{sup +} patients, those who received RT had significantly better 5-year progression-free survival (PFS) (80% vs 54% if no RT; P=.008). In contrast, COX-2{sup −} patients only had a modest, nonsignificant benefit from RT in terms of 5-year PFS (90% vs 79%; P=.13). When we compared the outcome of patients receiving RT considering the expression of COX-2 on RS cells, we found a nonsignificant 10% difference in terms of PFS between COX-2{sup +} and COX-2{sup −} patients (P=.09), whereas the difference between the 2 groups was important (25%) in patients not receiving RT (P=.04). Conclusions: Cyclooxygenase-2 RS cell expression is an adverse independent prognostic factor in early HL. Radiation therapy overcomes the worse prognosis associated with COX-2 expression on RS cells, acting in a chemotherapy-independent way. Cyclooxygenase-2 RS cell expression may be useful for determining patient candidates with early HL to receive consolidation with RT.

  15. Analysis of angiogenic factors and cyclooxygenase-2 expression in cartilaginous tumors: clinical and histological correlation

    Directory of Open Access Journals (Sweden)

    Francisco Fontes Cintra

    2011-01-01

    Full Text Available OBJECTIVES: To study the role of angiogenesis and cyclooxygenase-2 expression in cartilaginous tumors and correlate these factors with prognosis. INTRODUCTION: For chondrosarcoma, the histological grade is the current standard for predicting tumor outcome. However, a low-grade chondrosarcoma can follow an aggressive course-as monitored by sequential imaging techniques-even when it is histologically indistinguishable from an enchondroma. Therefore, additional tools are needed to help identify the biological potential of these tumors. The degree of angiogenesis that is induced by the tumor could assist in this task. Angiogenesis can be quantified by measuring the expression of vascular endothelial growth factor and CD34, and cyclooxygenase-2 can induce angiogenesis by stimulating the production of proangiogenic factors. METHODS: In total, 21 enchondromas and 58 conventional chondrosarcomas were studied by examining the clinical and histopathological findings in conjunction with the immunostaining markers of angiogenesis and cyclooxygenase- 2 expression. RESULTS: The significant variables that were associated with poor outcome were 1 higher-grade chondrosarcomas, 2 tumors that developed in flat bones, and 3 over-expression of CD34 (with a median count that was higher than 5.9 vessels in 5 high power fields. Moreover, CD34 expression (measured using the Chalkley method revealed significantly higher microvessel density in flat bone chondrosarcomas. DISCUSSION: Previous studies have shown a positive correlation between Chalkley microvessel density and histological grade; however, in our sample, we found that the former is predictive of the outcome. Chondrosarcomas in flat bones have been shown to correlate with a poor prognosis. We also found that CD34 microvessel density values were significantly higher in flat-bone chondrosarcomas. This could explain-at least in part-the more aggressive biological course that is taken by these tumors. CONCLUSIONS

  16. Interleukin-1beta induced cyclooxygenase 2 expression and prostaglandin E2 secretion by human neuroblastoma cells: implications for Alzheimer's disease

    NARCIS (Netherlands)

    Hoozemans, J. J.; Veerhuis, R.; Janssen, I.; Rozemuller, A. J.; Eikelenboom, P.

    2001-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) may decrease the risk of developing Alzheimer's disease (AD). Cyclooxygenase 2 (COX-2), one of the targets of NSAIDs, is increasingly expressed in neuronal cells in AD brain. In this study, of the cytokines that are found at increased levels in AD brain

  17. Expression of p63 and Cyclooxygenase-2 and Their Correlation in Skin Tumors

    Institute of Scientific and Technical Information of China (English)

    WU Yan; LIU Houjun; LI Jiawen

    2007-01-01

    To study the expression of p63 and cyclooxygenase-2 (cox-2) in skin tumors and evaluate the correlation between p63 and cox-2, the expressions of cox-2 and p63 were measured by streptavidin-peroxidase complex immunohistochemical technique in 17 cases of skin squamous cell carcinoma (SCC), 19 cases of Bowen's disease(Bowen), 11 cases of actinic keratosis(AK), 12 cases of seborreic keratosis(SK) and 13 specimens of normal skin. Our results showed that the expression of p63 in skin squamous cell carcinoma, Bowen's disease and actinic keratosis were significantly higher than that in seborreic keratosis, while the expression of p63 in seborreic keratosis was significantly higher than that in normal skin. The expression of cox-2 in skin squamous cell carcinoma,Bowen's disease and actinic keratosis were significantly higher than that in seborreic keratosis, while no statistical difference was noted in the expression of cox-2 between seborreic keratosis and normal skin. Cox-2 expression was positively correlated with the high p63 expression in malignant skin tumors. The increased expression of cox-2 and p63 may play an important role in the development of skin tumors and work synergetically in malignant skin tumors.

  18. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death

    Directory of Open Access Journals (Sweden)

    Rojas Monica A

    2010-04-01

    Full Text Available Abstract Background We previously found that cyclooxygenase 2 (COX-2 was expressed in dying oligodendrocytes at the onset of demyelination in the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD model of multiple sclerosis (MS (Carlson et al. J.Neuroimmunology 2006, 149:40. This suggests that COX-2 may contribute to death of oligodendrocytes. Objective The goal of this study was to examine whether COX-2 contributes to excitotoxic death of oligodendrocytes and potentially contributes to demyelination. Methods The potential link between COX-2 and oligodendrocyte death was approached using histopathology of MS lesions to examine whether COX-2 was expressed in dying oligodendrocytes. COX-2 inhibitors were examined for their ability to limit demyelination in the TMEV-IDD model of MS and to limit excitotoxic death of oligodendrocytes in vitro. Genetic manipulation of COX-2 expression was used to determine whether COX-2 contributes to excitotoxic death of oligodendrocytes. A transgenic mouse line was generated that overexpressed COX-2 in oligodendrocytes. Oligodendrocyte cultures derived from these transgenic mice were used to examine whether increased expression of COX-2 enhanced the vulnerability of oligodendrocytes to excitotoxic death. Oligodendrocytes derived from COX-2 knockout mice were evaluated to determine if decreased COX-2 expression promotes a greater resistance to excitotoxic death. Results COX-2 was expressed in dying oligodendrocytes in MS lesions. COX-2 inhibitors limited demyelination in the TMEV-IDD model of MS and protected oligodendrocytes against excitotoxic death in vitro. COX-2 expression was increased in wild-type oligodendrocytes following treatment with Kainic acid (KA. Overexpression of COX-2 in oligodendrocytes increased the sensitivity of oligodendrocytes to KA-induced excitotoxic death eight-fold compared to wild-type. Conversely, oligodendrocytes prepared from COX-2 knockout mice showed a

  19. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling.

    Directory of Open Access Journals (Sweden)

    Xiangsheng Xiao

    Full Text Available Quercetin, a polyphenolic bioflavonoid, possesses multiple pharmacological actions including anti-inflammatory and antitumor properties. However, the precise action mechanisms of quercetin remain unclear. Here, we reported the regulatory actions of quercetin on cyclooxygenase-2 (COX-2, an important mediator in inflammation and tumor promotion, and revealed the underlying mechanisms. Quercetin significantly suppressed COX-2 mRNA and protein expression and prostaglandin (PG E(2 production, as well as COX-2 promoter activation in breast cancer cells. Quercetin also significantly inhibited COX-2-mediated angiogenesis in human endothelial cells in a dose-dependent manner. The in vitro streptavidin-agarose pulldown assay and in vivo chromatin immunoprecipitation assay showed that quercetin considerably inhibited the binding of the transactivators CREB2, C-Jun, C/EBPβ and NF-κB and blocked the recruitment of the coactivator p300 to COX-2 promoter. Moreover, quercetin effectively inhibited p300 histone acetyltransferase (HAT activity, thereby attenuating the p300-mediated acetylation of NF-κB. Treatment of cells with p300 HAT inhibitor roscovitine was as effective as quercetin at inhibiting p300 HAT activity. Addition of quercetin to roscovitine-treated cells did not change the roscovitine-induced inhibition of p300 HAT activity. Conversely, gene delivery of constitutively active p300 significantly reversed the quercetin-mediated inhibition of endogenous HAT activity. These results indicate that quercetin suppresses COX-2 expression by inhibiting the p300 signaling and blocking the binding of multiple transactivators to COX-2 promoter. Our findings therefore reveal a novel mechanism of action of quercetin and suggest a potential use for quercetin in the treatment of COX-2-mediated diseases such as breast cancers.

  20. Inhibitory effects of tocopherols on expression of the cyclooxygenase-2 gene in RAW264.7 cells stimulated by lipopolysaccharide, tumor necrosis factor-α or Porphyromonas gingivalis fimbriae.

    Science.gov (United States)

    Murakami, Yukio; Kawata, Akifumi; Koh, Teho; Seki, Yuya; Tamura, Seiko; Katayama, Tadashi; Fujisawa, Seiichiro

    2013-01-01

    Tocopherols, which include α-, β-, γ-, and δ-tocopherol, protect cells against harmful free radicals and play an important role in preventing many human diseases such as cancer, inflammatory disorders, and ageing itself. However, the causal relationships between periodontal or oral chronic diseases and tocopherols have not been sufficiently studied. The present study investigated the inhibitory effects of these compounds on the expression of cyclooxygenase-2 (COX2) mRNA in RAW264.7 cells stimulated with lipopolysaccharide (LPS), tumor necrosis factor-α (TNFα) or fimbriae of Poryphyromonas gingivalis (Pg), an oral anaerobe. The cytotoxicity (EC₅₀) of tocopherols toward RAW cells was determined using a cell counting kit (CCK-8). The regulatory effect of these compounds on the expression of COX2 mRNA stimulated with LPS, TNFα or Pg fimbriae was investigated using real-time polymerase chain reaction (PCR). Each tocopherol had similarly low cytotoxicity. COX2 gene expression in RAW cells after exposure to the three different macrophage activators was inhibited by the tocopherols (ptocopherol, β-, γ- and δ-tocopherol exhibited greater inhibitory effects (pTocopherols exhibit anti-inflammatory activity, and β-, γ- and δ-tocopherol have particularly more potent anti-inflammatory activity than α-tocopherol. Tocopherols may have potential utility for prevention of periodontal and chronic oral diseases.

  1. The enhancement of radiosensitivity by celecoxib, selective cyclooxygenase-2 inhibitor, on human cancer cells expressing differential levels of cyclooxygenase-2

    International Nuclear Information System (INIS)

    Pyo, Hong Ryull; Shin, You Keun; Kim, Hyun Seok; Seong, Jin Sil; Suh, Chang Ok; Kim, Gwi Eon

    2003-01-01

    To investigate the modulation of radiosensitivity by celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, on cancer cells over- and under-expressing COX-2. A clonogenic radiation survival analysis was performed on A549 human lung and MCF-7 human breast cancer cell lines incubated in both 1 and 10% fetal bovine serum (FBS) containing media. The apoptosis in both cell lines was measured after treatment with radiation and/or celecoxib. Celecoxib enhanced the radiation sensitivity of the A549 cells in the medium containing the 10% FBS, with radiation enhancement ratios of 1.58 and 1.81 respectively, at surviving fractions of 0.1, with 30 μ M and 50 μ M celecoxib. This enhanced radiosensitivity disappeared in the medium containing the 1% FBS. Celecoxib did not change the radiation sensitivity of the MCF-7 cells in either media. The induction of apoptosis by celecoxib and radiation was not synergistic in either cell line. Celecoxib, a selective COX-2 inhibitor, preferentially enhanced the effect of radiation on COX-2 over-expressing cancer cells compared to the cells with a low expression, and this effect disappeared on incubation of the cells during drug treatment in the medium with suboptimal serum concentration. Apoptosis did not appear to be the underlying mechanism of this radiation enhancement effect due to celecoxib on the A549 cells. These findings suggest radiosensitization by a selective COX-2 inhibitor is COX-2 dependent

  2. Effects of the estrous cycle, pregnancy and interferon tau on expression of cyclooxygenase two (COX-2 in ovine endometrium

    Directory of Open Access Journals (Sweden)

    Bazer Fuller W

    2003-08-01

    Full Text Available Abstract In sheep, the uterus produces luteolytic pulses of prostaglandin F2α (PGF on Days 15 to 16 of estrous cycle to regress the corpus luteum (CL. These PGF pulses are produced by the endometrial lumenal epithelium (LE and superficial ductal glandular epithelium (sGE in response to binding of pituitary and/or luteal oxytocin to oxytocin receptors (OTR and liberation of arachidonic acid, the precursor of PGF. Cyclooxygenase-one (COX-1 and COX-2 are rate-limiting enzymes in PGF synthesis, and COX-2 is the major form expressed in ovine endometrium. During pregnancy recognition, interferon tau (IFNτ, produced by the conceptus trophectoderm, acts in a paracrine manner to suppress development of the endometrial epithelial luteolytic mechanism by inhibiting transcription of estrogen receptor α (ERα (directly and OTR (indirectly genes. Conflicting studies indicate that IFNτ increases, decreases or has no effect on COX-2 expression in bovine and ovine endometrial cells. In Study One, COX-2 mRNA and protein were detected solely in endometrial LE and sGE of both cyclic and pregnant ewes. During the estrous cycle, COX-2 expression increased from Days 10 to 12 and then decreased to Day 16. During early pregnancy, COX-2 expression increased from Days 10 to 12 and remained higher than in cyclic ewes. In Study Two, intrauterine infusion of recombinant ovine IFNτ in cyclic ewes from Days 11 to 16 post-estrus did not affect COX-2 expression in the endometrial epithelium. These results clearly indicate that IFNτ has no effect on expression of the COX-2 gene in the ovine endometrium. Therefore, antiluteolytic effects of IFNτ are to inhibit ERα and OTR gene transcription, thereby preventing endometrial production of luteolytic pulses of PGF. Indeed, expression of COX-2 in the endometrial epithelia as well as conceptus is likely to have a beneficial regulatory role in implantation and development of the conceptus.

  3. Atorvastatin reduces lipopolysaccharide-induced expression of cyclooxygenase-2 in human pulmonary epithelial cells

    Directory of Open Access Journals (Sweden)

    Chen Ping

    2005-04-01

    Full Text Available Abstract Objective To explore the effects of atorvastatin on expression of cyclooxygenase-2 (COX-2 in human pulmonary epithelial cells (A549. Methods A549 cells were incubated in DMEM medium containing lipopolysaccharide (LPS in the presence or absence of atorvastatin. After incubation, the medium was collected and the amount of prostaglandin E2 (PGE2 was measured by enzyme-linked immunosorbent assay (ELISA. The cells were harvested, and COX-2 mRNA and protein were analyzed by RT-PCR and western-blot respectively. Results LPS increased the expression of COX-2 mRNA and production of PGE2 in a dose- and time-dependent manner in A549. Induction of COX-2 mRNA and protein by LPS were inhibited by atorvastatin in a dose-dependent manner. Atorvastatin also significantly decreased LPS-induced production of PGE2. There was a positive correlation between reduced of COX-2 mRNA and decreased of PGE2 (r = 0.947, P Conclusion Atorvastatin down-regulates LPS-induced expression of the COX-2 and consequently inhibits production of PGE2 in cultured A549 cells.

  4. Clinical significance of cyclooxygenase-2 expression in extranodal natural killer (NK)/T-cell lymphoma, nasal type

    International Nuclear Information System (INIS)

    Shim, Su Jung; Yang, Woo-Ick; Shin, Eunah; Koom, Woong Sub; Kim, Yong Bae; Cho, Jae Ho; Suh, Chang Ok; Kim, Joo Hang; Kim, Gwi Eon

    2007-01-01

    Purpose: To determine whether there are any differences in therapeutic response, patterns of systemic recurrence, and prognosis of patients with extranodal natural killer (NK)/T-cell lymphoma, nasal type, by the cyclooxygenase-2 (COX-2) expression. Patients and Methods: Thirty-four patients with Ann Arbor Stage I and II extranodal NK/T-cell lymphoma who underwent chemotherapy or radiotherapy, or both, were retrospectively reviewed. These patients were divided into two groups according to their immunohistochemical staining for COX-2 expressions: a COX-2-negative group (n = 10 patients) and a COX-2-positive group (n = 24 patients). The treatment response, patterns of treatment failure, and survival data for the patients were compared between the COX-2-positive and negative groups. Results: There was no significant difference in the clinical profiles between the COX-2-negative and COX-2-positive groups. All patients (100%) in the COX-2-negative group achieved complete response after initial treatment, whereas only 14 patients (58%) in the COX-2-positive group achieved complete response (p = 0.03). Compared with the patients in the COX-2-negative group, those in the COX-2-positive group had a significantly lower 2-year systemic recurrence-free survival rate (100% for the COX-2-negative group vs. 54% for the COX-2-positive group) (p = 0.02) and a decreased 5-year overall survival rate (70% for the COX-2-negative group vs. 32% for the COX-2-positive group) (p = 0.06). Conclusion: Cyclooxygenase-2 expression can serve as a predictive factor for poor treatment response, higher systemic recurrence, and unfavorable prognosis in patients with extranodal NK/T-cell lymphoma, nasal type

  5. Corn silk induced cyclooxygenase-2 in murine macrophages.

    Science.gov (United States)

    Kim, Kyung A; Shin, Hyun-Hee; Choi, Sang Kyu; Choi, Hye-Seon

    2005-10-01

    Stimulation of murine macrophages with corn silk induced cyclooxygenase (COX)-2 with secretion of PGE2. Expression of COX-2 was inhibited by pyrolidine dithiocarbamate (PDTC), and increased DNA binding by nuclear factor kappa B (NF-kappaB), indicating that COX-2 induction proceeds also via the NF-kappaB signaling pathway. A specific inhibitor of COX-2 decreased the expression level of inducible nitric oxide synthase (iNOS) stimulated by corn silk. PGE2 elevated the expression level of iNOS, probably via EP2 and EP4 receptors on the surface of the macrophages.

  6. Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis

    Directory of Open Access Journals (Sweden)

    Thomas J. Hannan

    2014-11-01

    Full Text Available The spread of multidrug-resistant microorganisms globally has created an urgent need for novel therapeutic strategies to combat urinary tract infections (UTIs. Immunomodulatory therapy may provide benefit, as treatment of mice with dexamethasone during acute UTI improved outcome by reducing the development of chronic cystitis, which predisposes to recurrent infection. Here we discovered soluble biomarkers engaged in myeloid cell development and chemotaxis that were predictive of future UTI recurrence when elevated in the sera of young women with UTI. Translation of these findings revealed that temperance of the neutrophil response early during UTI, and specifically disruption of bladder epithelial transmigration of neutrophils by inhibition of cyclooxygenase-2, protected mice against chronic and recurrent cystitis. Further, proteomics identified bladder epithelial remodeling consequent to chronic infection that enhances sensitivity to neutrophil damage. Thus, cyclooxygenase-2 expression during acute UTI is a critical molecular trigger determining disease outcome and drugs targeting cyclooxygenase-2 could prevent recurrent UTI.

  7. Expression of integrin α3β1 and cyclooxygenase-2 (COX2) are positively correlated in human breast cancer

    International Nuclear Information System (INIS)

    Aggarwal, Anshu; Al-Rohil, Rami N; Batra, Anupam; Feustel, Paul J; Jones, David M; DiPersio, C Michael

    2014-01-01

    Expression of integrin α3β1 is associated with tumor progression, metastasis, and poor prognosis in several cancers, including breast cancer. Moreover, preclinical studies have revealed important pro-tumorigenic and pro-metastatic functions for this integrin, including tumor growth, survival, invasion, and paracrine induction of angiogenesis. Our previously published work in a preclinical breast cancer model showed that integrin α3β1 promotes expression of cyclooxygenase-2 (COX2/PTGS2), a known driver of breast cancer progression. However, the clinical significance of this regulation was unknown. The objective of the current study was to assess the clinical relevance of the relationship between integrin α3β1 and COX2 by testing for their correlated expression among various forms of human breast cancer. Immunohistochemistry was performed to assess co-expression of α3 and COX2 in specimens of human invasive ductal carcinoma (IDC), either on a commercial tissue microarray (n = 59 samples) or obtained from Albany Medical Center archives (n = 68 samples). Immunostaining intensity for the integrin α3 subunit or COX2 was scored, and Spearman’s rank correlation coefficient analysis was performed to assess their co-expression across and within different tumor subtypes or clinicopathologic criteria. Although expression of integrin α3 or COX2 varied among clinical IDC samples, a statistically significant, positive correlation was detected between α3 and COX2 in both tissue microarrays (r s = 0.49, p < 0.001, n = 59) and archived samples (r s = 0.59, p < 0.0001, n = 68). In both sample sets, this correlation was independent of hormone receptor status, histological grade, or disease stage. COX2 and α3 are correlated in IDC independently of hormone receptor status or other clinicopathologic features, supporting the hypothesis that integrin α3β1 is a determinant of COX2 expression in human breast cancer. These results support the clinical relevance of α3β1

  8. Alterations in Lipoxygenase and Cyclooxygenase-2 Catalytic Activity and mRNA Expression in Prostate Carcinoma

    Directory of Open Access Journals (Sweden)

    Scott B. Shappell

    2001-01-01

    Full Text Available Recent studies in prostate tissues and especially cell lines have suggested roles for arachidonic acid (AA metabolizing enzymes in prostate adenocarcinoma (Pca development or progression. The goal of this study was to more fully characterize lipoxygenase (LOX and cyclooxygenase-2 (COX-2 gene expression and AA metabolism in benign and malignant prostate using snap-frozen tissues obtained intraoperatively and mRNA analyses and enzyme assays. Formation of 15-hydroxyeicosatetraenoic acid (15-HETE was detected in 23/29 benign samples and 15-LOX-2 mRNA was detected in 21/25 benign samples. In pairs of pure benign and Pca from the same patients, 15-HETE production and 15-LOX-2 mRNA were reduced in Pca versus benign in 9/14 (P=.04 and 14/17 (P=.002, respectively. Under the same conditions, neither 5HETE nor 12-HETE formation was detectable in 29 benign and 24 tumor samples; with a more sensitive assay, traces were detected in some samples, but there was no clear association with tumor tissue. COX-2 mRNA was detected by nuclease protection assay in 7/16 benign samples and 5/16 tumors. In benign and tumor pairs from 10 patients, COX-2 was higher in tumor versus benign in only 2, with similar results by in situ hybridization. Paraffin immunoperoxidase for COX2 was performed in whole mount sections from 87 additional radical prostatectomy specimens, with strong expression in ejaculatory duct as a positive control and corroboration with in situ hybridization. No immunostaining was detected in benign prostate or tumor in 45% of cases. Greater immunostaining in tumor versus benign was present in only 17% of cases, and correlated with high tumor grade (Gleason score 8 and 9 vs. 5 to 7. In conclusion, reduced 15-LOX-2 expression and 15-HETE formation is the most characteristic alteration of AA metabolism in Pca. Increased 12-HETE and 5-HETE formation in Pca were not discernible. Increased COX-2 expression is not a typical abnormality in Pca in general, but

  9. The AP-1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase-2 and Arginase-1 Expression in Macrophages.

    Science.gov (United States)

    Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline

    2017-05-01

    Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Upregulation of cyclooxygenase-2 expression in porcine macula densa with chronic nitric oxide synthase inhibition.

    Science.gov (United States)

    Kommareddy, M; McAllister, R M; Ganjam, V K; Turk, J R; Laughlin, M Harold

    2011-11-01

    The objective of this study was to investigate the effects of chronic inhibition of nitric oxide synthase (NOS) on cyclooxygenase-2 (COX-2) expression in the macula densa (MD) of swine, as well as the effects on expression of related proteins. Adult female Yucatan swine were given either tap water (control, n = 6) or water with N (G)-nitro-L-arginine methyl ester (L-NAME, 100 mg/liter, n = 5) for a minimum of 30 days. Duplicate samples of kidney were fixed or snap frozen. There was a significant (P = .0082) upregulation of COX-2 mRNA expression in the MD of L-NAME, as well as an apparent increase in COX-2 protein. Plasma renin activity also increased with L-NAME treatment (control, 0.34 ± 0.08 ng/ml; L-NAME, 1.26 ± 0.03 ng/ml; P = .00000003). There were no differences between groups in expression of either inducible NOS or renin protein or in serum electrolyte concentrations. In conclusion, with chronic inhibition of NOS, COX-2 in MD is upregulated, perhaps to compensate for loss of nitric oxide. Increases in COX-2 products may counteract renal arteriolar constriction and sustain renin release.

  11. Expression of selected genes in preterm premature rupture of fetal membranes.

    Science.gov (United States)

    Kuć, Paweł; Laudański, Piotr; Kowalczuk, Oksana; Chyczewski, Lech; Laudański, Tadeusz

    2012-08-01

    To analyse the expression of 15 genes encoding receptors and enzymes associated with the molecular mechanism of the tocolytic drugs atosiban (oxytocin receptor antagonist), nifedipine (calcium channel blocker) and celecoxib (selective cyclo-oxygenase-2 inhibitor) in preterm labor patients with premature rupture of fetal membranes in relation to symptoms of intrauterine infection and preterm labor risk factors. Experimental molecular study. Tertiary obstetric care center. Myometrial samples were obtained during cesarean sections from 35 patients who delivered preterm with unverified symptoms of intrauterine infection, 35 patients who delivered preterm without symptoms of intrauterine infection and 90 women who delivered at term. The Micro Fluidic Profiling Card analytic system was used to evaluate mRNA expression of the genes of interest. The relative quantification values for mRNA expression. The median oxytocin receptor and cyclo-oxygenase-2 mRNA expression in preterm patients with clinical symptoms of intrauterine infection was significantly higher than in preterm patients without symptoms. The median mRNA expression of β(1) , β(3) and β(4) subunits of the L-type calcium channel and prostaglandin E(2) receptor was significantly higher in preterm patients compared with term patients. The mRNA expression of hormones, enzymes and their receptors associated with tocolytic actions can differ in various clinical conditions. The expression of these genes is regulated at different levels and can be modified by inflammatory factors, which affect their functions. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  12. Inflammatory mammary carcinoma in 12 dogs: Clinical features, cyclooxygenase-2 expression, and response to piroxicam treatment

    Science.gov (United States)

    de M. Souza, Carlos H.; Toledo-Piza, Evandro; Amorin, Renee; Barboza, Andrigo; Tobias, Karen M.

    2009-01-01

    Canine inflammatory mammary carcinoma (IMC) is a rare, locally aggressive, highly metastatic tumor that is poorly responsive to treatment. The purposes of this study were to retrospectively evaluate the history, signalment, and clinical signs of dogs with IMC; compare the outcome of affected dogs treated with traditional chemotherapy with those treated with piroxicam; evaluate Cox-2 expression of IMC cells; and correlate Cox-2 expression with outcome based on treatment. Strong cyclooxygenase-2 expression was present in all tumors. Improvement in clinical condition and disease stability was achieved in all dogs treated with piroxicam, with mean and median progression-free survival of 171 and 183 days, respectively. Median survival time of 3 dogs treated with doxorubicin-based protocols was 7 days, which was significantly less than that of dogs treated with piroxicam (median, 185 days). In conclusion, piroxicam should be considered as a single agent for the treatment of dogs with inflammatory mammary carcinoma. PMID:19436636

  13. Regulation of cyclooxygenase expression in cultured vascular cells

    International Nuclear Information System (INIS)

    Pash, J.M.

    1988-01-01

    Arachidonic acid metabolism in vascular tissue results in synthesis of prostacylin. The key enzyme in this synthesis pathway, cyclooxygenase, is down-regulated through self-inactivation. An analogous refractory state is produced by aspirin which irreversibly acetylates the enzyme. To further understand this phenomenon, the inactivation and recovery of cyclooxygenase activity was assayed in cultured ray vascular smooth muscle cells using exogenously added arachidonic acid. Self-inactivation of cyclooxygenase was observed following treatment with micromolar amounts of arachidonic acid. The recovery of cyclooxygenase activity following self-inactivation was analogous to that observed following aspirin-inactivation in that it depended on protein synthesis and required either serum or EGF. Two additional factors, TGF-β and uric acid, were found to enhance the stimulation of cyclooxygenase recovery by EGF. A defined medium containing 10 ng/mL EGF, 1 ng/mL TGFβ and 0.1 mM uric acid duplicated the cyclooxygenase recovery activity of 10% serum. Stimulation of cyclooxygenase activity by EGF and TGF-β was inhibited by cycloheximide but not by actinomycin-D, indicating a link to increased translation of pre-existing mRNA. A lack of significant effect on overall protein synthesis by EGF and TGF-β, measured by [ 35 S]-methionine incorporation under conditions where a multi-fold increase in cyclooxygenase activity was seen, indicates that the translational regulation of a small fraction of total mRNA and possibly cyclooxygenase is occurring

  14. Cyclooxygenase-2 up-regulates CCR7 expression via AKT-mediated phosphorylation and activation of Sp1 in breast cancer cells.

    Science.gov (United States)

    Chuang, Chun-Wei; Pan, Mei-Ren; Hou, Ming-Feng; Hung, Wen-Chun

    2013-02-01

    Up-regulation of cyclooxygenase-2 (COX-2) is frequently found in human cancers and is significantly associated with tumor metastasis. Our previous results demonstrate that COX-2 and its metabolite prostaglandin E2 (PGE2) stimulate the expression of CCR7 chemokine receptor via EP2/EP4 receptors to promote lymphatic invasion in breast cancer cells. In this study, we address the underlying mechanism of COX-2/PGE2-induced CCR7 expression. We find that COX-2/PGE2 increase CCR7 expression via the AKT signaling pathway in breast cancer cells. Promoter deletion and mutation assays identify the Sp1 site located at the -60/-57 region of CCR7 gene promoter is critical for stimulation. Chromatin immunoprecipitation (ChIP) assay confirms that in vivo binding of Sp1 to human CCR7 promoter is increased by COX-2 and PGE2. Knockdown of Sp1 by shRNA reduces the induction of CCR7 by PGE2. We demonstrate for the first time that AKT may directly phosphorylate Sp1 at S42, T679, and S698. Phosphorylation-mimic Sp1 protein harboring S42D, T679D, and S698D mutation strongly activates CCR7 expression. In contrast, change of these three residues to alanine completely blocks the induction of CCR7 by PGE2. Pathological investigation demonstrates that CCR7 expression is strongly associated with phospho-AKT and Sp1 in 120 breast cancer tissues. Collectively, our results demonstrate that COX-2 up-regulates CCR7 expression via AKT-mediated phosphorylation and activation of Sp1 and this pathway is highly activated in metastatic breast cancer. Copyright © 2012 Wiley Periodicals, Inc.

  15. cAMP/PKA-CREB-BDNF signaling pathway in hippocampus mediates cyclooxygenase 2-induced learning/memory deficits of rats subjected to chronic unpredictable mild stress.

    Science.gov (United States)

    Luo, Ying; Kuang, Shengnan; Li, Huan; Ran, Dongzhi; Yang, Junqing

    2017-05-30

    To investigate the mechanism of cyclooxygenase 2 (COX2) in learning and memory impairments in rats subjected to chronic unpredictable mild stress (CUMS), meloxicam was used intragastrically to inhibit the activity of cyclooxygenase 2. Moreover, cyclooxygenase 2 over-expressing or RNA interfere lentivirus was injected intraventricularly to increase or decrease the enzyme's expression, respectively. The body weights and sucrose consumption were used to analyze depressive behaviors, while the Morris water maze and step-down-type passive avoidance tests were carried out to evaluate the learning-memory functions. The levels of inflammatory cytokines were measured to estimate inflammation and the contents of cyclic adenosine monophosphate (cAMP) were used to measure the levels of the second messenger. Changes in cyclooxygenase 2 mRNA levels were analyzed using reverse transcription polymerase chain reaction. Moreover, the expression of cyclooxygenase 2, brain-derived neurotrophic factor (BDNF), prostaglandins receptor 3 (EP3), protein kinase A (PKA), cAMP response element binding protein (CREB), and phosphorylated CREB were estimated using immunohistochemical staining or western blotting. The results showed that CUMS led to significant depressive-like behaviors and learning and memory dysfunctions. Also, the cAMP levels decreased significantly, while levels of inflammatory cytokines and prostaglandins E2 increased significantly. The expressions of PKA, BDNF, phosphorylated CREB/CREB declined and cyclooxygenase 2 was increased. Meloxicam and cyclooxygenase 2 RNA interfere lentivirus reversed the changes caused by CUMS while cyclooxygenase 2-overexpressing lentivirus worsened these abnormalities. The findings also showed that CUMS increased cyclooxygenase 2 expression, which can cause learning and memory impairments, mainly through activating the hippocampal neuronal cAMP/PKA-CREB-BDNF signaling pathways.

  16. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Yi-Rang Na

    Full Text Available Tumor cells are often associated with abundant macrophages that resemble the alternatively activated M2 subset. Tumor-associated macrophages (TAMs inhibit anti-tumor immune responses and promote metastasis. Cyclooxygenase-2 (COX-2 inhibition is known to prevent breast cancer metastasis. This study hypothesized that COX-2 inhibition affects TAM characteristics potentially relevant to tumor cell metastasis. We found that the specific COX-2 inhibitor, etodolac, inhibited human M2 macrophage differentiation, as determined by decreased CD14 and CD163 expressions and increased TNFα production. Several key metastasis-related mediators, such as vascular endothelial growth factor-A, vascular endothelial growth factor-C, and matrix metalloproteinase-9, were inhibited in the presence of etodolac as compared to untreated M2 macrophages. Murine bone marrow derived M2 macrophages also showed enhanced surface MHCII IA/IE and CD80, CD86 expressions together with enhanced TNFα expressions with etodolac treatment during differentiation. Using a BALB/c breast cancer model, we found that etodolac significantly reduced lung metastasis, possibly due to macrophages expressing increased IA/IE and TNFα, but decreased M2 macrophage-related genes expressions (Ym1, TGFβ. In conclusion, COX-2 inhibition caused loss of the M2 macrophage characteristics of TAMs and may assist prevention of breast cancer metastasis.

  17. Cyclooxygenase inhibition improves endothelial vasomotor dysfunction of visceral adipose arterioles in human obesity

    Science.gov (United States)

    Farb, Melissa G.; Tiwari, Stephanie; Karki, Shakun; Ngo, Doan TM; Carmine, Brian; Hess, Donald T.; Zuriaga, Maria A.; Walsh, Kenneth; Fetterman, Jessica L.; Hamburg, Naomi M.; Vita, Joseph A.; Apovian, Caroline M.; Gokce, Noyan

    2013-01-01

    Objective The purpose of this study was to determine whether cyclooxygenase inhibition improves vascular dysfunction of adipose microvessels from obese humans. Design and Methods In 20 obese subjects (age 37±12 yrs, BMI 47±8 kg/m2) we collected subcutaneous and visceral fat during bariatric surgery and characterized adipose depot-specific gene expression, endothelial cell phenotype, and microvascular function. Vasomotor function was assessed in response to endothelium-dependent agonists using videomicroscopy of small arterioles from fat. Results Arterioles from visceral fat exhibited impaired endothelium-dependent, acetylcholine-mediated vasodilation, compared to the subcutaneous depot (p<0.001). Expression of mRNA transcripts relevant to the cyclooxygenase pathway were upregulated in visceral compared to subcutaneous fat. Pharmacological inhibition of cyclooxygenase with indomethacin improved endothelium-dependent vasodilator function of arterioles from visceral fat by 2-fold (p=0.01), whereas indomethacin had no effect in the subcutaneous depot. Indomethacin increased activation via serine-1177 phosphorylation of endothelial nitric oxide synthase in response to acetylcholine in endothelial cells from visceral fat. Inhibition of endothelial nitric oxide synthase with Nω-nitro-L-arginine methyl ester abrogated the effects of cyclooxygenase-inhibition suggesting that vascular actions of indomethacin were related to increased nitric oxide bioavailability. Conclusions Our findings suggest that cyclooxygenase-mediated vasoconstrictor prostanoids partly contribute to endothelial dysfunction of visceral adipose arterioles in human obesity. PMID:23640904

  18. Cyclooxygenase 2 Promotes Parathyroid Hyperplasia in ESRD

    Science.gov (United States)

    Zhang, Qian; Qiu, Junsi; Li, Haiming; Lu, Yanwen; Wang, Xiaoyun; Yang, Junwei; Wang, Shaoqing; Zhang, Liyin; Gu, Yong; Hao, Chuan-Ming

    2011-01-01

    Hyperplasia of the PTG underlies the secondary hyperparathyroidism (SHPT) observed in CKD, but the mechanism underlying this hyperplasia is incompletely understood. Because aberrant cyclooxygenase 2 (COX2) expression promotes epithelial cell proliferation, we examined the effects of COX2 on the parathyroid gland in uremia. In patients with ESRD who underwent parathyroidectomy, clusters of cells within the parathyroid glands had increased COX2 expression. Some COX2-positive cells exhibited two nuclei, consistent with proliferation. Furthermore, nearly 78% of COX2-positive cells expressed proliferating cell nuclear antigen (PCNA). In the 5/6-nephrectomy rat model, rats fed a high-phosphate diet had significantly higher serum PTH levels and larger parathyroid glands than sham-operated rats. Compared with controls, the parathyroid glands of uremic rats exhibited more PCNA-positive cells and greater COX2 expression in the chief cells. Treatment with COX2 inhibitor celecoxib significantly reduced PCNA expression, attenuated serum PTH levels, and reduced the size of the glands. In conclusion, COX2 promotes the pathogenesis of hyperparathyroidism in ESRD, suggesting that inhibiting the COX2 pathway could be a potential therapeutic target. PMID:21335517

  19. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    International Nuclear Information System (INIS)

    Asting, Annika Gustafsson; Carén, Helena; Andersson, Marianne; Lönnroth, Christina; Lagerstedt, Kristina; Lundholm, Kent

    2011-01-01

    Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4) showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3) were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue

  20. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    Directory of Open Access Journals (Sweden)

    Lagerstedt Kristina

    2011-06-01

    Full Text Available Abstract Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4 showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3 were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue.

  1. Study of Osteoarthritis Treatment with Anti-Inflammatory Drugs: Cyclooxygenase-2 Inhibitor and Steroids

    Directory of Open Access Journals (Sweden)

    Hongsik Cho

    2015-01-01

    Full Text Available Patients with osteoarthritis (OA, a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs, and cyclooxygenase-2 (COX-2 selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM. To compare the effects of these treatments on chondrocyte metabolism, TNF-α was incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2. The chondrocytes were then treated with either a steroid (prednisone, a nonspecific COX inhibitor NSAID (piroxicam, or a COX-2 selective NSAID (celecoxib. Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxib in vivo was investigated using a posttraumatic OA (PTOA mouse model. In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 production in vitro and that celecoxib may demonstrate beneficial effects on anabolic metabolism in vivo.

  2. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Cyclooxygenase-2 polymorphisms in Parkinson's disease.

    Science.gov (United States)

    Håkansson, Anna; Bergman, Olle; Chrapkowska, Cecilia; Westberg, Lars; Belin, Andrea Carmine; Sydow, Olof; Johnels, Bo; Olson, Lars; Holmberg, Björn; Nissbrandt, Hans

    2007-04-05

    Accumulating evidence indicate that cyclooxygenase-2 (COX-2) is of pathophysiological importance for the neurodegeneration in Parkinson's disease (PD). For example, in a large epidemiological study, use of NSAIDs was associated with a lower risk of PD. Genetic variants of the COX-2 gene might therefore influence the risk of developing the disease. The genotype distribution of four common single nucleotide polymorphisms (SNPs) in the COX-2 gene (rs689466:A496G, rs20417:G926C, rs5277:G3050C, rs5275:C8473T) was analyzed in PD patients and control subjects in a Swedish population. No differences could be seen between the PD-patient and controls regarding the A496G, G926C, and G3050C SNPs, but the allele frequency of the C8473T SNP was found to differ when male patients were compared to controls (P = 0.007). In females no difference could be seen between PD-patients and controls. In conclusion, the results suggest a possible influence of the COX-2 C8473T SNP in PD, although it only seems to be of importance in men. (c) 2006 Wiley-Liss, Inc.

  4. Acrolein induces cyclooxygenase-2 and prostaglandin production in human umbilical vein endothelial cells: roles of p38 MAP kinase.

    Science.gov (United States)

    Park, Yong Seek; Kim, Jayoung; Misonou, Yoshiko; Takamiya, Rina; Takahashi, Motoko; Freeman, Michael R; Taniguchi, Naoyuki

    2007-06-01

    Acrolein, a known toxin in tobacco smoke, might be involved in atherogenesis. This study examined the effect of acrolein on expression of cyclooxygenase-2 (COX-2) and prostaglandin (PG) production in endothelial cells. Cyclooxygenase (COX)-2 induction by acrolein and signal pathways were measured using Western blots, Northern blots, immunofluorescence, ELISA, gene silencing, and promoter assay. Colocalization of COX2 and acrolein-adduct was determined by immunohistochemistry. Here we report that the levels of COX-2 mRNA and protein are increased in human umbilical vein endothelial cells (HUVECs) after acrolein exposure. COX-2 was found to colocalize with acrolein-lysine adducts in human atherosclerotic lesions. Inhibition of p38 MAPK activity abolished the induction of COX-2 protein and PGE2 accumulation by acrolein, while suppression of extracellular signal-regulated kinase (ERK) and JNK activity had no effect on the induction of COX-2 expression in experiments using inhibitors and siRNA. Furthermore, rottlerin, an inhibitor of protein kinase Cdelta (PKCdelta), abrogated the upregulation of COX-2 at both protein and mRNA levels. These results provide that acrolein may play a role in progression of atherosclerosis and new information on the signaling pathways involved in COX-2 upregulation in response to acrolein and provide evidence that PKCdelta and p38 MAPK are required for transcriptional activation of COX-2.

  5. Cyclooxygenase-2 inhibitors in colorectal cancer prevention: point.

    Science.gov (United States)

    Arber, Nadir

    2008-08-01

    The limited success of current treatments for most advanced common malignancies highlights the importance of cancer prevention. Clinical trials on cyclooxygenase (COX) inhibitor drugs showed the potential of chemoprevention as a strategy for reducing cancer incidence, although not without associated side effects. The attractiveness of these drugs partly stems from an ability to engage multiple mechanisms of action by their potential to influence multiple components of the carcinogenesis pathway, from initiation to progression. There are two isoforms of the COX enzymes. COX-1 is constitutively expressed in normal tissues and serves as a "housekeeper" of mucosal integrity, whereas COX-2 is an immediate early response gene that is highly inducible by neoplastic and inflammatory stimuli. COX-2 is significantly overexpressed in colorectal neoplasms, making it an attractive therapeutic target. The drug market has been revolutionized by the development of preparations targeted selectively against COX-2, and a proof of concept has been achieved. Chemoprevention of colorectal cancer is already possible with celecoxib, but it is still not the ultimate drug of choice especially because of the cardiovascular risk associated with COX-2 inhibitors. Better patient selection and more effective and safer drugs are needed. Celecoxib is probably best used in a subset of individuals at moderate to high colorectal cancer risk and low risk of cardiovascular disease.

  6. A high-fat diet generates alterations in nuclear receptor expression: prevention by vitamin A and links with cyclooxygenase-2 and beta-catenin.

    Science.gov (United States)

    Delage, Barbara; Bairras, Céline; Buaud, Benjamin; Pallet, Véronique; Cassand, Pierrette

    2005-10-10

    Epidemiologic studies suggest that intake of high energy from fat, inducing overweight, increases the risk of cancer development and promotes colon carcinogenesis. It is therefore important to understand which parameters are affected early on by a high-fat diet in order to devise and improve protective nutritional strategies. We investigated the effect of high energy/fat intake on colon mucosa of male Wistar rats induced by a single 1,2-dimethylhydrazine (DMH) injection. Aberrant crypt foci (ACF) were numbered and modifications in cyclooxygenase-2 (COX-2) and beta-catenin levels assessed. Peroxisome proliferator- and retinoic acid-activated receptors (PPAR and RAR, RXR) are key transcription factors regulating gene expression in response to nutrient-activated signals. A short-term study was designed to evaluate whether alterations in mRNA expression of nuclear receptors can be detected at the beginning of the weight gain phase induced by an appetizing hyperlipidic diet (HLD). HLD consumption induced early downregulation of PPARgamma (-33.1%) and RARbeta (-53.1%) mRNA expression concomitant with an increase in levels of COX-2 (+45.5%) and beta-catenin (+84.56%) and in the number of ACF (191.56 +/- 88.60 vs. 21.14 +/- 11.64, p nuclear receptors. Moreover, the use HLD rich in retinyl esters or supplemented with all-trans retinoic acid led to a reduction in the number of ACF. Vitamin A also prevented HLD-induced alterations and the increase in levels of COX-2 and beta-catenin. The present observations show a protective role for vitamin A against disturbances associated with HLD exposure in induced colon carcinogenesis.

  7. LC-MS/MS confirms that COX-1 drives vascular prostacyclin whilst gene expression pattern reveals non-vascular sites of COX-2 expression.

    Directory of Open Access Journals (Sweden)

    Nicholas S Kirkby

    Full Text Available There are two schools of thought regarding the cyclooxygenase (COX isoform active in the vasculature. Using urinary prostacyclin markers some groups have proposed that vascular COX-2 drives prostacyclin release. In contrast, we and others have found that COX-1, not COX-2, is responsible for vascular prostacyclin production. Our experiments have relied on immunoassays to detect the prostacyclin breakdown product, 6-keto-PGF1α and antibodies to detect COX-2 protein. Whilst these are standard approaches, used by many laboratories, antibody-based techniques are inherently indirect and have been criticized as limiting the conclusions that can be drawn. To address this question, we measured production of prostanoids, including 6-keto-PGF1α, by isolated vessels and in the circulation in vivo using liquid chromatography tandem mass spectrometry and found values essentially identical to those obtained by immunoassay. In addition, we determined expression from the Cox2 gene using a knockin reporter mouse in which luciferase activity reflects Cox2 gene expression. Using this we confirm the aorta to be essentially devoid of Cox2 driven expression. In contrast, thymus, renal medulla, and regions of the brain and gut expressed substantial levels of luciferase activity, which correlated well with COX-2-dependent prostanoid production. These data are consistent with the conclusion that COX-1 drives vascular prostacyclin release and puts the sparse expression of Cox2 in the vasculature in the context of the rest of the body. In doing so, we have identified the thymus, gut, brain and other tissues as target organs for consideration in developing a new understanding of how COX-2 protects the cardiovascular system.

  8. Degradation and inhibition of cyclooxygenase

    OpenAIRE

    Neuß, Heiko

    2011-01-01

    The cyclooxygenase (COX) is a central enzyme in the genesis of pain, inflammation and carcinogenesis. Two major isoforms, COX-1 and COX-2, have been described. The COX-1 is constitutively expressed in most tissues and has housekeeping functions, whereas the COX-2 is the inducible isoform, expressed under conditions of inflammation and tumor growth. First, we researched the degradation of the COX-2 enzyme. We were able to demonstrate, that the COX-2 protein was ubiquitinated before prote...

  9. Nuclear factor κB (NFκB) and cyclooxygenase-2 (Cox-2) expression in the irradiated colorectum is associated with subsequent histopathological changes

    International Nuclear Information System (INIS)

    Yeoh, Ann S.J.; Bowen, Joanne M.; Gibson, Rachel J.; Keefe, Dorothy M.K.

    2005-01-01

    Purpose: Recent studies have proposed that mucositis development is the same throughout the gastrointestinal tract (GIT), as it is formed from one structure embryologically. Radiation-induced oral mucositis studies have outlined the key involvement of nuclear factor κB (NFκB) and cyclooxygenase-2 (Cox-2) in its pathobiology. The purpose of this study was therefore to investigate the expression of NFκB and Cox-2 in the irradiated colorectum and to correlate these with the associated histopathologic changes. Methods and Materials: Colorectal tissues from 28 colorectal cancer patients treated with preoperative radiotherapy were analyzed for histopathologic changes using a variety of tissue staining methods. The expression of NFκB and Cox-2 in these tissues was investigated using immunohistochemistry. Changes in expression of these proteins were then correlated with the histopathologic changes. Results: Radiation therapy caused injury to the normal colorectal tissue surrounding tumor site, particularly around the blood vessels. These changes were reflected in changes in NFκB and Cox-2 expression. Conclusions: We conclude that different regions of the GIT, the colorectum, and oral cavity have similar underlying mechanisms of radiation-induced mucositis. Understanding these mechanisms will allow new approaches to be developed to specifically target steps in the evolution of alimentary mucositis

  10. Synthesis and evaluation of a radioiodinated lumiracoxib derivative for the imaging of cyclooxygenase-2 expression

    International Nuclear Information System (INIS)

    Kuge, Yuji; Obokata, Naoyuki; Kimura, Hiroyuki; Katada, Yumiko; Temma, Takashi; Sugimoto, Yukihiko; Aita, Kazuki; Seki, Koh-ichi; Tamaki, Nagara; Saji, Hideo

    2009-01-01

    Introduction: Despite extensive attempts to develop cyclooxygenase (COX)-2 imaging radiotracers, no suitable positron emission tomography (PET)/single photon emission computed tomography (SPECT) tracers are currently available for in vivo imaging of COX-2 expression. The aims of this study were to synthesize and evaluate a radioiodinated derivative of lumiracoxib, 2-[(2-fluoro-6-iodophenyl)-amino]-5-methylphenylacetic acid (FIMA), which is structurally distinct from other drugs in the class and has weakly acidic properties, as a SPECT tracer for imaging COX-2 expression. Methods: The COX inhibitory potency was assessed by measuring COX-catalyzed oxidation with hydrogen peroxide. Cell uptake characteristics of 125 I-FIMA were assessed in control and linterfero/interferon-γ-stimulated macrophages. The biodistribution of 125 I-FIMA was determined by the ex vivo tissue counting method in rats. Results: The COX-2 inhibitory potency of FIMA (IC 50 =2.46 μM) was higher than that of indomethacin (IC 50 =20.9 μM) and was comparable to lumiracoxib (IC 50 =0.77 μM) and diclofenac (IC 50 =0.98 μM). The IC 50 ratio (COX-1/COX-2=182) indicated FIMA has a high isoform selectivity for COX-2. 125 I-FIMA showed a significantly higher accumulation in COX-2 induced macrophages than in control macrophages, which decreased with nonradioactive FIMA in a concentration dependent manner. The biodistribution study showed rapid clearance of 125 I-FIMA from the blood and most organs including the liver and kidneys. No significant in vivo deiodination was observed with radioiodinated FIMA. Conclusions: FIMA showed high inhibitory potency and selectivity for COX-2. Radioiodinated FIMA showed specific accumulation into COX-2 induced macrophages, no significant in vivo deiodination and rapid blood clearance. Radioiodinated FIMA deserves further investigation as a SPECT radiopharmaceutical for imaging COX-2 expression.

  11. Synthesis and evaluation of a radioiodinated lumiracoxib derivative for the imaging of cyclooxygenase-2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kuge, Yuji [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638 (Japan)], E-mail: kuge@med.hokudai.ac.jp; Obokata, Naoyuki; Kimura, Hiroyuki; Katada, Yumiko; Temma, Takashi [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Sugimoto, Yukihiko [Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Aita, Kazuki [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Central Institute of Isotope Science, Hokkaido University, Sapporo 060-8638 (Japan); Seki, Koh-ichi [Central Institute of Isotope Science, Hokkaido University, Sapporo 060-8638 (Japan); Tamaki, Nagara [Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638 (Japan); Saji, Hideo [Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan)

    2009-11-15

    Introduction: Despite extensive attempts to develop cyclooxygenase (COX)-2 imaging radiotracers, no suitable positron emission tomography (PET)/single photon emission computed tomography (SPECT) tracers are currently available for in vivo imaging of COX-2 expression. The aims of this study were to synthesize and evaluate a radioiodinated derivative of lumiracoxib, 2-[(2-fluoro-6-iodophenyl)-amino]-5-methylphenylacetic acid (FIMA), which is structurally distinct from other drugs in the class and has weakly acidic properties, as a SPECT tracer for imaging COX-2 expression. Methods: The COX inhibitory potency was assessed by measuring COX-catalyzed oxidation with hydrogen peroxide. Cell uptake characteristics of {sup 125}I-FIMA were assessed in control and linterfero/interferon-{gamma}-stimulated macrophages. The biodistribution of {sup 125}I-FIMA was determined by the ex vivo tissue counting method in rats. Results: The COX-2 inhibitory potency of FIMA (IC{sub 50}=2.46 {mu}M) was higher than that of indomethacin (IC{sub 50}=20.9 {mu}M) and was comparable to lumiracoxib (IC{sub 50}=0.77 {mu}M) and diclofenac (IC{sub 50}=0.98 {mu}M). The IC{sub 50} ratio (COX-1/COX-2=182) indicated FIMA has a high isoform selectivity for COX-2. {sup 125}I-FIMA showed a significantly higher accumulation in COX-2 induced macrophages than in control macrophages, which decreased with nonradioactive FIMA in a concentration dependent manner. The biodistribution study showed rapid clearance of {sup 125}I-FIMA from the blood and most organs including the liver and kidneys. No significant in vivo deiodination was observed with radioiodinated FIMA. Conclusions: FIMA showed high inhibitory potency and selectivity for COX-2. Radioiodinated FIMA showed specific accumulation into COX-2 induced macrophages, no significant in vivo deiodination and rapid blood clearance. Radioiodinated FIMA deserves further investigation as a SPECT radiopharmaceutical for imaging COX-2 expression.

  12. Cyclooxygenase-2 expression and clinical parameters in laryngeal squamous cell carcinoma, vocal fold nodule, and laryngeal atypical hyperplasia.

    Science.gov (United States)

    Sayar, Cağdaş; Sayar, Hamide; Özdemir, Süleyman; Selçuk, Tahsin; Görgülü, Orhan; Akbaş, Yücel; Kemal Olgun, Mustafa

    2013-01-01

    The diagnostic role of cyclooxygenase-2 (COX-2) expression in laryngeal atypical hyperplasia, vocal fold nodule, and laryngeal squamous cell carcinoma was examined. Specimens obtained from patients diagnosed with vocal fold nodule (n = 35), atypical hyperplasia (n = 35), laryngeal squamous cell carcinoma (n = 35), and clinical parameters were evaluated retrospectively. Although no staining was observed in patients with vocal fold nodules, staining was noted in laryngeal atypical hyperplasia and squamous cell carcinoma. The percentage of COX-2 staining was the highest in the carcinoma group. It was determined that COX-2 staining was significantly associated with laryngeal squamous cell carcinoma. It should be noted that overexpression of COX-2, a potentially important factor in the evolution of carcinogenesis in precancerous lesions, might be an indicator of the development of carcinoma. Copyright © 2012 Wiley Periodicals, Inc.

  13. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Science.gov (United States)

    Ryan, Veronica H; Primiani, Christopher T; Rao, Jagadeesh S; Ahn, Kwangmi; Rapoport, Stanley I; Blanchard, Helene

    2014-01-01

    The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  14. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Veronica H Ryan

    Full Text Available The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades.AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging.The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism.Expression patterns were split into Development (0 to 20 years and Aging (21 to 78 years intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2, cyclooxygenases (COX-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA and PTGS2 (COX-2 genes at 1q25, highly inter-correlated genes were at distant chromosomal loci.Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  15. Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline.

    Directory of Open Access Journals (Sweden)

    Francesca Seta

    Full Text Available The aim of this study was to examine the role of cyclooxygenase-2 (COX-2 and downstream signaling of prostanoids in the pathogenesis of pulmonary hypertension (PH using mice with genetically manipulated COX-2 expression. COX-2 knockdown (KD mice, characterized by 80-90% suppression of COX-2, and wild-type (WT control mice were treated weekly with monocrotaline (MCT over 10 weeks. Mice were examined for cardiac hypertrophy/function and right ventricular pressure. Lung histopathological analysis was performed and various assays were carried out to examine oxidative stress, as well as gene, protein, cytokine and prostanoid expression. We found that MCT increased right ventricular systolic and pulmonary arterial pressures in comparison to saline-treated mice, with no evidence of cardiac remodeling. Gene expression of endothelin receptor A and thromboxane synthesis, regulators of vasoconstriction, were increased in MCT-treated lungs. Bronchoalveolar lavage fluid and lung sections demonstrated mild inflammation and perivascular edema but activation of inflammatory cells was not predominant under the experimental conditions. Heme oxygenase-1 (HO-1 expression and indicators of oxidative stress in lungs were significantly increased, especially in COX-2 KD MCT-treated mice. Gene expression of NOX-4, but not NOX-2, two NADPH oxidase subunits crucial for superoxide generation, was induced by ∼4-fold in both groups of mice by MCT. Vasodilatory and anti-aggregatory prostacyclin was reduced by ∼85% only in MCT-treated COX-2 KD mice. This study suggests that increased oxidative stress-derived endothelial dysfunction, vasoconstriction and mild inflammation, exacerbated by the lack of COX-2, contribute to the pathogenesis of early stages of PH when mild hemodynamic changes are evident and not yet accompanied by vascular and cardiac remodeling.

  16. The Neurokinin-1 Receptor Contributes to the Early Phase of Lipopolysaccharide-Induced Fever via Stimulation of Peripheral Cyclooxygenase-2 Protein Expression in Mice

    Directory of Open Access Journals (Sweden)

    Eszter Pakai

    2018-02-01

    Full Text Available Neurokinin (NK signaling is involved in various inflammatory processes. A common manifestation of systemic inflammation is fever, which is usually induced in animal models with the administration of bacterial lipopolysaccharide (LPS. A role for the NK1 receptor was shown in LPS-induced fever, but the underlying mechanisms of how the NK1 receptor contributes to febrile response, especially in the early phase, have remained unknown. We administered LPS (120 µg/kg, intraperitoneally to mice with the Tacr1 gene, i.e., the gene encoding the NK1 receptor, either present (Tacr1+/+ or absent (Tacr1−/− and measured their thermoregulatory responses, serum cytokine levels, tissue cyclooxygenase-2 (COX-2 expression, and prostaglandin (PG E2 concentration. We found that the LPS-induced febrile response was attenuated in Tacr1−/− compared to their Tacr1+/+ littermates starting from 40 min postinfusion. The febrigenic effect of intracerebroventricularly administered PGE2 was not suppressed in the Tacr1−/− mice. Serum concentration of pyrogenic cytokines did not differ between Tacr1−/− and Tacr1+/+ at 40 min post-LPS infusion. Administration of LPS resulted in amplification of COX-2 mRNA expression in the lungs, liver, and brain of the mice, which was statistically indistinguishable between the genotypes. In contrast, the LPS-induced augmentation of COX-2 protein expression was attenuated in the lungs and tended to be suppressed in the liver of Tacr1−/− mice compared with Tacr1+/+ mice. The Tacr1+/+ mice responded to LPS with a significant surge of PGE2 production in the lungs, whereas Tacr1−/− mice did not. In conclusion, the NK1 receptor is necessary for normal fever genesis. Our results suggest that the NK1 receptor contributes to the early phase of LPS-induced fever by enhancing COX-2 protein expression in the periphery. These findings advance the understanding of the crosstalk between NK signaling and the “cytokine-COX-2

  17. The effects of a cyclooxygenase-2 (COX-2 expression and inhibition on human uveal melanoma cell proliferation and macrophage nitric oxide production

    Directory of Open Access Journals (Sweden)

    Marshall Jean-Claude

    2007-01-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2 expression has previously been identified in uveal melanoma although the biological role of COX-2 in this intraocular malignancy has not been elucidated. This study aimed to investigate the effect of a COX-2 inhibitor on the proliferation rate of human uveal melanoma cells, as well as its effect on the cytotoxic response of macrophages. Methods Human uveal melanoma cell lines were transfected to constitutively express COX-2 and the proliferative rate of these cells using two different methods, with and without the addition of Amfenac, was measured. Nitric oxide production by macrophages was measured after exposure to melanoma-conditioned medium from both groups of cells as well as with and without Amfenac, the active metabolite of Nepafenac. Results Cells transfected to express COX-2 had a higher proliferation rate than those that did not. The addition of Amfenac significantly decreased the proliferation rate of all cell lines. Nitric oxide production by macrophages was inhibited by the addition of melanoma conditioned medium, the addition of Amfenac partially overcame this inhibition. Conclusion Amfenac affected both COX-2 transfected and non-transfected uveal melanoma cells in terms of their proliferation rates as well as their suppressive effects on macrophage cytotoxic activity.

  18. Piroxicam inhibits Masitinib-induced cyclooxygenase 2 expression in oral squamous cell carcinoma cells in vitro.

    Science.gov (United States)

    Rathore, Kusum; Alexander, Mary; Cekanova, Maria

    2014-08-01

    Development and characterization of animal models for human cancers is important for the improvement of diagnosis and therapy. The oral squamous cell carcinoma (OSCC) of domestic animals resembles human OSCC in many aspects; thus, cell lines derived from OSCC of cats and dogs are a valuable model for human OSCC. We characterized 1 feline OSCC (FeOSCC-Sidney) and 1 canine OSCC (K9OSCC-Abby) cell line and compared their characteristics with human OSCC cell line hSCC-25. We calculated the doubling time of the new OSCC cell lines and evaluated the expression profiles of cancer-related markers and cell-cycle proteins such as c-kit, platelet-derived growth factor receptor, vascular endothelial growth factor receptor, epidermal growth factor receptor, cyclooxygenase (COX)-1, COX-2, and p27 by immunocytochemistry and Western blot analysis. We evaluated the effects of novel receptor tyrosine kinase inhibitor (Masitinib, AB1010) and the nonsteroidal anti-inflammatory drug piroxicam on the previously mentioned OSCC cells. Interestingly, AB1010 increased expression levels of COX-2 in all tested OSCCs. Cotreatment of piroxicam with Masitinib significantly inhibited cell proliferation of OSCC as compared to either drug alone through the c-kit and AKT signaling pathways. Piroxicam inhibited Masitinib-induced COX-2 expression in all tested OSCCs. Therefore, targeting these two signaling pathways simultaneously was more efficient for inhibition of OSCCs across these species. Copyright © 2014 Mosby, Inc. All rights reserved.

  19. Cyclooxygenase-2-dependent bronchoconstriction in perfused rat lungs exposed to endotoxin.

    OpenAIRE

    Uhlig, S.; Nüsing, R.; von Bethmann, A.; Featherstone, R. L.; Klein, T.; Brasch, F.; Müller, K. M.; Ullrich, V.; Wendel, A.

    1996-01-01

    BACKGROUND: Lipopolysaccharides (LPS), widely used to study the mechanisms of gram-negative sepsis, increase airway resistance by constriction of terminal bronchioles. The role of the cyclooxygenase (COX) isoenzymes and their prostanoid metabolites in this process was studied. MATERIALS AND METHODS: Pulmonary resistance, the release of thromboxane (TX) and the expression of COX-2 mRNA were measured in isolated blood-free perfused rat lungs exposed to LPS. RESULTS: LPS induced the release of T...

  20. Effects of C-phycocyanin and Spirulina on Salicylate-Induced Tinnitus, Expression of NMDA Receptor and Inflammatory Genes

    Science.gov (United States)

    Hwang, Juen-Haur; Chen, Jin-Cherng; Chan, Yin-Ching

    2013-01-01

    Effects of C-phycocyanin (C-PC), the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B), tumor necrosis factor–α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase type 2 (COX-2) genes in the cochlea and inferior colliculus (IC) of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes. PMID:23533584

  1. Effects of C-phycocyanin and Spirulina on salicylate-induced tinnitus, expression of NMDA receptor and inflammatory genes.

    Directory of Open Access Journals (Sweden)

    Juen-Haur Hwang

    Full Text Available Effects of C-phycocyanin (C-PC, the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and cyclooxygenase type 2 (COX-2 genes in the cochlea and inferior colliculus (IC of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes.

  2. CDX2 gene expression in acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Arnaoaut, H.H.; Mokhtar, D.A.; Samy, R.M.; Omar, Sh.A.; Khames, S.A.

    2014-01-01

    CDX genes are classically known as regulators of axial elongation during early embryogenesis. An unsuspected role for CDX genes has been revealed during hematopoietic development. The CDX gene family member CDX2 belongs to the most frequent aberrantly expressed proto-oncogenes in human acute leukemias and is highly leukemogenic in experimental models. We used reversed transcriptase polymerase chain reaction (RT-PCR) to determine the expression level of CDX2 gene in 30 pediatric patients with acute lymphoblastic leukemia (ALL) at diagnosis and 30 healthy volunteers. ALL patients were followed up to detect minimal residual disease (MRD) on days 15 and 42 of induction. We found that CDX2 gene was expressed in 50% of patients and not expressed in controls. Associations between gene expression and different clinical and laboratory data of patients revealed no impact on different findings. With follow up, we could not confirm that CDX2 expression had a prognostic significance.

  3. Expression of cyclooxygenase-1 and cyclooxygenase-2, syndecan-1 and connective tissue growth factor in benign and malignant breast tissue from premenopausal women.

    Science.gov (United States)

    Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L

    2017-05-01

    Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.

  4. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats

    International Nuclear Information System (INIS)

    Morales, Ana I.; Vicente-Sanchez, Cesar; Jerkic, Mirjana; Santiago, Jose M.; Sanchez-Gonzalez, Penelope D.; Perez-Barriocanal, Fernando; Lopez-Novoa, Jose M.

    2006-01-01

    Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd + quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity

  5. Disruption of cyclooxygenase-2 prevents downregulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction in the mouse

    DEFF Research Database (Denmark)

    Nilsson, Line; Madsen, Kirsten Morill; Topcu, Sukru Oguzkan

    2012-01-01

    Bilateral ureteral obstruction (BUO) in rats is associated with increased cyclooxygenase type 2 (COX-2) expression, and selective COX-2 inhibition prevents downregulation of aquaporins (AQPs) in response to BUO. It was hypothesized that a murine model would display similar changes in renal COX-2 ...

  6. Transitional cell carcinoma in fishing cats (Prionailurus viverrinus): pathology and expression of cyclooxygenase-1, -2, and p53.

    Science.gov (United States)

    Landolfi, J A; Terio, K A

    2006-09-01

    A high prevalence of urinary bladder transitional-cell carcinoma (TCC) has been noted in captive fishing cats (Prionailurus viverrinus). Of the 91 adult deaths between 1995 and 2004, 12 (13%) were attributed to TCC. To help elucidate mechanisms of carcinogenesis, archival sections of urinary bladder from 14 fishing cats were examined histologically and immunohistochemically for p53, cyclooxygenase (COX)-1, and COX-2 expression. Ten cats had TCC, and 4 were unaffected. The average age at death was 10.8 years in affected individuals and 10.5 years in unaffected individuals. There was no sex predilection. Fishing cat TCCs were characterized histologically as papillary and infiltrating (n = 6), nonpapillary and infiltrating (n = 3), or carcinoma in situ (n = 1). Glandular and squamous metaplasia, necrosis, and lymphatic invasion were prominent histologic features. Two individuals had documented metastasis. p53 nuclear immunolabeling was detected in 4/10 (40%) TCCs. In two cases, immunolabeling was limited to less than 10% of the neoplastic cellular population and was comparable to staining of normal fishing cat bladder. Therefore, p53 gene mutation did not appear to be an essential component of TCC carcinogenesis in examined fishing cats. COX-1 immunohistochemistry was negative in all cases. All TCCs had some degree of COX-2 cytoplasmic immunolabeling, which was exclusively within the invasive portions of the neoplasms. Papillary portions were uniformly negative. COX-2 overexpression was a prominent feature in the majority of the examined fishing cat TCCs, suggesting that COX-2-mediated mechanisms of carcinogenesis are important in this species and that COX-inhibiting drugs may be of therapeutic benefit.

  7. Impact of Wines and Wine Constituents on Cyclooxygenase-1, Cyclooxygenase-2, and 5-Lipoxygenase Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Zsofia Kutil

    2014-01-01

    Full Text Available Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1 activity in the range of 63–94%, cyclooxygenase-2 (COX-2 activity in the range of 20–44% (tested at a concentration of 5 mL/L, and 5-lipoxygenase (5-LOX activity in the range of 72–84% (at a concentration of 18.87 mL/L. White wines inhibited 5-LOX in the range of 41–68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM, quercetin (IC50 = 3.29 μM, and myricetin (IC50 = 4.02 μM. trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM and COX-2 (IC50 = 3.40 μM. Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway.

  8. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts.

    Science.gov (United States)

    Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata; Penet, Marie-France; Jacob, Desmond; Wildes, Flonne; Mironchik, Yelena; Pathak, Arvind P; Solaiyappan, Meiyappan; Bhujwalla, Zaver M

    2017-03-14

    Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.

  9. The expression of proinflammatory genes in epidermal keratinocytes is regulated by hydration status.

    Science.gov (United States)

    Xu, Wei; Jia, Shengxian; Xie, Ping; Zhong, Aimei; Galiano, Robert D; Mustoe, Thomas A; Hong, Seok J

    2014-04-01

    Mucosal wounds heal more rapidly, exhibit less inflammation, and are associated with minimal scarring when compared with equivalent cutaneous wounds. We previously demonstrated that cutaneous epithelium exhibits an exaggerated response to injury compared with mucosal epithelium. We hypothesized that treatment of injured skin with a semiocclusive dressing preserves the hydration of the skin and results in a wound healing phenotype that more closely resembles that of mucosa. Here we explored whether changes in hydration status alter epidermal gene expression patterns in rabbit partial-thickness incisional wounds. Using microarray studies on injured epidermis, we showed that global gene expression patterns in highly occluded versus non-occluded wounds are distinct. Many genes including IL-1β, IL-8, TNF-α (tumor necrosis factor-α), and COX-2 (cyclooxygenase 2) are upregulated in non-occluded wounds compared with highly occluded wounds. In addition, decreased levels of hydration resulted in an increased expression of proinflammatory genes in human ex vivo skin culture (HESC) and stratified keratinocytes. Hierarchical analysis of genes using RNA interference showed that both TNF-α and IL-1β regulate the expression of IL-8 through independent pathways in response to reduced hydration. Furthermore, both gene knockdown and pharmacological inhibition studies showed that COX-2 mediates the TNF-α/IL-8 pathway by increasing the production of prostaglandin E2 (PGE2). IL-8 in turn controls the production of matrix metalloproteinase-9 in keratinocytes. Our data show that hydration status directly affects the expression of inflammatory signaling in the epidermis. The identification of genes involved in the epithelial hydration pathway provides an opportunity to develop strategies to reduce scarring and optimize wound healing.

  10. Critical role of cyclooxygenase-2 activation in pathogenesis of hydronephrosis caused by lactational exposure of mice to dioxin

    International Nuclear Information System (INIS)

    Nishimura, Noriko; Matsumura, Fumio; Vogel, Christopher F.A.; Nishimura, Hisao; Yonemoto, Junzo; Yoshioka, Wataru; Tohyama, Chiharu

    2008-01-01

    Congenital hydronephrosis is a serious disease occurring among infants and children. Besides the intrinsic genetic factors, in utero exposure to a xenobiotic, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been suggested to induce hydronephrosis in rodents owing to anatomical obstruction in the ureter. Here, we report that hydronephrosis induced in mouse pups exposed lactationally to TCDD is not associated with anatomical obstruction, but with abnormal alterations in the subepithelial mesenchyma of the ureter. In the kidneys of these pups, the expressions of a battery of inflammatory cytokines including monocyte chemoattractant protein (MCP)-1, tumor necrosis factor α (TNFα) and interleukin (IL) -1β were up-regulated as early as postnatal day (PND) 7. The amounts of cyclooxygenase (COX) -2 mRNA and protein as well as prostaglandin E2 (PGE 2 ) were conspicuously up-regulated in an arylhydrocarbon-receptor-dependent manner in the TCDD-induced hydronephrotic kidney, with a subsequent down-regulation of the gene expressions of Na + and K + transporters, NKCC2 and ROMK. Daily administration of a COX-2 selective inhibitor to newborns until PND 7 completely abrogated the TCDD-induced PGE 2 synthesis and gene expressions of inflammatory cytokines and electrolyte transporters, and eventually prevented the onset of hydronephrosis. These findings suggest an essential role of COX-2 in mediating the TCDD action of inducing hydronephrosis through the functional impairment rather than the anatomical blockade of the ureter

  11. Preparation of procyanidin B2 from apple pomace and its inhibitory effect on the expression of cyclooxygenase-2 in lipopolysaccharide-treated RAW264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2011-06-01

    Full Text Available Dimeric procyanidin B2 (PB2 is one of phenolic compounds in apple pomace, an agro-industrial byproduct in apple juice processing. This work focused on purification of PB2 from apple pomace using sephadex column chromatography and its potential effect on lipopolysaccharide (LPS-induced inflammation using RAW264.7 macrophages. PB2 with the purity of 72.28 ± 1.85% was successfully afforded using resin and gel column chromatographic technique. Anti-inflammatory tests suggested that the expression of cyclooxygenase-2 (COX-2 in LPS-induced murine RAW264.7 macrophages was suppressed in a PB2 concentration-dependent manner. PB2 at no less than 50 μg·mL-1 could significantly suppress inflammation in the LPS-induced cells. Moreover, this suppressive effect was not correlated with PB2 pretreating. However, the COX-2 expression was not reduced in LPS pretreatment way followed by PB2 exposure, which suggested that PB2 has no repairing function. The results showed that high pure PB2 prepared from apple pomace has a remarkable anti-inflammatory property.

  12. Desferrioxamine, an iron chelator, enhances HIF-1α accumulation via cyclooxygenase-2 signaling pathway

    International Nuclear Information System (INIS)

    Woo, Kyung Jin; Lee, Tae-Jin; Park, Jong-Wook; Kwon, Taeg Kyu

    2006-01-01

    Cyclooxygenase-2 (COX-2) is an important inducible enzyme in inflammation and is overexpressed in a variety of cancers. Evidence is rapidly accumulating that chronic inflammation may contribute to carcinogenesis through increase of cell proliferation, angiogenesis, and metastasis in a number of neoplasms, including colorectal carcinoma. In the present study, we investigated some mechanistic aspects of DFX-induced hypoxia-driven COX-2 expression. Desferrioxamine (DFX), an iron chelator, is known to upregulate inflammatory mediators. DFX induced the expression of COX-2 and accumulation of HIF-1α protein in dose-dependent manners, but hypoxia mimetic agent cobalt chloride (CoCl 2 ) induced accumulation of HIF-1α protein but not increase of COX-2 expression. DFX-induced increase of COX-2 expression and HIF-1α protein level was attenuated by addition of ferric citrate. This result suggested that the iron chelating function of DFX was important to induce the increase of COX-2 and HIF-1α protein. PD98059 significantly inhibited the induction of COX-2 protein and accumulation of HIF-1α, suggesting that DFX-induced increase of HIF-1α and COX-2 protein was mediated, at least in part, through the ERK signaling pathway. In addition, pretreatment with NS-398 to inhibit COX-2 activity also effectively suppressed DFX-induced HIF-1α accumulation in human colon cancer cells, providing the evidence that COX-2 plays as a regulator of HIF-1α accumulation in DFX-treated colon cancer cells. Together, our findings suggest that iron metabolism may regulate stabilization of HIF-1α protein by modulating cyclooxygenase-2 signaling pathway

  13. Effects of moderate alcohol consumption on gene expression related to colonic inflammation and antioxidant enzymes in rats.

    Science.gov (United States)

    Klarich, DawnKylee S; Penprase, Jerrold; Cintora, Patricia; Medrano, Octavio; Erwin, Danielle; Brasser, Susan M; Hong, Mee Young

    2017-06-01

    Excessive alcohol consumption is a risk factor associated with colorectal cancer; however, some studies have reported that moderate alcohol consumption may not contribute additional risk for developing colorectal cancer while others suggest that moderate alcohol consumption provides a protective effect that reduces colorectal cancer risk. The purpose of this study was to determine the effects of moderate voluntary alcohol (20% ethanol) intake on alternate days for 3 months in outbred Wistar rats on risk factors associated with colorectal cancer development. Colonic gene expression of cyclooxygenase-2, RelA, 8-oxoguanine DNA glycosylase 1, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase M1, and aldehyde dehydrogenase 2 were determined. Blood alcohol content, liver function enzyme activities, and 8-oxo-deoxyguanosine DNA adducts were also assessed. Alcohol-treated rats were found to have significantly lower 8-oxo-deoxyguanosine levels in blood, a marker of DNA damage. Alanine aminotransferase and lactate dehydrogenase were both significantly lower in the alcohol group. Moderate alcohol significantly decreased cyclooxygenase-2 gene expression, an inflammatory marker associated with colorectal cancer risk. The alcohol group had significantly increased glutathione-S-transferase M1 expression, an antioxidant enzyme that helps detoxify carcinogens, such as acetaldehyde, and significantly increased aldehyde dehydrogenase 2 expression, which allows for greater acetaldehyde clearance. Increased expression of glutathione-S-transferase M1 and aldehyde dehydrogenase 2 likely contributed to reduce mucosal damage that is caused by acetaldehyde accumulation. These results indicate that moderate alcohol may reduce the risk for colorectal cancer development, which was evidenced by reduced inflammation activity and lower DNA damage after alcohol exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Correlation of beta-catenin localization with cyclooxygenase-2 expression and CpG island methylator phenotype (CIMP) in colorectal cancer.

    Science.gov (United States)

    Kawasaki, Takako; Nosho, Katsuhiko; Ohnishi, Mutsuko; Suemoto, Yuko; Kirkner, Gregory J; Dehari, Reiko; Meyerhardt, Jeffrey A; Fuchs, Charles S; Ogino, Shuji

    2007-07-01

    The WNT/beta-catenin (CTNNB1) pathway is commonly activated in the carcinogenic process. Cross-talks between the WNT and cyclooxygenase-2 (COX-2 or PTGS2)/prostaglandin pathways have been suggested. The relationship between beta-catenin activation and microsatellite instability (MSI) in colorectal cancer has been controversial. The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, which is associated with MSI-high. However, no study has examined the relationship between beta-catenin activation and CIMP status. Using 832 population-based colorectal cancer specimens, we assessed beta-catenin localization by immunohistochemistry. We quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A(p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight). MSI-high, CIMP-high, and BRAF mutation were associated inversely with cytoplasmic and nuclear beta-catenin expressions (i.e., beta-catenin activation) and associated positively with membrane expression. The inverse relation between beta-catenin activation and CIMP was independent of MSI. COX-2 overexpression correlated with cytoplasmic beta-catenin expression (even after tumors were stratified by CIMP status), but did not correlate significantly with nuclear or membrane expression. In conclusion, beta-catenin activation is inversely associated with CIMP-high independent of MSI status. Cytoplasmic beta-catenin is associated with COX-2 overexpression, supporting the role of cytoplasmic beta-catenin in stabilizing PTGS2 (COX-2) mRNA.

  15. Correlation of β-Catenin Localization with Cyclooxygenase-2 Expression and CpG Island Methylator Phenotype (CIMP in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Takako Kawasaki

    2007-07-01

    Full Text Available The WNT/β-catenin (CTNNB1 pathway is commonly activated in the carcinogenic process. Cross-talks between the WNT and cyclooxygenase-2 (COX-2 or PTGS2/prostaglandin pathways have been suggested. The relationship between (3-catenin activation and microsatellite instability (MSI in colorectal cancer has been controversial. The CpG island methylator phenotype (CIMP or CIMP-high with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, which is associated with MSI-high. However, no study has examined the relationship between (β-catenin activation and CIMP status. Using 832 population-based colorectal cancer specimens, we assessed (3-catenin localization by immunohistochemistry. We quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A(p16, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight. MSI-high, CIMP-high, and BRAF mutation were associated inversely with cytoplasmic and nuclear (β-catenin expressions (i.e., β-catenin activation and associated positively with membrane expression. The inverse relation between (β-catenin activation and CIMP was independent of MSI. COX-2 overexpression correlated with cytoplasmic (β-catenin expression (even after tumors were stratified by CIMP status, but did not correlate significantly with nuclear or membrane expression. In conclusion, β-catenin activation is inversely associated with CIMP-high independent of MSI status. Cytoplasmic β-catenin is associated with COX-2 overexpression, supporting the role of cytoplasmic β-catenin in stabilizing PTGS2(COX-2 mRNA.

  16. A mechanistic study of cigarette smoke and cyclooxygenase-2 on proliferation of gastric cancer cells

    International Nuclear Information System (INIS)

    Shin, Vivian Y.; Liu, Edgar S.L.; Ye, Yi-Ne; Koo, Marcel W.L.; Chu, K.-M.; Cho, C.-H.

    2004-01-01

    Cigarette smoke has been shown to cause gastric cancer. Overexpression of cyclooxygenase-2 (COX-2) is a common characteristic in gastric malignancy. The present study aimed to explore the correlation between cigarette smoke and COX-2 in the promotion of tumorigenesis in human gastric cancer cells (AGS). We further studied the action of COX-2 on other proto-oncogenes on gastric tumor growth. Results showed that chloroform extract (CE) and ethanol extract (EE) from cigarette smoke dose-dependently stimulated gastric cancer cell proliferation, which was accompanied with an activation of ornithine decarboxylase (ODC) activity, COX-2, and c-myc expressions. Both antisense of c-myc and α-difluoromethylornithine (DFMO, specific ODC inhibitor) inhibited cell proliferation without affecting COX-2 expression in response to cigarette smoke extracts (CSE). However, selective COX-2 inhibitor (SC-236) not only blocked the proliferative activity but also the ODC activity and c-myc protein expression by CSE in gastric cancer cells. Further, supplementation of exogenous prostaglandin (PG) E 2 reversed all the inhibitory actions of SC-236. Our results underline the importance of COX-2 in the cancer-promoting effect of CSE and its modulation on its downstream growth-related genes, such as c-myc and ODC in cancer cell proliferation. These results reveal that CSE-induced gastric carcinogenesis is via the COX-2/c-myc/ODC and PGE 2 -dependent pathway. Hence, selective COX-2 inhibitor could be an effective therapeutic agent for gastric cancer in smokers

  17. Gene expression of the mismatch repair gene MSH2 in primary colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Kuramochi, Hidekazu; Crüger, Dorthe Gylling

    2011-01-01

    promoter was only detected in 14 samples and only at a low level with no correlation to gene expression. MSH2 gene expression was not a prognostic factor for overall survival in univariate or multivariate analysis. The gene expression of MSH2 is a potential quantitative marker ready for further clinical...

  18. ETORICOXIB IS A NEW SELECTIVE CYCLOOXYGENASE-2 INHIBITOR

    Directory of Open Access Journals (Sweden)

    A E Karateev

    2009-01-01

    Full Text Available The paper provides the clinical characteristics of etoricoxib (Arcoxia, a new selective cyclooxygenase-2 inhibitor having unique properties, which permits it to be distinguished among other nonsteroidal anti-inflammatory agents.

  19. ETORICOXIB IS A NEW SELECTIVE CYCLOOXYGENASE-2 INHIBITOR

    Directory of Open Access Journals (Sweden)

    A E Karateev

    2009-06-01

    Full Text Available The paper provides the clinical characteristics of etoricoxib (Arcoxia, a new selective cyclooxygenase-2 inhibitor having unique properties, which permits it to be distinguished among other nonsteroidal anti-inflammatory agents.

  20. Differential cytokine gene expression according to outcome in a hamster model of leptospirosis.

    Directory of Open Access Journals (Sweden)

    Frédérique Vernel-Pauillac

    Full Text Available BACKGROUND: Parameters predicting the evolution of leptospirosis would be useful for clinicians, as well as to better understand severe leptospirosis, but are scarce and rarely validated. Because severe leptospirosis includes septic shock, similarities with predictors evidenced for sepsis and septic shock were studied in a hamster model. METHODOLOGY/PRINCIPAL FINDINGS: Using an LD50 model of leptospirosis in hamsters, we first determined that 3 days post-infection was a time-point that allowed studying the regulation of immune gene expression and represented the onset of the clinical signs of the disease. In the absence of tools to assess serum concentrations of immune effectors in hamsters, we determined mRNA levels of various immune genes, especially cytokines, together with leptospiraemia at this particular time-point. We found differential expression of both pro- and anti-inflammatory mediators, with significantly higher expression levels of tumor necrosis factor alpha, interleukin 1alpha, cyclo-oxygenase 2 and interleukin 10 genes in nonsurvivors compared to survivors. Higher leptospiraemia was also observed in nonsurvivors. Lastly, we demonstrated the relevance of these results by comparing their respective expression levels using a LD100 model or an isogenic high-passage nonvirulent variant. CONCLUSIONS/SIGNIFICANCE: Up-regulated gene expression of both pro- and anti-inflammatory immune effectors in hamsters with fatal outcome in an LD50 model of leptospirosis, together with a higher Leptospira burden, suggest that these gene expression levels could be predictors of adverse outcome in leptospirosis.

  1. Expression of KLK2 gene in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sajad Shafai

    2018-01-01

    Conclusion: The expression of KLK2 gene in people with prostate cancer is the higher than the healthy person; finally, according to the results, it could be mentioned that the KLK2 gene considered as a useful factor in prostate cancer, whose expression is associated with progression and development of the prostate cancer.

  2. VH gene expression and regulation in the mutant Alicia rabbit. Rescue of VHa2 allotype expression.

    Science.gov (United States)

    Chen, H T; Alexander, C B; Young-Cooper, G O; Mage, R G

    1993-04-01

    Rabbits of the Alicia strain, derived from rabbits expressing the VHa2 allotype, have a mutation in the H chain locus that has a cis effect upon the expression of VHa2 and VHa- genes. A small deletion at the most J-proximal (3') end of the VH locus leads to low expression of all the genes on the entire chromosome in heterozygous ali mutants and altered relative expression of VH genes in homozygotes. To study VH gene expression and regulation, we used the polymerase chain reaction to amplify the VH genes expressed in spleens of young and adult wild-type and mutant Alicia rabbits. The cDNA from reverse transcription of splenic mRNA was amplified and polymerase chain reaction libraries were constructed and screened with oligonucleotides from framework regions 1 and 3, as well as JH. Thirty-three VH-positive clones were sequenced and analyzed. We found that in mutant Alicia rabbits, products of the first functional VH gene (VH4a2), (or VH4a2-like genes) were expressed in 2- to 8-wk-olds. Expression of both the VHx and VHy types of VHa- genes was also elevated but the relative proportions of VHx and VHy, especially VHx, decreased whereas the relative levels of expression of VH4a2 or VH4a2-like genes increased with age. Our results suggest that the appearance of sequences resembling that of the VH1a2, which is deleted in the mutant ali rabbits, could be caused by alterations of the sequences of the rearranged VH4a2 genes by gene conversions and/or rearrangement of upstream VH1a2-like genes later in development.

  3. Hemin inhibits cyclooxygenase-2 expression through nuclear factor-kappa B activation and ornithine decarboxylase expression in 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hee; Lee, Chang Ki [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Oral Cancer Research Institute, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Hwang, Young Sun [Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Park, Kwang-Kyun [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Chung, Won-Yoon [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of)], E-mail: wychung@yuhs.ac

    2008-07-03

    Inflammation induced by various stimuli has been found to be associated with increased risk for most types of human cancer. Inflammation facilitates the initiation of normal cells, as well as the growth of initiated cells and their progression to malignancy through production of proinflammatory cytokines and diverse reactive oxygen/nitrogen species. These also activate the signaling molecules that are involved in inflammation and carcinogenesis. Our previous studies have demonstrated that hemin inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced bacterial mutagenesis and oxidative DNA damage, reduced the level of DNA-DMBA adduct and 12-O-tetradecanoylphorobl-13-acetate (TPA)-induced tumor formation in DMBA-initiated ICR mouse skin, and inhibited myeloperoxidase and ornithine decarboxylase (ODC) activity and H{sub 2}O{sub 2} formation in TPA-treated mouse skin. In the present study, to further elucidate the molecular mechanisms underlying the chemopreventive activity of hemin, its effect on the expression of ODC and cyclooxygenase (COX)-2, and the activation of nuclear factor-kappa B (NF-{kappa}B) and mitogen-activated protein kinases (MAPKs) regulating these proteins were explored in mouse skin with TPA-induced inflammation. Topically applied hemin inhibited ear edema and epidermal thickness in mice treated with TPA. Pretreatment with hemin reduced the expression of ODC and COX-2, and also reduced NF-{kappa}B activation in TPA-stimulated mouse skin. In addition, hemin suppressed the TPA-induced activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK in a dose-dependent manner. Taken together, hemin inhibited TPA-induced COX-2 expression by altering NF-{kappa}B signaling pathway via ERK and p38 MAPK, as well as TPA-induced ODC expression in mouse skin. Thereby, hemin may be an attractive candidate for a chemopreventive agent.

  4. Hemin inhibits cyclooxygenase-2 expression through nuclear factor-kappa B activation and ornithine decarboxylase expression in 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin

    International Nuclear Information System (INIS)

    Park, Jae Hee; Lee, Chang Ki; Hwang, Young Sun; Park, Kwang-Kyun; Chung, Won-Yoon

    2008-01-01

    Inflammation induced by various stimuli has been found to be associated with increased risk for most types of human cancer. Inflammation facilitates the initiation of normal cells, as well as the growth of initiated cells and their progression to malignancy through production of proinflammatory cytokines and diverse reactive oxygen/nitrogen species. These also activate the signaling molecules that are involved in inflammation and carcinogenesis. Our previous studies have demonstrated that hemin inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced bacterial mutagenesis and oxidative DNA damage, reduced the level of DNA-DMBA adduct and 12-O-tetradecanoylphorobl-13-acetate (TPA)-induced tumor formation in DMBA-initiated ICR mouse skin, and inhibited myeloperoxidase and ornithine decarboxylase (ODC) activity and H 2 O 2 formation in TPA-treated mouse skin. In the present study, to further elucidate the molecular mechanisms underlying the chemopreventive activity of hemin, its effect on the expression of ODC and cyclooxygenase (COX)-2, and the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) regulating these proteins were explored in mouse skin with TPA-induced inflammation. Topically applied hemin inhibited ear edema and epidermal thickness in mice treated with TPA. Pretreatment with hemin reduced the expression of ODC and COX-2, and also reduced NF-κB activation in TPA-stimulated mouse skin. In addition, hemin suppressed the TPA-induced activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK in a dose-dependent manner. Taken together, hemin inhibited TPA-induced COX-2 expression by altering NF-κB signaling pathway via ERK and p38 MAPK, as well as TPA-induced ODC expression in mouse skin. Thereby, hemin may be an attractive candidate for a chemopreventive agent

  5. Posttranscriptional Regulation of Cyclooxygenase-2 in Rat Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Zhonghua Zhang

    2000-01-01

    Full Text Available Modulation of cyclooxygenase-2 (COX-2 mRNA stability plays an important role in the regulation of its expression by oncogenic Ras. Here, we evaluate COX-2 mRNA stability in response to treatment with two known endogenous promoters of gastrointestinal cancer, the bile acid (chenodeoxycholate; CD and ceramide. Treatment with CD and ceramide resulted in a 10-fold increase in the level of COX-2 protein and a four-fold lengthening of the half-life of COX-2 mRNA. COX-2 mRNA stability was assessed by Northern blot analysis and by evaluating the AU-rich element located in the COX-2 3′-UTR. A known inhibitor of mitogen-activated protein (MAP/extracellular signal-regulated kinase (ERK kinase (MEK, PD98059, reversed the effects of CD or ceramide to stabilize COX-2 mRNA. Overexpression of a dominant-negative ERK-1 or ERK-2 protein also led to destabilization of COX-2 mRNA. Treatment with a p38 MAPK inhibitor, PD169316, or transfection with a dominant-negative p38 MAPK construct reversed the effect of CD or ceramide to stabilize COX-2 mRNA. Expression of a dominant-negative c-Jun N-terminal kinase (JNK had no effect on COX-2 mRNA stability in cells treated with CD or ceramide. We conclude that posttranscriptional mechanisms play an important role in the regulation of COX-2 expression during carcinogenesis.

  6. Aryl hydrocarbon receptor-dependent retention of nuclear HuR suppresses cigarette smoke-induced cyclooxygenase-2 expression independent of DNA-binding.

    Science.gov (United States)

    Zago, Michela; Sheridan, Jared A; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR(-/-) ) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR(-/-) mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR(-/-) mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target.

  7. Differential expression of homeobox-containing genes Msx-1 and Msx-2 and homeoprotein Msx-2 expression during chick craniofacial development.

    Science.gov (United States)

    Nishikawa, K; Nakanishi, T; Aoki, C; Hattori, T; Takahashi, K; Taniguchi, S

    1994-03-01

    The expression pattern of chick Msx-1 and Msx-2 homeobox genes in craniofacial primordia was examined by in situ hybridization using cRNA probes. Both genes were expressed in the distal region of the facial primordia, where the distribution of Msx-2 expression was restricted distally within the Msx-1 expression domain. On the contrary, Msx-2 expression in the lateral choroid plexus and cranial skull was broader and more intensive than Msx-1 expression. Our findings suggest that these two genes cooperate to play differential roles in craniofacial development. Msx-2 protein was detected immunohistochemically, and its localization essentially corresponded to the mRNA expression pattern, substantiating the involvement of Msx-2 protein as a transcriptional regulator in developing limb and face.

  8. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  9. Gene duplication, silencing and expression alteration govern the molecular evolution of PRC2 genes in plants.

    Science.gov (United States)

    Furihata, Hazuka Y; Suenaga, Kazuya; Kawanabe, Takahiro; Yoshida, Takanori; Kawabe, Akira

    2016-10-13

    PRC2 genes were analyzed for their number of gene duplications, d N /d S ratios and expression patterns among Brassicaceae and Gramineae species. Although both amino acid sequences and copy number of the PRC2 genes were generally well conserved in both Brassicaceae and Gramineae species, we observed that some rapidly evolving genes experienced duplications and expression pattern changes. After multiple duplication events, all but one or two of the duplicated copies tend to be silenced. Silenced copies were reactivated in the endosperm and showed ectopic expression in developing seeds. The results indicated that rapid evolution of some PRC2 genes is initially caused by a relaxation of selective constraint following the gene duplication events. Several loci could become maternally expressed imprinted genes and acquired functional roles in the endosperm.

  10. Establishment and characterization of a new cell line, FPS-1, derived from human undifferentiated pleomorphic sarcoma, overexpressing epidermal growth factor receptor and cyclooxygenase-2.

    Science.gov (United States)

    Hakozaki, Michiyuki; Hojo, Hiroshi; Sato, Michiko; Tajino, Takahiro; Yamada, Hitoshi; Kikuchi, Shinichi; Abe, Masafumi

    2006-01-01

    Undifferentiated pleomorphic sarcoma (UPS) is among the most common soft tissue sarcomas in adults. In order to improve its aggressive course or prognosis and establish new therapeutic methods, molecular genetic and biological characterizations of UPS are required. A new human UPS cell line (FPS-1) was established from UPS of the upper arm of a 79-year-old man. The cell line has been maintained for over 14 months with more than 60 passages. FPS-1 cells were characterized using molecular biological methods. FPS-1 cells showed the same morphological and immunophenotypical characteristics as the primary tumor. Cytogenetic and molecular analyses revealed a nonsense mutation in exon 6 of the p53 gene. Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) were expressed in FPS-1 cells. FPS-1 cells might be useful for investigating biological behavior and developing new molecular targeting antitumor drugs for UPS with EGFR or COX-2 expression.

  11. An Asp49 Phospholipase A2 from Snake Venom Induces Cyclooxygenase-2 Expression and Prostaglandin E2 Production via Activation of NF-κB, p38MAPK, and PKC in Macrophages

    Directory of Open Access Journals (Sweden)

    Vanessa Moreira

    2014-01-01

    Full Text Available Phospholipases A2 (PLA2 are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PGE2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2. Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.

  12. Impairment of the chondrogenic phase of endochondral ossification in vivo by inhibition of cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    MPF Janssen

    2017-10-01

    Full Text Available Many studies have reported on the effects of cyclooxygenase-2 (COX-2 inhibition on osteogenesis. However, far less is known about the effects of COX-2 inhibition on chondrogenic differentiation. Previous studies conducted by our group show that COX-2 inhibition influences in vitro chondrogenic differentiation. Importantly, this might have consequences on endochondral ossification processes occurring in vivo, such as bone fracture healing, growth plate development and ectopic generation of cartilage. The goal of our study was to investigate, in vivo, the effect of COX-2 inhibition by celecoxib on the cartilaginous phase of three different endochondral ossification scenarios. 10 mg/kg/day celecoxib or placebo were orally administered for 25 d to skeletally-immature New Zealand White rabbits (n = 6 per group. Endochondral ossification during fracture healing of a non-critical size defect in the ulna, femoral growth plate and ectopically-induced cartilaginous tissue were examined by radiography, micro-computed tomography (µ-CT, histology and gene expression analysis. Celecoxib treatment resulted in delayed bone fracture healing, alterations in growth plate development and progression of mineralisation. In addition, chondrogenic differentiation of ectopically-induced cartilaginous tissue was severely impaired by celecoxib. In conclusion, we found that celecoxib impaired the chondrogenic phase of endochondral ossification.

  13. Effect of a specific cyclooxygenase-gene polymorphism (A-842G/C50T) on the occurrence of peptic ulcer hemorrhage

    NARCIS (Netherlands)

    van Oijen, Martijn G. H.; Laheij, Robert J. F.; Koetsier, Marjolein; de Kleine, Evelien; te Morsche, René H. M.; van Kerkhoven, Lieke A. S.; Jansen, Jan B. M. J.; Drenth, Joost P. H.

    2006-01-01

    Cyclooxygenases (COX) catalyze the conversion of arachidonic acid to prostaglandins (PGs). COX-inhibiting drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs), increase the risk for peptic ulcer disease. As a corollary, COX gene polymorphisms could be important in the pathogenesis of peptic

  14. Effect of a specific cyclooxygenase-gene polymorphism (A-842G/C50T) on the occurrence of peptic ulcer hemorrhage.

    NARCIS (Netherlands)

    Oijen, M.G.H. van; Laheij, R.J.F.; Koetsier, M.I.A.; Kleine, E. de; Morsche, R.H.M. te; Kerkhoven, L.A.S. van; Jansen, J.B.M.J.; Drenth, J.P.H.

    2006-01-01

    Cyclooxygenases (COX) catalyze the conversion of arachidonic acid to prostaglandins (PGs). COX-inhibiting drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs), increase the risk for peptic ulcer disease. As a corollary, COX gene polymorphisms could be important in the pathogenesis of peptic

  15. Increased cyclooxygenase-2 and thromboxane synthase expression is implicated in diosgenin-induced megakaryocytic differentiation in human erythroleukemia cells.

    Science.gov (United States)

    Cailleteau, C; Liagre, B; Battu, S; Jayat-Vignoles, C; Beneytout, J L

    2008-09-01

    Differentiation induction as a therapeutic strategy has, so far, the greatest impact in hematopoietic malignancies, most notably leukemia. Diosgenin is a very interesting natural product because, depending on the specific dose used, its biological effect is very different in HEL (human erythroleukemia) cells. For example, at 10 microM, diosgenin induced megakaryocytic differentiation, in contrast to 40 microM diosgenin, which induced apoptosis in HEL cells previously demonstrated using sedimentation field-flow fractionation (SdFFF). The goal of this work focused on the correlation between cyclooxygenase-2 (COX-2) and thromboxane synthase (TxS) and megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, the technique of SdFFF, having been validated in our models, was used in this new study as an analytical tool that provided us with more or less enriched differentiated cell fractions that could then be used for further analyses of enzyme protein expression and activity for the first time. In our study, we showed the implication of COX-2 and TxS in diosgenin-induced megakaryocytic differentiation in HEL cells. Furthermore, we showed that the analytical technique of SdFFF may be used as a tool to confirm our results as a function of the degree of cell differentiation.

  16. Weak expression of cyclooxygenase-2 is associated with poorer outcome in endemic nasopharyngeal carcinoma: analysis of data from randomized trial between radiation alone versus concurrent chemo-radiation (SQNP-01)

    International Nuclear Information System (INIS)

    Loong, Susan Li Er; Hwang, Jacqueline Siok Gek; Li, Hui Hua; Wee, Joseph Tien Seng; Yap, Swee Peng; Chua, Melvin Lee Kiang; Fong, Kam Weng; Tan, Terence Wee Kiat

    2009-01-01

    Over-expression of cyclooxygenase-2 (COX-2) enzyme has been reported in nasopharyngeal carcinoma (NPC). However, the prognostic significance of this has yet to be conclusively determined. Thus, from our randomized trial of radiation versus concurrent chemoradiation in endemic NPC, we analyzed a cohort of tumour samples collected from participants from one referral hospital. 58 out of 88 patients from this institution had samples available for analysis. COX-2 expression levels were stratified by immunohistochemistry, into negligible, weak, moderate and strong, and correlated with overall and disease specific survivals. 58% had negligible or weak COX-2 expression, while 14% and 28% had moderate and strong expression respectively. Weak COX-2 expression conferred a poorer median overall survival, 1.3 years for weak versus 6.3 years for negligible, 7.8 years, strong and not reached for moderate. There was a similar trend for disease specific survival. Contrary to literature published on other malignancies, our findings seemed to indicate that over-expression of COX-2 confer a better prognosis in patients with endemic NPC. Larger studies are required to conclusively determine the significance of COX-2 expression in these patients

  17. Levetiracetam attenuates hippocampal expression of synaptic plasticity-related immediate early and late response genes in amygdala-kindled rats

    Directory of Open Access Journals (Sweden)

    Watson William P

    2010-01-01

    Full Text Available Abstract Background The amygdala-kindled rat is a model for human temporal lobe epilepsy and activity-dependent synaptic plasticity. Hippocampal RNA isolated from amygdala-kindled rats at different kindling stages was analyzed to identify kindling-induced genes. Furthermore, effects of the anti-epileptic drug levetiracetam on kindling-induced gene expression were examined. Results Cyclooxygenase-2 (Cox-2, Protocadherin-8 (Pcdh8 and TGF-beta-inducible early response gene-1 (TIEG1 were identified and verified as differentially expressed transcripts in the hippocampus of kindled rats by in situ hybridization and quantitative RT-PCR. In addition, we identified a panel of 16 additional transcripts which included Arc, Egr3/Pilot, Homer1a, Ania-3, MMP9, Narp, c-fos, NGF, BDNF, NT-3, Synaptopodin, Pim1 kinase, TNF-α, RGS2, Egr2/krox-20 and β-A activin that were differentially expressed in the hippocampus of amygdala-kindled rats. The list consists of many synaptic plasticity-related immediate early genes (IEGs as well as some late response genes encoding transcription factors, neurotrophic factors and proteins that are known to regulate synaptic remodelling. In the hippocampus, induction of IEG expression was dependent on the afterdischarge (AD duration. Levetiracetam, 40 mg/kg, suppressed the development of kindling measured as severity of seizures and AD duration. In addition, single animal profiling also showed that levetiracetam attenuated the observed kindling-induced IEG expression; an effect that paralleled the anti-epileptic effect of the drug on AD duration. Conclusions The present study provides mRNA expression data that suggest that levetiracetam attenuates expression of genes known to regulate synaptic remodelling. In the kindled rat, levetiracetam does so by shortening the AD duration thereby reducing the seizure-induced changes in mRNA expression in the hippocampus.

  18. Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Megan Coomer

    2014-01-01

    Full Text Available The hexosamine biosynthetic pathway (HBP culminates in the attachment of O-linked β-N-acetylglucosamine (O-GlcNAc onto serine/threonine residues of target proteins. The HBP is regulated by several modulators, i.e. O-linked β-N-acetylglucosaminyl transferase (OGT and β-N-acetylglucosaminidase (OGA catalyze the addition and removal of O-GlcNAc moieties, respectively; while flux is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFPT, transcribed by two genes, GFPT1 and GFPT2. Since increased HBP flux is glucose-responsive and linked to insulin resistance/type 2 diabetes onset, we hypothesized that diabetic individuals exhibit differential expression of HBP regulatory genes. Volunteers (n = 60; n = 20 Mixed Ancestry, n = 40 Caucasian were recruited from Stellenbosch and Paarl (Western Cape, South Africa and classified as control, pre- or diabetic according to fasting plasma glucose and HbA1c levels, respectively. RNA was purified from leukocytes isolated from collected blood samples and OGT, OGA, GFPT1 and GFPT2 expressions determined by quantitative real-time PCR. The data reveal lower OGA expression in diabetic individuals (P < 0.01, while pre- and diabetic subjects displayed attenuated OGT expression vs. controls (P < 0.01 and P < 0.001, respectively. Moreover, GFPT2 expression decreased in pre- and diabetic Caucasians vs. controls (P < 0.05 and P < 0.01, respectively. We also found ethnic differences, i.e. Mixed Ancestry individuals exhibited a 2.4-fold increase in GFPT2 expression vs. Caucasians, despite diagnosis (P < 0.01. Gene expression of HBP regulators differs between diabetic and non-diabetic individuals, together with distinct ethnic-specific gene profiles. Thus differential HBP gene regulation may offer diagnostic utility and provide candidate susceptibility genes for different ethnic groupings.

  19. Involvement of hypothalamic cyclooxygenase-2, interleukin-1β and melanocortin in the development of docetaxel-induced anorexia in rats.

    Science.gov (United States)

    Yamamoto, Kouichi; Asano, Keiko; Ito, Yui; Matsukawa, Naoki; Kim, Seikou; Yamatodani, Atsushi

    2012-12-16

    Docetaxel, a taxane derivative, is frequently used for the treatment of advanced breast cancer, non-small cell lung cancer, and metastatic prostate cancer. Clinical reports demonstrated that docetaxel-based chemotherapy often induces anorexia, but the etiology is not completely understood. To elucidate possible mechanisms, we investigated the involvement of central interleukin (IL)-1β, cyclooxygenase (COX)-2, and pro-opiomelanocortin (POMC) in the development of docetaxel-induced anorexia in rats. Rats received docetaxel (10mg/kg, i.p.) with or without pretreatment with selective COX-2 inhibitors, NS-398 (10 and 30 mg/kg, i.g.) or celecoxib (10 and 30 mg/kg, i.g.), and a non-selective COX inhibitor, indomethacin (10mg/kg, i.g.), then food intake was monitored for 24h after administration. We also examined expression of IL-1β, COX-2, and POMC mRNA in hypothalamus of docetaxel-treated rats and the effect of a COX-2 inhibitor on docetaxel-induced POMC mRNA expression. Food consumption in rats was significantly decreased 24h after administration of docetaxel and anorexia was partially reversed by all COX inhibitors. Administration of docetaxel increased IL-1β, COX-2, and POMC mRNA expression in the hypothalamus of rats. The time required to increase these gene expressions was comparable to the latency period of docetaxel-induced anorexia in rats. In addition, pretreatment with COX-2 inhibitors suppressed docetaxel-induced expression of POMC mRNA. These results suggest that IL-1β and COX-2 mRNA expression and subsequent activation of POMC in the hypothalamus may contribute to the development of docetaxel-induced anorexia in rats. Copyright © 2012. Published by Elsevier Ireland Ltd.

  20. In vitro and In Silico Studies on Curcumin and Its Analogues as Dual Inhibitors for cyclooxygenase-1 (COX-1 and cyclooxygenase-2 (COX-2

    Directory of Open Access Journals (Sweden)

    Nunung Yuniarti

    2012-03-01

    Full Text Available Curcumin has been widely reported as an anti-inflammatory agent isolated from the plant Curcuma longa L. (turmeric. This anti-inflammatory activity was associated with the ability of this compound to inhibit the activity of both cyclooxygenase-1 (COX-1 and cyclooxygenase-2 (COX-2 in arachidonic acid metabolism. Dual COX-1 and COX-2 inhibitors are preferred to be employed in the therapy of chronic inflammatory diseases compared to selective inhibitors, since it was reported that the use of selective inhibitors led to severe adverse side effect. In the present study, in vitro and in silico assays on curcumin and its analogues as dual inhibitors for both COX-1 and COX-2 were performed. The results provide theoretical contribution in understanding the ligand-protein interactions at the molecular level to develop new curcumin analogues which possess better anti-inflammatory activity as well as to avoid unsolicited side effects.

  1. Intestinal PTGS2 mRNA Levels, PTGS2 Gene Polymorphisms, and Colorectal Carcinogenesis

    DEFF Research Database (Denmark)

    Vogel, Lotte K.; Saebo, Mona; Hoyer, Helle

    2014-01-01

    Background & Aims: Inflammation is a major risk factor for development of colorectal cancer (CRC). Prostaglandin synthase cyclooxygenase-2 (COX-2) encoded by the PTGS2 gene is the rate limiting enzyme in prostaglandin synthesis and therefore plays a distinct role as regulator of inflammation...

  2. Involvement of nitrergic system in anticonvulsant effect of zolpidem in lithium-pilocarpine induced status epilepticus: Evaluation of iNOS and COX-2 genes expression.

    Science.gov (United States)

    Eslami, Seyyed Majid; Ghasemi, Maryam; Bahremand, Taraneh; Momeny, Majid; Gholami, Mahdi; Sharifzadeh, Mohammad; Dehpour, Ahmad Reza

    2017-11-15

    This study aims to investigate the role of zolpidem in lithium-pilocarpine induced status epilepticus (SE) and probable mechanisms involved in seizure threshold alteration. In the present study, lithium chloride (127mg/kg) was administered 20h prior to pilocarpine (60mg/kg) to induce SE in adult male Wistar rats. Different doses of zolpidem (0.1, 1, 2, 5, 10mg/kg) were injected 30min before pilocarpine administration. Furthermore, to find out whether nitric oxide (NO) plays a role in the observed effect, L-arginine and L-NAME were injected 15min before zolpidem. Afterward, we identified the particular NO isoform mediating the effect of zolpidem by injecting aminoguanidine (AG) and 7-Nitroindazole (7-NI) 15min prior to zolpidem. Moreover, in both 6 and 24h after pilocarpine injection, experimental groups underwent hippocampectomy to evaluate cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) genes expression by quantitative reverse transcription-PCR (qRT-PCR). Pre-treatment with zolpidem significantly prevented the onset of SE in a dose-dependent manner. AG and L-NAME significantly potentiated the anticonvulsant effect of zolpidem while L-arginine inverted this effect. Our qRT-PCR exerted that there was a continuous elevation of iNOS and COX-2 genes expression over 6 and 24h after pilocarpine administration in SE and L-arginine+Zolpidem groups while in AG/L-NAME+Zolpidem and zolpidem groups this upregulation was prevented. Our study indicates that zolpidem prevents the onset of SE through inhibition of iNOS/COX-2 genes upregulation following lithium-pilocarpine administration. Consistent with our results, we suggest that iNOS activation could be probably upstream of COX-2 gene expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Expression of cyclo-oxygenase-2 enzyme in the tissue samples of patients with various clinicopathological stages of oral leukoplakia and oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Nelson Aruldoss

    2016-01-01

    Full Text Available Aim: The purpose of this study was to evaluate the expression of cyclo-oxygenase-2 (COX-2 enzyme in the tissue samples of patients with various clinicopathological stages of oral leukoplakia and oral squamous cell carcinoma (OSCC. Materials and Methods: The samples for the study were divided into 4 groups. Group A comprised 20 healthy individuals with no habits. Twenty healthy individuals with habitual tobacco usage and no oral lesions were included in Group B. Twenty cases of leukoplakia diagnosed clinically and histopathologically were included in Group C. Staging was done using the modified classification and staging system of oral leukoplakia. Twenty cases of OSCC diagnosed clinically and histopathologically were included in Group D. Immunohistochemical staining was done on these 80 samples (paraffin blocks for COX-2 expression by indirect method using polymer based Horseradish peroxidase system. Statistical analysis was performed using Kruskal-Wallis test and Spearman′s rank correlation test. Results: Significant and proportional increase of COX-2 staining was noted with the increase in the severity of dysplasia. Eighty percent of OSCC expressed COX-2, increasing in its intensity of staining with the decrease in differentiation. Seventy five percent of leukoplakia showed positive COX-2 expression. Only 15% of positive controls were COX-2 positive. No normal mucosa showed positive expression of COX-2. Conclusion: High expression of COX-2 is seen in advanced stages of leukoplakia and OSCC. Hence, COX-2 enzyme increases cell proliferation, promotes angiogenesis and inhibits immune surveillance in carcinogenesis; it can be an early detection marker in oral leukoplakia and a prognostic marker of OSCC.

  4. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.

    Science.gov (United States)

    Sárosi, Menyhárt-Botond

    2018-06-05

    Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.

  5. Local NSAID infusion does not affect protein synthesis and gene expression in human muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Schjerling, P; Helmark, Ida Carøe

    2010-01-01

    models, and inhibit the exercise-induced satellite cell proliferation and protein synthesis in humans. However, the cellular mechanisms eliciting these responses remain unknown. Eight healthy male volunteers performed 200 maximal eccentric contractions with each leg. To block prostaglandin synthesis...... locally in the skeletal muscle, indomethacin (NSAID) was infused for 7.5 h via microdialysis catheters into m. vastus lateralis of one leg. Protein synthesis was determined by the incorporation of 1,2-(13)C(2) leucine into muscle protein from 24 to 28 h post-exercise. Furthermore, mRNA expression...... of selected genes was measured in muscle biopsies (5 h and 8 days post-exercise) by real-time reverse transcriptase PCR. Myofibrillar and collagen protein synthesis were unaffected by the local NSAID infusion. Five hours post-exercise, the mRNA expression of cyclooxygenase-2 (COX2) was sixfold higher...

  6. Cyclooxygenase-2 induction in macrophages is modulated by docosahexaenoic acid via interactions with free fatty acid receptor 4 (FFA4).

    Science.gov (United States)

    Li, Xinzhi; Yu, Ying; Funk, Colin D

    2013-12-01

    Cyclooxygenase-2 (COX-2)-derived prostaglandins are implicated in numerous inflammatory disorders. The purpose of these studies was to examine previously unexplored interactions between COX-2 induction and docosahexaenoic acid (DHA) via the free fatty acid receptor 4 (FFA4) signaling pathway in murine RAW 264.7 cells and peritoneal macrophages challenged with lipopolysaccharide (LPS). DHA dose (IC50=18 μM)- and time-dependently reduced COX-2 expression, without affecting COX-1. DHA (25 μM for 24 h) decreased LPS-induced prostaglandin E2 (PGE2) synthesis by 81%, primarily through reducing COX-2 (60%), as well as down-regulating microsomal prostaglandin E synthase-1 (46%), but independently of peroxisome proliferator-activated receptors. FFA4 knockdown abrogated DHA effects on COX-2 induction, PGE2 production, and interleukin 6 (IL-6) gene expression. In the presence of inhibitors of eicosanoid metabolism via COX-2, 12/15-lipoxygenase and CYP450s (rofecoxib (1 μM), PD146176 (2 μM), or MS-PPOH (20 μM)), DHA was still effective in attenuating COX-2 induction. Moreover, Toll-like receptor 4 signaling via Akt/JNK phosphorylation and p65 nuclear translocation was repressed by DHA-activated FFA4 coupling with β-arrestin 2, which was reversed by FFA4 knockdown. These data support DHA modulation of COX-2 expression and activity, in part, via FFA4, which provides a new mechanistic explanation for some of the anti-inflammatory effects of DHA.

  7. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  8. Nuclear AXIN2 represses MYC gene expression

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-01

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling

  9. Early increased density of cyclooxygenase-2 (COX-2 immunoreactive neurons in Down syndrome

    Directory of Open Access Journals (Sweden)

    Maria Mulet

    2017-06-01

    Full Text Available Neuroinflammation is one of the hallmarks of Alzheimer’s disease. One of the enzymes involved in neuroinflammation, even in early stages of the disease, is COX-2, an inducible cyclooxygenase responsible for the generation of eicosanoids and for the generation of free radicals. Individuals with Down syndrome develop Alzheimer’s disease early in life. Previous studies pointed to the possible overexpression of COX-2 and correlated it to brain regions affected by the disease. We analysed the COX-2 expression levels in individuals with Down syndrome and in young, adult and old mice of the Ts65Dn mouse model for Down syndrome. We have observed an overexpression of COX-2 in both, Down syndrome individuals and mice. Importantly, mice already presented an overexpression of COX-2 at postnatal day 30, before neurodegeneration begins; which suggests that neuroinflammation may underlie the posterior neurodegeneration observed in individuals with Down syndrome and in Ts65Dn mice and could be a factor for the premature appearance of Alzheimer’s disease.

  10. ABCG2 in peptic ulcer: gene expression and mutation analysis.

    Science.gov (United States)

    Salagacka-Kubiak, Aleksandra; Żebrowska, Marta; Wosiak, Agnieszka; Balcerczak, Mariusz; Mirowski, Marek; Balcerczak, Ewa

    2016-08-01

    The aim of this study was to evaluate the participation of polymorphism at position C421A and mRNA expression of the ABCG2 gene in the development of peptic ulcers, which is a very common and severe disease. ABCG2, encoded by the ABCG2 gene, has been found inter alia in the gastrointestinal tract, where it plays a protective role eliminating xenobiotics from cells into the extracellular environment. The materials for the study were biopsies of gastric mucosa taken during a routine endoscopy. For genotyping by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) at position C421A, DNA was isolated from 201 samples, while for the mRNA expression level by real-time PCR, RNA was isolated from 60 patients. The control group of healthy individuals consisted of 97 blood donors. The dominant genotype in the group of peptic ulcer patients and healthy individuals was homozygous CC. No statistically significant differences between healthy individuals and the whole group of peptic ulcer patients and, likewise, between the subgroups of peptic ulcer patients (infected and uninfected with Helicobacter pylori) were found. ABCG2 expression relative to GAPDH expression was found in 38 of the 60 gastric mucosa samples. The expression level of the gene varies greatly among cases. The statistically significant differences between the intensity (p = 0.0375) of H. pylori infection and ABCG2 gene expression have been shown. It was observed that the more intense the infection, the higher the level of ABCG2 expression.

  11. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha; Wiggers, Giulia A.; Roque, Fernanda R. [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Redondo, Santiago [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Peçanha, Franck [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Martín, Angela [Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, 28922, Alcorcón (Spain); Fortuño, Ana [Área de Ciencias Cardiovasculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008, Pamplona (Spain); Cachofeiro, Victoria [Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Tejerina, Teresa [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); and others

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces

  12. HOXB4 Gene Expression Is Regulated by CDX2 in Intestinal Epithelial Cells

    DEFF Research Database (Denmark)

    Jørgensen, Steffen; Coshun, Mehmet; Mikkelsen Homburg, Keld

    2016-01-01

    analysis and expression data from Caco2 cells also suggests a role for CDX2 in the regulation of HOXB4 gene expression in the intestinal epithelium. Thus, the aim of this study was to investigate whether HOXB4 gene expression is regulated by CDX2 in the intestinal epithelium. We demonstrated binding of CDX......The mammalian Caudal-related homeobox transcription factor 2 (CDX2) plays a key role in the homeobox regulatory network and is essential in regulating the expression of several homeobox (HOX) genes during embryonic development, particularly in the gut. Genome-wide CDX2 chromatin immunoprecipitation......2 to four different CDX2 binding sites in an enhancer region located upstream of the HOXB4 transcription start site. Mutations in the CDX2 binding sites reduced HOXB4 gene activity, and knock down of endogenous CDX2 expression by shRNA reduced HOXB4 gene expression. This is the first report...

  13. Regulation of hepatic PPARγ2 and lipogenic gene expression by melanocortin

    International Nuclear Information System (INIS)

    Poritsanos, Nicole J.; Wong, Davie; Vrontakis, Maria E.; Mizuno, Tooru M.

    2008-01-01

    The central melanocortin system regulates hepatic lipid metabolism. Hepatic lipogenic gene expression is regulated by transcription factors including sterol regulatory element-binding protein 1c (SREBP-1c), carbohydrate responsive element-binding protein (ChREBP), and peroxisome proliferator-activated receptor γ2 (PPARγ2). However, it is unclear if central melanocortin signaling regulates hepatic lipogenic gene expression through the activation of these transcription factors. To delineate the molecular mechanisms by which the melanocortin system regulates hepatic lipid metabolism, we examined the effect of intracerebroventricular injection of SHU9119, a melanocortin receptor antagonist, on hepatic expression levels of genes involved in lipid metabolism in mice. SHU9119 treatment increased hepatic triglyceride content and mRNA levels of lipogenic genes, SREBP-1c, and PPARγ2, whereas it did not cause any changes in hepatic ChREBP mRNA levels. These findings suggest that reduced central melanocortin signaling increases hepatic lipid deposition by stimulating hepatic lipogenic gene expression at least partly through the activation of SREBP-1c and PPARγ2

  14. Nucleobindin co-localizes and associates with cyclooxygenase (COX-2 in human neutrophils.

    Directory of Open Access Journals (Sweden)

    Patrick Leclerc

    2008-05-01

    Full Text Available The inducible cyclooxygenase isoform (COX-2 is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc, a ubiquitous Ca(2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE(2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE(2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE(2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE(2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis.

  15. Increased cyclooxygenase 2 expression in association with oral lichen planus severity

    Directory of Open Access Journals (Sweden)

    Thaneeya Chankong

    2016-09-01

    Conclusion: Enhanced COX-2 expression in both OLP epithelium and inflammatory infiltrates correlates well with the clinical severity. An association between VAS score and COX-2 expression in OLP inflammatory infiltrates suggests an important role of additional COX-2 expression from inflammation in causing pain in OLP patients.

  16. Array2BIO: from microarray expression data to functional annotation of co-regulated genes

    Directory of Open Access Journals (Sweden)

    Rasley Amy

    2006-06-01

    Full Text Available Abstract Background There are several isolated tools for partial analysis of microarray expression data. To provide an integrative, easy-to-use and automated toolkit for the analysis of Affymetrix microarray expression data we have developed Array2BIO, an application that couples several analytical methods into a single web based utility. Results Array2BIO converts raw intensities into probe expression values, automatically maps those to genes, and subsequently identifies groups of co-expressed genes using two complementary approaches: (1 comparative analysis of signal versus control and (2 clustering analysis of gene expression across different conditions. The identified genes are assigned to functional categories based on Gene Ontology classification and KEGG protein interaction pathways. Array2BIO reliably handles low-expressor genes and provides a set of statistical methods for quantifying expression levels, including Benjamini-Hochberg and Bonferroni multiple testing corrections. An automated interface with the ECR Browser provides evolutionary conservation analysis for the identified gene loci while the interconnection with Crème allows prediction of gene regulatory elements that underlie observed expression patterns. Conclusion We have developed Array2BIO – a web based tool for rapid comprehensive analysis of Affymetrix microarray expression data, which also allows users to link expression data to Dcode.org comparative genomics tools and integrates a system for translating co-expression data into mechanisms of gene co-regulation. Array2BIO is publicly available at http://array2bio.dcode.org.

  17. Cyclooxygenase-2 mediates the febrile response of mice to interleukin-1beta.

    Science.gov (United States)

    Li, S; Ballou, L R; Morham, S G; Blatteis, C M

    2001-08-10

    Various lines of evidence have implicated cyclooxygenase (COX)-2 as a modulator of the fever induced by the exogenous pyrogen lipopolysaccharide (LPS). Thus, treatment with specific inhibitors of COX-2 suppresses the febrile response without affecting basal body (core) temperature (T(c)). Furthermore, COX-2 gene-ablated mice are unable to develop a febrile response to intraperitoneal (i.p.) LPS, whereas their COX-1-deficient counterparts produce fevers not different from their wild-type (WT) controls. To extend the apparently critical role of COX-2 for LPS-induced fevers to fevers produced by endogenous pyrogens, we studied the thermal responses of COX-1- and COX-2 congenitally deficient mice to i.p. and intracerebroventricular (i.c.v.) injections of recombinant murine (rm) interleukin (IL)-1beta. We also assessed the effects of one selective COX-1 inhibitor, SC-560, and two selective COX-2 inhibitors, nimesulide (NIM) and dimethylfuranone (DFU), on the febrile responses of WT and COX-1(-/-) mice to LPS and rmIL-1beta, i.p. Finally, we verified the integrity of the animals' responses to PGE2, i.c.v. I.p. and i.c.v. rmIL-1beta induced similar fevers in WT and COX-1 knockout mice, but provoked no rise in the T(c)s of COX-2 null mutants. The fever produced in WT mice by i.p. LPS was not affected by SC-560, but it was attenuated and abolished by NIM and DFU, respectively, while that caused by i.p. rmIL-1beta was converted into a T(c) fall by DFU. There were no differences in the responses to i.c.v. PGE2 among the WT and COX knockout mice. These results, therefore, further support the notion that the production of PGE2 in response to pyrogens is critically dependent on COX-2 expression.

  18. Low endogenous glucocorticoid allows induction of kidney cortical cyclooxygenase-2 during postnatal rat development

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Stubbe, Jane; Skøtt, Ole

    2004-01-01

    COX-2 in these cells. Thus low plasma concentrations of corticosterone allowed for cortical and medullary COX-2 induction during postnatal kidney development. Increased circulating glucocorticoid in the postnatal period may damage late renal development through inhibition of COX-2.......In postnatal weeks 2-4, cyclooxygenase-2 (COX-2) is induced in the rat kidney cortex where it is critically involved in final stages of kidney development. We examined whether changes in circulating gluco- or mineralocorticosteroids or in their renal receptors regulate postnatal COX-2 induction....... Plasma corticosterone concentration peaked at birth, decreased to low levels at days 3-13, and increased to adult levels from day 22. Aldosterone peaked at birth and then stabilized at adult levels. Gluco- and mineralocorticoid receptor (GR and MR) mRNAs were expressed stably in kidney before, during...

  19. Areca nut extract up-regulates prostaglandin production, cyclooxygenase-2 mRNA and protein expression of human oral keratinocytes.

    Science.gov (United States)

    Jeng, J H; Ho, Y S; Chan, C P; Wang, Y J; Hahn, L J; Lei, D; Hsu, C C; Chang, M C

    2000-07-01

    There are about 600 million betel quid (BQ) chewers in the world. BQ chewing is associated with increased incidence of oral cancer and submucous fibrosis. In this study, areca nut (AN) extract (200-800 microg/ml) induced the prostaglandin E(2) (PGE(2)) production by 1. 4-3.4-fold and 6-keto-PGF(1 alpha) production by 1.1-1.7-fold of gingival keratinocytes (GK), respectively, following 24 h of exposure. Exposure of GK to AN extract (>400 microg/ml) led to cell retraction and intracellular vacuoles formation. At concentrations of 800 and 1200 microg/ml, AN extract induced cell death at 21-24 and 32-52% as detected by MTT assay and cellular lactate dehydrogenase release, respectively. Interestingly, AN-induced morphological changes of GK are reversible. GK can still proliferate following exposure to AN extract. Cytotoxicity of AN extract cannot be inhibited by indomethacin (1 microM) and aspirin (50 microM), indicating that prostaglandin (PG) production is not the major factor responsible for AN cytotoxicity. PGE(2) exhibited little effect on the growth of GK at concentrations ranging from 100-1000 pg/ml. Stimulating GK production of PGs by AN extract could be due to induction of cyclooxygenase-2 (COX-2) mRNA expression and protein production. These results suggest that AN ingredients are critical in the pathogenesis of oral submucous fibrosis and oral cancer via their stimulatory effects on the PGs, COX-2 production and associated tissue inflammatory responses. AN cytotoxicity to GK is not directly mediated by COX-2 stimulation and PG production.

  20. Role of arachidonic acid metabolism in transcriptional induction of tumor necrosis factor gene expression by phorbol ester

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, J.; Spriggs, D.; Imamura, K.; Stone, R.; Luebbers, R.; Kufe, D.

    1989-01-01

    The treatment of human HL-60 promyelocytic leukemia cells with 12-0 tetradecanoylphorbol-13-acetate (TPA) is associated with induction of tumor necrosis factor (TNF) transcripts. The study reported here has examined TPA-induced signaling mechanisms responsible for the regulation of TNF gene expression in these cells. Run-on assays demonstrated that TPA increases TNS mRNA levels by transcriptional activation of this gene. The induction of TNF transcripts by TPA was inhibited by the isoquinolinesulfonamide derivative H7 but not by HA1004, suggesting that this effect of TPA is mediated by activation of protein kinase C. TPA treatment also resulted in increased arachidonic acid release. Moreover, inhibitors of phospholipase, A/sub 2/ blocked both the increase in arachidonic acid release and the induction of TNF transcripts. These findings suggest that TPA induces TNF gene expression through the formation of arachidonic acid metabolites. Although indomethacin had no detectable effect on this induction of TNF transcripts, ketoconazole, an inhibitor of 5-lipoxygenase, blocked TPA-induced increases in TNF mRNA levels. Moreover, TNF mRNA levels were increased by the 5-lipoxygenase metabolite leukotriene B/sub 4/. In contrast, the cyclooxygenase metabolite prostaglandin E/sub 2/ inhibited the induction of TNF transcripts by TPA. Taken together, these results suggest that TPA induces TNF gene expression through the arachidonic acid cascade and that the level of TNF transcripts is regulated by metabolites of the pathway, leukotriene B/sub 4/ and prostaglandin E/sub 2/.

  1. The organization and expression of the mdm2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Montes De Oca Luna, R.; Tabor, A.D.; Eberspaecher, H. [Univ. of Texas, Houston, TX (United States)] [and others

    1996-05-01

    The mdm2 gene encodes a zinc finger protein that negatively regulates p53 function by binding and masking the p53 transcriptional activation domain. Two different promoters control expression of mdm2, one of which is also transactivated by p53. We cloned and characterized the mdm2 gene from a murine 129 library. It contained at least 12 exons and spanned approximately 25 kb of DNA. Sequencing of the mdm2 gene revealed three nucleotide differences that resulted in amino acid substitutions in the previously published mdm2 sequence. Sequences of normal BalbC/J DNA and the original cosmid clone is isolated from the 3T3DM cell line revealed that they are identical, suggesting that the published sequence is in error at these three positions. In addition, we analyzed the expression pattern of mdm2 and found ubiquitous low-level expression throughout embryo development and in adult tissues. Analysis of mRNA from numerous tissues for several mdm2 spliced variants that had been identified in the transformed 3T3DM cell line revealed that these variants could not be detected in the developing embryo or in adult tissues. 25 refs., 3 figs., 2 tabs.

  2. Cholecystokinin-2 receptor mediated gene expression in neuronal PC12 cells

    DEFF Research Database (Denmark)

    Hansen, Thomas v O; Borup, Rehannah; Marstrand, Troels

    2007-01-01

    could be identified. Comparison with forskolin- and nerve growth factor (NGF)-treated PC12 cells showed that CCK induced a separate set of target genes. Taken together, we propose that neuronal CCK may have a role in the regulation of the circadian rhythm, the metabolism of cerebral cholesterol...... of neuronal CCK are incompletely understood. To identify genes regulated by neuronal CCK, we generated neuronal PC12 cells stably expressing the CCK-2 receptor (CCK-2R) and treated the cells with sulphated CCK-8 for 2-16 h, before the global expression profile was examined. The changes in gene expression...... peaked after 2 h, with 67 differentially expressed transcripts identified. A pathway analysis indicated that CCK was implicated in the regulation of the circadian clock system, the plasminogen system and cholesterol metabolism. But transcripts encoding proteins involved in dopamine signaling, ornithine...

  3. Anti-tumor effect and mechanism of cyclooxygenase-2 inhibitor through matrix metalloproteinase 14 pathway in PANC-1 cells.

    Science.gov (United States)

    Li, Siyuan; Gu, Zhuoyu; Xiao, Zhiwei; Zhou, Ting; Li, Jun; Sun, Kan

    2015-01-01

    To investigate whether celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, can attenuate proliferation, migration, invasion and MMP-14 expression in pancreatic cancer cells PANC-1 and the possible anti-tumor mechanism of celecoxib. Human pancreatic cancer cell line PANC-1 cells were treated with diverse concentrations of celecoxib (20, 60, 100 μmol/L). Cell proliferation, invasion and migration capabilities were measured by MTT colorimetry, transwell invasion assay, and scratch assay separately. At the same time, the protein expression of COX-2 and MMP-14 was assessed by ELISA. The capabilities of proliferation, invasion and migration in PANC-1 cells were attenuated in a concentration-dependent manner after treated with celecoxib, followed by the down-regulation of the protein expression of COX-2 and MMP-14. In addition, MMP-14 expression was significantly positively correlated with COX-2 expression. COX-2 inhibitor celecoxib can inhibit the proliferation, invasion and migration of PANC-1 cells via down-regulating the expression of MMP-14 in a concentration-dependent manner, thus contributing to its anti-tumor effect in pancreatic cancer.

  4. Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle Elaphomyces granulatus

    Science.gov (United States)

    Rita Stanikunaite; Shabana I. Khan; James M. Trappe; Samir A. Ross

    2009-01-01

    The ethanol extract of fruiting bodies of Elaphomyces granulatus, a truffle-like fungus, was evaluated for cyclooxygenase-2 (COX-2) enzyme inhibitory and antioxidant activities. Inhibition of COX-2 activity was evaluated in mouse macrophages (RAW 264.7). The extract of E. granulatus caused a 68% inhibition of COX-2 activity at...

  5. Increased expression of ID2, PRELP and SMOC2 genes in patients with endometriosis

    Directory of Open Access Journals (Sweden)

    F.M. Araujo

    Full Text Available Endometriosis is a benign, estrogen-dependent disease with symptoms such as pelvic pain and infertility, and it is characterized by the ectopic distribution of endometrial tissue. The expression of the ID2, PRELP and SMOC2 genes was compared between the endometrium of women without endometriosis in the proliferative phase of their menstrual cycle and the eutopic and ectopic endometrium of women with endometriosis in the proliferative phase. Paired tissue samples from 20 women were analyzed: 10 from endometrial and peritoneal endometriotic lesions and 10 from endometrial and ovarian endometriotic lesions. As controls, 16 endometrium samples were collected from women without endometriosis in the proliferative phase of menstrual cycle. Analysis was performed by real-time polymerase chain reaction (PCR. There was no significant difference between gene expression in the endometrium of women with and without endometriosis. The ID2 gene expression was increased in the most advanced stage of endometriosis and in ovarian endometriomas, the PRELP was more expressed in peritoneal lesions, and the SMOC2 was highly expressed in both peritoneal and endometrioma lesions. Considering that the genes studied participate either directly or indirectly in cellular processes that can lead to cell migration, angiogenesis, and inappropriate invasion, it is possible that the deregulation of these genes caused the development and maintenance of ectopic tissue.

  6. Selection of reliable reference genes for gene expression studies in Trichoderma afroharzianum LTR-2 under oxalic acid stress.

    Science.gov (United States)

    Lyu, Yuping; Wu, Xiaoqing; Ren, He; Zhou, Fangyuan; Zhou, Hongzi; Zhang, Xinjian; Yang, Hetong

    2017-10-01

    An appropriate reference gene is required to get reliable results from gene expression analysis by quantitative real-time reverse transcription PCR (qRT-PCR). In order to identify stable and reliable reference genes in Trichoderma afroharzianum under oxalic acid (OA) stress, six commonly used housekeeping genes, i.e., elongation factor 1, ubiquitin, ubiquitin-conjugating enzyme, glyceraldehyde-3-phosphate dehydrogenase, α-tubulin, actin, from the effective biocontrol isolate T. afroharzianum strain LTR-2 were tested for their expression during growth in liquid culture amended with OA. Four in silico programs (comparative ΔCt, NormFinder, geNorm and BestKeeper) were used to evaluate the expression stabilities of six candidate reference genes. The elongation factor 1 gene EF-1 was identified as the most stably expressed reference gene, and was used as the normalizer to quantify the expression level of the oxalate decarboxylase coding gene OXDC in T. afroharzianum strain LTR-2 under OA stress. The result showed that the expression of OXDC was significantly up-regulated as expected. This study provides an effective method to quantify expression changes of target genes in T. afroharzianum under OA stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cyclooxygenase-2 inhibitors and free flap complications after autologous breast reconstruction

    DEFF Research Database (Denmark)

    Bonde, Christian; Khorasani, Hoda; Hoejvig, Jens

    2017-01-01

    BACKGROUND: A key component of modern analgesics is the use of multimodal opioid-sparing analgesia (MOSA). In the past, our analgesic regime after autologous breast reconstruction (ABR) included either NSAID or a selective cyclooxygenase-2 (COX-2) inhibitor. COX-2 inhibitors are superior to NSAID...... or gastrointestinal bleeding. CONCLUSIONS: Multimodal analgesia using a COX-2 inhibitor is safe in ABR with free flaps and does not increase flap failure. COX-2 inhibitors seem superior to NSAID with reduced risk of post-operative haematomas.......BACKGROUND: A key component of modern analgesics is the use of multimodal opioid-sparing analgesia (MOSA). In the past, our analgesic regime after autologous breast reconstruction (ABR) included either NSAID or a selective cyclooxygenase-2 (COX-2) inhibitor. COX-2 inhibitors are superior to NSAIDs...... because of the well-known side effects of NSAID treatment (bleeding/gastrointestinal ulcers). However, COX-2 inhibitors have been suggested to increase flap failure rates. We report our experience in using COX-2 inhibitors as part of our post-operative MOSA after ABR using free flaps. MATERIALS...

  8. The expression characteristics of mt-ND2 gene in chicken.

    Science.gov (United States)

    Zhang, Wenwen; Hou, Lingling; Wang, Ting; Lu, Weiwei; Tao, Yafei; Chen, Wen; Du, Xiaohui; Huang, Yanqun

    2016-09-01

    Subunit 2 of NADH dehydrogenase (ND2) is encoded by the mt-ND2 gene and plays a critical role in controlling the production of the mitochondrial reactive oxygen species. Our study focused on exploring the mt-ND2 tissue expression patterns and the effects of energy restriction and dietary fat (linseed oil, corn oil, sesame oil or lard) level (2.5% and 5%) on its expression in chicken. The results showed that mt-ND2 gene was expressed in the 15 tissues of hybrid chickens with the highest level in heart and lowest level in pancreas tissue; 30% energy restriction did not significantly affect mt-ND2 mRNA level in chicken liver tissue. Both the mt-ND2 mRNA levels in chicken pectoralis (p chicken age (p chicken age (p chicken age.

  9. Lung Myofibroblasts Are Characterized by Down-Regulated Cyclooxygenase-2 and Its Main Metabolite, Prostaglandin E2

    Science.gov (United States)

    Gabasa, Marta; Royo, Dolores; Molina-Molina, Maria; Roca-Ferrer, Jordi; Pujols, Laura; Picado, Cesar

    2013-01-01

    Background Prostaglandin E2 (PGE2), the main metabolite of cyclooxygenase (COX), is a well-known anti-fibrotic agent. Moreover, myofibroblasts expressing α-smooth muscle actin (α-SMA), fibroblast expansion and epithelial-mesenchymal transition (EMT) are critical to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Our aim was to investigate the expression of COX-2 and PGE2 in human lung myofibroblasts and establish whether fibroblast-myofibroblast transition (FMT) and EMT are associated with COX-2 and PGE2 down-regulation. Methods Fibroblasts obtained from IPF patients (n = 6) and patients undergoing spontaneous pneumothorax (control, n = 6) and alveolar epithelial cell line A549 were incubated with TGF-β1 and FMT and EMT markers were evaluated. COX-2 and α-SMA expression, PGE2 secretion and cell proliferation were measured after IL-1β and PGE2 incubation. Results Myofibroblasts from both control and IPF fibroblast cultures stimulated with IL-1β showed no COX-2 expression. IPF fibroblasts showed increased myofibroblast population and reduced COX-2 expression in response to IL-1β. TGF-β1 increased the number of myofibroblasts in a time-dependent manner. In contrast, TGF-β1 induced slight COX-2 expression at 4 h (without increase in myofibroblasts) and 24 h, but not at 72 h. Both IPF and control cultures incubated with TGF-β1 for 72 h showed diminished COX-2 induction, PGE2 secretion and α-SMA expression after IL-1β addition. The latter decreased proliferation in fibroblasts but not in myofibroblasts. A549 cells incubated with TGF-β1 for 72 h showed down-regulated COX-2 expression and low basal PGE2 secretion in response to IL-1β. Immuno-histochemical analysis of IPF lung tissue showed no COX-2 immuno-reactivity in myofibroblast foci. Conclusions Myofibroblasts are associated with COX-2 down-regulation and reduced PGE2 production, which could be crucial in IPF development and progression. PMID:23755232

  10. VEGF selectively induces Down syndrome critical region 1 gene expression in endothelial cells: a mechanism for feedback regulation of angiogenesis?

    International Nuclear Information System (INIS)

    Yao, Y.-G; Duh, Elia J.

    2004-01-01

    The Down syndrome critical region 1 (DSCR1) gene (also known as MCIP1, Adapt78) encodes a regulatory protein that binds to calcineurin catalytic A subunit and acts as a regulator of the calcineurin-mediated signaling pathway. We show in this study that DSCR1 is greatly induced in endothelial cells in response to VEGF, TNF-α, and A23187 treatment, and that this up-regulation is inhibited by inhibitors of the calcineurin-NFAT (nuclear factor of activated T cells) signaling pathway as well as by PKC inhibition and a Ca 2+ chelator. We hypothesized that the up-regulation of DSCR1 gene expression in endothelial cells could act as an endogenous feedback inhibitor for angiogenesis by regulating the calcineurin-NFAT signaling pathway. Our transient transfection analyses confirm that the overexpression of DSCR1 abrogates the up-regulation of reporter gene expression driven by both the cyclooxygenase 2 and DSCR1 promoters in response to stimulators. Our results indicate that DSCR1 up-regulation may represent a potential molecular mechanism underlying the regulation of angiogenic genes activated by the calcineurin-NFAT signaling pathway in endothelial cells

  11. Cumulus expansion, nuclear maturation and connexin 43, cyclooxygenase-2 and FSH receptor mRNA expression in equine cumulus-oocyte complexes cultured in vitro in the presence of FSH and precursors for hyaluronic acid synthesis

    Directory of Open Access Journals (Sweden)

    Aiudi Giulio

    2004-06-01

    Full Text Available Abstract The aim of this study was to investigate cumulus expansion, nuclear maturation and expression of connexin 43, cyclooxygenase-2 and FSH receptor transcripts in equine cumuli oophori during in vivo and in vitro maturation in the presence of equine FSH (eFSH and precursors for hyaluronic acid synthesis. Equine cumulus-oocyte complexes (COC were cultured in a control defined medium supplemented with eFSH (0 to 5 micrograms/ml, Fetal Calf Serum (FCS, precursors for hyaluronic acid synthesis or glutamine according to the experiments. After in vitro maturation, the cumulus expansion rate was increased with 1 microgram/ml eFSH, and was the highest with 20% FCS. It was not influenced by precursors for hyaluronic acid synthesis or glutamine. The expression of transcripts related to cumulus expansion was analyzed in equine cumulus cells before maturation, and after in vivo and in vitro maturation, by using reverse transcription-polymerase chain reaction (RT-PCR with specific primers. Connexin 43, cyclooxygenase-2 (COX-2 and FSH receptor (FSHr mRNA were detected in equine cumulus cells before and after maturation. Their level did not vary during in vivo or in vitro maturation and was influenced neither by FSH nor by precursors for hyaluronic acid synthesis. Results indicate that previously reported regulation of connexin 43 and COX-2 proteins during equine COC maturation may involve post-transcriptional mechanisms.

  12. Low HER2/neu gene expression is associated with pathological response to concurrent paclitaxel and radiation therapy in locally advanced breast cancer

    International Nuclear Information System (INIS)

    Formenti, Silvia C.; Spicer, Darcy; Skinner, Kristin; Cohen, Deidre; Groshen, Susan; Bettini, Anna; Naritoku, Wesley; Press, Michael; Salonga, Dennis; Tsao-Wei, Denice; Danenberg, Kathy; Danenberg, Peter

    2002-01-01

    Purpose: The objective of this study was twofold: first, to identify patients with locally advanced breast cancer (LABC) who will achieve a pathological response to a preoperative regimen of concurrent paclitaxel and radiation; and second, to explore associations between molecular markers from the original tumors and pathological response. Methods and Materials: Patients with previously untreated LABC were eligible to receive a regimen of preoperative concurrent paclitaxel, 30 mg/m 2 twice a week for a total of 8 weeks, and radiation delivered Weeks 2-6, 45 Gy at 1.8 Gy per fraction to the breast, ipsilateral axilla, and supraclavicular nodes. At mastectomy, pathologic findings were classified as pathological complete response (pCR) no residual invasive cells in the breast and axillary contents; pathological partial response (pPR) = presence of ≤10 microscopic foci of invasive cells; no pathological response (pNR) = pathological persistence of tumor. For each patient, pretreatment breast cancer biopsies were prospectively analyzed by immunohistochemistry (IHC) for estrogen and progesterone (ER/PR) hormonal receptors, HER2/neu and p53 overexpression. Estrogen receptor (ER), HER2/neu, metablastin, β-tubulin III and IV, microtubule-associated protein-4 (MAP-4), bcl-2, bax, and cyclooxygenase-2 (COX-2) gene expression were measured using real-time quantitative polymerase chain reaction (PCR). Results: A total of 36 patients had pretreatment biopsies and were evaluable for the analysis of the association of molecular markers with pathological response. Pathological response in the mastectomy specimen was achieved in 12 of these 36 patients (33%). Only HER2/neu and ER gene expression were found to be significantly associated with the extent of pathological response to the regimen, i.e., tumors with low HER2/neu gene expression and negative estrogen receptors were more likely to respond to the tested regimen (p=0.009 and p=0.006, respectively). Conversely, p53 protein

  13. Combined effects of dietary polyunsaturated fatty acids and parasite exposure on eicosanoid-related gene expression in an invertebrate model.

    Science.gov (United States)

    Schlotz, Nina; Roulin, Anne; Ebert, Dieter; Martin-Creuzburg, Dominik

    2016-11-01

    Eicosanoids derive from essential polyunsaturated fatty acids (PUFA) and play crucial roles in immunity, development, and reproduction. However, potential links between dietary PUFA supply and eicosanoid biosynthesis are poorly understood, especially in invertebrates. Using Daphnia magna and its bacterial parasite Pasteuria ramosa as model system, we studied the expression of genes coding for key enzymes in eicosanoid biosynthesis and of genes related to oogenesis in response to dietary arachidonic acid and eicosapentaenoic acid in parasite-exposed and non-exposed animals. Gene expression related to cyclooxygenase activity was especially responsive to the dietary PUFA supply and parasite challenge, indicating a role for prostanoid eicosanoids in immunity and reproduction. Vitellogenin gene expression was induced upon parasite exposure in all food treatments, suggesting infection-related interference with the host's reproductive system. Our findings highlight the potential of dietary PUFA to modulate the expression of key enzymes involved in eicosanoid biosynthesis and reproduction and thus underpin the idea that the dietary PUFA supply can influence invertebrate immune functions and host-parasite interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Anti-nociceptive effect of patchouli alcohol: Involving attenuation of cyclooxygenase 2 and modulation of mu-opioid receptor.

    Science.gov (United States)

    Yu, Xuan; Wang, Xin-Pei; Yan, Xiao-Jin; Jiang, Jing-Fei; Lei, Fan; Xing, Dong-Ming; Guo, Yue-Ying; Du, Li-Jun

    2017-08-09

    To explore the anti-nociceptive effect of patchouli alcohol (PA), the essential oil isolated from Pogostemon cablin (Blanco) Bent, and determine the mechanism in molecular levels. The acetic acid-induced writhing test and formalin-induced plantar injection test in mice were employed to confifirm the effect in vivo. Intracellular calcium ion was imaged to verify PA on mu-opioid receptor (MOR). Cyclooxygenase 2 (COX2) and MOR of mouse brain were expressed for determination of PA's target. Cellular experiments were carried out to find out COX2 and MOR expression induced by PA. PA significantly reduced latency period of visceral pain and writhing induced by acetic acid saline solution (Peffect of PA. A decrease in the intracellular calcium level (Peffect. PA showed the characters of enhancing the MOR expression and reducing the intracellular calcium ion similar to opioid effect. Both COX2 and MOR are involved in the mechanism of PA's anti-nociceptive effect, and the up-regulation of the receptor expression and the inhibition of intracellular calcium are a new perspective to PA's effect on MOR.

  15. Cytosolic phospholipase A2 alpha amplifies early cyclooxygenase-2 expression, oxidative stress and MAP kinase phosphorylation after cerebral ischemia in mice

    Directory of Open Access Journals (Sweden)

    Koehler Raymond C

    2010-07-01

    Full Text Available Abstract Background The enzyme cytosolic phospholipase A2 alpha (cPLA2α has been implicated in the progression of cerebral injury following ischemia and reperfusion. Previous studies in rodents suggest that cPLA2α enhances delayed injury extension and disruption of the blood brain barrier many hours after reperfusion. In this study we investigated the role of cPLA2α in early ischemic cerebral injury. Methods Middle cerebral artery occlusion (MCAO was performed on cPLA2α+/+ and cPLA2α-/- mice for 2 hours followed by 0, 2, or 6 hours of reperfusion. The levels of cPLA2α, cyclooxygenase-2, neuronal morphology and reactive oxygen species in the ischemic and contralateral hemispheres were evaluated by light and fluorescent microscopy. PGE2 content was compared between genotypes and hemispheres after MCAO and MCAO and 6 hours reperfusion. Regional cerebral blood flow was measured during MCAO and phosphorylation of relevant MAPKs in brain protein homogenates was measured by Western analysis after 6 hours of reperfusion. Results Neuronal cPLA2α protein increased by 2-fold immediately after MCAO and returned to pre-MCAO levels after 2 hours reperfusion. Neuronal cyclooxygenase-2 induction and PGE2 concentration were greater in cPLA2α+/+ compared to cPLA2α-/- ischemic cortex. Neuronal swelling in ischemic regions was significantly greater in the cPLA2α+/+ than in cPLA2α-/- brains (+/+: 2.2 ± 0.3 fold vs. -/-: 1.7 ± 0.4 fold increase; P 2α+/+ ischemic core than in cPLA2α-/- (+/+: 7.12 ± 1.2 fold vs. -/-: 3.1 ± 1.4 fold; P 2α+/+, but not cPLA2α-/-, had disruption of neuron morphology and decreased PGE2 content. Phosphorylation of the MAPKs-p38, ERK 1/2, and MEK 1/2-was significantly greater in cPLA2a+/+ than in cPLA2α-/- ischemic cortex 6 hours after reperfusion. Conclusions These results indicate that cPLA2α modulates the earliest molecular and injury responses after cerebral ischemia and have implications for the potential clinical

  16. Gene expression profiling in limb-girdle muscular dystrophy 2A.

    Directory of Open Access Journals (Sweden)

    Amets Sáenz

    Full Text Available Limb-girdle muscular dystrophy type 2A (LGMD2A is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3. Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens, cell adhesion (fibronectin, muscle development (myosins and melusin and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB is upregulated in LGMD2A muscle samples, it could be hypothesized that beta-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1. Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies.

  17. Mono-(2-Ethylhexyl Phthalate Promotes Pro-Labor Gene Expression in the Human Placenta.

    Directory of Open Access Journals (Sweden)

    Ximi K Wang

    Full Text Available Women exposed to phthalates during pregnancy are at increased risk for delivering preterm, but the mechanism behind this relationship is unknown. Placental corticotropin-releasing hormone (CRH and cyclooxygenase-2 (COX-2 are key mediators of parturition and are regulated by the non-canonical NF-kB (RelB/p52 signaling pathway. In this study, we demonstrate that one of the major phthalate metabolites, mono-(2-ethylhexyl-phthalate (MEHP, increased CRH and COX-2 mRNA and protein abundance in a dose-dependent manner in primary cultures of cytotrophoblast. This was coupled with an increase in nuclear import of RelB/p52 and its association with the CRH and COX-2 promoters. Silencing of NF-kB inducing kinase, a central signaling component of the non-canonical NF-kB pathway, blocked MEHP-induced upregulation of CRH and COX-2. These results suggest a potential mechanism mediated by RelB/p52 by which phthalates could prematurely induce pro-labor gene activity and lead to preterm birth.

  18. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    Science.gov (United States)

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional...

  19. Expression of the sigma35 and cry2AB genes involved in Bacillus thuringiensis virulence Expressão dos genes sigma35 e cry2AB envolvidos na virulência de Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Ana Maria Guidelli-Thuler

    2009-06-01

    Full Text Available There are several genes involved in Bacillus thuringiensis sporulation. The regulation and expression of these genes results in an upregulation in Cry protein production, and this is responsible for the death of insect larvae infected by Bacillus thuringiensis. Gene expression was monitored in Bacillus thuringiensis during three developmental phases. DNA macroarrays were constructed for selected genes whose sequences are available in the GenBank database. These genes were hybridized to cDNA sequences from B. thuringiensis var. kurstaki HD-1. cDNA probes were synthesized by reverse transcription from B. thuringiensis RNA templates extracted during the exponential (log growth, stationary and sporulation phases, and labeled with 33PadCTP. Two genes were differentially expressed levels during the different developmental phases. One of these genes is related to sigma factor (sigma35, and the other is a cry gene (cry2Ab. There were differences between the differential levels of expression of various genes and among the expression detected for different combinations of the sigma factor and cry2Ab genes. The maximum difference in expression was observed for the gene encoding sigma35 factor in the log phase, which was also expressed at a high level during the sporulation phase. The cry2Ab gene was only expressed at a high level in the log phase, but at very low levels in the other phases when compared to the sigma35.Muitos genes estão envolvidos nos mecanismos de esporulação da bactéria Bacillus thuringiensis. A regulação e expressão desses genes resultam em uma produção massiva da proteína Cry, responsável pela morte das larvas de muitos insetos. Neste trabalho monitorou-se a expressão de genes de Bacillus thuringiensis, ao longo de três fases de seu desenvolvimento. Foram construídos macroarrays de DNA dos genes selecionados, cujas seqüências estão disponibilizadas no GenBank. Estes genes foram hibridizados com cDNAs obtidos de B

  20. rpb2 is a reliable reference gene for quantitative gene expression analysis in the dermatophyte Trichophyton rubrum.

    Science.gov (United States)

    Jacob, Tiago R; Peres, Nalu T A; Persinoti, Gabriela F; Silva, Larissa G; Mazucato, Mendelson; Rossi, Antonio; Martinez-Rossi, Nilce M

    2012-05-01

    The selection of reference genes used for data normalization to quantify gene expression by real-time PCR amplifications (qRT-PCR) is crucial for the accuracy of this technique. In spite of this, little information regarding such genes for qRT-PCR is available for gene expression analyses in pathogenic fungi. Thus, we investigated the suitability of eight candidate reference genes in isolates of the human dermatophyte Trichophyton rubrum subjected to several environmental challenges, such as drug exposure, interaction with human nail and skin, and heat stress. The stability of these genes was determined by geNorm, NormFinder and Best-Keeper programs. The gene with the most stable expression in the majority of the conditions tested was rpb2 (DNA-dependent RNA polymerase II), which was validated in three T. rubrum strains. Moreover, the combination of rpb2 and chs1 (chitin synthase) genes provided for the most reliable qRT-PCR data normalization in T. rubrum under a broad range of biological conditions. To the best of our knowledge this is the first report on the selection of reference genes for qRT-PCR data normalization in dermatophytes and the results of these studies should permit further analysis of gene expression under several experimental conditions, with improved accuracy and reliability.

  1. Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC, in tumor cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Hofman Florence M

    2006-05-01

    Full Text Available Abstract Background 2,5-Dimethyl-celecoxib (DMC is a close structural analog of the selective cyclooxygenase-2 (COX-2 inhibitor celecoxib (Celebrex® that lacks COX-2-inhibitory function. However, despite its inability to block COX-2 activity, DMC is able to potently mimic the anti-tumor effects of celecoxib in vitro and in vivo, indicating that both of these drugs are able to involve targets other than COX-2 to exert their recognized cytotoxic effects. However, the molecular components that are involved in mediating these drugs' apoptosis-stimulatory consequences are incompletely understood. Results We present evidence that celecoxib and DMC are able to down-regulate the expression of survivin, an anti-apoptotic protein that is highly expressed in tumor cells and known to confer resistance of such cells to anti-cancer treatments. Suppression of survivin is specific to these two drugs, as other coxibs (valdecoxib, rofecoxib or traditional NSAIDs (flurbiprofen, indomethacin, sulindac do not affect survivin expression at similar concentrations. The extent of survivin down-regulation by celecoxib and DMC in different tumor cell lines is somewhat variable, but closely correlates with the degree of drug-induced growth inhibition and apoptosis. When combined with irinotecan, a widely used anticancer drug, celecoxib and DMC greatly enhance the cytotoxic effects of this drug, in keeping with a model that suppression of survivin may be beneficial to sensitize cancer cells to chemotherapy. Remarkably, these effects are not restricted to in vitro conditions, but also take place in tumors from drug-treated animals, where both drugs similarly repress survivin, induce apoptosis, and inhibit tumor growth in vivo. Conclusion In consideration of survivin's recognized role as a custodian of tumor cell survival, our results suggest that celecoxib and DMC might exert their cytotoxic anti-tumor effects at least in part via the down-regulation of survivin – in a

  2. Molecular characterization, sequence analysis and tissue expression of a porcine gene – MOSPD2

    Directory of Open Access Journals (Sweden)

    Yang Jie

    2017-01-01

    Full Text Available The full-length cDNA sequence of a porcine gene, MOSPD2, was amplified using the rapid amplification of cDNA ends method based on a pig expressed sequence tag sequence which was highly homologous to the coding sequence of the human MOSPD2 gene. Sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 491 amino acids that has high homology with the motile sperm domain-containing protein 2 (MOSPD2 of five species: horse (89%, human (90%, chimpanzee (89%, rhesus monkey (89% and mouse (85%; thus, it could be defined as a porcine MOSPD2 gene. This novel porcine gene was assigned GeneID: 100153601. This gene is structured in 15 exons and 14 introns as revealed by computer-assisted analysis. The phylogenetic analysis revealed that the porcine MOSPD2 gene has a closer genetic relationship with the MOSPD2 gene of horse. Tissue expression analysis indicated that the porcine MOSPD2 gene is generally and differentially expressed in the spleen, muscle, skin, kidney, lung, liver, fat and heart. Our experiment is the first to establish the primary foundation for further research on the porcine MOSPD2 gene.

  3. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Simões, Maylla Ronacher, E-mail: yllars@hotmail.com [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Aguado, Andrea [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Fiorim, Jonaína; Silveira, Edna Aparecida; Azevedo, Bruna Fernandes; Toscano, Cindy Medice [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Zhenyukh, Olha; Briones, Ana María [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Alonso, María Jesús [Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón (Spain); Vassallo, Dalton Valentim [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Health Science Center of Vitória-EMESCAM, Vitória, ES CEP 29045-402 (Brazil); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain)

    2015-03-01

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  4. A Single Dose of LSD Does Not Alter Gene Expression of the Serotonin 2A Receptor Gene (HTR2A) or Early Growth Response Genes (EGR1-3) in Healthy Subjects

    Science.gov (United States)

    Dolder, Patrick C.; Grünblatt, Edna; Müller, Felix; Borgwardt, Stefan J.; Liechti, Matthias E.

    2017-01-01

    Rationale: Renewed interest has been seen in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. The repeated use of LSD leads to tolerance that is believed to result from serotonin (5-HT) 5-HT2A receptor downregulation. In rats, daily LSD administration for 4 days decreased frontal cortex 5-HT2A receptor binding. Additionally, a single dose of LSD acutely increased expression of the early growth response genes EGR1 and EGR2 in rat and mouse brains through 5-HT2A receptor stimulation. No human data on the effects of LSD on gene expression has been reported. Therefore, we investigated the effects of single-dose LSD administration on the expression of the 5-HT2A receptor gene (HTR2A) and EGR1-3 genes. Methods: mRNA expression levels were analyzed in whole blood as a peripheral biomarker in 15 healthy subjects before and 1.5 and 24 h after the administration of LSD (100 μg) and placebo in a randomized, double-blind, placebo-controlled, cross-over study. Results: LSD did not alter the expression of the HTR2A or EGR1-3 genes 1.5 and 24 h after administration compared with placebo. Conclusion: No changes were observed in the gene expression of LSD’s primary target receptor gene or genes that are implicated in its downstream effects. Remaining unclear is whether chronic LSD administration alters gene expression in humans. PMID:28701958

  5. Evaluation of cyclooxygenase protein expression in traumatized versus normal tissues from eastern box turtles (Terrapene carolina carolina).

    Science.gov (United States)

    Royal, Lillian W; Lascelles, B Duncan X; Lewbart, Gregory A; Correa, Maria T; Jones, Samuel L

    2012-06-01

    This pilot study was designed to determine whether cyclooxygenase (COX)-1, COX-2, or both are expressed in normal turtle tissues and whether level of expression changes when tissue becomes inflamed. Five eastern box turtles, Terrapene carolina carolina, that either died or were euthanatized due to disease or injuries were used for this work. Tissues were obtained from the five turtles. Western blot analysis was used to evaluate tissues for COX-1 and COX-2 proteins. Densiometric analysis was used to compare Western blot bands within each turtle. COX-1 and COX-2 were found in the liver, kidney, grossly normal muscle, and grossly traumatized (inflamed) muscle of all study turtles. In all cases, COX-1 and COX-2 proteins were increased in traumatized muscle over grossly normal nontraumatized muscle. The highest levels of COX-1 and COX-2 proteins were found in kidney and liver. There was no statistical difference between the amount of COX-1 protein in liver and kidney, but traumatized muscle compared with grossly normal muscle had significantly greater COX-1 but not COX 2 protein concentrations. There was no statistical difference between the amount of COX-2 protein in liver and kidney. Traumatized muscle expressed nonstatistically significant greater amounts of COX-2 compared with grossly normal muscle. COX-1 and COX-2 proteins are expressed in turtle tissues, and both isoforms are upregulated during inflammation of muscle tissue. Traditional nonsteroidal anti-inflammatory drugs (NSAIDs) that block both COX isoforms might be more efficacious than COX-2-selective drugs. This work suggests that NSAIDs should be evaluated for potential liver and kidney toxicity in turtles.

  6. Oleuropein Decreases Cyclooxygenase-2 and Interleukin-17 Expression and Attenuates Inflammatory Damage in Colonic Samples from Ulcerative Colitis Patients.

    Science.gov (United States)

    Larussa, Tiziana; Oliverio, Manuela; Suraci, Evelina; Greco, Marta; Placida, Roberta; Gervasi, Serena; Marasco, Raffaella; Imeneo, Maria; Paolino, Donatella; Tucci, Luigi; Gulletta, Elio; Fresta, Massimo; Procopio, Antonio; Luzza, Francesco

    2017-04-15

    Oleuropein (OLE) is the major phenolic secoiridoid of olive tree leaves, and its antioxidant and anti-inflammatory activities have been demonstrated in in vitro and in vivo animal models. The aim of this study was to investigate the activity of OLE in the colonic mucosa from patients with ulcerative colitis (UC). Biopsies obtained during colonoscopy from 14 patients with active UC were immediately placed in an organ culture chamber and challenged with lipopolysaccharide from Escherichia coli (EC-LPS) at 1 μg/mL in the presence or absence of 3 mM OLE. The expression of cyclooxygenase (COX)-2 and interleukin (IL)-17 was assessed in total protein extracts from treated colonic biopsies by Western blotting. Levels of IL-17 were also measured in culture supernatant by ELISA. A microscopic evaluation of the cultured biopsies was performed by conventional histology and immunohistochemistry. The expression of COX-2 and IL-17 were significantly lower in samples treated with OLE + EC-LPS compared with those treated with EC-LPS alone (0.80 ± 0.15 arbitrary units (a.u.) vs. 1.06 ± 0.19 a.u., p = 0.003, and 0.71 ± 0.08 a.u. vs. 1.26 ± 0.42 a.u., p = 0.03, respectively) as were the levels of IL-17 in culture supernatants of OLE + EC-LPS treated colonic samples (21.16 ± 8.64 pg/mL vs. 40.67 ± 9.24 pg/mL, p = 0.01). Histologically, OLE-treated colonic samples showed an amelioration of inflammatory damage with reduced infiltration of CD3, CD4, and CD20 cells, while CD68 numbers increased. The anti-inflammatory activity of OLE was demonstrated in colonic biopsies from UC patients. These new data support a potential role of OLE in the treatment of UC.

  7. Cytosolic phospholipase A2-alpha expression in breast cancer is associated with EGFR expression and correlates with an adverse prognosis in luminal tumours.

    LENUS (Irish Health Repository)

    Caiazza, F

    2012-02-01

    BACKGROUND: The eicosanoid signalling pathway promotes the progression of malignancies through the production of proliferative prostaglandins (PGs). Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) activity provides the substrate for cyclooxygenase-dependent PG release, and we have previously found that cPLA(2)alpha expression correlated with EGFR\\/HER2 over-expression in a small number of breast cancer cell lines. METHODS: The importance of differential cPLA(2)alpha activity in clinical breast cancer was established by relating the expression of cPLA(2)alpha in tissue samples from breast cancer patients, and two microarray-based gene expression datasets to different clinicopathological and therapeutic parameters. RESULTS: High cPLA(2)alpha mRNA expression correlated with clinical parameters of poor prognosis, which are characteristic of highly invasive tumours of the HER2-positive and basal-like subtype, including low oestrogen receptor expression and high EGFR expression. High cPLA(2)alpha expression decreased overall survival in patients with luminal cancers, and correlated with a reduced effect of tamoxifen treatment. The cPLA(2)alpha expression was an independent predictive parameter of poor response to endocrine therapy in the first 5 years of follow-up. CONCLUSION: This study shows a role of cPLA(2)alpha in luminal breast cancer progression, in which the enzyme could represent a novel therapeutic target and a predictive marker.

  8. Inhibition of cyclooxygenase-2 impacts chondrocyte hypertrophic differentiation during endochondral ossification

    Directory of Open Access Journals (Sweden)

    TJM Welting

    2011-12-01

    Full Text Available Skeletogenesis and bone fracture healing involve endochondral ossification, a process during which cartilaginous primordia are gradually replaced by bone tissue. In line with a role for cyclooxygenase-2 (COX-2 in the endochondral ossification process, non-steroidal anti-inflammatory drugs (NSAIDs were reported to negatively affect bone fracture healing due to impaired osteogenesis. However, a role for COX-2 activity in the chondrogenic phase of endochondral ossification has not been addressed before. We show that COX-2 activity fulfils an important regulatory function in chondrocyte hypertrophic differentiation. Our data reveal essential cross-talk between COX-2 and bone morphogenic protein-2 (BMP-2 during chondrocyte hypertrophic differentiation. BMP-2 mediated chondrocyte hypertrophy is associated with increased COX-2 expression and pharmacological inhibition of COX-2 activity by NSAIDs (e.g., Celecoxib decreases hypertrophic differentiation in various chondrogenic models in vitro and in vivo, while leaving early chondrogenic development unaltered. Our findings demonstrate that COX-2 activity is a novel factor partaking in chondrocyte hypertrophy in the context of endochondral ossification and these observations provide a novel etiological perspective on the adverse effects of NSAIDs on bone fracture healing and have important implications for the use of NSAIDs during endochondral skeletal development.

  9. Furosemide stimulates macula densa cyclooxygenase-2 expression in rats

    DEFF Research Database (Denmark)

    Mann, Birgitte; Hartner, A; Jensen, B L

    2001-01-01

    of the loop diuretic furosemide (12 mg/day) or were fed with the diuretic hydrochlorothiazide (30 mg/kg day) for seven days each. To compensate for their salt and water loss, the animals had free access to normal water and to salt water (0.9% NaCl, 0.1% KCl). COX-2 expression in kidney cortex was assessed...

  10. A gene expression profile indicative of early stage HER2 targeted therapy response.

    Science.gov (United States)

    O'Neill, Fiona; Madden, Stephen F; Clynes, Martin; Crown, John; Doolan, Padraig; Aherne, Sinéad T; O'Connor, Robert

    2013-07-01

    Efficacious application of HER2-targetting agents requires the identification of novel predictive biomarkers. Lapatinib, afatinib and neratinib are tyrosine kinase inhibitors (TKIs) of HER2 and EGFR growth factor receptors. A panel of breast cancer cell lines was treated with these agents, trastuzumab, gefitinib and cytotoxic therapies and the expression pattern of a specific panel of genes using RT-PCR was investigated as a potential marker of early drug response to HER2-targeting therapies. Treatment of HER2 TKI-sensitive SKBR3 and BT474 cell lines with lapatinib, afatinib and neratinib induced an increase in the expression of RB1CC1, ERBB3, FOXO3a and NR3C1. The response directly correlated with the degree of sensitivity. This expression pattern switched from up-regulated to down-regulated in the HER2 expressing, HER2-TKI insensitive cell line MDAMB453. Expression of the CCND1 gene demonstrated an inversely proportional response to drug exposure. A similar expression pattern was observed following the treatment with both neratinib and afatinib. These patterns were retained following exposure to traztuzumab and lapatinib plus capecitabine. In contrast, gefitinib, dasatinib and epirubicin treatment resulted in a completely different expression pattern change. In these HER2-expressing cell line models, lapatinib, neratinib, afatinib and trastuzumab treatment generated a characteristic and specific gene expression response, proportionate to the sensitivity of the cell lines to the HER2 inhibitor.Characterisation of the induced changes in expression levels of these genes may therefore give a valuable, very early predictor of the likely extent and specificity of tumour HER2 inhibitor response in patients, potentially guiding more specific use of these agents.

  11. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S.

    2014-01-01

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin S45F -dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer

  12. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-04-18

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.

  13. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO.

    Science.gov (United States)

    Basu, Gargi D; Tinder, Teresa L; Bradley, Judy M; Tu, Tony; Hattrup, Christine L; Pockaj, Barbara A; Mukherjee, Pinku

    2006-08-15

    We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the lungs and bone marrow. Improved vaccine potency was associated with an increase in tumor-specific CTLs. Enhanced CTL activity was attributed to a significant decrease in levels of tumor-associated IDO, a negative regulator of T cell activity. We present data suggesting that inhibiting COX-2 activity in vivo regulates IDO expression within the tumor microenvironment; this is further corroborated in the MDA-MB-231 human breast cancer cell line. Thus, a novel mechanism of COX-2-induced immunosuppression via regulation of IDO has emerged that may have implications in designing future cancer vaccines.

  14. miR-24-2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptotic gene BCL-2: a potential for therapeutic intervention.

    Science.gov (United States)

    Srivastava, Niloo; Manvati, Siddharth; Srivastava, Archita; Pal, Ranjana; Kalaiarasan, Ponnusamy; Chattopadhyay, Shilpi; Gochhait, Sailesh; Dua, Raina; Bamezai, Rameshwar N K

    2011-04-04

    New levels of gene regulation with microRNA (miR) and gene copy number alterations (CNAs) have been identified as playing a role in various cancers. We have previously reported that sporadic breast cancer tissues exhibit significant alteration in H2AX gene copy number. However, how CNA affects gene expression and what is the role of miR, miR-24-2, known to regulate H2AX expression, in the background of the change in copy number, are not known. Further, many miRs, including miR-24-2, are implicated as playing a role in cell proliferation and apoptosis, but their specific target genes and the pathways contributing to them remain unexplored. Changes in gene copy number and mRNA/miR expression were estimated using real-time polymerase chain reaction assays in two mammalian cell lines, MCF-7 and HeLa, and in a set of sporadic breast cancer tissues. In silico analysis was performed to find the putative target for miR-24-2. MCF-7 cells were transfected with precursor miR-24-2 oligonucleotides, and the gene expression levels of BRCA1, BRCA2, ATM, MDM2, TP53, CHEK2, CYT-C, BCL-2, H2AFX and P21 were examined using TaqMan gene expression assays. Apoptosis was measured by flow cytometric detection using annexin V dye. A luciferase assay was performed to confirm BCL-2 as a valid cellular target of miR-24-2. It was observed that H2AX gene expression was negatively correlated with miR-24-2 expression and not in accordance with the gene copy number status, both in cell lines and in sporadic breast tumor tissues. Further, the cells overexpressing miR-24-2 were observed to be hypersensitive to DNA damaging drugs, undergoing apoptotic cell death, suggesting the potentiating effect of mir-24-2-mediated apoptotic induction in human cancer cell lines treated with anticancer drugs. BCL-2 was identified as a novel cellular target of miR-24-2. mir-24-2 is capable of inducing apoptosis by modulating different apoptotic pathways and targeting BCL-2, an antiapoptotic gene. The study suggests

  15. Differential peripheral blood gene expression profile based on Her2 expression on primary tumors of breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Oana Tudoran

    Full Text Available Breast cancer prognosis and treatment is highly dependent on the molecular features of the primary tumors. These tumors release specific molecules into the environment that trigger characteristic responses into the circulatory cells. In this study we investigated the expression pattern of 84 genes known to be involved in breast cancer signaling in the peripheral blood of breast cancer patients with ER-, PR- primary tumors. The patients were grouped according to Her2 expression on the primary tumors in Her2+ and Her2- cohorts. Transcriptional analysis revealed 15 genes to be differentially expressed between the two groups highlighting that Her2 signaling in primary tumors could be associated with specific blood gene expression. We found CCNA1 to be up-regulated, while ERBB2, RASSF1, CDH1, MKI67, GATA3, GLI1, SFN, PTGS2, JUN, NOTCH1, CTNNB1, KRT8, SRC, and HIC1 genes were down-regulated in the blood of triple negative breast cancer patients compared to Her2+ cohort. IPA network analysis predicts that the identified genes are interconnected and regulate each other. These genes code for cell cycle regulators, cell adhesion molecules, transcription factors or signal transducers that modulate immune signaling, several genes being also associated with cancer progression and treatment response. These results indicate an altered immune signaling in the peripheral blood of triple negative breast cancer patients. The involvement of the immune system is necessary in favorable treatment response, therefore these results could explain the low response rates observed for triple negative breast cancer patients.

  16. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion

    Directory of Open Access Journals (Sweden)

    Fatou K. Ndiaye

    2017-06-01

    Full Text Available Objectives: Genome-wide association studies (GWAS have identified >100 loci independently contributing to type 2 diabetes (T2D risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells. Methods: The expression of 104 candidate T2D susceptibility genes was measured in a human multi-tissue panel, through PCR-free expression assay. The effects of the knockdown of beta-cell enriched genes were next investigated on insulin secretion from the human EndoC-βH1 beta-cell line. Finally, we performed RNA-sequencing (RNA-seq so as to assess the pathways affected by the knockdown of the new genes impacting insulin secretion from EndoC-βH1, and we analyzed the expression of the new genes in mouse models with altered pancreatic beta-cell function. Results: We found that the candidate T2D susceptibility genes' expression is significantly enriched in pancreatic beta cells obtained by laser capture microdissection or sorted by flow cytometry and in EndoC-βH1 cells, but not in insulin sensitive tissues. Furthermore, the knockdown of seven T2D-susceptibility genes (CDKN2A, GCK, HNF4A, KCNK16, SLC30A8, TBC1D4, and TCF19 with already known expression and/or function in beta cells changed insulin secretion, supporting our functional approach. We showed first evidence for a role in insulin secretion of four candidate T2D-susceptibility genes (PRC1, SRR, ZFAND3, and ZFAND6 with no previous knowledge of presence and function in beta cells. RNA-seq in EndoC-βH1 cells with decreased expression of PRC1, SRR, ZFAND6, or ZFAND3 identified specific gene networks related to T2D pathophysiology. Finally, a positive correlation between the expression of Ins2 and the

  17. Spatio Temporal Expression Pattern of an Insecticidal Gene (cry2A in Transgenic Cotton Lines

    Directory of Open Access Journals (Sweden)

    Allah BAKHSH

    2012-11-01

    Full Text Available The production of transgenic plants with stable, high-level transgene expression is important for the success of crop improvement programs based on genetic engineering. The present study was conducted to evaluate genomic integration and spatio temporal expression of an insecticidal gene (cry2A in pre-existing transgenic lines of cotton. Genomic integration of cry2A was evaluated using various molecular approaches. The expression levels of cry2A were determined at vegetative and reproductive stages of cotton at regular intervals. These lines showed a stable integration of insecticidal gene in advance lines of transgenic cotton whereas gene expression was found variable with at various growth stages as well as in different plant parts throughout the season. The leaves of transgenic cotton were found to have maximum expression of cry2A gene followed by squares, bolls, anthers and petals. The protein level in fruiting part was less as compared to other parts showing inconsistency in gene expression. It was concluded that for culturing of transgenic crops, strategies should be developed to ensure the foreign genes expression efficient, consistent and in a predictable manner.

  18. Using the 2A Protein Coexpression System: Multicistronic 2A Vectors Expressing Gene(s) of Interest and Reporter Proteins.

    Science.gov (United States)

    Luke, Garry A; Ryan, Martin D

    2018-01-01

    To date, a huge range of different proteins-many with cotranslational and posttranslational subcellular localization signals-have been coexpressed together with various reporter proteins in vitro and in vivo using 2A peptides. The pros and cons of 2A co-expression technology are considered below, followed by a simple example of a "how to" protocol to concatenate multiple genes of interest, together with a reporter gene, into a single gene linked via 2As for easy identification or selection of transduced cells.

  19. Meloxicam, a cyclooxygenase 2 inhibitor, supports hematopoietic recovery in gamma-irradiated mice

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Znojil, V.; Holá, Jiřina; Vacek, Antonín; Weiterová, Lenka; Štreitová, Denisa; Kozubík, Alois

    2006-01-01

    Roč. 166, č. 3 (2006), s. 556-560 ISSN 0033-7587 R&D Projects: GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z5004920 Keywords : acute radiation disease * cyclooxygenase-2 inhibition * hematopoiesis Subject RIV: BO - Biophysics Impact factor: 2.602, year: 2006

  20. Effects of long-term heat stress and dietary restriction on the expression of genes of steroidogenic pathway and small heat-shock proteins in rat testicular tissue.

    Science.gov (United States)

    Bozkaya, F; Atli, M O; Guzeloglu, A; Kayis, S A; Yildirim, M E; Kurar, E; Yilmaz, R; Aydilek, N

    2017-08-01

    The aim was to investigate the effects of long-term heat stress and dietary restriction on the expression of certain genes involving in steroidogenic pathway and small heat-shock proteins (sHSPs) in rat testis. Sprague Dawley rats (n = 24) were equally divided into four groups. Group I and II were kept at an ambient temperature of 22°C, while Groups III and IV were reared at 38°C for 9 weeks. Feed was freely available for Group I and Group III, while Group II and Group IV were fed 60% of the diet consumed by their ad libitum counterparts. At the end of 9 weeks, testicles were collected under euthanasia. Total RNA was isolated from testis tissue samples. Expression profiles of the genes encoding androgen-binding protein, follicle-stimulating hormone receptor, androgen receptor, luteinising hormone receptor, steroidogenic acute regulatory protein (StAR), cyclooxygenase-2 and sHSP genes were assessed at mRNA levels using qPCR. Long-term heat stress decreased the expression of StAR and HspB10 genes while dietary restriction upregulated StAR gene expression. The results suggested that long-term heat stress negatively affected the expression of StAR and HspB10 genes and the dietary restriction was able to reverse negative effect of heat stress on the expression of StAR gene in rat testis. © 2016 Blackwell Verlag GmbH.

  1. Cytosolic phospholipase A2expression in breast cancer is associated with EGFR expression and correlates with an adverse prognosis in luminal tumours.

    LENUS (Irish Health Repository)

    Caiazza, F

    2011-01-18

    The eicosanoid signalling pathway promotes the progression of malignancies through the production of proliferative prostaglandins (PGs). Cytosolic phospholipase A(2)α (cPLA(2)α) activity provides the substrate for cyclooxygenase-dependent PG release, and we have previously found that cPLA(2expression correlated with EGFR\\/HER2 over-expression in a small number of breast cancer cell lines.

  2. Investigation of PAX3/7-FKHR fusion genes and IGF2 gene expression in rhabdomyosarcoma tumors.

    Science.gov (United States)

    de Souza, Robson Ramos; Oliveira, Indhira Dias; Caran, Eliana Maria Monteiro; Alves, Maria Teresa de Seixas; Abib, Simone; Toledo, Silvia Regina Caminada

    2012-12-01

    The purpose of our study was to investigate the prevalence of the PAX3/7-FKHR fusion genes and quantify the IGF2 gene expression in rhabdomyosarcoma (RMS) samples. Soft tissue sarcomas account 5% of childhood cancers and 50% of them are RMS. Morphological evaluation of pediatric RMS has defined two histological subtypes, embryonal (ERMS) and alveolar (ARMS). Chromosomal analyses have demonstrated two translocations associated with ARMS, resulting in the PAX3/7-FKHR rearrangements. Reverse transcriptase-polymerase chain reaction (RT-PCR) is extremely useful in the diagnosis of ARMS positive for these rearrangements. Additionally, several studies have shown a significant involvement of IGF pathway in the pathogenesis of RMS. The presence of PAX3/7-FKHR gene fusions was studied in 25 RMS samples from patients attending the IOP-GRAACC/UNIFESP and three RMS cell lines by RT-PCR. IGF2 gene expression was quantified by qPCR and related with clinic pathological parameters. Of the 25 samples, nine (36%) were ARMS and 16 (64%) were ERMS. PAX3/7-FKHR gene fusions expression was detected in 56% of ARMS tumor samples. IGF2 overexpression was observed in 80% of samples and could indicate an important role of this pathway in RMS biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Vitamin K2 alleviates type 2 diabetes in rats by induction of osteocalcin gene expression.

    Science.gov (United States)

    Hussein, Atef G; Mohamed, Randa H; Shalaby, Sally M; Abd El Motteleb, Dalia M

    2018-03-01

    The biological mechanisms behind the association between vitamin K (Vit K) and glucose metabolism are uncertain. We aimed to analyze the expression of insulin 1 (Ins 1), insulin 2 (Ins 2) and cyclin D2, the expression of adiponectin and UCP-1 . In addition, we aimed to estimate the doses of Vit K2 able to affect various aspects of glucose and energy metabolism in type 2 diabetes. Thirty adult male rats were allocated equally into five groups: control group, diabetes mellitus group, and groups 3, 4, and 5, which received Vit K 2 at three daily dose levels (10, 15, and 30 mg/kg, respectively) for 8 wk. At the end of the study, blood samples were collected to quantify total osteocalcin, fasting plasma glucose, fasting insulin, and relevant variables. The expression of OC, Ins 1, Ins 2, cyclin D2, adiponectin, UCP-1 genes was analyzed by real-time polymerase chain reaction. After administration of Vit K 2 , a dose-dependent decrease in fasting plasma glucose, hemoglobin A1c and homeostatic model assessment method insulin resistance, and a dose-dependent increase in fasting insulin and homeostatic model assessment method β cell function levels, when compared with diabetes mellitus rats, were detected. There was significant upregulation of OC, Ins 1, Ins 2, or cyclin D2 gene expression in the three treated groups in a dose-dependent manner when compared with the diabetic rats. However, expression of adiponectin and UCP-1 were significantly increased at the highest dose (30 mg/kg daily) only. Vit K 2 administration could improve glycemic status in type 2 diabetic rats by induction of OC gene expression. Osteocalcin could increase β-cell proliferation, energy expenditure, and adiponectin expression. Different concentrations of Vit K 2 were required to affect glucose metabolism and insulin sensitivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of a cyclooxygenase-2 preferential inhibitor in young healthy dogs exposed to air pollution: a pilot study.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Gómez-Garza, Gilberto; Carrasco-Portugal, Miriam Del C; Pérez-Guillé, Beatriz; Flores-Murrieta, Francisco J; Pérez-Guillé, Gabriela; Osnaya, Norma; Juárez-Olguín, Hugo; Monroy, Maria E; Monroy, Silvia; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Patel, Sarjubhai A; Kumarathasan, Prem; Vincent, Renaud; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Maronpot, Robert R

    2009-08-01

    Residency in cities with high air pollution is associated with neuroinflammation and neurodegeneration in healthy children, young adults, and dogs. Nonsteroidal anti-inflammatory drugs may offer neuroprotection. The authors measured the plasma concentrations of 3-nitrotyrosine and the cerebro-spinal-fluid concentrations of prostaglandin E2 metabolite and the oligomeric form of amyloid derived diffusible ligand; measured the mRNA expression of cyclooxygenase-2, interleukin 1beta, CD14, and Aquaporin-4 in target brain areas; and evaluated brain MRI, cognition, and neuropathology in 8 dogs treated with a preferential cyclooxygenase-2 inhibitor (Nimesulide) versus 7 untreated litter-matched Mexico City dogs. Nimesulide significantly decreased nitrotyrosine in plasma (p < .0001), frontal gray IL1beta (p = .03), and heart IL1beta (p = .02). No effect was seen in mRNA COX2, amyloid, and PGE2 in CSF or the MRI white matter lesions. All exposed dogs exhibited olfactory bulb and frontal accumulation of Abeta(42) in neurons and blood vessels and frontal vascular subcortical pathology. White matter hyperintense MRI frontal lesions were seen in 4/6 non-treated and 6/8 treated dogs. Nonsteroidal anti-inflammatory drugs may offer limited neuroprotection in the setting of severe air pollution exposures. The search for potentially beneficial drugs useful to ameliorate the brain effects of pollution represents an enormous clinical challenge.

  5. Altered global gene expression profiles in human gastrointestinal epithelial Caco2 cells exposed to nanosilver

    Directory of Open Access Journals (Sweden)

    Saura C. Sahu

    Full Text Available Extensive consumer exposure to food- and cosmetics-related consumer products containing nanosilver is of public safety concern. Therefore, there is a need for suitable in vitro models and sensitive predictive rapid screening methods to assess their toxicity. Toxicogenomic profile showing subtle changes in gene expressions following nanosilver exposure is a sensitive toxicological endpoint for this purpose. We evaluated the Caco2 cells and global gene expression profiles as tools for predictive rapid toxicity screening of nanosilver. We evaluated and compared the gene expression profiles of Caco-2 cells exposed to 20 nm and 50 nm nanosilver at a concentration 2.5 μg/ml. The global gene expression analysis of Caco2 cells exposed to 20 nm nanosilver showed that a total of 93 genes were altered at 4 h exposure, out of which 90 genes were up-regulated and 3 genes were down-regulated. The 24 h exposure of 20 nm silver altered 15 genes in Caco2 cells, out of which 14 were up-regulated and one was down-regulated. The most pronounced changes in gene expression were detected at 4 h. The greater size (50 nm nanosilver at 4 h exposure altered more genes by more different pathways than the smaller (20 nm one. Metallothioneins and heat shock proteins were highly up-regulated as a result of exposure to both the nanosilvers. The cellular pathways affected by the nanosilver exposure is likely to lead to increased toxicity. The results of our study presented here suggest that the toxicogenomic characterization of Caco2 cells is a valuable in vitro tool for assessing toxicity of nanomaterials such as nanosilver. Keywords: Nanosilver, Silver nanoparticles, Nanoparticles, Toxicogenomics, DNA microarray, Global gene expression profiles, Caco2 cells

  6. USP2 Regulates the Intracellular Localization of PER1 and Circadian Gene Expression

    DEFF Research Database (Denmark)

    Yang, Yaoming; Duguay, David; Fahrenkrug, Jan

    2014-01-01

    . Although Per1 mRNA expression rhythm remained intact in the Usp2 KO MEFs, the expression profiles of other core clock genes were altered. This was also true for the expression of clock-controlled genes (e.g., Dbp, Tef, Hlf, E4bp4). A similar phase advance of PER1 nuclear localization rhythm and alteration...

  7. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  8. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study.

    Science.gov (United States)

    Chlapek, Petr; Redova, Martina; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata

    2010-05-11

    We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines. Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  9. Gene Expression in Class 2 Integrons Is SOS-Independent and Involves Two Pc Promoters.

    Science.gov (United States)

    Jové, Thomas; Da Re, Sandra; Tabesse, Aurore; Gassama-Sow, Amy; Ploy, Marie-Cécile

    2017-01-01

    Integrons are powerful bacterial genetic elements that permit the expression and dissemination of antibiotic-resistance gene cassettes. They contain a promoter Pc that allows the expression of gene cassettes captured through site-specific recombination catalyzed by IntI, the integron-encoded integrase. Class 1 and 2 integrons are found in both clinical and environmental settings. The regulation of intI and of Pc promoters has been extensively studied in class 1 integrons and the regulatory role of the SOS response on intI expression has been shown. Here we investigated class 2 integrons. We characterized the P intI2 promoter and showed that intI2 expression is not regulated via the SOS response. We also showed that, unlike class 1 integrons, class 2 integrons possess not one but two active Pc promoters that are located within the attI2 region that seem to contribute equally to gene cassette expression. Class 2 integrons mostly encode an inactive truncated integrase, but the rare class 2 integrons that encode an active integrase are associated with less efficient Pc2 promoter variants. We propose an evolutionary model for class 2 integrons in which the absence of repression of the integrase gene expression led to mutations resulting in either inactive integrase or Pc variants of weaker activity, thereby reducing the potential fitness cost of these integrons.

  10. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity

    DEFF Research Database (Denmark)

    Madsen, Lise; Pedersen, Lone M; Lillefosse, Haldis Haukaas

    2010-01-01

    attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose...... tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity...

  11. Evidence-based prescription for cyclo-oxygenase-2 inhibitors in ...

    African Journals Online (AJOL)

    to the different metabolites generated by the cyclo-oxygenase-1. (COX-1) and ... have shown equivalent risk in non-NSAID users in developing congestive heart ... http://www.drgavinshang.co.za/wp-content/uploads/2012/11/NSAIDs-and-.

  12. Polycistronic gene expression in Aspergillus niger.

    Science.gov (United States)

    Schuetze, Tabea; Meyer, Vera

    2017-09-25

    Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. The P2A peptide can be used to express at

  13. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    Science.gov (United States)

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria.

  14. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  15. Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARβ/δ-Dependent Vasodilator Pathway.

    Science.gov (United States)

    Kirkby, Nicholas S; Sampaio, Walkyria; Etelvino, Gisele; Alves, Daniele T; Anders, Katie L; Temponi, Rafael; Shala, Fisnik; Nair, Anitha S; Ahmetaj-Shala, Blerina; Jiao, Jing; Herschman, Harvey R; Xiaomeng, Wang; Wahli, Walter; Santos, Robson A; Mitchell, Jane A

    2018-02-01

    Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in inflammation and cancer targeted by nonsteroidal anti-inflammatory drugs. COX-2 is also expressed constitutively in discreet locations where its inhibition drives gastrointestinal and cardiovascular/renal side effects. Constitutive COX-2 expression in the kidney regulates renal function and blood flow; however, the global relevance of the kidney versus other tissues to COX-2-dependent blood flow regulation is not known. Here, we used a microsphere deposition technique and pharmacological COX-2 inhibition to map the contribution of COX-2 to regional blood flow in mice and compared this to COX-2 expression patterns using luciferase reporter mice. Across all tissues studied, COX-2 inhibition altered blood flow predominantly in the kidney, with some effects also seen in the spleen, adipose, and testes. Of these sites, only the kidney displayed appreciable local COX-2 expression. As the main site where COX-2 regulates blood flow, we next analyzed the pathways involved in kidney vascular responses using a novel technique of video imaging small arteries in living tissue slices. We found that the protective effect of COX-2 on renal vascular function was associated with prostacyclin signaling through PPARβ/δ (peroxisome proliferator-activated receptor-β/δ). These data demonstrate the kidney as the principle site in the body where local COX-2 controls blood flow and identifies a previously unreported PPARβ/δ-mediated renal vasodilator pathway as the mechanism. These findings have direct relevance to the renal and cardiovascular side effects of drugs that inhibit COX-2, as well as the potential of the COX-2/prostacyclin/PPARβ/δ axis as a therapeutic target in renal disease. © 2018 The Authors.

  16. Global analysis of gene expression in the developing brain of Gtf2ird1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Jennifer O'Leary

    Full Text Available Williams-Beuren Syndrome (WBS is a neurodevelopmental disorder caused by a hemizygous deletion of a 1.5 Mb region on chromosome 7q11.23 encompassing 26 genes. One of these genes, GTF2IRD1, codes for a putative transcription factor that is expressed throughout the brain during development. Genotype-phenotype studies in patients with atypical deletions of 7q11.23 implicate this gene in the neurological features of WBS, and Gtf2ird1 knockout mice show reduced innate fear and increased sociability, consistent with features of WBS. Multiple studies have identified in vitro target genes of GTF2IRD1, but we sought to identify in vivo targets in the mouse brain.We performed the first in vivo microarray screen for transcriptional targets of Gtf2ird1 in brain tissue from Gtf2ird1 knockout and wildtype mice at embryonic day 15.5 and at birth. Changes in gene expression in the mutant mice were moderate (0.5 to 2.5 fold and of candidate genes with altered expression verified using real-time PCR, most were located on chromosome 5, within 10 Mb of Gtf2ird1. siRNA knock-down of Gtf2ird1 in two mouse neuronal cell lines failed to identify changes in expression of any of the genes identified from the microarray and subsequent analysis showed that differences in expression of genes on chromosome 5 were the result of retention of that chromosome region from the targeted embryonic stem cell line, and so were dependent upon strain rather than Gtf2ird1 genotype. In addition, specific analysis of genes previously identified as direct in vitro targets of GTF2IRD1 failed to show altered expression.We have been unable to identify any in vivo neuronal targets of GTF2IRD1 through genome-wide expression analysis, despite widespread and robust expression of this protein in the developing rodent brain.

  17. Regulation of p53, nuclear factor κB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    International Nuclear Information System (INIS)

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-κB), we also investigated the effect of bromelain on Cox-2 and NF-κB expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-κB by blocking phosphorylation and subsequent degradation of IκBα. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-κB-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects

  18. Cyclooxygenase-2 inhibitors and knee prosthesis surgery

    OpenAIRE

    Meunier, Andreas

    2008-01-01

    Adverse effects of cyclooxygenase (COX) inhibitors on bone healing have previously been demonstrated in diaphyseal fracture models in animals. In spite of that, they are widely used as postoperative analgesics in orthopaedic surgery. After joint replacement, a bone repair process starts at the interface between bone and cement. If this process is disturbed, the prosthesis may never become rigidly fixed to the bone, leading to migration and with time loosening. This thesis investigates the eff...

  19. Laccase Gene Expression and Vinasse Biodegradation by Trametes hirsuta Strain Bm-2

    Directory of Open Access Journals (Sweden)

    Raúl Tapia-Tussell

    2015-08-01

    Full Text Available Vinasse is the dark-colored wastewater that is generated by bioethanol distilleries from feedstock molasses. The vinasse that is generated from molasses contains high amounts of pollutants, including phenolic compounds and melanoindin. The goal of this work was to study the expression of laccase genes in the Trametes hirsuta strain Bm-2, isolated in Yucatan, Mexico, in the presence of phenolic compounds, as well as its effectiveness in removing colorants from vinasse. In the presence of all phenolic compounds tested (guaiacol, ferulic acid, and vanillic acid, increased levels of laccase-encoding mRNA were observed. Transcript levels in the presence of guaiacol were 40 times higher than those in the control. The lcc1 and lcc2 genes of T. hirsuta were differentially expressed; guaiacol and vanillin induced the expression of both genes, whereas ferulic acid only induced the expression of lcc2. The discoloration of vinasse was concomitant with the increase in laccase activity. The highest value of enzyme activity (2543.7 U/mL was obtained in 10% (v/v vinasse, which corresponded to a 69.2% increase in discoloration. This study demonstrates the potential of the Bm-2 strain of T. hirsuta for the biodegradation of vinasse.

  20. IL-1 receptor antagonism and muscle gene expression in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Berchtold, L. A.; Larsen, C. M.; Vaag, A.

    2009-01-01

    ). To investigate the effects of IL-1Ra in insulin-sensitive tissue, gene expression levels in skeletal muscle from type 2 diabetic patients treated with IL-1Ra were analysed. Methods. Gene expression profiles in vastus lateralis muscle biopsies from five obese patients (BMI>27) were determined before and after 13......RT-PCR, were significantly altered when comparing the number of transcripts before and after treatment for each individual. Conclusion. Treatment with IL-1Ra did not significantly affect gene expression levels in skeletal muscle in this limited and selected sample of obese patients with type 2 diabetes. Larger...

  1. Heterologous expression of wheat VERNALIZATION 2 (TaVRN2 gene in Arabidopsis delays flowering and enhances freezing tolerance.

    Directory of Open Access Journals (Sweden)

    Amadou Diallo

    Full Text Available The vernalization gene 2 (VRN2, is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2 is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.

  2. [Construction and functional identification of eukaryotic expression vector carrying Sprague-Dawley rat MSX-2 gene].

    Science.gov (United States)

    Yang, Xian-Xian; Zhang, Mei; Yan, Zhao-Wen; Zhang, Ru-Hong; Mu, Xiong-Zheng

    2008-01-01

    To construct a high effective eukaryotic expressing plasmid PcDNA 3.1-MSX-2 encoding Sprague-Dawley rat MSX-2 gene for the further study of MSX-2 gene function. The full length SD rat MSX-2 gene was amplified by PCR, and the full length DNA was inserted in the PMD1 8-T vector. It was isolated by restriction enzyme digest with BamHI and Xhol, then ligated into the cloning site of the PcDNA3.1 expression plasmid. The positive recombinant was identified by PCR analysis, restriction endonudease analysis and sequence analysis. Expression of RNA and protein was detected by RT-PCR and Western blot analysis in PcDNA3.1-MSX-2 transfected HEK293 cells. Sequence analysis and restriction endonudease analysis of PcDNA3.1-MSX-2 demonstrated that the position and size of MSX-2 cDNA insertion were consistent with the design. RT-PCR and Western blot analysis showed specific expression of mRNA and protein of MSX-2 in the transfected HEK293 cells. The high effective eukaryotic expression plasmid PcDNA3.1-MSX-2 encoding Sprague-Dawley Rat MSX-2 gene which is related to craniofacial development can be successfully reconstructed. It may serve as the basis for the further study of MSX-2 gene function.

  3. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes.

    Science.gov (United States)

    Tsai, Wei-Jern; Chang, Chu-Ting; Wang, Guei-Jane; Lee, Tzong-Huei; Chang, Shwu-Fen; Lu, Shao-Chun; Kuo, Yuh-Chi

    2011-03-25

    Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.

  4. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  5. Predictive value of MSH2 gene expression in colorectal cancer treated with capecitabine

    DEFF Research Database (Denmark)

    Jensen, Lars H; Danenberg, Kathleen D; Danenberg, Peter V

    2007-01-01

    was associated with a hazard ratio of 0.5 (95% confidence interval, 0.23-1.11; P = 0.083) in survival analysis. CONCLUSION: The higher gene expression of MSH2 in responders and the trend for predicting overall survival indicates a predictive value of this marker in the treatment of advanced CRC with capecitabine.......PURPOSE: The objective of the present study was to evaluate the gene expression of the DNA mismatch repair gene MSH2 as a predictive marker in advanced colorectal cancer (CRC) treated with first-line capecitabine. PATIENTS AND METHODS: Microdissection of paraffin-embedded tumor tissue, RNA...

  6. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  7. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    International Nuclear Information System (INIS)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-01-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-γ co-activator-1 (PGC-1α) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  8. Regulation of prostaglandin E2 synthesis after brain irradiation

    International Nuclear Information System (INIS)

    Moore, Amy H.; Olschowka, John A.; Williams, Jacqueline P.; Okunieff, Paul; O'Banion, M. Kerry

    2005-01-01

    Purpose: A local tissue reaction, termed neuroinflammation, occurs after irradiation of brain tissue. Previous work suggested that cyclooxygenase (COX)-2 activity was important for changes in gene expression associated with neuroinflammation as well as increased prostaglandin E 2 (PGE 2 ) levels seen after radiation treatment. Methods and materials: To begin to determine the contributions of other enzymes involved in PGE 2 production, we examined protein levels of COX-1 and COX-2 as well as 2 PGE synthases (membrane and cytosolic PGES) 4 h after 35 Gy single dose irradiation to the brains of C3HeN mice. We also evaluated the effects of specific COX inhibitors on PGE 2 production and PGES expression. Results: As expected, COX-2 expression increased after radiation exposure. Brain irradiation also increased tissue protein levels for both PGES isoforms. Specific COX-2 inhibition with NS398 lowered brain PGE 2 levels by about 60%. Surprisingly, COX-1 inhibition with SC560 completely prevented the elevation of PGE 2 seen after irradiation. Interestingly, NS398 reduced the membrane-associated PGES isoform, whereas SC560 treatment lowered cytosolic isoform levels below those seen in unirradiated controls. Conclusions: Taken together, these data indicate that both cyclooxygenases contribute to PGE 2 production in irradiated brain and reveal dependence of PGES isoforms expression on specific cyclooxygenase activities

  9. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M.; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G.

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53 +/+ and p53 −/− cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53 +/+ cells but not in p53 −/− cells. Among up-regulated genes in HCT p53 +/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53 +/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach

  10. Effect of Ginkgo biloba extract on the expressions of Cox-2 and GST ...

    African Journals Online (AJOL)

    2014-03-01

    Mar 1, 2014 ... Its underlying biological mechanism remains unclear and no well-documented drug and ... Objectives: To explore the effect of EGb on expressions of cyclooxygenase-2 (Cox-2) and glutathione S-transferase Pi. (GST-Pi) in the ..... in an animal model of Parkinson's disease: Therapeutic perspectives. Nutri-.

  11. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.

    Science.gov (United States)

    Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P

    2013-12-01

    The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function. © 2013 Elsevier B.V. All rights reserved.

  12. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study

    Directory of Open Access Journals (Sweden)

    Hermanova Marketa

    2010-05-01

    Full Text Available Abstract Background We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2 and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA and inhibitors of lipoxygenases (LOX and cyclooxygenases (COX. This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Methods Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Results Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2 or SH-SY5Y after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX in combination with ATRA in both cell lines. Conclusions Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  13. AP-2α and AP-2β cooperatively orchestrate homeobox gene expression during branchial arch patterning.

    Science.gov (United States)

    Van Otterloo, Eric; Li, Hong; Jones, Kenneth L; Williams, Trevor

    2018-01-25

    The evolution of a hinged moveable jaw with variable morphology is considered a major factor behind the successful expansion of the vertebrates. DLX homeobox transcription factors are crucial for establishing the positional code that patterns the mandible, maxilla and intervening hinge domain, but how the genes encoding these proteins are regulated remains unclear. Herein, we demonstrate that the concerted action of the AP-2α and AP-2β transcription factors within the mouse neural crest is essential for jaw patterning. In the absence of these two proteins, the hinge domain is lost and there are alterations in the size and patterning of the jaws correlating with dysregulation of homeobox gene expression, with reduced levels of Emx, Msx and Dlx paralogs accompanied by an expansion of Six1 expression. Moreover, detailed analysis of morphological features and gene expression changes indicate significant overlap with various compound Dlx gene mutants. Together, these findings reveal that the AP-2 genes have a major function in mammalian neural crest development, influencing patterning of the craniofacial skeleton via the DLX code, an effect that has implications for vertebrate facial evolution, as well as for human craniofacial disorders. © 2018. Published by The Company of Biologists Ltd.

  14. Gene expression in periodontal tissues following treatment

    Directory of Open Access Journals (Sweden)

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  15. Expression of the genes dual oxidase 2, lipocalin 2 and regenerating islet-derived 1 alpha in Crohn's disease

    DEFF Research Database (Denmark)

    Csillag, C.; Nielsen, O.H.; Vainer, Ben

    2007-01-01

    colonoscopically from 33 CD patients and from 17 control subjects. All controls and 10 CD patients were medication-free at the time of colonoscopy. The Human Genome U133 Plus 2.0 GeneChip Array was used for gene profiling. Hybridization data were analysed with dChip software. Results were confirmed by real......-time reverse transcriptase polymerase chain reaction (RT-PCR). Protein product expression of selected genes was assessed by immunohistochemistry using the Envision+ visualization technique. RESULTS: The expression profile was not homogeneous with the statistical cut-point settings applied. In comparison......, fold change 3.9), codes for a mitogenic protein; this could not be confirmed by RT-PCR. Medication-free patients had no differentially expressed genes as compared with controls. Immunohistochemistry indicated that these proteins were produced by epithelial cells (REG1A, LCN2) and leucocytes (DUOX2...

  16. Highly Efficient Stable Expression of Indoleamine 2,3 Dioxygenase Gene in Primary Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rezakhanlou Alireza

    2010-03-01

    Full Text Available Abstract Indoleamine 2,3 dioxygenase (IDO is a potent immunomodulatory enzyme that has recently attracted significant attention for its potential application as an inducer of immunotolerance in transplantation. We have previously demonstrated that a collagen matrix populated with IDO-expressing fibroblasts can be applied successfully in suppressing islet allogeneic immune response. Meanwhile, a critical aspect of such immunological intervention relies largely on effective long-term expression of the IDO gene. Moreover, gene manipulation of primary cells is known to be challenging due to unsatisfactory expression of the exogenous gene. In this study, a lentiviral gene delivery system has been employed to transduce primary fibroblasts. We used polybrene to efficiently deliver the IDO gene into primary fibroblasts and showed a significant increase (about tenfold in the rate of gene transfection. In addition, by the use of fluorescence-activated cell sorting, a 95% pure population of IDO-expressing fibroblasts was successfully obtained. The efficiency of the IDO expression and the activity of the enzyme have been confirmed by Western blotting, fluorescence-activated cell sorting analysis, and Kynurenine assay, respectively. The findings of this study revealed simple and effective strategies through which an efficient and stable expression of IDO can be achieved for primary cells which, in turn, significantly improves its potential as a tool for achieving immunotolerance in different types of transplantation.

  17. Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions.

    Science.gov (United States)

    Coffelt, Seth B; Tal, Andrea O; Scholz, Alexander; De Palma, Michele; Patel, Sunil; Urbich, Carmen; Biswas, Subhra K; Murdoch, Craig; Plate, Karl H; Reiss, Yvonne; Lewis, Claire E

    2010-07-01

    TIE2-expressing monocytes/macrophages (TEM) are a highly proangiogenic subset of myeloid cells in tumors. Here, we show that circulating human TEMs are already preprogrammed in the circulation to be more angiogenic and express higher levels of such proangiogenic genes as matrix metalloproteinase-9 (MMP-9), VEGFA, COX-2, and WNT5A than TIE2(-) monocytes. Additionally, angiopoietin-2 (ANG-2) markedly enhanced the proangiogenic activity of TEMs and increased their expression of two proangiogenic enzymes: thymidine phosphorylase (TP) and cathepsin B (CTSB). Three "alternatively activated" (or M2-like) macrophage markers were also upregulated by ANG-2 in TEMs: interleukin-10, mannose receptor (MRC1), and CCL17. To investigate the effects of ANG-2 on the phenotype and function of TEMs in tumors, we used a double-transgenic (DT) mouse model in which ANG-2 was specifically overexpressed by endothelial cells. Syngeneic tumors grown in these ANG-2 DT mice were more vascularized and contained greater numbers of TEMs than those in wild-type (WT) mice. In both tumor types, expression of MMP-9 and MRC1 was mainly restricted to tumor TEMs rather than TIE2(-) macrophages. Furthermore, tumor TEMs expressed higher levels of MRC1, TP, and CTSB in ANG-2 DT tumors than WT tumors. Taken together, our data show that although circulating TEMs are innately proangiogenic, exposure to tumor-derived ANG-2 stimulates these cells to exhibit a broader, tumor-promoting phenotype. As such, the ANG-2-TEM axis may represent a new target for antiangiogenic cancer therapies. Copyright 2010 AACR.

  18. Argonaute2 and LaminB modulate gene expression by controlling chromatin topology.

    Directory of Open Access Journals (Sweden)

    Ezequiel Nazer

    2018-03-01

    Full Text Available Drosophila Argonaute2 (AGO2 has been shown to regulate expression of certain loci in an RNA interference (RNAi-independent manner, but its genome-wide function on chromatin remains unknown. Here, we identified the nuclear scaffolding protein LaminB as a novel interactor of AGO2. When either AGO2 or LaminB are depleted in Kc cells, similar transcription changes are observed genome-wide. In particular, changes in expression occur mainly in active or potentially active chromatin, both inside and outside LaminB-associated domains (LADs. Furthermore, we identified a somatic target of AGO2 transcriptional repression, no hitter (nht, which is immersed in a LAD located within a repressive topologically-associated domain (TAD. Null mutation but not catalytic inactivation of AGO2 leads to ectopic expression of nht and downstream spermatogenesis genes. Depletion of either AGO2 or LaminB results in reduced looping interactions within the nht TAD as well as ectopic inter-TAD interactions, as detected by 4C-seq analysis. Overall, our findings reveal coordination of AGO2 and LaminB function to dictate genome architecture and thereby regulate gene expression.

  19. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes

    Science.gov (United States)

    2011-01-01

    Background Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Methods Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. Results AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. Conclusion AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT. PMID:21435270

  20. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes

    Directory of Open Access Journals (Sweden)

    Chang Shwu-Fen

    2011-03-01

    Full Text Available Abstract Background Arctium lappa (Niubang, a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC, isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Methods Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. Results AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2 and interferon-γ (IFN-γ production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. Conclusion AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.

  1. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    International Nuclear Information System (INIS)

    Xu, Yuan; Cardell, Lars-Olaf

    2014-01-01

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B 2 receptor agonist) and des-Arg 9 -bradykinin- (selective B 1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE 2 . The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg 9 -bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B 2 receptors, but not those on B 1 . Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma

  2. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  3. The adverse effect of selective cyclooxygenase-2 inhibitor on random skin flap survival in rats.

    Directory of Open Access Journals (Sweden)

    Haiyong Ren

    Full Text Available BACKGROUND: Cyclooxygenase-2(COX-2 inhibitors provide desired analgesic effects after injury or surgery, but evidences suggested they also attenuate wound healing. The study is to investigate the effect of COX-2 inhibitor on random skin flap survival. METHODS: The McFarlane flap model was established in 40 rats and evaluated within two groups, each group gave the same volume of Parecoxib and saline injection for 7 days. The necrotic area of the flap was measured, the specimens of the flap were stained with haematoxylin-eosin(HE for histologic analysis. Immunohistochemical staining was performed to analyse the level of VEGF and COX-2 . RESULTS: 7 days after operation, the flap necrotic area ratio in study group (66.65 ± 2.81% was significantly enlarged than that of the control group(48.81 ± 2.33%(P <0.01. Histological analysis demonstrated angiogenesis with mean vessel density per mm(2 being lower in study group (15.4 ± 4.4 than in control group (27.2 ± 4.1 (P <0.05. To evaluate the expression of COX-2 and VEGF protein in the intermediate area II in the two groups by immunohistochemistry test .The expression of COX-2 in study group was (1022.45 ± 153.1, and in control group was (2638.05 ± 132.2 (P <0.01. The expression of VEGF in the study and control groups were (2779.45 ± 472.0 vs (4938.05 ± 123.6(P <0.01.In the COX-2 inhibitor group, the expressions of COX-2 and VEGF protein were remarkably down-regulated as compared with the control group. CONCLUSION: Selective COX-2 inhibitor had adverse effect on random skin flap survival. Suppression of neovascularization induced by low level of VEGF was supposed to be the biological mechanism.

  4. [Specific inhibitors of cyclooxygenase-2 (COX-2): current knowledge and perspectives].

    Science.gov (United States)

    Rioda, W T; Nervetti, A

    2001-01-01

    The Authors summarize the current knowledge on a new class of nonsteroidal anti-inflammatory drugs (NSAIDs), the coxib (celecoxib and rofecoxib), in the treatment of rheumatic diseases. Celecoxib and rofecoxib are selective cyclooxygenase-2 (COX-2) inhibitors which possess the same anti-inflammatory and analgesic activities, but a better gastric tolerability compared to the non-selective COX-1 and COX-2 inhibitors. The Authors also report other possible therapeutic effects of these NSADIs as evidenced by the more recent data of the literature. Celecoxib seems to reduce the incidence of new polyps in patients with familial adenomatous polyposis. It has been suggested the use of celecoxib as a protective drug against the development of colorectal cancer. Other (neoplastic) or pre-neoplastic conditions, such as bladder dysplasia, Barret esophagus, attinic keratosis and Alzheimer's disease seem to have benefit from this class of drugs.

  5. Identification of the MUC2 Promoter as a Strong Promoter for Intestinal Gene Expression through Generation of Transgenic Quail Expressing GFP in Gut Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Rachel M. Woodfint

    2017-01-01

    Full Text Available Identification of tissue- and stage-specific gene promoters is valuable for delineating the functional roles of specific genes in genetically engineered animals. Here, through the comparison of gene expression in different tissues by analysis of a microarray database, the intestinal specificity of mucin 2 (MUC2 expression was identified in mice and humans, and further confirmed in chickens by RT-PCR (reverse transcription-PCR analysis. An analysis of cis-acting elements in avian MUC2 gene promoters revealed conservation of binding sites, within a 2.9 kb proximal promoter region, for transcription factors such as caudal type homeobox 2 (CDX2, GATA binding protein 4 (GATA4, hepatocyte nuclear factor 4 α (HNF4A, and transcription factor 4 (TCF4 that are important for maintaining intestinal homeostasis and functional integrity. By generating transgenic quail, we demonstrated that the 2.9 kb chicken MUC2 promoter could drive green fluorescent protein (GFP reporter expression exclusively in the small intestine, large intestine, and ceca. Fluorescence image analysis further revealed GFP expression in intestine epithelial cells. The GFP expression was barely detectable in the embryonic intestine, but increased during post-hatch development. The spatiotemporal expression pattern of the reporter gene confirmed that the 2.9 kb MUC2 promoter could retain the regulatory element to drive expression of target genes in intestinal tissues after hatching. This new transgene expression system, using the MUC2 promoter, will provide a new method of overexpressing target genes to study gene function in the avian intestine.

  6. Cyclooxygenase-2 (COX-2) Polymorphisms and Risk of Inflammatory Bowel Disease in a Scottish and Danish Case–Control Study

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Nimmo, Elaine; Krarup, Henrik B.

    2011-01-01

    Background: Inflammatory bowel diseases (IBDs) are a result of interactions between luminal pathogens and the intestinal immune response. Cyclooxygenase-2 (COX-2) plays a key role in the regulation of the inflammatory response upon stimulation by luminal pathogens via Toll-like receptors. Methods...

  7. Tissue-specific alternative splicing and expression of ATP1B2 gene ...

    African Journals Online (AJOL)

    After heat-stress, the expression levels of the different transcripts were lower in different tissues; however, the expression of the ATP1B2-complete transcript increased in heart and lung tissues. The results of this research provide some useful information for further studies into the function of the bovine ATP1B2 gene.

  8. The effects of laughter on post-prandial glucose levels and gene expression in type 2 diabetic patients.

    Science.gov (United States)

    Hayashi, Takashi; Murakami, Kazuo

    2009-07-31

    This report mainly summarizes the results of our study in which the physiological effects of laughter--as a positive emotional expression--were analyzed with respect to gene expression changes to demonstrate the hypothesis that the mind and genes mutually influence each other. We observed that laughter suppressed 2-h postprandial blood glucose level increase in patients with type 2 diabetes and analyzed gene expression changes. Some genes showed specific changes in their expression. In addition, we revealed that laughter decreased the levels of prorenin in blood; prorenin is involved in the onset of diabetic complications. Further, laughter normalized the expression of the prorenin receptor gene on peripheral blood leukocytes, which had been reduced in diabetic patients; this demonstrated that the inhibitory effects of laughter on the onset/deterioration of diabetic complications at the gene-expression level. In a subsequent study, we demonstrated the effects of laughter by discriminating 14 genes, related to natural killer (NK) cell activity, to exhibit continuous increases in expression as a result of laughter. Our results supported NK cell-mediated improvement in glucose tolerance at the gene-expression level. In this report, we also review other previous studies on laughter.

  9. Ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory chemokine ligand 2 gene in humans

    Directory of Open Access Journals (Sweden)

    Fischer Alexandra

    2012-10-01

    Full Text Available Abstract Background Coenzyme Q10 is an essential cofactor in the respiratory chain and serves in its reduced form, ubiquinol, as a potent antioxidant. Studies in vitro and in vivo provide evidence that ubiquinol reduces inflammatory processes via gene expression. Here we investigate the putative link between expression and DNA methylation of ubiquinol sensitive genes in monocytes obtained from human volunteers supplemented with 150 mg/ day ubiquinol for 14 days. Findings Ubiquinol decreases the expression of the pro-inflammatory chemokine (C-X-C motif ligand 2 gene (CXCL2 more than 10-fold. Bisulfite-/ MALDI-TOF-based analysis of regulatory regions of the CXCL2 gene identified six adjacent CpG islands which showed a 3.4-fold decrease of methylation status after ubiquinol supplementation. This effect seems to be rather gene specific, because ubiquinol reduced the expression of two other pro-inflammatory genes (PMAIP1, MMD without changing the methylation pattern of the respective gene. Conclusion In conclusion, ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory CXCL2 gene in humans. Current Controlled Trials ISRCTN26780329.

  10. Assays for noninvasive imaging of reporter gene expression

    International Nuclear Information System (INIS)

    Gambhir, S.S.; Barrio, J.R.; Herschman, H.R.; Phelps, M.E.

    1999-01-01

    Repeated, noninvasive imaging of reporter gene expression is emerging as a valuable tool for monitoring the expression of genes in animals and humans. Monitoring of organ/cell transplantation in living animals and humans, and the assessment of environmental, behavioral, and pharmacologic modulation of gene expression in transgenic animals should soon be possible. The earliest clinical application is likely to be monitoring human gene therapy in tumors transduced with the herpes simplex virus type 1 thymidine kinase (HSV1-tk) suicide gene. Several candidate assays for imaging reporter gene expression have been studied, utilizing cytosine deaminase (CD), HSV1-tk, and dopamine 2 receptor (D2R) as reporter genes. For the HSV1-tk reporter gene, both uracil nucleoside derivatives (e.g., 5-iodo-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil [FIAU] labeled with 124 I, 131 I ) and acycloguanosine derivatives {e.g., 8-[ 18 F]fluoro-9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]guanine (8-[ 18 F]-fluoroganciclovir) ([ 18 F]FGCV), 9-[(3-[ 18 F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([ 18 F]FHPG)} have been investigated as reporter probes. For the D2R reporter gene, a derivative of spiperone {3-(2'-[ 18 F]-Fluoroethyl)spiperone ([ 18 F]FESP)} has been used with positron emission tomography (PET) imaging. In this review, the principles and specific assays for imaging reporter gene expression are presented and discussed. Specific examples utilizing adenoviral-mediated delivery of a reporter gene as well as tumors expressing reporter genes are discussed

  11. CAR expression and inducibility of CYP2B genes in liver of rats treated with PB-like inducers

    International Nuclear Information System (INIS)

    Pustylnyak, Vladimir O.; Gulyaeva, Lyudmila F.; Lyakhovich, Vyacheslav V.

    2005-01-01

    The expression of the CAR gene and inducibility of CYP2B protein in the liver of male Wistar rats treated with phenobarbital (PB) and triphenyldioxane (TPD) were investigated. To clarify the role of phosphorylation/dephosphorylation in these processes, rats were treated with inhibitors of Ca 2+ /calmodulin-dependent kinase II (W 7 ) or protein phosphatases PP1 and PP2A (OA) before induction. Constitutive expression of the CAR gene in livers of untreated rats was detected by multiplex RT-PCR. Treatment with W 7 resulted in a 2.8-fold induction of CAR gene expression, whereas OA led to a 2.4-fold decrease of the mRNA level. The same results were obtained for CYP2B genes expression, which were increased by W 7 treatment (two-fold) and decreased by OA (2.3-fold). PB-induction did not lead to significant alteration in the level of CAR gene expression, although CYP2B genes expression was enhanced two-fold over control values. TPD caused a two-fold increase of both CAR and CYP2B mRNA levels. Both inducers reduced the effects of inhibitors on CAR gene expression. Results of EMSA showed that PB, TPD or W 7 alone induced formation of complexes of NR1 with nuclear proteins. Appearance of the complexes correlated with an increase in CYP2B expression, and their intensities were modulated by the protein kinase inhibitors. Thus, our results demonstrate that constitutive expressions of CAR as well as CYP2B during induction are regulated by phosphorylation/dephosphorylation processes

  12. Genetic Variants Contribute to Gene Expression Variability in Humans

    Science.gov (United States)

    Hulse, Amanda M.; Cai, James J.

    2013-01-01

    Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify ∼300 trans-acting evQTL between >13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied. The implication of our results for revealing genetic mechanisms of gene expression variability is discussed. PMID:23150607

  13. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  14. Cyclooxygenase 1 (COX1 expression in Type 2 diabetes mellitus: A preliminary study from north India

    Directory of Open Access Journals (Sweden)

    Sushma Verma

    2016-01-01

    Conclusion: Although COX1 is known to be a “housekeeping” gene, our study showed that its expression can be correlated with the disease condition and be used as a marker. However, further studies are required in more number of samples from other ethnic populations to confirm the findings.

  15. Effect of Ginkgo biloba extract on the expressions of Cox-2 and GST ...

    African Journals Online (AJOL)

    Objectives: This study was performed to explore the effect of EGb on expressions of cyclooxygenase-2 (Cox-2) and glutathione S-transferase Pi (GST-Pi) in the pathogenesis of HCC risk. Methods: 120 Wistar rats were divided into three groups at random: normal control group (control group), HCC risk group without ...

  16. Cyclooxygenase-2 inhibitors. Synthesis and pharmacological activities of 5-methanesulfonamido-1-indanone derivatives.

    Science.gov (United States)

    Li, C S; Black, W C; Chan, C C; Ford-Hutchinson, A W; Gauthier, J Y; Gordon, R; Guay, D; Kargman, S; Lau, C K; Mancini, J

    1995-12-08

    The recent discovery of an alternative form cyclooxygenase (cyclooxygenase-2, COX-2), which has been proposed to play a significant role in inflammatory conditions, may provide an opportunity to develop anti-inflammatory drugs with fewer side effects than existing non-steroidal anti-inflammatory drugs (NSAIDs). We have now identified 6-[(2,4-difluorophenyl)-thio]-5-methanesulfonamido-1-indanone++ + (20) (L-745,337) as a potent, selective, and orally active COX-2 inhibitor. The structure-activity relationships in this series have been extensively studied. Ortho- and para-substituted 6-phenyl substitutents are optimal for in vitro potency. Replacement of this phenyl ring by a variety of heterocycles gave compounds that were less active. The methanesulfonamido group seems to be the optimal group at the 5-position of the indanone system. Compound 20 has an efficacy profile that is superior or comparable to that of the nonselective COX inhibitor indomethacin in animal models of inflammation, pain, and fever and appears to be nonulcerogenic within the dosage ranges required for functional efficacy. Although 20 and its oxygen linkage analog 2 (flosulide) are equipotent in the in vitro assays, compound 20 is more potent in the rat paw edema assay, has a longer t1/2 in squirrel monkeys, and seems less ulcergenic than 2 in rats.

  17. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot

    International Nuclear Information System (INIS)

    Landa, Premysl; Vankova, Radomira; Andrlova, Jana; Hodek, Jan; Marsik, Petr; Storchova, Helena; White, Jason C.; Vanek, Tomas

    2012-01-01

    Highlights: ► Exposure to different nanoparticles resulted in specific changes in gene transcription. ► Nano ZnO caused most dramatic changes in Arabidopsis gene expression. ► Nano ZnO was the most toxic and up-regulated most stress-related genes. ► Fullerene soot caused significant gene expression response – mainly stress-related. ► Nano TiO 2 had weak impact on Arabidopsis gene expression indicating minimal toxicity. - Abstract: The effect of exposure to 100 mg/L zinc oxide (nZnO), fullerene soot (FS) or titanium dioxide (nTiO 2 ) nanoparticles on gene expression in Arabidopsis thaliana roots was studied using microarrays. After 7 d, nZnO, FS, or nTiO 2 exposure resulted in 660 up- and 826 down-regulated genes, 232 up- and 189 down-regulated genes, and 80 up- and 74 down-regulated genes, respectively (expression difference > 2-fold; p[t test] 2 exposure, which resulted in up- and down-regulation of genes involved mainly in responses to biotic and abiotic stimuli. The data clearly indicate that the mechanisms of phytotoxicity are highly nanoparticle dependent despite of a limited overlap in gene expression response.

  18. Gestation-related gene expression and protein localization in endometrial tissue of Suffolk and Cheviot ewes at gestation Day 19, after transfer of Suffolk or Cheviot embryos.

    Science.gov (United States)

    Sequeira, M; Pain, S J; de Brun, V; Meikle, A; Kenyon, P R; Blair, H T

    2016-10-01

    The objective of this study was to investigate the gene expression of progesterone and estrogen receptor α (PR, ERα), insulin-like growth factor (IGF) 1, IGF-2, their receptor (IGFR1), IGF-binding proteins (BP) 1 to 6, insulin receptor, adiponectin receptors (AdipoR1/2), cyclooxygenase 2 (PTGS2), mucin 1 and to localize PR, ERα, IGF-1, IGFR1, PTGS2, and proliferating cellular nuclear antigen (PCNA) in the endometrium of pregnant (Day 19) Suffolk and Cheviot ewes carrying Suffolk and Cheviot embryos transferred within and reciprocally between breeds. Gene expression was determined by real-time quantitative polymerase chain reaction (RT-qPCR), and antigen determination was measured by immunohistochemistry in the luminal epithelium (LE), superficial and deep glands (SG, DG, respectively) and superficial and deep stroma. Gene expression of PR, IGF-1, IGFBP2, and IGFBP5 was higher in Suffolk than that in Cheviot ewes (P ewes carrying Cheviot embryos than Cheviot ewes carrying Suffolk embryos (P ewes had higher ERα staining intensity than Suffolk ewes (P ewe and embryo breed affected PTGS2 staining (P ewes carrying Suffolk embryos had a lower PTGS2 staining than Suffolk ewes carrying Suffolk embryos. Positive staining of PCNA was found in LE and SG. Suffolk ewes carrying Suffolk embryos showed lower PCNA immunostaining than Cheviot ewes carrying Suffolk embryos (P ewes carrying Cheviot embryos. This study showed that gestation-related protein expression in the endometrium of Suffolk and Cheviot ewes is affected by both ewe and embryo breed at Day 19 of pregnancy. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    OpenAIRE

    Ezer, Daphne; Moignard, Victoria; G?ttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete ...

  20. The role of cyclooxygenase-2 in the malignant tissue and possible applicability of cyclooxygenase-2 inhibitors in the therapy of cancer

    International Nuclear Information System (INIS)

    Legan, M.

    2003-01-01

    Cyclooxygenase-2 (COX-2), an inducible prostaglandin (PG) synthase, is elevated in many types of malignant and pre-malignant tissues. This enzyme is localized in neoplastic (epithelial) cells, microvascular endothelial cells, and stromal fibroblasts. Through the released PG it enhances carcinogenesis with increasing angiogenesis, inhibiting apoptosis, activating matrix metalloproteinases, suppressing of cell mediated antitumor immune response and protection against damage by cytotoxic agents. Evidences from in vitro studies, studies on animal models as well as first clinical outcomes suggest that the inhibition of COX-2 may suppress carcinogenesis by affecting a number of pathways: inhibiting angiogenesis, invasiveness of tumors and promoting apoptosis. References forecast that COX-2 inhibitors, mostly COX-2 selective inhibitors, may get a role in the therapy of cancer as an adjuvant therapy or as an co-chemotherapeutic agent. The purpose of the present article is to summarize the most important facts about the role of COX-2 in the malignant tissue and discuss possible ways for potential therapeutic place of COX-2 inhibitors in clinical practice. (author)

  1. Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chunhui Xu

    Full Text Available Aquaporins are channel proteins which transport water across cell membranes. We show that the bread wheat aquaporin gene TaTIP2;2 maps to the long arm of chromosome 7b and that its product localizes to the endomembrane system. The gene is expressed constitutively in both the root and the leaf, and is down-regulated by salinity and drought stress. Salinity stress induced an increased level of C-methylation within the CNG trinucleotides in the TaTIP2;2 promoter region. The heterologous expression of TaTIP2;2 in Arabidopsis thaliana compromised its drought and salinity tolerance, suggesting that TaTIP2;2 may be a negative regulator of abiotic stress. The proline content of transgenic A. thaliana plants fell, consistent with the down-regulation of P5CS1, while the expression of SOS1, SOS2, SOS3, CBF3 and DREB2A, which are all stress tolerance-related genes acting in an ABA-independent fashion, was also down-regulated. The supply of exogenous ABA had little effect either on TaTIP2;2 expression in wheat or on the phenotype of transgenic A. thaliana. The expression level of the ABA signalling genes ABI1, ABI2 and ABF3 remained unaltered in the transgenic A. thaliana plants. Thus TaTIP2;2 probably regulates the response to stress via an ABA-independent pathway(s.

  2. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  3. Gene expression analysis supports tumor threshold over 2.0 cm for T-category breast cancer.

    Science.gov (United States)

    Solvang, Hiroko K; Frigessi, Arnoldo; Kaveh, Fateme; Riis, Margit L H; Lüders, Torben; Bukholm, Ida R K; Kristensen, Vessela N; Andreassen, Bettina K

    2016-12-01

    Tumor size, as indicated by the T-category, is known as a strong prognostic indicator for breast cancer. It is common practice to distinguish the T1 and T2 groups at a tumor size of 2.0 cm. We investigated the 2.0-cm rule from a new point of view. Here, we try to find the optimal threshold based on the differences between the gene expression profiles of the T1 and T2 groups (as defined by the threshold). We developed a numerical algorithm to measure the overall differential gene expression between patients with smaller tumors and those with larger tumors among multiple expression datasets from different studies. We confirmed the performance of the proposed algorithm by a simulation study and then applied it to three different studies conducted at two Norwegian hospitals. We found that the maximum difference in gene expression is obtained at a threshold of 2.2-2.4 cm, and we confirmed that the optimum threshold was over 2.0 cm, as indicated by a validation study using five publicly available expression datasets. Furthermore, we observed a significant differentiation between the two threshold groups in terms of time to local recurrence for the Norwegian datasets. In addition, we performed an associated network and canonical pathway analyses for the genes differentially expressed between tumors below and above the given thresholds, 2.0 and 2.4 cm, using the Norwegian datasets. The associated network function illustrated a cellular assembly of the genes for the 2.0-cm threshold: an energy production for the 2.4-cm threshold and an enrichment in lipid metabolism based on the genes in the intersection for the 2.0- and 2.4-cm thresholds.

  4. ERK1/2 mediates glucose-regulated POMC gene expression in hypothalamic neurons.

    Science.gov (United States)

    Zhang, Juan; Zhou, Yunting; Chen, Cheng; Yu, Feiyuan; Wang, Yun; Gu, Jiang; Ma, Lian; Ho, Guyu

    2015-04-01

    Hypothalamic glucose-sensing neurons regulate the expression of genes encoding feeding-related neuropetides POMC, AgRP, and NPY - the key components governing metabolic homeostasis. AMP-activated protein kinase (AMPK) is postulated to be the molecular mediator relaying glucose signals to regulate the expression of these neuropeptides. Whether other signaling mediator(s) plays a role is not clear. In this study, we investigated the role of ERK1/2 using primary hypothalamic neurons as the model system. The primary neurons were differentiated from hypothalamic progenitor cells. The differentiated neurons possessed the characteristic neuronal cell morphology and expressed neuronal post-mitotic markers as well as leptin-regulated orexigenic POMC and anorexigenic AgRP/NPY genes. Treatment of cells with glucose dose-dependently increased POMC and decreased AgRP/NPY expression with a concurrent suppression of AMPK phosphorylation. In addition, glucose treatment dose-dependently increased the ERK1/2 phosphorylation. Blockade of ERK1/2 activity with its specific inhibitor PD98059 partially (approximately 50%) abolished glucose-induced POMC expression, but had little effect on AgRP/NPY expression. Conversely, blockade of AMPK activity with its specific inhibitor produced a partial (approximately 50%) reversion of low-glucose-suppressed POMC expression, but almost completely blunted the low-glucose-induced AgRP/NPY expression. The results indicate that ERK1/2 mediated POMC but not AgRP/NPY expression. Confirming the in vitro findings, i.c.v. administration of PD98059 in rats similarly attenuated glucose-induced POMC expression in the hypothalamus, but again had little effect on AgRP/NPY expression. The results are indicative of a novel role of ERK1/2 in glucose-regulated POMC expression and offer new mechanistic insights into hypothalamic glucose sensing. © 2015 Society for Endocrinology.

  5. Fibroblast and keratinocyte gene expression following exposure to the extracts of holy basil plant (Ocimum tenuiflorum, malabar nut plant (Justicia adhatoda, and emblic myrobalan plant (Phyllanthus emblica

    Directory of Open Access Journals (Sweden)

    Takao Someya

    2018-04-01

    Full Text Available This data article provides gene expression profiles, determined by using real-time PCR, of fibroblasts and keratinocytes treated with 0.01% and 0.001% extracts of holy basil plant (Ocimum tenuiflorum, sri lankan local name “maduruthala”, 0.1% and 0.01% extracts of malabar nut plant (Justicia adhatoda, sri lankan local name “adayhoda” and 0.003% and 0.001% extracts of emblic myrobalan plant (Phyllanthus emblica, sri lankan local name “nelli”, harvested in Sri Lanka. For fibroblasts, the dataset includes expression profiles for genes encoding hyaluronan synthase 1 (HAS1, hyaluronan synthase 2 (HAS2, hyaluronidase-1 (HYAL1, hyaluronidase-2 (HYAL2, versican, aggrecan, CD44, collagen, type I, alpha 1 (COL1A1, collagen, type III, alpha 1 (COL3A1, collagen, type VII, alpha 1 (COL7A1, matrix metalloproteinase 1 (MMP1, acid ceramidase, basic fibroblast growth factor (bFGF, fibroblast growth factor-7 (FGF7, vascular endothelial growth factor (VEGF, interleukin-1 alpha (IL-1α, cyclooxygenase-2 (cox2, transforming growth factor beta (TGF-β, and aquaporin 3 (AQP3. For keratinocytes, the expression profiles are for genes encoding HAS1, HAS2, HYAL1, HYAL2, versican, CD44, IL-1α, cox2, TGF-β, AQP3, Laminin5, collagen, type XVII, alpha 1 (COL17A1, integrin alpha-6 (ITGA6, ceramide synthase 3 (CERS3, elongation of very long chain fatty acids protein 1 (ELOVL1, elongation of very long chain fatty acids protein 4 (ELOVL4, filaggrin (FLG, transglutaminase 1 (TGM1, and keratin 1 (KRT1. The expression profiles are provided as bar graphs. Keywords: Real-time PCR, Gene expression profile, Fibroblast, Keratinocyte, Holy basil extract, Ocimum tenuiflorum, Maduruthala, Malabar nut plant extract, Justicia adhatoda, Adayhoda, Emblic myrobalan extract, Phyllanthus emblica, Nelli

  6. Validation of commonly used reference genes for sleep-related gene expression studies

    Directory of Open Access Journals (Sweden)

    Castro Rosa MRPS

    2009-05-01

    Full Text Available Abstract Background Sleep is a restorative process and is essential for maintenance of mental and physical health. In an attempt to understand the complexity of sleep, multidisciplinary strategies, including genetic approaches, have been applied to sleep research. Although quantitative real time PCR has been used in previous sleep-related gene expression studies, proper validation of reference genes is currently lacking. Thus, we examined the effect of total or paradoxical sleep deprivation (TSD or PSD on the expression stability of the following frequently used reference genes in brain and blood: beta-actin (b-actin, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, and hypoxanthine guanine phosphoribosyl transferase (HPRT. Results Neither TSD nor PSD affected the expression stability of all tested genes in both tissues indicating that b-actin, B2M, GAPDH and HPRT are appropriate reference genes for the sleep-related gene expression studies. In order to further verify these results, the relative expression of brain derived neurotrophic factor (BDNF and glycerol-3-phosphate dehydrogenase1 (GPD1 was evaluated in brain and blood, respectively. The normalization with each of four reference genes produced similar pattern of expression in control and sleep deprived rats, but subtle differences in the magnitude of expression fold change were observed which might affect the statistical significance. Conclusion This study demonstrated that sleep deprivation does not alter the expression stability of commonly used reference genes in brain and blood. Nonetheless, the use of multiple reference genes in quantitative RT-PCR is required for the accurate results.

  7. Modulation of IgE-dependent COX-2 gene expression by reactive oxygen species in human neutrophils.

    Science.gov (United States)

    Vega, Antonio; Chacón, Pedro; Alba, Gonzalo; El Bekay, Rajaa; Martín-Nieto, José; Sobrino, Francisco

    2006-07-01

    Cyclooxygenase (COX) is a key enzyme in prostaglandin (PG) synthesis. Up-regulation of its COX-2 isoform is responsible for the increased PG release, taking place under inflammatory conditions, and also, is thought to be involved in allergic and inflammatory diseases. In the present work, we demonstrate that COX-2 expression becomes highly induced by anti-immunoglobulin E (IgE) antibodies and by antigens in human neutrophils from allergic patients. This induction was detected at mRNA and protein levels and was accompanied by a concomitant PGE(2) and thromboxane A(2) release. We also show evidence that inhibitors of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, such as 4-(2-aminoethyl)benzenesulphonyl fluoride and 4-hydroxy-3-methoxyaceto-phenone, completely cancelled anti-IgE-induced COX-2 protein up-regulation, suggesting that this process is mediated by reactive oxygen species (ROS) derived from NADPH oxidase activity. Moreover, the mitogen-activated protein kinases (MAPKs), p38 and extracellular signal-regulated kinase, and also, the transcription factor, nuclear factor (NF)-kappaB, are involved in the up-regulation of COX-2 expression, as specific chemical inhibitors of these two kinases, such as SB203580 and PD098059, and of the NF-kappaB pathway, such as N(alpha)-benzyloxycarbonyl-l-leucyl-l-leucyl-l-leucinal, abolished IgE-dependent COX-2 induction. Evidence is also presented, using Fe(2)(+)/Cu(2)(+) ions, that hydroxyl radicals generated from hydrogen peroxide through Fenton reactions could constitute candidate modulators able to directly trigger anti-IgE-elicited COX-2 expression through MAPK and NF-kappaB pathways. Present results underscore a new role for ROS as second messengers in the modulation of COX-2 expression by human neutrophils in allergic conditions.

  8. Relative IGF-1 and IGF-2 gene expression in maternal and fetal tissues from diabetic swine

    International Nuclear Information System (INIS)

    Wolverton, C.K.; Leaman, D.W.; White, M.E.; Ramsay, T.G.

    1990-01-01

    Fourteen pregnant, crossbred gilts were utilized in this study. Seven gilts were injected with alloxan (50 mg/kg) at day 75 of gestation to induce diabetes. Gilts underwent caesarean section on day 105 of gestation. Samples were collected from maternal skeletal muscle, adipose tissue, uterus and endometrium; and from fetal skeletal muscle, adipose tissue, placenta, liver, lung, kidney, heart, brain and spleen. Tissues were frozen in liquid nitrogen for later analysis of IGF-1 and IGF-2 gene expression. Samples were pooled and total RNA was isolated using the guanidine isothiocynate method. Total mRNA was analyzed by dot blot hybridization. Blots were probed with 32 P-cDNA for porcine IGF-1 and rat IGF-2. IGF-1 gene expression in maternal tissues was unaffected by diabetes. Maternal diabetes increased IGF-2 mRNA in maternal adipose tissue but exhibited no effect in muscle or uterus. Expression of IGF-2 by maternal endometrium was decreased by diabetes. Maternal diabetes induced an increase in IGF-1 gene expression in muscle and placenta while causing an increase in IGF-2 expression in fetal liver and placenta. IGF-2 mRNA was lower in lung from fetuses of diabetic mothers than in controls. These results suggest that maternal diabetes alters IGF-1 and IGF-2 gene expression in specific tissues and differential regulation of these genes appears to exist in the mother and developing fetus

  9. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Lookeren Campagne, Michiel M. van; Haastert, Peter J.M. van; Spek, Wouter; Schaap, Pauline

    1989-01-01

    We investigated the effect of Li+ on two types of cyclic AMP-regulated gene expression and on basal and cyclic AMP-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Li+ effectively inhibits cyclic AMP-induced prespore gene expression, half-maximal inhibition occurring at about 2mM-LiCl.

  10. CYCLOOXYGENASE-2 AND HEPATOCELLULAR CARCINOMA: THE PROTEOMICS OF ASSOCIATION

    Directory of Open Access Journals (Sweden)

    Jaya Gandhi

    2011-12-01

    Full Text Available Hepatocellular carcinoma represents one of the most common malignancies worldwide with a rising incidence in western countries. Chronic inflammation is recognised as a threat factor for cancer progression. Cyclooxygenase-2 is the major mediator of inflammation. Various studies on Cox-2 suggest its possible association with HCC differentiation. Sufficient genetic and pharmacologic evidences implicate its crucial role in neoplasia and it is also now clear that Cox-2 plays a crucial role in tumor progression. Cox-2 overexpression is associated with maintaining tumor microenvironment and has crucial implication for angiogenesis. Cox-2 operates in multifactorial fashion. Cox-2 selective inhibition has been reported as a successful tool in suppressing angiogenesis and metastasis. The pharmacological suppression of Cox-2 represents a bright future as a therapeutic tool for treatment of various malignancies. This review is an attempt to discuss the critical issue of overexpression of Cox-2 and its role in the development of HCC in particular and cancer in general.

  11. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato.

    Science.gov (United States)

    Tai, T H; Dahlbeck, D; Clark, E T; Gajiwala, P; Pasion, R; Whalen, M C; Stall, R E; Staskawicz, B J

    1999-11-23

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site-leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

  12. Expression and distribution of PPP2R5C gene in leukemia

    Directory of Open Access Journals (Sweden)

    Li Bo

    2011-05-01

    Full Text Available Abstract Background Recently, we clarified at the molecular level novel chromosomal translocation t(14;14(q11;q32 in a case of Sézary syndrome, which caused a rearrangement from TRAJ7 to the PPP2R5C gene. PPP2R5C is one of the regulatory B subunits of protein phosphatase 2A (PP2A. It plays a crucial role in cell proliferation, differentiation, and transformation. To characterize the expression and distribution of five different transcript variants of the PPP2R5C gene in leukemia, we analyzed the expression level of PPP2R5C in peripheral blood mononuclear cells from 77 patients with de novo leukemia, 26 patients with leukemia in complete remission (CR, and 20 healthy individuals by real-time PCR and identified the different variants of PPP2R5C by RT-PCR. Findings Significantly higher expression of PPP2R5C was found in AML, CML, T-ALL, and B-CLL groups in comparison with healthy controls. High expression of PPP2R5C was detected in the B-ALL group; however, no significant difference was found compared with the healthy group. The expression level of PPP2R5C in the CML-CR group decreased significantly compared with that in the de novo CML group and was not significantly different from the level in the healthy group. By using different primer pairs that covered different exons, five transcript variants of PPP2R5C could be identified. All variants could be detected in healthy samples as well as in all the leukemia samples, and similar frequencies and distributions of PPP2R5C were indicated. Conclusions Overexpression of PPP2R5C in T-cell malignancy as well as in myeloid leukemia cells might relate to its proliferation and differentiation. Investigation of the effect of target inhibition of this gene might be beneficial to further characterization of molecular mechanisms and targeted therapy in leukemia.

  13. Molecular cloning and expression analysis of annexin A2 gene in sika deer antler tip

    Directory of Open Access Journals (Sweden)

    Yanling Xia

    2018-04-01

    Full Text Available Objective Molecular cloning and bioinformatics analysis of annexin A2 (ANXA2 gene in sika deer antler tip were conducted. The role of ANXA2 gene in the growth and development of the antler were analyzed initially. Methods The reverse transcriptase polymerase chain reaction (RT-PCR was used to clone the cDNA sequence of the ANXA2 gene from antler tip of sika deer (Cervus Nippon hortulorum and the bioinformatics methods were applied to analyze the amino acid sequence of Anxa2 protein. The mRNA expression levels of the ANXA2 gene in different growth stages were examined by real time reverse transcriptase polymerase chain reaction (real time RT-PCR. Results The nucleotide sequence analysis revealed an open reading frame of 1,020 bp encoding 339 amino acids long protein of calculated molecular weight 38.6 kDa and isoelectric point 6.09. Homologous sequence alignment and phylogenetic analysis indicated that the Anxa2 mature protein of sika deer had the closest genetic distance with Cervus elaphus and Bos mutus. Real time RT-PCR results showed that the gene had differential expression levels in different growth stages, and the expression level of the ANXA2 gene was the highest at metaphase (rapid growing period. Conclusion ANXA2 gene may promote the cell proliferation, and the finding suggested Anxa2 as an important candidate for regulating the growth and development of deer antler.

  14. Cyclooxygenase-2-dependent bronchoconstriction in perfused rat lungs exposed to endotoxin.

    Science.gov (United States)

    Uhlig, S; Nüsing, R; von Bethmann, A; Featherstone, R L; Klein, T; Brasch, F; Müller, K M; Ullrich, V; Wendel, A

    1996-05-01

    Lipopolysaccharides (LPS), widely used to study the mechanisms of gram-negative sepsis, increase airway resistance by constriction of terminal bronchioles. The role of the cyclooxygenase (COX) isoenzymes and their prostanoid metabolites in this process was studied. Pulmonary resistance, the release of thromboxane (TX) and the expression of COX-2 mRNA were measured in isolated blood-free perfused rat lungs exposed to LPS. LPS induced the release of TX and caused increased airway resistance after about 30 min. Both TX formation and LPS-induced bronchoconstriction were prevented by treatment with the unspecific COX inhibitor acetyl salicylic acid, the specific COX-2 inhibitor CGP-28238, dexamethasone, actinomycin D, or cycloheximide. LPS-induced bronchoconstriction was also inhibited by the TX receptor antagonist BM-13177. The TX-mimetic compound, U-46619, increased airway resistance predominantly by constricting terminal bronchioles. COX-2-specific mRNA in lung tissue was elevated after LPS exposure, and this increase was attenuated by addition of dexamethasone or of actinomycin D. In contrast to LPS, platelet-activating factor (PAF) induced immediate TX release and bronchoconstriction that was prevented by acetyl salicylic acid, but not by CGP-28238. LPS elicits the following biochemical and functional changes in rat lungs: (i) induction of COX-2; (ii) formation of prostaglandins and TX; (iii) activation of the TX receptor on airway smooth muscle cells; (iv) constriction of terminal bronchioles; and (v) increased airway resistance. In contrast to LPS, the PAF-induced TX release is likely to depend on COX-1.

  15. Duplication of the IGFBP-2 gene in teleost fish: protein structure and functionality conservation and gene expression divergence.

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhou

    Full Text Available BACKGROUND: Insulin-like growth factor binding protein-2 (IGFBP-2 is a secreted protein that binds and regulates IGF actions in controlling growth, development, reproduction, and aging. Elevated expression of IGFBP-2 is often associated with progression of many types of cancers. METHODOLOGY/PRINCIPAL FINDINGS: We report the identification and characterization of two IGFBP-2 genes in zebrafish and four other teleost fish. Comparative genomics and structural analyses suggest that they are co-orthologs of the human IGFBP-2 gene. Biochemical assays show that both zebrafish igfbp-2a and -2b encode secreted proteins that bind IGFs. These two genes exhibit distinct spatiotemporal expression patterns. During embryogenesis, IGFBP-2a mRNA is initially detected in the lens, then in the brain boundary vasculature, and subsequently becomes highly expressed in the liver. In the adult stage, liver has the highest levels of IGFBP-2a mRNA, followed by the brain. Low levels of IGFBP-2a mRNA were detected in muscle and in the gonad in male adults only. IGFBP-2b mRNA is detected initially in all tissues at low levels, but later becomes abundant in the liver. In adult males, IGFBP-2b mRNA is only detected in the liver. In adult females, it is also found in the gut, kidney, ovary, and muscle. To gain insights into how the IGFBP-2 genes may have evolved through partitioning of ancestral functions, functional and mechanistic studies were carried out. Expression of zebrafish IGFBP-2a and -2b caused significant decreases in the growth and developmental rates and their effects are comparable to that of human IGFBP-2. IGFBP-2 mutants with altered IGF binding-, RGD-, and heparin-binding sites were generated and their actions examined. While mutating the RGD and heparin binding sites had little effect, altering the IGF binding site abolished its biological activity. CONCLUSIONS/SIGNIFICANCE: These results suggest that IGFBP-2 is a conserved regulatory protein and it inhibits

  16. Dietary TiO2 particles modulate expression of hormone-related genes in Bombyx mori.

    Science.gov (United States)

    Shi, Guofang; Zhan, Pengfei; Jin, Weiming; Fei, JianMing; Zhao, Lihua

    2017-08-01

    Silkworm (Bombyx mori) is an economically beneficial insect. Its growth and development are regulated by endogenous hormones. In the present study, we found that feeding titanium dioxide nanoparticles (TiO 2 NP) caused a significant increase of body size. TiO 2 NP stimulated the transcription of several genes, including the insulin-related hormone bombyxin, PI3K/Akt/TOR (where PI3K is phosphatidylinositol 3-kinase and TOR is target of rapamycin), and the adenosine 5'-monophosphateactivated protein kinase (AMPK)/target of rapamycin (TOR) pathways. Differentially expressed gene (DEG) analysis documented 26 developmental hormone signaling related genes that were differentially expressed following dietary TiO 2 NP treatment. qPCR analysis confirmed the upregulation of insulin/ecdysteroid signaling genes, such as bombyxin B-1, bombyxin B-4, bombyxin B-7, MAPK, P70S6K, PI3k, eIF4E, E75, ecdysteroid receptor (EcR), and insulin-related peptide binding protein precursor 2 (IBP2). We infer from the upregulated expression of bombyxins and the signaling network that they act in bombyxin-stimulated ecdysteroidogenesis. © 2017 Wiley Periodicals, Inc.

  17. Expression and imprinting of insulin-like growth factor II (IGF2) and H19 genes in uterine leiomyomas

    DEFF Research Database (Denmark)

    Rainho, C A; Pontes, A; Rogatto, S R

    1999-01-01

    status of IGF2 and H19 genes in 47 uterine leiomyomas. Using allelic transcription assay, we detected the expression of the IGF2 gene in 10 of a total of 15 informative cases. No loss of imprinting, as determined by the finding of biallelic expression, was detected in any case. The expression of H19 gene...... was detected in 10 of 20 informative cases and the imprinting pattern was also maintained in all of them. Our data suggest that alterations in IGF2 and H19 genes expression by loss of imprinting do not occur in uterine leiomyomas....

  18. Chronic intermittent hypoxia affects the cytosolic phospholipase A(2)alpha/cyclooxygenase 2 pathway via beta(2)-adrenoceptor-mediated ERK/p38 stimulation

    Czech Academy of Sciences Publication Activity Database

    Míčová, P.; Hahnová, K.; Hlaváčková, Markéta; Elsnicová, B.; Chytilová, Anna; Holzerová, Kristýna; Žurmanová, J.; Neckář, Jan; Kolář, František; Nováková, Olga; Novotný, J.

    2016-01-01

    Roč. 423, 1-2 (2016), s. 151-163 ISSN 0300-8177 R&D Projects: GA ČR(CZ) GA13-10267S Institutional support: RVO:67985823 Keywords : heart * hypoxia * ischemia/reperfusion * phospholipase A2 * cyclooxygenase 2 * beta-adrenoceptor * MAPK Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.669, year: 2016

  19. The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression.

    Science.gov (United States)

    Donato, Roberta; Page, Karen M; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A; Dolphin, Annette C

    2006-11-29

    The mouse mutant ducky and its allele ducky(2J) represent a model for absence epilepsy characterized by spike-wave seizures and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the alpha2delta-2 calcium channel subunit. Of relevance to the ataxic phenotype, alpha2delta-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2(du2J) mutation results in a 2 bp deletion in the coding region and a complete loss of alpha2delta-2 protein. Here we show that du(2J)/du(2J) mice have a 30% reduction in somatic calcium current and a marked fall in the spontaneous PC firing rate at 22 degrees C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34 degrees C, du(2J)/du(2J) PCs show no spontaneous intrinsic activity. Du(2J)/du(2J) mice also have alterations in the cerebellar expression of several genes related to PC function. At postnatal day 21, there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du(2J)/+ mice have a marked reduction in alpha2delta-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tyrosine hydroxylase gene expression. However, du(2J)/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in alpha2delta-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of alpha2delta-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma.

  20. Gene Expression Analyses of HER-2/neu and ESR1 in Patients with Breast Cancer

    Directory of Open Access Journals (Sweden)

    Omid Kheyri Nadergoli

    2017-10-01

    Full Text Available ABSTRACT Background: Her-2 and ESR1 genes, that interact in the cell signaling pathway, are the most important molecular markers of breast cancer, which have been amplified or overexpressed in 30% and 70%, respectively. This study was performed to evaluate the gene expression levels of Her-2 and ESR1 genes in tumor cells and its adjacent normal tissue of breast cancer patients and compared them whit clinical-pathological features. Methods: In total, 80 tissue specimens from 40 patients, with an average age of 48.47 years, were examined by Real-time PCR technique, and ultimately evaluated the expression level of Her-2 and ESR1genes. The data were analyzed by REST 2009 V2.0.13 statistical software. Results: HER2 and ESR1 overexpression was identified in 19 (48% and 12 (30% of 40 patients respectively, which was higher and lower than that recorded in international statistics, respectively. ESR1 overexpression was associated with Stage 3A and lymph node involvement 2 (N2 (P = 0.04 and P = 0.047, respectively. No significant correlation was observed between the expression of HER2 and ESR1 and other clinical-pathological features, however, the relative differences were identified in the expression levels of genes between main group and groups that were classified according to the clinical-pathological features and age. Conclusions: Overexpression of Her-2 and ESR1 genes in the patients of our study are higher and lower than international statistics, respectively, indicating the differences in genetic, environmental and ethnic factors that involved in the developing of breast cancer.

  1. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    Science.gov (United States)

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. [Knockdown of dopamine receptor D2 upregulates the expression of adiogenic genes in mouse primary mesencephalic neurons].

    Science.gov (United States)

    Ding, Jiaqi; Chen, Xiaoli; Lin, Jiaji; Zhu, Junling; Li, Zhuyi

    2018-01-01

    Objective To study the effects of dopamine receptor D2 (DRD2) on the adipogenesis genes in mouse primary mesencephalic neurons. Methods The lentiviral vectors which expressed specific shRNA targeting DRD2 were constructed to decrease DRD2 expression in mouse primary mesencephalic neurons. High throughput sequencing (HTS) analysis was used to investigate gene expression changes between the DRD2 knock-down group and the negative control group. Real-time quantitative PCR (qRT-PCR) and Western blot analysis were applied to verify the differently expressed genes. Fatty acids were measured by fatty acid detection kit. Results DRD2 expression was effectively down-regulated in mouse primary mesencephalic neurons by lentiviral vectors. HTS revealed adipogenesis genes were significantly up-regulated after DRD2 down-regulation, mainly including delta(14)-sterol reductase, acetyl-coenzyme A synthetase, insulin-induced gene 1 protein and especially stearoyl-coenzyme A desaturase 1 (SCD1, 4-fold upregulated). The qRT-PCR and Western blot analysis verified that SCD1 was upregulated 2.6 folds and 2 folds respectively by lentiviral DRD2-shRNA vectors. Moreover, the SCD1-related free fatty acids were significantly more increased than the negative control group. Conclusion DRD2 in primary mesencephalic neurons had a significant regulative effect on the adipogenesis genes. The up-regulation of SCD1 can accelerate the conversion of saturated fatty acids to monounsaturated fatty acids and prevent the damage of lipid toxicity to cells.

  3. Identification of suitable reference genes for gene expression studies of shoulder instability.

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Leal

    Full Text Available Shoulder instability is a common shoulder injury, and patients present with plastic deformation of the glenohumeral capsule. Gene expression analysis may be a useful tool for increasing the general understanding of capsule deformation, and reverse-transcription quantitative polymerase chain reaction (RT-qPCR has become an effective method for such studies. Although RT-qPCR is highly sensitive and specific, it requires the use of suitable reference genes for data normalization to guarantee meaningful and reproducible results. In the present study, we evaluated the suitability of a set of reference genes using samples from the glenohumeral capsules of individuals with and without shoulder instability. We analyzed the expression of six commonly used reference genes (ACTB, B2M, GAPDH, HPRT1, TBP and TFRC in the antero-inferior, antero-superior and posterior portions of the glenohumeral capsules of cases and controls. The stability of the candidate reference gene expression was determined using four software packages: NormFinder, geNorm, BestKeeper and DataAssist. Overall, HPRT1 was the best single reference gene, and HPRT1 and B2M composed the best pair of reference genes from different analysis groups, including simultaneous analysis of all tissue samples. GenEx software was used to identify the optimal number of reference genes to be used for normalization and demonstrated that the accumulated standard deviation resulting from the use of 2 reference genes was similar to that resulting from the use of 3 or more reference genes. To identify the optimal combination of reference genes, we evaluated the expression of COL1A1. Although the use of different reference gene combinations yielded variable normalized quantities, the relative quantities within sample groups were similar and confirmed that no obvious differences were observed when using 2, 3 or 4 reference genes. Consequently, the use of 2 stable reference genes for normalization, especially

  4. Effects of Subchronic Treatment with Ibuprofen and Nimesulide on Spatial Memory and NMDAR Subunits Expression in Aged Rats.

    Science.gov (United States)

    Ozturk Bilgin, Ozlem; Kumbul Doguc, Duygu; Altuntas, Irfan; Sutcu, Recep; Delibas, Namık

    2013-01-01

    Several studies point to an important function of cyclooxygenase (COX) and prostaglandin signaling in models of synaptic plasticity which is associated with N-methyl-D-aspartate receptors (NMDARs). Cyclooxygenase gene is suggested to be an immediate early gene that is tightly regulated in neurons by NMDA dependent synaptic activity. Nonsteroid Antiinflammatory Drugs (NSAIDs) exert their antiinflammatory effect by the inhibion of COX have controversial effects on learning and memory. We administered ibuprofen as a non-selective COX-2 inhibitor and nimesulide as a selective COX-2 inhibitor for 8 weeks for determining the cognitive impact of subchronic administration of NSAIDs to aged rats. Wistar albino rats (16 mo, n = 30) were separated into control (n = 10), ibuprofen (n = 10) and nimesulide (n = 10) treated groups. First we evaluated hippocampus-dependent spatial memory in the radial arm maze (RAM) and than we evaluated the expression of the NMDAR subunits, NR2A and NR2B by western blotting to see if their expressions are effected by subchronic administration with these drugs. Ibuprofen and nimesulide treated rats completed the task in a statistically significant shorter time when compared with control group (p RAM. Furthermore, no statistically significant difference was detected for the protein expressions of NR2A and NR2B of the subjects. Oral administration of ibuprofen and nimesulide for 8 weeks showed no impairment but partly improved spatial memory.

  5. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  6. Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue

    Directory of Open Access Journals (Sweden)

    Dunner Susana

    2008-09-01

    Full Text Available Abstract Background Real-time reverse transcriptase quantitative polymerase chain reaction (real-time RTqPCR is a technique used to measure mRNA species copy number as a way to determine key genes involved in different biological processes. However, the expression level of these key genes may vary among tissues or cells not only as a consequence of differential expression but also due to different factors, including choice of reference genes to normalize the expression levels of the target genes; thus the selection of reference genes is critical for expression studies. For this purpose, ten candidate reference genes were investigated in bovine muscular tissue. Results The value of stability of ten candidate reference genes included in three groups was estimated: the so called 'classical housekeeping' genes (18S, GAPDH and ACTB, a second set of genes used in expression studies conducted on other tissues (B2M, RPII, UBC and HMBS and a third set of novel genes (SF3A1, EEF1A2 and CASC3. Three different statistical algorithms were used to rank the genes by their stability measures as produced by geNorm, NormFinder and Bestkeeper. The three methods tend to agree on the most stably expressed genes and the least in muscular tissue. EEF1A2 and HMBS followed by SF3A1, ACTB, and CASC3 can be considered as stable reference genes, and B2M, RPII, UBC and GAPDH would not be appropriate. Although the rRNA-18S stability measure seems to be within the range of acceptance, its use is not recommended because its synthesis regulation is not representative of mRNA levels. Conclusion Based on geNorm algorithm, we propose the use of three genes SF3A1, EEF1A2 and HMBS as references for normalization of real-time RTqPCR in muscle expression studies.

  7. Alteration of gene expression profiling including GPR174 and GNG2 is associated with vasovagal syncope.

    Science.gov (United States)

    Huang, Yu-Juan; Zhou, Zai-wei; Xu, Miao; Ma, Qing-wen; Yan, Jing-bin; Wang, Jian-yi; Zhang, Quo-qin; Huang, Min; Bao, Liming

    2015-03-01

    Vasovagal syncope (VVS) causes accidental harm for susceptible patients. However, pathophysiology of this disorder remains largely unknown. In an effort to understanding of molecular mechanism for VVS, genome-wide gene expression profiling analyses were performed on VVS patients at syncope state. A total of 66 Type 1 VVS child patients and the same number healthy controls were enrolled in this study. Peripheral blood RNAs were isolated from all subjects, of which 10 RNA samples were randomly selected from each groups for gene expression profile analysis using Gene ST 1.0 arrays (Affymetrix). The results revealed that 103 genes were differently expressed between the patients and controls. Significantly, two G-proteins related genes, GPR174 and GNG2 that have not been related to VVS were among the differently expressed genes. The microarray results were confirmed by qRT-PCR in all the tested individuals. Ingenuity pathway analysis and gene ontology annotation study showed that the differently expressed genes are associated with stress response and apoptosis, suggesting that the alteration of some gene expression including G-proteins related genes is associated with VVS. This study provides new insight into the molecular mechanism of VVS and would be helpful to further identify new molecular biomarkers for the disease.

  8. Aspirin Has Antitumor Effects via Expression of Calpain Gene in Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sang Koo Lee

    2008-01-01

    Full Text Available Aspirin and other nonsteroidal anti-inflammatory drugs show efficacy in the prevention of cancers. It is known that they can inhibit cyclooxygenases, and some studies have shown that they can induce apoptosis. Our objective in this study was to investigate the mechanism by which aspirin exerts its apoptosis effects in human cervical cancer HeLa cells. The effect of aspirin on the gene expression was studied by differential mRNA display RT-PCR. Among the isolated genes, mu-type calpain gene was upregulated by aspirin treatment. To examine whether calpain mediates the antitumor effects, HeLa cells were stably transfected with the mammalian expression vector pCR3.1 containing mu-type calpain cDNA (pCRCAL/HeLa, and tumor formations were measured in nude mice. When tumor burden was measured by day 49, HeLa cells and pCR/HeLa cells (vector control produced tumors of 2126 mm3 and 1638 mm3, respectively, while pCRCAL/HeLa cells produced markedly smaller tumor of 434 mm3 in volume. The caspase-3 activity was markedly elevated in pCRCAL/HeLa cells. The increased activity levels of caspase-3 in pCRCAL/HeLa cells, in parallel with the decreased tumor formation, suggest a correlation between caspase-3 activity and calpain protein. Therefore, we conclude that aspirin-induced calpain mediates an antitumor effect via caspase-3 in cervical cancer cells.

  9. Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells

    Science.gov (United States)

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231

  10. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    Directory of Open Access Journals (Sweden)

    Helle Jensen

    Full Text Available NKG2D is a stimulatory receptor expressed by natural killer (NK cells, CD8(+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+ T-cells, however recently a subset of NKG2D(+ CD4(+ T-cells has been found, which is specific for human cytomegalovirus (HCMV. This particular subset of HCMV-specific NKG2D(+ CD4(+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+ CD4(+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA to investigate the gene expression profile of NKG2D(+ CD4(+ T-cells, generated from HCMV-primed CD4(+ T-cells. We show that the HCMV-primed NKG2D(+ CD4(+ T-cells possess a higher differentiated phenotype than the NKG2D(- CD4(+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+ T-cells, whereas it is produced de novo in resting CD4(+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+ CD4(+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  11. [Expression and activity determination of recombinant capsid protein VP2 gene of enterovirus type 71].

    Science.gov (United States)

    Huang, Xueyong; Liu, Guohua; Hu, Xiaoning; Du, Yanhua; Li, Xingle; Xu, Yuling; Chen, Haomin; Xu, Bianli

    2014-04-01

    To clone and express the recombinant capsid protein VP2 of enterovirus type 71 (EV71) and to identify the immune activity of expressed protein in order to build a basis for the investigation work of vaccine and diagnostic antigen. VP2 gene of EV71 was amplified by PCR, and then was cut by restriction enzyme and inserted into expression vector pMAL-c2X. The positive recombinants were transferred into E.coli TB1, the genetically engineered bacteria including pMAL-c2X-VP2 plasmids were induced by isopropyl thiogalactoside ( IPTG) , and the expression products were analyzed by SDS-PAGE and western blotting method. EV71 IgM antibody detection method by ELISA was set up, and the sensitivity and specificity of this method was assessed; 60 neutralizing antibody positive serum samples from hand foot and mouth disease (HFMD) patients were determined, of which 52 samples were positive and 8 samples were negative; a total of 88 acute phase serum samples of HFMD patients diagnosed in clinical were also detected. VP2 gene of 762 bp was obtained by PCR, the gene segment inserted into the recombinant vector was identified using restriction enzyme digestion. The recombinant vector could express a specific about 71 500 fusion protein in E.coli by SDS-PAGE. The purified recombinant protein of EV71-VP2 can react with the serum of HFMD patients to produce a specific band by western blotting. The sensitivity and specificity of ELISA was 87% and 83%, respectively. Of the 88 acute phase serum samples from children with HFMD, 48 samples (55%) were positive by the ELISA assay. VP2 gene of EV71 has been cloned and a prokaryotic high expression system for VP2 gene was successfully constructed in the present study. The recombination EV71-VP2 has well antigenicity, which could be useful for developing diagnose reagent or vaccine of EV71.

  12. Gene expression profiling leads to discovery of correlation of matrix metalloproteinase 11 and heparanase 2 in breast cancer progression

    International Nuclear Information System (INIS)

    Fu, Junjie; Khaybullin, Ravil; Zhang, Yanping; Xia, Amy; Qi, Xin

    2015-01-01

    In order to identify biomarkers involved in breast cancer, gene expression profiling was conducted using human breast cancer tissues. Total RNAs were extracted from 150 clinical patient tissues covering three breast cancer subtypes (Luminal A, Luminal B, and Triple negative) as well as normal tissues. The expression profiles of a total of 50,739 genes were established from a training set of 32 samples using the Agilent Sure Print G3 Human Gene Expression Microarray technology. Data were analyzed using Agilent Gene Spring GX 12.6 software. The expression of several genes was validated using real-time RT-qPCR. Data analysis with Agilent GeneSpring GX 12.6 software showed distinct expression patterns between cancer and normal tissue samples. A group of 28 promising genes were identified with ≥ 10-fold changes of expression level and p-values < 0.05. In particular, MMP11 and HPSE2 were closely examined due to the important roles they play in cancer cell growth and migration. Real-time RT-qPCR analyses of both training and testing sets validated the gene expression profiles of MMP11 and HPSE2. Our findings identified these 2 genes as a novel breast cancer biomarker gene set, which may facilitate the diagnosis and treatment in breast cancer clinical therapies

  13. Loss of the NKX3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene expression in prostate cancer

    International Nuclear Information System (INIS)

    Thangapazham, Rajesh; Saenz, Francisco; Katta, Shilpa; Mohamed, Ahmed A; Tan, Shyh-Han; Petrovics, Gyorgy; Srivastava, Shiv; Dobi, Albert

    2014-01-01

    In normal prostate epithelium the TMPRSS2 gene encoding a type II serine protease is directly regulated by male hormones through the androgen receptor. In prostate cancer ERG protooncogene frequently gains hormonal control by seizing gene regulatory elements of TMPRSS2 through genomic fusion events. Although, the androgenic activation of TMPRSS2 gene has been established, little is known about other elements that may interact with TMPRSS2 promoter sequences to modulate ERG expression in TMPRSS2-ERG gene fusion context. Comparative genomic analyses of the TMPRSS2 promoter upstream sequences and pathway analyses were performed by the Genomatix Software. NKX3.1 and ERG genes expressions were evaluated by immunoblot or by quantitative Real-Time PCR (qRT-PCR) assays in response to siRNA knockdown or heterologous expression. QRT-PCR assay was used for monitoring the gene expression levels of NKX3.1-regulated genes. Transcriptional regulatory function of NKX3.1 was assessed by luciferase assay. Recruitment of NKX3.1 to its cognate elements was monitored by Chromatin Immunoprecipitation assay. Comparative analysis of the TMPRSS2 promoter upstream sequences among different species revealed the conservation of binding sites for the androgen inducible NKX3.1 tumor suppressor. Defects of NKX3.1, such as, allelic loss, haploinsufficiency, attenuated expression or decreased protein stability represent established pathways in prostate tumorigenesis. We found that NKX3.1 directly binds to TMPRSS2 upstream sequences and negatively regulates the expression of the ERG protooncogene through the TMPRSS2-ERG gene fusion. These observations imply that the frequently noted loss-of-function of NKX3.1 cooperates with the activation of TMPRSS2-ERG fusions in prostate tumorigenesis

  14. Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells

    International Nuclear Information System (INIS)

    Wallden, Brett; Emond, Mary; Swift, Mari E; Disis, Mary L; Swisshelm, Karen

    2005-01-01

    The retinoic acid receptor beta 2 (RARβ2) gene modulates proliferation and survival of cultured human breast cancer cells. Previously we showed that ectopic expression of RARβ2 in a mouse xenograft model prevented metastasis, even in the absence of the ligand, all-trans retinoic acid. We investigated both cultured cells and xenograft tumors in order to delineate the gene expression profiles responsible for an antimetastatic phenotype. RNA from MDA-MB-435 human breast cancer cells transduced with RARβ2 or empty retroviral vector (LXSN) was analyzed using Agilent Human 1A Oligo microarrays. The one hundred probes with the greatest differential intensity (p < 0.004, jointly) were determined by selecting the top median log ratios from eight-paired microarrays. Validation of differences in expression was done using Northern blot analysis and quantitative RT-PCR (qRT-PCR). We determined expression of selected genes in xenograft tumors. RARβ2 cells exhibit gene profiles with overrepresentation of genes from Xq28 (p = 2 × 10 -8 ), a cytogenetic region that contains a large portion of the cancer/testis antigen gene family. Other functions or factors impacted by the presence of exogenous RARβ2 include mediators of the immune response and transcriptional regulatory mechanisms. Thirteen of fifteen (87%) of the genes evaluated in xenograft tumors were consistent with differences we found in the cell cultures (p = 0.007). Antimetastatic RARβ2 signalling, direct or indirect, results in an elevation of expression for genes such as tumor-cell antigens (CTAG1 and CTAG2), those involved in innate immune response (e.g., RIG-I/DDX58), and tumor suppressor functions (e.g., TYRP1). Genes whose expression is diminished by RARβ2 signalling include cell adhesion functions (e.g, CD164) nutritional or metabolic processes (e.g., FABP6), and the transcription factor, JUN

  15. Characterization and expression profile of CaNAC2 pepper gene

    Directory of Open Access Journals (Sweden)

    Wei-Li eGuo

    2015-09-01

    Full Text Available The plant-specific NAC (NAM, ATAF, and CUC transcription factors have diverse role in development and stress regulation. A new transcript encoding NAC protein, homologous to nam-like protein 4 from Petunia was identified from an ABA-regulated subtractive cDNA library of Capsicum annuum seedling. Here, this homolog (named CaNAC2 from Capsicum annuum was characterized and investigated its role in abiotic stress tolerance. Our results indicated that a plant-specific and conserved NAC domain was located in the N-terminus domain of CaNAC2 which was predicted to encode a polypeptide of 410 amino acids. Phylogenetic analysis showed that CaNAC2 belonged to the NAC2 subgroup of the orthologous group 4d. The protein CaNAC2 was subcellularly localized in the nucleus and it had transcriptional activity in yeast cell. CaNAC2 was expressed mainly in seed and root. The transcription expression of CaNAC2 was strongly induced by cold, salt and ABA treatment and inhibited by osmotic stress and SA treatment. Silence of CaNAC2 in virus-induced gene silenced pepper seedlings resulted in the increased susceptibility to cold stress and delayed the salt-induced leaf chlorophyll degradation. These results indicated that this novel CaNAC2 gene might be involved in pepper response to abiotic stress tolerance.

  16. Cyclooxygenase inhibitors potentiate receptor tyrosine kinase therapies in bladder cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Bourn J

    2018-06-01

    Full Text Available Jennifer Bourn,1,2 Maria Cekanova1,2 1Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA; 2UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, USA Purpose: Receptor tyrosine kinase inhibitors (RTKIs are used as targeted therapies for patients diagnosed with cancer with highly expressed receptor tyrosine kinases (RTKs, including the platelet-derived growth factor receptor (PDGFR and c-Kit receptor. Resistance to targeted therapies is partially due to the activation of alternative pro-survival signaling pathways, including cyclooxygenase (COX-2. In this study, we validated the effects of two RTKIs, axitinib and AB1010, in combination with COX inhibitors on the V-akt murine thymoma oncogene homolog 1 (Akt and COX-2 signaling pathways in bladder cancer cells.Methods: The expression of several RTKs and their downstream signaling targets was analyzed by Western blot (WB analysis in human and canine bladder transitional cell carcinoma (TCC cell lines. The effects of RTKIs and COX inhibitors in bladder TCC cells were assessed by MTS for cell viability, by Caspase-3/7 and Annexin V assay for apoptosis, by WB analysis for detection of COX-2 and Akt signaling pathways, and by enzyme-linked immunosorbent assay for detection of prostaglandin E2 (PGE2 levels.Results: All tested TCC cells expressed the c-Kit and PDGFRα receptors, except human 5637 cells that had low RTKs expression. In addition, all tested cells expressed COX-1, COX-2, Akt, extracellular signal regulated kinases 1/2, and nuclear factor kappa-light-chain-enhance of activated B cells proteins, except human UM-UC-3 cells, where no COX-2 expression was detected by WB analysis. Both RTKIs inhibited cell viability and increased apoptosis in a dose-dependent manner in tested bladder TCC cells, which positively correlated with their expression levels of the PDGFRα and c

  17. Molecular characterization and expression of maternally expressed gene 3 (Meg3/Gtl2) RNA in the mouse inner ear

    DEFF Research Database (Denmark)

    Manji, S.S.; Sørensen, Brita Singers; Klockars, T.

    2006-01-01

    The pathways responsible for sound perception in the cochlea involve the coordinated and regulated expression of hundreds of genes. By using microarray analysis, we identified several transcripts enriched in the inner ear, including the maternally expressed gene 3 (Meg3/Gtl2), an imprinted...... noncoding RNA. Real-time PCR analysis demonstrated that Meg3/Gtl2 was highly expressed in the cochlea, brain, and eye. Molecular studies revealed the presence of several Meg3/Gtl2 RNA splice variants in the mouse cochlea, brain, and eye. In situ hybridizations showed intense Meg3/Gtl2 RNA staining...... otocyst and localized to the spiral ganglion, stria vascularis, Reissner's membrane, and greater epithelial ridge (GER) in the cochlear duct. RT-PCR analysis performed on cell lines derived from the organ of Corti, representing neural, supporting, and hair cells, showed significantly elevated levels...

  18. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

  19. Cyclooxygenase-2 Regulates Th17 Cell Differentiation during Allergic Lung Inflammation

    OpenAIRE

    Li, Hong; Bradbury, J. Alyce; Dackor, Ryan T.; Edin, Matthew L.; Graves, Joan P.; DeGraff, Laura M.; Wang, Ping Ming; Bortner, Carl D.; Maruoka, Shuichiro; Lih, Fred B.; Cook, Donald N.; Tomer, Kenneth B.; Jetten, Anton M.; Zeldin, Darryl C.

    2011-01-01

    Rationale: Th17 cells comprise a distinct lineage of proinflammatory T helper cells that are major contributors to allergic responses. It is unknown whether cyclooxygenase (COX)-derived eicosanoids regulate Th17 cells during allergic lung inflammation.

  20. Nuclear transfer alters placental gene expression and associated histone modifications of the placental-specific imprinted gene pleckstrin homology-like domain, family A, member 2 (PHLDA2) in cattle.

    Science.gov (United States)

    Arnold, Daniel R; Gaspar, Roberta C; da Rocha, Carlos V; Sangalli, Juliano R; de Bem, Tiago H C; Corrêa, Carolina A P; Penteado, João C T; Meirelles, Flavio V; Lopes, Flavia L

    2017-03-01

    Abnormal placental development is frequent in nuclear transfer (NT) pregnancies and is likely to be associated with altered epigenetic reprogramming. In the present study, fetal and placental measurements were taken on Day 60 of gestation in cows with pregnancies produced by AI, IVF and NT. Placentas were collected and subjected to histological evaluation, the expression of genes important in trophoblast differentiation and expression of the placental imprinted gene pleckstrin homology-like domain, family A, member 2 (PHLDA2), as well as chromatin immunoprecipitation (ChIP) for histone marks within the promoter of PHLDA2. Fewer binucleated cells were observed in NT cotyledons, followed by IVF and AI cotyledons (P<0.05). Expression of heart and neural crest derivatives expressed 1 (HAND1), placental lactogen (PL), pregnancy-associated glycoprotein 9 (PAG-9) and PHLDA2 was elevated in NT cotyledons compared with AI cotyledons. Expression of PHLDA2 was higher in IVF than AI samples (P<0.05). ChIP revealed an increase in the permissive mark dimethylation of lysine 4 on histone H3 (H3K4me2), surprisingly associated with the silent allele of PHLDA2, and a decrease in the inhibitory mark H3K9me2 in NT samples. Thus, genes critical for placental development were altered in NT placentas, including an imprinted gene. Allele-specific changes in the permissive histone mark in the PHLDA2 promoter indicate misregulation of imprinting in clones. Abnormal trophoblast differentiation could have resulted in lower numbers of binucleated cells following NT. These results suggest that the altered expression of imprinted genes associated with NT are also caused by changes in histone modifications.

  1. Profiling gene expression induced by protease-activated receptor 2 (PAR2 activation in human kidney cells.

    Directory of Open Access Journals (Sweden)

    Jacky Y Suen

    Full Text Available Protease-Activated Receptor-2 (PAR2 has been implicated through genetic knockout mice with cytokine regulation and arthritis development. Many studies have associated PAR2 with inflammatory conditions (arthritis, airways inflammation, IBD and key events in tumor progression (angiogenesis, metastasis, but they have relied heavily on the use of single agonists to identify physiological roles for PAR2. However such probes are now known not to be highly selective for PAR2, and thus precisely what PAR2 does and what mechanisms of downstream regulation are truly affected remain obscure. Effects of PAR2 activation on gene expression in Human Embryonic Kidney cells (HEK293, a commonly studied cell line in PAR2 research, were investigated here by comparing 19,000 human genes for intersecting up- or down-regulation by both trypsin (an endogenous protease that activates PAR2 and a PAR2 activating hexapeptide (2f-LIGRLO-NH(2. Among 2,500 human genes regulated similarly by both agonists, there were clear associations between PAR2 activation and cellular metabolism (1,000 genes, the cell cycle, the MAPK pathway, HDAC and sirtuin enzymes, inflammatory cytokines, and anti-complement function. PAR-2 activation up-regulated four genes more than 5 fold (DUSP6, WWOX, AREG, SERPINB2 and down-regulated another six genes more than 3 fold (TXNIP, RARG, ITGB4, CTSD, MSC and TM4SF15. Both PAR2 and PAR1 activation resulted in up-regulated expression of several genes (CD44, FOSL1, TNFRSF12A, RAB3A, COPEB, CORO1C, THBS1, SDC4 known to be important in cancer. This is the first widespread profiling of specific activation of PAR2 and provides a valuable platform for better understanding key mechanistic roles of PAR2 in human physiology. Results clearly support the development of both antagonists and agonists of human PAR2 as potential disease modifying therapeutic agents.

  2. Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence

    International Nuclear Information System (INIS)

    Kontunen-Soppela, Sari; Parviainen, Juha; Ruhanen, Hanna; Brosche, Mikael; Keinaenen, Markku; Thakur, Ramesh C.; Kolehmainen, Mikko; Kangasjaervi, Jaakko; Oksanen, Elina; Karnosky, David F.; Vapaavuori, Elina

    2010-01-01

    Gene expression responses of paper birch (Betula papyrifera) leaves to elevated concentrations of CO 2 and O 3 were studied with microarray analyses from three time points during the summer of 2004 at Aspen FACE. Microarray data were analyzed with clustering techniques, self-organizing maps, K-means clustering and Sammon's mappings, to detect similar gene expression patterns within sampling times and treatments. Most of the alterations in gene expression were caused by O 3 , alone or in combination with CO 2 . O 3 induced defensive reactions to oxidative stress and earlier leaf senescence, seen as decreased expression of photosynthesis- and carbon fixation-related genes, and increased expression of senescence-associated genes. The effects of elevated CO 2 reflected surplus of carbon that was directed to synthesis of secondary compounds. The combined CO 2 + O 3 treatment resulted in differential gene expression than with individual gas treatments or in changes similar to O 3 treatment, indicating that CO 2 cannot totally alleviate the harmful effects of O 3 . - Clustering analysis of birch leaf gene expression data reveals differential responses to O 3 and CO 2 .

  3. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma

    Directory of Open Access Journals (Sweden)

    Stafford Phillip

    2010-09-01

    Full Text Available Abstract Background Malignant brain tumors affect people of all ages and are the second leading cause of cancer deaths in children. While current treatments are effective and improve survival, there remains a substantial need for more efficacious therapeutic modalities. The ketogenic diet (KD - a high-fat, low-carbohydrate treatment for medically refractory epilepsy - has been suggested as an alternative strategy to inhibit tumor growth by altering intrinsic metabolism, especially by inducing glycopenia. Methods Here, we examined the effects of an experimental KD on a mouse model of glioma, and compared patterns of gene expression in tumors vs. normal brain from animals fed either a KD or a standard diet. Results Animals received intracranial injections of bioluminescent GL261-luc cells and tumor growth was followed in vivo. KD treatment significantly reduced the rate of tumor growth and prolonged survival. Further, the KD reduced reactive oxygen species (ROS production in tumor cells. Gene expression profiling demonstrated that the KD induces an overall reversion to expression patterns seen in non-tumor specimens. Notably, genes involved in modulating ROS levels and oxidative stress were altered, including those encoding cyclooxygenase 2, glutathione peroxidases 3 and 7, and periredoxin 4. Conclusions Our data demonstrate that the KD improves survivability in our mouse model of glioma, and suggests that the mechanisms accounting for this protective effect likely involve complex alterations in cellular metabolism beyond simply a reduction in glucose.

  4. Expression and significance of cyclooxygenase-2 mRNA in benign and malignant ascites

    Science.gov (United States)

    Lu, Jing; Li, Xiao-Feng; Kong, Li-Xia; Ma, Lin; Liao, Su-Huan; Jiang, Chang-You

    2013-01-01

    AIM: To investigate the mRNA expression of cyclooxygensae-2 (COX-2) in benign and malignant ascites, and to explore the difference in COX-2 mRNA expression among different diseases. METHODS: A total of 36 samples were collected from the Fifth Affiliated Hospital of Sun Yat-Sen University and divided into two experimental groups: benign ascites (n = 21) and malignant ascites (n = 15). Benign ascites included cirrhotic ascites (n = 10) and tuberculous ascites (n = 5). Malignant ascites included oophoroma (n = 7), cancer of colon (n = 5), cancer of the liver (n = 6), gastric cancer (n = 2), and bladder carcinoma (n = 1). The mRNA expression of COX-2 in ascites was examined with reverse transcriptase polymerase chain reaction (RT-PCR) technology, and the positive rate of COX-2 mRNA was compared between different diseases. RESULTS: The positive rate of COX-2 mRNA in malignant ascites was 42.9% (9/21), which was significantly higher than in benign ascites, 6.7% (1/15), difference being significant between these two groups (χ2 = 4.051, P = 0.044). The proportion of the positive rate in the malignant ascites was as follows: ovarian cancers 57.1% (4/7), colon cancer 40.0% (2/5), liver cancer 33.3% (2/6), gastric cancer 50.0% (1/2), and bladder cancer 0.00% (0/1). However, there was no significant difference in COX-2 mRNA expression among various tumors with malignant ascites (χ2 = 1.614, P = 0.806). Among the benign ascites, COX-2 mRNA levels were different between the tuberculous ascites (0/5) and cirrhotic ascites (1/10), but there was no significant difference (P = 1.000). CONCLUSION: COX-2 mRNA, detected by RT-PCR, is useful in the differential diagnosis of benign and malignant ascites, which also has potential value in the clinical diagnosis of tumors. PMID:24187465

  5. Expression Profiling of Genes Related to Endothelial Cells Biology in Patients with Type 2 Diabetes and Patients with Prediabetes

    Directory of Open Access Journals (Sweden)

    Sara Moradipoor

    2016-01-01

    Full Text Available Endothelial dysfunction appears to be an early sign indicating vascular damage and predicts the progression of atherosclerosis and cardiovascular disorders. Extensive clinical and experimental evidence suggests that endothelial dysfunction occurs in Type 2 Diabetes Mellitus (T2DM and prediabetes patients. This study was carried out with an aim to appraise the expression levels in the peripheral blood of 84 genes related to endothelial cells biology in patients with diagnosed T2DM or prediabetes, trying to identify new genes whose expression might be changed under these pathological conditions. The study covered a total of 45 participants. The participants were divided into three groups: group 1, patients with T2DM; group 2, patients with prediabetes; group 3, control group. The gene expression analysis was performed using the Endothelial Cell Biology RT2 Profiler PCR Array. In the case of T2DM, 59 genes were found to be upregulated, and four genes were observed to be downregulated. In prediabetes patients, increased expression was observed for 49 genes, with two downregulated genes observed. Our results indicate that diabetic and prediabetic conditions change the expression levels of genes related to endothelial cells biology and, consequently, may increase the risk for occurrence of endothelial dysfunction.

  6. Expression of the tumor suppressor genes NF2, 4.1B, and TSLC1 in canine meningiomas.

    Science.gov (United States)

    Dickinson, P J; Surace, E I; Cambell, M; Higgins, R J; Leutenegger, C M; Bollen, A W; LeCouteur, R A; Gutmann, D H

    2009-09-01

    Meningiomas are common primary brain tumors in dogs; however, little is known about the molecular genetic mechanisms involved in their tumorigenesis. Several tumor suppressor genes have been implicated in meningioma pathogenesis in humans, including the neurofibromatosis 2 (NF2), protein 4.1B (4.1 B), and tumor suppressor in lung cancer-1 (TSLC1) genes. We investigated the expression of these tumor suppressor genes in a series of spontaneous canine meningiomas using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) (NF2; n = 25) and western blotting (NF2/merlin, 4.1B, TSLC1; n = 30). Decreased expression of 4.1B and TSLC1 expression on western blotting was seen in 6/30 (20%) and in 15/30 (50%) tumors, respectively, with 18/30 (60%) of meningiomas having decreased or absent expression of one or both proteins. NF2 gene expression assessed by western blotting and RT-PCR varied considerably between individual tumors. Complete loss of NF2 protein on western blotting was not seen, unlike 4.1B and TSLC1. Incidence of TSLC1 abnormalities was similar to that seen in human meningiomas, while perturbation of NF2 and 4.1B appeared to be less common than reported for human tumors. No association was observed between tumor grade, subtype, or location and tumor suppressor gene expression based on western blot or RT-PCR. These results suggest that loss of these tumor suppressor genes is a frequent occurrence in canine meningiomas and may be an early event in tumorigenesis in some cases. In addition, it is likely that other, as yet unidentified, genes play an important role in canine meningioma formation and growth.

  7. Inflammation and Gli2 suppress gastrin gene expression in a murine model of antral hyperplasia.

    Directory of Open Access Journals (Sweden)

    Milena Saqui-Salces

    Full Text Available Chronic inflammation in the stomach can lead to gastric cancer. We previously reported that gastrin-deficient (Gast⁻/⁻ mice develop bacterial overgrowth, inflammatory infiltrate, increased Il-1β expression, antral hyperplasia and eventually antral tumors. Since Hedgehog (Hh signaling is active in gastric cancers but its role in precursor lesions is poorly understood, we examined the role of inflammation and Hh signaling in antral hyperplasia. LacZ reporter mice for Sonic hedgehog (Shh, Gli1, and Gli2 expression bred onto the Gast⁻/⁻ background revealed reduced Shh and Gli1 expression in the antra compared to wild type controls (WT. Gli2 expression in the Gast⁻/⁻ corpus was unchanged. However in the hyperplastic Gast⁻/⁻ antra, Gli2 expression increased in both the mesenchyme and epithelium, whereas expression in WT mice remained exclusively mesenchymal. These observations suggested that Gli2 is differentially regulated in the hyperplastic Gast⁻/⁻ antrum versus the corpus and by a Shh ligand-independent mechanism. Moreover, the proinflammatory cytokines Il-1β and Il-11, which promote gastric epithelial proliferation, were increased in the Gast⁻/⁻ stomach along with Infγ. To test if inflammation could account for elevated epithelial Gli2 expression in the Gast⁻/⁻ antra, the human gastric cell line AGS was treated with IL-1β and was found to increase GLI2 but decrease GLI1 levels. IL-1β also repressed human GAST gene expression. Indeed, GLI2 but not GLI1 or GLI3 expression repressed gastrin luciferase reporter activity by ∼50 percent. Moreover, chromatin immunoprecipitation of GLI2 in AGS cells confirmed that GLI2 directly binds to the GAST promoter. Using a mouse model of constitutively active epithelial GLI2 expression, we found that activated GLI2 repressed Gast expression but induced Il-1β gene expression and proliferation in the gastric antrum, along with a reduction of the number of G-cells. In summary

  8. Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Abdul-Rahman Omar

    2012-02-01

    Full Text Available Abstract Background There has been an increasing body of epidemiologic and biochemical evidence implying the role of cerebral insulin resistance in Alzheimer-type dementia. For a better understanding of the insulin effect on the central nervous system, we performed microarray-based global gene expression profiling in the hippocampus, striatum and prefrontal cortex of streptozotocin-induced and spontaneously diabetic Goto-Kakizaki rats as model animals for type 1 and type 2 diabetes, respectively. Results Following pathway analysis and validation of gene lists by real-time polymerase chain reaction, 30 genes from the hippocampus, such as the inhibitory neuropeptide galanin, synuclein gamma and uncoupling protein 2, and 22 genes from the prefrontal cortex, e.g. galanin receptor 2, protein kinase C gamma and epsilon, ABCA1 (ATP-Binding Cassette A1, CD47 (Cluster of Differentiation 47 and the RET (Rearranged During Transfection protooncogene, were found to exhibit altered expression levels in type 2 diabetic model animals in comparison to non-diabetic control animals. These gene lists proved to be partly overlapping and encompassed genes related to neurotransmission, lipid metabolism, neuronal development, insulin secretion, oxidative damage and DNA repair. On the other hand, no significant alterations were found in the transcriptomes of the corpus striatum in the same animals. Changes in the cerebral gene expression profiles seemed to be specific for the type 2 diabetic model, as no such alterations were found in streptozotocin-treated animals. Conclusions According to our knowledge this is the first characterization of the whole-genome expression changes of specific brain regions in a diabetic model. Our findings shed light on the complex role of insulin signaling in fine-tuning brain functions, and provide further experimental evidence in support of the recently elaborated theory of type 3 diabetes.

  9. The ducky2J mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression

    Science.gov (United States)

    Donato, Roberta; Page, Karen M.; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A.; Dolphin, Annette C.

    2006-01-01

    The mouse mutant ducky and its allele ducky2J represent a model for absence epilepsy characterized by spike-wave seizures, and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the α2δ-2 calcium channel subunit. Of relevance to the ataxic phenotype, α2δ-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2du2J mutation results in a two base-pair deletion in the coding region and a complete loss of α2δ-2 protein. Here we show that du2J/du2J mice have a 30% reduction in somatic calcium current, and a marked fall in the spontaneous PC firing rate at 22°C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34°C du2J/du2J PCs show no spontaneous intrinsic activity. Du2J/du2J mice also have alterations in the cerebellar expression of several genes related to PC function. At P21 there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du2J/+ mice have a marked reduction in α2δ-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tryrosine hydroxylase gene expression. However, du2J/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in α2δ-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of α2δ-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma. PMID:17135419

  10. Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart

    DEFF Research Database (Denmark)

    Hotowy, Anna Malgorzata; Sawosz, Ewa; Pineda, Lane Manalili

    2012-01-01

    Nanoparticles of colloidal silver (AgNano) can influence gene expression. Concerning trials of AgNano application in poultry as antimicrobial and metabolic agents, it is useful to reveal whether they affect the expression of genes crucial for bird development. AgNano were administered to broiler...... chickens as a water solution in two concentrations (10 and 20 ppm). After dissection of the birds, breast muscles and hearts were collected. Gene expression of FGF2 and VEGF on the mRNA and protein levels were evaluated using qPCR and ELISA methods. The results for gene expression in breast muscle revealed...

  11. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways

    DEFF Research Database (Denmark)

    Palsgaard, J.; Brøns, C.; Friedrichsen, M.

    2009-01-01

    BACKGROUND: Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing...... type 2 diabetes, they provide a good model in the search for primary causes of the disease. METHODS/PRINCIPAL FINDINGS: We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression...... downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin). LDHB was found to have a decreased expression in both groups compared to controls. CONCLUSIONS...

  12. Gene-expression analysis of matrix metalloproteinases 1 and 2 and their tissue inhibitors in chronic periapical inflammatory lesions.

    Science.gov (United States)

    Hadziabdic, Naida; Kurtovic-Kozaric, Amina; Pojskic, Naris; Sulejmanagic, Nedim; Todorovic, Ljubomir

    2016-03-01

    Periapical inflammatory lesions have been investigated previously, but understanding of pathogenesis of these lesions (granulomas and radicular cysts) at the molecular level is still questionable. Matrix metalloproteinases (MMPs) are enzymes involved in the development of periapical pathology, specifically inflammation and tissue destruction. To elucidate pathogenesis of periapical granulomas and radicular cysts, we undertook a detailed analysis of gene expression of MMP-1, MMP-2 and their tissue inhibitors, TIMP-1 and TIMP-2. A total of 149 samples were analyzed using real-time PCR (59 radicular cysts, 50 periapical granulomas and 40 healthy gingiva samples as controls) for expression of MMP-1, MMP-2, TIMP-1 and TIMP-2 genes. The determination of best reference gene for expression analysis of periapical lesions was done using a panel of 12 genes. We have shown that β-actin and GAPDH are not the most stable reference controls for gene expression analysis of inflammatory periapical tissues and healthy gingiva. The most suitable reference gene was determined to be SDHA (a succinate dehydrogenase complex, subunit A, flavoprotein [Fp]). We found that granulomas (n = 50) and radicular cysts (n = 59) exhibited significantly higher expression of all four examined genes, MMP-1, MMP-2, TIMP-1, and TIMP-2, when compared to healthy gingiva (n = 40; P periapical inflammatory lesions. Since the abovementioned markers were not differentially expressed in periapical granulomas and radicular cysts, the challenge of finding the genetic differences between the two lesions still remains. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Alteration in CatSper1 and 2 genes expression, sperm parameters and testis histology in varicocelized rats.

    Science.gov (United States)

    Soleimani, Maryam Zohour; Jalali Mashayekhi, Farideh; Mousavi Hasanzade, Morteza; Baazm, Maryam

    2018-03-01

    CatSper gene, a member of cation channel sperm family, has an essential role in sperm motility and male fertility. Following varicocele, sperm parameters especially sperm movement decreases. For this reason, we hypothesized that CatSper gene expression might be reduced after varicocele induction in an animal model. The aim of this study was to evaluate the expression of CatSper 1 and 2 genes, sperm parameters and testis histology following varicocele induction . A total of 30 Wistar male rats were randomly divided into three following groups (n=10/ each): control, sham, and varicocele group. Experimental varicocele was induced by partial ligation of the left renal vein. The epididymal sperm parameters, CatSper 1 and 2 genes expression, and testes histology were studied two months after varicocele induction. Our results revealed that motility (32.73±16.14%), morphology (48.80±17%) and viability (31.23±9.82%) of sperms significantly reduced following varicocele induction. In addition, we showed a significant decrease in the number of spermatogonia (43.63±5.31) and seminiferous tubules diameters (190.51±19.23 mm) in experimental varicocele rats. The level of CatSper 1 and 2 genes expression evaluated using real-time polymerase chain reaction was significantly downregulated 2 months after varicocele induction. Our data indicated that experimental varicocele has deleterious effects on sperm parameters, testis structure as well as the expression of CatSper 1 and 2 genes.

  14. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.

  15. First intron of nestin gene regulates its expression during C2C12 myoblast ifferentiation

    Institute of Scientific and Technical Information of China (English)

    Hua Zhong; Zhigang Jin; Yongfeng Chen; Ting Zhang; Wei Bian; Xing Cui; Naihe Jing

    2008-01-01

    Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Nestin is an intermediate filament protein expressed in neural progenitor cells and in developing skeletal muscle. Nestin has been widely used as a neural progenitor cell marker. It is well established that the specific expression of the nestin gene in neural progenitor cells is conferred by the neural-specific enhancer located in the second intron of the nestin gene. However, the transcriptional mechanism of nestin expression in developing muscle is still unclear. In this study, we identified a muscle cell-specific enhancer in the first intron of mouse nestin gene in mouse myoblast C2C12 cells.We localized the core enhancer activity to the 291-661 region of the first intron, and showed that the two E-boxes in the core enhancer region were important for enhancer activity in differentiating C2C12 cells. We also showed that MyoD protein was involved in the regulation of nestin expression in the myogenic differentiation of C2C12 cells.

  16. Dlx homeobox gene family expression in osteoclasts.

    Science.gov (United States)

    Lézot, F; Thomas, B L; Blin-Wakkach, C; Castaneda, B; Bolanos, A; Hotton, D; Sharpe, P T; Heymann, D; Carles, G F; Grigoriadis, A E; Berdal, A

    2010-06-01

    Skeletal growth and homeostasis require the finely orchestrated secretion of mineralized tissue matrices by highly specialized cells, balanced with their degradation by osteoclasts. Time- and site-specific expression of Dlx and Msx homeobox genes in the cells secreting these matrices have been identified as important elements in the regulation of skeletal morphology. Such specific expression patterns have also been reported in osteoclasts for Msx genes. The aim of the present study was to establish the expression patterns of Dlx genes in osteoclasts and identify their function in regulating skeletal morphology. The expression patterns of all Dlx genes were examined during the whole osteoclastogenesis using different in vitro models. The results revealed that Dlx1 and Dlx2 are the only Dlx family members with a possible function in osteoclastogenesis as well as in mature osteoclasts. Dlx5 and Dlx6 were detected in the cultures but appear to be markers of monocytes and their derivatives. In vivo, Dlx2 expression in osteoclasts was examined using a Dlx2/LacZ transgenic mouse. Dlx2 is expressed in a subpopulation of osteoclasts in association with tooth, brain, nerve, and bone marrow volumetric growths. Altogether the present data suggest a role for Dlx2 in regulation of skeletal morphogenesis via functions within osteoclasts. (c) 2010 Wiley-Liss, Inc.

  17. USP22 acts as an oncogene by regulating the stability of cyclooxygenase-2 in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haibo [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China); Tian, Yue [Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Yang, Yang; Hu, Fengqing; Xie, Xiao; Mei, Ju [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China); Ding, Fangbao, E-mail: drnail@sina.com [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China)

    2015-05-08

    The histone ubiquitin hydrolase ubiquitin-specific protease 22 (USP22) is an epigenetic modifier and an oncogene that is upregulated in many types of cancer. In non-small cell lung cancer (NSCLC), aberrant expression of USP22 is a predictor of poor survival, as is high expression of cyclooxygenase-2 (COX-2). Despite its oncogenic role, few substrates of USP22 have been identified and its mechanism of action in cancer remains unclear. Here, we identified COX-2 as a direct substrate of USP22 and showed that its levels are modulated by USP22 mediated deubiquitination. Silencing of USP22 downregulated COX-2, decreased its half-life, and inhibited lung carcinoma cell proliferation by directly interacting with and modulating the stability and activity of COX-2 through the regulation of its ubiquitination status. The findings of the present study suggest a potential mechanism underlying the oncogenic role of USP22 mediated by the modulation of the stability and activity of COX-2. - Highlights: • USP22 interacts with COX-2. • USP22 deubiquitinates and stabilizes COX-2. • USP22 is required for COX-2-mediated upregulation of prostaglandin E2.

  18. Profiling Gene Expression in Germinating Brassica Roots.

    Science.gov (United States)

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  19. Effects of 2G on Gene Expression of Stress-Related Hormones in Rat Placenta

    Science.gov (United States)

    Benson, S.; Talyansky, Y.; Moyer, E. L.; Lowe, M.; Baer, L. A.; Ronca, A. E.

    2017-01-01

    Understanding the effects of spaceflight on mammalian reproductive and developmental physiology is important to future human space exploration and permanent settlement beyond Earth orbit. Fetal developmental programming, including modulation of the HPA axis, is thought to originate at the placental-uterine interface, where both transfer of maternal hormones to the fetus and synthesis of endogenous hormones occurs. In healthy rats, fetal corticosterone levels are kept significantly lower by 11BetaHSD-2, which inactivates corticosterone by conversion into cortisone. Placental tissues express endogenous HPA axis-associated hormones including corticotropin-releasing hormone (CRH), pre-opiomelanocortin (POMC), and vasopressin, which may contribute to fetal programming alongside maternal hormones. DNA methylase 3A, 11BetaHSD-2, and 11BetaHSD-1, which are involved in the regulation of maternal cortisol transfer and modulation of the HPA axis, are also expressed in placental tissues along with glucocorticoid receptor and may be affected by differential gravity exposure during pregnancy. Fetuses may respond differently to maternal glucocorticoid exposure during gestation through sexually dimorphic expression of corticosterone-modulating hormones. To elucidate effects of altered gravity on placental gene expression, here we present a ground-based analogue study involving continuous centrifugation to produce 2g hypergravity. We hypothesized that exposure to 2g would induce a decrease in 11BetaHSD-2 expression through the downregulation of DNA methylase 3a and GC receptor, along with concurrent upregulation in endogenous CRH, POMC, and vasopressin expression. Timed pregnant female rats were exposed to 2G from Gestational day 6 to Gestational day 20, and comparisons made with Stationary Control (SC) and Vivarium Control (VC) dams at 1G. Dams were euthanized and placentas harvested on G20. We homogenized placental tissues, extracted and purified RNA, synthesized cDNA, and

  20. Catalase overexpression prevents nuclear factor erythroid 2-related factor 2 stimulation of renal angiotensinogen gene expression, hypertension, and kidney injury in diabetic mice.

    Science.gov (United States)

    Abdo, Shaaban; Shi, Yixuan; Otoukesh, Abouzar; Ghosh, Anindya; Lo, Chao-Sheng; Chenier, Isabelle; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao Ling; Chan, John S D

    2014-10-01

    This study investigated the impact of catalase (Cat) overexpression in renal proximal tubule cells (RPTCs) on nuclear factor erythroid 2-related factor 2 (Nrf2) stimulation of angiotensinogen (Agt) gene expression and the development of hypertension and renal injury in diabetic Akita transgenic mice. Additionally, adult male mice were treated with the Nrf2 activator oltipraz with or without the inhibitor trigonelline. Rat RPTCs, stably transfected with plasmid containing either rat Agt or Nrf2 gene promoter, were also studied. Cat overexpression normalized systolic BP, attenuated renal injury, and inhibited RPTC Nrf2, Agt, and heme oxygenase-1 (HO-1) gene expression in Akita Cat transgenic mice compared with Akita mice. In vitro, high glucose level, hydrogen peroxide, and oltipraz stimulated Nrf2 and Agt gene expression; these changes were blocked by trigonelline, small interfering RNAs of Nrf2, antioxidants, or pharmacological inhibitors of nuclear factor-κB and p38 mitogen-activated protein kinase. The deletion of Nrf2-responsive elements in the rat Agt gene promoter abolished the stimulatory effect of oltipraz. Oltipraz administration also augmented Agt, HO-1, and Nrf2 gene expression in mouse RPTCs and was reversed by trigonelline. These data identify a novel mechanism, Nrf2-mediated stimulation of intrarenal Agt gene expression and activation of the renin-angiotensin system, by which hyperglycemia induces hypertension and renal injury in diabetic mice. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Vascular endothelial growth factor and not cyclooxygenase 2 promotes endothelial cell viability in the pancreatic tumor microenvironment.

    LENUS (Irish Health Repository)

    Toomey, Desmond P

    2010-07-01

    Cyclooxygenase 2 (COX-2) and vascular endothelial growth factor (VEGF), often coexpressed in cancer, are associated with poor prognosis. However, results from pancreatic cancer trials of their inhibitors were disappointing. This study delineated the role of COX-2 and nonsteroidal anti-inflammatory drugs in angiogenesis and VEGF regulation.

  2. Acute Vhl gene inactivation induces cardiac HIF-dependent erythropoietin gene expression.

    Directory of Open Access Journals (Sweden)

    Marta Miró-Murillo

    Full Text Available Von Hippel Lindau (Vhl gene inactivation results in embryonic lethality. The consequences of its inactivation in adult mice, and of the ensuing activation of the hypoxia-inducible factors (HIFs, have been explored mainly in a tissue-specific manner. This mid-gestation lethality can be also circumvented by using a floxed Vhl allele in combination with an ubiquitous tamoxifen-inducible recombinase Cre-ER(T2. Here, we characterize a widespread reduction in Vhl gene expression in Vhl(floxed-UBC-Cre-ER(T2 adult mice after dietary tamoxifen administration, a convenient route of administration that has yet to be fully characterized for global gene inactivation. Vhl gene inactivation rapidly resulted in a marked splenomegaly and skin erythema, accompanied by renal and hepatic induction of the erythropoietin (Epo gene, indicative of the in vivo activation of the oxygen sensing HIF pathway. We show that acute Vhl gene inactivation also induced Epo gene expression in the heart, revealing cardiac tissue to be an extra-renal source of EPO. Indeed, primary cardiomyocytes and HL-1 cardiac cells both induce Epo gene expression when exposed to low O(2 tension in a HIF-dependent manner. Thus, as well as demonstrating the potential of dietary tamoxifen administration for gene inactivation studies in UBC-Cre-ER(T2 mouse lines, this data provides evidence of a cardiac oxygen-sensing VHL/HIF/EPO pathway in adult mice.

  3. Gene expression results in lipopolysaccharide-stimulated monocytes depend significantly on the choice of reference genes

    Directory of Open Access Journals (Sweden)

    Øvstebø Reidun

    2010-05-01

    Full Text Available Abstract Background Gene expression in lipopolysaccharide (LPS-stimulated monocytes is mainly studied by quantitative real-time reverse transcription PCR (RT-qPCR using GAPDH (glyceraldehyde 3-phosphate dehydrogenase or ACTB (beta-actin as reference gene for normalization. Expression of traditional reference genes has been shown to vary substantially under certain conditions leading to invalid results. To investigate whether traditional reference genes are stably expressed in LPS-stimulated monocytes or if RT-qPCR results are dependent on the choice of reference genes, we have assessed and evaluated gene expression stability of twelve candidate reference genes in this model system. Results Twelve candidate reference genes were quantified by RT-qPCR in LPS-stimulated, human monocytes and evaluated using the programs geNorm, Normfinder and BestKeeper. geNorm ranked PPIB (cyclophilin B, B2M (beta-2-microglobulin and PPIA (cyclophilin A as the best combination for gene expression normalization in LPS-stimulated monocytes. Normfinder suggested TBP (TATA-box binding protein and B2M as the best combination. Compared to these combinations, normalization using GAPDH alone resulted in significantly higher changes of TNF-α (tumor necrosis factor-alpha and IL10 (interleukin 10 expression. Moreover, a significant difference in TNF-α expression between monocytes stimulated with equimolar concentrations of LPS from N. meningitides and E. coli, respectively, was identified when using the suggested combinations of reference genes for normalization, but stayed unrecognized when employing a single reference gene, ACTB or GAPDH. Conclusions Gene expression levels in LPS-stimulated monocytes based on RT-qPCR results differ significantly when normalized to a single gene or a combination of stably expressed reference genes. Proper evaluation of reference gene stabiliy is therefore mandatory before reporting RT-qPCR results in LPS-stimulated monocytes.

  4. Screening key genes for abdominal aortic aneurysm based on gene expression omnibus dataset.

    Science.gov (United States)

    Wan, Li; Huang, Jingyong; Ni, Haizhen; Yu, Guanfeng

    2018-02-13

    Abdominal aortic aneurysm (AAA) is a common cardiovascular system disease with high mortality. The aim of this study was to identify potential genes for diagnosis and therapy in AAA. We searched and downloaded mRNA expression data from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) from AAA and normal individuals. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, transcriptional factors (TFs) network and protein-protein interaction (PPI) network were used to explore the function of genes. Additionally, immunohistochemical (IHC) staining was used to validate the expression of identified genes. Finally, the diagnostic value of identified genes was accessed by receiver operating characteristic (ROC) analysis in GEO database. A total of 1199 DEGs (188 up-regulated and 1011 down-regulated) were identified between AAA and normal individual. KEGG pathway analysis displayed that vascular smooth muscle contraction and pathways in cancer were significantly enriched signal pathway. The top 10 up-regulated and top 10 down-regulated DEGs were used to construct TFs and PPI networks. Some genes with high degrees such as NELL2, CCR7, MGAM, HBB, CSNK2A2, ZBTB16 and FOXO1 were identified to be related to AAA. The consequences of IHC staining showed that CCR7 and PDGFA were up-regulated in tissue samples of AAA. ROC analysis showed that NELL2, CCR7, MGAM, HBB, CSNK2A2, ZBTB16, FOXO1 and PDGFA had the potential diagnostic value for AAA. The identified genes including NELL2, CCR7, MGAM, HBB, CSNK2A2, ZBTB16, FOXO1 and PDGFA might be involved in the pathology of AAA.

  5. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO{sub 2}, and fullerene soot

    Energy Technology Data Exchange (ETDEWEB)

    Landa, Premysl [Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); Vankova, Radomira [Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); Andrlova, Jana [Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); Department of Crop Sciences and Agroforestry, Institute of Tropics and Subtropics, Czech University of Life Sciences Prague, 165 21 Prague 6 - Suchdol (Czech Republic); Hodek, Jan [Department of Molecular Biology, Crop Research Institute, v.v.i., 161 06 Praha 6 - Ruzyne (Czech Republic); Marsik, Petr [Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); Storchova, Helena [Plant Reproduction Laboratory, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic); White, Jason C. [Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06512 (United States); Vanek, Tomas, E-mail: vanek@ueb.cas.cz [Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., 165 02 Prague 6 - Lysolaje (Czech Republic)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Exposure to different nanoparticles resulted in specific changes in gene transcription. Black-Right-Pointing-Pointer Nano ZnO caused most dramatic changes in Arabidopsis gene expression. Black-Right-Pointing-Pointer Nano ZnO was the most toxic and up-regulated most stress-related genes. Black-Right-Pointing-Pointer Fullerene soot caused significant gene expression response - mainly stress-related. Black-Right-Pointing-Pointer Nano TiO{sub 2} had weak impact on Arabidopsis gene expression indicating minimal toxicity. - Abstract: The effect of exposure to 100 mg/L zinc oxide (nZnO), fullerene soot (FS) or titanium dioxide (nTiO{sub 2}) nanoparticles on gene expression in Arabidopsis thaliana roots was studied using microarrays. After 7 d, nZnO, FS, or nTiO{sub 2} exposure resulted in 660 up- and 826 down-regulated genes, 232 up- and 189 down-regulated genes, and 80 up- and 74 down-regulated genes, respectively (expression difference > 2-fold; p[t test] < 0.05). The genes induced by nZnO and FS include mainly ontology groups annotated as stress responsive, including both abiotic (oxidative, salt, water deprivation) and biotic (wounding and defense to pathogens) stimuli. The down-regulated genes upon nZnO exposure were involved in cell organization and biogenesis, including translation, nucleosome assembly and microtubule based process. FS largely repressed the transcription of genes involved in electron transport and energy pathways. Only mild changes in gene expression were observed upon nTiO{sub 2} exposure, which resulted in up- and down-regulation of genes involved mainly in responses to biotic and abiotic stimuli. The data clearly indicate that the mechanisms of phytotoxicity are highly nanoparticle dependent despite of a limited overlap in gene expression response.

  6. Gene Expression of Glucose Transporter 1 (GLUT1), Hexokinase 1 and Hexokinase 2 in Gastroenteropancreatic Neuroendocrine Tumors

    DEFF Research Database (Denmark)

    Binderup, Tina; Knigge, Ulrich; Federspiel, Birgitte Hartnack

    2013-01-01

    -associated genes and to compare this with FDG-PET imaging as well as with the cellular proliferation index in two cancer entities with different malignant potential. Using real-time PCR, gene expression of GLUT1, HK1 and HK2 were studied in 34 neuroendocrine tumors (NETs) in comparison with 14 colorectal...... adenocarcinomas (CRAs). The Ki67 proliferation index and, when available, FDG-PET imaging was compared with gene expression. Overexpression of GLUT1 gene expression was less frequent in NETs (38%) compared to CRAs (86%), P = 0.004. HK1 was overexpressed in 41% and 71% of NETs and CRAs, respectively (P = 0.......111) and HK2 was overexpressed in 50% and 64% of NETs and CRAs, respectively (P = 0.53). There was a significant correlation between the Ki67 proliferation index and GLUT1 gene expression for the NETs (R = 0.34, P = 0.047), but no correlation with the hexokinases. FDG-PET identified foci in significantly...

  7. Tumoral Environment Triggers Transcript Anomalies in Established Tumors: Induction of Altered Gene Expression and of Aberrant, Truncated and B2 Repeat-Containing Gene Transcripts

    Directory of Open Access Journals (Sweden)

    Pieter Rottiers

    1999-12-01

    Full Text Available In addition to eugenetic changes, cancerous cells exhibit extensive modifications in the expression levels of a variety of genes. The phenotypic switch observed after inoculation of T lymphoma cells into syngenic mice illustrates the active participation of tumoral environment in the induction of an aberrant gene expression pattern. To further substantiate this contribution, we performed polymerase chain reaction (PCR-based subtraction suppression hybridization (SSH to identify genes that are differentially expressed in tumor-derived EL4/13.3 cells compared to the same cells isolated from cultures. Besides a number of unknown genes, the subtracted library contained several known genes that have been reported to be expressed at increased levels in tumors and/or to contribute to carcinogenesis. Apart from clones representing translated transcripts, the subtracted library also contained a high number of clones representing B2 repeat elements, viz. short interspersed repetitive elements that are transcribed by RNA polymerase III. Northern blotting confirmed the induction of B2 transcripts in tumor tissue and also revealed induction of chimeric, B2 repeat-containing mRNA. The appearance of chimeric transcripts was accompanied by aberrant, shorter-than-full-length transcripts, specifically from upregulated genes. Accordingly, in addition to altered gene expression, tumoral environmental triggers constitute a potent mechanism to create an epigenetic diversity in cancers by inducing extensive transcript anomalies.

  8. Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Diaz-Villasenor, Andrea; Burns, Anna L.; Hiriart, Marcia; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia

    2007-01-01

    Chronic exposure to high concentrations of arsenic in drinking water is associated with an increased risk for developing type 2 diabetes. The present revision focuses on the effect of arsenic on tissues that participate directly in glucose homeostasis, integrating the most important published information about the impairment of the expression of genes related to type 2 diabetes by arsenic as one of the possible mechanisms by which it leads to the disease. Many factors are involved in the manner in which arsenic contributes to the occurrence of diabetes. The reviewed studies suggest that arsenic might increase the risk for type 2 diabetes via multiple mechanisms, affecting a cluster of regulated events, which in conjunction trigger the disease. Arsenic affects insulin sensitivity in peripheral tissue by modifying the expression of genes involved in insulin resistance and shifting away cells from differentiation to the proliferation pathway. In the liver arsenic disturbs glucose production, whereas in pancreatic beta-cells arsenic decreases insulin synthesis and secretion and reduces the expression of antioxidant enzymes. The consequences of these changes in gene expression include the reduction of insulin secretion, induction of oxidative stress in the pancreas, alteration of gluconeogenesis, abnormal proliferation and differentiation pattern of muscle and adipocytes as well as peripheral insulin resistance

  9. Inhibition of cyclooxygenase 2 in mice increases production of G-CSF and induces radioprotection

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Holá, Jiřina; Vacek, Antonín; Štreitová, Denisa; Znojil, V.

    2008-01-01

    Roč. 170, č. 5 (2008), s. 566-571 ISSN 0033-7587 R&D Projects: GA ČR(CZ) GA305/08/0158; GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : cyclooxygenase 2 * G- CSF * meloxicam Subject RIV: BO - Biophysics Impact factor: 3.043, year: 2008

  10. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...... Arabidopsis microarray experiments. CONCLUSIONS: Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/....

  11. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  12. Differential gene expression by 1,25(OH)2D3 in an endometriosis stromal cell line.

    Science.gov (United States)

    Ingles, Sue Ann; Wu, Liang; Liu, Benjamin T; Chen, Yibu; Wang, Chun-Yeh; Templeman, Claire; Brueggmann, Doerthe

    2017-10-01

    Endometriosis is a common female reproductive disease characterized by invasion of endometrial cells into other organs, frequently causing pelvic pain and infertility. Alterations of the vitamin D system have been linked to endometriosis incidence and severity. To shed light on the potential mechanism for these associations, we examined the effects of 1,25(OH) 2 D 3 on gene expression in endometriosis cells. Stromal cell lines derived from endometriosis tissue were treated with 1,25(OH) 2 D 3 , and RNA-seq was used to identify genes differentially expressed between treated and untreated cells. Gene ontology and pathway analyses were carried out using Partek Flow and Ingenuity software suites, respectively. We identified 1627 genes that were differentially expressed (886 down-regulated and 741 up-regulated) by 1,25(OH) 2 D 3 . Only one gene, CYP24A1, was strongly up-regulated (369-fold). Many genes were strongly down-regulated. 1,25(OH) 2 D 3 treatment down-regulated several genetic pathways related to neuroangiogenesis, cellular motility, and invasion, including pathways for axonal guidance, Rho GDP signaling, and matrix metalloprotease inhibition. These findings support a role for vitamin D in the pathophysiology of endometriosis, and provide new targets for investigation into possible causes and treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    Science.gov (United States)

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  15. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Neutelings Godfrey

    2010-04-01

    Full Text Available Abstract Background Quantitative real-time PCR (qRT-PCR is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs. Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L. Results Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups. qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59. LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both ge

  16. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Huis, Rudy; Hawkins, Simon; Neutelings, Godfrey

    2010-04-19

    Quantitative real-time PCR (qRT-PCR) is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs). Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L). Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs) and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH) as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups.qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59). LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both geNorm-designated- and Norm

  17. Rare pneumoconiosis induced by long-term amorphous silica exposure: the histological characteristics and expression of cyclooxygenase-2 as an antifibrogenic mediator in macrophages.

    Science.gov (United States)

    Kumasaka, Toshio; Akaike, Yasushi; Nakamura, Osamu; Yamazaki, Kazuma; Moriyama, Hiroshi; Takemura, Tamiko

    2011-11-01

    Pneumoconiosis induced by non-crystalline silica is considered rare, although silicosis resulting from contact with crystalline silica is a well-known hazard associated with progressive pulmonary fibrosis. Here we describe a patient with pneumoconiosis induced by diatomaceous earth composed of amorphous silica detected by two-dimensional imaging of chemical elements. The histology revealed that the disease was characterized by a granulomatous reaction in the lung. A large number of macrophages laden with yellow and black pigments accumulated in alveolar spaces and were incorporated into the interstitial sites. Bronchiolar walls were destroyed by palisade macrophages, suggesting airflow obstruction. Packed macrophages adhering to and covering the denuded interstitium indicated that macrophages might be incorporated into pulmonary interstitium in this fashion. Immunohistochemistry showed that cyclooxygenase-2, an antifibrogenic mediator, was intensely expressed in the macrophages compared with macrophages in control lungs. No birefringent material was found in the tissues. When two-dimensional analysis of chemical elements was performed using an electron probe microanalyzer with a wavelength-dispersive spectrometer, the resultant fine mapping of silicon and oxygen on the tissue indicated that the pigments phagocytosed by macrophages corresponded to amorphous silica. In conclusion, two-dimensional analysis of elements is very useful for pathologists in correlating the presence of chemical elements with histological changes. © 2011 The Authors. Pathology International © 2011 Japanese Society of Pathology and Blackwell Publishing Asia Pty Ltd.

  18. iSyTE 2.0: a database for expression-based gene discovery in the eye

    Science.gov (United States)

    Kakrana, Atul; Yang, Andrian; Anand, Deepti; Djordjevic, Djordje; Ramachandruni, Deepti; Singh, Abhyudai; Huang, Hongzhan

    2018-01-01

    Abstract Although successful in identifying new cataract-linked genes, the previous version of the database iSyTE (integrated Systems Tool for Eye gene discovery) was based on expression information on just three mouse lens stages and was functionally limited to visualization by only UCSC-Genome Browser tracks. To increase its efficacy, here we provide an enhanced iSyTE version 2.0 (URL: http://research.bioinformatics.udel.edu/iSyTE) based on well-curated, comprehensive genome-level lens expression data as a one-stop portal for the effective visualization and analysis of candidate genes in lens development and disease. iSyTE 2.0 includes all publicly available lens Affymetrix and Illumina microarray datasets representing a broad range of embryonic and postnatal stages from wild-type and specific gene-perturbation mouse mutants with eye defects. Further, we developed a new user-friendly web interface for direct access and cogent visualization of the curated expression data, which supports convenient searches and a range of downstream analyses. The utility of these new iSyTE 2.0 features is illustrated through examples of established genes associated with lens development and pathobiology, which serve as tutorials for its application by the end-user. iSyTE 2.0 will facilitate the prioritization of eye development and disease-linked candidate genes in studies involving transcriptomics or next-generation sequencing data, linkage analysis and GWAS approaches. PMID:29036527

  19. Understanding gene expression in coronary artery disease through ...

    Indian Academy of Sciences (India)

    Understanding gene expression in coronary artery disease through global profiling, network analysis and independent validation of key candidate genes. Prathima ... Table 2. Differentially expressed genes in CAD compared to age and gender matched controls. .... Regulation of nuclear pre-mRNA domain containing 1A.

  20. A longitudinal study of gene expression in healthy individuals

    Directory of Open Access Journals (Sweden)

    Tessier Michel

    2009-06-01

    Full Text Available Abstract Background The use of gene expression in venous blood either as a pharmacodynamic marker in clinical trials of drugs or as a diagnostic test requires knowledge of the variability in expression over time in healthy volunteers. Here we defined a normal range of gene expression over 6 months in the blood of four cohorts of healthy men and women who were stratified by age (22–55 years and > 55 years and gender. Methods Eleven immunomodulatory genes likely to play important roles in inflammatory conditions such as rheumatoid arthritis and infection in addition to four genes typically used as reference genes were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, as well as the full genome as represented by Affymetrix HG U133 Plus 2.0 microarrays. Results Gene expression levels as assessed by qRT-PCR and microarray were relatively stable over time with ~2% of genes as measured by microarray showing intra-subject differences over time periods longer than one month. Fifteen genes varied by gender. The eleven genes examined by qRT-PCR remained within a limited dynamic range for all individuals. Specifically, for the seven most stably expressed genes (CXCL1, HMOX1, IL1RN, IL1B, IL6R, PTGS2, and TNF, 95% of all samples profiled fell within 1.5–2.5 Ct, the equivalent of a 4- to 6-fold dynamic range. Two subjects who experienced severe adverse events of cancer and anemia, had microarray gene expression profiles that were distinct from normal while subjects who experienced an infection had only slightly elevated levels of inflammatory markers. Conclusion This study defines the range and variability of gene expression in healthy men and women over a six-month period. These parameters can be used to estimate the number of subjects needed to observe significant differences from normal gene expression in clinical studies. A set of genes that varied by gender was also identified as were a set of genes with elevated

  1. Effect of metal sulfide pulp density on gene expression of electron transporters in Acidithiobacillus sp. FJ2.

    Science.gov (United States)

    Fatemi, Faezeh; Miri, Saba; Jahani, Samaneh

    2017-05-01

    In Acidithiobacillus ferrooxidans, one of the most important bioleaching bacterial species, the proteins encoded by the rus operon are involved in the electron transfer from Fe 2+ to O 2 . To obtain further knowledge about the mechanism(s) involved in the adaptive responses of the bacteria to growth on the different uranium ore pulp densities, we analyzed the expression of the four genes from the rus operon by real-time PCR, when Acidithiobacillus sp. FJ2 was grown in the presence of different uranium concentrations. The uranium bioleaching results showed the inhibitory effects of the metal pulp densities on the oxidation activity of the bacteria which can affect Eh, pH, Fe oxidation and uranium extractions. Gene expression analysis indicated that Acidithiobacillus sp. FJ2 tries to survive in the stress with increasing in the expression levels of cyc2, cyc1, rus and coxB, but the metal toxicity has a negative effect on the gene expression in different pulp densities. These results indicated that Acidithiobacillus sp. FJ2 could leach the uranium even in high pulp density (50%) by modulation in rus operon gene responses.

  2. PointCloudExplore 2: Visual exploration of 3D gene expression

    Energy Technology Data Exchange (ETDEWEB)

    International Research Training Group Visualization of Large and Unstructured Data Sets, University of Kaiserslautern, Germany; Institute for Data Analysis and Visualization, University of California, Davis, CA; Computational Research Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA; Genomics Division, LBNL; Computer Science Department, University of California, Irvine, CA; Computer Science Division,University of California, Berkeley, CA; Life Sciences Division, LBNL; Department of Molecular and Cellular Biology and the Center for Integrative Genomics, University of California, Berkeley, CA; Ruebel, Oliver; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Keranen, Soile V.E.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; DePace, Angela H.; Simirenko, L.; Eisen, Michael B.; Biggin, Mark D.; Hagen, Hand; Malik, Jitendra; Knowles, David W.; Hamann, Bernd

    2008-03-31

    To better understand how developmental regulatory networks are defined inthe genome sequence, the Berkeley Drosophila Transcription Network Project (BDNTP)has developed a suite of methods to describe 3D gene expression data, i.e.,the output of the network at cellular resolution for multiple time points. To allow researchersto explore these novel data sets we have developed PointCloudXplore (PCX).In PCX we have linked physical and information visualization views via the concept ofbrushing (cell selection). For each view dedicated operations for performing selectionof cells are available. In PCX, all cell selections are stored in a central managementsystem. Cells selected in one view can in this way be highlighted in any view allowingfurther cell subset properties to be determined. Complex cell queries can be definedby combining different cell selections using logical operations such as AND, OR, andNOT. Here we are going to provide an overview of PointCloudXplore 2 (PCX2), thelatest publicly available version of PCX. PCX2 has shown to be an effective tool forvisual exploration of 3D gene expression data. We discuss (i) all views available inPCX2, (ii) different strategies to perform cell selection, (iii) the basic architecture ofPCX2., and (iv) illustrate the usefulness of PCX2 using selected examples.

  3. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Lithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase-2

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2014-01-01

    In patients, chronic treatment with lithium leads to renal microcysts and nephrogenic diabetes insipidus (NDI). It was hypothesized that renal cyclooxygenase-2 (COX-2) activity promotes microcyst formation and NDI. Kidney microcysts were induced in male adolescent rats by feeding dams with lithium......, and inactive pGSK-3β in collecting duct; a blocker of COX-2 does not prevent cell proliferation, cyst formation, or GSK-3β inactivation. It is concluded that COX-2 activity is not the primary cause for microcysts and polyuria in a NaCl-substituted rat model of lithium nephropathy. COX-1 is a relevant candidate...

  5. Store-operated Ca2+ Entry Modulates the Expression of Enamel Genes.

    Science.gov (United States)

    Nurbaeva, M K; Eckstein, M; Snead, M L; Feske, S; Lacruz, R S

    2015-10-01

    Dental enamel formation is an intricate process tightly regulated by ameloblast cells. The correct spatiotemporal patterning of enamel matrix protein (EMP) expression is fundamental to orchestrate the formation of enamel crystals, which depend on a robust supply of Ca2+. In the extracellular milieu, Ca2+ -EMP interactions occur at different levels. Despite its recognized role in enamel development, the molecular machinery involved in Ca2+ homeostasis in ameloblasts remains poorly understood. A common mechanism for Ca2+ influx is store-operated Ca2+ entry (SOCE). We evaluated the possibility that Ca2+ influx in enamel cells might be mediated by SOCE and the Ca2+ release-activated Ca2+ (CRAC) channel, the prototypical SOCE channel. Using ameloblast-like LS8 cells, we demonstrate that these cells express Ca2+ -handling molecules and mediate Ca2+ influx through SOCE. As a rise in the cytosolic Ca2+ concentration is a versatile signal that can modulate gene expression, we assessed whether SOCE in enamel cells had any effect on the expression of EMPs. Our results demonstrate that stimulating LS8 cells or murine primary enamel organ cells with thapsigargin to activate SOCE leads to increased expression of Amelx, Ambn, Enam, Mmp20. This effect is reversed when cells are treated with a CRAC channel inhibitor. These data indicate that Ca2+ influx in LS8 cells and enamel organ cells is mediated by CRAC channels and that Ca2+ signals enhance the expression of EMPs. Ca2+ plays an important role not only in mineralizing dental enamel but also in regulating the expression of EMPs. © International & American Associations for Dental Research 2015.

  6. Molecular Characterization and Expression Analysis of Adrenergic Receptor Beta 2 ( Gene before and after Exercise in the Horse

    Directory of Open Access Journals (Sweden)

    Hyun-Woo Cho

    2015-05-01

    Full Text Available The adrenergic receptor beta 2 (ADRB2 plays a role in various physiological responses of the muscle to exercise, such as contraction and relaxation. Given its important role in muscle function, we investigated the structure of the horse ADRB2 gene and its expression pattern after exercise to determine if it can serve as a putative biomarker for recovery. Evolutionary analyses using synonymous and non-synonymous mutation ratios, were compared with other species (human, chimpanzee, mouse, rat, cow, pig, chicken, dog, and cat, and revealed the occurrence of positive selection in the horse ADRB2 gene. In addition, expression analyses by quantitative polymerase chain reaction exhibited ubiquitous distribution of horse ADRB2 in various tissues including lung, skeletal muscle, kidney, thyroid, appendix, colon, spinal cord and heart, with the highest expression observed in the lung. The expression of ADRB2 in skeletal muscle was significantly up-regulated about four folds 30 minutes post-exercise compared to pre-exercise. The expression level of ADRB2 in leukocytes, which could be collected with convenience compared with other tissues in horse, increased until 60 min after exercise but decreased afterward until 120 min, suggesting the ADRB2 expression levels in leukocytes could be a useful biomarker to check the early recovery status of horse after exercise. In conclusion, we identified horse ADRB2 gene and analyzed expression profiles in various tissues. Additionally, analysis of ADBR2 gene expression in leukocytes could be a useful biomarker useful for evaluation of early recovery status after exercise in racing horses.

  7. Differential neutrophil gene expression in early bovine pregnancy

    Directory of Open Access Journals (Sweden)

    Kizaki Keiichiro

    2013-02-01

    Full Text Available Abstract Background In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT-stimulated gene expression in peripheral blood leukocytes (PBL, was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. Methods PBL were collected on days 0 (just before artificial insemination, 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15, myxovirus-resistance (MX 1 and 2, and 2′-5′-oligoadenylate synthetase (OAS1, were then analyzed in each fraction through day 28 of gestation using qPCR. Results Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte

  8. Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer.

    LENUS (Irish Health Repository)

    Perry, Antoinette S

    2013-04-15

    Aberrant activation of Wnts is common in human cancers, including prostate. Hypermethylation associated transcriptional silencing of Wnt antagonist genes SFRPs (Secreted Frizzled-Related Proteins) is a frequent oncogenic event. The significance of this is not known in prostate cancer. The objectives of our study were to (i) profile Wnt signaling related gene expression and (ii) investigate methylation of Wnt antagonist genes in prostate cancer. Using TaqMan Low Density Arrays, we identified 15 Wnt signaling related genes with significantly altered expression in prostate cancer; the majority of which were upregulated in tumors. Notably, histologically benign tissue from men with prostate cancer appeared more similar to tumor (r = 0.76) than to benign prostatic hyperplasia (BPH; r = 0.57, p < 0.001). Overall, the expression profile was highly similar between tumors of high (≥ 7) and low (≤ 6) Gleason scores. Pharmacological demethylation of PC-3 cells with 5-Aza-CdR reactivated 39 genes (≥ 2-fold); 40% of which inhibit Wnt signaling. Methylation frequencies in prostate cancer were 10% (2\\/20) (SFRP1), 64.86% (48\\/74) (SFRP2), 0% (0\\/20) (SFRP4) and 60% (12\\/20) (SFRP5). SFRP2 methylation was detected at significantly lower frequencies in high-grade prostatic intraepithelial neoplasia (HGPIN; 30%, (6\\/20), p = 0.0096), tumor adjacent benign areas (8.82%, (7\\/69), p < 0.0001) and BPH (11.43% (4\\/35), p < 0.0001). The quantitative level of SFRP2 methylation (normalized index of methylation) was also significantly higher in tumors (116) than in the other samples (HGPIN = 7.45, HB = 0.47, and BPH = 0.12). We show that SFRP2 hypermethylation is a common event in prostate cancer. SFRP2 methylation in combination with other epigenetic markers may be a useful biomarker of prostate cancer.

  9. Global gene expression profiling displays a network of dysregulated genes in non-atherosclerotic arterial tissue from patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Skov Vibe

    2012-02-01

    Full Text Available Abstract Background Generalized arterial alterations, such as endothelial dysfunction, medial matrix accumulations, and calcifications are associated with type 2 diabetes (T2D. These changes may render the vessel wall more susceptible to injury; however, the molecular characteristics of such diffuse pre-atherosclerotic changes in diabetes are only superficially known. Methods To identify the molecular alterations of the generalized arterial disease in T2D, DNA microarrays were applied to examine gene expression changes in normal-appearing, non-atherosclerotic arterial tissue from 10 diabetic and 11 age-matched non-diabetic men scheduled for a coronary by-pass operation. Gene expression changes were integrated with GO-Elite, GSEA, and Cytoscape to identify significant biological pathways and networks. Results Global pathway analysis revealed differential expression of gene-sets representing matrix metabolism, triglyceride synthesis, inflammation, insulin signaling, and apoptosis. The network analysis showed a significant cluster of dysregulated genes coding for both intra- and extra-cellular proteins associated with vascular cell functions together with genes related to insulin signaling and matrix remodeling. Conclusions Our results identify pathways and networks involved in the diffuse vasculopathy present in non-atherosclerotic arterial tissue in patients with T2D and confirmed previously observed mRNA-alterations. These abnormalities may play a role for the arterial response to injury and putatively for the accelerated atherogenesis among patients with diabetes.

  10. Gene expression profile data for mouse facial development

    Directory of Open Access Journals (Sweden)

    Sonia M. Leach

    2017-08-01

    Full Text Available This article contains data related to the research articles "Spatial and Temporal Analysis of Gene Expression during Growth and Fusion of the Mouse Facial Prominences" (Feng et al., 2009 [1] and “Systems Biology of facial development: contributions of ectoderm and mesenchyme” (Hooper et al., 2017 In press [2]. Embryonic mammalian craniofacial development is a complex process involving the growth, morphogenesis, and fusion of distinct facial prominences into a functional whole. Aberrant gene regulation during this process can lead to severe craniofacial birth defects, including orofacial clefting. As a means to understand the genes involved in facial development, we had previously dissected the embryonic mouse face into distinct prominences: the mandibular, maxillary or nasal between E10.5 and E12.5. The prominences were then processed intact, or separated into ectoderm and mesenchyme layers, prior analysis of RNA expression using microarrays (Feng et al., 2009, Hooper et al., 2017 in press [1,2]. Here, individual gene expression profiles have been built from these datasets that illustrate the timing of gene expression in whole prominences or in the separated tissue layers. The data profiles are presented as an indexed and clickable list of the genes each linked to a graphical image of that gene׳s expression profile in the ectoderm, mesenchyme, or intact prominence. These data files will enable investigators to obtain a rapid assessment of the relative expression level of any gene on the array with respect to time, tissue, prominence, and expression trajectory.

  11. Gene expression profiling following NRF2 and KEAP1 siRNA knockdown in human lung fibroblasts identifies CCL11/Eotaxin-1 as a novel NRF2 regulated gene

    Science.gov (United States)

    2012-01-01

    Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. PMID:23061798

  12. Stably Expressed Genes Involved in Basic Cellular Functions.

    Directory of Open Access Journals (Sweden)

    Kejian Wang

    Full Text Available Stably Expressed Genes (SEGs whose expression varies within a narrow range may be involved in core cellular processes necessary for basic functions. To identify such genes, we re-analyzed existing RNA-Seq gene expression profiles across 11 organs at 4 developmental stages (from immature to old age in both sexes of F344 rats (n = 4/group; 320 samples. Expression changes (calculated as the maximum expression / minimum expression for each gene of >19000 genes across organs, ages, and sexes ranged from 2.35 to >109-fold, with a median of 165-fold. The expression of 278 SEGs was found to vary ≤4-fold and these genes were significantly involved in protein catabolism (proteasome and ubiquitination, RNA transport, protein processing, and the spliceosome. Such stability of expression was further validated in human samples where the expression variability of the homologous human SEGs was significantly lower than that of other genes in the human genome. It was also found that the homologous human SEGs were generally less subject to non-synonymous mutation than other genes, as would be expected of stably expressed genes. We also found that knockout of SEG homologs in mouse models was more likely to cause complete preweaning lethality than non-SEG homologs, corroborating the fundamental roles played by SEGs in biological development. Such stably expressed genes and pathways across life-stages suggest that tight control of these processes is important in basic cellular functions and that perturbation by endogenous (e.g., genetics or exogenous agents (e.g., drugs, environmental factors may cause serious adverse effects.

  13. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  14. Dyslipidemia rather than Type 2 Diabetes Mellitus or Chronic Periodontitis Affects the Systemic Expression of Pro- and Anti-Inflammatory Genes.

    Science.gov (United States)

    Nepomuceno, Rafael; Villela, Bárbara Scoralick; Corbi, Sâmia Cruz Tfaile; Bastos, Alliny De Souza; Dos Santos, Raquel Alves; Takahashi, Catarina Satie; Orrico, Silvana Regina Perez; Scarel-Caminaga, Raquel Mantuaneli

    2017-01-01

    A high percentage of type 2 diabetes mellitus (T2D) patients are also affected by dyslipidemia and chronic periodontitis (CP), but no studies have determined the gene expression in patients that are simultaneously affected by all three diseases. We investigated the systemic expression of immune-related genes in T2D, dyslipidemia, and CP patients. One hundred and fifty patients were separated into five groups containing 30 individuals each: (G1) poorly controlled T2D with dyslipidemia and CP; (G2) well-controlled T2D with dyslipidemia and CP; (G3) normoglycemic individuals with dyslipidemia and CP; (G4) healthy individuals with CP; (G5) systemic and periodontally healthy individuals. Blood analyses of lipid and glycemic profiles were carried out. The expression of genes, including IL10, JAK1, STAT3, SOCS3, IP10, ICAM1, IFNA, IFNG, STAT1, and IRF1, was investigated by RT-qPCR. Patients with dyslipidemia demonstrated statistically higher expression of the IL10 and IFNA genes, while IFNG, IP10, IRF1, JAK1, and STAT3 were lower in comparison with nondyslipidemic patients. Anti-inflammatory genes, such as IL10 , positively correlated with parameters of glucose, lipid, and periodontal profiles, while proinflammatory genes, such as IFNG , were negatively correlated with these parameters. We conclude that dyslipidemia appears to be the primary disease that is associated with gene expression of immune-related genes, while parameters of T2D and CP were correlated with the expression of these important immune genes.

  15. Repair genes expression profile of MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers.

    Science.gov (United States)

    Alves, Mônica Ghislaine Oliveira; Carta, Celina Faig Lima; de Barros, Patrícia Pimentel; Issa, Jaqueline Scholz; Nunes, Fábio Daumas; Almeida, Janete Dias

    2017-01-01

    The aim of this study was to evaluate the effect of chronic smoking on the expression profile of the repair genes MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers and never smokers. The sample consisted of thirty exfoliative cytology smears per group obtained from Smokers and Never Smokers. Total RNA was extracted and expression of the MLH1, MSH2 and ATM genes were evaluated by quantitative real-time and immunocytochemistry. The gene and protein expression data were correlated to the clinical data. Gene expression was analyzed statistically using the Student t-test and Pearson's correlation coefficient, with pMLH1, MSH2 and ATM genes were downregulated in the smoking group compared to the control with significant values for MLH1 (p=0.006), MSH2 (p=0.0001) and ATM (p=0.0001). Immunocytochemical staining for anti-MLH1, anti-MSH2 and anti-ATM was negative in Never Smokers; in Smokers it was rarely positive. No significant correlation was observed among the expression of MLH1, MSH2, ATM and age, number of cigarettes consumed per day, time of smoking during life, smoking history or levels of CO in expired air. The expression of genes and proteins related to DNA repair mechanism MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers was reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress.

    Science.gov (United States)

    Wang, Shih-Han; Cheng, Chuen-Yu; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Huang, San-Yuan

    2013-01-15

    Acute heat stress affects genes involved in spermatogenesis in mammals. However, there is apparently no elaborate research on the effects of acute heat stress on gene expression in avian testes. The purpose of this study was to investigate global gene expression in testes of the L2 strain of Taiwan country chicken after acute heat stress. Twelve roosters, 45 weeks old, were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2-hour recovery, and with 6-hour recovery, respectively. Testis samples were collected for RNA isolation and microarray analysis. Based on gene expression profiles, 169 genes were upregulated and 140 genes were downregulated after heat stress using a cutoff value of twofold or greater change. Based on gene ontology analysis, differentially expressed genes were mainly related to response to stress, transport, signal transduction, and metabolism. A functional network analysis displayed that heat shock protein genes and related chaperones were the major upregulated groups in chicken testes after acute heat stress. A quantitative real-time polymerase chain reaction analysis of mRNA expressions of HSP70, HSP90AA1, BAG3, SERPINB2, HSP25, DNAJA4, CYP3A80, CIRBP, and TAGLN confirmed the results of the microarray analysis. Because the HSP genes (HSP25, HSP70, and HSP90AA1) and the antiapoptotic BAG3 gene were dramatically altered in heat-stressed chicken testes, we concluded that these genes were important factors in the avian testes under acute heat stress. Whether these genes could be candidate genes for thermotolerance in roosters requires further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Platelet-derived growth factor (PDGF) B-chain gene expression by activated blood monocytes precedes the expression of the PDGF A-chain gene

    International Nuclear Information System (INIS)

    Martinet, Y.; Jaffe, H.A.; Yamauchi, K.; Betsholtz, C.; Westermark, B.; Heldin, C.H.; Crystal, R.G.

    1987-01-01

    When activated, normal human blood monocytes are known to express the c-sis proto-oncogene coding for PDGF B-chain. Since normal human platelet PDGF molecules are dimers of A and B chains and platelets and monocytes are derived from the same marrow precursors, activated blood monocytes were simultaneously evaluated for their expression of PDGF A and B chain genes. Human blood monocytes were purified by adherence, cultured with or without activation by lipopolysaccharide and poly(A)+ RNA evaluated using Northern analysis and 32 P-labeled A-chain and B-chain (human c-sis) probes. Unstimulated blood monocytes did not express either A-chain or B-chain genes. In contrast, activated monocytes expressed a 4.2 kb mRNA B-chain transcript at 4 hr, but the B-chain mRNA levels declined significantly over the next 18 hr. In comparison, activated monocytes expressed very little A-chain mRNA at 4 hr, but at 12 hr 1.9, 2.3, and 2.8 kb transcripts were observed and persisted through 24 hr. Thus, activation of blood monocytes is followed by PDGF B-chain gene expression preceding PDGF A-chain gene expression, suggesting a difference in the regulation of the expression of the genes for these two chains by these cells

  18. Associations of GBP2 gene copy number variations with growth traits and transcriptional expression in Chinese cattle.

    Science.gov (United States)

    Zhang, Gui-Min; Zheng, Li; He, Hua; Song, Cheng-Chuang; Zhang, Zi-Jing; Cao, Xiu-Kai; Lei, Chu-Zhao; Lan, Xian-Yong; Qi, Xing-Lei; Chen, Hong; Huang, Yong-Zhen

    2018-03-20

    Copy number variations (CNVs) recently have been recognized as another important genetic variability followed single nucleotide polymorphisms (SNPs). The guanylate binding protein 2 (GBP2) gene plays an important role in cell proliferation. This study was performed to determine the presence of GBP2 CNV (relative to Angus cattle) in 466 individuals representing six main cattle breeds from China, identify its relationship with growth, and explore the biological effects of gene expression. There were two CNV regions in the GBP2 gene, for three types, CNV1 loss type (relative to Angus cattle) was more frequent in XN than other breeds, and CNV2 loss type (relative to Angus cattle) was more frequent in XN and CDM than other breeds. Though the GBP2 gene copy number presented no correlation with the transcriptional expression of JX (P > .05), but the transcriptional expression in heart is higher than other tissues, and the copy number in muscles and fat of JX is higher than others breeds. Statistical analysis revealed that the GBP2 gene CNV1 and CNV2 were significantly associated with growth traits (P cattle breeds, and our results suggested that the CNVs in GBP2 gene may be considered markers for the molecular breeding of Chinese beef cattle. Copyright © 2018. Published by Elsevier B.V.

  19. Metallothionein gene expression in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Deeksha Pal

    2014-01-01

    Full Text Available Introduction: Metallothioneins (MTs are a group of low-molecular weight, cysteine-rich proteins. In general, MT is known to modulate three fundamental processes: (1 the release of gaseous mediators such as hydroxyl radical or nitric oxide, (2 apoptosis and (3 the binding and exchange of heavy metals such as zinc, cadmium or copper. Previous studies have shown a positive correlation between the expression of MT with invasion, metastasis and poor prognosis in various cancers. Most of the previous studies primarily used immunohistochemistry to analyze localization of MT in renal cell carcinoma (RCC. No information is available on the gene expression of MT2A isoform in different types and grades of RCC. Materials and Methods: In the present study, total RNA was isolated from 38 histopathologically confirmed cases of RCC of different types and grades. Corresponding adjacent normal renal parenchyma was taken as control. Real-time polymerase chain reaction (RT PCR analysis was done for the MT2A gene expression using b-actin as an internal control. All statistical calculations were performed using SPSS software. Results: The MT2A gene expression was found to be significantly increased (P < 0.01 in clear cell RCC in comparison with the adjacent normal renal parenchyma. The expression of MT2A was two to three-fold higher in sarcomatoid RCC, whereas there was no change in papillary and collecting duct RCC. MT2A gene expression was significantly higher in lower grade (grades I and II, P < 0.05, while no change was observed in high-grade tumor (grade III and IV in comparison to adjacent normal renal tissue. Conclusion: The first report of the expression of MT2A in different types and grades of RCC and also these data further support the role of MT2A in tumorigenesis.

  20. GEM2Net: from gene expression modeling to -omics networks, a new CATdb module to investigate Arabidopsis thaliana genes involved in stress response.

    Science.gov (United States)

    Zaag, Rim; Tamby, Jean Philippe; Guichard, Cécile; Tariq, Zakia; Rigaill, Guillem; Delannoy, Etienne; Renou, Jean-Pierre; Balzergue, Sandrine; Mary-Huard, Tristan; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Brunaud, Véronique

    2015-01-01

    CATdb (http://urgv.evry.inra.fr/CATdb) is a database providing a public access to a large collection of transcriptomic data, mainly for Arabidopsis but also for other plants. This resource has the rare advantage to contain several thousands of microarray experiments obtained with the same technical protocol and analyzed by the same statistical pipelines. In this paper, we present GEM2Net, a new module of CATdb that takes advantage of this homogeneous dataset to mine co-expression units and decipher Arabidopsis gene functions. GEM2Net explores 387 stress conditions organized into 18 biotic and abiotic stress categories. For each one, a model-based clustering is applied on expression differences to identify clusters of co-expressed genes. To characterize functions associated with these clusters, various resources are analyzed and integrated: Gene Ontology, subcellular localization of proteins, Hormone Families, Transcription Factor Families and a refined stress-related gene list associated to publications. Exploiting protein-protein interactions and transcription factors-targets interactions enables to display gene networks. GEM2Net presents the analysis of the 18 stress categories, in which 17,264 genes are involved and organized within 681 co-expression clusters. The meta-data analyses were stored and organized to compose a dynamic Web resource. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Expression of cyclooxygenase-2 in intestine of pigs of different ages and hygiene status

    DEFF Research Database (Denmark)

    Lauridsen, Charlotte; Whiting, C; Lewis, M

    2010-01-01

    treatments: One group of piglets suckled the sow, a second group was put into an isolator and fed a milk formula, and a third group was put into the isolator fed milk formula and injected with broad spectrum antibiotics. Samples were collected from the 75% level of the small intestine at day 5, 28 and 56...... of age. Tissue section from four piglets from each of these six treatment groups was analysed by immunofluorescence for COX-2 and type-IV collagen (basement membrane, defining lamina propria (LP)). Image analysis was used to determine the number of positive pixels expressing LP and epithelial COX-2. COX......-2 expressing cells were observed in LP and epithelium in all porcine intestinal samples. When analysing images obtained on day 28, injection of antibiotics seemed to reduce the COX-2 expression in intestinal samples of piglets when compared to other treatments (P = 0.053). No significant effect...

  2. Drosophila Myc is required for normal DREF gene expression

    International Nuclear Information System (INIS)

    Dang Thi Phuong Thao; Seto, Hirokazu; Yamaguchi, Masamitsu

    2008-01-01

    The Drosophila DNA replication-related element-binding factor (dDREF) is required for the expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Finding a canonical E-box, 5'-CACGTG, in the dDREF gene promoter prompted us to explore the possibility that the dDREF gene is a target of Drosophila Myc (dMyc). Luciferase transient expression assays combined with RNA interference in Drosophila S2 cells revealed that knockdown of dmyc reduced dDREF gene promoter activity by 35% to 82%, an effect at least partly mediated by the E-box in the promoter. dm 4 /Y hemizygous mutant larvae demonstrated no maternal dMyc and severe impairment of dDREF mRNA transcription. dMyc loss of function in dm 2 /dm 2 homozygous mutant follicle cell clones also resulted in loss of anti-dDREF immunostaining in nuclei. In contrast, co-expression of dMyc-dMax up-regulated dDREF promoter activity in S2 cells. Furthermore, dMyc over-expressing clones exhibited a high level of dDREF gene expression in wing and eye discs. These results taken together indicate that dMyc is indeed required for dDREF gene expression

  3. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Hye; Shin, Bo Yeon; Han, Jae Yun; Kim, Mi Gwang; Wi, Ji Eun [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Kim, Young Woo; Cho, Il Je; Kim, Sang Chan [Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715 (Korea, Republic of); Shin, Sang Mi [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of)

    2014-01-15

    Isorhamentin is a 3′-O-methylated metabolite of quercetin, and has been reported to have anti-inflammatory and anti-proliferative effects. However, the effects of isorhamnetin on Nrf2 activation and on the expressions of its downstream genes in hepatocytes have not been elucidated. Here, we investigated whether isorhamnetin has the ability to activate Nrf2 and induce phase II antioxidant enzyme expression, and to determine the protective role of isorhamnetin on oxidative injury in hepatocytes. In HepG2 cells, isorhamnetin increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, and consistently, increased antioxidant response element (ARE) reporter gene activity and the protein levels of hemeoxygenase (HO-1) and of glutamate cysteine ligase (GCL), which resulted in intracellular GSH level increases. The specific role of Nrf2 in isorhamnetin-induced Nrf2 target gene expression was verified using an ARE-deletion mutant plasmid and Nrf2-knockout MEF cells. Deletion of the ARE in the promoter region of the sestrin2 gene, which is recently identified as the Nrf2 target gene by us, abolished the ability of isorhamnetin to increase luciferase activity. In addition, Nrf2 deficiency completely blocked the ability of isorhamnetin to induce HO-1 and GCL. Furthermore, isorhamnetin pretreatment blocked t-BHP-induced ROS production and reversed GSH depletion by t-BHP and consequently, due to reduced ROS levels, decreased t-BHP-induced cell death. In addition isorhamnetin increased ERK1/2, PKCδ and AMPK phosphorylation. Finally, we showed that Nrf2 deficiency blocked the ability of isorhamnetin to protect cells from injury induced by t-BHP. Taken together, our results demonstrate that isorhamnetin is efficacious in protecting hepatocytes against oxidative stress by Nrf2 activation and in inducing the expressions of its downstream genes. - Highlights: • We investigated the effect of isorhamnetin on Nrf2 activation. • Isorhamnetin increased Nrf2

  4. Influence of white spot syndrome virus infection on hepatopancreas gene expression of `Huanghai No. 2' shrimp ( Fenneropenaeus chinensis)

    Science.gov (United States)

    Meng, Xianhong; Shi, Xiaoli; Kong, Jie; Luan, Sheng; Luo, Kun; Cao, Baoxiang; Liu, Ning; Lu, Xia; Li, Xupeng; Deng, Kangyu; Cao, Jiawang; Zhang, Yingxue; Zhang, Hengheng

    2017-10-01

    To elucidate the molecular response of shrimp hepatopancreas to white spot syndrome virus (WSSV) infection, microarray was applied to investigate the differentially expressed genes in the hepatopancreas of `Huanghai No. 2' ( Fenneropenaeus chinensis). A total of 59137 unigenes were designed onto a custom-made 60K Agilent chip. After infection, the gene expression profiles in the hepatopancreas of the shrimp with a lower viral load at early (48-96 h), peak (168-192 h) and late (264-288 h) infection phases were analyzed. Of 18704 differentially expressed genes, 6412 were annotated. In total, 5453 differentially expressed genes (1916 annotated) expressed at all three phases, and most of the annotated were either up- or down-regulated continuously. These genes function diversely in, for example, immune response, cytoskeletal system, signal transduction, stress resistance, protein synthesis and processing, metabolism among others. Some of the immune-related genes, including antilipopolysaccharide factor, Kazal-type proteinase inhibitor, C-type lectin and serine protease encoding genes, were up-regulated after WSSV infection. These genes have been reported to be involved in the anti-WSSV responses. The expression of genes related to the cytoskeletal system, including β-actin and myosin but without tubulin genes, were down-regulated after WSSV infection. Astakine was found for the first time in the WSSV-infected F. chinensis. To further confirm the expression of differentially expressed genes, quantitative real-time PCR was performed to test the expression of eight randomly selected genes and verified the reliability and accuracy of the microarray expression analysis. The data will provide valuable information to understanding the immune mechanism of shrimp's response to WSSV.

  5. Gene expression profiling of loss of TET2 and/or JAK2V617F mutant hematopoietic stem cells from mouse models of myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Takuro Kameda

    2015-06-01

    Full Text Available Myeloproliferative neoplasms (MPNs are clinically characterized by the chronic overproduction of differentiated peripheral blood cells and the gradual expansion of malignant intramedullary/extramedullary hematopoiesis. In MPNs mutations in JAK2 MPL or CALR are detected mutually exclusive in more than 90% of cases [1,2]. Mutations in them lead to the abnormal activation of JAK/STAT signaling and the autonomous growth of differentiated cells therefore they are considered as “driver” gene mutations. In addition to the above driver gene mutations mutations in epigenetic regulators such as TET2 DNMT3A ASXL1 EZH2 or IDH1/2 are detected in about 5%–30% of cases respectively [3]. Mutations in TET2 DNMT3A EZH2 or IDH1/2 commonly confer the increased self-renewal capacity on normal hematopoietic stem cells (HSCs but they do not lead to the autonomous growth of differentiated cells and only exhibit subtle clinical phenotypes [4,6–8,5]. It was unclear how mutations in such epigenetic regulators influenced abnormal HSCs with driver gene mutations how they influenced the disease phenotype or whether a single driver gene mutation was sufficient for the initiation of human MPNs. Therefore we focused on JAK2V617F and loss of TET2—the former as a representative of driver gene mutations and the latter as a representative of mutations in epigenetic regulators—and examined the influence of single or double mutations on HSCs (Lineage−Sca-1+c-Kit+ cells (LSKs by functional analyses and microarray whole-genome expression analyses [9]. Gene expression profiling showed that the HSC fingerprint genes [10] was statistically equally enriched in TET2-knockdown-LSKs but negatively enriched in JAK2V617F–LSKs compared to that in wild-type-LSKs. Double-mutant-LSKs showed the same tendency as JAK2V617F–LSKs in terms of their HSC fingerprint genes but the expression of individual genes differed between the two groups. Among 245 HSC fingerprint genes 100 were more

  6. Identification of differentially expressed genes in childhood asthma.

    Science.gov (United States)

    Zhang, Nian-Zhen; Chen, Xiu-Juan; Mu, Yu-Hua; Wang, Hewen

    2018-05-01

    Asthma has been the most common chronic disease in children that places a major burden for affected people and their families.An integrated analysis of microarrays studies was performed to identify differentially expressed genes (DEGs) in childhood asthma compared with normal control. We also obtained the differentially methylated genes (DMGs) in childhood asthma according to GEO. The genes that were both differentially expressed and differentially methylated were identified. Functional annotation and protein-protein interaction network construction were performed to interpret biological functions of DEGs. We performed q-RT-PCR to verify the expression of selected DEGs.One DNA methylation and 3 gene expression datasets were obtained. Four hundred forty-one DEGs and 1209 DMGs in childhood asthma were identified. Among which, 16 genes were both differentially expressed and differentially methylated in childhood asthma. Natural killer cell mediated cytotoxicity pathway, Jak-STAT signaling pathway, and Wnt signaling pathway were 3 significantly enriched pathways in childhood asthma according to our KEGG enrichment analysis. The PPI network of top 20 up- and downregulated DEGs consisted of 822 nodes and 904 edges and 2 hub proteins (UBQLN4 and MID2) were identified. The expression of 8 DEGs (GZMB, FGFBP2, CLC, TBX21, ALOX15, IL12RB2, UBQLN4) was verified by qRT-PCR and only the expression of GZMB and FGFBP2 was inconsistent with our integrated analysis.Our finding was helpful to elucidate the underlying mechanism of childhood asthma and develop new potential diagnostic biomarker and provide clues for drug design.

  7. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  8. Differential Gene Expression and Aging

    Directory of Open Access Journals (Sweden)

    Laurent Seroude

    2002-01-01

    Full Text Available It has been established that an intricate program of gene expression controls progression through the different stages in development. The equally complex biological phenomenon known as aging is genetically determined and environmentally modulated. This review focuses on the genetic component of aging, with a special emphasis on differential gene expression. At least two genetic pathways regulating organism longevity act by modifying gene expression. Many genes are also subjected to age-dependent transcriptional regulation. Some age-related gene expression changes are prevented by caloric restriction, the most robust intervention that slows down the aging process. Manipulating the expression of some age-regulated genes can extend an organism's life span. Remarkably, the activity of many transcription regulatory elements is linked to physiological age as opposed to chronological age, indicating that orderly and tightly controlled regulatory pathways are active during aging.

  9. The Target of 5-Lipoxygenase is a Novel Strategy over Human Urological Tumors than the Target of Cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Masahide Matsuyama

    2008-01-01

    Full Text Available The metabolism of arachidonic acid by either the cyclooxygenase (COX or lipoxygenase (LOX pathway generates eicosanoids, which have been implicated in the pathogenesis of a variety of human diseases, including cancer. It is now considered that they play important roles in tumor promotion, progression, and metastasis, also, the involvement of COX and LOX expression and function in tumor growth and metastasis has been reported in human tumor cell lines. In this study, we examined the expression of COX and LOX in human urological tumors (renal cell carcinoma, bladder tumor, prostate cancer, testicular cancer by immunohistochemistry and RT-PCR, and we also examined the effects of COX and LOX (5- and 12-LOX inhibitors in those cells by MTT assay, hoechest staining, and flow cytometry. COX-2, 5-LOX and 12-LOX expressions were significantly more extensive and intense in malignant tissues than in normal tissues. Furthermore, 5-LOX inhibitor induced the reduction of malignant cell viability through early apoptosis. These results demonstrated COX-2 and LOX were induced in urological tumors, and 5-LOX inhibitor may mediate potent antiproliferative effects against urological tumors cells. Thus, 5-LOX may become a new target in the treatment of urological tumors.

  10. Expression of novel rice gibberellin 2-oxidase gene is under homeostatic regulation by biologically active gibberellins.

    Science.gov (United States)

    Sakai, Miho; Sakamoto, Tomoaki; Saito, Tamio; Matsuoka, Makoto; Tanaka, Hiroshi; Kobayashi, Masatomo

    2003-04-01

    We have cloned two genes for gibberellin (GA) 2-oxidase from rice ( Oryza sativa L.). Expression of OsGA2ox2 was not observed. The other gene, OsGA2ox3, was expressed in every tissue examined and was enhanced by the application of biologically active GA. Recombinant OsGA2ox3 protein catalyzed the metabolism of GA(1) to GA(8) and GA(20) to GA(29)-catabolite. These results indicate that OsGA2ox3 is involved in the homeostatic regulation of the endogenous level of biologically active GA in rice.

  11. GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo.

    NARCIS (Netherlands)

    G.T. Ma (Grace); M.E. Roth (Matthew); J.C. Groskopf (John); F.G. Grosveld (Frank); J.D. Engel (Douglas); D.I.H. Linzer (Daniel); F.Y. Tsai (Fong-Ying); S.H. Orkin (Stuart)

    1997-01-01

    textabstractWe previously demonstrated that the zinc finger transcription factors GATA-2 and GATA-3 are expressed in trophoblast giant cells and that they regulate transcription from the mouse placental lactogen I gene promoter in a transfected trophoblast cell line. We present evidence here that

  12. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro.

    Science.gov (United States)

    Morsczeck, C

    2006-02-01

    Recently, osteogenic precursor cells were isolated from human dental follicles, which differentiate into cementoblast- or osteoblast- like cells under in vitro conditions. However, mechanisms for osteogenic differentiation are not known in detail. Dental follicle cell long-term cultures supplemented with dexamethasone or with insulin resulted in mineralized nodules, whereas no mineralization or alkaline phosphatase activity was detected in the control culture without an osteogenic stimulus. A real-time reverse-transcriptase polymerase chain reaction (PCR) analysis was developed to investigate gene expression during osteogenic differentiation in vitro. Expression of the alkaline phosphatase (ALP) gene was detected during differentiation in the control culture and was similar to that in cultures with dexamethasone and insulin. DLX-3, DLX-5, runx2, and MSX-2 are differentially expressed during osteogenic differentiation in bone marrow mesenchymal stem cells. In dental follicle cells, gene expression of runx2, DLX-5, and MSX-2 was unaffected during osteogenic differentiation in vitro. Osteogenic differentiation appeared to be independent of MSX-2 expression; the same was true of runx2 and DLX-5, which were protagonists of osteogenic differentiation and osteocalcin promoter activity in bone marrow mesenchymal stem cells. Like in bone marrow-derived stem cells, DLX-3 gene expression was increased in dental follicle cells during osteogenic differentiation but similar to control cultures. However, gene expression of osterix was not detected in dental follicle cells during osteogenic differentiation; this gene is expressed during osteogenic differentiation in bone marrow stem cells. These real-time PCR results display molecular mechanisms in dental follicle precursor cells during osteogenic differentiation that are different from those in bone marrow-derived mesenchymal stem cells.

  13. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    International Nuclear Information System (INIS)

    Sharma, Som D.; Katiyar, Santosh K.

    2010-01-01

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm 2 ) on alternate days for 1 month. The mice were then euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E 2 production, proinflammatory cytokines (i.e., tumor necrosis factor-α, interleukin-1β, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser 473 ) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-κB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.

  14. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  15. Nine co-localized cytochrome P450 genes of the CYP2N, CYP2AD, and CYP2P gene families in the mangrove killifish Kryptolebias marmoratus genome: Identification and expression in response to B[α]P, BPA, OP, and NP.

    Science.gov (United States)

    Puthumana, Jayesh; Kim, Bo-Mi; Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Jung, Jee-Hyun; Kim, Il-Chan; Hwang, Un-Ki; Lee, Jae-Seong

    2017-06-01

    The CYP2 genes are the largest and most diverse cytochrome P450 (CYP) subfamily in vertebrates. We have identified nine co-localized CYP2 genes (∼55kb) in a new cluster in the genome of the highly resilient ecotoxicological fish model Kryptolebias marmoratus. Molecular characterization, temporal and tissue-specific expression pattern, and response to xenobiotics of these genes were examined. The CYP2 gene clusters were characterized and designated CYP2N22-23, CYP2AD12, and CYP2P16-20. Gene synteny analysis confirmed that the cluster in K. marmoratus is similar to that found in other teleost fishes, including zebrafish. A gene duplication event with diverged catalytic function was observed in CYP2AD12. Moreover, a high level of divergence in expression was observed among the co-localized genes. Phylogeny of the cluster suggested an orthologous relationship with similar genes in zebrafish and Japanese medaka. Gene expression analysis showed that CYP2P19 and CYP2N20 were consecutively expressed throughout embryonic development, whereas CYP2P18 was expressed in all adult tissues, suggesting that members of each CYP2 gene family have different physiological roles even though they are located in the same cluster. Among endocrine-disrupting chemicals (EDCs), benzo[α]pyrene (B[α]P) induced expression of CYP2N23, bisphenol A (BPA) induced CYP2P18 and CYP2P19, and 4-octylphenol (OP) induced CYP2AD12, but there was no significant response to 4-nonylphenol (NP), implying differential catalytic roles of the enzyme. In this paper, we identify and characterize a CYP2 gene cluster in the mangrove killifish K. marmoratus with differing catalytic roles toward EDCs. Our findings provide insights on the roles of nine co-localized CYP2 genes and their catalytic functions for better understanding of chemical-biological interactions in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene

    Directory of Open Access Journals (Sweden)

    Sônia C. Melo

    2015-06-01

    Full Text Available Heterologous expression of a putative manganese superoxide dismutase gene (SOD2 of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs located the protein of M. perniciosa (MpSod2p in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet–C (UVC radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.

  17. Hepatocyte specific expression of human cloned genes

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, R

    1986-01-01

    A large number of proteins are specifically synthesized in the hepatocyte. Only the adult liver expresses the complete repertoire of functions which are required at various stages during development. There is therefore a complex series of regulatory mechanisms responsible for the maintenance of the differentiated state and for the developmental and physiological variations in the pattern of gene expression. Human hepatoma cell lines HepG2 and Hep3B display a pattern of gene expression similar to adult and fetal liver, respectively; in contrast, cultured fibroblasts or HeLa cells do not express most of the liver specific genes. They have used these cell lines for transfection experiments with cloned human liver specific genes. DNA segments coding for alpha1-antitrypsin and retinol binding protein (two proteins synthesized both in fetal and adult liver) are expressed in the hepatoma cell lines HepG2 and Hep3B, but not in HeLa cells or fibroblasts. A DNA segment coding for haptoglobin (a protein synthesized only after birth) is only expressed in the hepatoma cell line HepG2 but not in Hep3B nor in non hepatic cell lines. The information for tissue specific expression is located in the 5' flanking region of all three genes. In vivo competition experiments show that these DNA segments bind to a common, apparently limiting, transacting factor. Conventional techniques (Bal deletions, site directed mutagenesis, etc.) have been used to precisely identify the DNA sequences responsible for these effects. The emerging picture is complex: they have identified multiple, separate transcriptional signals, essential for maximal promoter activation and tissue specific expression. Some of these signals show a negative effect on transcription in fibroblast cell lines.

  18. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chaohui, E-mail: zuochaohui@vip.sina.com [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Qiu, Xiaoxin [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Liu, Nianli; Yang, Darong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Xia, Man [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Liu, Jingshi [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Wang, Xiaohong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); and others

    2015-05-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4',6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors. - Highlights: ●The cytotoxic effect of TRAIL on a developed HCC HLCZ01 cells infected with HBV. ●IFN-α and celecoxib induced apoptosis in HLCZ01 cells infected with HBV. ●The combined regime reduced the growth of xenotransplanted HCCs in nude mice model.

  19. VE-Cadherin-Mediated Epigenetic Regulation of Endothelial Gene Expression.

    Science.gov (United States)

    Morini, Marco F; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I; Conze, Lei L; O'Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P; Dejana, Elisabetta; Taddei, Andrea

    2018-01-19

    The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5 , vascular endothelial-protein tyrosine phosphatase ( VE-PTP ), and von Willebrand factor ( vWf ). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5 , VE-PTP , and vWf . VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5 , VE-PTP , and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. These

  20. The Relationship between TP53 Gene Status and Carboxylesterase 2 Expression in Human Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Momoko Ishimine

    2018-01-01

    Full Text Available Irinotecan (CPT-11 is an anticancer prodrug that is activated by the carboxylesterase CES2 and has been approved for the treatment of many types of solid tumors, including colorectal cancer. Recent studies with cell lines show that CES2 expression is regulated by the tumor suppressor protein p53. However, clinical evidence for this regulatory mechanism in cancer is lacking. In this study, we examined the relationship between TP53 gene status and CES2 expression in human colorectal cancer. Most colorectal cancer specimens (70%; 26 of 37 showed lower CES2 mRNA levels (≥1.5-fold lower than the adjacent normal tissue, and only 30% (12 of 37 showed similar (<1.5-fold lower or higher CES2 mRNA levels. However, TP53 gene sequencing revealed no relationship between CES2 downregulation and TP53 mutational status. Moreover, while colorectal cancer cells expressing wild-type p53 exhibited p53-dependent upregulation of CES2, PRIMA-1MET, a drug that restores the transcriptional activity of mutant p53, failed to upregulate CES2 expression in cells with TP53 missense mutations. These results, taken together, suggest that CES2 mRNA expression is decreased in human colorectal cancer independently of p53.

  1. Preferential Cyclooxygenase 2 Inhibitors as a Nonhormonal Method of Emergency Contraception: A Look at the Evidence.

    Science.gov (United States)

    Weiss, Erich A; Gandhi, Mona

    2016-04-01

    To review the literature surrounding the use of preferential cyclooxygenase 2 (COX-2) inhibitors as an alternative form of emergency contraception. MEDLINE (1950 to February 2014) was searched using the key words cyclooxygenase or COX-2 combined with contraception, emergency contraception, or ovulation. Results were limited to randomized control trials, controlled clinical trials, and clinical trials. Human trials that measured the effects of COX inhibition on female reproductive potential were included for review. The effects of the COX-2 inhibitors rofecoxib, celecoxib, and meloxicam were evaluated in 6 trials. Each of which was small in scope, enrolled women of variable fertility status, used different dosing regimens, included multiple end points, and had variable results. Insufficient evidence exists to fully support the use of preferential COX-2 inhibitors as a form of emergency contraception. Although all trials resulted in a decrease in ovulatory cycles, outcomes varied between dosing strategies and agents used. A lack of homogeneity in these studies makes comparisons difficult. However, success of meloxicam in multiple trials warrants further study. Larger human trials are necessary before the clinical utility of this method of emergency contraception can be fully appreciated. © The Author(s) 2014.

  2. Gene expression profiling associated with angiotensin II type 2 receptor-induced apoptosis in human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Nana Pei

    Full Text Available Increased expression of angiotensin II type 2 receptor (AT2R induces apoptosis in numerous tumor cell lines, with either Angiotensin II-dependent or Angiotensin II-independent regulation, but its molecular mechanism remains poorly understood. Here, we used PCR Array analysis to determine the gene and microRNA expression profiles in human prostate cancer cell lines transduced with AT2R recombinant adenovirus. Our results demonstrated that AT2R over expression leads to up-regulation of 6 apoptosis-related genes (TRAIL-R2, BAG3, BNIPI, HRK, Gadd45a, TP53BP2, 2 cytokine genes (IL6 and IL8 and 1 microRNA, and down-regulation of 1 apoptosis-related gene TNFSF10 and 2 cytokine genes (BMP6, BMP7 in transduced DU145 cells. HRK was identified as an up-regulated gene in AT2R-transduced PC-3 cells by real-time RT-PCR. Next, we utilized siRNAs to silence the up-regulated genes to further determine their roles on AT2R overexpression mediated apoptosis. The results showed downregulation of Gadd45a reduced the apoptotic effect by ∼30% in DU145 cells, downregulation of HRK reduced AT2R-mediated apoptosis by more than 50% in PC-3 cells, while downregulation of TRAIL-R2 enhanced AT2R-mediated apoptosis more than 4 times in DU145 cells. We also found that the effects on AT2R-mediated apoptosis caused by downregulation of Gadd45a, TRAIL-R2 and HRK were independent in activation of p38 MAPK, p44/42 MAPK and p53. Taken together, our results demonstrated that TRAIL-R2, Gadd45a and HRK may be novel target genes for further study of the mechanism of AT2R-mediated apoptosis in prostate cancer cells.

  3. Suppression of IL-10 production by activated B cells via a cell contact-dependent cyclooxygenase-2 pathway upregulated in IFN-γ-treated mesenchymal stem cells

    Czech Academy of Sciences Publication Activity Database

    Heřmánková, Barbora; Zajícová, Alena; Javorková, Eliška; Chudíčková, Milada; Trošan, Peter; Hájková, Michaela; Krulová, Magdaléna; Holáň, Vladimír

    2016-01-01

    Roč. 221, č. 2 (2016), s. 129-136 ISSN 0171-2985 R&D Projects: GA MŠk(CZ) LO1309; GA ČR(CZ) GA14-12580S; GA MZd NT14102; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378041 Keywords : B cells * Cyclooxygenase-2 * IL-10 production * Mesenchymal stem cells * Cyclooxygenase-2 * Immunosuppression Subject RIV: FF - HEENT, Dentistry Impact factor: 2.720, year: 2016

  4. Cyclo-oxygenase-2 inhibitors or nonselective NSAIDs plus gastroprotective agents: What to prescribe in daily clinical practice?

    NARCIS (Netherlands)

    G.M.C. Masclee (Gwen); V.E. Valkhoff (Vera); E.M. van Soest; R. Schade (René); G. Mazzaglia (Giampiero); M. Molokhia (Mariam); G. Trifiro (Gianluca); J.L. Goldstein; S. Hernández-Díaz (Sonia); E.J. Kuipers (Ernst); M.C.J.M. Sturkenboom (Miriam)

    2013-01-01

    textabstractBackground Two strategies for prevention of upper gastrointestinal (UGI) events for nonselective nonsteroidal anti-inflammatory drug (nsNSAID) users are replacement of the nsNSAID by a cyclo-oxygenase-2-selective inhibitor (coxib) or co-prescription of a gastroprotective agent (GPA). Aim

  5. Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence.

    Science.gov (United States)

    Danilova, Maria N; Kudryakova, Natalia V; Doroshenko, Anastasia S; Zabrodin, Dmitry A; Rakhmankulova, Zulfira F; Oelmüller, Ralf; Kusnetsov, Victor V

    2017-03-01

    Cytokinin membrane receptors of the Arabidopsis thaliana AHK2 and AHK3 play opposite roles in the expression of plastid genes and genes for the plastid transcriptional machinery during leaf senescence Loss-of-function mutants of Arabidopsis thaliana were used to study the role of cytokinin receptors in the expression of chloroplast genes during leaf senescence. Accumulation of transcripts of several plastid-encoded genes is dependent on the АНК2/АНК3 receptor combination. АНК2 is particularly important at the final stage of plant development and, unlike АНК3, a positive regulator of leaf senescence. Cytokinin-dependent up-regulation of the nuclear encoded genes for chloroplast RNA polymerases RPOTp and RPOTmp suggests that the hormone controls plastid gene expression, at least in part, via the expression of nuclear genes for the plastid transcription machinery. This is further supported by cytokinin dependent regulation of genes for the nuclear encoded plastid σ-factors, SIG1-6, which code for components of the transcriptional apparatus in chloroplasts.

  6. Prevalence of 5-lipoxygenase expression in canine osteosarcoma and the effects of a dual 5-lipoxygenase/cyclooxygenase inhibitor on osteosarcoma cells in vitro and in vivo.

    Science.gov (United States)

    Goupil, R C; Bushey, J J; Peters-Kennedy, J; Wakshlag, J J

    2012-09-01

    Canine osteosarcoma is an insidious disease with few effective treatment modalities; therefore, use of pharmacologic intervention to improve mortality or morbidity is constantly sought. The use of cyclooxygenase enzyme inhibitors has been an area of interest with limited efficacy based on retrospective examination of tumor expression and in vivo cell proliferation models. Recently, examination of dual cyclooxygenase and 5-lipoxygenase inhibitors in human and canine oncology suggests that 5-lipoxygenase inhibitors may be an effective approach in vitro and during tumor induction in rodent models. Therefore, the authors decided to examine 5-lipoxygenase expression in primary canine osteosarcoma samples and have shown that approximately 65% of osteosarcomas label positive for cytoplasmic 5-lipoxygenase. Further examination of a cell culture and xenograft model shows similar 5-lipoxygenase expression. Surprisingly, a canine 5-lipoxygenase inhibitor (tepoxalin) significantly reduced cell proliferation at physiologic doses in vitro and diminished xenograft tumor growth in nude mice, suggesting that further investigation is needed. Traditionally, 5-lipoxygense leads to production of lipid mediators, such as leukotriene B(4) and 5-oxo-eicosatetraenoic acid, which, when added back to the media of tepoxalin-treated cells, did not recover cell proliferation. The lack of nuclear staining in primary and xenografted tumors and the lack of response to eicoasanoids suggest that lipid mediator production is not the primary means by which tepoxalin acts to alter proliferation. Regardless of the mechanisms involved in retarding cell proliferation, future investigation is warranted.

  7. Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: The Stockholm Atherosclerosis Gene Expression (STAGE) study

    KAUST Repository

    Hägg, Sara

    2009-12-04

    Environmental exposures filtered through the genetic make-up of each individual alter the transcriptional repertoire in organs central to metabolic homeostasis, thereby affecting arterial lipid accumulation, inflammation, and the development of coronary artery disease (CAD). The primary aim of the Stockholm Atherosclerosis Gene Expression (STAGE) study was to determine whether there are functionally associated genes (rather than individual genes) important for CAD development. To this end, two-way clustering was used on 278 transcriptional profiles of liver, skeletal muscle, and visceral fat (n =66/tissue) and atherosclerotic and unaffected arterial wall (n =40/tissue) isolated from CAD patients during coronary artery bypass surgery. The first step, across all mRNA signals (n =15,042/12,621 RefSeqs/genes) in each tissue, resulted in a total of 60 tissue clusters (n= 3958 genes). In the second step (performed within tissue clusters), one atherosclerotic lesion (n =49/48) and one visceral fat (n =59) cluster segregated the patients into two groups that differed in the extent of coronary stenosis (P=0.008 and P=0.00015). The associations of these clusters with coronary atherosclerosis were validated by analyzing carotid atherosclerosis expression profiles. Remarkably, in one cluster (n =55/54) relating to carotid stenosis (P =0.04), 27 genes in the two clusters relating to coronary stenosis were confirmed (n= 16/17, P<10 -27and-30). Genes in the transendothelial migration of leukocytes (TEML) pathway were overrepresented in all three clusters, referred to as the atherosclerosis module (A-module). In a second validation step, using three independent cohorts, the Amodule was found to be genetically enriched with CAD risk by 1.8-fold (P<0.004). The transcription co-factor LIM domain binding 2 (LDB2) was identified as a potential high-hierarchy regulator of the A-module, a notion supported by subnetwork analysis, by cellular and lesion expression of LDB2, and by the

  8. Bmp2 deletion causes an amelogenesis imperfecta phenotype via regulating enamel gene expression.

    Science.gov (United States)

    Guo, Feng; Feng, Junsheng; Wang, Feng; Li, Wentong; Gao, Qingping; Chen, Zhuo; Shoff, Lisa; Donly, Kevin J; Gluhak-Heinrich, Jelica; Chun, Yong Hee Patricia; Harris, Stephen E; MacDougall, Mary; Chen, Shuo

    2015-08-01

    Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo. © 2015 Wiley Periodicals, Inc.

  9. Ultrasound-targeted microbubble destruction improves the low density lipoprotein receptor gene expression in HepG2 cells

    International Nuclear Information System (INIS)

    Guo Dongping; Li Xiaoyu; Sun, Ping; Tang Yibo; Chen Xiuying; Chen Qi; Fan Leming; Zang Bin; Shao Lizheng; Li Xiaorong

    2006-01-01

    Ultrasound-targeted microbubble destruction had been employed in gene delivery and promised great potential. Liver has unique features that make it attractive for gene therapy. However, it poses formidable obstacles to hepatocyte-specific gene delivery. This study was designed to test the efficiency of therapeutic gene transfer and expression mediated by ultrasound/microbubble strategy in HepG 2 cell line. Air-filled albumin microbubbles were prepared and mixed with plasmid DNA encoding low density lipoprotein receptor (LDLR) and green fluorescent protein. The mixture of the DNA and microbubbles was administer to cultured HepG 2 cells under variable ultrasound conditions. Transfection rate of the transferred gene and cell viability were assessed by FACS analysis, confocal laser scanning microscopy, Western blot analysis and Trypan blue staining. The result demonstrated that microbubbles with ultrasound irradiation can significantly elevate exogenous LDLR gene expression and the expressed LDLRs were functional and active to uptake their ligands. We conclude that ultrasound-targeted microbubble destruction has the potential to promote safe and efficient LDLR gene transfer into hepatocytes. With further refinement, it may represent an effective nonviral avenue of gene therapy for liver-involved genetic diseases

  10. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways.

    Directory of Open Access Journals (Sweden)

    Jane Palsgaard

    Full Text Available BACKGROUND: Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing type 2 diabetes, they provide a good model in the search for primary causes of the disease. METHODS/PRINCIPAL FINDINGS: We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression was measured using Affymetrix Human Genome U133 Plus 2.0 Arrays covering the entire human genome. These arrays have not previously been used for this type of study. We show for the first time that genes involved in insulin signaling are significantly upregulated in first degree relatives and significantly downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin. LDHB was found to have a decreased expression in both groups compared to controls. CONCLUSIONS/SIGNIFICANCE: We hypothesize that increased expression of insulin signaling molecules in first degree relatives of people with type 2 diabetes, work in concert with increased levels of insulin as a compensatory mechanism, counter-acting otherwise reduced insulin signaling activity, protecting these individuals from severe insulin resistance. This compensation is lost in people with type 2 diabetes where expression of insulin signaling molecules is reduced.

  11. Determination of Six Transmembrane Protein of Prostate 2 Gene Expression and Intracellular Localization in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Bora İrer

    2017-12-01

    Full Text Available Objective: In this study, we aimed to determine the relationship between the RNA and protein expression profile of six transmembrane protein of prostate 2 (STAMP2 gene and androgen and the intracellular localization of STAMP2. Materials and Methods: RNA and protein were obtained from androgen treated lymph node carcinoma of the prostate (LNCaP cells, untreated LNCaP cells, DU145 cells with no androgen receptor, and STAMP2 transfected COS-7 cells. The expression profile of STAMP2 gene and the effect of androgenes on the expression was shown in RNA and protein levels by using Northern and Western blotting methods. In addition, intracellular localization of the naturally synthesized STAMP2 protein and the transfected STAMP2 protein in COS-7 cells after androgen administration in both LNCaP cells was determined by immunofluorescence microscopy. Results: We found that the RNA and protein expression of STAMP2 gene in LNCaP cells are regulated by androgenes, the power of expression is increased with the duration of androgen treatment and there is no STAMP2 expression in DU145 cells which has no androgen receptor. As a result of the immunofluorescence microscopy study we observed that STAMP2 protein was localized at golgi complex and cell membrane. Conclusion: In conclusion, we have demonstrated that STAMP2 may play an important role in the pathogenesis of the prostate cancer and in the androgen-dependent androgen-independent staging of prostate cancer. In addition, STAMP2 protein, which is localized in the intracellular golgi complex and cell membrane, may be a new target molecule for prostate cancer diagnosis and treatment.

  12. Automatic Control of Gene Expression in Mammalian Cells.

    Science.gov (United States)

    Fracassi, Chiara; Postiglione, Lorena; Fiore, Gianfranco; di Bernardo, Diego

    2016-04-15

    Automatic control of gene expression in living cells is paramount importance to characterize both endogenous gene regulatory networks and synthetic circuits. In addition, such a technology can be used to maintain the expression of synthetic circuit components in an optimal range in order to ensure reliable performance. Here we present a microfluidics-based method to automatically control gene expression from the tetracycline-inducible promoter in mammalian cells in real time. Our approach is based on the negative-feedback control engineering paradigm. We validated our method in a monoclonal population of cells constitutively expressing a fluorescent reporter protein (d2EYFP) downstream of a minimal CMV promoter with seven tet-responsive operator motifs (CMV-TET). These cells also constitutively express the tetracycline transactivator protein (tTA). In cells grown in standard growth medium, tTA is able to bind the CMV-TET promoter, causing d2EYFP to be maximally expressed. Upon addition of tetracycline to the culture medium, tTA detaches from the CMV-TET promoter, thus preventing d2EYFP expression. We tested two different model-independent control algorithms (relay and proportional-integral (PI)) to force a monoclonal population of cells to express an intermediate level of d2EYFP equal to 50% of its maximum expression level for up to 3500 min. The control input is either tetracycline-rich or standard growth medium. We demonstrated that both the relay and PI controllers can regulate gene expression at the desired level, despite oscillations (dampened in the case of the PI controller) around the chosen set point.

  13. Mimosine Dipeptide Enantiomsers: Improved Inhibitors against Melanogenesis and Cyclooxygenase

    Directory of Open Access Journals (Sweden)

    Binh Cao Quan Nguyen

    2015-08-01

    Full Text Available Melanogenesis plays an important role in the protection of skin against UV through production of melanin pigments, but abnormal accumulation of this pigment causes unaesthetic hyperpigmentation. Much effort is being made to develop effective depigmenting agents. Here, we show for the first time that a small library of mimosine dipeptide enantiomers (Mi-L/D-amino acid inhibit the melanogenesis in B16F10 melanoma cells by down-regulating the cellular tyrosinase with little effect on their growth or viability. Two of them, Mi-D-Trp and Mi-D-Val, turned out to be the most potent inhibitors on melanin content and cellular tyrosinase in B16F10 melanoma cells. In addition, most of the mimosine dipeptides were more potent than mimosine for inhibiting cyclooxygenase 1 (COX-1 with IC50 of 18–26 μM. Among them, Mi-L-Val and Mi-L-Trp inhibited cyclooxygenase 2 (COX-2 more potently than indomethacin, with IC50 values of 22 and 19 μM, respectively. Taken together, our results suggest the possibility that mimosine dipeptides could be better candidates (than mimosine for anti-melanogenic (skin hyperpigmentation treatment and cyclooxygenase (COX inhibition.

  14. Demonstration of diet-induced decoupling of fatty acid and cholesterol synthesis by combining gene expression array and 2H2O quantification.

    Science.gov (United States)

    Jensen, Kristian K; Previs, Stephen F; Zhu, Lei; Herath, Kithsiri; Wang, Sheng-Ping; Bhat, Gowri; Hu, Guanghui; Miller, Paul L; McLaren, David G; Shin, Myung K; Vogt, Thomas F; Wang, Liangsu; Wong, Kenny K; Roddy, Thomas P; Johns, Douglas G; Hubbard, Brian K

    2012-01-15

    The liver is a crossroad for metabolism of lipid and carbohydrates, with acetyl-CoA serving as an important metabolic intermediate and a precursor for fatty acid and cholesterol biosynthesis pathways. A better understanding of the regulation of these pathways requires an experimental approach that provides both quantitative metabolic flux measurements and mechanistic insight. Under conditions of high carbohydrate availability, excess carbon is converted into free fatty acids and triglyceride for storage, but it is not clear how excessive carbohydrate availability affects cholesterol biosynthesis. To address this, C57BL/6J mice were fed either a low-fat, high-carbohydrate diet or a high-fat, carbohydrate-free diet. At the end of the dietary intervention, the two groups received (2)H(2)O to trace de novo fatty acid and cholesterol synthesis, and livers were collected for gene expression analysis. Expression of lipid and glucose metabolism genes was determined using a custom-designed pathway focused PCR-based gene expression array. The expression analysis showed downregulation of cholesterol biosynthesis genes and upregulation of fatty acid synthesis genes in mice receiving the high-carbohydrate diet compared with the carbohydrate-free diet. In support of these findings, (2)H(2)O tracer data showed that fatty acid synthesis was increased 10-fold and cholesterol synthesis was reduced by 1.6-fold in mice fed the respective diets. In conclusion, by applying gene expression analysis and tracer methodology, we show that fatty acid and cholesterol synthesis are differentially regulated when the carbohydrate intake in mice is altered.

  15. Synthesis and pharmacological evaluation of N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide as cyclooxygenase inhibitors.

    Science.gov (United States)

    Rambabu, D; Mulakayala, Naveen; Ismail; Kumar, K Ravi; Kumar, G Pavan; Mulakayala, Chaitanya; Kumar, Chitta Suresh; Kalle, Arunasree M; Rao, M V Basaveswara; Oruganti, Srinivas; Pal, Manojit

    2012-11-01

    A series of novel N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide derivatives were synthesized via converting the readily available 4-hydroxy coumarin to the corresponding ethyl 2-(2-oxo-2H-chromen-4-yloxy)propanoate followed by hydrolysis and then reacting with different substituted amines. The molecular structures of two representative compounds, that is, 3 and 5l were confirmed by single crystal X-ray diffraction study. All the compounds synthesized were evaluated for their cyclooxygenase (COX) inhibiting properties in vitro. The compound 5i showed balanced selectivity towards COX-2 over COX-1 inhibition and good docking scores when docked into the COX-2 protein. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Expression profiling identifies genes involved in emphysema severity

    Directory of Open Access Journals (Sweden)

    Bowman Rayleen V

    2009-09-01

    Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

  17. Transgenic rice plants expressing synthetic cry2AX1 gene exhibits resistance to rice leaffolder (Cnaphalocrosis medinalis).

    Science.gov (United States)

    Manikandan, R; Balakrishnan, N; Sudhakar, D; Udayasuriyan, V

    2016-06-01

    Bacillus thuringiensis is a major source of insecticidal genes imparting insect resistance in transgenic plants. Level of expression of transgenes in transgenic plants is important to achieve desirable level of resistance against target insects. In order to achieve desirable level of expression, rice chloroplast transit peptide sequence was fused with synthetic cry2AX1 gene to target its protein in chloroplasts. Sixteen PCR positive lines of rice were generated by Agrobacterium mediated transformation using immature embryos. Southern blot hybridization analysis of T 0 transgenic plants confirmed the integration of cry2AX1 gene in two to five locations of rice genome and ELISA demonstrated its expression. Concentration of Cry2AX1 in transgenic rice events ranged 5.0-120 ng/g of fresh leaf tissue. Insect bioassay of T 0 transgenic rice plants against neonate larvae of rice leaffolder showed larval mortality ranging between 20 and 80 % in comparison to control plant. Stable inheritance and expression of cry2AX1 gene was demonstrated in T 1 progenies through Southern and ELISA. In T 1 progenies, the highest concentration of Cry2AX1 and mortality of rice leaffolder larvae were recorded as 150 ng/g of fresh leaf tissue and 80 %, respectively. The Cry2AX1 expression even at a very low concentration (120-150 ng/g) in transgenic rice plants was found effective against rice leaffolder larvae.

  18. Gene expression profiles reveal key genes for early diagnosis and treatment of adamantinomatous craniopharyngioma.

    Science.gov (United States)

    Yang, Jun; Hou, Ziming; Wang, Changjiang; Wang, Hao; Zhang, Hongbing

    2018-04-23

    Adamantinomatous craniopharyngioma (ACP) is an aggressive brain tumor that occurs predominantly in the pediatric population. Conventional diagnosis method and standard therapy cannot treat ACPs effectively. In this paper, we aimed to identify key genes for ACP early diagnosis and treatment. Datasets GSE94349 and GSE68015 were obtained from Gene Expression Omnibus database. Consensus clustering was applied to discover the gene clusters in the expression data of GSE94349 and functional enrichment analysis was performed on gene set in each cluster. The protein-protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes, and hubs were selected. Support vector machine (SVM) model was built based on the signature genes identified from enrichment analysis and PPI network. Dataset GSE94349 was used for training and testing, and GSE68015 was used for validation. Besides, RT-qPCR analysis was performed to analyze the expression of signature genes in ACP samples compared with normal controls. Seven gene clusters were discovered in the differentially expressed genes identified from GSE94349 dataset. Enrichment analysis of each cluster identified 25 pathways that highly associated with ACP. PPI network was built and 46 hubs were determined. Twenty-five pathway-related genes that overlapped with the hubs in PPI network were used as signatures to establish the SVM diagnosis model for ACP. The prediction accuracy of SVM model for training, testing, and validation data were 94, 85, and 74%, respectively. The expression of CDH1, CCL2, ITGA2, COL8A1, COL6A2, and COL6A3 were significantly upregulated in ACP tumor samples, while CAMK2A, RIMS1, NEFL, SYT1, and STX1A were significantly downregulated, which were consistent with the differentially expressed gene analysis. SVM model is a promising classification tool for screening and early diagnosis of ACP. The ACP-related pathways and signature genes will advance our knowledge of ACP pathogenesis

  19. Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy

    Directory of Open Access Journals (Sweden)

    Lisa Y. Pang

    2016-01-01

    Full Text Available Cyclooxygenase-2 (COX-2 is an inducible form of the enzyme that catalyses the synthesis of prostanoids, including prostaglandin E2 (PGE2, a major mediator of inflammation and angiogenesis. COX-2 is overexpressed in cancer cells and is associated with progressive tumour growth, as well as resistance of cancer cells to conventional chemotherapy and radiotherapy. These therapies are often delivered in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments. However, surviving cancer cells also proliferate during treatment intervals, leading to repopulation of the tumour and limiting the effectiveness of the treatment. Tumour cell repopulation is a major cause of treatment failure. The central dogma is that conventional chemotherapy and radiotherapy selects resistant cancer cells that are able to reinitiate tumour growth. However, there is compelling evidence of an active proliferative response, driven by increased COX-2 expression and downstream PGE2 release, which contribute to the repopulation of tumours and poor patient outcome. In this review, we will examine the evidence for a role of COX-2 in cancer stem cell biology and as a mediator of tumour repopulation that can be molecularly targeted to overcome resistance to therapy.

  20. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI.

    Science.gov (United States)

    Wang, Weijing; Jiang, Wenjie; Hou, Lin; Duan, Haiping; Wu, Yili; Xu, Chunsheng; Tan, Qihua; Li, Shuxia; Zhang, Dongfeng

    2017-11-13

    The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB, TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module (212 genes) was also significantly

  1. Gene expression of osteogenic factors following gene therapy in mandibular lengthening.

    Science.gov (United States)

    Wu, Guoping; Zhou, Bin; Hu, Chunbing; Li, Shaolan

    2015-03-01

    This study investigated the effect of gene therapy on the expression of osteogenic mediators in mandibular distraction osteogenesis rabbits. Bilateral mandibular osteotomies were performed in 45 New-Zealand rabbits. After a latency of 3 days, the mandibles were elongated using distractors with a rate of 0.8 mm/d for 7 days. After the completion of distraction, the rabbits were randomly divided into 5 groups: 2 μg (0.1 μg/μL) of recombinant plasmid pIRES-hVEGF165-hBMP-2, recombinant plasmid pIRES-hBMP2, recombinant plasmid pIRES-hVEGF165, pIRES, and the same volume of normal saline were injected into the distraction gap of groups A, B, C, D, and E, respectively, followed by electroporation. Three animals were killed at the 7th, 14th, and 28th day after gene transfected in different groups, respectively. The lengthened mandibles were harvested and processed for immunohistochemical examinations; the mean optic densities (MODs) and integral optical density of bone morphogenetic protein (BMP-2) and transforming growth factor β1 (TGF-β1)-positive cells were measured by CMIAS-2001A computerized image analyzer. The data were analyzed with SPSS (SPSS Inc, Chicago, IL). Bone morphogenetic protein 2 and TGF-β1 staining was mainly located in inflammatory cells, monocytes, fibroblasts, osteoblasts, osteocytes, and chondrocytes in the distraction zones. Their strongest expression reached to the peak at the seventh day and decreased at the 14th day of consolidation stage; at the 28th day, they expressed weakly. Image analysis results show that, at the seventh day, the expression of BMP-2 in group B (0.26 ± 0.03, 0.36 ± 0.02) was the strongest; there was significant difference among them (P < 0.01), whereas the expression of TGF-β1 in group C (0.38 ± 0.06, 1.05 ± 0.19) is strongest followed by group A (0.34 ± 0.05, 0.95 ± 0.16) and B (0.33 ± 0.07, 0.90 ± 0.19). At every time point, the level of expression of BMP-2 and TGF-β1 in gene therapy groups (groups A, B, and

  2. Disease gene characterization through large-scale co-expression analysis.

    Directory of Open Access Journals (Sweden)

    Allen Day

    2009-12-01

    Full Text Available In the post genome era, a major goal of biology is the identification of specific roles for individual genes. We report a new genomic tool for gene characterization, the UCLA Gene Expression Tool (UGET.Celsius, the largest co-normalized microarray dataset of Affymetrix based gene expression, was used to calculate the correlation between all possible gene pairs on all platforms, and generate stored indexes in a web searchable format. The size of Celsius makes UGET a powerful gene characterization tool. Using a small seed list of known cartilage-selective genes, UGET extended the list of known genes by identifying 32 new highly cartilage-selective genes. Of these, 7 of 10 tested were validated by qPCR including the novel cartilage-specific genes SDK2 and FLJ41170. In addition, we retrospectively tested UGET and other gene expression based prioritization tools to identify disease-causing genes within known linkage intervals. We first demonstrated this utility with UGET using genetically heterogeneous disorders such as Joubert syndrome, microcephaly, neuropsychiatric disorders and type 2 limb girdle muscular dystrophy (LGMD2 and then compared UGET to other gene expression based prioritization programs which use small but discrete and well annotated datasets. Finally, we observed a significantly higher gene correlation shared between genes in disease networks associated with similar complex or Mendelian disorders.UGET is an invaluable resource for a geneticist that permits the rapid inclusion of expression criteria from one to hundreds of genes in genomic intervals linked to disease. By using thousands of arrays UGET annotates and prioritizes genes better than other tools especially with rare tissue disorders or complex multi-tissue biological processes. This information can be critical in prioritization of candidate genes for sequence analysis.

  3. Anhedonic behavior in cryptochrome 2-deficient mice is paralleled by altered diurnal patterns of amygdala gene expression.

    Science.gov (United States)

    Savalli, Giorgia; Diao, Weifei; Berger, Stefanie; Ronovsky, Marianne; Partonen, Timo; Pollak, Daniela D

    2015-07-01

    Mood disorders are frequently paralleled by disturbances in circadian rhythm-related physiological and behavioral states and genetic variants of clock genes have been associated with depression. Cryptochrome 2 (Cry2) is one of the core components of the molecular circadian machinery which has been linked to depression, both, in patients suffering from the disease and animal models of the disorder. Despite this circumstantial evidence, a direct causal relationship between Cry2 expression and depression has not been established. Here, a genetic mouse model of Cry2 deficiency (Cry2 (-/-) mice) was employed to test the direct relevance of Cry2 for depression-like behavior. Augmented anhedonic behavior in the sucrose preference test, without alterations in behavioral despair, was observed in Cry2 (-/-) mice. The novelty suppressed feeding paradigm revealed reduced hyponeophagia in Cry2 (-/-) mice compared to wild-type littermates. Given the importance of the amygdala in the regulation of emotion and their relevance for the pathophysiology of depression, potential alterations in diurnal patterns of basolateral amygdala gene expression in Cry2 (-/-) mice were investigated focusing on core clock genes and neurotrophic factor systems implicated in the pathophysiology of depression. Differential expression of the clock gene Bhlhe40 and the neurotrophic factor Vegfb were found in the beginning of the active (dark) phase in Cry2 (-/-) compared to wild-type animals. Furthermore, amygdala tissue of Cry2 (-/-) mice contained lower levels of Bdnf-III. Collectively, these results indicate that Cry2 exerts a critical role in the control of depression-related emotional states and modulates the chronobiological gene expression profile in the mouse amygdala.

  4. Expression of beta-catenin, COX-2 and iNOS in colorectal cancer: relevance of COX-2 adn iNOS inhibitors for treatment in Malaysia.

    Science.gov (United States)

    Hong, Seok Kwan; Gul, Yunus A; Ithnin, Hairuszah; Talib, Arni; Seow, Heng Fong

    2004-01-01

    Promising new pharmacological agents and gene therapy targeting cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) could modulate treatment of colorectal cancer in the future. The aim of this study was to elucidate the expression fo beta-catenin and teh presence of COX-2 and iNOS in colorectal cancer specimens in Malaysia. This is a useful prelude to future studies investigating interventions directed towards COX-2 adn iNOS. A cross-section study using retrospective data over a 2-year period (1999-2000) involved 101 archival, formalin-fixed, paraffin-embedded tissue samples of colorectal cancers that were surgically resected in a tertiary referral. COX-2 production was detected in adjacent normal tissue in 34 sample (33.7%) and in tumour tissue in 60 samples (59.4%). More tumours expressed iNOS (82/101, 81.2%) than COX-2. No iNOS expression was detected in adjacent normal tissue. Intense beta-catenin immunoreactivity at the cell-to-cell border. Poorly differentiated tumours had significantly lower total beta-catenin (p = 0.009) and COX-2 scores (p = 0.031). No significant relationships were established between pathological stage and beta-catenin, COX-2 and iNOS scores. the accumulation of beta-catenin does not seem to be sufficient to activate pathways that lead to increased COX-2 and iNOS expression. A high proportion of colorectal cancers were found to express COX-2 and a significant number produced iNOS, suggesting that their inhibitors may be potentially useful as chemotherapeutic agents in the management of colorectal cancer.

  5. Mel-18, a mammalian Polycomb gene, regulates angiogenic gene expression of endothelial cells.

    Science.gov (United States)

    Jung, Ji-Hye; Choi, Hyun-Jung; Maeng, Yong-Sun; Choi, Jung-Yeon; Kim, Minhyung; Kwon, Ja-Young; Park, Yong-Won; Kim, Young-Myeong; Hwang, Daehee; Kwon, Young-Guen

    2010-10-01

    Mel-18 is a mammalian homolog of Polycomb group (PcG) genes. Microarray analysis revealed that Mel-18 expression was induced during endothelial progenitor cell (EPC) differentiation and correlates with the expression of EC-specific protein markers. Overexpression of Mel-18 promoted EPC differentiation and angiogenic activity of ECs. Accordingly, silencing Mel-18 inhibited EC migration and tube formation in vitro. Gene expression profiling showed that Mel-18 regulates angiogenic genes including kinase insert domain receptor (KDR), claudin 5, and angiopoietin-like 2. Our findings demonstrate, for the first time, that Mel-18 plays a significant role in the angiogenic function of ECs by regulating endothelial gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Akira [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Bainy, Afonso C.D. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil); Woodin, Bruce R.; Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2013-10-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  7. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    International Nuclear Information System (INIS)

    Kubota, Akira; Bainy, Afonso C.D.; Woodin, Bruce R.; Goldstone, Jared V.; Stegeman, John J.

    2013-01-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  8. Gene expression inference with deep learning.

    Science.gov (United States)

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Expression of Msx genes in regenerating and developing limbs of axolotl.

    Science.gov (United States)

    Koshiba, K; Kuroiwa, A; Yamamoto, H; Tamura, K; Ide, H

    1998-12-15

    Msx genes, homeobox-containing genes, have been isolated as homologues of the Drosophila msh gene and are thought to play important roles in the development of chick or mouse limb buds. We isolated two Msx genes, Msx1 and Msx2, from regenerating blastemas of axolotl limbs and examined their expression patterns using Northern blot and whole mount in situ hybridization during regeneration and development. Northern blot analysis revealed that the expression level of both Msx genes increased during limb regeneration. The Msx2 expression level increased in the blastema at the early bud stage, and Msx1 expression level increased at the late bud stage. Whole mount in situ hybridization revealed that Msx2 was expressed in the distal mesenchyme and Msx1 in the entire mesenchyme of the blastema at the late bud stage. In the developing limb bud, Msx1 was expressed in the entire mesenchyme, while Msx2 was expressed in the distal and peripheral mesenchyme. The expression patterns of Msx genes in the blastemas and limb buds of the axolotl were different from those reported for chick or mouse limb buds. These expression patterns of axolotl Msx genes are discussed in relation to the blastema or limb bud morphology and their possible roles in limb patterning.

  10. Fat mass and obesity associated gene (FTO expression is regulated negatively by the transcription factor Foxa2.

    Directory of Open Access Journals (Sweden)

    Jianjin Guo

    Full Text Available Fat mass and obesity associated gene (FTO is the first gene associated with body mass index (BMI and risk for diabetes. FTO is highly expressed in the brain and pancreas, and is involved in regulating dietary intake and energy expenditure. To investigate the transcriptional regulation of FTO expression, we created 5'-deletion constructs of the FTO promoter to determine which transcription factors are most relevant to FTO expression. The presence of an activation region at -201/+34 was confirmed by luciferase activity analysis. A potential Foxa2 (called HNF-3β binding site and an upstream stimulatory factor (USF-binding site was identified in the -100 bp fragment upstream of the transcription start site (TSS. Furthermore, using mutagenesis, we identified the Foxa2 binding sequence (-26/-14 as a negative regulatory element to the activity of the human FTO promoter. The USF binding site did not affect the FTO promoter activity. Chromatin immunoprecipitation (ChIP assays were performed to confirm Foxa2 binding to the FTO promoter. Overexpression of Foxa2 in HEK 293 cells significantly down-regulated FTO promoter activity and expression. Conversely, knockdown of Foxa2 by siRNA significantly up-regulated FTO expression. These findings suggest that Foxa2 negatively regulates the basal transcription and expression of the human FTO gene.

  11. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Xiangshu Dong

    Full Text Available Genome-wide dissection of the heat stress response (HSR is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT: 5.2% (2,142 genes in Chiifu and 3.7% (1,535 genes in Kenshin. The most enriched GO (Gene Ontology items included 'response to heat', 'response to reactive oxygen species (ROS', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps and heat shock factor (Hsf-like proteins such as HsfB2A (Bra029292, whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853, protein kinases, and phosphatases. Among heat stress (HS marker genes in Arabidopsis, only exportin 1A (XPO1A (Bra008580, Bra006382 can be applied to B. rapa for basal thermotolerance (BT and short-term acquired thermotolerance (SAT gene. CYP707A3 (Bra025083, Bra021965, which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF genes, including DREB2A (Bra005852, were involved in HS tolerance in both lines, Bra024224 (MYB41 and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1] were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  12. Appendix 1:Upregulated genes in gene expression profile (P<0.05 ...

    Indian Academy of Sciences (India)

    lazi

    Appendix 1: Upregulated genes in gene expression profile«P2). Probe_s. Gene_Symbol pvalues foldchange. Probe_S. et_ID. Gene_Symbol pvalues foldchange. et_ID. 1370355. 1393751. Scd1. 1.35E-04. 25.77. Loc1009122508.06E-03. 2.55. -at at. 1398250. 1370870. Acot1. 2.43E-02. 12.18. Me1.

  13. Reference Gene Screening for Analyzing Gene Expression Across Goat Tissue

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2013-12-01

    Full Text Available Real-time quantitative PCR (qRT-PCR is one of the important methods for investigating the changes in mRNA expression levels in cells and tissues. Selection of the proper reference genes is very important when calibrating the results of real-time quantitative PCR. Studies on the selection of reference genes in goat tissues are limited, despite the economic importance of their meat and dairy products. We used real-time quantitative PCR to detect the expression levels of eight reference gene candidates (18S, TBP, HMBS, YWHAZ, ACTB, HPRT1, GAPDH and EEF1A2 in ten tissues types sourced from Boer goats. The optimal reference gene combination was selected according to the results determined by geNorm, NormFinder and Bestkeeper software packages. The analyses showed that tissue is an important variability factor in genes expression stability. When all tissues were considered, 18S, TBP and HMBS is the optimal reference combination for calibrating quantitative PCR analysis of gene expression from goat tissues. Dividing data set by tissues, ACTB was the most stable in stomach, small intestine and ovary, 18S in heart and spleen, HMBS in uterus and lung, TBP in liver, HPRT1 in kidney and GAPDH in muscle. Overall, this study provided valuable information about the goat reference genes that can be used in order to perform a proper normalisation when relative quantification by qRT-PCR studies is undertaken.

  14. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  15. Differentially expressed genes in the head of the 2nd instar pre-molting larvae of the nm2 mutant of the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Pingyang Wang

    Full Text Available Molting is an important physiological process in the larval stage of Bombyx mori and is controlled by various hormones and peptides. The silkworm mutant that exhibits the phenotype of non-molting in the 2nd instar (nm2 is incapable of molting in the 2nd instar and dies after seven or more days. The ecdysone titer in the nm2 mutant is lower than that in the wildtype, and the mutant can be rescued by feeding with 20E and cholesterol. The results of positional cloning indicated that structural alteration of BmCPG10 is responsible for the phenotype of the nm2 mutant. To explore the possible relationship between BmCPG10 and the ecdysone titer as well as the genes affected by BmCPG10, digital gene expression (DGE profile analysis was conducted in the nm2 mutant, with the wildtype strain C603 serving as the control. The results revealed 1727 differentially expressed genes, among which 651 genes were upregulated and 1076 were downregulated in nm2. BLASTGO analysis showed that these differentially expressed genes were involved in various biological processes, cellular components and molecular functions. KEGG analysis indicated an enrichment of these differentially expressed genes in 240 pathways, including metabolic pathways, pancreatic secretion, protein digestion and absorption, fat digestion and absorption and glycerolipid metabolism. To verify the accuracy of the DGE results, quantitative reverse transcription PCR (qRT-PCR was performed, focusing on key genes in several related pathways, and the results were highly consistent with the DGE results. Our findings indicated significant differences in cuticular protein genes, ecdysone biosynthesis genes and ecdysone-related nuclear receptors genes, but no significant difference in juvenile hormone and chitin biosynthesis genes was detected. Our research findings lay the foundation for further research on the formation mechanism of the nm2 mutant.

  16. Effects of cyclooxygenase inhibitor pretreatment on nitric oxide production, nNOS and iNOS expression in rat cerebellum.

    Science.gov (United States)

    Di Girolamo, G; Farina, M; Riberio, M L; Ogando, D; Aisemberg, J; de los Santos, A R; Martí, M L; Franchi, A M

    2003-07-01

    1. The therapeutic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) is thought to be due mainly to its inhibition of cyclooxygenase (COX) enzymes, but there is a growing body of research that now demonstrates a variety of NSAIDs effects on cellular signal transduction pathways other than those involving prostaglandins. 2. Nitric oxide (NO) as a free radical and an agent that gives rise to highly toxic oxidants (peroxynitrile, nitric dioxide, nitron ion), becomes a cause of neuronal damage and death in some brain lesions such as Parkinson and Alzheimer disease, and Huntington's chorea. 3. In the present study, the in vivo effect of three NSAIDs (lysine clonixinate (LC), indomethacine (INDO) and meloxicam (MELO)) on NO production and nitric oxide synthase expression in rat cerebellar slices was analysed. Rats were treated with (a) saline, (b) lipopolysaccharide (LPS) (5 mg kg(-1), i.p.), (c) saline in combination with different doses of NSAIDs and (d) LPS in combination with different doses of NSAIDs and then killed 6 h after treatment. 4. NO synthesis, evaluated by Bred and Snyder technique, was increased by LPS. This augmentation was inhibited by coadministration of the three NSAIDs assayed. None of the NSAIDs tested was able to modify control NO synthesis. 5. Expression of iNOS and neural NOS (nNOS) was detected by Western blotting in control and LPS-treated rats. LC and INDO, but not MELO, were able to inhibit the expression of these enzymes. 6. Therefore, reduction of iNOS and nNOS levels in cerebellum may explain, in part, the anti-inflammatory effect of these NSAIDs and may also have importance in the prevention of NO-mediated neuronal injury.

  17. Over-expression of Eph and ephrin genes in advanced ovarian cancer: ephrin gene expression correlates with shortened survival

    Directory of Open Access Journals (Sweden)

    Lincoln Douglas

    2006-06-01

    Full Text Available Abstract Background Increased expression of Eph receptor tyrosine kinases and their ephrin ligands has been implicated in tumor progression in a number of malignancies. This report describes aberrant expression of these genes in ovarian cancer, the commonest cause of death amongst gynaecological malignancies. Methods Eph and ephrin expression was determined using quantitative real time RT-PCR. Correlation of gene expression was measured using Spearman's rho statistic. Survival was analysed using log-rank analysis and (was visualised by Kaplan-Meier survival curves. Results Greater than 10 fold over-expression of EphA1 and a more modest over-expression of EphA2 were observed in partially overlapping subsets of tumors. Over-expression of EphA1 strongly correlated (r = 0.801; p Conclusion These data imply that increased levels of ephrins A1 and A5 in the presence of high expression of Ephs A1 and A2 lead to a more aggressive tumor phenotype. The known functions of Eph/ephrin signalling in cell de-adhesion and movement may explain the observed correlation of ephrin expression with poor prognosis.

  18. The human cumulus--oocyte complex gene-expression profile

    Science.gov (United States)

    Assou, Said; Anahory, Tal; Pantesco, Véronique; Le Carrour, Tanguy; Pellestor, Franck; Klein, Bernard; Reyftmann, Lionel; Dechaud, Hervé; De Vos, John; Hamamah, Samir

    2006-01-01

    BACKGROUND The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes, and cumulus cells. METHODS Using oligonucleotides microarrays, genome wide gene expression was studied in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF. RESULTS In addition to known genes such as DAZL, BMP15 or GDF9, oocytes upregulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, FGF14, and IL4, and transcription factors including OTX2, SOX15 and SOX30. Conversely, cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-tocell signaling genes including TNFSF11/RANKL, numerous complement components, semaphorins (SEMA3A, SEMA6A, SEMA6D) and CD genes such as CD200. We also identified 52 genes progressively increasing during oocyte maturation, comprising CDC25A and SOCS7. CONCLUSION The identification of genes up and down regulated during oocyte maturation greatly improves our understanding of oocyte biology and will provide new markers that signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are potential markers of granulosa cell tumors. PMID:16571642

  19. Sex-related differences in gene expression in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Stephen Welle

    2008-01-01

    Full Text Available There is sexual dimorphism of skeletal muscle, the most obvious feature being the larger muscle mass of men. The molecular basis for this difference has not been clearly defined. To identify genes that might contribute to the relatively greater muscularity of men, we compared skeletal muscle gene expression profiles of 15 normal men and 15 normal women by using comprehensive oligonucleotide microarrays. Although there were sex-related differences in expression of several hundred genes, very few of the differentially expressed genes have functions that are obvious candidates for explaining the larger muscle mass of men. The men tended to have higher expression of genes encoding mitochondrial proteins, ribosomal proteins, and a few translation initiation factors. The women had >2-fold greater expression than the men (P<0.0001 of two genes that encode proteins in growth factor pathways known to be important in regulating muscle mass: growth factor receptor-bound 10 (GRB10 and activin A receptor IIB (ACVR2B. GRB10 encodes a protein that inhibits insulin-like growth factor-1 (IGF-1 signaling. ACVR2B encodes a myostatin receptor. Quantitative RT-PCR confirmed higher expression of GRB10 and ACVR2B genes in these women. In an independent microarray study of 10 men and 9 women with facioscapulohumeral dystrophy, women had higher expression of GRB10 (2.7-fold, P<0.001 and ACVR2B (1.7-fold, P<0.03. If these sex-related differences in mRNA expression lead to reduced IGF-1 activity and increased myostatin activity, they could contribute to the sex difference in muscle size.

  20. Gene expression profiling of histologically normal breast tissue in females with human epidermal growth factor receptor 2‑positive breast cancer.

    Science.gov (United States)

    Zubor, Pavol; Hatok, Jozef; Moricova, Petra; Kapustova, Ivana; Kajo, Karol; Mendelova, Andrea; Sivonova, Monika Kmetova; Danko, Jan

    2015-02-01

    Gene expression profile‑based taxonomy of breast cancer (BC) has been described as a significant breakthrough in comprehending the differences in the origin and behavior of cancer to allow individually tailored therapeutic approaches. In line with this, we hypothesized that the gene expression profile of histologically normal epithelium (HNEpi) could harbor certain genetic abnormalities predisposing breast tissue cells to develop human epidermal growth factor receptor 2 (HER2)‑positive BC. Thus, the aim of the present study was to assess gene expression in normal and BC tissue (BCTis) from patients with BC in order to establish its value as a potential diagnostic marker for cancer development. An array study evaluating a panel of 84 pathway‑ and disease‑specific genes in HER2‑positive BC and tumor‑adjacent HNEpi was performed using quantitative polymerase chain reaction in 12 patients using microdissected samples from frozen tissue. Common prognostic and predictive parameters of BC were assessed by immunohistochemistry and in situ hybridization. In the BCTis and HNEpi samples of 12 HER2‑positive subjects with BC, the expression of 2,016 genes was assessed. A total of 39.3% of genes were deregulated at a minimal two‑fold deregulation rate and 10.7% at a five‑fold deregulation rate in samples of HNEpi or BCTis. Significant differences in gene expression between BCTis and HNEpi samples were revealed for BCL2L2, CD44, CTSD, EGFR, ERBB2, ITGA6, NGFB, RPL27, SCBG2A1 and SCGB1D2 genes (Pbreast tissue revealed gene expression abnormalities that may represent potential markers of increased risk for HER2‑positive malignant transformation of breast tissue, and may be able to be employed as predictors of prognosis.

  1. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Science.gov (United States)

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2014-01-01

    Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel

  2. VE-Cadherin–Mediated Epigenetic Regulation of Endothelial Gene Expression

    Science.gov (United States)

    Morini, Marco F.; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I.; Conze, Lei L.; O’Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P.

    2018-01-01

    Rationale: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. Objective: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. Methods and Results: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased

  3. Scaling of gene expression data allowing the comparison of different gene expression platforms

    NARCIS (Netherlands)

    van Ruissen, Fred; Schaaf, Gerben J.; Kool, Marcel; Baas, Frank; Ruijter, Jan M.

    2008-01-01

    Serial analysis of gene expression (SAGE) and microarrays have found a widespread application, but much ambiguity exists regarding the amalgamation of the data resulting from these technologies. Cross-platform utilization of gene expression data from the SAGE and microarray technology could reduce

  4. PRAME Gene Expression in Acute Leukemia and Its Clinical Significance

    International Nuclear Information System (INIS)

    Ding, Kai; Wang, Xiao-ming; Fu, Rong; Ruan, Er-bao; Liu, Hui; Shao, Zong-hong

    2012-01-01

    To investigate the expression of the preferentially expressed antigen of melanoma (PRAME) gene in acute leukemia and its clinical significance. The level of expressed PRAME mRNA in bone marrow mononuclear cells from 34 patients with acute leukemia (AL) and in 12 bone marrow samples from healthy volunteers was measured via RT-PCR. Correlation analyses between PRAME gene expression and the clinical characteristics (gender, age, white blood count, immunophenotype of leukemia, percentage of blast cells, and karyotype) of the patients were performed. The PRAME gene was expressed in 38.2% of all 34 patients, in 40.7% of the patients with acute myelogenous leukemia (AML, n=27), and in 28.6% of the patients with acute lymphoblastic leukemia (ALL, n=7), but was not expressed in the healthy volunteers. The difference in the expression levels between AML and ALL patients was statistically significant. The rate of gene expression was 80% in M 3 , 33.3% in M 2 , and 28.6% in M 5 . Gene expression was also found to be correlated with CD15 and CD33 expression and abnormal karyotype, but not with age, gender, white blood count or percentage of blast cells. The PRAME gene is highly expressed in acute leukemia and could be a useful marker to monitor minimal residual disease. This gene is also a candidate target for the immunotherapy of acute leukemia

  5. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  6. Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes

    DEFF Research Database (Denmark)

    Nilsson, Emma; Jansson, Per Anders; Perfilyev, Alexander

    2014-01-01

    Genetics, epigenetics, and environment may together affect the susceptibility for type 2 diabetes (T2D). Our aim was to dissect molecular mechanisms underlying T2D using genome-wide expression and DNA methylation data in adipose tissue from monozygotic twin pairs discordant for T2D and independent...... case-control cohorts. In adipose tissue from diabetic twins, we found decreased expression of genes involved in oxidative phosphorylation; carbohydrate, amino acid, and lipid metabolism; and increased expression of genes involved in inflammation and glycan degradation. The most differentially expressed...... genes included ELOVL6, GYS2, FADS1, SPP1 (OPN), CCL18, and IL1RN. We replicated these results in adipose tissue from an independent case-control cohort. Several candidate genes for obesity and T2D (e.g., IRS1 and VEGFA) were differentially expressed in discordant twins. We found a heritable contribution...

  7. Xylella fastidiosa gene expression analysis by DNA microarrays

    Directory of Open Access Journals (Sweden)

    Regiane F. Travensolo

    2009-01-01

    Full Text Available Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM2 and liquid BCYE. All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others. The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants.

  8. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  9. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  10. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  11. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... that the method can be applied to modulating the expression of native genes on the chromosome. We constructed a series of strains in which the expression of the las operon, containing the genes pfk, pyk, and ldh, was modulated by integrating a truncated copy of the pfk gene. Importantly, the modulation affected...

  12. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhang

    2010-11-01

    Full Text Available We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computational prediction from gene sequence data, thereby establishing that these genes are indeed part of the vomeronasal system, especially the V2Rs. 168 V1Rs and 98 V2Rs were detected to be highly enriched in mouse vomeronasal organ (VNO, and 108 V1Rs and 87 V2Rs in rat VNO. We monitored the expression profile of mouse VR genes in other non-VNO tissues with the result that some VR genes were re-designated as VR-like genes based on their non-olfactory expression pattern. Temporal expression profiles for mouse VR genes were characterized and their patterns were classified, revealing the developmental dynamics of these so-called pheromone receptors. We found numerous patterns of temporal expression which indicate possible behavior-related functions. The uneven composition of VR genes in certain patterns suggests a functional differentiation between the two types of VR genes. We found the coherence between VR genes and transcription factors in terms of their temporal expression patterns. In situ hybridization experiments were performed to evaluate the cell number change over time for selected receptor genes.

  13. Differential regulation of Rhizobium etli rpoN2 gene expression during symbiosis and free-living growth.

    Science.gov (United States)

    Michiels, J; Moris, M; Dombrecht, B; Verreth, C; Vanderleyden, J

    1998-07-01

    The Rhizobium etli rpoN1 gene, encoding the alternative sigma factor sigma54 (RpoN), was recently characterized and shown to be involved in the assimilation of several nitrogen and carbon sources during free-living aerobic growth (J. Michiels, T. Van Soom, I. D'hooghe, B. Dombrecht, T. Benhassine, P. de Wilde, and J. Vanderleyden, J. Bacteriol. 180:1729-1740, 1998). We identified a second rpoN gene copy in R. etli, rpoN2, encoding a 54.0-kDa protein which displays 59% amino acid identity with the R. etli RpoN1 protein. The rpoN2 gene is cotranscribed with a short open reading frame, orf180, which codes for a protein with a size of 20.1 kDa that is homologous to several prokaryotic and eukaryotic proteins of similar size. In contrast to the R. etli rpoN1 mutant strain, inactivation of the rpoN2 gene did not produce any phenotypic defects during free-living growth. However, symbiotic nitrogen fixation was reduced by approximately 90% in the rpoN2 mutant, whereas wild-type levels of nitrogen fixation were observed in the rpoN1 mutant strain. Nitrogen fixation was completely abolished in the rpoN1 rpoN2 double mutant. Expression of rpoN1 was negatively autoregulated during aerobic growth and was reduced during microaerobiosis and symbiosis. In contrast, rpoN2-gusA and orf180-gusA fusions were not expressed aerobically but were strongly induced at low oxygen tensions or in bacteroids. Expression of rpoN2 and orf180 was abolished in R. etli rpoN1 rpoN2 and nifA mutants under all conditions tested. Under free-living microaerobic conditions, transcription of rpoN2 and orf180 required the RpoN1 protein. In symbiosis, expression of rpoN2 and orf180 occurred independently of the rpoN1 gene, suggesting the existence of an alternative symbiosis-specific mechanism of transcription activation.

  14. The majority of atypical cpb2 genes in Clostridium perfringens isolates of different domestic animal origin are expressed.

    Science.gov (United States)

    Kircanski, Jasmina; Parreira, Valeria R; Whiteside, Samantha; Pei, Yanlong; Prescott, John F

    2012-10-12

    This study examined the prevalence and expression of the "consensus" and the "atypical"cpb2 genes in Clostridium perfringens isolates from cattle, chickens, dogs, goats, horses, pigs and sheep using polymerase chain reaction (PCR), sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Western blotting. Almost all porcine isolates (12/14) carried and expressed the consensus form of cpb2 but, when present in 108 non-porcine isolates, the gene was usually the atypical form (40 atypical versus 9 consensus). Western blotting showed expression in 30 of 40 (75%) atypical cpb2-positive isolates, considerably more frequently than reported previously. CPB2 was expressed by almost all (20/21) the consensus cpb2-positive isolates, regardless of source. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    Science.gov (United States)

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Overexpression of HMGA2-LPP fusion transcripts promotes expression of the α 2 type XI collagen gene

    International Nuclear Information System (INIS)

    Kubo, Takahiro; Matsui, Yoshito; Goto, Tomohiro; Yukata, Kiminori; Yasui, Natsuo

    2006-01-01

    In a subset of human lipomas, a specific t (3; 12) chromosome translocation gives rise to HMGA2-LPP fusion protein, containing the amino (N)-terminal DNA binding domains of HMGA2 fused to the carboxyl (C)-terminal LIM domains of LPP. In addition to its role in adipogenesis, several observations suggest that HMGA2-LPP is linked to chondrogenesis. Here, we analyzed whether HMGA2-LPP promotes chondrogenic differentiation, a marker of which is transactivation of the α 2 type XI collagen gene (Col11a2). Real-time PCR analysis showed that HMGA2-LPP and COL11A2 were co-expressed. Luciferase assay demonstrated that either of HMGA2-LPP, wild-type HMGA2 or the N-terminal HMGA2 transactivated the Col11a2 promoter in HeLa cells, while the C-terminal LPP did not. RT-PCR analysis revealed that HMGA2-LPP transcripts in lipomas with the fusion were 591-fold of full-length HMGA2 transcripts in lipomas without the fusion. These results indicate that in vivo overexpression of HMGA2-LPP promotes chondrogenesis by upregulating cartilage-specific collagen gene expression through the N-terminal DNA binding domains

  17. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    Science.gov (United States)

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  18. Flow cytometric analysis of platelet cyclooxygenase-1 and -2 and surface glycoproteins in patients with immune thrombocytopenia and healthy individuals.

    Science.gov (United States)

    Rubak, Peter; Kristensen, Steen D; Hvas, Anne-Mette

    2017-06-01

    Immature platelets may contain more platelet enzymes such as cyclooxygenase (COX)-1 and COX-2 than mature platelets. Patients with immune thrombocytopenia (ITP) have a higher fraction of immature platelets and can therefore be utilized as a biological model for investigating COX-1 and COX-2 platelet expression. The aims were to develop flow cytometric assays for platelet COX-1 and COX-2 and to investigate the COX-1 and COX-2 platelet expression, platelet turnover, and platelet glycoproteins in ITP patients (n = 10) compared with healthy individuals (n = 30). Platelet count and platelet turnover parameters (mean platelet volume (MPV), immature platelet fraction (IPF), and immature platelet count (IPC)) were measured by flow cytometry (Sysmex XE-5000). Platelet COX-1, COX-2, and the glycoproteins (GP)IIb, IX, Ib, Ia, and IIIa were all analyzed by flow cytometry (Navios) and expressed as median fluorescence intensity. COX analyses were performed in both whole blood and platelet rich plasma (PRP), whereas platelet glycoproteins were analyzed in whole blood only. ITP patients had significantly lower platelet count (55 × 10 9 /L) than healthy individuals (240 × 10 9 /L, p platelet count and IPC (both p-values Platelet COX-1 expression was higher in ITP patients than healthy individuals using whole blood (p COX-1 platelet turnover and COX-1 expression (all p-values platelet turnover and COX-1 and COX-2 expressions (all p-values platelet turnover in ITP patients (all p-values 0.14, rho = 0.11-0.28). In conclusion, ITP patients expressed higher COX-1 and platelet glycoprotein levels than healthy individuals. COX-1 and platelet glycoproteins demonstrated positive correlations with platelet turnover in ITP patients. In healthy individuals, COX-1 and COX-2 expression correlated positively with platelet turnover. PRP was more sensitive compared with whole blood as regards determination of COX. Therefore, PRP is the recommended matrix for investigating COX-1 and COX-2 in

  19. Using gene expression noise to understand gene regulation

    NARCIS (Netherlands)

    Munsky, B.; Neuert, G.; van Oudenaarden, A.

    2012-01-01

    Phenotypic variation is ubiquitous in biology and is often traceable to underlying genetic and environmental variation. However, even genetically identical cells in identical environments display variable phenotypes. Stochastic gene expression, or gene expression "noise," has been suggested as a

  20. Identification of [4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)-2-pyrimidinyl] amines and ethers as potent and selective cyclooxygenase-2 inhibitors.

    Science.gov (United States)

    Swarbrick, Martin E; Beswick, Paul J; Gleave, Robert J; Green, Richard H; Bingham, Sharon; Bountra, Chas; Carter, Malcolm C; Chambers, Laura J; Chessell, Iain P; Clayton, Nick M; Collins, Sue D; Corfield, John A; Hartley, C David; Kleanthous, Savvas; Lambeth, Paul F; Lucas, Fiona S; Mathews, Neil; Naylor, Alan; Page, Lee W; Payne, Jeremy J; Pegg, Neil A; Price, Helen S; Skidmore, John; Stevens, Alexander J; Stocker, Richard; Stratton, Sharon C; Stuart, Alastair J; Wiseman, Joanne O

    2009-08-01

    A novel series of [4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)-2-pyrimidine-based cyclooxygenase-2 (COX-2) inhibitors, which have a different arrangement of substituents compared to the more common 1,2-diarylheterocycle based molecules, have been discovered. For example, 2-(butyloxy)-4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)pyrimidine (47), a member of the 2-pyrimidinyl ether series, has been shown to be a potent and selective inhibitor with a favourable pharmacokinetic profile, high brain penetration and good efficacy in rat models of hypersensitivity.

  1. Expression of methionine adenosyltransferase 2A in renal cell carcinomas and potential mechanism for kidney carcinogenesis

    International Nuclear Information System (INIS)

    Wang, Xuliang; Guo, Xiaoqiang; Yu, Wenshui; Li, Cailing; Gui, Yaoting; Cai, Zhiming

    2014-01-01

    Methionine adenosyltransferase 2A (MAT2A) is an enzyme that catalyzes the formation of S-adenosylmethionine (SAMe) by joining methionine and ATP. SAMe is a methyl donor for transmethylation and has an important role for DNA and/or protein methylation. MAT2A is expressed widely in many tissues especially in kidney. Several studies have demonstrated that there are abnormal expressions of MAT2A in several kinds of cancers such as liver and colon cancers. But the relationship of MAT2A between renal cell carcinomas (RCC) is less understood. The mRNA expression level of the MAT2A gene was determined in 24 RCC patients and 4 RCC cell lines, using real-time quantitative-polymerase chain reaction (RT-PCR). The MAT2A protein content was measured by western blotting and immunohistochemical analysis in 55 RCC patients. The mRNA levels of heme oxygenase-1 (HO-1) and cyclooxygenase-2 (COX-2) were also analysized in patients using RT-PCR. The correlations between the MAT2A and HO-1 as well as COX-2 were analyzed with nonparametric Spearman method. MAT2A transcript was significantly downregulated in cancer tissues compared to normal tissues (P < 0.05). Immunohistochemical analysis and western blotting indicated that level of MAT2A protein was decreased in cancer tissues. The statistical analysis reveals a negative correlation between MAT2A and HO-1 expression in RCC patients and cell lines (P < 0.01). This study demonstrated that MAT2A was lower expression in cancer tissues, suggesting that it may be involved in the development of RCC. MAT2A is a transcriptional corepressor for HO-1 expression by supplying SAM for methyltransferases, which may be one of potential mechanism of MAT2A as tumor suppressor in kidney carcinogenesis

  2. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development.

    Science.gov (United States)

    Ortega-Molina, Ana; Boss, Isaac W; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A; Gascoyne, Randy D; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M; Wendel, Hans-Guido

    2015-10-01

    The gene encoding the lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma and diffuse large B cell lymphoma; however, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center involution and impedes B cell differentiation and class switch recombination. Integrative genomic analyses indicate that KMT2D affects methylation of lysine 4 on histone H3 (H3K4) and expression of a set of genes, including those in the CD40, JAK-STAT, Toll-like receptor and B cell receptor signaling pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3 and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell-activating pathways.

  3. High expression of the circadian gene mPer2 diminishes the radiosensitivity of NIH 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.; Liu, Y.Y.; Zhu, B.; Li, Y.; Hua, H.; Wang, Y.H.; Zhang, J.; Jiang, Z.; Wang, Z.R. [Sichuan University, Chengdu (China). West China Medical Center. Health Ministry Key Lab. of Chronobiology], e-mail: wangzhengrong@126.com

    2009-10-15

    Period2 is a core circadian gene, which not only maintains the circadian rhythm of cells but also regulates some organic functions. We investigated the effects of mPeriod2 (mPer2) expression on radiosensitivity in normal mouse cells exposed to {sup 60}Co-{gamma}-rays. NIH 3T3 cells were treated with 12-O-tetradecanoyl phorbol-13-acetate (TPA) to induce endogenous mPer2 expression or transfected with pcDNA3.1(+)-mPer2 and irradiated with {sup 6}0Co-{gamma}-rays, and then analyzed by several methods such as flow cytometry, colony formation assay, RT-PCR, and immunohistochemistry. Flow cytometry and colony formation assay revealed that irradiated NIH 3T3 cells expressing high levels of mPer2 showed a lower death rate (TPA: 24 h 4.3% vs 12 h 6.8% and control 9.4%; transfection: pcDNA3.1-mPer2 3.7% vs pcDNA3.1 11.3% and control 8.2%), more proliferation and clonogenic survival (TPA: 121.7 {+-} 6.51 vs 66.0 {+-} 3.51 and 67.7 {+-} 7.37; transfection: 121.7 {+-} 6.50 vs 65.3 {+-} 3.51 and 69.0 {+-} 4.58) both when treated with TPA and transfected with mPer2. RT-PCR analysis showed an increased expression of bax, bcl-2, p53, cmyc, mre11, and nbs1, and an increased proportionality of bcl-2/bax in the irradiated cells at peak mPer2 expression compared with cells at trough mPer2 expression and control cells. However, no significant difference in rad50 expression was observed among the three groups of cells. Immunohistochemistry also showed increased protein levels of P53, BAX and proliferating cell nuclear antigen in irradiated cells with peak mPer2 levels. Thus, high expression of the circadian gene mPer2 may reduce the radiosensitivity of NIH 3T3 cells. For this effect, mPer2 may directly or indirectly regulate the expressions of cell proliferation- and apoptosis-related genes and DNA repair-related genes. (author)

  4. High expression of the circadian gene mPer2 diminishes the radiosensitivity of NIH 3T3 cells

    International Nuclear Information System (INIS)

    Chang, L.; Liu, Y.Y.; Zhu, B.; Li, Y.; Hua, H.; Wang, Y.H.; Zhang, J.; Jiang, Z.; Wang, Z.R.

    2009-01-01

    Period2 is a core circadian gene, which not only maintains the circadian rhythm of cells but also regulates some organic functions. We investigated the effects of mPeriod2 (mPer2) expression on radiosensitivity in normal mouse cells exposed to 60 Co-γ-rays. NIH 3T3 cells were treated with 12-O-tetradecanoyl phorbol-13-acetate (TPA) to induce endogenous mPer2 expression or transfected with pcDNA3.1(+)-mPer2 and irradiated with 6 0Co-γ-rays, and then analyzed by several methods such as flow cytometry, colony formation assay, RT-PCR, and immunohistochemistry. Flow cytometry and colony formation assay revealed that irradiated NIH 3T3 cells expressing high levels of mPer2 showed a lower death rate (TPA: 24 h 4.3% vs 12 h 6.8% and control 9.4%; transfection: pcDNA3.1-mPer2 3.7% vs pcDNA3.1 11.3% and control 8.2%), more proliferation and clonogenic survival (TPA: 121.7 ± 6.51 vs 66.0 ± 3.51 and 67.7 ± 7.37; transfection: 121.7 ± 6.50 vs 65.3 ± 3.51 and 69.0 ± 4.58) both when treated with TPA and transfected with mPer2. RT-PCR analysis showed an increased expression of bax, bcl-2, p53, cmyc, mre11, and nbs1, and an increased proportionality of bcl-2/bax in the irradiated cells at peak mPer2 expression compared with cells at trough mPer2 expression and control cells. However, no significant difference in rad50 expression was observed among the three groups of cells. Immunohistochemistry also showed increased protein levels of P53, BAX and proliferating cell nuclear antigen in irradiated cells with peak mPer2 levels. Thus, high expression of the circadian gene mPer2 may reduce the radiosensitivity of NIH 3T3 cells. For this effect, mPer2 may directly or indirectly regulate the expressions of cell proliferation- and apoptosis-related genes and DNA repair-related genes. (author)

  5. Conservative Secondary Shell Substitution In Cyclooxygenase-2 Reduces Inhibition by Indomethacin Amides and Esters via Altered Enzyme Dynamics

    Science.gov (United States)

    2015-01-01

    The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis studies and/or X-ray crystallographic attempts. We expressed and assayed a number of divergent secondary shell COX-2 active site mutants and found that a COX-2 to COX-1 change at position 472 (Leu in COX-2, Met in COX-1) reduced the potency of enzyme inhibition by a series of COX-2-selective indomethacin amides and esters. In contrast, the potencies of indomethacin, arylacetic acid, propionic acid, and COX-2-selective diarylheterocycle inhibitors were either unaffected or only mildly affected by this mutation. Molecular dynamics simulations revealed identical equilibrium enzyme structures around residue 472; however, calculations indicated that the L472M mutation impacted local low-frequency dynamical COX constriction site motions by stabilizing the active site entrance and slowing constriction site dynamics. Kinetic analysis of inhibitor binding is consistent with the computational findings. PMID:26704937

  6. Long-term Dietary Macronutrients and Hepatic Gene Expression in Aging Mice.

    Science.gov (United States)

    Gokarn, Rahul; Solon-Biet, Samantha M; Cogger, Victoria C; Cooney, Gregory J; Wahl, Devin; McMahon, Aisling C; Mitchell, James R; Mitchell, Sarah J; Hine, Christopher; de Cabo, Rafael; Raubenheimer, David; Simpson, Stephen J; Le Couteur, David G

    2018-04-23

    Nutrition influences both hepatic function and aging, but mechanisms are poorly understood. Here, the effects of lifelong, ad libitum-fed diets varying in macronutrients and energy on hepatic gene expression were studied. Gene expression was measured using Affymetrix mouse arrays in livers of 46 mice aged 15 months fed one of 25 diets varying in protein, carbohydrates, fat, and energy density from 3 weeks of age. Gene expression was almost entirely influenced by protein intake. Carbohydrate and fat intake had few effects on gene expression compared with protein. Pathways and processes associated with protein intake included those involved with mitochondrial function, metabolic signaling (PI3K-Akt, AMPK, mTOR) and metabolism of protein and amino acids. Protein intake had variable effects on genes associated with regulation of longevity and influenced by caloric restriction. Among the genes of interest with expression that were significantly associated with protein intake are Cth, Gls2, Igf1, and Nnmt, which were increased with higher protein intake, and Igf2bp2, Fgf21, Prkab2, and Mtor, which were increased with lower protein intake. Dietary protein has a powerful impact on hepatic gene expression in older mice, with some overlap with genes previously reported to be involved with regulation of longevity or caloric restriction.

  7. Genome polymorphism markers and stress genes expression for ...

    African Journals Online (AJOL)

    SAM

    2014-06-11

    Jun 11, 2014 ... RNA extraction and purification for SOD and PAL gene expression. Fresh leaf tissues (100 mg), from ... Data analysis. Gelquant program for quantification of protein, DNA and RNA gel. (version 1.8.2) was used for .... by reprogramming the expression of endogenous genes. Higher level of these antioxidant ...

  8. Chemopreventive effects of NSAIDs as inhibitors of cyclooxygenase-2 and inducers of apoptosis in experimental lung carcinogenesis.

    Science.gov (United States)

    Setia, Shruti; Vaish, Vivek; Sanyal, Sankar Nath

    2012-07-01

    Roles of cyclooxygenase (COX) enzyme and intrinsic pathway of apoptosis have been explored for the chemopreventive effects of non-steroidal anti-inflammatory drugs (NSAIDs) on 9,10-dimethyl benz(a)anthracene (DMBA)-induced lung cancer in rat model. 16 weeks after the administration of DMBA, morphological analysis revealed the occurrences of tumours and lesions, which were regressed considerably with the co-administration of indomethacin and etoricoxib, the two NSAIDs under investigation. DMBA group was marked by hyperplasia and dysplasia as observed by histological examination, and these features were corrected to a large extent by the two NSAIDs. Elevated levels of COX-2 were seen in the DMBA group, the enzyme responsible for prostaglandin synthesis during inflammation and cancer, whilst the expression of the constitutive isoform, COX-1, was equally expressed in all the groups. Apoptosis was quantified by studying the activities of apaf-1, caspase-9, and 3 by immunofluorescence and western blots. Their activities were found to diminish in the DMBA-treated animals as compared to the other groups. Fluorescent co-staining of the isolated broncho-alveolar lavage cells showed reduced number of apoptotic cells in the DMBA group, indicating decrease in apoptosis after carcinogen administration. The present results thus suggest that the mechanism of cancer chemoprevention of NSAIDs may include the suppression of COX-2 and the induction of apoptosis.

  9. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

    Science.gov (United States)

    Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S

    2017-07-01

    Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  10. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    International Nuclear Information System (INIS)

    Hofmann, M.; Gazdhar, A.; Weitzel, T.; Schmid, R.; Krause, T.

    2006-01-01

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and humans

  11. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, M. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland)]. E-mail: Michael.Hofmann@insel.ch; Gazdhar, A. [Division of Pulmonary Medicine, University Hospital Bern (Switzerland); Weitzel, T. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland); Schmid, R. [Division of Thoracic Surgery, University Hospital Bern (Switzerland); Krause, T. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland)

    2006-12-20

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and human000.

  12. The Contribution of Transactivation Subdomains 1 and 2 to p53-Induced Gene Expression Is Heterogeneous But Not Subdomain-Specific

    Directory of Open Access Journals (Sweden)

    Jennifer M. Smith

    2007-12-01

    Full Text Available Two adjacent regions within the transactivation domain of p53 are sufficient to support sequence-specific transactivation when fused to a heterologous DNA binding domain. It has been hypothesized that these two subdomains of p53 may contribute to the expression of distinct p53-responsive genes. Here we have used oligonucleotide microarrays to identify transcripts induced by variants of p53 with point mutations within subdomains 1, 2, or 1 and 2 (QS1, QS2, QS1/QS2, respectively. The expression of 254 transcripts was increased in response to wild-type p53 expression but most of these transcripts were poorly induced by these variants of p53. Strikingly, a number of known p53regulated transcripts including TNFRSF10B, BAX, BTG2, POLH were increased to wild-type levels by p53QS1 and p53QS2 but not p53QS1/QS2, indicating that either sub domain 1 or 2 is sufficient for p53-dependent expression of a small subset of p53-responsive genes. Unexpectedly, there was no evidence for p53QS1- or p53QS2-specific gene expression. Taken together, we found heterogeneity in the requirement for transactivation subdomains 1 and 2 of p53 without any subdomain-specific contribution to p53-induced gene expression.

  13. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese Ay mice

    International Nuclear Information System (INIS)

    Nonogaki, Katsunori; Nozue, Kana; Oka, Yoshitomo

    2006-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A y mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A y mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A y mice, but did not increase plasma adiponectin levels

  14. eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks.

    Science.gov (United States)

    Clarke, Daniel J B; Kuleshov, Maxim V; Schilder, Brian M; Torre, Denis; Duffy, Mary E; Keenan, Alexandra B; Lachmann, Alexander; Feldmann, Axel S; Gundersen, Gregory W; Silverstein, Moshe C; Wang, Zichen; Ma'ayan, Avi

    2018-05-25

    While gene expression data at the mRNA level can be globally and accurately measured, profiling the activity of cell signaling pathways is currently much more difficult. eXpression2Kinases (X2K) computationally predicts involvement of upstream cell signaling pathways, given a signature of differentially expressed genes. X2K first computes enrichment for transcription factors likely to regulate the expression of the differentially expressed genes. The next step of X2K connects these enriched transcription factors through known protein-protein interactions (PPIs) to construct a subnetwork. The final step performs kinase enrichment analysis on the members of the subnetwork. X2K Web is a new implementation of the original eXpression2Kinases algorithm with important enhancements. X2K Web includes many new transcription factor and kinase libraries, and PPI networks. For demonstration, thousands of gene expression signatures induced by kinase inhibitors, applied to six breast cancer cell lines, are provided for fetching directly into X2K Web. The results are displayed as interactive downloadable vector graphic network images and bar graphs. Benchmarking various settings via random permutations enabled the identification of an optimal set of parameters to be used as the default settings in X2K Web. X2K Web is freely available from http://X2K.cloud.

  15. Expression of the Circadian Clock Gene Period2 in the Hippocampus: Possible Implications for Synaptic Plasticity and Learned Behaviour

    Directory of Open Access Journals (Sweden)

    Louisa M-C Wang

    2009-05-01

    Full Text Available Genes responsible for generating circadian oscillations are expressed in a variety of brain regions not typically associated with circadian timing. The functions of this clock gene expression are largely unknown, and in the present study we sought to explore the role of the Per2 (Period 2 gene in hippocampal physiology and learned behaviour. We found that PER2 protein is highly expressed in hippocampal pyramidal cell layers and that the expression of both protein and mRNA varies with a circadian rhythm. The peaks of these rhythms occur in the late night or early morning and are almost 180° out-of-phase with the expression rhythms measured from the suprachiasmatic nucleus of the same animals. The rhythms in Per2 expression are autonomous as they are present in isolated hippocampal slices maintained in culture. Physiologically, Per2-mutant mice exhibit abnormal long-term potentiation. The underlying mechanism is suggested by the finding that levels of phosphorylated cAMP-response-element-binding protein, but not phosphorylated extracellular-signal-regulated kinase, are reduced in hippocampal tissue from mutant mice. Finally, Per2-mutant mice exhibit deficits in the recall of trace, but not cued, fear conditioning. Taken together, these results provide evidence that hippocampal cells contain an autonomous circadian clock. Furthermore, the clock gene Per2 may play a role in the regulation of long-term potentiation and in the recall of some forms of learned behaviour.

  16. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats

    International Nuclear Information System (INIS)

    Femia, Angelo Pietro; Luceri, Cristina; Toti, Simona; Giannini, Augusto; Dolara, Piero; Caderni, Giovanna

    2010-01-01

    Azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats. For gene expression analysis, 9 tumours (TUM) and their paired normal mucosa (NM) were hybridized on 4 × 44K Whole rat arrays (Agilent) and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH) was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent) and the results were analyzed by CGH Analytics (Agilent). Microarray gene expression analysis showed that Defcr4, Igfbp5, Mmp7, Nos2, S100A8 and S100A9 were among the most up-regulated genes in tumours (Fold Change (FC) compared with NM: 183, 48, 39, 38, 36 and 32, respectively), while Slc26a3, Mptx, Retlna and Muc2 were strongly down-regulated (FC: -500; -376, -167, -79, respectively). Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including Apc. The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a low degree of genomic imbalance, it is interesting to

  17. Bovine mammary gene expression profiling during the onset of lactation.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Gao

    Full Text Available BACKGROUND: Lactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards. METHODOLOGY/PRINCIPAL FINDINGS: To better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE on bovine mammary tissue at three time points (on approximately day 35 before parturition (-35 d, day 7 before parturition (-7 d and day 3 after parturition (+3 d. Approximately 6.2 million (M, 5.8 million (M and 6.1 million (M 21-nt cDNA tags were sequenced in the three cDNA libraries (-35 d, -7 d and +3 d, respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥ 2 or ≤-2 and a false discovery rate (FDR of ≤ 0.001, a total of 812 genes were significantly differentially expressed at -7 d compared with -35 d (stage I. Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with -7 d (stage II, and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with -35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes. CONCLUSIONS: The results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cell's resources towards lactation.

  18. Recombinant vectors construction for cellobiohydrolase encoding gene constitutive expression

    Directory of Open Access Journals (Sweden)

    Leontina GURGU

    2012-12-01

    Full Text Available Cellobiohydrolases (EC 3.2.1.91 are important exo enzymes involved in cellulose hydrolysis alongside endoglucanases (EC 3.2.1.4 and β-glucosidases (EC 3.2.1.21. Heterologous cellobiohydrolase gene expression under constitutive promoter control using Saccharomyces cerevisiae as host system is of great importance for a successful SSF process. From this point of view, the main objective of the work was to use Yeplac181 expression vector as a recipient for cellobiohdrolase - cbhB encoding gene expression under the control of the actin promoter, in Saccharomyces cerevisiae. Two hybridvectors, YEplac-Actp and YEplac-Actp-CbhB, were generated usingEscherichia coli XLI Blue for the cloning experiments. Constitutive cbhB gene expression was checked by proteine gel electrophoresis (SDS-PAGE after insertion of these constructs into Saccharomyces cerevisiae.

  19. Expression of human gamma-globin genes in human erythroleukemia (K562) cells.

    Science.gov (United States)

    Donovan-Peluso, M; Acuto, S; Swanson, M; Dobkin, C; Bank, A

    1987-12-15

    K562 cells express embryonic (epsilon) and fetal (gamma) globins and hemoglobins but not adult (beta) globin. To define the cis acting regulatory elements involved in the discrimination between gamma and beta genes, we have constructed chimeric genes composed of portions of gamma and beta and evaluated their expression in stable K562 transfectants. A gamma beta fusion gene containing gamma 5' sequences to the EcoRI site in exon 3 and beta sequences 3' is expressed at 10-40% that of the endogenous gamma level. In 50% of the lines, this fusion gene appropriately increases its expression in response to hemin, an inducer of endogenous globin gene expression in K562 cells. In contrast, a beta gamma fusion gene, containing beta sequences 5' to the EcoRI site in exon 3 and gamma sequences 3', is neither expressed nor correctly initiated. A beta gene containing gamma-intervening sequence (IVS) 2 accumulates an mRNA transcript when analyzed with a 3' beta probe. However, no correctly initiated beta mRNA is observed. A gamma gene with beta-IVS 2 is only inducible in one of six expressing clones. All the results are consistent with the presence of stage-specific trans acting factors in K562 cells that stimulate expression of gamma genes and suggest a significant role for gamma-IVS 2 in gamma gene expression.

  20. Paracrine effects of bone marrow-derived endothelial progenitor cells: cyclooxygenase-2/prostacyclin pathway in pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Dong-Mei Jiang

    Full Text Available BACKGROUND: Endothelial dysfunction is the pathophysiological characteristic of pulmonary arterial hypertension (PAH. Some paracrine factors secreted by bone marrow-derived endothelial progenitor cells (BMEPCs have the potential to strengthen endothelial integrity and function. This study investigated whether BMEPCs have the therapeutic potential to improve monocrotaline (MCT-induced PAH via producing vasoprotective substances in a paracrine fashion. METHODS AND RESULTS: Bone marrow-derived mononuclear cells were cultured for 7 days to yield BMEPCs. 24 hours or 3 weeks after exposure to BMEPCs in vitro or in vivo, the vascular reactivity, cyclooxygenase-2 (COX-2 expression, prostacyclin (PGI2 and cAMP release in isolated pulmonary arteries were examined respectively. Treatment with BMEPCs could improve the relaxation of pulmonary arteries in MCT-induced PAH and BMEPCs were grafted into the pulmonary bed. The COX-2/prostacyclin synthase (PGIS and its progenies PGI2/cAMP were found to be significantly increased in BMEPCs treated pulmonary arteries, and this action was reversed by a selective COX-2 inhibitor, NS398. Moreover, the same effect was also observed in conditioned medium obtained from BMEPCs culture. CONCLUSIONS: Implantation of BMEPCs effectively ameliorates MCT-induced PAH. Factors secreted in a paracrine fashion from BMEPCs promote vasoprotection by increasing the release of PGI2 and level of cAMP.

  1. Synergistic Induction of Cyclooxygenase-2 by Transforming Growth Factor-β1 and Epidermal Growth Factor Inhibits Apoptosis in Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Debabrata Saha

    1999-12-01

    Full Text Available Increased expression of cyclooxygenase-2 (COX-2 expression has been observed in several human tumor types and in selected animal and cell culture models of carcinogenesis, including lung cancer. Increased expression of COX-2 and production of prostaglandins appear to provide a survival advantage to transformed cells through the inhibition of apoptosis, increased attachment to extracellular matrix, increased invasiveness, the stimulation of angiogenesis. In the present studies, we found that transforming growth factor β1 (TGF-β1 and epidermal growth factor (EGF synergistically induced the expression of COX-2 and prostaglandin E2 (PGE2 production in mink lung epithelial (Mvi Lu cells. EGF, but not PDGF or IGF-1, was able to inhibit TGF-β1-induced apoptosis in Mvi Lu cells and this effect was blocked by NS-398, a selective inhibitor of COX-2 activity, suggesting a possible role for COX-2 in the anti-apoptosic effect of EGF receptor ligands. The combination of TGF-β1 and EGF also significantly induced COX-2 expression in rat intestinal epithelial (RIE-1 cells and completely prevented sodium butyrate (NaBu-induced apoptosis. The synergistic induction of COX-2 by TGF-β1 and EGF was not observed in R1B-L17 cells, a line derived from Mvi Lu cells that lacks the TGF-β type-I receptor. AG1478, a selective inhibitor of EGF receptor tyrosine kinase activity, completely suppressed the induction of COX-2 expression by either EGF or TGF-β1+EGF. Also, PD98059, a specific inhibitor of MEK/ERK pathway, SB203580, a specific inhibitor of p38 MAPK activity, significantly inhibited the induction of COX-2 in response to combined EGF and TGF-β1. These results suggest an important collaborative interaction of TGF-β1 and EGF signaling in the induction of COX-2 and prostaglandin production in Mv1Lu cells.

  2. Characterization of differentially expressed genes using high-dimensional co-expression networks

    DEFF Research Database (Denmark)

    Coelho Goncalves de Abreu, Gabriel; Labouriau, Rodrigo S.

    2010-01-01

    We present a technique to characterize differentially expressed genes in terms of their position in a high-dimensional co-expression network. The set-up of Gaussian graphical models is used to construct representations of the co-expression network in such a way that redundancy and the propagation...... that allow to make effective inference in problems with high degree of complexity (e.g. several thousands of genes) and small number of observations (e.g. 10-100) as typically occurs in high throughput gene expression studies. Taking advantage of the internal structure of decomposable graphical models, we...... construct a compact representation of the co-expression network that allows to identify the regions with high concentration of differentially expressed genes. It is argued that differentially expressed genes located in highly interconnected regions of the co-expression network are less informative than...

  3. Integrating chromosomal aberrations and gene expression profiles to dissect rectal tumorigenesis

    Directory of Open Access Journals (Sweden)

    Eilers Paul HC

    2008-10-01

    Full Text Available Abstract Background Accurate staging of rectal tumors is essential for making the correct treatment choice. In a previous study, we found that loss of 17p, 18q and gain of 8q, 13q and 20q could distinguish adenoma from carcinoma tissue and that gain of 1q was related to lymph node metastasis. In order to find markers for tumor staging, we searched for candidate genes on these specific chromosomes. Methods We performed gene expression microarray analysis on 79 rectal tumors and integrated these data with genomic data from the same sample series. We performed supervised analysis to find candidate genes on affected chromosomes and validated the results with qRT-PCR and immunohistochemistry. Results Integration of gene expression and chromosomal instability data revealed similarity between these two data types. Supervised analysis identified up-regulation of EFNA1 in cases with 1q gain, and EFNA1 expression was correlated with the expression of a target gene (VEGF. The BOP1 gene, involved in ribosome biogenesis and related to chromosomal instability, was over-expressed in cases with 8q gain. SMAD2 was the most down-regulated gene on 18q, and on 20q, STMN3 and TGIF2 were highly up-regulated. Immunohistochemistry for SMAD4 correlated with SMAD2 gene expression and 18q loss. Conclusion On basis of integrative analysis this study identified one well known CRC gene (SMAD2 and several other genes (EFNA1, BOP1, TGIF2 and STMN3 that possibly could be used for rectal cancer characterization.

  4. Regulation of eucaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Brent, R.; Ptashne, M.S

    1989-05-23

    This patent describes a method of regulating the expression of a gene in a eucaryotic cell. The method consists of: providing in the eucaryotic cell, a peptide, derived from or substantially similar to a peptide of a procaryotic cell able to bind to DNA upstream from or within the gene, the amount of the peptide being sufficient to bind to the gene and thereby control expression of the gene.

  5. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Directory of Open Access Journals (Sweden)

    Pomari E

    2014-06-01

    Full Text Available Elena Pomari, Bruno Stefanon, Monica Colitti Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy Background: Arctium lappa (AL, Camellia sinensis (CS, Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG, and Vaccinium myrtillus (VM are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods: Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (mRNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results: A noncytotoxic dose (200 µM of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001 regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion: The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in

  6. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  7. [Abnormality of TOP2A expression and its gene copy number variations in neuroblastic tumors].

    Science.gov (United States)

    Chen, J M; Zhou, C J; Ma, X L; Guan, D D; Yang, L Y; Yue, P; Gong, L P

    2016-11-08

    Objective: To detect TOP2A protein expression and gene copy number alterations, and to analyze related clinical and pathological implications in pediatric neuroblastic tumors (NT). Methods: Immunohistochemistry was used to detect TOP2A protein expression. Fluorescence in situ hybridization (FISH) was used to detect numerical aberrations of TOP2A. Results: TOP2A protein was expressed in 59.1%(52/88) of cases, which was associated with differentiation ( P =0.006), Ki-67 index ( P INSS stages (Ⅲ and Ⅳ). As a target of the anthracycline-based adjuvant drugs, TOP2A test can be used to select patient with NT for the therapy.

  8. Gene-expression profiling after exposure to C-ion beams

    International Nuclear Information System (INIS)

    Saegusa, Kumiko; Furuno, Aki; Ishikawa, Kenichi; Ishikawa, Atsuko; Ohtsuka, Yoshimi; Kawai, Seiko; Imai, Takashi; Nojima, Kumie

    2005-01-01

    It is recognized that carbon-ion beam kills cancer cells more efficiently than X-ray. In this study we have compared cellular gene expression response after carbon-ion beam exposure with that after X-ray exposure. Gene expression profiles of cultured neonatal human dermal fibroblasts (NHDF) at 0, 1, 3, 6, 12, 18, and 24 hr after exposure to 0.1, 2 and 5 Gy of X-ray or carbon-ion beam were obtained using 22K oligonucleotide microarray. N-way ANOVA analysis of whole gene expression data sets selected 960 genes for carbon-ion beam and 977 genes for X-ray, respectively. Interestingly, majority of these genes (91% for carbon-ion beam and 88% for X-ray, respectively) were down regulated. The selected genes were further classified by their dose-dependence or time-dependence of gene expression change (fold change>1.5). It was revealed that genes involved in cell proliferation had tendency to show time-dependent up regulation by carbon-ion beam. Another N-way ANOVA analysis was performed to select 510 genes, and further selection was made to find 70 genes that showed radiation species-dependent gene expression change (fold change>1.25). These genes were then categorized by the K-Mean clustering method into 4 clusters. Each cluster showed tendency to contain genes involved in cell cycle regulation, cell death, responses to stress and metabolisms, respectively. (author)

  9. [Small interfering RNA-mediated COX-2 gene silencing enhances chemosensitivity of KB/VCR cells by suppressing MDR-1 gene expression and P-glycoprotein activity].

    Science.gov (United States)

    Mo, Xianchao; Li, Weizhong

    2014-05-01

    To investigate the effect of small interfering RNA (siRNA)-mediated COX-2 gene silencing in enhancing the chemosensitivity of KB/VCR cell lines. KB/VCR cells were trasnfected with COX-2 siRNA were examined for expressions of COX-2 and MDR-1 mRNAs with RT-PCR and for Rho-123 accumulation using flow cytometry. MTT assay was used to analyze the proliferation of the transfected KB/VCR cells. Compared with the negative and blank control groups, COX-2 siRNA transfection resulted in significant growth inhibition of KB/VCR cells exposed to vincristine (PKB/VCR cells. COX-2 gene silencing can enhance the chemosensitivity of KB/VCR cells to vincristine, the mechanism of which may involve down-regulated MDR-1 gene expression and inhibition of P-glycoprotein activity.

  10. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR

    International Nuclear Information System (INIS)

    Rho, Hyun-Wook; Lee, Byoung-Chan; Choi, Eun-Seok; Choi, Il-Ju; Lee, Yeon-Su; Goh, Sung-Ho

    2010-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful method for the analysis of gene expression. Target gene expression levels are usually normalized to a consistently expressed reference gene also known as internal standard, in the same sample. However, much effort has not been expended thus far in the search for reference genes suitable for the study of stomach cancer using RT-qPCR, although selection of optimal reference genes is critical for interpretation of results. We assessed the suitability of six possible reference genes, beta-actin (ACTB), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), hypoxanthine phosphoribosyl transferase 1 (HPRT1), beta-2-microglobulin (B2M), ribosomal subunit L29 (RPL29) and 18S ribosomal RNA (18S rRNA) in 20 normal and tumor stomach tissue pairs of stomach cancer patients and 6 stomach cancer cell lines, by RT-qPCR. Employing expression stability analyses using NormFinder and geNorm algorithms we determined the order of performance of these reference genes and their variation values. This RT-qPCR study showed that there are statistically significant (p < 0.05) differences in the expression levels of HPRT1 and 18S rRNA in 'normal-' versus 'tumor stomach tissues'. The stability analyses by geNorm suggest B2M-GAPDH, as best reference gene combination for 'stomach cancer cell lines'; RPL29-HPRT1, for 'all stomach tissues'; and ACTB-18S rRNA, for 'all stomach cell lines and tissues'. NormFinder also identified B2M as the best reference gene for 'stomach cancer cell lines', RPL29-B2M for 'all stomach tissues', and 18S rRNA-ACTB for 'all stomach cell lines and tissues'. The comparisons of normalized expression of the target gene, GPNMB, showed different interpretation of target gene expression depend on best single reference gene or combination. This study validated RPL29 and RPL29-B2M as the best single reference

  11. CYCLO-OXYGENASE 2 IS PRESENT IN THE MAJORITY OF LESIONAL SKIN FROM PATIENTS WITH AUTOINMUNE BLISTERING DISEASES

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2013-10-01

    Full Text Available Introduction: The in situ immune response within skin biopsies from patients affected by autoimmune skin blistering diseases (ABDs is not well characterized. Aim: Based on the fact that the ABD immune response is considered an adaptive immune response, both an innate immune response and inflammation would be expected in these diseases. Our investigation investigates the presence of cyclo-oxygenase-2 (COX-2, since this enzyme is commonly involved in innate immune responses. Methods: We utilized immunohistochemistry (IHC to evaluate the presence of COX-2 in lesional skin biopsies of patients affected by ABDs. We tested 30 patients with endemic pemphigus foliaceus (EPF, 15 controls from the endemic area, and 15 biopsies from healthy controls from the USA. We also tested archival biopsies from patients with selected ABDs, including 20 patients with bullous pemphigoid, 20 with pemphigus vulgaris, 8 with pemphigus foliaceus and 12 with dermatitis herpetiformis. Results: Most ABD biopsies stained positive for COX-2 in the lesional blister and/or the dermal inflammatory infiltrate, accentuated in the upper neurovascular plexus. In BP and EPF, the COX-2 staining was also seen in the sweat glands. All controls were negative. Conclusions: We document that COX-2 is expressed in lesional skin of patients with ABDs.

  12. A pipeline to determine RT-QPCR control genes for evolutionary studies: application to primate gene expression across multiple tissues.

    Directory of Open Access Journals (Sweden)

    Olivier Fedrigo

    Full Text Available Because many species-specific phenotypic differences are assumed to be caused by differential regulation of gene expression, many recent investigations have focused on measuring transcript abundance. Despite the availability of high-throughput platforms, quantitative real-time polymerase chain reaction (RT-QPCR is often the method of choice because of its low cost and wider dynamic range. However, the accuracy of this technique heavily relies on the use of multiple valid control genes for normalization. We created a pipeline for choosing genes potentially useful as RT-QPCR control genes for measuring expression between human and chimpanzee samples across multiple tissues, using published microarrays and a measure of tissue-specificity. We identified 13 genes from the pipeline and from commonly used control genes: ACTB, USP49, ARGHGEF2, GSK3A, TBP, SDHA, EIF2B2, GPDH, YWHAZ, HPTR1, RPL13A, HMBS, and EEF2. We then tested these candidate genes and validated their expression stability across species. We established the rank order of the most preferable set of genes for single and combined tissues. Our results suggest that for at least three tissues (cerebral cortex, liver, and skeletal muscle, EIF2B2, EEF2, HMBS, and SDHA are useful genes for normalizing human and chimpanzee expression using RT-QPCR. Interestingly, other commonly used control genes, including TBP, GAPDH, and, especially ACTB do not perform as well. This pipeline could be easily adapted to other species for which expression data exist, providing taxonomically appropriate control genes for comparisons of gene expression among species.

  13. Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes.

    Science.gov (United States)

    Leeggangers, Hendrika A C F; Folta, Adam; Muras, Aleksandra; Nap, Jan-Peter; Mlynarova, Ludmila

    2015-02-01

    In the life of flowering plants, seed germination is a critical step to ensure survival into the next generation. Generally the seed prior to germination has been in a dormant state with a low rate of metabolism. In the transition from a dormant seed to a germinating seed, various epigenetic mechanisms play a regulatory role. Here, we demonstrate that the over-expression of chromatin remodeling ATPase genes (AtCHR12 or AtCHR23) reduced the frequency of seed germination in Arabidopsis thaliana up to 30% relative to the wild-type seeds. On the other hand, single loss-of-function mutations of the two genes did not affect seed germination. The reduction of germination in over-expressing mutants was more pronounced in stress conditions (salt or high temperature), showing the impact of the environment. Reduced germinations upon over-expression coincided with increased transcript levels of seed maturation genes and with reduced degradation of their mRNAs stored in dry seeds. Our results indicate that repression of AtCHR12/23 gene expression in germinating wild-type Arabidopsis seeds is required for full germination. This establishes a functional link between chromatin modifiers and regulatory networks towards seed maturation and germination. © 2014 Scandinavian Plant Physiology Society.

  14. Gene Expression Profiles of Main Olfactory Epithelium in Adenylyl Cyclase 3 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Zhenshan Wang

    2015-11-01

    Full Text Available Adenylyl Cyclase 3 (AC3 plays an important role in the olfactory sensation-signaling pathway in mice. AC3 deficiency leads to defects in olfaction. However, it is still unknown whether AC3 deficiency affects gene expression or olfactory signal transduction pathways within the main olfactory epithelium (MOE. In this study, gene microarrays were used to screen differentially expressed genes in MOE from AC3 knockout (AC3−/− and wild-type (AC3+/+ mice. The differentially expressed genes identified were subjected to bioinformatic analysis and verified by qRT-PCR. Gene expression in the MOE from AC3−/− mice was significantly altered, compared to AC3+/+ mice. Of the 41266 gene probes, 3379 had greater than 2-fold fold change in expression levels between AC3−/− and AC3+/+ mice, accounting for 8% of the total gene probes. Of these genes, 1391 were up regulated, and 1988 were down regulated, including 425 olfactory receptor genes, 99 genes that are specifically expressed in the immature olfactory neurons, 305 genes that are specifically expressed in the mature olfactory neurons, and 155 genes that are involved in epigenetic regulation. Quantitative RT-PCR verification of the differentially expressed epigenetic regulation related genes, olfactory receptors, ion transporter related genes, neuron development and differentiation related genes, lipid metabolism and membrane protein transport etc. related genes showed that P75NTR, Hinfp, Gadd45b, and Tet3 were significantly up-regulated, while Olfr370, Olfr1414, Olfr1208, Golf, Faim2, Tsg101, Mapk10, Actl6b, H2BE, ATF5, Kirrrel2, OMP, Drd2 etc. were significantly down-regulated. In summary, AC3 may play a role in proximal olfactory signaling and play a role in the regulation of differentially expressed genes in mouse MOE.

  15. An incoherent feedforward loop facilitates adaptive tuning of gene expression.

    Science.gov (United States)

    Hong, Jungeui; Brandt, Nathan; Abdul-Rahman, Farah; Yang, Ally; Hughes, Tim; Gresham, David

    2018-04-05

    We studied adaptive evolution of gene expression using long-term experimental evolution of Saccharomyces cerevisiae in ammonium-limited chemostats. We found repeated selection for non-synonymous variation in the DNA binding domain of the transcriptional activator, GAT1, which functions with the repressor, DAL80 in an incoherent type-1 feedforward loop (I1-FFL) to control expression of the high affinity ammonium transporter gene, MEP2. Missense mutations in the DNA binding domain of GAT1 reduce its binding to the GATAA consensus sequence. However, we show experimentally, and using mathematical modeling, that decreases in GAT1 binding result in increased expression of MEP2 as a consequence of properties of I1-FFLs. Our results show that I1-FFLs, one of the most commonly occurring network motifs in transcriptional networks, can facilitate adaptive tuning of gene expression through modulation of transcription factor binding affinities. Our findings highlight the importance of gene regulatory architectures in the evolution of gene expression. © 2018, Hong et al.

  16. Expression Analysis of Gata4, Tbx5 and Nkx2.5 Genes Involved in Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Mahta Mazaheri-Naeeini

    2016-04-01

    Full Text Available Background Congenital heart disease (CHD is the most widespread congenital disease in newborn babies and is one of the main causes of death worldwide. The causal agent of heart congenital diseases is unknown but genetic factors have an important role in prevalence of disease. Objectives The main objective of this research is comparison of the gene expression level of three Gata4, Tbx5 and Nkx2.5 genes in three groups of children between 6 months and 13 year old with congenital heart disease. Patients and Methods In this case-control study, 30 samples from each cyanotic and acyanotic patients and 30 samples from healthy children as control were used. RNA extraction was done using commercial kit and gene expression analysis was performed by qRT-PCR approach in three replication using Gata4, Tbx5 and Nkx2.5 genes. Data analysis was done by REST software. Results The results of RNA extraction and cDNA synthesis of all sample showed high quantity and quality of genetic materials. Expression level of tested genes was reduced in two patients group. In cyanotic group reduction was more than acyanotic samples. All tested gene were reduced in both group. Tbx5 gene was suppressed more than other genes. Conclusions Based on our results we could conclude that a gene family play an important role in cardiogenesis process and heart formation. These genes are closely related together. So a genetic consultation for such diseases on parents of these patients to determine the probable genetic mutations is recommended.

  17. Disturbance of cardiac gene expression and cardiomyocyte structure predisposes Mecp2-null mice to arrhythmias

    Science.gov (United States)

    Hara, Munetsugu; Takahashi, Tomoyuki; Mitsumasu, Chiaki; Igata, Sachiyo; Takano, Makoto; Minami, Tomoko; Yasukawa, Hideo; Okayama, Satoko; Nakamura, Keiichiro; Okabe, Yasunori; Tanaka, Eiichiro; Takemura, Genzou; Kosai, Ken-ichiro; Yamashita, Yushiro; Matsuishi, Toyojiro

    2015-01-01

    Methyl-CpG-binding protein 2 (MeCP2) is an epigenetic regulator of gene expression that is essential for normal brain development. Mutations in MeCP2 lead to disrupted neuronal function and can cause Rett syndrome (RTT), a neurodevelopmental disorder. Previous studies reported cardiac dysfunction, including arrhythmias in both RTT patients and animal models of RTT. In addition, recent studies indicate that MeCP2 may be involved in cardiac development and dysfunction, but its role in the developing and adult heart remains unknown. In this study, we found that Mecp2-null ESCs could differentiate into cardiomyocytes, but the development and further differentiation of cardiovascular progenitors were significantly affected in MeCP2 deficiency. In addition, we revealed that loss of MeCP2 led to dysregulation of endogenous cardiac genes and myocardial structural alterations, although Mecp2-null mice did not exhibit obvious cardiac functional abnormalities. Furthermore, we detected methylation of the CpG islands in the Tbx5 locus, and showed that MeCP2 could target these sequences. Taken together, these results suggest that MeCP2 is an important regulator of the gene-expression program responsible for maintaining normal cardiac development and cardiomyocyte structure. PMID:26073556

  18. Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression

    DEFF Research Database (Denmark)

    Ravnskjær, Kim; Kester, Henri; Liu, Yi

    2007-01-01

    A number of hormones and growth factors stimulate gene expression by promoting the phosphorylation of CREB (P-CREB), thereby enhancing its association with the histone acetylase paralogs p300 and CBP (CBP/p300). Relative to cAMP, stress signals trigger comparable amounts of CREB phosphorylation...... to stress signals, however; and in its absence, P-CREB is unable to stimulate CRE-dependent transcription, due to a block in CBP recruitment. The effect of TORC2 on CBP/p300 promoter occupancy appears pivotal because a gain of function mutant CREB polypeptide with increased affinity for CBP restored CRE......-mediated transcription in cells exposed to stress signals. Taken together, these results indicate that TORC2 is one of the long sought after cofactors that mediates the differential effects of cAMP and stress pathways on CREB target gene expression....

  19. 2,2',4,4'-Tetrachlorobiphenyl upregulates cyclooxygenase-2 in HL-60 cells via p38 mitogen-activated protein kinase and NF-κB

    International Nuclear Information System (INIS)

    Bezdecny, Steven A.; Karmaus, Peer; Roth, Robert A.; Ganey, Patricia E.

    2007-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitous, persistent environmental contaminants that affect a number of cellular systems, including neutrophils. Among the effects caused by the noncoplanar PCB 2,2',4,4'-tetrachlorobiphenyl (2244-TCB) in granulocytic HL-60 cells are increases in superoxide anion production, activation of phospholipase A 2 with subsequent release of arachidonic acid (AA) and upregulation of the inflammatory gene cyclooxygenase-2 (COX-2). The objective of this study was to determine the signal transduction pathways involved in the upregulation of COX-2 by 2244-TCB. Treatment of HL-60 cells with 2244-TCB led to increased expression of COX-2 mRNA. This increase was prevented by the transcriptional inhibitor actinomycin D in cells pretreated with 2244-TCB for 10 min. The increase in COX-2 mRNA was associated with release of 3 H-AA, phosphorylation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinases, increased levels of nuclear NF-κB and increased superoxide anion production. Bromoenol lactone, an inhibitor of the calcium-independent phospholipase A 2 , reduced 3 H-AA release but had no effect on COX-2 mRNA, protein or activity. Pretreatment with SB-202190 or SB-203580, inhibitors of the p38 MAP kinase pathway, prevented the 2244-TCB-mediated induction of COX-2 and phosphorylation of p38 and ERK MAP kinases. These inhibitors did not alter 3 H-AA release. Treatment with PD 98059 or U 0126, inhibitors of the MAP/ERK (MEK) pathway, prevented the 2244-TCB-mediated activation of ERK but had no effect on COX-2 induction or p38 phosphorylation. 2244-TCB treatment did not affect c-Jun N-terminal kinase (JNK) phosphorylation. 2244-TCB exposure increased the amount of nuclear NF-κB. This increase was prevented by pretreatment with p38 MAP kinase inhibitors, but not by pretreatment with MEK inhibitors. Pretreatment with inhibitors of NF-κB prevented the 2244-TCB-mediated induction of COX-2 mRNA. 2244-TCB

  20. A Gene Expression Classifier of Node-Positive Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Paul F. Meeh

    2009-10-01

    Full Text Available We used digital long serial analysis of gene expression to discover gene expression differences between node-negative and node-positive colorectal tumors and developed a multigene classifier able to discriminate between these two tumor types. We prepared and sequenced long serial analysis of gene expression libraries from one node-negative and one node-positive colorectal tumor, sequenced to a depth of 26,060 unique tags, and identified 262 tags significantly differentially expressed between these two tumors (P < 2 x 10-6. We confirmed the tag-to-gene assignments and differential expression of 31 genes by quantitative real-time polymerase chain reaction, 12 of which were elevated in the node-positive tumor. We analyzed the expression levels of these 12 upregulated genes in a validation panel of 23 additional tumors and developed an optimized seven-gene logistic regression classifier. The classifier discriminated between node-negative and node-positive tumors with 86% sensitivity and 80% specificity. Receiver operating characteristic analysis of the classifier revealed an area under the curve of 0.86. Experimental manipulation of the function of one classification gene, Fibronectin, caused profound effects on invasion and migration of colorectal cancer cells in vitro. These results suggest that the development of node-positive colorectal cancer occurs in part through elevated epithelial FN1 expression and suggest novel strategies for the diagnosis and treatment of advanced disease.

  1. Inferring gene expression dynamics via functional regression analysis

    Directory of Open Access Journals (Sweden)

    Leng Xiaoyan

    2008-01-01

    Full Text Available Abstract Background Temporal gene expression profiles characterize the time-dynamics of expression of specific genes and are increasingly collected in current gene expression experiments. In the analysis of experiments where gene expression is obtained over the life cycle, it is of interest to relate temporal patterns of gene expression associated with different developmental stages to each other to study patterns of long-term developmental gene regulation. We use tools from functional data analysis to study dynamic changes by relating temporal gene expression profiles of different developmental stages to each other. Results We demonstrate that functional regression methodology can pinpoint relationships that exist between temporary gene expression profiles for different life cycle phases and incorporates dimension reduction as needed for these high-dimensional data. By applying these tools, gene expression profiles for pupa and adult phases are found to be strongly related to the profiles of the same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups that exhibit relationships with positive and others with negative associations between later life and embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle development related genes, and a negative relationship for strictly maternal genes for Drosophila, using temporal gene expression profiles. Conclusion Our findings point to specific reactivation patterns of gene expression during the Drosophila life cycle which differ in characteristic ways between various gene groups. Functional regression emerges as a useful tool for relating gene expression patterns from different developmental stages, and avoids the problems with large numbers of parameters and multiple testing that affect alternative approaches.

  2. In situ gene expression and ecophysiology of thermophilic Cyanobacteria

    DEFF Research Database (Denmark)

    Jensen, Sheila Ingemann

    -378), the expression patterns of various functional genes (with an emphasis on nif genes involved in N2-fixation), the protein levels of nitrogenase (NifH), the N2-fixation activity, as well as microsensor based measurements on O2 availability, production and consumption were investigated in situ over the entire diel...... cycle. Interestingly, it was found that while the nif genes are expressed, and nitrogenase is synthesized once the mat gets anoxic in the early evening, the largest N2-fixation activity occurs as a burst during dim light in the early morning, albeit protein levels remained high over the entire course...

  3. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    knockout and strong overexpression. However, applications such as metabolic optimization and control analysis necessitate a continuous set of expression levels with only slight increments in strength to cover a specific window around the wildtype expression level of the studied gene; this requirement can......The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene...

  4. Expression of gentisate 1,2-dioxygenase (gdoA) genes involved in aromatic degradation in two haloarchaeal genera.

    Science.gov (United States)

    Fairley, D J; Wang, G; Rensing, C; Pepper, I L; Larkin, M J

    2006-12-01

    Gentisate-1,2-dioxygenase genes (gdoA), with homology to a number of bacterial dioxygenases, and genes encoding a putative coenzyme A (CoA)-synthetase subunit (acdB) and a CoA-thioesterase (tieA) were identified in two haloarchaeal isolates. In Haloarcula sp. D1, gdoA was expressed during growth on 4-hydroxybenzoate but not benzoate, and acdB and tieA were not expressed during growth on any of the aromatic substrates tested. In contrast, gdoA was expressed in Haloferax sp. D1227 during growth on benzoate, 3-hydroxybenzoate, cinnamate and phenylpropionate, and both acdB and tieA were expressed during growth on benzoate, cinnamate and phenylpropionate, but not on 3-hydroxybenzoate. This pattern of induction is consistent with these genes encoding steps in a CoA-mediated benzoate pathway in this strain.

  5. Digital gene expression profiling of flax (Linum usitatissimum L.) stem peel identifies genes enriched in fiber-bearing phloem tissue.

    Science.gov (United States)

    Guo, Yuan; Qiu, Caisheng; Long, Songhua; Chen, Ping; Hao, Dongmei; Preisner, Marta; Wang, Hui; Wang, Yufu

    2017-08-30

    To better understand the molecular mechanisms and gene expression characteristics associated with development of bast fiber cell within flax stem phloem, the gene expression profiling of flax stem peels and leaves were screened, using Illumina's Digital Gene Expression (DGE) analysis. Four DGE libraries (2 for stem peel and 2 for leaf), ranging from 6.7 to 9.2 million clean reads were obtained, which produced 7.0 million and 6.8 million mapped reads for flax stem peel and leave, respectively. By differential gene expression analysis, a total of 975 genes, of which 708 (73%) genes have protein-coding annotation, were identified as phloem enriched genes putatively involved in the processes of polysaccharide and cell wall metabolism. Differential expression genes (DEGs) was validated using quantitative RT-PCR, the expression pattern of all nine genes determined by qRT-PCR fitted in well with that obtained by sequencing analysis. Cluster and Gene Ontology (GO) analysis revealed that a large number of genes related to metabolic process, catalytic activity and binding category were expressed predominantly in the stem peels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the phloem enriched genes suggested approximately 111 biological pathways. The large number of genes and pathways produced from DGE sequencing will expand our understanding of the complex molecular and cellular events in flax bast fiber development and provide a foundation for future studies on fiber development in other bast fiber crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Increased expression of clp genes in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress and bile salts.

    Science.gov (United States)

    Ferreira, A B; De Oliveira, M N V; Freitas, F S; Alfenas-Zerbini, P; Da Silva, D F; De Queiroz, M V; Borges, A C; De Moraes, C A

    2013-12-01

    The ability to survive in harsh environments is an important criterion to select potential probiotics strains. The objective of this study was to identify and carry out phylogenetic and expression analysis by quantitative real-time PCR of the clpP, clpE, clpL and clpX genes in the probiotic strain Lactobacillus delbrueckii UFV H2b20 exposed to the conditions prevailing in the gastrointestinal tract (GIT). Phylogenetic trees reconstructed by Bayesian inference showed that the L. delbrueckii UFV H2b20 clpP, clpL and clpE genes and the ones from L. delbrueckii ATCC 11842 were grouped. The exposure of cells to MRS broth of pH 3.5 for 30 and 60 min resulted in an increased expression of the four genes. Exposure of the L. delbrueckii UFV H2b20 cells for 30 and 60 min to MRS broth containing 0.1% bile salts increased the expression of the clpP and clpE genes, while the expression level of the clpL and clpX genes increased only after 30 min of exposure. The involvement of the studied genes in the responses to acid stress and bile salts suggests a possible central role of these genes in the survival of L. delbrueckii UFV H2b20 during the passage through the GIT, a characteristic necessary for probiotic strains.

  7. Evaluation the effect of uranium ore concentrations on the cyc2 gene expression in the mutated Acidithiobacillus sp. FJ2

    Directory of Open Access Journals (Sweden)

    Faezeh Fatemi

    2018-06-01

    Full Text Available Introduction: The uranium bioleaching process is performed using Acidithiobacillus ferrooxidans. This bacterium is capable of iron oxidation by an electron transport chain. One of the most important components of this chain is the cyc2 gene product that involved in the oxidation process of iron. Materials and methods: Evaluation of UV mutated (60, 120 and 180s Acidithiobacillus sp. FJ2 cyc2gene in the presence of uranium ore concentrations, has been implemented in this project. For this purpose, the original and mutated bacteria were cultivated in the presence of uranium ore concentrations (5, 10, 15, 25 and 50%. Uranium extraction, variation of pH and Eh values were measured at 24 h intervals. Then, when the uranium extraction yield reached to 100%, gene expressions of cyc2 original and mutatedAcidithiobacillus sp. FJ2 were analyzed using Real-time PCR method. Results: The results of the experiments showed that, with increasing pulp density, the uranium extraction rate and oxidation activity of bacteria were reduced. In addition, the result of cyc2 gene expression showed that the target gene expression increases in the presence of uranium ore compared to sample with absence of uranium ore, andwith further increase of pulp density, due to the toxicity of uranium, shows a decreasing trend. Discussion and conclusion: The results of this study indicated that the mutation in the bacterium has a positive effect on the uranium bioleaching process, which can play an important role in the process of uranium bioleaching at high concentrations. In addition, with increasing pulp density due to uranium toxicity, there is a decreasing trend in the process of uranium extraction, which indicates the important role of this factor in the uranium bioleaching process.

  8. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies.

    Science.gov (United States)

    Chapman, Joanne R; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.

  9. Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells.

    Science.gov (United States)

    Ashapkin, V V; Linkova, N S; Khavinson, V Kh; Vanyushin, B F

    2015-03-01

    Expression levels of genes encoding specific transcription factors and other functionally important proteins vary upon aging of pancreatic and bronchial epithelium cell cultures. The peptides KEDW and AEDL tissue-specifically affect gene expression in pancreatic and bronchial cell cultures, respectively. It is established in this work that the DNA methylation patterns of the PDX1, PAX6, NGN3, NKX2-1, and SCGB1A1 gene promoter regions change upon aging in pancreatic and bronchial cell cultures in correlation with variations in their expression levels. Thus, stable changes in gene expression upon aging of cell cultures could be caused by changes in their promoter methylation patterns. The methylation patterns of the PAX4 gene in pancreatic cells as well as those of the FOXA1, SCGB3A2, and SFTPA1 genes in bronchial cells do not change upon aging and are unaffected by peptides, whereas their expression levels change in both cases. The promoter region of the FOXA2 gene in pancreatic cells contains a small number of methylated CpG sites, their methylation levels being affected by cell culture aging and KEDW, though without any correlation with gene expression levels. The promoter region of the FOXA2 gene is completely unmethylated in bronchial cells irrespective of cell culture age and AEDL action. Changes in promoter methylation might be the cause of age- and peptide-induced variations in expression levels of the PDX1, PAX6, and NGN3 genes in pancreatic cells and NKX2-1 and SCGB1A1 genes in bronchial cells. Expression levels of the PAX4 and FOXA2 genes in pancreatic cells and FOXA1, FOXA2, SCGB3A2, and SFTPA1 genes in bronchial cells seem to be controlled by some other mechanisms.

  10. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Likui Wang

    2014-09-01

    Full Text Available Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2 called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE, which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.

  11. Amino-Terminal Microdeletion within the CNTNAP2 Gene Associated with Variable Expressivity of Speech Delay

    Directory of Open Access Journals (Sweden)

    Amel Al-Murrani

    2012-01-01

    Full Text Available The contactin-associated protein-like 2 (CNTNAP2 gene is highly expressed in the frontal lobe circuits in the developing human brain. Mutations in this gene have been associated with several neurodevelopmental disorders such as autism and specific language impairment. Here we describe a 450 kb deletion within the CNTNAP2 gene that is maternally inherited in two male siblings, but with a variable clinical phenotype. This variability is described in the context of a limited number of other cases reported in the literature. The in-frame intragenic deletion removes a critical domain of the CNTNAP2 protein, and this case also highlights the challenges of correlating genotype and phenotype.

  12. Amino-Terminal Microdeletion within the CNTNAP2 Gene Associated with Variable Expressivity of Speech Delay

    Science.gov (United States)

    Al-Murrani, Amel; Ashton, Fern; Aftimos, Salim; George, Alice M.; Love, Donald R.

    2012-01-01

    The contactin-associated protein-like 2 (CNTNAP2) gene is highly expressed in the frontal lobe circuits in the developing human brain. Mutations in this gene have been associated with several neurodevelopmental disorders such as autism and specific language impairment. Here we describe a 450 kb deletion within the CNTNAP2 gene that is maternally inherited in two male siblings, but with a variable clinical phenotype. This variability is described in the context of a limited number of other cases reported in the literature. The in-frame intragenic deletion removes a critical domain of the CNTNAP2 protein, and this case also highlights the challenges of correlating genotype and phenotype. PMID:23074684

  13. Vaginal Gene Expression During Treatment With Aromatase Inhibitors.

    Science.gov (United States)

    Kallak, Theodora Kunovac; Baumgart, Juliane; Nilsson, Kerstin; Åkerud, Helena; Poromaa, Inger Sundström; Stavreus-Evers, Anneli

    2015-12-01

    Aromatase inhibitor (AI) treatment suppresses estrogen biosynthesis and causes genitourinary symptoms of menopause such as vaginal symptoms, ultimately affecting the quality of life for many postmenopausal women with breast cancer. Thus, the aim of this study was to examine vaginal gene expression in women during treatment with AIs compared with estrogen-treated women. The secondary aim was to study the presence and localization of vaginal aromatase. Vaginal biopsies were collected from postmenopausal women treated with AIs and from age-matched control women treated with vaginal estrogen therapy. Differential gene expression was studied with the Affymetrix Gene Chip Gene 1.0 ST Array (Affymetrix Inc, Santa Clara, CA) system, Ingenuity pathway analysis, quantitative real-time polymerase chain reaction, and immunohistochemistry. The expression of 279 genes differed between the 2 groups; AI-treated women had low expression of genes involved in cell differentiation, proliferation, and cell adhesion. Some differentially expressed genes were found to interact indirectly with the estrogen receptor alpha. In addition, aromatase protein staining was evident in the basal and the intermediate vaginal epithelium layers, and also in stromal cells with a slightly stronger staining intensity found in AI-treated women. In this study, we demonstrated that genes involved in cell differentiation, proliferation, and cell adhesion are differentially expressed in AI-treated women. The expression of vaginal aromatase suggests that this could be the result of local and systemic inhibition of aromatase. Our results emphasize the role of estrogen for vaginal cell differentiation and proliferation and future drug candidates should be aimed at improving cell differentiation and proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Dynamic changes in prefrontal cortex gene expression following lysergic acid diethylamide administration.

    Science.gov (United States)

    Nichols, Charles D; Garcia, Efrain E; Sanders-Bush, Elaine

    2003-03-17

    Lysergic acid diethylamide (LSD) is a psychoactive drug that transiently alters human perception, behavior, and mood at extremely low doses. Certain aspects of the behavior elicited by acute doses of LSD closely resemble symptoms of mental disorders such as schizophrenia. Characterizing gene expression profiles after LSD will be important for understanding how it alters behavior, and will lead to novel insights into disorders, such as schizophrenia, whose behavioral symptoms resemble the temporary effects of hallucinogenic drugs. We previously identified a small collection of genes within the rat prefrontal cortex that respond to LSD. Many of the products of these genes are involved in the process of synaptic plasticity. In the current report, we present a detailed analysis of the expression of these genes within the brain using RNase protection analysis. We find that the gene response to LSD is quite dynamic. The expression of some genes increases rapidly and decreases rapidly, while other genes change more gradually. Dose-response studies show two classes of expression; gene expression maximally stimulated at lower doses, versus gene expression that continues to rise at the higher doses. The role of the 5-HT(1A) and 5-HT(2A) receptor in mediating the increases in gene expression was examined in a series of experiments using receptor specific antagonists. Most expression increases were due to activation of the 5-HT(2A) receptor, however expression of two genes had neither a 5-HT(1A) nor a 5-HT(2A) receptor component.

  15. Adaptive Evolution of Gene Expression in Drosophila.

    Science.gov (United States)

    Nourmohammad, Armita; Rambeau, Joachim; Held, Torsten; Kovacova, Viera; Berg, Johannes; Lässig, Michael

    2017-08-08

    Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  17. Analysis of transcriptional regulatory pathways of photoreceptor genes by expression profiling of the Otx2-deficient retina.

    Science.gov (United States)

    Omori, Yoshihiro; Katoh, Kimiko; Sato, Shigeru; Muranishi, Yuki; Chaya, Taro; Onishi, Akishi; Minami, Takashi; Fujikado, Takashi; Furukawa, Takahisa

    2011-01-01

    In the vertebrate retina, the Otx2 transcription factor plays a crucial role in the cell fate determination of both rod and cone photoreceptors. We previously reported that Otx2 conditional knockout (CKO) mice exhibited a total absence of rods and cones in the retina due to their cell fate conversion to amacrine-like cells. In order to investigate the entire transcriptome of the Otx2 CKO retina, we compared expression profile of Otx2 CKO and wild-type retinas at P1 and P12 using microarray. We observed that expression of 101- and 1049-probe sets significantly decreased in the Otx2 CKO retina at P1 and P12, respectively, whereas, expression of 3- and 4149-probe sets increased at P1 and P12, respectively. We found that expression of genes encoding transcription factors involved in photoreceptor development, including Crx, Nrl, Nr2e3, Esrrb, and NeuroD, was markedly down-regulated in the Otx2 CKO at both P1 and P12. Furthermore, we identified three human retinal disease loci mapped in close proximity to certain down-regulated genes in the Otx2 CKO retina including Ccdc126, Tnfsf13 and Pitpnm1, suggesting that these genes are possibly responsible for these diseases. These transcriptome data sets of the Otx2 CKO retina provide a resource on developing rods and cones to further understand the molecular mechanisms underlying photoreceptor development, function and disease.

  18. Analysis of transcriptional regulatory pathways of photoreceptor genes by expression profiling of the Otx2-deficient retina.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Omori

    Full Text Available In the vertebrate retina, the Otx2 transcription factor plays a crucial role in the cell fate determination of both rod and cone photoreceptors. We previously reported that Otx2 conditional knockout (CKO mice exhibited a total absence of rods and cones in the retina due to their cell fate conversion to amacrine-like cells. In order to investigate the entire transcriptome of the Otx2 CKO retina, we compared expression profile of Otx2 CKO and wild-type retinas at P1 and P12 using microarray. We observed that expression of 101- and 1049-probe sets significantly decreased in the Otx2 CKO retina at P1 and P12, respectively, whereas, expression of 3- and 4149-probe sets increased at P1 and P12, respectively. We found that expression of genes encoding transcription factors involved in photoreceptor development, including Crx, Nrl, Nr2e3, Esrrb, and NeuroD, was markedly down-regulated in the Otx2 CKO at both P1 and P12. Furthermore, we identified three human retinal disease loci mapped in close proximity to certain down-regulated genes in the Otx2 CKO retina including Ccdc126, Tnfsf13 and Pitpnm1, suggesting that these genes are possibly responsible for these diseases. These transcriptome data sets of the Otx2 CKO retina provide a resource on developing rods and cones to further understand the molecular mechanisms underlying photoreceptor development, function and disease.

  19. Development of Gene Expression Signatures for Practical Radiation Biodosimetry

    International Nuclear Information System (INIS)

    Paul, Sunirmal; Amundson, Sally A.

    2008-01-01

    Purpose: In a large-scale radiologic emergency, estimates of exposure doses and radiation injury would be required for individuals without physical dosimeters. Current methods are inadequate for the task, so we are developing gene expression profiles for radiation biodosimetry. This approach could provide both an estimate of physical radiation dose and an indication of the extent of individual injury or future risk. Methods and Materials: We used whole genome microarray expression profiling as a discovery platform to identify genes with the potential to predict radiation dose across an exposure range relevant for medical decision making in a radiologic emergency. Human peripheral blood from 10 healthy donors was irradiated ex vivo, and global gene expression was measured both 6 and 24 h after exposure. Results: A 74-gene signature was identified that distinguishes between four radiation doses (0.5, 2, 5, and 8 Gy) and controls. More than one third of these genes are regulated by TP53. A nearest centroid classifier using these same 74 genes correctly predicted 98% of samples taken either 6 h or 24 h after treatment as unexposed, exposed to 0.5, 2, or ≥5 Gy. Expression patterns of five genes (CDKN1A, FDXR, SESN1, BBC3, and PHPT1) from this signature were also confirmed by real-time polymerase chain reaction. Conclusion: The ability of a single gene set to predict radiation dose throughout a window of time without need for individual pre-exposure controls represents an important advance in the development of gene expression for biodosimetry

  20. EMX2 gene expression predicts liver metastasis and survival in colorectal cancer.

    Science.gov (United States)

    Aykut, Berk; Ochs, Markus; Radhakrishnan, Praveen; Brill, Adrian; Höcker, Hermine; Schwarz, Sandra; Weissinger, Daniel; Kehm, Roland; Kulu, Yakup; Ulrich, Alexis; Schneider, Martin

    2017-08-22

    The Empty Spiracles Homeobox (EMX-) 2 gene has been associated with regulation of growth and differentiation in neuronal development. While recent studies provide evidence that EMX2 regulates tumorigenesis of various solid tumors, its role in colorectal cancer remains unknown. We aimed to assess the prognostic significance of EMX2 expression in stage III colorectal adenocarcinoma. Expression levels of EMX2 in human colorectal cancer and adjacent mucosa were assessed by qRT-PCR technology, and results were correlated with clinical and survival data. siRNA-mediated knockdown and adenoviral delivery-mediated overexpression of EMX2 were performed in order to investigate its effects on the migration of colorectal cancer cells in vitro. Compared to corresponding healthy mucosa, colorectal tumor samples had decreased EMX2 expression levels. Furthermore, EMX2 down-regulation in colorectal cancer tissue was associated with distant metastasis (M1) and impaired overall patient survival. In vitro knockdown of EMX2 resulted in increased tumor cell migration. Conversely, overexpression of EMX2 led to an inhibition of tumor cell migration. EMX2 is frequently down-regulated in human colorectal cancer, and down-regulation of EMX2 is a prognostic marker for disease-free and overall survival. EMX2 might thus represent a promising therapeutic target in colorectal cancer.

  1. Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures.

    Science.gov (United States)

    Zhang, Dong-Xiu; Stromberg, Arnold J; Spiering, Martin J; Schardl, Christopher L

    2009-08-01

    Epichloë endophytes (holomorphic Epichloë spp. and anamorphic Neotyphodium spp.) are systemic, often heritable symbionts of cool-season grasses (subfamily Pooideae). Many epichloae provide protection to their hosts by producing anti-insect compounds. Among these are the loline alkaloids (LA), which are toxic and deterrent to a broad range of herbivorous insects but not to mammalian herbivores. LOL, a gene cluster containing nine genes, is associated with LA biosynthesis. We investigated coordinate regulation between LOL-gene expression and LA production in minimal medium (MM) cultures of Neotyphodium uncinatum. Expression of all LOL genes significantly fit temporal quadratic patterns during LA production. LOL-gene expression started before LA were detectable, and increased while LA accumulated. The highest gene expression level was reached at close to the time of most rapid LA accumulation, and gene expression declined to a very low level as amounts of LA plateaued. Temporal expression profiles of the nine LOL genes were tightly correlated with each other, but not as tightly correlated with proC and metE (genes for biosynthesis of precursor amino acids). Furthermore, the start days and peak days of expression significantly correlated with the order of the LOL-cluster genes in the genome. Hierarchical cluster analysis indicated three pairs of genes-lolA and lolC, lolO and lolD, and lolT and lolE-expression of which was especially tightly correlated. Of these, lolA and lolC tended to be expressed early, and lolT and lolE tended to be expressed late, in keeping with the putative roles of the respective gene products in the LA-biosynthesis pathway. Several common transcriptional binding sites were discovered in the LOL upstream regions. However, low expression of P(lolC2)uidA and P(lolA2)uidA in N. uncinatum transformants suggested induced expression of LOL genes might be subject to position effect at the LOL locus.

  2. Imaging of Herpes Simplex Virus Type 1 Thymidine Kinase Gene Expression with Radiolabeled 5-(2-iodovinyl)-2'-deoxyuridine (IVDU) in Liver by Hydrodynamic-based Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Ho; Lee, Tae Sup; Kang, Joo Hyun; Lee, Yong Jin; Kim, Kwang Il; An, Gwang Il; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-10-15

    Hydrodynamic-based procedure is a simple and effective gene delivery method to lead a high gene expression in liver tissue. Non-invasive imaging reporter gene system has been used widely with herpes simplex virus type 1 thymidine kinase (HSV1-tk) and its various substrates. In the present study, we investigated to image the expression of HSV1-tk gene with 5-(2-iodovinyl)-2'-deoxyuridine (IVDU) in mouse liver by the hydrodynamicbased procedure. HSV1-tk or enhanced green fluorescence protein (EGFP) encoded plasmid DNA was transferred into the mouse liver by hydrodynamic injection. At 24 h post-injection, RT-PCR, biodistribution, fluorescence imaging, nuclear imaging and digital wholebody autoradiography (DWBA) were performed to confirm transferred gene expression. In RT-PCR assay using mRNA from the mouse liver, specific bands of HSV1-tk and EGFP gene were observed in HSV1-tk and EGFP expressing plasmid injected mouse, respectively. Higher uptake of radiolabeled IVDU was exhibited in liver of HSV1-tk gene transferred mouse by biodistribution study. In fluorescence imaging, the liver showed specific fluorescence signal in EGFP gene transferred mouse. Gamma-camera image and DWBA results showed that radiolabeled IVDU was accumulated in the liver of HSV1-tk gene transferred mouse. In this study, hydrodynamic-based procedure was effective in liver-specific gene delivery and it could be quantified with molecular imaging methods. Therefore, co-expression of HSV1-tk reporter gene and target gene by hydrodynamic-based procedure is expected to be a useful method for the evaluation of the target gene expression level with radiolabeled IVDU.

  3. Whole-body gene expression pattern registration in Platynereis larvae.

    Science.gov (United States)

    Asadulina, Albina; Panzera, Aurora; Verasztó, Csaba; Liebig, Christian; Jékely, Gáspár

    2012-12-03

    Digital anatomical atlases are increasingly used in order to depict different gene expression patterns and neuronal morphologies within a standardized reference template. In evo-devo, a discipline in which the comparison of gene expression patterns is a widely used approach, such standardized anatomical atlases would allow a more rigorous assessment of the conservation of and changes in gene expression patterns during micro- and macroevolutionary time scales. Due to its small size and invariant early development, the annelid Platynereis dumerilii is particularly well suited for such studies. Recently a reference template with registered gene expression patterns has been generated for the anterior part (episphere) of the Platynereis trochophore larva and used for the detailed study of neuronal development. Here we introduce and evaluate a method for whole-body gene expression pattern registration for Platynereis trochophore and nectochaete larvae based on whole-mount in situ hybridization, confocal microscopy, and image registration. We achieved high-resolution whole-body scanning using the mounting medium 2,2'-thiodiethanol (TDE), which allows the matching of the refractive index of the sample to that of glass and immersion oil thereby reducing spherical aberration and improving depth penetration. This approach allowed us to scan entire whole-mount larvae stained with nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) in situ hybridization and counterstained fluorescently with an acetylated-tubulin antibody and the nuclear stain 4'6-diamidino-2-phenylindole (DAPI). Due to the submicron isotropic voxel size whole-mount larvae could be scanned in any orientation. Based on the whole-body scans, we generated four different reference templates by the iterative registration and averaging of 40 individual image stacks using either the acetylated-tubulin or the nuclear-stain signal for each developmental stage. We then registered to these templates the

  4. Whole-body gene expression pattern registration in Platynereis larvae

    Directory of Open Access Journals (Sweden)

    Asadulina Albina

    2012-12-01

    Full Text Available Abstract Background Digital anatomical atlases are increasingly used in order to depict different gene expression patterns and neuronal morphologies within a standardized reference template. In evo-devo, a discipline in which the comparison of gene expression patterns is a widely used approach, such standardized anatomical atlases would allow a more rigorous assessment of the conservation of and changes in gene expression patterns during micro- and macroevolutionary time scales. Due to its small size and invariant early development, the annelid Platynereis dumerilii is particularly well suited for such studies. Recently a reference template with registered gene expression patterns has been generated for the anterior part (episphere of the Platynereis trochophore larva and used for the detailed study of neuronal development. Results Here we introduce and evaluate a method for whole-body gene expression pattern registration for Platynereis trochophore and nectochaete larvae based on whole-mount in situ hybridization, confocal microscopy, and image registration. We achieved high-resolution whole-body scanning using the mounting medium 2,2’-thiodiethanol (TDE, which allows the matching of the refractive index of the sample to that of glass and immersion oil thereby reducing spherical aberration and improving depth penetration. This approach allowed us to scan entire whole-mount larvae stained with nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP in situ hybridization and counterstained fluorescently with an acetylated-tubulin antibody and the nuclear stain 4’6-diamidino-2-phenylindole (DAPI. Due to the submicron isotropic voxel size whole-mount larvae could be scanned in any orientation. Based on the whole-body scans, we generated four different reference templates by the iterative registration and averaging of 40 individual image stacks using either the acetylated-tubulin or the nuclear-stain signal for each developmental

  5. Systematic assessment of multi-gene predictors of pan-cancer cell line sensitivity to drugs exploiting gene expression data [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Linh Nguyen

    2017-03-01

    Full Text Available Background: Selected gene mutations are routinely used to guide the selection of cancer drugs for a given patient tumour. Large pharmacogenomic data sets, such as those by Genomics of Drug Sensitivity in Cancer (GDSC consortium, were introduced to discover more of these single-gene markers of drug sensitivity. Very recently, machine learning regression has been used to investigate how well cancer cell line sensitivity to drugs is predicted depending on the type of molecular profile. The latter has revealed that gene expression data is the most predictive profile in the pan-cancer setting. However, no study to date has exploited GDSC data to systematically compare the performance of machine learning models based on multi-gene expression data against that of widely-used single-gene markers based on genomics data. Methods: Here we present this systematic comparison using Random Forest (RF classifiers exploiting the expression levels of 13,321 genes and an average of 501 tested cell lines per drug. To account for time-dependent batch effects in IC50 measurements, we employ independent test sets generated with more recent GDSC data than that used to train the predictors and show that this is a more realistic validation than standard k-fold cross-validation. Results and Discussion: Across 127 GDSC drugs, our results show that the single-gene markers unveiled by the MANOVA analysis tend to achieve higher precision than these RF-based multi-gene models, at the cost of generally having a poor recall (i.e. correctly detecting only a small part of the cell lines sensitive to the drug. Regarding overall classification performance, about two thirds of the drugs are better predicted by the multi-gene RF classifiers. Among the drugs with the most predictive of these models, we found pyrimethamine, sunitinib and 17-AAG. Conclusions: Thanks to this unbiased validation, we now know that this type of models can predict in vitro tumour response to some of these

  6. GOBO: gene expression-based outcome for breast cancer online.

    Directory of Open Access Journals (Sweden)

    Markus Ringnér

    Full Text Available Microarray-based gene expression analysis holds promise of improving prognostication and treatment decisions for breast cancer patients. However, the heterogeneity of breast cancer emphasizes the need for validation of prognostic gene signatures in larger sample sets stratified into relevant subgroups. Here, we describe a multifunctional user-friendly online tool, GOBO (http://co.bmc.lu.se/gobo, allowing a range of different analyses to be performed in an 1881-sample breast tumor data set, and a 51-sample breast cancer cell line set, both generated on Affymetrix U133A microarrays. GOBO supports a wide range of applications including: 1 rapid assessment of gene expression levels in subgroups of breast tumors and cell lines, 2 identification of co-expressed genes for creation of potential metagenes, 3 association with outcome for gene expression levels of single genes, sets of genes, or gene signatures in multiple subgroups of the 1881-sample breast cancer data set. The design and implementation of GOBO facilitate easy incorporation of additional query functions and applications, as well as additional data sets irrespective of tumor type and array platform.

  7. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    International Nuclear Information System (INIS)

    Cicinnati, Vito R; Shen, Qingli; Sotiropoulos, Georgios C; Radtke, Arnold; Gerken, Guido; Beckebaum, Susanne

    2008-01-01

    Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR). The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC) is presented. Six genes, beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethyl-bilane synthase (HMBS), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), succinate dehydrogenase complex, subunit A (SDHA) and ubiquitin C (UBC), with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the kind of liver tissues or cells under investigation

  8. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    Directory of Open Access Journals (Sweden)

    Radtke Arnold

    2008-11-01

    Full Text Available Abstract Background Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR. The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC is presented. Methods Six genes, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, hydroxymethyl-bilane synthase (HMBS, hypoxanthine phosphoribosyl-transferase 1 (HPRT1, succinate dehydrogenase complex, subunit A (SDHA and ubiquitin C (UBC, with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. Results HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Conclusion Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the

  9. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    Science.gov (United States)

    Cicinnati, Vito R; Shen, Qingli; Sotiropoulos, Georgios C; Radtke, Arnold; Gerken, Guido; Beckebaum, Susanne

    2008-01-01

    Background Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR). The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC) is presented. Methods Six genes, beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethyl-bilane synthase (HMBS), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), succinate dehydrogenase complex, subunit A (SDHA) and ubiquitin C (UBC), with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. Results HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Conclusion Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the kind of liver tissues

  10. Gene expression and 18FDG uptake in atherosclerotic carotid plaques

    DEFF Research Database (Denmark)

    Pedersen, Sune Folke; Graebe, Martin; Fisker Hag, Anne Mette

    2010-01-01

    ) and an additional ipsilateral internal carotid artery stenosis of greater than 60% were recruited. FDG uptake in the carotids was determined by PET/computed tomography and expressed as mean and maximal standardized uptake values (SUVmean and SUVmax). The atherosclerotic plaques were subsequently recovered...... by carotid endarterectomy. The gene expression of markers of vulnerability - CD68, IL-18, matrix metalloproteinase 9, cathepsin K, GLUT-1, and hexokinase type II (HK2) - were measured in plaques by quantitative PCR. RESULTS: In a multivariate linear regression model, GLUT-1, CD68, cathepsin K, and HK2 gene...... expression remained in the final model as predictive variables of FDG accumulation calculated as SUVmean (R=0.26, PK, and HK2 gene expression as independent predictive variables of FDG accumulation calculated...

  11. Reduced expression of N-Myc downstream-regulated gene 2 in human thyroid cancer

    Directory of Open Access Journals (Sweden)

    Ma Jianjun

    2008-10-01

    Full Text Available Abstract Background NDRG2 (N-Myc downstream-regulated gene 2 was initially cloned in our laboratory. Previous results have shown that NDRG2 expressed differentially in normal and cancer tissues. Specifically, NDRG2 mRNA was down-regulated or undetectable in several human cancers, and over-expression of NDRG2 inhibited the proliferation of cancer cells. NDRG2 also exerts important functions in cell differentiation and tumor suppression. However, it remains unclear whether NDRG2 participates in carcinogenesis of the thyroid. Methods In this study, we investigated the expression profile of human NDRG2 in thyroid adenomas and carcinomas, by examining tissues from individuals with thyroid adenomas (n = 40 and carcinomas (n = 35, along with corresponding normal tissues. Immunohistochemistry, quantitative RT-PCR and western blot methods were utilized to determine both the protein and mRNA expression status of Ndrg2 and c-Myc. Results The immunostaining analysis revealed a decrease of Ndrg2 expression in thyroid carcinomas. When comparing adenomas or carcinomas with adjacent normal tissue from the same individual, the mRNA expression level of NDRG2 was significantly decreased in thyroid carcinoma tissues, while there was little difference in adenoma tissues. This differential expression was confirmed at the protein level by western blotting. However, there were no significant correlations of NDRG2 expression with gender, age, different histotypes of thyroid cancers or distant metastases. Conclusion Our data indicates that NDRG2 may participate in thyroid carcinogenesis. This finding provides novel insight into the important role of NDRG2 in the development of thyroid carcinomas. Future studies are needed to address whether the down-regulation of NDRG2 is a cause or a consequence of the progression from a normal thyroid to a carcinoma.

  12. Reduced expression of N-Myc downstream-regulated gene 2 in human thyroid cancer

    International Nuclear Information System (INIS)

    Zhao, Huadong; Chen, Suning; Lin, Wei; Shi, Hai; Ma, Jianjun; Liu, Xinping; Ma, Qingjiu; Yao, Libo; Zhang, Jian; Lu, Jianguo; He, Xianli; Chen, Changsheng; Li, Xiaojun; Gong, Li; Bao, Guoqiang; Fu, Qiang

    2008-01-01

    NDRG2 (N-Myc downstream-regulated gene 2) was initially cloned in our laboratory. Previous results have shown that NDRG2 expressed differentially in normal and cancer tissues. Specifically, NDRG2 mRNA was down-regulated or undetectable in several human cancers, and over-expression of NDRG2 inhibited the proliferation of cancer cells. NDRG2 also exerts important functions in cell differentiation and tumor suppression. However, it remains unclear whether NDRG2 participates in carcinogenesis of the thyroid. In this study, we investigated the expression profile of human NDRG2 in thyroid adenomas and carcinomas, by examining tissues from individuals with thyroid adenomas (n = 40) and carcinomas (n = 35), along with corresponding normal tissues. Immunohistochemistry, quantitative RT-PCR and western blot methods were utilized to determine both the protein and mRNA expression status of Ndrg2 and c-Myc. The immunostaining analysis revealed a decrease of Ndrg2 expression in thyroid carcinomas. When comparing adenomas or carcinomas with adjacent normal tissue from the same individual, the mRNA expression level of NDRG2 was significantly decreased in thyroid carcinoma tissues, while there was little difference in adenoma tissues. This differential expression was confirmed at the protein level by western blotting. However, there were no significant correlations of NDRG2 expression with gender, age, different histotypes of thyroid cancers or distant metastases. Our data indicates that NDRG2 may participate in thyroid carcinogenesis. This finding provides novel insight into the important role of NDRG2 in the development of thyroid carcinomas. Future studies are needed to address whether the down-regulation of NDRG2 is a cause or a consequence of the progression from a normal thyroid to a carcinoma

  13. Detection of Cyclooxygenase-2-Derived Oxygenation Products of the Endogenous Cannabinoid 2-Arachidonoylglycerol in Mouse Brain.

    Science.gov (United States)

    Morgan, Amanda J; Kingsley, Philip J; Mitchener, Michelle M; Altemus, Megan; Patrick, Toni A; Gaulden, Andrew D; Marnett, Lawrence J; Patel, Sachin

    2018-05-09

    Cyclooxygenase-2 (COX-2) catalyzes the formation of prostaglandins, which are involved in immune regulation, vascular function, and synaptic signaling. COX-2 also inactivates the endogenous cannabinoid (eCB) 2-arachidonoylglycerol (2-AG) via oxygenation of its arachidonic acid backbone to form a variety of prostaglandin glyceryl esters (PG-Gs). Although this oxygenation reaction is readily observed in vitro and in intact cells, detection of COX-2-derived 2-AG oxygenation products has not been previously reported in neuronal tissue. Here we show that 2-AG is metabolized in the brain of transgenic COX-2-overexpressing mice and mice treated with lipopolysaccharide to form multiple species of PG-Gs that are detectable only when monoacylglycerol lipase is concomitantly blocked. Formation of these PG-Gs is prevented by acute pharmacological inhibition of COX-2. These data provide evidence that neuronal COX-2 is capable of oxygenating 2-AG to form a variety PG-Gs in vivo and support further investigation of the physiological functions of PG-Gs.

  14. Amplification biases: possible differences among deviating gene expressions

    Directory of Open Access Journals (Sweden)

    Piumi Francois

    2008-01-01

    Full Text Available Abstract Background Gene expression profiling has become a tool of choice to study pathological or developmental questions but in most cases the material is scarce and requires sample amplification. Two main procedures have been used: in vitro transcription (IVT and polymerase chain reaction (PCR, the former known as linear and the latter as exponential. Previous reports identified enzymatic pitfalls in PCR and IVT protocols; however the possible differences between the sequences affected by these amplification defaults were only rarely explored. Results Screening a bovine cDNA array dedicated to embryonic stages with embryonic (n = 3 and somatic tissues (n = 2, we proceeded to moderate amplifications starting from 1 μg of total RNA (global PCR or IVT one round. Whatever the tissue, 16% of the probes were involved in deviating gene expressions due to amplification defaults. These distortions were likely due to the molecular features of the affected sequences (position within a gene, GC content, hairpin number but also to the relative abundance of these transcripts within the tissues. These deviating genes mainly encoded housekeeping genes from physiological or cellular processes (70% and constituted 2 subsets which did not overlap (molecular features, signal intensities, gene ID. However, the differential expressions identified between embryonic stages were both reliable (minor intersect with biased expressions and relevant (biologically validated. In addition, the relative expression levels of those genes were biologically similar between amplified and unamplified samples. Conclusion Conversely to the most recent reports which challenged the use of intense amplification procedures on minute amounts of RNA, we chose moderate PCR and IVT amplifications for our gene profiling study. Conclusively, it appeared that systematic biases arose even with moderate amplification procedures, independently of (i the sample used: brain, ovary or embryos, (ii

  15. Expression stability and selection of optimal reference genes for gene expression normalization in early life stage rainbow trout exposed to cadmium and copper.

    Science.gov (United States)

    Shekh, Kamran; Tang, Song; Niyogi, Som; Hecker, Markus

    2017-09-01

    Gene expression analysis represents a powerful approach to characterize the specific mechanisms by which contaminants interact with organisms. One of the key considerations when conducting gene expression analyses using quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is the selection of appropriate reference genes, which is often overlooked. Specifically, to reach meaningful conclusions when using relative quantification approaches, expression levels of reference genes must be highly stable and cannot vary as a function of experimental conditions. However, to date, information on the stability of commonly used reference genes across developmental stages, tissues and after exposure to contaminants such as metals is lacking for many vertebrate species including teleost fish. Therefore, in this study, we assessed the stability of expression of 8 reference gene candidates in the gills and skin of three different early life-stages of rainbow trout after acute exposure (24h) to two metals, cadmium (Cd) and copper (Cu) using qPCR. Candidate housekeeping genes were: beta actin (b-actin), DNA directed RNA polymerase II subunit I (DRP2), elongation factor-1 alpha (EF1a), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), glucose-6-phosphate dehydrogenase (G6PD), hypoxanthine phosphoribosyltransferase (HPRT), ribosomal protein L8 (RPL8), and 18S ribosomal RNA (18S). Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method were employed to systematically evaluate the expression stability of these candidate genes under control and exposed conditions as well as across three different life-stages. Finally, stability of genes was ranked by taking geometric means of the ranks established by the different methods. Stability of reference genes was ranked in the following order (from lower to higher stability): HPRT22

  16. Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Piyatrakul Piyanuch

    2012-12-01

    Full Text Available Abstract Background Ethylene production and signalling play an important role in somatic embryogenesis, especially for species that are recalcitrant in in vitro culture. The AP2/ERF superfamily has been identified and classified in Hevea brasiliensis. This superfamily includes the ERFs involved in response to ethylene. The relative transcript abundance of ethylene biosynthesis genes and of AP2/ERF genes was analysed during somatic embryogenesis for callus lines with different regeneration potential, in order to identify genes regulated during that process. Results The analysis of relative transcript abundance was carried out by real-time RT-PCR for 142 genes. The transcripts of ERFs from group I, VII and VIII were abundant at all stages of the somatic embryogenesis process. Forty genetic expression markers for callus regeneration capacity were identified. Fourteen markers were found for proliferating calli and 35 markers for calli at the end of the embryogenesis induction phase. Sixteen markers discriminated between normal and abnormal embryos and, lastly, there were 36 markers of conversion into plantlets. A phylogenetic analysis comparing the sequences of the AP2 domains of Hevea and Arabidopsis genes enabled us to predict the function of 13 expression marker genes. Conclusions This first characterization of the AP2/ERF superfamily in Hevea revealed dramatic regulation of the expression of AP2/ERF genes during the somatic embryogenesis process. The gene expression markers of proliferating callus capacity to regenerate plants by somatic embryogenesis should make it possible to predict callus lines suitable to be used for multiplication. Further functional characterization of these markers opens up prospects for discovering specific AP2/ERF functions in the Hevea species for which somatic embryogenesis is difficult.

  17. Expression and clinical significance of Pax6 gene in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Hai-Dong Huang

    2013-07-01

    Full Text Available AIM: To discuss the expression and clinical significance of Pax6 gene in retinoblastoma(Rb. METHODS: Totally 15 cases of fresh Rb organizations were selected as observation group and 15 normal retinal organizations as control group. Western-Blot and reverse transcriptase polymerase chain reaction(RT-PCRmethods were used to detect Pax6 protein and Pax6 mRNA expressions of the normal retina organizations and Rb organizations. At the same time, Western Blot method was used to detect the Pax6 gene downstream MATH5 and BRN3b differentiation gene protein level expression. After the comparison between two groups, the expression and clinical significance of Pax6 gene in Rb were discussed. RESULTS: In the observation group, average value of mRNA expression of Pax6 gene was 0.99±0.03; average value of Pax6 gene protein expression was 2.07±0.15; average value of BRN3b protein expression was 0.195±0.016; average value of MATH5 protein expression was 0.190±0.031. They were significantly higher than the control group, and the differences were statistically significant(PCONCLUSION: Abnormal expression of Pax6 gene is likely to accelerate the occurrence of Rb.

  18. Analysis of meniscal degeneration and meniscal gene expression

    Directory of Open Access Journals (Sweden)

    Norton James H

    2010-01-01

    Full Text Available Abstract Background Menisci play a vital role in load transmission, shock absorption and joint stability. There is increasing evidence suggesting that OA menisci may not merely be bystanders in the disease process of OA. This study sought: 1 to determine the prevalence of meniscal degeneration in OA patients, and 2 to examine gene expression in OA meniscal cells compared to normal meniscal cells. Methods Studies were approved by our human subjects Institutional Review Board. Menisci and articular cartilage were collected during joint replacement surgery for OA patients and lower limb amputation surgery for osteosarcoma patients (normal control specimens, and graded. Meniscal cells were prepared from these meniscal tissues and expanded in monolayer culture. Differential gene expression in OA meniscal cells and normal meniscal cells was examined using Affymetrix microarray and real time RT-PCR. Results The grades of meniscal degeneration correlated with the grades of articular cartilage degeneration (r = 0.672; P HLA-DPA1, integrin, beta 2 (ITGB2, ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1, ankylosis, progressive homolog (ANKH and fibroblast growth factor 7 (FGF7, were expressed at significantly higher levels in OA meniscal cells compared to normal meniscal cells. Importantly, many of the genes that have been shown to be differentially expressed in other OA cell types/tissues, including ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS5 and prostaglandin E synthase (PTGES, were found to be expressed at significantly higher levels in OA meniscal cells. This consistency suggests that many of the genes detected in our study are disease-specific. Conclusion Our findings suggest that OA is a whole joint disease. Meniscal cells may play an active role in the development of OA. Investigation of the gene expression profiles of OA meniscal cells may reveal new therapeutic targets for OA therapy and also may uncover novel

  19. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  20. ATP mediates NADPH oxidase/ROS generation and COX-2/PGE2 expression in A549 cells: role of P2 receptor-dependent STAT3 activation.

    Directory of Open Access Journals (Sweden)

    Shin-Ei Cheng

    Full Text Available BACKGROUND: Up-regulation of cyclooxygenase (COX-2 and its metabolite prostaglandin E(2 (PGE(2 are frequently implicated in lung inflammation. Extracellular nucleotides, such as ATP have been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases, such as lung inflammation. However, the mechanisms underlying ATP-induced COX-2 expression and PGE(2 release remain unclear. PRINCIPAL FINDINGS: Here, we showed that ATPγS induced COX-2 expression in A549 cells revealed by western blot and real-time PCR. Pretreatment with the inhibitors of P2 receptor (PPADS and suramin, PKC (Gö6983, Gö6976, Ro318220, and Rottlerin, ROS (Edaravone, NADPH oxidase [diphenyleneiodonium chloride (DPI and apocynin], Jak2 (AG490, and STAT3 [cucurbitacin E (CBE] and transfection with siRNAs of PKCα, PKCι, PKCμ, p47(phox, Jak2, STAT3, and cPLA(2 markedly reduced ATPγS-induced COX-2 expression and PGE(2 production. In addition, pretreatment with the inhibitors of P2 receptor attenuated PKCs translocation from the cytosol to the membrane in response to ATPγS. Moreover, ATPγS-induced ROS generation and p47(phox translocation was also reduced by pretreatment with the inhibitors of P2 receptor, PKC, and NADPH oxidase. On the other hand, ATPγS stimulated Jak2 and STAT3 activation which were inhibited by pretreatment with PPADS, suramin, Gö6983, Gö6976, Ro318220, GF109203X, Rottlerin, Edaravone, DPI, and apocynin in A549 cells. SIGNIFICANCE: Taken together, these results showed that ATPγS induced COX-2 expression and PGE(2 production via a P2 receptor/PKC/NADPH oxidase/ROS/Jak2/STAT3/cPLA(2 signaling pathway in A549 cells. Increased understanding of signal transduction mechanisms underlying COX-2 gene regulation will create opportunities for the development of anti-inflammation therapeutic strategies.

  1. Differential expression gene profiling in human lymphocyte after 6 h irradiated

    International Nuclear Information System (INIS)

    Li Jianguo; Qin Xiujun; Zhang Wei; Xu Chaoqi; Li Weibin; Dang Xuhong; Zuo Yahui

    2011-01-01

    Objective: To provide the evidence of health damage for the staff irradiated from the gene level. Methods: The study analyzed the differential transcriptional profile of normal human lymphocyte and human lymphocyte irradiated with 0.1 Gy, 0.2 Gy, 0.5 Gy, 1.0 Gy by whole genome chip after 6 h irradiated. Results: The results showed that there were 1177 differentially expressed genes with 0.1 Gy after 6 h irradiation, and there were 1922 differentially expressed genes with 0.2 Gy after 6 h irradiation, and there were 492 differentially expressed genes with 0.5 Gy after 6 h irradiation, 2615 differentially expressed genes with 1.0 Gy after 6 h irradiation, 114 differentially expressed genes in 4 dose points after 6 h irradiation. RT-PCR results indicated that the relative quantity's result of EGR1, HLA-DMB and TAIAP1 was consistent with gene chip data. Conclusion: The study found many significant different genes in human lymphocyte with different doses after 6 h irradiation, which will provide a basis for the further radiation-different-genes and the mechanism of radiation damage. (authors)

  2. Ethylene-Related Gene Expression Networks in Wood Formation

    Directory of Open Access Journals (Sweden)

    Carolin Seyfferth

    2018-03-01

    Full Text Available Thickening of tree stems is the result of secondary growth, accomplished by the meristematic activity of the vascular cambium. Secondary growth of the stem entails developmental cascades resulting in the formation of secondary phloem outwards and secondary xylem (i.e., wood inwards of the stem. Signaling and transcriptional reprogramming by the phytohormone ethylene modifies cambial growth and cell differentiation, but the molecular link between ethylene and secondary growth remains unknown. We addressed this shortcoming by analyzing expression profiles and co-expression networks of ethylene pathway genes using the AspWood transcriptome database which covers all stages of secondary growth in aspen (Populus tremula stems. ACC synthase expression suggests that the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC is synthesized during xylem expansion and xylem cell maturation. Ethylene-mediated transcriptional reprogramming occurs during all stages of secondary growth, as deduced from AspWood expression profiles of ethylene-responsive genes. A network centrality analysis of the AspWood dataset identified EIN3D and 11 ERFs as hubs. No overlap was found between the co-expressed genes of the EIN3 and ERF hubs, suggesting target diversification and hence independent roles for these transcription factor families during normal wood formation. The EIN3D hub was part of a large co-expression gene module, which contained 16 transcription factors, among them several new candidates that have not been earlier connected to wood formation and a VND-INTERACTING 2 (VNI2 homolog. We experimentally demonstrated Populus EIN3D function in ethylene signaling in Arabidopsis thaliana. The ERF hubs ERF118 and ERF119 were connected on the basis of their expression pattern and gene co-expression module composition to xylem cell expansion and secondary cell wall formation, respectively. We hereby establish data resources for ethylene-responsive genes and

  3. Gene Therapy Mediated Breast Cancer Immunity

    National Research Council Canada - National Science Library

    Nesbit, Heike

    1999-01-01

    .... POE2 is produced by the cyclooxygenase (COX) mediated oxidation of arachidonic acid. The inhibition of COX activity in B7-1 expressing MDA-MB 231 cells restored the proliferative response of T cells...

  4. The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion

    Science.gov (United States)

    Nalvarte, Ivan; Damdimopoulos, Anastasios E.; Rüegg, Joëlle; Spyrou, Giannis

    2015-01-01

    The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1. PMID:26464515

  5. Alterations in gene expression profiles between radioresistant and radiosensitive cell lines

    International Nuclear Information System (INIS)

    Zhou Fuxiang; Zhou Yunfeng; Xie Conghua; Dai Jing; Cao Zhen; Yu Haijun; Liao Zhengkai; Luo Zhiguo

    2007-01-01

    Objective: To study the-difference of gene expressions by the contrastive model including the cells with same pathological origin and genetic background, but definitely different radioresponse, and to find the main molecular targets related to radiosensitivity. Methods: Human larynx squamous carcinoma cell, Hep -2 was irradiated with dose of 637 cGy repeatedly to establish a radioresistant daughter cell line. The radiobiology characteristics were obtained using clone forming assay. The difference of gene expression between parent and daughter cells was detected by cDNA microarray using two different arrays including 14000 genes respectively. Results: A radioresistant cell strain Hep-2R was isolated from its parental strain Hep-2 cell. The SF 2 , D 0 , α, β for Hep-2R cell line were 0.6798, 3.24, 0.2951 and 0.0363, respectively, while 0.4148, 2.06, 0.1074 and 0.0405 for Hep-2, respectively (for SF 2 , χ 2 =63.957, P<0.001). Compared with Hep-2 cells, the expressions of 41 genes were significantly altered in the radioresistant Hep-2R cells, including 22 genes up-regulated and 19 genes down-regulated, which were involved in DNA repair, regulation of the cell cycle, cell proliferation, cytoskeleton, protein synthesis, cellular metabolism and especially apoptosis which is responsible for the different radiosensitivity between these two larynx cancer cells. The telomere protection protein gene, POT1, was the mostly up-regulated by 3.348 times. Conclusions: There is difference of gene expression between the radioresistant contrastive models. POT1 gene may be the target of radiosensitization. (authors)

  6. Signaling pathway-focused gene expression profiling in pressure overloaded hearts

    Directory of Open Access Journals (Sweden)

    Marco Musumeci

    2011-01-01

    Full Text Available The β-blocker propranolol displays antihypertrophic and antifibrotic properties in the heart subjected to pressure overload. Yet the underlying mechanisms responsible for these important effects remain to be completely understood. The purpose of this study was to determine signaling pathway-focused gene expression profile associated with the antihypertrophic action of propranolol in pressure overloaded hearts. To address this question, a focused real-time PCR array was used to screen left ventricular RNA expression of 84 gene transcripts representative of 18 different signaling pathways in C57BL/6 mice subjected to transverse aortic constriction (TAC or sham surgery. On the surgery day, mice received either propranolol (80 mg/kg/day or vehicle for 14 days. TAC caused a 49% increase in the left ventricular weight-to-body weight (LVW/BW ratio without changing gene expression. Propranolol blunted LVW/BW ratio increase by approximately 50% while causing about a 3-fold increase in the expression of two genes, namely Brca1 and Cdkn2a, belonging to the TGF-beta and estrogen pathways, respectively. In conclusion, after 2 weeks of pressure overload, TAC hearts show a gene expression profile superimposable to that of sham hearts. Conversely, propranolol treatment is associated with an increased expression of genes which negatively regulate cell cycle progression. It remains to be established whether a mechanistic link between gene expression changes and the antihypertrophic action of propranolol occurs.

  7. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR

    Directory of Open Access Journals (Sweden)

    Lee Yeon-Su

    2010-05-01

    Full Text Available Abstract Background Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR is a powerful method for the analysis of gene expression. Target gene expression levels are usually normalized to a consistently expressed reference gene also known as internal standard, in the same sample. However, much effort has not been expended thus far in the search for reference genes suitable for the study of stomach cancer using RT-qPCR, although selection of optimal reference genes is critical for interpretation of results. Methods We assessed the suitability of six possible reference genes, beta-actin (ACTB, glyceraldehydes-3-phosphate dehydrogenase (GAPDH, hypoxanthine phosphoribosyl transferase 1 (HPRT1, beta-2-microglobulin (B2M, ribosomal subunit L29 (RPL29 and 18S ribosomal RNA (18S rRNA in 20 normal and tumor stomach tissue pairs of stomach cancer patients and 6 stomach cancer cell lines, by RT-qPCR. Employing expression stability analyses using NormFinder and geNorm algorithms we determined the order of performance of these reference genes and their variation values. Results This RT-qPCR study showed that there are statistically significant (p Conclusion This study validated RPL29 and RPL29-B2M as the best single reference genes and combination, for RT-qPCR analysis of 'all stomach tissues', and B2M and B2M-GAPDH as the best single reference gene and combination, for 'stomach cancer cell lines'. Use of these validated reference genes should provide more exact interpretation of differential gene expressions at transcription level in stomach cancer.

  8. Differential expression of poplar sucrose nonfermenting1-related protein kinase 2 genes in response to abiotic stress and abscisic acid.

    Science.gov (United States)

    Yu, Xiang; Takebayashi, Arika; Demura, Taku; Ohtani, Misato

    2017-09-01

    Knowledge on the responses of woody plants to abiotic stress can inform strategies to breed improved tree varieties and to manage tree species for environmental conservation and the production of lignocellulosic biomass. In this study, we examined the expression patterns of poplar (Populus trichocarpa) genes encoding members of the sucrose nonfermenting1-related protein kinase 2 (SnRK2) family, which are core components of the abiotic stress response. The P. trichocarpa genome contains twelve SnRK2 genes (PtSnRK2.1- PtSnRK2.12) that can be divided into three subclasses (I-III) based on the structures of their encoded kinase domains. We found that PtSnRK2s are differentially expressed in various organs. In MS medium-grown plants, all of the PtSnRK2 genes were significantly upregulated in response to abscisic acid (ABA) treatment, whereas osmotic and salt stress treatments induced only some (four and seven, respectively) of the PtSnRK2 genes. By contrast, soil-grown plants showed increased expression of most PtSnRK2 genes under drought and salt treatments, but not under ABA treatment. In soil-grown plants, drought stress induced SnRK2 subclass II genes in all tested organs (leaves, stems, and roots), whereas subclass III genes tended to be upregulated in leaves only. These results suggest that the PtSnRK2 genes are involved in abiotic stress responses, are at least partially activated by ABA, and show organ-specific responses.

  9. Regulation of laminin beta2 chain gene expression in human cancer cell lines

    DEFF Research Database (Denmark)

    Durkin, M E; Nielsen, F C; Loechel, F

    2001-01-01

    of the human laminin beta2 chain gene generates two isoforms of the 5' untranslated region of the beta2 chain mRNA. The translational efficiencies of the two laminin beta2 chain leaders did not differ significantly, when assayed by polysome profile analysis of endogenous clone A cell beta2 chain m......RNA, transient transfection of chimeric beta2 chain leader/luciferase expression plasmids in clone A cells, and translation of in vitro synthesized RNAs in rabbit reticulocyte lysates....

  10. Using a periclinal chimera to unravel layer-specific gene expression in plants.

    Science.gov (United States)

    Filippis, Ioannis; Lopez-Cobollo, Rosa; Abbott, James; Butcher, Sarah; Bishop, Gerard J

    2013-09-01

    Plant organs are made from multiple cell types, and defining the expression level of a gene in any one cell or group of cells from a complex mixture is difficult. Dicotyledonous plants normally have three distinct layers of cells, L1, L2 and L3. Layer L1 is the single layer of cells making up the epidermis, layer L2 the single cell sub-epidermal layer and layer L3 constitutes the rest of the internal cells. Here we show how it is possible to harvest an organ and characterise the level of layer-specific expression by using a periclinal chimera that has its L1 layer from Solanum pennellii and its L2 and L3 layers from Solanum lycopersicum. This is possible by measuring the level of the frequency of species-specific transcripts. RNA-seq analysis enabled the genome-wide assessment of whether a gene is expressed in the L1 or L2/L3 layers. From 13 277 genes that are expressed in both the chimera and the parental lines and with at least one polymorphism between the parental alleles, we identified 382 genes that are preferentially expressed in L1 in contrast to 1159 genes in L2/L3. Gene ontology analysis shows that many genes preferentially expressed in L1 are involved in cutin and wax biosynthesis, whereas numerous genes that are preferentially expressed in L2/L3 tissue are associated with chloroplastic processes. These data indicate the use of such chimeras and provide detailed information on the level of layer-specific expression of genes. © 2013 East Malling Research The Plant Journal © 2013 John Wiley & Sons Ltd.

  11. On-Orbit Quantitative Real-Time Gene Expression Analysis Using the Wetlab-2 System

    Science.gov (United States)

    Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Tran, Luan; Schonfeld, Julie

    2015-01-01

    NASA Ames Research Center's WetLab-2 Project enables on-orbit quantitative Reverse Transcriptase PCR (qRT-PCR) analysis without the need for sample return. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage of using non-toxic chemicals and does not require alcohols or other organics. The resulting RNA is dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The project selected the Cepheid SmartCycler (TradeMark), a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, because of its advantages including rugged modular design, low power consumption, rapid thermal ramp times and four-color multiplex detection. Single tube multiplex assays can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system can downlink data from the ISS to the ground after a completed run and uplink new thermal cycling programs. The ability to conduct qRT-PCR and generate results on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. Specifically, the ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. On orbit gene expression analysis can also eliminate the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples and provide on-orbit gene expression benchmarking prior to sample return. Finally, the system can also be used for analysis of

  12. Evaluation of endogenous control gene(s) for gene expression studies in human blood exposed to 60Co γ-rays ex vivo

    International Nuclear Information System (INIS)

    Vaiphei, S. Thangminlal; Keppen, Joshua; Nongrum, Saibadaiahun; Sharan, R.N.; Chaubey, R.C.; Kma, L.

    2015-01-01

    In gene expression studies, it is critical to normalize data using a stably expressed endogenous control gene in order to obtain accurate and reliable results. However, we currently do not have a universally applied endogenous control gene for normalization of data for gene expression studies, particularly those involving 60 Co γ-ray-exposed human blood samples. In this study, a comparative assessment of the gene expression of six widely used housekeeping endogenous control genes, namely 18S, ACTB, B2M, GAPDH, MT-ATP6 and CDKN1A, was undertaken for a range of 60 Co γ-ray doses (0.5, 1.0, 2.0 and 4.0 Gy) at 8.4 Gy min -1 at 0 and 24 h post-irradiation time intervals. Using the NormFinder algorithm, real-time PCR data obtained from six individuals (three males and three females) were analyzed with respect to the threshold cycle (Ct) value and abundance, ΔCt pair-wise comparison, intra- and inter-group variability assessments, etc. GAPDH, either alone or in combination with 18S, was found to be the most suitable endogenous control gene and should be used in gene expression studies, especially those involving qPCR of γ-ray-exposed human blood samples. (author)

  13. Expression of minichromosome maintenance genes in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Zhong HB

    2017-11-01

    Full Text Available Hongbin Zhong,1,* Bin Chen,1,* Henrique Neves,2 Jinchun Xing,1 Youxin Ye,1 Ying Lin,1 Guohong Zhuang,3 Shu-Dong Zhang,4 Jiyi Huang,1,5 Hang Fai Kwok2 1Xiang’an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People’s Republic of China; 2Faculty of Health Sciences, University of Macau, Taipa, Macau SAR; 3Medical College of Xiamen University, Xiamen, Fujian, People’s Republic of China; 4Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, UK; 5The First Clinical School of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China *These authors contributed equally to this work Abstract: Minichromosome maintenance (MCM proteins play an essential role in DNA replication. They have been shown to be overexpressed in various types of cancer. However, the role of this family in renal cell carcinoma (RCC is widely unknown. In this study, we have identified a number of RCC datasets in the Gene Expression Omnibus database and also investigated the correlation between the expression levels of MCM genes and clinicopathological parameters. We found that the expression levels of MCM genes are positively correlated with one another. Expression levels of MCM2, MCM5, MCM6, and MCM7, but not of MCM3 and MCM4, were higher in RCC compared to paired adjacent normal tissue. Only the expression level of MCM4, but not of other MCMs, was positively correlated with tumor grade. In addition, a high-level expression of MCM2 in either primary tumor or metastases of RCC predicted a shorter disease-free survival time, while a high-level expression of MCM4 or MCM6 in primary tumor was also associated with poorer disease-free survival. Interestingly, we also demonstrated that patients with their primary RCC overexpressing 2 or more MCM genes had a shorter disease-free survival time, while those with RCC metastases overexpressing 3 or more MCM genes had a shorter

  14. A Free-Choice High-Fat High-Sugar Diet Alters Day-Night Per2 Gene Expression in Reward-Related Brain Areas in Rats.

    Science.gov (United States)

    Blancas-Velazquez, Aurea Susana; Unmehopa, Unga A; Eggels, Leslie; Koekkoek, Laura; Kalsbeek, Andries; Mendoza, Jorge; la Fleur, Susanne E

    2018-01-01

    Under normal light-dark conditions, nocturnal rodents consume most of their food during the dark period. Diets high in fat and sugar, however, may affect the day-night feeding rhythm resulting in a higher light phase intake. In vitro and in vivo studies showed that nutrients affect clock-gene expression. We therefore hypothesized that overconsuming fat and sugar alters clock-gene expression in brain structures important for feeding behavior. We determined the effects of a free-choice high-fat high-sugar (fcHFHS) diet on clock-gene expression in rat brain areas related to feeding and reward and compared them with chow-fed rats. Consuming a fcHFHS diet for 6 weeks disrupted day-night differences in Per2 mRNA expression in the nucleus accumbens (NAc) and lateral hypothalamus but not in the suprachiasmatic nucleus, habenula, and ventral tegmental area. Furthermore, short-term sugar drinking, but not fat feeding, upregulates Per2 mRNA expression in the NAc. The disruptions in day-night differences in NAc Per2 gene expression were not accompanied by altered day-night differences in the mRNA expression of peptides related to food intake. We conclude that the fcHFHS diet and acute sugar drinking affect Per2 gene expression in areas involved in food reward; however, this is not sufficient to alter the day-night pattern of food intake.

  15. Effects of hypo- and hyperthyroidism on proliferation, angiogenesis, apoptosis and expression of COX-2 in the corpus luteum of female rats.

    Science.gov (United States)

    Silva, J F; Ocarino, N M; Vieira, A L S; Nascimento, E F; Serakides, R

    2013-08-01

    Although thyroid dysfunction occurs frequently in humans and some animal species, the mechanisms by which hypo- and hyperthyroidism affect the corpus luteum have not been thoroughly elucidated. This study evaluated the levels of proliferative activity, angiogenesis, apoptosis and expression of cyclooxygenase-2 in the corpus luteum of female rats with thyroid dysfunction. These processes may be important in understanding the reproductive changes caused by thyroid dysfunction. A total of 18 adult female rats were divided into three groups (control, hypothyroid and hyperthyroid) with six animals per group. Three months after treatment to induce thyroid dysfunction, the rats were euthanized in the dioestrus phase. The ovaries were collected and immunohistochemically analysed for expression of the cell proliferation marker CDC-47, vascular endothelial growth factor (VEGF), VEGF receptor Flk-1 and cyclooxygenase-2 (COX-2). Apoptosis was evaluated using the TUNEL assay. Hypothyroidism reduced the intensity and area of COX-2 expression in the corpus luteum (p hyperthyroidism did not alter COX-2 expression in the dioestrus phase. Hypothyroidism significantly reduced the expression of CDC-47 in endothelial cells and pericytes in the corpus luteum, whereas hyperthyroidism did not induce a detectable change in CDC-47 expression (p > 0.05). Hypothyroidism reduced the level of apoptosis in luteal cells (p hyperthyroidism increased the level of apoptosis in the corpus luteum (p < 0.05). In conclusion, thyroid dysfunction differentially affects the levels of proliferative activity, angiogenesis and apoptosis and COX-2 expression in the corpus luteum of female rats. © 2013 Blackwell Verlag GmbH.

  16. Identifying potential maternal genes of Bombyx mori using digital gene expression profiling

    Science.gov (United States)

    Xu, Pingzhen

    2018-01-01

    Maternal genes present in mature oocytes play a crucial role in the early development of silkworm. Although maternal genes have been widely studied in many other species, there has been limited research in Bombyx mori. High-throughput next generation sequencing provides a practical method for gene discovery on a genome-wide level. Herein, a transcriptome study was used to identify maternal-related genes from silkworm eggs. Unfertilized eggs from five different stages of early development were used to detect the changing situation of gene expression. The expressed genes showed different patterns over time. Seventy-six maternal genes were annotated according to homology analysis with Drosophila melanogaster. More than half of the differentially expressed maternal genes fell into four expression patterns, while the expression patterns showed a downward trend over time. The functional annotation of these material genes was mainly related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, and ion binding. Additionally, twenty-two gene clusters including maternal genes were identified from 18 scaffolds. Altogether, we plotted a profile for the maternal genes of Bombyx mori using a digital gene expression profiling method. This will provide the basis for maternal-specific signature research and improve the understanding of the early development of silkworm. PMID:29462160

  17. Gene expression profiling demonstrates WNT/β-catenin pathway genes alteration in Mexican patients with colorectal cancer and diabetes mellitus.

    Science.gov (United States)

    Ivonne Wence-Chavez, Laura; Palomares-Chacon, Ulises; Pablo Flores-Gutierrez, Juan; Felipe Jave-Suarez, Luis; Del Carmen Aguilar-Lemarroy, Adriana; Barros-Nunez, Patricio; Esperanza Flores-Martinez, Silvia; Sanchez-Corona, Jose; Alejandra Rosales-Reynoso, Monica

    2017-01-01

    Several studies have shown a strong association between diabetes mellitus (DM) and increased risk of colorectal cancer (CRC). The fundamental mechanisms that support this association are not entirely understood; however, it is believed that hyperinsulinemia and hyperglycemia may be involved. Some proposed mechanisms include upregulation of mitogenic signaling pathways like MAPK, PI3K, mTOR, and WNT, which are involved in cell proliferation, growth, and cancer cell survival. The purpose of this study was to evaluate the gene expression profile and identify differently expressed genes involved in mitogenic pathways in CRC patients with and without DM. In this study, microarray analysis of gene expression followed by quantitative PCR (qPCR) was performed in cancer tissue from CRC patients with and without DM to identify the gene expression profiles and validate the differently expressed genes. Among the study groups, some differently expressed genes were identified. However, when bioinformatics clustering tools were used, a significant modulation of genes involved in the WNT pathway was evident. Therefore, we focused on genes participating in this pathway, such as WNT3A, LRP6, TCF7L2, and FRA-1. Validation of the expression levels of those genes by qPCR showed that CRC patients without type 2 diabetes mellitus (T2DM) expressed significantly more WNT3Ay LRP6, but less TCF7L2 and FRA-1 compared to controls, while in CRC patients with DM the expression levels of WNT3A, LRP6, TCF7L2, and FRA-1 were significantly higher compared to controls. Our results suggest that WNT/β-catenin pathway is upregulated in patients with CRC and DM, demonstrating its importance and involvement in both pathologies.

  18. Time-Course Gene Set Analysis for Longitudinal Gene Expression Data.

    Directory of Open Access Journals (Sweden)

    Boris P Hejblum

    2015-06-01

    Full Text Available Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial, and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package.

  19. Quinapril treatment increases insulin-stimulated endothelial function and adiponectin gene expression in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Hermann, Thomas S; Li, Weijie; Dominguez, Helena

    2005-01-01

    OBJECTIVE: Angiotensin-converting enzyme inhibitors reduce cardiovascular mortality and improve endothelial function in type 2 diabetic patients. We hypothesized that 2 months of quinapril treatment would improve insulin-stimulated endothelial function and glucose uptake in type 2 diabetic subjects...... and simultaneously increase the expression of genes that are pertinent for endothelial function and metabolism. METHODS: Twenty-four type 2 diabetic subjects were randomized to receive 2 months of quinapril 20 mg daily or no treatment in an open parallel study. Endothelium-dependent and -independent vasodilation...... occlusion plethysmography. Gene expression was measured by real-time PCR. RESULTS: Quinapril treatment increased insulin-stimulated endothelial function in the type 2 diabetic subjects (P = 0.005), whereas forearm glucose uptake was unchanged. Endothelial function was also increased by quinapril (P = 0...

  20. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer.

    Science.gov (United States)

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Lagioia, Michelle; Gendler, Sandra J; Mukherjee, Pinku

    2004-11-01

    Cyclooxygenase-2 (COX-2) inhibitors are rapidly emerging as a new generation of therapeutic drug in combination with chemotherapy or radiation therapy for the treatment of cancer. The mechanisms underlying its antitumor effects are not fully understood and more thorough preclinical trials are needed to determine if COX-2 inhibition represents a useful approach for prevention and/or treatment of breast cancer. The purpose of this study was to evaluate the growth inhibitory mechanism of a highly selective COX-2 inhibitor, celecoxib, in an in vivo oncogenic mouse model of spontaneous breast cancer that resembles human disease. The oncogenic mice carry the polyoma middle T antigen driven by the mouse mammary tumor virus promoter and develop primary adenocarcinomas of the breast. Results show that oral administration of celecoxib caused significant reduction in mammary tumor burden associated with increased tumor cell apoptosis and decreased proliferation in vivo. In vivo apoptosis correlated with significant decrease in activation of protein kinase B/Akt, a cell survival signaling kinase, with increased expression of the proapoptotic protein Bax and decreased expression of the antiapoptotic protein Bcl-2. In addition, celecoxib treatment reduced levels of proangiogenic factor (vascular endothelial growth factor), suggesting a role of celecoxib in suppression of angiogenesis in this model. Results from these preclinical studies will form the basis for assessing the feasibility of celecoxib therapy alone or in combination with conventional therapies for treatment and/or prevention of breast cancer.