WorldWideScience

Sample records for cycling synchrotron option

  1. The synchrotron option for a multi-megawatt proton driver

    CERN Document Server

    Prior, C R

    2006-01-01

    Of the three main options for a proton driver for a neutrino facility, synchrotron-based designs feature in proposals from J-PARC, Brookhaven and the Rutherford Appleton Laboratory. There are also synchrotron and linac options being considered in parallel at Fermilab. The Japanese machine has been developed from initial plans for a 3 GeV neutron source into a multi-purpose facility, with the addition of a 50 GeV proton synchrotron in a phased programme of construction. Brookhaven's ideas are based on upgrading the AGS, first to 1 MW and then to 4 MW. Fermilab is looking for a design to bypass the bottleneck that is the existing booster. At RAL, several designs have emerged, including one specifically based on upgrading the ISIS spallation neutron source into a possible dual neutron- neutrino facility.

  2. Proceedings of the workshop on LAMPF II synchrotron

    International Nuclear Information System (INIS)

    Cooper, R.K.

    1983-01-01

    Topics covered at the workshop include: considerations for a staged approach to synchrotron construction; consideration of energy and cost for a kaon and/or antiproton factory; changing the transition energy in the main ring for the Fermilab antiproton beam; a lattice with 50% undispersed straight sections; bunch width considerations in a stretcher ring; a self-consistent longitudinal distribution; rapid-cycling tuned rf cavity for synchrotron use; considerations on a high-shunt impedance tunable RF cavity; rotating condensers; low extraction from the stretcher ring; an antiproton source for LAMPF II; synchrotron magnet circuit; power supply and ring magnet options; and notes for a kaon factory design

  3. Multi-function ring magnet power supply for rapid-cycling synchrotrons

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1985-01-01

    Ring magnet power supply (RMPS) circuits that produce a wide range of magnet current waveshapes for rapid-cycling synchrotrons (RCS) are described. The shapes range from long flat-tops separated by a biased dual frequency cosine wave to those having a flat-bottom (injection), followed by a lower frequency cosine half wave (acceleration), a flat-top (extraction), and a higher frequency cosine half wave (magnet reset). Applications of these circuits for proposed synchrotrons are outlined. Solid-state switching circuits and the results of proof-of-concept tests are shown. 8 refs., 12 figs

  4. 77 FR 19278 - Informational Meeting on Nuclear Fuel Cycle Options

    Science.gov (United States)

    2012-03-30

    ... DEPARTMENT OF ENERGY Informational Meeting on Nuclear Fuel Cycle Options AGENCY: Office of Fuel... activities leading to a comprehensive evaluation and screening of nuclear fuel cycle options in 2013. At this... fuel cycle options developed for the evaluation and screening provides a comprehensive representation...

  5. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  6. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  7. Uranium Resource Availability Analysis of Four Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Youn, S. R.; Lee, S. H.; Jeong, M. S.; Kim, S. K.; Ko, W. I.

    2013-01-01

    Making the national policy regarding nuclear fuel cycle option, the policy should be established in ways that nuclear power generation can be maintained through the evaluation on the basis of the following aspects. To establish the national policy regarding nuclear fuel cycle option, that must begin with identification of a fuel cycle option that can be best suited for the country, and the evaluation work for that should be proceeded. Like all the policy decision, however, a certain nuclear fuel cycle option cannot be superior in all aspects of sustain ability, environment-friendliness, proliferation-resistance, economics, technologies, which make the comparison of the fuel cycle options very complicated. For such a purpose, this paper set up four different fuel cycle of nuclear power generation considering 2nd Comprehensive Nuclear Energy Promotion Plan(CNEPP), and analyzed material flow and features in steady state of all four of the fuel cycle options. As a result of an analysis on material flow of each nuclear fuel cycle, it was analyzed that Pyro-SFR recycling is most effective on U resource availability among four fuel cycle option. As shown in Figure 3, OT cycle required the most amount of U and Pyro-SFR recycle consumed the least amount of U. DUPIC recycling, PWR-MOX recycling, and Pyro-SFR recycling fuel cycle appeared to consumed 8.2%, 12.4%, 39.6% decreased amount of uranium respectively compared to OT cycle. Considering spent fuel can be recycled as potential energy resources, U and TRU taken up to be 96% is efficiently used. That is, application period of limited uranium natural resources can be extended, and it brings a great influence on stable use of nuclear energy

  8. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  9. Energy conversion options for ARIES-III - A conceptual D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Blanchard, J.P.; Emmert, G.A.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Ghoneim, N.M.; Hasan, M.Z.; Mau, T.K.; Greenspan, E.; Herring, J.S.; Kernbichler, W.; Klein, A.C.; Miley, G.H.; Miller, R.L.; Peng, Y.K.M.

    1989-01-01

    The potential for highly efficient conversion of fusion power to electricity provides one motivation for investigating D- 3 He fusion reactors. This stems from: (1) the large fraction of D- 3 He power produced in the forms of charged particles and synchrotron radiation which are amenable to direct conversion, and (2) the low neutron fluence and lack of tritium breeding constraints, which increase design flexibility. The design team for a conceptual D- 3 He tokamak reactor, ARIES-III, has investigated numerous energy conversion options at a scoping level in attempting to realize high efficiency. The energy conversion systems have been studied in the context of their use on one or more of three versions of a D- 3 He tokamak: a first stability regime device, a second stability regime device, and a spherical torus. The set of energy conversion options investigated includes bootstrap current conversion, compression-expansion cycles, direct electrodynamic conversion, electrostatic direct conversion, internal electric generator, liquid metal heat engine blanket, liquid metal MHD, plasma MHD, radiation boiler, scrape-off layer thermoelectric, synchrotron radiation conversion by rectennas, synchrotron radiation conversion by thermal cycles, thermionic/AMTEC/thermal systems, and traveling wave conversion. The original set of options is briefly discussed, and those selected for further study are described in more detail. The four selected are liquid metal MHD, plasma MHD, rectenna conversion, and direct electrodynamic conversion. Thermionic energy conversion is being considered, and some options may require a thermal cycle in parallel or series. 17 refs., 3 figs., 1 tab

  10. Main cycle controls for the AGS Booster synchrotron

    International Nuclear Information System (INIS)

    Culwick, B.B.; Yen, S.

    1991-01-01

    The AGS Booster is a separated function synchrotron with the main excitation coils of the dipoles and quadrupoles connected electrically in series. This circuit is driven by a complex modular power supply with current and voltage reference functions to obtain the desired magnetic fields as a function of time. The dipole cycle is defined by algebraic functions specifying the desired field profile as a function of time. These functions are processed through successive phases to convert to the signals needed to provide the power supply with one current and six voltage references. The user interface and algorithms to derive the control variables are described. 4 refs., 3 figs

  11. Tune-control improvements on the rapid-cycling synchrotron

    International Nuclear Information System (INIS)

    Potts, C.; Faber, M.; Gunderson, G.; Knott, M.; Voss, D.

    1981-01-01

    The as-built lattice of the Rapid-Cycling Synchrotron (RCS) had two sets of correction sextupoles and two sets of quadrupoles energized by dc power supplies to control the tune and the tune tilt. With this method of powering these magnets, adjustment of tune conditions during the accelerating cycle as needed was not possible. A set of dynamically programmable power supplies has been built and operated to provide the required chromaticity adjustment. The short accelerating time (16.7 ms) of the RCS and the inductance of the magnets dictated large transistor amplifier power supplies. The required time resolution and waveform flexibility indicated the desirability of computer control. Both the amplifiers and controls are described, along with resulting improvements in the beam performance. A set of octupole magnets and programmable power supplies with similar dynamic qualities have been constructed and installed to control the anticipated high-intensity transverse instability. This system will be operational in the spring of 1981

  12. Design, Manufacture and Test of a 1.3 T / 10 Hz dipole model for Rapid Cycling Synchrotrons

    CERN Document Server

    Newborough, A

    2013-01-01

    The construction of a compact rapid cycling synchrotron has recently been studied at CERN to replace the first stage of its accelerator complex, the proton synchrotron booster. Although currently there are no plans to build this machine, fast cycled accelerator magnets are of general interest for numerous reasons. This has led to the design, manufacture and testing of a scaled model dipole as detailed in this paper to show the capability of producing and characterising a magnet design based on high-silicon content grain-oriented steel able to operate up to 1.3 T at 10 Hz.

  13. Design study of the large hadron electron collider and a rapid cycling synchrotron as alternative to the PS booster upgrade at CERN

    International Nuclear Information System (INIS)

    Fitterer, Miriam

    2013-01-01

    With the Large Hadron Collider (LHC) the exploration of particle physics at center of mass energies at the TeV scale has begun. To extend the discovery potential of the LHC, a major upgrade is foreseen around 2020 of the LHC itself and the LHC injectors - the chain of accelerators preparing the beam for the LHC. One of the injectors - the second one in the chain - is the Proton Synchrotron (PS) Booster. Its performance is currently limited by the space-charge effect, which is the effect of the electromagnetic field of the particle beam on itself. This effect becomes weaker with higher energy, and therefore an energy upgrade of the PS Booster to 2 GeV maximum beam energy is foreseen. As the PS Booster is with its 40 years already an old machine, the construction of a new accelerator, a Rapid Cycling Synchrotron (RCS), to replace the PS Booster has been proposed. In this thesis different options for the beam guidance in the RCS - referred to as lattice and optics - are studied, followed by a more general comparison of different lattices and optics and their performance under consideration of the space-charge effect. To further complement the LHC physics program, also the possibility of deep inelastic lepton-nucleon scattering at the LHC has been suggested, referred to as Large Hadron Electron Collider (LHeC). In this case the proton beam of the LHC collides with the electron beam, which is accelerated in a separate newly built machine. Two options are considered as electron accelerator: a new energy recovery linac - the Linac-Ring option - and the installation of an electron ring in the existing LHC tunnel - the Ring-Ring option. One of the main challenges of the Ring-Ring option is the integration of the electron ring in the current LHC tunnel. A layout, lattice and optics of the electron accelerator is developed in this thesis, which meets the requirements with regard to integration and reaches the beam parameters demanded by the particle physics experiments.

  14. Design study of the large hadron electron collider and a rapid cycling synchrotron as alternative to the PS booster upgrade at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, Miriam

    2013-02-22

    With the Large Hadron Collider (LHC) the exploration of particle physics at center of mass energies at the TeV scale has begun. To extend the discovery potential of the LHC, a major upgrade is foreseen around 2020 of the LHC itself and the LHC injectors - the chain of accelerators preparing the beam for the LHC. One of the injectors - the second one in the chain - is the Proton Synchrotron (PS) Booster. Its performance is currently limited by the space-charge effect, which is the effect of the electromagnetic field of the particle beam on itself. This effect becomes weaker with higher energy, and therefore an energy upgrade of the PS Booster to 2 GeV maximum beam energy is foreseen. As the PS Booster is with its 40 years already an old machine, the construction of a new accelerator, a Rapid Cycling Synchrotron (RCS), to replace the PS Booster has been proposed. In this thesis different options for the beam guidance in the RCS - referred to as lattice and optics - are studied, followed by a more general comparison of different lattices and optics and their performance under consideration of the space-charge effect. To further complement the LHC physics program, also the possibility of deep inelastic lepton-nucleon scattering at the LHC has been suggested, referred to as Large Hadron Electron Collider (LHeC). In this case the proton beam of the LHC collides with the electron beam, which is accelerated in a separate newly built machine. Two options are considered as electron accelerator: a new energy recovery linac - the Linac-Ring option - and the installation of an electron ring in the existing LHC tunnel - the Ring-Ring option. One of the main challenges of the Ring-Ring option is the integration of the electron ring in the current LHC tunnel. A layout, lattice and optics of the electron accelerator is developed in this thesis, which meets the requirements with regard to integration and reaches the beam parameters demanded by the particle physics experiments.

  15. Comparison of tokamak burn cycle options

    International Nuclear Information System (INIS)

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K. Jr.; Hassanein, A.M.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1985-01-01

    Experimental confirmation of noninductive current drive has spawned a number of suggestions as to how this technique can be used to extend the fusion burn period and improve the reactor prospects of tokamaks. Several distinct burn cycles, which employ various combinations of Ohmic and noninductive current generation, are possible, and we will study their relative costs and benefits for both a commerical reactor as well as an INTOR-class device. We begin with a review of the burn cycle options

  16. Space-Charge Simulation of Integrable Rapid Cycling Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffery [Fermilab; Valishev, Alexander [Fermilab

    2017-05-01

    Integrable optics is an innovation in particle accelerator design that enables strong nonlinear focusing without generating parametric resonances. We use a Synergia space-charge simulation to investigate the application of integrable optics to a high-intensity hadron ring that could replace the Fermilab Booster. We find that incorporating integrability into the design suppresses the beam halo generated by a mismatched KV beam. Our integrable rapid cycling synchrotron (iRCS) design includes other features of modern ring design such as low momentum compaction factor and harmonically canceling sextupoles. Experimental tests of high-intensity beams in integrable lattices will take place over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER).

  17. Completion of Population of and Quality Assurance on the Nuclear Fuel Cycle Options Catalog.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arnold, Matthew Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cycle Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.

  18. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    International Nuclear Information System (INIS)

    Yang, Won Sik; Lin, C. S.; Hader, J. S.; Park, T. K.; Deng, P.; Yang, G.; Jung, Y. S.; Kim, T. K.; Stauff, N. E.

    2016-01-01

    This report presents the performance characteristics of two ''two-stage'' fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the discharged fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements

  19. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Lin, C. S. [Purdue Univ., West Lafayette, IN (United States); Hader, J. S. [Purdue Univ., West Lafayette, IN (United States); Park, T. K. [Purdue Univ., West Lafayette, IN (United States); Deng, P. [Purdue Univ., West Lafayette, IN (United States); Yang, G. [Purdue Univ., West Lafayette, IN (United States); Jung, Y. S. [Purdue Univ., West Lafayette, IN (United States); Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Stauff, N. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-30

    This report presents the performance characteristics of two “two-stage” fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the discharged fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements

  20. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-04-01

    The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a twoto three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than does conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U.S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or FBR reactors. If the objective of a national fuel-cycle program is the minimization of actinide waste or destruction of long-lived fission products, then studies have shown the superiority of CANDU reactors in meeting this objective. Long-term energy security can be assured either through the thorium cycle or through a CANDU 1 FBR system, in which the FBR would be operated as a 'fuel factory,' providing the fissile material to power a number of lower-cost, high efficiency CANDU reactors. In summary, the CANDU reactor's simple fuel design, high neutron economy, and on

  1. Closing the fuel cycle: A superior option for India

    International Nuclear Information System (INIS)

    Balu, K.; Purushotham, D.S.C.; Kakodkar, A.

    1999-01-01

    The closed fuel cycle option with reprocessing and recycle of uranium and plutonium (U and Pu) for power generation allows better utilization of the uranium resources. On its part, plutonium is a unique energy source. During the initial years of nuclear fuel cycle activities, reprocessing and recycle of uranium and plutonium for power generation was perceived by many countries to be among the best of long term strategies for the management of spent fuel. But, over the years, some of the countries have taken a position that once-through fuel cycle is both economical and proliferation-resistant. However, such perceptions do vary as a function of economic growth and energy security of a given country. This paper deals with techno-economic perspectives of reprocessing and recycling in the Indian nuclear power programme. Experience of developing Mixed Oxide UO 2 -PuO 2 (MOX) fuel and its actual use in a power reactor (BWR) is presented. The paper further deals with the use of MOX in PHWRs in the future and current thinking, in the Indian context, in respect of advanced fuel cycles for the future. From environmental safety considerations, the separation of long-lived isotopes and minor actinides from high level waste (HLW) would enhance the acceptability of reprocessing and recycle option. The separated actinides are suitable for recycling with MOX fuel. However, the advanced fuel cycles with such recycling of Uranium and transuranium elements call for additional sophisticated fuel cycle activities which are yet to be mastered. India is interested in both uranium and thorium fuel cycles. This paper describes the current status of the Indian nuclear power scenario with reference to the program on reactors, reprocessing and radioactive waste management, plutonium recycle options, thorium-U233 fuel cycle studies and investigations on partitioning of actinides from Purex HLW as relevant to PHWR spent fuels. (author)

  2. Mass Flow Data Comparison for Comprehensive Fuel Cycle Options

    International Nuclear Information System (INIS)

    Kim, T.K.; Taiwo, T.A.; Wigeland, R.A.; Dixon, B.W.; Gehin, J.C.; Todosow, M.

    2015-01-01

    One of the key objectives stated in the United States Department of Energy, Nuclear Energy R and D road-map is the development of sustainable nuclear fuel cycles that improve natural resource utilisation and provide adequate capability and capacity to manage wastes produced by the fuel cycle. In order to inform this objective, an evaluation and screening of nuclear fuel cycle options has been conducted. As part of that effort, the entire fuel cycle options space was represented by 40 Evaluation Groups (EGs), and mass flow information for each of the EGs was provided by using an Analysis Example (AE). In this paper, the mass flow data of the 40 AEs are compared to inform on trends in the natural resource utilisation and nuclear waste generation. For the AEs that need enriched uranium support, the natural uranium required is high and the natural resource utilisation is generally lower than 2% regardless of the fuel cycle strategy (i.e., once-through, limited recycle, or continuous recycle). However, the utilisation could be improved by avoiding enriched uranium fuel support. The natural resource utilisation increases to more than 80% by recycling the nuclear fuel continuously without enriched uranium support. The combined mass of spent nuclear fuel (SNF) and high-level waste (HLW), i.e., SNF+HLW mass, is lower by using a continuous recycle option compared to a once-through fuel cycle option, because SNF mass is converted to mass of recycled products and only fission products and other process losses need to be disposed. The combined disposed mass of depleted uranium (DU), recovered uranium (RU) and thorium (RTh), i.e. DU+RU+RTh mass, has a similar trend to the uranium utilisation. For the AEs that need enriched uranium fuel, the DU and RU are the major fraction by mass of the DU+RU+RTh, which are two orders of magnitude higher in mass compared to those for the AEs that do not need enriched uranium fuel. (authors)

  3. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P. G.; Fehrenbach, P. J.; Meneley, D. A.

    1996-01-01

    There are many reasons for countries embarking on a CANDU R program to start with the natural uranium fuel cycle. Simplicity of fuel design, ease of fabrication, and ready availability of natural uranium all help to localize the technology and to reduce reliance on foreign technology. Nonetheless, at some point, the incentives for using natural uranium fuel may be outweighed by the advantages of alternate fuel cycles. The excellent neutron economy, on-line refuelling, and simple fuel-bundle design provide an unsurpassed degree of fuel-cycle flexibility in CANDU reactors. The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a two- to three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than dose conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U. S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or

  4. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  5. Nuclear disarmament. Options for the coming non-proliferation treaty surveillance cycle

    International Nuclear Information System (INIS)

    Mueller, Harald

    2011-01-01

    The report is aimed on the nuclear disarmament discussion with respect to the disagreement of nuclear weapon states and those without nuclear weapons, esp. the non-aligned movement (NAM) concerning the non-proliferation treaty. The report covers the following issues: The role of the non-proliferation treaty, nuclear disarmament in the last surveillance conference 2010, the different disarmament philosophies, the possibilities of bridging the disagreement, further disarmament options for the future non-proliferation treaty surveillance cycle, German options for the future surveillance cycle.

  6. Tradeoffs in fuel cycle performance for most promising options - 15346

    International Nuclear Information System (INIS)

    Taiwo, T.; Kim, T.K.; Feng, B.; Stauff, N.; Hoffman, E.; Ganda, F.; Todosow, M.; Brown, N.; Raitses, G.; Gehin, J.; Powers, J.; Youinou, G.; Hiruta, H.; Wigeland, R.

    2015-01-01

    A recent Evaluation and Screening (E/S) study of nuclear fuel cycle options was conducted by grouping all potential options into 40 Evaluation Groups (EGs) based on similarities in fundamental physics characteristics and fuel cycle performance. Through a rigorous evaluation process considering benefit and challenge metrics, 4 of these EGs were identified by the E/S study as 'most promising'. All 4 involve continuous recycle of U/Pu or U/TRU with natural uranium feed in fast critical reactors. However, these most promising EGs also include fuel cycle groups with variations on feed materials, neutron spectra, and reactor criticality. Therefore, the impacts of the addition of natural thorium fuel feed to a system that originally only used natural uranium fuel feed, using an intermediate spectrum instead of a fast spectrum, and using externally-driven systems versus critical reactors were evaluated. It was found that adding thorium to the natural uranium feed mixture leads to lower burnup, higher mass flows, and degrades fuel cycle benefit metrics (waste management, resource utilization, etc.) for fuel cycles that continuously recycle U/Pu or U/TRU. Adding thorium results in fissions of 233 U instead of just 239 Pu and in turn results in a lower average number of neutrons produced per absorption (η) for the fast reactor system. For continuous recycling systems, the lower η results in lower excess reactivity and subsequently lower achievable fuel burnup. This in turn leads to higher mass flows (fabrication, reprocessing, disposal, etc.) to produce a given amount of energy and subsequent lower metrics performance. The investigated fuel cycle options with intermediate spectrum reactors also exhibited degraded performance in the benefit metrics compared to fast spectrum reactors. Similarly, this is due to lower η values as the spectrum softens. The best externally-driven systems exhibited similar performance as fast critical reactors in terms of mass flows

  7. Counter flow induced draft cooling tower option for supercritical carbon dioxide Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pidaparti, Sandeep R., E-mail: sandeep.pidaparti@gmail.com [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States); Moisseytsev, Anton; Sienicki, James J. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ranjan, Devesh, E-mail: devesh.ranjan@me.gatech.edu [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States)

    2015-12-15

    Highlights: • A code was developed to investigate the various aspects of using cooling tower for S-CO{sub 2} Brayton cycles. • Cooling tower option to reject heat is quantitatively compared to the direct water cooling and dry air cooling options. • Optimum water conditions resulting in minimal plant capital cost per unit power consumption are calculated. - Abstract: A simplified qualitative analysis was performed to investigate the possibility of using counter flow induced draft cooling tower option to reject heat from the supercritical carbon dioxide Brayton cycle for advanced fast reactor (AFR)-100 and advanced burner reactor (ABR)-1000 plants. A code was developed to estimate the tower dimensions, power and water consumption, and to perform economic analysis. The code developed was verified against a vendor provided quotation and is used to understand the effect of ambient air and water conditions on the design of cooling tower. The calculations indicated that there exists optimum water conditions for given ambient air conditions which will result in minimum power consumption, thereby increasing the cycle efficiency. A cost-based optimization technique is used to estimate the optimum water conditions which will improve the overall plant economics. A comparison of different cooling options for the S-CO{sub 2} cycle indicated that the cooling tower option is a much more practical and economical option compared to the dry air cooling or direct water cooling options.

  8. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  9. MHR fuel cycle options for future sustainability of nuclear power

    International Nuclear Information System (INIS)

    Baxter, Alan; Venneri, Francesco; Rodriguez, Carmelo; Fikani, Michael

    2005-01-01

    The future sustainability of the nuclear option is not significantly tied to the level of resources. For example, current high quality uranium reserves (∼3.34x10 6 tons) are enough for more than 55 years at present consumption rates (IAEA estimate). Doubling of the present uranium ore price (∼$26/kg) could create about a tenfold increase in resources, providing more than 550 years of supply at present rates (World Nuclear Association estimate). There are also thorium reserves which are estimated to be about three times those of uranium, and would allow for a significant increase in annual consumption levels. The key to a sustainable nuclear future is really tied to the political and technical problems of long term waste disposal, and the perceived risks of nuclear weapons proliferation. Thus fuel cycle options for a sustainable nuclear future must address and solve these issues. High temperature, Gas-Cooled, Graphite Moderated, reactors (MHRs) have nuclear and operational characteristics to provide multiple fuel cycle options to solve these issues. Three fuel cycles for the MHD are described in this paper, and their capabilities for meeting a sustainable nuclear future in terms of nuclear waste minimization and destruction, and reduction of proliferation risk, are discussed. (author)

  10. Phase lock of rapid cycling synchrotron and neutron choppers

    International Nuclear Information System (INIS)

    Praeg, W.; McGhee, D.; Volk, G.

    1981-01-01

    The 500-MeV synchrotron of Argonne's Intense Pulsed Neutron Source operates at 30 Hz. Its beam spill must be locked to neutron choppers with a precision of +- 0.5 μs. A chopper and an accelerator have large and different inertias. This makes synchronization by phase lock to the 60-Hz power line extremely difficult. We solved the phasing problems by running both the Ring Magnet Power Supply (RMPS) of the synchrotron and the chopper motors from a common oscillator that is stable to 1 ppM and by controlling five quantities of the RMPS. The quantities controlled by feedback loops are dc current, injection current, ejection current, resonant frequency, and the phase shift between the synchrotron peak field and the chopper window

  11. Life cycle assessment of automobile/fuel options.

    Science.gov (United States)

    MacLean, Heather L; Lave, Lester B

    2003-12-01

    We examine the possibilities for a "greener" car that would use less material and fuel, be less polluting, and would have a well-managed end-of-life. Light-duty vehicles are fundamental to our economy and will continue to be for the indefinite future. Any redesign to make these vehicles greener requires consumer acceptance. Consumer desires for large, powerful vehicles have been the major stumbling block in achieving a "green car". The other major barrier is inherent contradictions among social goals such as fuel economy, safety, low emissions of pollutants, and low emissions of greenhouse gases, which has led to conflicting regulations such as emissions regulations blocking sales of direct injection diesels in California, which would save fuel. In evaluating fuel/vehicle options with the potential to improve the greenness of cars [diesel (direct injection) and ethanol in internal combustion engines, battery-powered, gasoline hybrid electric, and hydrogen fuel cells], we find no option dominates the others on all dimensions. The principles of green design developed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A) and the use of a life cycle approach provide insights on the key sustainability issues associated with the various options.

  12. Fuel management options to extend the IRIS reactor cycle

    International Nuclear Information System (INIS)

    Petrovic, B.; Franceschini, F.

    2004-01-01

    To optimize plant operation, reduce scheduled maintenance outage, and increase capacity factor, IRIS is designed to enable extended cycles of up to four years. However, due to the enrichment licensing limitation (less than 5% enriched uranium oxide) there is a tradeoff between the achievable cycle length and fuel utilization, i.e., the average fuel discharge burnup. The longest individual cycle may be achieved with the single-batch straight burn, but at the expense of a lower burnup. Considering the IRIS basic performance requirements, a cycle length in the range of three to four years is deemed desirable. This paper examines different fuel management options, i.e., the influence of the required cycle length on the corresponding reloading strategy, including a two-batch and a three-batch reloading. A reference two-batch core design has been developed for the first cycle, as well as for the transition cycles leading to equilibrium. Main core performance parameters are evaluated. This core design provides the framework for the safety analyses needed to prepare the IRIS safety evaluations. Alternate designs are also considered.(author)

  13. Radiological aspects of postfission waste management for light-water reactor fuel cycle options

    Energy Technology Data Exchange (ETDEWEB)

    Shipler, D B; Nelson, I C [Battelle Pacific Northwest Laboratories, Richland, WA (United States)

    1978-12-01

    A generic environmental impact statement on the management of radioactive postfission wastes from various light-water reactor fuel cycles in the United States has been prepared. The environmental analysis for post-fission waste management includes an examination of radiological impacts related to different waste treatment, storage, transportation, and disposal options at the process level. Effects addressed include effluents from plants, and radiological impacts from facility operation (routine and accidents), and decommissioning. Environmental effects are combined for fuel reprocessing plants, mixed-oxide fuel fabrication plants, and waste repositories. Radiological effects are also aggregated for several fuel cycle options over the period 1980 and 2050. Fuel cycles analyzed are (1) once-through cycle in which spent reactor fuel is cooled in water basins for at least 6-1/2 years and then disposed of in deep geologic repositories; (2) spent fuel reprocessing in which uranium only and uranium and plutonium is recycled and solidified high level waste, fuel residues, and non-high-level transuranic wastes are disposed of in deep geologic repositories; and (3) deferred cycle that calls for storage of spent fuel at Federal spent fuel storage facilities until the year 2000 at which time a decision is made whether to dispose of spent fuel as a waste or to reprocess the fuel to recover uranium and plutonium. Key environmental issues for decision-making related to waste management alternatives and fuel cycle options are highlighted. (author)

  14. NPP fuel cycle and assessment of possible options for long-term fuel supply

    International Nuclear Information System (INIS)

    Ignatenko, E.I.; Lebedev, V.M.; Davidenko, N.N.

    1999-01-01

    The purpose of this paper is to present some results of the analysis of the possible options for Russian NPPs fuel supply. In the classical consideration these are four fuel cycles: uranium cycle based on natural uranium, this cycle has several economical advantages with the use of CANDU type reactors with a heavy-water moderator; uranium cycle based on enriched uranium, it is a basis for the current and future nuclear power; uranium-thorium fuel cycle with capabilities which are very promising but unfortunately difficult to implement in practice; plutonium-uranium cycle, in terms of its potential capabilities it is an excellent option, but it is extremely difficult to implement it in practice due to a high activity and toxicity of nuclear materials under recycle. The nuclear power of Russia is currently aimed at using the cheapest fuel resources, that is first of all, uranium reprocessed from industrial reactor fuel and slag-heaps accumulated on the past in isotope-separation plant sites. These resources are enough for the Russian large-scale nuclear power to be developed [ru

  15. Economic Analysis of Different Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Ko, W.; Gao, F.

    2012-01-01

    An economic analysis has been performed to compare four nuclear fuel cycle options: a once-through cycle (OT), DUPIC recycling, thermal recycling using MOX fuel in a pressurized water reactor (PWR-MOX), and sodium fast reactor recycling employing pyro processing (Pyro-SFR). This comparison was made to suggest an economic competitive fuel cycle for the Republic of Korea. The fuel cycle cost (FCC) has been calculated based on the equilibrium material flows integrated with the unit cost of the fuel cycle components. The levelized fuel cycle costs (LFCC) have been derived in terms of mills/kWh for a fair comparison among the FCCs, and the results are as follows: OT 7.35 mills/kWh, DUPIC 9.06 mills/kWh, PUREX-MOX 8.94 mills/kWh, and Pyro-SFR 7.70 mills/kWh. Due to unavoidable uncertainties, a cost range has been applied to each unit cost, and an uncertainty study has been performed accordingly. A sensitivity analysis has also been carried out to obtain the break-even uranium price (215$/kgU) for the Pyro-SFR against the OT, which demonstrates that the deployment of the Pyro-SFR may be economical in the foreseeable future. The influence of pyro techniques on the LFCC has also been studied to determine at which level the potential advantages of Pyro-SFR can be realized.

  16. Life cycle assessment of bagasse waste management options

    International Nuclear Information System (INIS)

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-01-01

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative

  17. Efficiency of respiratory-gated delivery of synchrotron-based pulsed proton irradiation

    International Nuclear Information System (INIS)

    Tsunashima, Yoshikazu; Vedam, Sastry; Dong, Lei; Bues, Martin; Balter, Peter; Smith, Alfred; Mohan, Radhe; Umezawa, Masumi; Sakae, Takeji

    2008-01-01

    Significant differences exist in respiratory-gated proton beam delivery with a synchrotron-based accelerator system when compared to photon therapy with a conventional linear accelerator. Delivery of protons with a synchrotron accelerator is governed by a magnet excitation cycle pattern. Optimal synchronization of the magnet excitation cycle pattern with the respiratory motion pattern is critical to the efficiency of respiratory-gated proton delivery. There has been little systematic analysis to optimize the accelerator's operational parameters to improve gated treatment efficiency. The goal of this study was to estimate the overall efficiency of respiratory-gated synchrotron-based proton irradiation through realistic simulation. Using 62 respiratory motion traces from 38 patients, we simulated respiratory gating for duty cycles of 30%, 20% and 10% around peak exhalation for various fixed and variable magnet excitation patterns. In each case, the time required to deliver 100 monitor units in both non-gated and gated irradiation scenarios was determined. Based on results from this study, the minimum time required to deliver 100 MU was 1.1 min for non-gated irradiation. For respiratory-gated delivery at a 30% duty cycle around peak exhalation, corresponding average delivery times were typically three times longer with a fixed magnet excitation cycle pattern. However, when a variable excitation cycle was allowed in synchrony with the patient's respiratory cycle, the treatment time only doubled. Thus, respiratory-gated delivery of synchrotron-based pulsed proton irradiation is feasible and more efficient when a variable magnet excitation cycle pattern is used

  18. An unique synchrotron beamline for fine X ray characterizations of nuclear fuel cycle materials

    Energy Technology Data Exchange (ETDEWEB)

    Sitaud, B.; Lequien, S

    2004-07-01

    A beamline dedicated to the study of highly radioactive samples up to 18.5 GBq will be constructed on the new third generation synchrotron SOLEIL. Based on the use of X ray beam of very high flux, this beamline named MARS will give true opportunities for new studies of chemistry and physics on fuel cycle materials with the respect of safety conditions. Complementary investigations should be carried out on different experimental stations. The three main techniques will be the micro fluorescence, the micro absorption and the high resolution diffraction. The MARS beamline should be up and working for the international community by the beginning of 2007. (authors)

  19. An unique synchrotron beamline for fine X ray characterizations of nuclear fuel cycle materials

    International Nuclear Information System (INIS)

    Sitaud, B.; Lequien, S.

    2004-01-01

    A beamline dedicated to the study of highly radioactive samples up to 18.5 GBq will be constructed on the new third generation synchrotron SOLEIL. Based on the use of X ray beam of very high flux, this beamline named MARS will give true opportunities for new studies of chemistry and physics on fuel cycle materials with the respect of safety conditions. Complementary investigations should be carried out on different experimental stations. The three main techniques will be the micro fluorescence, the micro absorption and the high resolution diffraction. The MARS beamline should be up and working for the international community by the beginning of 2007. (authors)

  20. Beam commissioning of the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2009-04-01

    Full Text Available The 3-GeV rapid cycling synchrotron (RCS of the Japan Proton Accelerator Research Complex (J-PARC was commissioned in October 2007, and successfully accomplished 3 GeV acceleration on October 31. Six run cycles through February 2008 were dedicated to commissioning the RCS, for which the initial machine parameter tuning and various underlying beam studies were completed. Then since May 2008 the RCS beam has been delivered to the downstream facilities for their beam commissioning. In this paper we describe beam tuning and study results following our beam commissioning scenario and a beam performance and operational experience obtained in the first commissioning phase through June 2008.

  1. Proposed second harmonic acceleration system for the intense pulsed neutron source rapid cycling synchrotron

    International Nuclear Information System (INIS)

    Norem, J.; Brandeberry, F.; Rauchas, A.

    1983-01-01

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2 to 2.5 x 10 12 protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at approx.3 x 10 12 ppp, depending somewhat on the available aperture. With the present good performance in mind, accelerator improvements are being directed at: (1) increasing beam intensities for neutron science; (2) lowering acceleration losses to minimize activation; and (3) gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. On the basis of preliminary measurements, we are now proposing a third cavity for the RF systems which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses

  2. The Rapid Cycling Synchrotron of the EURISOL Beta-Beam facility

    CERN Document Server

    Lachaize, A

    During the last two years, several upgrades of the initial baseline scenario were studied with the aim of increasing the average intensity of ion beams in the accelerator chain of the Beta Beam complex. This is the reason why the Rapid Cycling Synchrotron (RCS) specifications were reconsidered many times.General considerations on the optical design were presented at the Beta Beam Task Meetings held at CERN and at Saclay in 2005 (http://beta-beam.web.cern.ch/beta-beam/). More detailed beam optics studies were performed during the next months. Lattices, RF system parameters, multi-turn injection scheme, fast extraction, closed orbit correction and chromaticity correction systems were proposed for different versions of the RCS.Finally, the RCS specifications have stabilized in November 2006 after the fourth Beta Beam Task Meeting when it was decided to fix the maximum magnetic rigidity of ion beams to 14.47 T.m (3.5 GeV equivalent proton energy) and to adopt a ring physical radius of 40 m in order to facilitat...

  3. Is recycling the best policy option? Insights from life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.; Stodolsky, F.

    1996-03-01

    The public perceives that the more we recycle, the better off we are. However, both the concept of recycling and the benefits to be achieved from recycling are somewhat vague. To determine the best option for disposition of a material at the end of its first use, we need to first define the available options and then clarify the possible goals that can be achieved by them. The best option will depend on the material, goals to be achieved, and location-dependent factors, such as costs, resources, and regulations. This paper presents the results of a life-cycle energy analysis of kraft paper and newsprint by Argonne National Laboratory. They indicate that under some circumstances, the option of fiber-energy recovery will maximize the benefits that can. be realized from the U.S. used paper resource.

  4. Synchrotron power supply of TARN II

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi.

    1991-07-01

    The construction and performance of synchrotron power supply of TARN II are described. The 1.1 GeV synchrotron-cooler TARN II has been constructed at Institute for Nuclear Study, University of Tokyo. Constructed power supply for the dipole magnets is 600 V, 2500 A operated in the mode of trapezoid wave form with the repetition cycle of 0.1 Hz. The stability of magnetic field within 10 -3 and tracking error of 10 -4 have been attained with the aid of computer control system. First trial of synchrotron acceleration of He 2+ beam has been done up to 600 MeV in April, 1991. (author)

  5. Rapid cycling superconducting booster synchrotron

    International Nuclear Information System (INIS)

    Dinev, D.; Agapov, N.; Butenko, A.

    2001-01-01

    The existing set of Nuclotron heavy ion sources, such as duoplasmatron, polarized deuteron, laser and electron beam ion sources permits to have ion beams over a wide range of masses. The main problem for us now is to gain high intensity of accelerator particles. It can be solved by means of multiturn injection of the low current beams into the booster, acceleration up to the intermediate energies, stripping and transferring into the main ring. A design study of this accelerator - the 250 MeV/Amu Nuclotron booster synchrotron at 1 Hz repetition rate and circumference of 84 m, has been completed. The lattice dipole and quadrupole magnets have an iron yoke coils, made of hollow superconductor, are cooled by two-phase Helium flow, as well as the Nuclotron magnets. (authors)

  6. Multibunch feedback: Strategy, technology and implementation options

    International Nuclear Information System (INIS)

    Fox, J.D.; Eisen, N.; Hindi, H.; Oxoby, G.; Sapozhnikov, L.; Linscott, I.; Serio, M.

    1992-10-01

    The proposed next generation accelerator and synchrotron light facilities will require active feedback systems to control multi-bunch instabilities. These feedback systems must operate in machines with thousands of circulating bunches and with short (2--4 ns) interbunch intervals. The functional requirements for transverse (betatron) and longitudinal (synchrotron) feedback systems are presented. Several possible implementation options are discussed and system requirements developed. Results are presented from a digital signal processing based synchrotron oscillation damper operating at the SSRL/SLAC SPEAR storage ring

  7. Alternative fuel cycle options: performance characteristics and impact on nuclear power growth potential

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.; Rudolph, R.R.; Deen, J.R.; King, M.J.

    1977-09-01

    The fuel utilization characteristics for LWR, SSCR, CANDU and LMFBR reactor concepts are quantified for various fuel cycle options, including once-through cycles, thorium cycles, and denatured cycles. The implications of various alternative reactor deployment strategies on the long-term nuclear power growth potential are then quantified in terms of the maximum nuclear capacity that can be achieved and the growth pattern over time, subject to the constraint of a fixed uranium-resource base. The overall objective of this study is to shed light on any large differences in the long-term potential that exist between various alternative reactor/fuel cycle deployment strategies

  8. Synchrotron based spallation neutron source concepts

    International Nuclear Information System (INIS)

    Cho, Y.

    1998-01-01

    During the past 20 years, rapid-cycling synchrotrons (RCS) have been used very productively to generate short-pulse thermal neutron beams for neutron scattering research by materials science communities in Japan (KENS), the UK (ISIS) and the US (IPNS). The most powerful source in existence, ISIS in the UK, delivers a 160-kW proton beam to a neutron-generating target. Several recently proposed facilities require proton beams in the MW range to produce intense short-pulse neutron beams. In some proposals, a linear accelerator provides the beam power and an accumulator ring compresses the pulse length to the required ∼ 1 micros. In others, RCS technology provides the bulk of the beam power and compresses the pulse length. Some synchrotron-based proposals achieve the desired beam power by combining two or more synchrotrons of the same energy, and others propose a combination of lower and higher energy synchrotrons. This paper presents the rationale for using RCS technology, and a discussion of the advantages and disadvantages of synchrotron-based spallation sources

  9. Methodology for Analyzing Strain States During In-Situ Thermomechanical Cycling in Individual Lead Free Solder Joints Using Synchrotron Radiation

    International Nuclear Information System (INIS)

    Zhou, Bite; Bieler, Thomas R.; Lee, Tae-Kyu; Liu, Kuo-Chuan

    2009-01-01

    To examine how a lead-free solder joint deforms in a thermal cycling environment, both the elastic and plastic stress and strain behavior must be understood. Methods to identify evolution of the internal strain (stress) state during thermal cycling are described. A slice of a package containing a single row of solder joints was thermally cycled from 0 C to 100 C with a period of about 1 h with concurrent acquisition of transmission Laue patterns using synchrotron radiation. These results indicated that most joints are single crystals, with some being multicrystals with no more than a few Sn grain orientations. Laue patterns were analyzed to estimate local strains in different crystal directions at different temperatures during a thermal cycle. While the strains perpendicular to various crystal planes all vary in a similar way, the magnitude of strain varies. The specimens were subsequently given several hundred additional thermal cycles and measured again to assess changes in the crystal orientations. These results show that modest changes in crystal orientations occur during thermal cycling.

  10. Beam extraction control systems of the fast-cycling synchrotron

    International Nuclear Information System (INIS)

    Toumanian, A.; Zapolski, N.; Nickogosian, V.; Ananian, A.; Kazarian, A.; Khoetsian, M.; Agababian, A.; Matevosian, A.

    1992-01-01

    A compact system controlling the extraction of different beams (gamma, electron, synchrotron radiation) in single and simultaneous operation modes at high electromagnetic disturbances level based on using one computer of IBM PC/AT type is described. (author)

  11. Look at potential options for the fast reactor fuel cycle in the United States

    International Nuclear Information System (INIS)

    Burch, W.D.

    1984-01-01

    This paper reviews the status and plans for the fast reactor fuel cycle in the United States, presents some options that are under consideration, and describes how these options are being evaluated at the present time. The United States will undertake some far-reaching examinations of the entire breeder program strategy in the coming year, and the outcome of these reviews cannot be predicted today. In other papers at this conference you have heard various perspectives from both government and industry representatives. The proposed studies to examine the associated fuel cycle strategies as they relate to the overall emerging breeder strategy are described. The present status of and recent developments in the fuel cycle R and D programs will also be summarized and updated in order to present an overall picture of the United States situation

  12. Evaluation of the synchrotron close orbit

    International Nuclear Information System (INIS)

    Bashmakov, Yu.A.; Karpov, V.A.

    1991-01-01

    The knowledge of the closed orbit position is an essential condition for the effective work of any accelerator. Therefore questions of calculations, measurements and controls have great importance. For example, during injection of particles into a synchrotron, the amplitudes of their betatron oscillations may become commensurable with the working region of the synchrotron. This makes one pay attention at the problem of formation of the optimum orbit with use of correcting optical elements. In addition, it is often necessary to calculate such an orbit at the end of the acceleration cycle when particles are deposited at internal targets or removed from the synchrotron. In this paper, the computation of the close orbit is reduced to a determination at an arbitrarily chosen azimuth of the eigenvector of the total transfer matrix of the synchrotron ring and to tracing with this vector desired orbit. The eigenvector is found as a result of an iteration

  13. The use of slow-cycling synchrotrons in injection systems

    CERN Multimedia

    1966-01-01

    The PS improvement programme is concerned with increasing the potential of the PS for high energy physics. It involves developing the performance of the proton synchrotron itself and providing major items of experimental equipment to be used on the machine.

  14. Potential External (non-DOE) Constraints on U.S. Fuel Cycle Options

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet

    2012-07-01

    The DOE Fuel Cycle Technologies (FCT) Program will be conducting a screening of fuel cycle options in FY2013 to help focus fuel cycle R&D activities. As part of this screening, performance criteria and go/no-go criteria are being identified. To help ensure that these criteria are consistent with current policy, an effort was initiated to identify the status and basis of potentially relevant regulations, laws, and policies that have been established external to DOE. As such regulations, laws, and policies may be beyond DOE’s control to change, they may constrain the screening criteria and internally-developed policy. This report contains a historical survey and analysis of publically available domestic documents that could pertain to external constraints on advanced nuclear fuel cycles. “External” is defined as public documents outside DOE. This effort did not include survey and analysis of constraints established internal to DOE.

  15. Conceptual design of a rapid-cycling synchrotron for the KFA-Juelich spallation neutron source: working papers

    International Nuclear Information System (INIS)

    1983-01-01

    An accelerator group was established at ANL by the request of KFA-Juelich to carry out a conceptual design study and cost estimate for a rapid-cycling synchrotron as a possible first stage program on spallation neutron sources at KFA-Juelich. This set of notes is the individual notes which form the basis of the final report under this proposal prepared in January 1983. The topics covered include: SNQ Synchrotron Lattice-I; injection and extraction orbit; extraction from SNQ-SRA; SRA injection; capture and acceleration considerations in the SNQ-SRA; longitudinal coupling impedance; power supplies for SNQ synchrotron proposals; space charge limits in the SNQ-SRA; error analysis; SNQ-SRA ring magnets preliminary designs and cost; summary of CERN booster 4-ring arrangement; V-lattices for SNQ-SRA and extraction from the V-lattices; rf parameters for capture, acceleration and extraction; some parameters of the SNQ-SRA injector system; Keil-Schnell criterion; risetime of longitudinal resistive wall instability; beam scrapers; a design of the vacuum system; some aspects of vacuum consideration for SNQ-SRA; choice working points; ring magnet power supplies for shaped extaction of 1.1 GeV SNQ; ring magnet design and costs; tune shift due to the fringing field of the quadrupoles; coherent instability due to ions in the residual gas; transverse stabilization of bunched beams; rf acceleration system; injection into the SRA; Landau damping to get transverse stability; chromaticity and amplitude dependent tune controls in the SNQ-SRA; conversion of the SNQ-SRA to a compressor ring; comments on beam loss; summary of longitudinal stability study and transverse stability study for the SNQ-SRA; and the beam stay clear regions of the SNQ-SRA

  16. Report of the second workshop on synchrotron radiation sources for x-ray lithography

    International Nuclear Information System (INIS)

    Barton, M.Q.; Craft, B.; Williams, G.P.

    1986-01-01

    The reported workshop is part of an effort to implement a US-based x-ray lithography program. Presentations include designs for three storage rings (one superconducting and two conventional) and an overview of a complete lithography program. The background of the effort described, the need for synchrotron radiation, and the international competition in the area are discussed briefly. The technical feasibility of x-ray lithography is discussed, and synchrotron performance specifications and construction options are given, as well as a near-term plan. It is recommended that a prototype synchrotron source be built as soon as possible, and that a research and development plan on critical technologies which could improve cost effectiveness of the synchrotron source be established. It is further recommended that a small number of second generation prototype synchrotrons be distributed to IC manufacturing centers to expedite commercialization

  17. Impact of advanced fuel cycle options on waste management policies

    International Nuclear Information System (INIS)

    Gordelier, Stan; Cavedon, Jean-Marc

    2006-01-01

    OECD/NEA has performed a study on the impact of advanced fuel cycle options on waste management policies with 33 experts from 12 member countries, 1 non-member country and 2 international organizations. The study extends a series of previous ones on partitioning and transmutation (P and T) issues, focusing on the performance assessments for repositories of high-level waste (HLW) arising from advanced fuel cycles. This study covers a broader spectrum than previous studies, from present industrial practice to fully closed cycles via partially closed cycles (in terms of transuranic elements); 9 fuel cycle schemes and 4 variants. Elements of fuel cycles are considered primarily as sources of waste, the internal mass flows of each scheme being kept for the sake of mass conservation. The compositions, activities and heat loads of all waste flows are also tracked. Their impact is finally assessed on the waste repository concepts. The study result confirms the findings from the previous NEA studies on P and T on maximal reduction of the waste source term and maximal use of uranium resources. In advanced fuel cycle schemes the activity of the waste is reduced by burning first plutonium and then minor actinides and also the uranium consumption is reduced, as the fraction of fast reactors in the park is increased to 100%. The result of the repository performance assessments, analysing the effect of different HLW isotopic composition on repository performance and on repository capacity, shows that the maximum dose released to biosphere at any time in normal conditions remains, for all schemes and for all the repository concepts examined, well below accepted radiation protection thresholds. The major impact is on the detailed concept of the repositories, through heat load and waste volume. Advanced fuel cycles could allow a repository to cover waste produced from 5 to 20 times more electricity generation than PWR once-through cycle. Given the flexibility of the advanced fuel

  18. Dual-harmonic auto voltage control for the rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    Fumihiko Tamura

    2008-07-01

    Full Text Available The dual-harmonic operation, in which the accelerating cavities are driven by the superposition of the fundamental and the second harmonic rf voltage, is useful for acceleration of the ultrahigh intensity proton beam in the rapid cycling synchrotron (RCS of Japan Proton Accelerator Research Complex (J-PARC. However, the precise and fast voltage control of the harmonics is necessary to realize the dual-harmonic acceleration. We developed the dual-harmonic auto voltage control system for the J-PARC RCS. We describe details of the design and the implementation. Various tests of the system are performed with the RCS rf system. Also, a preliminary beam test has been done. We report the test results.

  19. Fuel cycle options for light water reactors in Germany

    International Nuclear Information System (INIS)

    Broecking, D.; Mester, W.

    1999-01-01

    In Germany 19 nuclear power plants with an electrical output of 22 GWe are in operation. Annually about 450 t of spent fuel are unloaded from the reactors. Currently most of the spent fuel elements are shipped to France and the United Kingdom for reprocessing according to contracts which have been signed since the late 70es. By the amendment of the Atomic Energy Act in 1994 the previous priority for reprocessing of spent nuclear fuel was substituted by a legal equivalency of the reprocessing and direct disposal option. As a consequence some utilities take into consideration the direct disposal of their spent fuel for economical reasons. The separated plutonium will be recycled as MOX fuel in light water reactors. About 30 tons of fissile plutonium will be available to German utilities for recycling by the year 2000. Twelve German reactors are already licensed for the use of MOX fuel, five others have applied for MOX use. Eight reactors are currently using MOX fuel or used it in the past. The spent fuel elements which shall be disposed of without reprocessing will be stored in two interim dry storage facilities at Gorleben and Ahaus. The storage capacities are 3800 and 4200 tHM, respectively. The Gorleben salt dome is currently investigated to prove its suitability as a repository for high level radioactive waste, either in a vitrified form or as conditioned spent fuel. The future development of the nuclear fuel cycle and radioactive waste management depends on the future role of nuclear energy in Germany. According to estimations of the German utilities no additional nuclear power plants are needed in the near future. Around the middle of the next decade it will have to be decided whether existing plants should be substituted by new ones. For the foreseeable time German utilities are interested in a highly flexible approach to the nuclear fuel cycle and waste management keeping open both spent fuel management options: the closed fuel cycle and direct disposal of

  20. A tracking code for injection and acceleration studies in synchrotrons

    International Nuclear Information System (INIS)

    Lessner, E.; Symon, K.; Univ. of Wisconsin, Madison, WI

    1996-01-01

    CAPTURE-SPC is a Monte-Carlo-based tracking program that simulates the injection and acceleration processes in proton synchrotrons. The time evolution of a distribution of charged particles is implemented by a symplectic, second-order-accurate integration algorithm. The recurrence relations follow a time-stepping leap--frog method. The time-step can be varied optionally to reduce computer time. Space-charge forces are calculated by binning the phase-projected particle distribution. The statistical fluctuations introduced by the binning process are reduced by presmoothing the data by the cloud-in-cell method and by filtering. Both the bin size and amount of filtering can be varied during the acceleration cycle so that the bunch fine structure is retained while the short wavelength noise is attenuated. The initial coordinates of each macro particle together with its time of injection are retained throughout the calculations. This information is useful in determining low-loss injection schemes

  1. Options Study - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to

  2. The exploitation of the Saturne synchrotron during the forth quarter of 1960; L'exploitation du synchrotron Saturne pendant le 4eme trimestre 1960

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-01-15

    This document reports information and data regarding the operation of the Saturne synchrotron during the fourth quarter of 1960. It addresses the machine operation (acceleration cycles, beam intensity, technical incidents, time table), hardware studies (corrector circuit under high fields, intensity increase), physics experiments (on counters, in bubble chambers, target irradiation), measures and measurements regarding the protection against radiations (comparison of irradiation levels in different areas of the synchrotron, annual evolution), the liquefactor activity (nitrogen and hydrogen consumption and production data)

  3. Impact of minor actinide recycling on sustainable fuel cycle options

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T. K.; Taiwo, T. A.

    2017-11-01

    The recent Evaluation and Screening study chartered by the U.S. Department of Energy, Office of Nuclear Energy, has identified four fuel cycle options as being the most promising. Among these four options, the two single-stage fuel cycles rely on a fast reactor and are differing in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The two other fuel cycles are two-stage and rely on both fast and thermal reactors. They also differ in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The current study assesses the impact of recycling minor actinides on the reactor core design, its performance characteristics, and the characteristics of the recycled material and waste material. The recycling of minor actinides is found not to affect the reactor core performance, as long as the same cycle length, core layout and specific power are being used. One notable difference is that the required transuranics (TRU) content is slightly increased when minor actinides are recycled. The mass flows are mostly unchanged given a same specific power and cycle length. Although the material mass flows and reactor performance characteristics are hardly affected by recycling minor actinides, some differences are observed in the waste characteristics between the two fuel cycles considered. The absence of minor actinides in the waste results in a different buildup of decay products, and in somewhat different behaviors depending on the characteristic and time frame considered. Recycling of minor actinides is found to result in a reduction of the waste characteristics ranging from 10% to 90%. These results are consistent with previous studies in this domain and depending on the time frame considered, packaging conditions, repository site, repository strategy, the differences observed in the waste characteristics could be beneficial and help improve

  4. Life cycle analysis of management options for organic waste collected in an urban area.

    Science.gov (United States)

    Di Maria, Francesco; Micale, Caterina

    2015-01-01

    Different options for managing the organic fraction (OF) of municipal solid waste generated in a given urban area were analyzed by life cycle assessment (LCA) for different source segregation (SS) intensities ranging from 0 to 52%. The best management option for processing the OF remaining in the residual organic fraction (ROF) for the different SS intensities was by incineration. Landfilling and mechanical biological treatment (MBT) of ROF gave higher impacts. Aerobic treatment alone or combined with anaerobic digestion (AD) for processing the source-segregated organic fraction (SSOF) led to relevant environmental impact reduction even if the difference between the two options was quite negligible. The weighted impact showed that scenarios using incineration always gave environmental gains, whereas there was a higher environmental burden with the scenarios using MBT.

  5. Low Level RF Control System of J-PARC Synchrotrons

    CERN Document Server

    Tamura, Fumihiko; Ezura, Eizi; Hara, Keigo; Nomura, Masahiro; Ohmori, Chihiro; Schnase, Alexander; Takagi, Akira; Yamamoto, Masanobu; Yoshii, Masahito

    2005-01-01

    We present the concept and the design of the low level RF (LLRF) control system of the J-PARC synchrotrons. The J-PARC synchrotrons are the rapid cycling 3-GeV synchrotron (RCS) and the 50-GeV main ring (MR) which require very precise and stable LLRF control systems to accelerate the ultra-high proton beam current. The LLRF system of the synchrotron is a full-digital system based on the direct digital synthesis (DDS). The functions of the system are (1) the multi-harmonic RF generation for the acceleration and the longitudinal bunch shaping, (2) the feedbacks for stabilizing the beam, (3) the feedforward for compensating the heavy beam loading, and (4) other miscellaneous functions such as the synchronization and chopper timing. The LLRF system of the RCS is now under construction. We present the details of the system. Also, we show preliminary results of performance tests of the control modules.

  6. Part 5. Fuel cycle options

    International Nuclear Information System (INIS)

    Lineberry, M.J.; McFarlane, H.F.; Amundson, P.I.; Goin, R.W.; Webster, D.S.

    1980-01-01

    The results of the FBR fuel cycle study that supported US contributions to the INFCE are presented. Fuel cycle technology is reviewed from both generic and historical standpoints. Technology requirements are developed within the framework of three deployment scenarios: the reference international, the secured area, and the integral cycle. Reprocessing, fabrication, waste handling, transportation, and safeguards are discussed for each deployment scenario. Fuel cycle modifications designed to increase proliferation defenses are described and assessed for effectiveness and technology feasibility. The present status of fuel cycle technology is reviewed and key issues that require resolution are identified

  7. On the formation of an instantaneous orbit in a synchrotron

    International Nuclear Information System (INIS)

    Bashmakov, Yu.A.; Karpov, V.A.

    1985-01-01

    In the process of injection into a synchrotron amplitudes of particle betatron oscillations can be comparable with the dimensions of the synchrotron working region, which means that special attention should be paid to the formation of the optimum instantaneous orbit. Basides, a necessity to calculate the orbit frequently arises at the end of the acceleration cycle, when particle dump onto internal targets or their extraction from the synchrotron take place. In the paper the method for calculation of particle trajectories in the synchrotron is described. According to the method the program of numerical calculation of both separate particle trajectories and closed instantaneous orbit was developed. The method suggested is based on the presentation of the accelerator magnetic structure as a sequential set of discrete elements. All the elements can be divided into the following main groups: free rectilinear gaps, rectilinear gaps with stray magnetic field, magnetic sectors, rectilinear gaps with accelerating electric field. The calculations made according to the method described have shown its high efficiency. The program developed is used for the simulation of the injection into the ''Pakhra'' synchrotron

  8. Parametric analyses of single-zone thorium-fueled molten salt reactor fuel cycle options

    International Nuclear Information System (INIS)

    Powers, J.J.; Worrall, A.; Gehin, J.C.; Harrison, T.J.; Sunny, E.E.

    2013-01-01

    Analyses of fuel cycle options based on thorium-fueled Molten Salt Reactors (MSRs) have been performed in support of fuel cycle screening and evaluation activities for the United States Department of Energy. The MSR options considered are based on thermal spectrum MSRs with 3 different separations levels: full recycling, limited recycling, and 'once-through' operation without active separations. A single-fluid, single-zone 2250 MWth (1000 MWe) MSR concept consisting of a fuel-bearing molten salt with graphite moderator and reflectors was used as the basis for this study. Radiation transport and isotopic depletion calculations were performed using SCALE 6.1 with ENDF/B-VII nuclear data. New methodology developed at Oak Ridge National Laboratory (ORNL) enables MSR analysis using SCALE, modeling material feed and removal by taking user-specified parameters and performing multiple SCALE/TRITON simulations to determine the resulting equilibrium operating conditions. Parametric analyses examined the sensitivity of the performance of a thorium MSR to variations in the separations efficiency for protactinium and fission products. Results indicate that self-sustained operation is possible with full or limited recycling but once-through operation would require an external neutron source. (authors)

  9. Nuclear disarmament. Options for the coming non-proliferation treaty surveillance cycle; Nukleare Abruestung. Optionen fuer den kommenden Ueberpruefungszyklus des NVV

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Harald

    2011-07-01

    The report is aimed on the nuclear disarmament discussion with respect to the disagreement of nuclear weapon states and those without nuclear weapons, esp. the non-aligned movement (NAM) concerning the non-proliferation treaty. The report covers the following issues: The role of the non-proliferation treaty, nuclear disarmament in the last surveillance conference 2010, the different disarmament philosophies, the possibilities of bridging the disagreement, further disarmament options for the future non-proliferation treaty surveillance cycle, German options for the future surveillance cycle.

  10. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    Directory of Open Access Journals (Sweden)

    Xiaobo Xue

    2016-04-01

    Full Text Available Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energy- and carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability and sensitivity were evaluated, the carbon intensity of the local electricity grid and the efficiency of electricity production by the co-digestion with the energy recovery process were the most important for determining the relative global warming potential results.

  11. Synchrotron light

    International Nuclear Information System (INIS)

    2001-01-01

    'Synchrotron Light' is an interactive and detailed introduction to the physics and technology of the generation of coherent radiation from accelerators as well as to its widespread high-tech applications in science, medicine and engineering. The topics covered are the interaction of light and matter, the technology of synchrotron light sources, spectroscopy, imaging, scattering and diffraction of X-rays, and applications to materials science, biology, biochemistry, medicine, chemistry, food and pharmaceutical technology. All synchrotron light facilities are introduced with their home-page addresses. 'Synchrotron Light' provides an instructive and comprehensive multimedia learning tool for students, experienced practitioners and novices wishing to apply synchrotron radiation in their future work. Its multiple-entry points permit an easy exploration of the CD-Rom according to the users knowledge and interest. 2-D and 3-D animations and virtual reconstruction with computer-generated images guide visitors into the scientific and technical world of a synchrotron and into the applications of synchrotron radiation. This bilingual (English and French) CD-Rom can be used for self-teaching and in courses at various levels in physics, chemistry, engineering, and biology. (author)

  12. Fuel cycle options for light water reactors and heavy water reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1999-11-01

    In the second half of the 20th century nuclear power has evolved from the research and development environment to an industry that supplies 16% of the world's electricity. By the end of 1997, over 8500 reactor-years of operating experience had been accumulated. Global environmental change, and the continuing increase in global energy supply required to provide increasing populations with an improving standard of living, make the contribution from nuclear energy even more important for the next century. For nuclear power to achieve its full potential and make its needed contribution, it must be safe, economical, reliable and sustainable. All of these factors can be enhanced by judicious choice and development of advanced fuel cycle options. The Technical Committee Meeting (TCM) on Fuel Cycle Options for Light Water Reactors and Heavy Water Reactors was hosted by Atomic Energy of Canada Limited (AECL) on behalf of the Canadian Government and was jointly conducted within the frame of activities of the IAEA International Working Group on Advanced Technologies for Light Water Reactors (IWG-LWR) and the IAEA International Working Group on Advanced Technologies for Heavy Water Reactors (IWG-HWR). The TCM provided the opportunity to have in-depth discussions on important technical topics which were highlighted in the International Symposium on Nuclear Fuel Cycle and Reactor Strategies: Adjusting to New Realities, held in Vienna, 3-6 June 1997. The main results and conclusions of the TCM were presented as input for discussion at the first meeting of the IAEA newly formed International Working Group on Fuel Cycle Options

  13. Assessing environmental and health impact of the nuclear fuel cycle. Methodology and application to prospective actinides recycling options

    International Nuclear Information System (INIS)

    Garzenne, Claude; Grouiller, Jean-Paul; Le Boulch, Denis

    2005-01-01

    French Industrial Companies: EDF, AREVA (COGEMA and FRAMATOME-ANP), associated with ANDRA, the organization in charge of the waste management in France, and Public Research Institute CEA and IRSN, involved in the nuclear waste management, have developed in collaboration a methodology intended to assess the environmental and health impact of the nuclear fuel cycle. This methodology, based on fuel cycle simulation, Life Cycle Analysis, and Impact Studies of each fuel cycle facilities, has been applied to a set of nuclear scenarios covering a very contrasted range of waste management options, in order to characterize the effect of High Level Waste transmutation, and to estimate to what extent it could contribute to reduce their overall impact on health and environment. The main conclusion we could draw from this study is that it is not possible to discriminate, as far as health and environmental impacts are concerned, nuclear scenarios implementing very different levels of HLW transmutation, representative of the whole range of available options. The main limitation of this work is due to the hypothesis of normal behavior of all fuel cycle facilities: main future improvement of the methodology would be to take the accidental risk into account. (author)

  14. 40 CFR Table 6 to Subpart IIIi of... - Optional 3-Mode Test Cycle for Stationary Fire Pump Engines

    Science.gov (United States)

    2010-07-01

    ... Engines [As stated in § 60.4210(g), manufacturers of fire pump engines may use the following test cycle... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Optional 3-Mode Test Cycle for Stationary Fire Pump Engines 6 Table 6 to Subpart IIII of Part 60 Protection of Environment ENVIRONMENTAL...

  15. Synchrotron-radiation research

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1982-01-01

    The use of radiation from synchrotron sources has started a renaissance in materials, physics, chemistry, and biology. Synchrotron radiation has advantages over conventional x rays in that its source brightness is a thousand times greater throughout a continuous energy spectrum, and resonances are produced with specific electron energy levels. Two major synchrotron radiation sources are operated by DOE: the Stanford Synchrotron Radiation Laboratory at SLAC, and the National Synchrotron Light Source at Brookhaven

  16. ELSA, a stretcher and post accelerator for the Bonn 2.5 GeV electron synchrotron

    International Nuclear Information System (INIS)

    Husmann, D.

    1983-03-01

    ELSA (Electron Stretcher and Accelerator) operates in two different modes. Up to the maximum energy of the synchrotron it works at a constant magnetic field. The electrons from the synchrotron which runs at 50 Hz repetition rate are injected, stored, and ejected at a constant rate. In this operation mode the macroscopic duty cycle is 95% at least. In the operation mode of post acceleration which is possible up to 3.5 GeV the duty cycle is reduced to 60%. The intensity in this operation mode is 5% of that in the stretcher mode. Higher intensities are available at lower duty cycle. ELSA mainly is dedicated to feed a tagged photon facility. (orig.)

  17. ELSA, a stretcher and post accelerator for the BONN 2.5-GeV electron synchrotron

    International Nuclear Information System (INIS)

    Husmann, D.

    1983-01-01

    ELSA (Electron Stretcher and Accelerator) operates in two different modes. Up to the maximum energy of the synchrotron it works at a constant magnetic field. The electrons from the synchrotron which runs at 50 Hz repetition rate are injected, stored, and ejected at a constant rate. In this operation mode the macroscopic duty cycle is 95 % at least. In the operation mode of post acceleration which is possible up to 3.5 GeV the duty cycle is reduced to 60 %. The intensity in this operation mode is 5 % of that in the stretcher mode. Higher intensities are available at lower duty cycle. ELSA mainly is dedicated to feed a tagged photon facility

  18. Social Cost Assessment for Nuclear Fuel Cycle Options in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ji-eun; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    This paper will investigate the vast array of economic factors to estimate the true cost of the nuclear power. There are many studies addressing the external costs of energy production. However, it is only since the 1990s that the external costs of nuclear powered electricity production has been studied in detail. Each investigation has identified their own set of external costs and developed formulas and models using a variety of statistical techniques. The objective of this research is to broaden the scope of the parameters currently consider by adding new areas and expanding on the types of situations considered. Previously the approach to evaluating the external cost of nuclear power did not include various fuel cycle options and influencing parameters. Cost has always been a very important factor in decision-making, in particular for policy choices evaluating the alternative energy sources and electricity generation technologies. Assessment of external costs in support of decision-making should reflect timely consideration of important country specific policy objective. PWR-MOX and FR-Pyro are the best fuel cycle in parameter of environment impacts, but OT or OT-ER is proper than FR-Pyro in human beings. Using the OT fuel cycle is better than FR-Pyro to reduce the conflict cost. When energy supply is deficient, FR-Pyro fuel cycle stands longer than other fuel cycles. Proliferation resistance is shown as 'high' in all fuel cycles, so there are no difference between fuel cycles. When the severe accident occurs, FR-Pyro cycle is economical than other OT based fuel cycles.

  19. Real-time observation of irradiated Hela-cell Modified by Fluorescent ubiquitination-based Cell Cycle Indicator Using Synchrotron X-Ray Microbeam

    International Nuclear Information System (INIS)

    Narita, A.; Noguchi, M.; Kaminaga, K.; Yokoya, A.; Kobayashi, K.; Usami, N.; Fujii, K.

    2015-01-01

    Fluorescent ubiquitination-based cell-cycle indicator (FUCCI) human cancer (HeLa) cells (red indicates G1; green, S/G2) were exposed to a synchrotron X-ray microbeam. Cells in either G1 or S/G2 were irradiated selectively according to their colour in the same microscopic field. Time-lapse micrographs of the irradiated cells were acquired for 24 h after irradiation. For fluorescent immunostaining, phosphorylated histone proteins (γ-H2AX) indicated the induction of DNA double-strand breaks. The cell cycle was arrested by irradiation at S/G2. In contrast, cells irradiated at G1 progressed to S/G2. The foci were induced in cells irradiated at both G1 and S/G2, suggesting that the G1-S (or S) checkpoint pathway does not function in HeLa cells due to the fact that the cells are functionally p53 deficient, even though X-ray microbeam irradiation significantly induces double-strand breaks. These results demonstrate that single FUCCI cell exposure and live cell imaging are powerful methods for studying the effects of radiation on the cell cycle. (authors)

  20. Evaluation of fuel cycle options for plutonium utilization: 1977 study. Final report

    International Nuclear Information System (INIS)

    Pardue, W.M.; Madia, W.J.; Pobereskin, M.; Tripplett, M.B.; Waddell, J.D.

    1977-05-01

    This is the third in a series of three reports on the analysis of plutonium recycle. Analyses are based upon an October, 1976, middle case ERDA forecast of nuclear growth which predicts 510 GWe of nuclear capacity in the year 2000. Four fuel cycle options were reviewed, ranging from no LWR recycle of uranium of plutonium to recycle options both with and without breeder reactors. A special effort was devoted to the review of various estimates of the costs of reprocessing nuclear fuels, with a resulting value of $190/kg of heavy metal (deflated 1975 dollars). The associated range is estimated to $125/kg to $250/kg. Sensitivity analysis of reprocessing costs, uranium consumption, average generation costs, and total discounted costs of electricity indicate that the long-term economic advantages of plutonium recycle are quite conclusive. Nuclear scenarios which project low growth rates and which delay the start of recycle and introduction of a breeder reactor postpone the apparent economic advantages

  1. Synchrotron radiation

    CERN Document Server

    Kunz, C

    1974-01-01

    The production of synchrotron radiation as a by-product of circular high-energy electron (positron) accelerators or storage rings is briefly discussed. A listing of existing or planned synchrotron radiation laboratories is included. The following properties are discussed: spectrum, collimation, polarization, and intensity; a short comparison with other sources (lasers and X-ray tubes) is also given. The remainder of the paper describes the experimental installations at the Deutsches Elektronen-Synchrotron (DESY) and DORIS storage rings, presents a few typical examples out of the fields of atomic, molecular, and solid-state spectroscopy, and finishes with an outlook on the use of synchrotron radiation in molecular biology. (21 refs).

  2. ELSA, a proposed stretcher and post accelerator for the Bonn 2.5 GeV electron synchrotron

    International Nuclear Information System (INIS)

    Althoff, K.H.; Brefeld, W.; Drachenfels, W. von; Fischer, H.M.; Hofmann, M.; Husmann, D.; Knop, G.; Lindenberg, W.; Nietzel, Ch.; Nolden, F.; Noeldeke, G.; Paul, W.; Reichmann, K.; Schittko, F.J.

    1980-01-01

    ELSA (Electron Stretcher and Accelerator) operates in two different modes. Up to the maximum energy of the synchrotron it works at a constant magnetic field. The electrons from the synchrotron which runs at 50 Hz repetition rate are injected, stored and ejected at a constant rate. In this operation made the macroscopic duty cycle is 95 % at least. In the case of post acceleration which is possible up to 3.5 GeV the duty cycle is reduced to 70 %. The intensity in this operation mode is 6 % of that in the stretcher mode. Higher intensities are available at lower duty cycle. ELSA mainly is designed to feed a tagged photon facility. (Auth.)

  3. Single bunch transfer system for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Sheehan, J.; Singh, O.; Rambo, W.

    1983-01-01

    The accelerator system at the National Synchrotron Light Source consists of an S-band 85 MeV linac and three synchrotron rings. The electron beam from the linac is accelerated by the booster ring to 600 MeV and transferred to one of the two storage rings. The smaller of the two rings operates between 300 and 800 MeV emtting photons in the vacuum ultraviolet (VUV), while the larger storage ring operates up to 2.5 GeV and emits photons in the x-ray spectrum. A system is described for loading the storage rings by filling a single-phase space bunch in the booster ring and transferring it at the end of each booster cycle into a selected bucket in one of the storage rings. By controlling the timing of the transfer on successive transfer cycles, many fill patterns may be obtained

  4. Synchrotron light beam and a synchrotron light experiment facility

    International Nuclear Information System (INIS)

    Ando, Masami

    1980-01-01

    In the National Laboratory for High Energy Physics, about two years ago, the requirements of synchrotron light beam in respective measuring instruments were discussed. Then, also the arrangement (lattice) of a storage ring, the nature of synchrotron light beam, a synchrotron light experiment facility and the arrangement of the beam lines were studied. During the period of two years since then, due to the changes in the circumstances, the design of the lattice was altered. Accordingly, the arrangement of the beam lines and of measuring instruments were largely changed. At this point, the results of discussions in various meetings are described, though they may still be subject to future changes, with due consideration to beam, environment and beam lines required for the design of the measuring instruments: (1) storage ring and synchrotron light beam, (2) requirements on small beam size and beam stability, (3) a synchrotron light experiment facility. (J.P.N.)

  5. An approach for assessing development and deployment risks in the DOE fuel cycle options evaluation and screening study - 5267

    International Nuclear Information System (INIS)

    Gehin, J.C.; Worrall, A.; Oakley, B.; Jenni, K.; Taiwo, T.; Wigeland, R.

    2015-01-01

    One of the key objectives of the U.S. Department of Energy (DOE) Nuclear Energy Research/development road-map is the development of sustainable nuclear fuel cycles that can improve natural resource utilization and provide solutions to the management of nuclear wastes. Recently, an evaluation and screening (ES) of fuel cycle systems has been conducted to identify those options that provide the best opportunities for obtaining such improvements and also to identify the required research and development activities that can support the development of advanced fuel cycle options. In order to evaluate and screen fuel cycle systems in the ES study, nine criteria were used including Development and Deployment Risk (DDR). More specifically, this criterion was represented by the following metrics: Development time, development cost, deployment cost from prototypic validation to first-of-a-kind commercial, compatibility with the existing nuclear fuel cycle infrastructure, existence of regulations for the fuel cycle and familiarity with licensing, and existence of market incentives and/or barriers to commercial implementation of fuel cycle processes. Given the comprehensive nature of the study, a systematic approach was needed to determine metric data for the DDR criterion. As would be expected, the Evaluation Group representing the once-through use of uranium in thermal reactors is always the highest ranked fuel cycle Evaluation Group for this DDR criterion. Evaluation Groups that consist of once-through fuel cycles that use existing reactor types are consistently ranked very high. The highest ranked limited and continuous recycle fuel cycle Evaluation Groups are those that recycle Pu in thermal reactors. The lowest ranked fuel cycles are predominately continuous recycle single stage and multi-stage fuel cycles that involve TRU and/or U 233 recycle. (authors)

  6. Synchrotron radiation in Australia

    International Nuclear Information System (INIS)

    Garrett, R.F.

    2002-01-01

    Full text: Synchrotron radiation research in Australia is entering a new era with the commencement of the Australian synchrotron project, which will construct a 3 GeV third generation synchrotron facility at Monash University in Victoria. To date Australian scientists have used overseas facilities, primarily those managed by the Australian Synchrotron Research Program in Japan and the USA. A fast developing and maturing Australian synchrotron user program has developed around these overseas facilities. The field of synchrotron radiation and its importance to a wide range of research will be introduced and Australia's current involvement and facilities will be described. The current status and technical specifications of the Australian synchrotron will be presented. Copyright (2002) Australian X-ray Analytical Association Inc

  7. Hard X-ray Sources for the Mexican Synchrotron Project

    International Nuclear Information System (INIS)

    Reyes-Herrera, Juan

    2016-01-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392). (paper)

  8. Hard X-ray Sources for the Mexican Synchrotron Project

    Science.gov (United States)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  9. Novel combined cycle configurations for propane pre-cooled mixed refrigerant (APCI) natural gas liquefaction cycle

    International Nuclear Information System (INIS)

    Mortazavi, Amir; Alabdulkarem, Abdullah; Hwang, Yunho; Radermacher, Reinhard

    2014-01-01

    Highlights: • 10 New LNG plants driver cycle enhancement configurations were developed. • All the 14 enhancement options design variables were optimized to demonstrate their energy saving potentials. • The best driver cycle enhancement option improved the driver cycle energy efficiency by 38%. • The effects of technological advancements on the performances of the enhancement options were studied. - Abstract: A significant amount of energy is required for natural gas liquefaction. Due to the production scale of LNG plants, they consume an intensive amount of energy. Consequently, any enhancement to the energy efficiency of LNG plants will result in a considerable reduction in natural gas consumption and CO 2 emission. Compressor drivers are the main energy consumer in the LNG plants. In this paper, 14 different driver cycle enhancement options were considered. A number of these options have not been proposed for the LNG plants. The new driver cycle development was performed by analyzing and optimizing the design variables of four conventional driver cycle enhancement options. The optimization results were used to develop more efficient cycles through mitigating the active constrains and driver cycle innovations. Based on the current available technologies five of our newly developed driver cycle configurations have higher efficiency than the most efficient existing conventional driver cycle. The best developed driver cycle enhancement option improved the base driver cycle energy efficiency by 38%. The effects of technological advancement on the performances of the all driver cycle enhancement options were also considered

  10. Synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    van Steenbergen, A.

    1979-01-01

    As a result of the exponential growth of the utilization of synchrotron radiation for research in the domain of the material sciences, atomic and molecular physics, biology and technology, a major construction activity has been generated towards new dedicated electron storage rings, designed optimally for synchrotron radiation applications, also, expansion programs are underway at the existing facilities, such as DORIS, SPEAR, and VEPP. In this report the basic properties of synchrotron radiation will be discussed, a short overview will be given of the existing and new facilities, some aspects of the optimization of a structure for a synchrotron radiation source will be discussed and the addition of wigglers and undulators for spectrum enhancement will be described. Finally, some parameters of an optimized synchrotron radiation source will be given.

  11. Synchrotron radiation

    International Nuclear Information System (INIS)

    Knotek, M.L.

    1987-01-01

    Synchrotron radiation has had a revolutionary effect on a broad range of scientific studies, from physics, chemistry and metallurgy to biology, medicine and geoscience. The situation during the last decade has been one of very rapid growth, there is a great vitality to the field and a capability has been given to a very broad range of scientific disciplines which was undreamed of just a decade or so ago. Here we will discuss some of the properties of synchrotron radiation that makes it so interesting and something of the sources in existence today including the National Synchrotron Light Source (NSLS). The NSLS is one of the new facilities built specifically for synchrotron radiation research and the model that was developed there for involvement of the scientific community is a good one which provides some good lessons for these facilities and others

  12. Synchrotron-based FTIR spectromicroscopy: Cytotoxicity and heating considerations

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-12-13

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  13. Synchrotron-based FTIR spectromicroscopy Cytotoxicity and heating considerations

    CERN Document Server

    Holman, H Y N; McKinney, W R

    2002-01-01

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  14. How Family Status and Social Security Claiming Options Shape Optimal Life Cycle Portfolios.

    Science.gov (United States)

    Hubener, Andreas; Maurer, Raimond; Mitchell, Olivia S

    2016-04-01

    We show how optimal household decisions regarding work, retirement, saving, portfolio allocations, and life insurance are shaped by the complex financial options embedded in U.S. Social Security rules and uncertain family transitions. Our life cycle model predicts sharp consumption drops on retirement, an age-62 peak in claiming rates, and earlier claiming by wives versus husbands and single women. Moreover, life insurance is mainly purchased on men's lives. Our model, which takes Social Security rules seriously, generates wealth and retirement outcomes that are more consistent with the data, in contrast to earlier and less realistic models.

  15. Magnetic losses and instabilities in ferrite garnet tuned RF cavities for synchrotrons

    International Nuclear Information System (INIS)

    Shapiro, V.E.

    1994-01-01

    The aim of this paper is to introduce basic notions and elucidate the main features of magnetic losses and nonlinear effects in high power rf cavities with perpendicularly biased ferrite garnet used for varying the frequency in rapid cycling synchrotrons. A method of analysis is developed using a minimum of specific details. Simple formulae and estimates of the trend of magnetic loss, nonlinear frequency shift and possible instabilities in the cavities as a function of rf power level and ferrite garnet parameters are presented. Numerical examples correspond to the TRIUMF KAON Booster synchrotron. (author). 14 refs., 5 figs

  16. Eddy Current Effect of the BNL-AGS Vacuum Chamber on the Optics of the BNL-AGS Synchrotron

    International Nuclear Information System (INIS)

    Tsoupas, N.; Ahrens, L.; Brown, K. A.; Glenn, J. W.; Gardner, K.

    1999-01-01

    During the acceleration cycle of the AGS synchrotron, eddy currents are generated within the walls of the vacuum chambers of the AGS main magnets. The vacuum chambers have elliptical cross section, are made of inconel material with a wall thickness of 2 mm and are placed within the gap of the combined-function main magnets of the AGS synchrotron. The generation of eddy currents in the walls of the vacuum chambers, creates various magnetic multipoles, which affect the optics of the AGS machine. In this report these magnetic multipoles are calculated for various time interval starting at the acceleration cycle, where the magnetic field of the main magnet is ∼0.1 T, and ending before the beam extraction process, where the magnetic field of the main magnet is almost constant at ∼ 1.1 T. The calculations show that the magnetic multipoles generated by the eddy-currents affect the optics of the AGS synchrotron during the acceleration cycle and in particular at low magnetic fields of the main magnet. Their effect is too weak to affect the optics of the AGS machine during beam extraction at the nominal energies

  17. Basis of medical accelerator. Synchrotron

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu

    2014-01-01

    On the synchrotron as a medical accelerator, this paper introduces the basic principle, basic techniques and the like. The accelerator, when synchrotron is adopted as an ion beam radiotherapy system, is the composite accelerator composed of ion sources, injector, and synchrotron. This paper introduces the overall structure of synchrotron, and conceptually explains the basic behavior of high-frequency waves and magnetic field of synchrotron, as well as the deflection electromagnet of medical synchrotron and the operation pattern of high-frequency acceleration system. The types of synchrotron can be classified to the function combination type and function separation type, and this paper introduces the features of each type and various types of synchrotrons. It also explains beam dynamics important for ensuring the stability of beams, with a focus on the coordinate system, vertical movement, and lateral movement. In addition, it explains the incidence and outgoing of beams that are important for properly operating the accelerator, with a focus on their techniques. (A.O.)

  18. Synchrotron radiation

    International Nuclear Information System (INIS)

    Nave, C.; Quinn, P.; Blake, R.J.

    1988-01-01

    The paper on Synchrotron Radiation contains the appendix to the Daresbury Annual Report 1987/88. The appendix is mainly devoted to the scientific progress reports on the work at the Synchrotron Radiation Source in 1987/8. The parameters of the Experimental Stations and the index to the Scientific Reports are also included in the appendix. (U.K.)

  19. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  20. European Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Buras, B.

    1985-01-01

    How a European Synchrotron Radiation Facility has developed into a detailed proposal recently accepted as the basis for construction of the facility at Grenoble is discussed. In November 1977, the General Assembly of the European Science Foundation (ESF) approved the report of the ESF working party on synchrotron radiation entitled Synchrotron Radiation - a Perspective View for Europe. This report contained as one of its principal recommendations that work should commence on a feasibility study for a European synchrotron radiation laboratory having a dedicated hard X-ray storage ring and appropriate advanced instrumentation. In order to prepare a feasibility study the European Science Foundation set up the Ad-hoc Committee on Synchrotron Radiation, which in turn formed two working groups: one for the machine and another for instrumentation. This feasibility study was completed in 1979 with the publication of the Blue Book describing in detail the so called 1979 European Synchrotron Radiation Facility. The heart of the facility was a 5 GeV electron storage ring and it was assumed that mainly the radiation from bending magnets will be used. The facility is described

  1. The application of systems engineering principles to the prioritization of sustainable nuclear fuel cycle options

    International Nuclear Information System (INIS)

    Price, Robert R.; Singh, Bhupinder P.; MacKinnon, Robert J.; David Sevougian, S.

    2013-01-01

    We investigate the implementation of the principles of systems engineering in the U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program to provide a framework for achieving its long-term mission of demonstrating and deploying sustainable nuclear fuel cycle options. A fuel cycle “screening” methodology is introduced that provides a systematic, objective, and traceable method for evaluating and categorizing nuclear fuel cycles according to their performance in meeting sustainability objectives. The goal of the systems engineering approach is to transparently define and justify the research and development (R and D) necessary to deploy sustainable fuel cycle technologies for a given set of national policy objectives. The approach provides a path for more efficient use of limited R and D resources and facilitates dialog among a variety of stakeholder groups interested in U.S. energy policy. Furthermore, the use of systems engineering principles will allow the FCT Program to more rapidly adapt to future policy changes, including any decisions based on recommendations of the Blue Ribbon Commission on America’s Nuclear Future. Specifically, if the relative importance of policy objectives changes, the FCT Program will have a structured process to rapidly determine how this impacts potential fuel cycle performance and the prioritization of needed R and D for associated technologies. - Highlights: ► Systems engineering principles applied in U.S. DOE-NE Fuel Cycle Technology Program. ► Use of decision analysis methods for determining promising nuclear fuel cycles. ► A new screening methodology to help communicate and prioritize U.S. DOE R and D needs. ► Fuel cycles categorized by performance/risk in meeting FCT Program objectives. ► Systems engineering allows DOE-NE to more rapidly adapt to future policy changes

  2. Chemistry with synchrotron radiation

    International Nuclear Information System (INIS)

    Preses, J.; Grover, J.R.; White, M.G.; Kvick, A.

    1990-01-01

    An accidental by-product of high-energy physics, synchrotron radiation, has emerged as one of the most powerful tools for the understanding of chemical reactions. Advances made by using synchrotron radiation in physical chemistry are reviewed herein. Descriptions of experiments exploiting the many ways that synchrotron radiation can be manipulated are presented. These manipulations include intensification of the radiation and compression or shifting of its spectral structure. Combinations of the use of synchrotron radiation, which provides access to very short wavelengths and is, at the same time, continuously and easily tunable, with laser radiation, which offers much higher resolution and much more intense radiation per pulse, but is difficult to tune in the ultraviolet region of the spectra, gives the chemist a way to map a molecule's potential energy curve, to note the lengths and strengths of chemical bonds, and to predict and explain novel reactions of more complex molecules. The use of diffraction of x-rays to study the spacing of atoms in crystals is discussed. Various applications of synchrotron radiation to studies of the fluorescence of hydrocarbons and to the chiral dichroism studies of other natural products like DNA and RNA are described. Methods for enhancing synchrotron light sources by insertion devices, such as wigglers and undulators, that increase the available photo flux and construction of new sources of synchrotron radiation are mentioned

  3. Lattice for a 1.1-GeV 500 μA fast-cycling proton synchrotron

    International Nuclear Information System (INIS)

    Cho, Y.

    1983-01-01

    A very-high-intensity proton synchrotron lattice has been designed for a spallation neutron-source system. The synchrotron is to accelerate a beam of 6.25 x 10 13 protons from 200 MeV to 1100 MeV in 15 msec. One of the important concerns for high-intensity, high-rep-rate (50 pulses/sec) machines is stability of the beam. Considerations of the transverse space-charge limits and the transverse-stability criterion favor a high-tune machine over a low-tune machine of the same circumference. For these reasons, we made the tune as high as possible by making the cell length as short as possible. The lattice proposed here consists of four sectors, and each sector is made up by three FODO normal cells, four dispersion suppressor cells, and four matching and straight section cells. Then the total of 44 cells with approximately 90 0 /cell phase advance would make the natural tune of the machine to be near 11

  4. Relativistic Turbulence with Strong Synchrotron and Synchrotron-Self-Compton Cooling

    Science.gov (United States)

    Uzdensky, D. A.

    2018-03-01

    Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ_T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher-order IC components are automatically comparable to synchrotron in this regime. The overall broadband radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.

  5. Beryllium window flange for synchrotron radiation X-ray beamline fabricated by hot isostatic press method

    International Nuclear Information System (INIS)

    Asaoka, Seiji; Maezawa, Hideki; Nishida, Kiyotoshi; Sakamoto, Naoki.

    1995-01-01

    The synchrotron radiation experimental facilities in National Laboratory for High Energy Physics are the experimental facilities for joint utilization, that possess the positron storage ring of 2.5 GeV exclusively used for synchrotron radiation. Synchrotron radiation is led through a mainstay beam channel to the laboratory, and in the beam line of X-ray, it is used for experiment through the taking-out window made of beryllium. At this time, the function of the taking-out window is to shut off between the ultrahigh vacuum in the mainstay beam channel and the atmosphere, and to cut the low energy component of synchrotron radiation spectra. The experiment using X-ray is carried out mostly in the atmosphere. The design of the efficient cooling water channel which is compatible with the flange construction is important under the high thermal load of synchrotron radiation. The beryllium window flange for synchrotron radiation X-ray was made by HIP method, and the ultrahigh vacuum test, the high pressure water flow test and the actual machine test were carried out by heat cycle. The properties required for the window material, the requirement of the construction, the new development of HIP method, and the experiments for evaluating the manufactured beryllium window are described. (K.I.)

  6. MOX fuel use as a back-end option: Trends, main issues and impacts on fuel cycle management

    International Nuclear Information System (INIS)

    Fukuda, K.; Choi, J.-S.; Shani, R.; Durpel, L. van den; Bertel, E.; Sartori, E.

    2000-01-01

    In the past decades while the FBIULWR fuel cycle concept was zealously being developed, MOX-fuel use in thermal reactors was taken as an alternative back-end policy option. However, the plutonium recycling with LWRs has evolved to industrial level, gaining high maturity through the incubative period while FBR deployment was envisaged. Today, MOX-fuel use in LWRs makes integral part of the fuel cycle for those countries relying on the recycling policy. Developments to improve the fuel cycle performance, including the minimisation of remaining wastes, and the reactor engineering aspects owing to MOX-fuel use, are continued. This paper jointly presented by IAEA and OECD/NEA brings an integrated overview on MOX use as a back-end policy, covering MOX fuel utilisation, fuel performance and technology, economics, licensing, MOX fuel trends in the coming decades. (author)

  7. Nuclear fuel cycle. Which way forward for multilateral approaches? An international expert group examines options

    International Nuclear Information System (INIS)

    Pellaud, Bruno

    2005-01-01

    For several years now, the debate on the proliferation of nuclear weapons has been dominated by individuals and countries that violate rules of good behaviour - as sellers or acquirers of clandestine nuclear technology. As a result, the 1968 Treaty on the Non-Proliferation of Nuclear Weapons (NPT) has been declared to be 'inadequate' by some, 'full of loopholes' by others. Two basic approaches have been put forward to tighten up the NPT; both seek to ensure that the nuclear non-proliferation regime maintains its authority and credibility in the face of these very real challenges. One calls for non-nuclear weapon States to accept a partial denial of technology through a reinterpretation of the NPT's provisions governing the rights of access to nuclear technologies. The unwillingness of most non-nuclear-weapon States to accept additional restrictions under the NPT makes this approach difficult. The other approach would apply multinational alternatives to the national operation of uranium-enrichment and plutonium-separation technologies, and to the disposal of spent nuclear fuel. In this perspective, IAEA Director General Mohamed ElBaradei proposed in 2003 to revisit the concept of multilateral nuclear approaches (MNA) that was intensively discussed several decades ago. Several such approaches were adopted at that time in Europe, which became the true homeland of MNAs. Nonetheless, MNAs have failed so far to materialise outside Europe due to different political and economic perceptions. In June 2004, the Director General appointed an international group of experts to consider possible multilateral approaches to the nuclear fuel cycle. The overall purpose was to assess MNAs in the framework of a double objective: strengthening the international nuclear non-proliferation regime and making the peaceful uses of nuclear energy more economical and attractive. In the report submitted to the Director General in February 2005, the Group identified a number of options - options

  8. Study on alumina-alumina brazing for application in vacuum chambers of proton synchrotron

    International Nuclear Information System (INIS)

    Yadav, D.P.; Kaul, R.; Ganesh, P.; Shiroman, Ram; Tiwari, Pragya; Sridhar, R.; Kukreja, L.M.

    2013-01-01

    The paper describes an experimental study to standardize vacuum brazing process to obtain satisfactory high purity alumina brazed joints for application in rapid cycle proton synchrotron machine. Two different brazing routes, adopted for making alumina-alumina brazed joints, included (i) multi-step Mo-Mn metallization and brazing with BVAg-8 alloy and (ii) advanced single-step active brazing with CuSil-ABA alloy. Brazed alumina specimens, prepared by both the routes, yielded ultra high vacuum compatible, helium leak tight and bakeable joints. Active-brazed specimens exhibited satisfactory strength values in tensile and four-point bend tests. Metallized-brazed specimens, although exhibited relatively lower tensile strength than the targeted value, displayed satisfactory flexural strength in four-point bend test. The results of the study demonstrated that active brazing is the simple and cost effective alternative to conventional metallization route for producing satisfactory brazed joints for application in rapid cycle proton synchrotron machine. (author)

  9. Synchrotron radiation from protons

    International Nuclear Information System (INIS)

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature

  10. Future Synchrotron Radiation Sources

    CERN Document Server

    Winick, Herman

    2003-01-01

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, micr...

  11. Coronary angiography using synchrotron radiation

    International Nuclear Information System (INIS)

    Akatsuka, Takao; Hiranaka, Yukio; Takeda, Tohru; Hyodo, Kazuyuki.

    1990-01-01

    Invasive coronary angiography is the imaging technique of choice for diagnosis of ischemic heart disease. Recently, the application of synchrotron radiation in coronary angiography has been investigated in the world, with the aim of developing the noninvasive technique for visualizing the heart. In this article, backgrounds and present situation of coronary angiography using synchrotron radiation are reviewed. Firstly, visual imaging techniques of the cardiovascular system are discussed in terms of angiography and digital subtraction angiography (DSA). Conventional temporal, energy, and hybrid subtraction modes used in DSA are referred to. Secondly, the application of synchrotron radiation is presented, focusing on the property of synchrotron radiation and K-edge subtraction angiography. Two kinds of synchrotron radiation beam methods are outlined. Interpretation of image data and various subtraction procedures remain unestablished. There is much to be done before coronary angiography using synchrotron radiation comes into a clinical practice. (N.K.)

  12. Synchrotron radiation research

    International Nuclear Information System (INIS)

    Markus, N.

    1995-01-01

    In the many varied application fields of accelerators, synchrotron radiation ranks as one of the most valuable and widely useful tools. Synchrotron radiation is produced in multi-GeV electron synchrotrons and storage rings, and emerges tangentially in a narrow vertical fan. Synchrotron radiation has been used extensively for basic studies and, more recently, for applied research in the chemical, materials, biotechnology and pharmaceutical industries. Initially, the radiation was a byproduct of high energy physics laboratories but the high demand soon resulted in the construction of dedicated electron storage rings. The accelerator technology is now well developed and a large number of sources have been constructed, with energies ranging from about 1.5 to 8 GeV including the 6 GeV European Synchrotron Radiation Facility (ESRF) source at Grenoble, France. A modern third-generation synchrotron radiation source has an electron storage ring with a complex magnet lattice to produce ultra-low emittance beams, long straights for 'insertion devices', and 'undulator' or 'wiggler' magnets to generate radiation with particular properties. Large beam currents are necessary to give high radiation fluxes and long beam lifetimes require ultra high vacuum systems. Industrial synchrotron radiation research programmes use either Xray diffraction or spectroscopy to determine the structures of a wide range of materials. Biological and pharmaceutical applications study the functions of various proteins. With this knowledge, it is possible to design molecules to change protein behaviour for pharmaceuticals, or to configure more active proteins, such as enzymes, for industrial processes. Recent advances in molecular biology have resulted in a large increase in protein crystallography studies, with researchers using crystals which, although small and weakly diffracting, benefit from the high intensity. Examples with commercial significance include the study of

  13. Uses of synchrotron radiation

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1982-01-01

    X-ray fluorescence has long been used as a technique for elemental analysis. X-ray fluorescence techniques have a number of features that make them attractive for application to biomedical samples. In the past few years synchrotron radiation x-ray sources have been developed and, because of their properties, their use can improve the sensitivity for trace element analysis by two to three orders of magnitude. Also, synchrotron radiation will make possible an x-ray microprobe with resolution in the micrometer range. The National Synchrotron Light Source (NSLS), a dedicated synchrotron radiation source recently built at Brookhaven National Laboratory, will have a facility for trace element analysis by x-ray fluorescence and will be available to all interested users

  14. Synchrotron radiation

    International Nuclear Information System (INIS)

    Norman, D.; Walker, R.P.; Durham, P.J.; Ridley, P.A.

    1986-01-01

    The paper on synchrotron radiation is the appendix to the Daresbury (United Kingdom) annual report, 1985/86. The bulk of the volume is made up of the progress reports for the work carried out during the year under review using the Synchrotron Radiation Source (SRS) at Daresbury. The Appendix also contains: the scientific programmes at the the SRS, progress on beamlines, instrumentation and computing developments, and activities connected with accelerator development. (U.K.)

  15. Life cycle assessment of wastewater treatment options for small and decentralized communities.

    Science.gov (United States)

    Machado, A P; Urbano, L; Brito, A G; Janknecht, P; Salas, J J; Nogueira, R

    2007-01-01

    Sustainability has strong implications on the practice of engineering. Life cycle assessment (LCA) is an appropriate methodology for assessing the sustainability of a wastewater treatment plant design. The present study used a LCA approach for comparing alternative wastewater treatment processes for small and decentralised rural communities. The assessment was focused on two energy-saving systems (constructed wetland and slow rate infiltration) and a conventional one (activated sludge process). The low environmental impact of the energy-saving wastewater treatment plants was demonstrated, the most relevant being the global warming indicator. Options for reduction of life cycle impacts were assessed including materials used in construction and operational lifetime of the systems. A 10% extension of operation lifetime of constructed wetland and slow rate infiltration systems led to a 1% decrease in CO2 emissions, in both systems. The decrease in the abiotic depletion was 5 and 7%, respectively. Also, replacing steel with HDPE in the activated sludge tank resulted in a 1% reduction in CO2 emission and 1% in the abiotic depletion indicator. In the case of the Imhoff tank a 1% reduction in CO2 emissions and 5% in the abiotic depletion indicator were observed when concrete was replaced by HDPE.

  16. In situ synchrotron X-ray diffraction study of hydrides in Zircaloy-4 during thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N., E-mail: cinbizmn@ornl.gov [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Koss, Donald A., E-mail: koss@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Motta, Arthur T., E-mail: atm2@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Park, Jun-Sang, E-mail: parkjs@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 (United States); Almer, Jonathan D., E-mail: almer@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 (United States)

    2017-04-15

    The d-spacing evolution of both in-plane and out-of-plane hydrides has been studied using in situ synchrotron radiation X-ray diffraction during thermo-mechanical cycling of cold-worked stress-relieved Zircaloy-4. The structure of the hydride precipitates is such that the δ{111} d-spacing of the planes aligned with the hydride platelet face is greater than the d-spacing of the 111 planes aligned with the platelet edges. Upon heating from room temperature, the δ{111} planes aligned with hydride plate edges exhibit bi-linear thermally-induced expansion. In contrast, the d-spacing of the (111) plane aligned with the hydride plate face initially contracts upon heating. These experimental results can be understood in terms of a reversal of stress state associated with precipitating or dissolving hydride platelets within the α-zirconium matrix. - Highlights: •The δ{111} d-spacings aligned with the hydride plate edges exhibit a bi-linear thermal expansion. •Stress state reversal is predicted with the onset of hydride dissolution. •During dissolution, the δ{111} planes oriented parallel to the hydride plate face initially contract upon heating. •Hydride d-spacings indicate that both in-plane (circumferential) and out-of-plane (radial) hydrides are in the same strain-state and likely in the same stress state as well.

  17. X-ray stress measurement by use of synchrotron radiation source

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Matsui, Hisaaki; Moro-oka, Toshimasa; Hasegawa, Ken-ichi; Nakajima, Tetsuo.

    1986-01-01

    In the field of X-ray stress measurement of polycrystalline materials, a diffraction plane at higher Bragg angle has to be selected in order to obtain the precise value of stress. However, the stress measurement on an optional (hkl) plane desired is not always possible because the X-ray beam exited from a metal target has a dispersive wave length. Recently, we have been able to use the synchrotron radiation source (SR) as an excellent X-ray source. In Japan, the facility of synchrotron radiation (Photon Factory, PF) was constructed in the National Laboratory for High Energy Physics (KEK) at Tsukuba academic city. The use of this SR enables the stress measurements on many (hkl) planes with high accuracy in the higher Bragg angle region by providing an X-ray beam having an optional wave length. We have started the X-ray stress analysis by use of the synchrotron radiation source. This paper reports the system of measurement and some results of preliminaly experiments. Since a monochromatic X-ray beam is required for the stress measurement, we used a beam line which consists of a double crystal monochrometer and a focusing mirror. X-rays between 4 KeV (λ = 0.31 nm) and 10 KeV (λ = 0.12 nm) are available with this optical system. We adopted a constant Bragg angle of 2θ = 154 deg for all the diffraction planes. A PSPC having a carbon fiber anode is made and used as a detector with the use of a fast digital signal processor. We could observe the diffraction profiles from (200), (211), (220), (310) and (321) crystal plane of alpha iron, respectively, and the residual stresses in these planes except the (200) plane were measured with high accuracy in a short time. Such feature especially suits the stress analysis of the material which has preferred orientation or stress gradient. (author)

  18. Design and study of new cables for superconducting accelerator magnets: Synchrotron SIS 100 at GSI and NICA collider at JINR*

    International Nuclear Information System (INIS)

    Khodzhibagiyan, H G; Drobin, V M; Kovalenko, A D; Vladimirova, N M; Fischer, E; Pantsyrny, V I; Potanina, L V; Shikov, A K

    2010-01-01

    Recent data from the design of new optimized options of NbTi composite wires and hollow cables for fast cycling synchrotron SIS100 at GSI and NICA collider at JINR are presented. The SIS100 new cable is proposed to be used for manufacturing of single-layer coil for dipole magnet with maximal amplitude of pulsed magnetic field up to 2 T. The cable should provide continues pulsed operation at the current amplitude of I = 13 kA and magnetic field ramp rate of dB/dt = 4 T/s. The results of experimental study of energy losses in the new wire and cable samples for SIS100 magnets are presented. The design cable parameters for the NICA 4 T dipole magnet are fixed at the level of I = 17 kA and dB/dt = 1 T/s. The status of the work is presented and discussed.

  19. Analysis of environmental friendliness of DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong

    2001-07-01

    Some properties of irradiated DUPIC fuels are compared with those of other fuel cycles. It was indicated that the toxicity of the DUPIC option based on 1 GWe-yr is much smaller than those of other fuel cycle options, and is just about half the order of magnitude of other fuel cycles. From the activity analysis of 99 Tc and 237 Np, which are important to the long-term transport of fission products stored in geologic media, the DUPIC option, was being contained only about half of those other options. It was found from the actinide content estimation that the MOX option has the lowest plutonium arising based on 1 GWe-year and followed by the DUPIC option. However, fissile Pu content generated in the DUPIC fuel was the lowest among the fuel cycle options. From the analysis of radiation barrier in proliferation resistance aspect, the fresh DUPIC fuel can play a radiation barrier part, better than CANDU spent fuels as well as fresh MOX fuel. It is indicated that the DUPIC fuel cycle has the excellent resistance to proliferation, compared with an existing reprocessing option and CANDU once-through option. In conclusions, DUPIC fuel cycle would have good properties on environmental effect and proliferation resistance, compared to other fuel cycle cases

  20. A methodology for assessing the environmental and health impact of options for the back-end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Ouzounian, G.H.; Devezeaux de Lavergne, J.G.; Devin, P.; Lioure, A.; Mouney, H.; Le Boulch, D.

    2001-01-01

    Research programs conducted in France in the framework of the 1991 act offer various options for management of the back- end of the fuel cycle. Proposals to be debated in 2006 will rely not only on broad scientific and technical knowledge, but also on the compilation and integration of results, with syntheses and analyses intended to highlight the advantages and the limitations of each of the waste management paths. This presentation introduces a methodology derived from the life cycle analysis as well as some preliminary results. (author)

  1. The generation of denatured reactor plutonium by different options of the fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Broeders, C.H.M.; Kessler, G. [Inst. for Neutron Physics and Reactor Technology, Research Center Karlsruhe (Germany)

    2006-11-15

    Denatured (proliferation resistant) reactor plutonium can be generated in a number of different fuel cycle options. First denatured reactor plutonium can be obtained if, instead of low enriched U-235 PWR fuel, re-enriched U-235/U-236 from reprocessed uranium is used (fuel type A). Also the envisaged existing 2,500 t of reactor plutonium (being generated world wide up to the year 2010), mostly stored in intermediate fuel storage facilities at present, could be converted during a transition phase into denatured reactor plutonium by the options fuel type B and D. Denatured reactor plutonium could have the same safeguards standard as present low enriched (<20% U-235) LWR fuel. It could be incinerated by recycling once or twice in PWRs and subsequently by multi-recycling in FRs (CAPRA type or IFRs). Once denatured, such reactor plutonium could remain denatured during multiple recycling. In a PWR, e.g., denatured reactor plutonium could be destroyed at a rate of about 250 kg/GWey. While denatured reactor plutonium could be recycled and incinerated under relieved IAEA safeguards, neptunium would still have to be monitored by the IAEA in future for all cases in which considerable amounts of neptunium are produced. (orig.)

  2. Synchrotron radiation

    International Nuclear Information System (INIS)

    Poole, M.W.; Lea, K.R.

    1982-01-01

    A report is given on the work involving the Synchrotron Radiation Division of the Daresbury Laboratory during the period January 1981 - March 1982. Development of the source, beamlines and experimental stations is described. Progress reports from individual investigators are presented which reveal the general diversity and interdisciplinary nature of the research which benefits from access to synchrotron radiation and the associated facilities. Information is given on the organisation of the Division and publications written by the staff are listed. (U.K.)

  3. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1979-01-01

    The National Synchrotron Light Source comprises two high intensity electron storage rings for the generation of intense fluxes of synchrotron radiation in the vuv wavelength domain (700 MeV e - ring) and in the x-ray wavelength domain (2.5 GeV e - ring). A description is presented of the basic facility and the characteristics of the synchrotron radiation sources. The present plans for specific beam lines will be enumerated and the planned use of beam wigglers and undulators will be discussed

  4. Feedback implementation options and issues for B factory accelerators

    International Nuclear Information System (INIS)

    Fox, J.D.; Briggs, D.; Eisen, N.; Hindi, H.; Hosseini, W.; Oxoby, G.; Linscott, I.; Coiro, O.; Ghigo, A.; Serio, M.; Lambertson, G.; Voelker, F.

    1992-09-01

    The proposed B factory accelerator facilities will require active feedback systems to control multibunch instabilities. These feedback systems must operate in machines with thousands of circulating bunches and with short (2--4 ns) interbunch intervals. The functional requirements for transverse (betatron) and longitudinal (synchrotron) feedback systems are presented. Several possible implementation options are discussed and system requirements developed. Conceptual designs are presented for the PEP II transverse and longitudinal feedback systems

  5. Alternative fuel cycles

    International Nuclear Information System (INIS)

    Penn, W.J.

    1979-05-01

    Uranium resource utilization and economic considerations provide incentives to study alternative fuel cycles as future options to the PHWR natural uranium cycle. Preliminary studies to define the most favourable alternatives and their possible introduction dates are discussed. The important and uncertain components which influence option selection are reviewed, including nuclear capacity growth, uranium availability and demand, economic potential, and required technological developments. Finally, a summary of Ontario Hydro's program to further assess cycle selection and define development needs is given. (auth)

  6. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    International Nuclear Information System (INIS)

    Yang, Yuan-Pei; Dai, Zi-Gao; Zhang, Bing

    2016-01-01

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In the meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula

  7. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuan-Pei; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2016-03-01

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In the meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula.

  8. Synchrotron Environmental Science-I Workshop Report

    International Nuclear Information System (INIS)

    1999-01-01

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research

  9. Synchrotron Environmental Science-I Workshop Report.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-08

    Attendees of the Synchrotrons Environmental Science 1 (SES-1) workshop represented a broad spectrum of environmental science research areas and expertise in all of the current synchrotrons techniques (X-ray scattering and diffraction, X-ray absorption spectroscopy, and two- and three-dimensional X-ray imaging). These individuals came together to discuss current measurement obstacles in environmental research and, more specifically, ways to overcome such obstacles by applying synchrotrons radiation techniques. Significant obstacles in measurement affect virtually all of the research issues described. Attendees identified synchrotrons approaches of potential value in their research. A number of the environmental research studies discussed are currently being addressed with some success by synchrotron-based approaches. Nevertheless, improvements in low-Z measurement capabilities are needed to facilitate the use of synchrotrons radiation methodologies in environmental research.

  10. Perspective on long-range nuclear energy options

    International Nuclear Information System (INIS)

    Harms, W.O.

    1977-01-01

    The study group whose effort is presented here concluded that the United States urgently needs to have a breeder option available for possible deployment before the year 2000 primarily because of uncertainties in the availability of fossil fuels and uranium supplies. It was recommended that the U/Pu LMFBR program proceed as planned, including prompt construction of the CRBRP and its associated fuel cycle facilities. Alternative cycle studies should be pursued, but without significantly delaying the current program. There are technological choices which, in suitable political contexts, may somewhat reduce proliferation risks; of these, only those that employ breeders preserve the breeder option (and the nuclear option in the long term. These alternatives must be coupled with political agreements to have any significant effect on proliferation potential internationally. These same political agreements should suffice to control the U/Pu breeder cycle; there is only a difference in degree between the U/Pu and the denatured Th/U-233 cycles

  11. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    Science.gov (United States)

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Dynamic Simulations of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.

    2011-01-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the U.S. Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe 'lessons learned' from dynamic simulations but attempt to answer the 'so what' question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

  13. CORNELL: Synchrotron 25

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A recent celebration marked the twenty-fifth anniversary of the Cornell Electron Synchrotron. The major milestone in the commissioning of the synchrotron was on October 11, 1967 when Helen Edwards, Boyce McDaniel, and Maury Tigner achieved a 7 GeV beam, a worldrecord energy for electron synchrotrons at that time. Like so many advances in experimental physics, this occurred early in the morning - 3 a.m.! The transition from accelerator commissioning to high energy physics operation was extremely rapid; 7 GeV operation for data collection was routine just five weeks later. Throughout its life as a source of photon and electron beams for fixed target experiments, the synchrotron maintained energy leadership for circular electron machines. Originally designed for operation at 10 GeV, eventually it consistently provided beams for experiments at energies up to 11.6 GeV. It now operates at 5 GeV, serving as the injector for the CESR electron-positron storage ring. Robert Wilson was director of the laboratory during the design and most of the construction of the machine. He left near the end of the construction to become the first director of Fermilab and was replaced by Boyce McDaniel, who guided the laboratory from the completion of the synchrotron to the construction and early operation of CESR. Wilson recalled how the laboratory had originally proposed a 3 GeV turnkey machine to be built entirely by industry and would fit in the space previously occupied by earlier Cornell accelerators. However, members of the laboratory realized that 3 GeV would not open new physics frontiers, that the construction of the accelerator was much of the fun of doing high energy physics experiments, and that a more challenging project was needed. This led to the proposal for the 10 GeV synchrotron which was built in the ''Cornell Style'' with many of the components fabricated and nearly all of the assembly done at Cornell

  14. CORNELL: Synchrotron 25

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-03-15

    A recent celebration marked the twenty-fifth anniversary of the Cornell Electron Synchrotron. The major milestone in the commissioning of the synchrotron was on October 11, 1967 when Helen Edwards, Boyce McDaniel, and Maury Tigner achieved a 7 GeV beam, a worldrecord energy for electron synchrotrons at that time. Like so many advances in experimental physics, this occurred early in the morning - 3 a.m.! The transition from accelerator commissioning to high energy physics operation was extremely rapid; 7 GeV operation for data collection was routine just five weeks later. Throughout its life as a source of photon and electron beams for fixed target experiments, the synchrotron maintained energy leadership for circular electron machines. Originally designed for operation at 10 GeV, eventually it consistently provided beams for experiments at energies up to 11.6 GeV. It now operates at 5 GeV, serving as the injector for the CESR electron-positron storage ring. Robert Wilson was director of the laboratory during the design and most of the construction of the machine. He left near the end of the construction to become the first director of Fermilab and was replaced by Boyce McDaniel, who guided the laboratory from the completion of the synchrotron to the construction and early operation of CESR. Wilson recalled how the laboratory had originally proposed a 3 GeV turnkey machine to be built entirely by industry and would fit in the space previously occupied by earlier Cornell accelerators. However, members of the laboratory realized that 3 GeV would not open new physics frontiers, that the construction of the accelerator was much of the fun of doing high energy physics experiments, and that a more challenging project was needed. This led to the proposal for the 10 GeV synchrotron which was built in the ''Cornell Style'' with many of the components fabricated and nearly all of the assembly done at Cornell.

  15. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, A.; Hübers, H.-W. [Humboldt-Universität zu Berlin, Institute of Physics, Newtonstraße 15, 12489 Berlin (Germany); Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstrasse 29, 12489 Berlin (Germany); Semenov, A. [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstrasse 29, 12489 Berlin (Germany); Hoehl, A.; Ulm, G. [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin (Germany); Ries, M.; Wüstefeld, G. [Helmholz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ilin, K.; Thoma, P.; Siegel, M. [Institute of Micro- and Nanoelectronic Systems, Karlsruhe Institute of Technology (KIT), Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2016-03-21

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the duration of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.

  16. The World of Synchrotrons

    Indian Academy of Sciences (India)

    de Ciencias Fisicas,. Universidad Nacional. Autonoma de Mexico. Sameen Ahmed Khan. A summary of results on synchrotron radiation is presented along with notes on its properties and applications. Quantum aspects are briefly mentioned. Synchrotron radiation facilities are described briefly with a detailed coverage of ...

  17. Synchrotron light source data book

    International Nuclear Information System (INIS)

    Murphy, J.

    1989-01-01

    The ''Synchrotron Light Source Data Book'' is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-ray Data Booklet, edited by D. Vaughan (LBL PUB-490), address the 'use' of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in 'practical units' and a brief description of many of the existing and planned light source lattices

  18. National Synchrotron Light Source: vacuum system for National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Schuchman, J.C.; Godel, J.B.; Jordan, W.; Oversluizen, T.

    1978-01-01

    The National Synchrotron Light Source (NSLS), a 24 million dollar project under construction at Brookhaven National Laboratory (BNL), is a research facility dedicated to the production of synchrotron radiation. Synchrotron radiation is that radiation produced by the acceleration of charged particles at near the speed of light. This facility will provide a continuous spectrum of radiation from the vacuum ultraviolet to the hard x-ray range. The radiation will be highly intense, 100% polarized, extremely well collimated and will have a pulsed time structure. The radiation will be produced in two electron storage rings at energies of 700 MeV and 2.5 GeV, respectively. A maximum of one ampere at 2 GeV, or one-half ampere at 2.5 GeV, of electron beam will be stored

  19. JHF synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The Japan Hadron Facility (JHF) consists of two synchrotrons and an injector linac. First, we will present a brief review of the specifications and lattice of the synchrotrons; one is 3 GeV booster and the other is 50 GeV main ring. Secondly, some detailed results of design study will be discussed, together with the present status of the R and D programs in progress. Among them, an estimate of beam loss is one of critical issues in beam dynamics. The development of a high gradient RF cavity is also crucial for a high intensity machine. (author)

  20. Life-cycle assessment of selected management options for air pollution control residues from waste incineration.

    Science.gov (United States)

    Fruergaard, Thilde; Hyks, Jiri; Astrup, Thomas

    2010-09-15

    Based on available technology and emission data seven selected management options for air-pollution-control (APC) residues from waste incineration were evaluated by life-cycle assessment (LCA) using the EASEWASTE model. Scenarios were evaluated with respect to both non-toxicity impact categories (e.g. global warming) and toxicity related impact categories (e.g. ecotoxicity and human toxicity). The assessment addressed treatment and final placement of 1 tonne of APC residue in seven scenarios: 1) direct landfilling without treatment (baseline), 2) backfilling in salt mines, 3) neutralization of waste acid, 4) filler material in asphalt, 5) Ferrox stabilization, 6) vitrification, and 7) melting with automobile shredder residues (ASR). The management scenarios were selected as examples of the wide range of different technologies available worldwide while at the same time using realistic technology data. Results from the LCA were discussed with respect to importance of: energy consumption/substitution, material substitution, leaching, air emissions, time horizon aspects for the assessment, and transportation distances. The LCA modeling showed that thermal processes were associated with the highest loads in the non-toxicity categories (energy consumption), while differences between the remaining alternatives were small and generally considered insignificant. In the toxicity categories, all treatment/utilization options were significantly better than direct landfilling without treatment (lower leaching), although the thermal processes had somewhat higher impacts than the others options (air emissions). Transportation distances did not affect the overall ranking of the management alternatives. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Infrared spectroscopy by use of synchrotron radiation

    International Nuclear Information System (INIS)

    Nanba, Takao

    1991-01-01

    During five years since the author wrote the paper on the utilization of synchrotron radiation in long wavelength region, it seems to be recognized that in synchrotron radiation, the light from infrared to milli wave can be utilized, and is considerably useful. Recently the research on coherent synchrotron radiation in this region using electron linac has been developed by Tohoku University group, and the high capability of synchrotron radiation as light source is verified. This paper is the report on the infrared spectroscopic research using incoherent synchrotron radiation obtained from the deflection electromagnet part of electron storage rings. Synchrotron radiation is high luminance white light source including from X-ray to micro wave. The example of research that the author carried out at UVSOR is reported, and the perspective in near future is mentioned. Synchrotron radiation as the light source for infrared spectroscopy, the intensity and dimensions of the light source, far infrared region and mid infrared region, far infrared high pressure spectroscopic experiment, and the heightening of luminance of synchrotron radiation as infrared light source are described. (K.I.)

  2. Beam loss reduction by injection painting in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2012-04-01

    Full Text Available The 3-GeV rapid cycling synchrotron (RCS of the Japan Proton Accelerator Research Complex was commissioned in October 2007. Via the initial beam tuning and a series of underlying beam studies with low-intensity beams, since December 2009, we have intermittently been performing beam tuning experiments with higher-intensity beams including the injection painting technique. By optimizing the injection painting parameters, we have successfully achieved a 420 kW-equivalent output intensity at a low-level intensity loss of less than 1%. Also the corresponding numerical simulation well reproduced the observed painting parameter dependence on the beam loss, and captured a characteristic behavior of the high-intensity beam in the injection painting process. In this paper, we present the experimental results obtained in the course of the RCS beam power ramp-up, especially on the beam loss reduction achieved by employing the injection painting, together with the numerical simulation results.

  3. Consolidated fuel reprocessing programme: Analysis of various options for the breeder fuel cycle in the USA

    International Nuclear Information System (INIS)

    Stradley, J.G.; Burch, W.D.; Yook, H.R.

    1986-01-01

    The United States Department of Energy (DOE) has established a programme to develop innovative liquid metal reactor (LMR) designs to assist in developing future U.S. reactor strategy. The paper describes studies in progress to examine various fuel cycle strategies that relate to the reactor strategy. Three potential fuel cycle options that focus on supporting an initial 1300 MW(e) reactor station have been defined: (1) Completion and utilization of the Breeder Reprocessing Engineering Test/Secure Automated Fabrication (BRET/SAF) in the Fuels and Materials Examination Facility (FMEF) at Hanford, Washington; (2) a co-located fuel cycle facility; and (3) delayed closure of the fuel cycle for five to ten years. The BRET, designed as a development facility, has sufficient capacity to service the needs of an initial module at an LMR station. It appears feasible to increase this capacity and to utilize SAF in the FMEF to accommodate the projected output (up to 35 MtHM/year) from the 1300 MW(e) liquid-metal concepts under study. Plans developed within the United States Consolidated Management Office for an initial reactor project have envisioned that cost savings could be realized by delaying the closure of the fuel cycle as long as supplies of plutonium could be obtained relatively inexpensively. This might prove to be only five to ten years, but even that period might be long enough for the fuel cycle costs to be spread over more than one reactor rather than loaded on the initial project. This concept is being explored as is the question of the future coupling of a light water reactor reprocessing industry for plutonium supply to breeder recycle

  4. Nuclear Fuel Cycle System Analysis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Yoon, Ji Sup; Park, Seong Won

    2007-04-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 2nd Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance, economics and technologies. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects of sustainability, environment-friendliness, proliferation-resistance, economics, technologies and so on, which makes the comparison of the options extremely complicated. Taking this into consideration, the paper analyzes all the four fuel cycle options using the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP), methods of Multi-Attribute Decision Making (MADM), that support systematical evaluation of the cases with multi- goals or criteria and that such goals are incompatible with each other. The analysis shows that the GEN-IV Recycle appears to be most competitive.

  5. Inverse comptonization vs. thermal synchrotron

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Klebesadel, R.W.; Laros, J.G.

    1983-01-01

    There are currently two radiation mechanisms being considered for gamma-ray bursts: thermal synchrotron and inverse comptonization. They are mutually exclusive since thermal synchrotron requires a magnetic field of approx. 10 12 Gauss whereas inverse comptonization cannot produce a monotonic spectrum if the field is larger than 10 11 and is too inefficient relative to thermal synchrotron unless the field is less than 10 9 Gauss. Neither mechanism can explain completely the observed characteristics of gamma-ray bursts. However, we conclude that thermal synchrotron is more consistent with the observations if the sources are approx. 40 kpc away whereas inverse comptonization is more consistent if they are approx. 300 pc away. Unfortunately, the source distance is still not known and, thus, the radiation mechanism is still uncertain

  6. Synchrotron radiation at Trieste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-06-15

    The fast developing field of synchrotron radiation has its origins in the mastery of storage rings in high energy physics and is a prime example of spinoff from pure science. Intense electromagnetic radiation streams off when beams of high energy electrons are bent or shaken. This synchrotron radiation was once an annoying waste of energy in particle storage rings, but now the wheel has turned full circle, with dedicated machines supplying this radiation for a wide range of science. The astonishing growth rate in this field was highlighted at an International Conference on Synchrotron Radiation, held at the International Centre for Theoretical Physics (ICTP), Trieste, Italy from 7-11 April.

  7. Synchrotron radiation at Trieste

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The fast developing field of synchrotron radiation has its origins in the mastery of storage rings in high energy physics and is a prime example of spinoff from pure science. Intense electromagnetic radiation streams off when beams of high energy electrons are bent or shaken. This synchrotron radiation was once an annoying waste of energy in particle storage rings, but now the wheel has turned full circle, with dedicated machines supplying this radiation for a wide range of science. The astonishing growth rate in this field was highlighted at an International Conference on Synchrotron Radiation, held at the International Centre for Theoretical Physics (ICTP), Trieste, Italy from 7-11 April

  8. Synchrotron Radiation in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.

    2008-01-01

    This work is focused on a present status of synchrotron radiation X-ray applications in medicine and biology to imaging, diagnostics, and radio- therapy. Properties of X-ray beams generated by synchrotron sources are compared with radiation produced by classical laboratory X-ray tubes. A list of operating and planned synchrotron facilities applicable to biomedical purposes is given, together with their basic characteristics. A concise overview of typical X-ray synchrotron techniques in biology and medicine is carried out with discussion of their specific properties and examples of typical results. (author)

  9. CHESS-the Cornell High Energy Synchrotron Source

    International Nuclear Information System (INIS)

    Batterman, B.W.; Cornell Univ., Ithaca, NY

    1980-01-01

    The Wilson Laboratory at Cornell University has done pioneering work on development of high energy synchrotrons. In the last decade, the 12 GeV synchrotron has been the most energetic electron synchrotron in the world. In 1975 plans were formulated to build a 4-8 GeV storage ring in the same tunnel as the synchrotron and to use the latter as the injector for the storage ring. This small radius (the normal bend magnets have R = 87 m), coupled with the relatively high electron energy of the storage ring, makes these magnets potent sources of synchrotron radiation. In June of 1978 the National Science Foundation funded a project to create CHESS, the Cornell High Energy Synchrotron Source. (orig./FKS)

  10. Australian synchrotron radiation science

    International Nuclear Information System (INIS)

    White, J.W.

    1996-01-01

    Full text: The Australian Synchrotron Radiation Program, ASRP, has been set up as a major national research facility to provide facilities for scientists and technologists in physics, chemistry, biology and materials science who need access to synchrotron radiation. Australia has a strong tradition in crystallography and structure determination covering small molecule crystallography, biological and protein crystallography, diffraction science and materials science and several strong groups are working in x-ray optics, soft x-ray and vacuum ultra-violet physics. A number of groups whose primary interest is in the structure and dynamics of surfaces, catalysts, polymer and surfactant science and colloid science are hoping to use scattering methods and, if experience in Europe, Japan and USA can be taken as a guide, many of these groups will need third generation synchrotron access. To provide for this growing community, the Australian National Beamline at the Photon Factory, Tsukuba, Japan, has been established since 1990 through a generous collaboration with Japanese colleagues, the beamline equipment being largely produced in Australia. This will be supplemented in 1997 with access to the world's most powerful synchrotron x-ray source at the Advanced Photon Source, Argonne National Laboratory, USA. Some recent experiments in surface science using neutrons as well as x-rays from the Australian National Beamline will be used to illustrate one of the challenges that synchrotron x-rays may meet

  11. Injection and capture simulations for a high intensity proton synchrotron

    International Nuclear Information System (INIS)

    Cho, Y.; Lessner, E.; Symon, K.; Univ. of Wisconsin, Madison, WI

    1994-01-01

    The injection and capture processes in a high intensity, rapid cycling, proton synchrotron are simulated by numerical integration. The equations of motion suitable for rapid numerical simulation are derived so as to maintain symplecticity and second-order accuracy. By careful bookkeeping, the authors can, for each particle that is lost, determine its initial phase space coordinates. They use this information as a guide for different injection schemes and rf voltage programming, so that a minimum of particle losses and dilution are attained. A fairly accurate estimate of the space charge fields is required, as they influence considerably the particle distribution and reduce the capture efficiency. Since the beam is represented by a relatively coarse ensemble of macro particles, the authors study several methods of reducing the statistical fluctuations while retaining the fine structure (high intensity modulations) of the beam distribution. A pre-smoothing of the data is accomplished by the cloud-in-cell method. The program is checked by making sure that it gives correct answers in the absence of space charge, and that it reproduces the negative mass instability properly. Results of simulations for stationary distributions are compared to their analytical predictions. The capture efficiency for the rapid-cycling synchrotron is analyzed with respect to variations in the injected beam energy spread, bunch length, and rf programming

  12. The Proton Synchrotron, going strong at fifty years

    CERN Multimedia

    Django Manglunki

    It was on the evening of 24 November 1959 that an incredulous Hildred Blewett, on detachment to CERN from the Brookhaven laboratory, exclaimed “Yes! We’re through transition!” The first beam of ten billion protons had not only broken through the 5.2 GeV barrier but gone on all the way to 24 GeV, the machine’s top energy at that time.   An operational screenshot from the PS, taken on its 50th anniversary. The three white peaks depict different phases (cycles) of the PS’s operation. In the first and third cycle, the PS is producing a very low-intensity beam for LHC commissioning. In the second cycle, protons are being spilled out for use in the East Area. Fifty years ago the PS, the first strong-focusing proton synchrotron using alternating gradient technology, first began to circulate beams at an unprecedented level of energy. Over the years, a complex of linear and circular accelerators and storage rings grew up around the PS. In the mid-1990s ...

  13. Manufacturability of compact synchrotron mirrors

    Science.gov (United States)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  14. Synchrotron X-Ray Footprinting on Tour

    OpenAIRE

    Bohon, Jen; Ralston, Corie; D'Mello, Rhijuta; Gupta, Sayan; Chance, Mark R.

    2014-01-01

    Synchrotron X-ray footprinting resources were investigated at a variety of beamlines and synchrotron facilities to understand their potential for a mobile general user. Results indicate that viable resources exist at each synchrotron investigated such that a prospective user need only provide a simple flow apparatus and sample handling accessories to perform this technique.

  15. Project of the JINR heavy ion synchrotron on-line control system

    International Nuclear Information System (INIS)

    Glejbman, Eh.M.; Zhabitskij, V.M.; Ivanov, I.N.

    1983-01-01

    Description of the project of the JINR heavy ion synchrotron (HIS) on-line control system (OCS) which is a strong-focusing synchrotron designed for avarage energies, is given. Complete average stream of data from HIS constitutes approximately 500 byte/s, when operation cycle is 0.33 s. The structure of HIS OCS is a two-hierarchy system with the distributed processing and control, built using modular principle. The first, lower hierarchy level forms eight subsystems, each of them is oriented for automation of concrete functionally-technological system of the accelerator. The higher hierarchy is the central complex computer which is a multimicroprocessor computer. The hardware of HIS OCS is envisaged to be realized on the base of CAMAC moduls. HIS OCS software will be disigned as the SM computer specialized real-time system supplemented with applied programs and language interpreter for the accelerator control

  16. SOFT: a synthetic synchrotron diagnostic for runaway electrons

    Science.gov (United States)

    Hoppe, M.; Embréus, O.; Tinguely, R. A.; Granetz, R. S.; Stahl, A.; Fülöp, T.

    2018-02-01

    Improved understanding of the dynamics of runaway electrons can be obtained by measurement and interpretation of their synchrotron radiation emission. Models for synchrotron radiation emitted by relativistic electrons are well established, but the question of how various geometric effects—such as magnetic field inhomogeneity and camera placement—influence the synchrotron measurements and their interpretation remains open. In this paper we address this issue by simulating synchrotron images and spectra using the new synthetic synchrotron diagnostic tool SOFT (Synchrotron-detecting Orbit Following Toolkit). We identify the key parameters influencing the synchrotron radiation spot and present scans in those parameters. Using a runaway electron distribution function obtained by Fokker-Planck simulations for parameters from an Alcator C-Mod discharge, we demonstrate that the corresponding synchrotron image is well-reproduced by SOFT simulations, and we explain how it can be understood in terms of the parameter scans. Geometric effects are shown to significantly influence the synchrotron spectrum, and we show that inherent inconsistencies in a simple emission model (i.e. not modeling detection) can lead to incorrect interpretation of the images.

  17. Computer simulation for synchrotron radiation based X-ray fluorescent microtomography

    International Nuclear Information System (INIS)

    Deng Biao; Yu Xiaohan; Xu Hongjie

    2007-01-01

    Synchrotron radiation based fluorescent microtomography (SR-XFMT) is a nondestructive technique for detecting elemental composition and distribution inside a specimen with high spatial resolution and sensitivity, and will be an optional experimental technique at SSRF hard X-ray micro-focusing beamline now under construction. In this paper, the principles and developments of SR-XFMT are briefly introduced. Computer simulation of SR-XFMT experiment is performed. The image of the simulated sample is reconstructed using Filtered Back Projection (FBP), Algebraic Reconstruction Techniques (ART) and modified FBP with absorption correction. The qualities of the reconstructed images are analyzed and compared. The validity of these reconstruction techniques is discussed. (authors)

  18. 50 years of synchrotrons. Early synchrotrons in Britain, and early work for CERN. - The CERN synchrotrons. Lectures

    International Nuclear Information System (INIS)

    Lawson, J.; Brianti, G.

    1997-01-01

    In the first report, 'Early synchrotrons in Britain, and early work for CERN', John Lawson gives an extended account of the material presented at the John Adams lecture, and at the same time a revised and shortened version of RAL report 97-011, which contains fuller archival references and notes. During the period covered by this report there was extensive work in Russia, where the principle of phase stability had been discovered in 1944 by Veksler. Unfortunately, all experimental work was kept secret until Veksler's talk at the first 'Atoms for Peace' conference at Geneva in August 1955. In the second lecture, 'The CERN Synchrotrons', Giorgio Brianti outlines the history of alternating-gradient synchrotrons from 1953/54 until today. In preparing this lecture he was confronted with a vast amount of material, while the time at his disposal was not even one minute per year, implying a time compression factor close to one million. Therefore, he had to exercise drastic choices, which led him to concentrate on CERN hadron synchrotrons and colliders and leave aside the Large Electron-Positron storage ring (LEP). Indeed, LEP was the subject of the John Adams Memorial Lecture in 1990, and it may be treated again in the future in connection with its energy upgrade. Even with these severe limitations, it was impossible to do justice to the number and variety of events and to the ingenuity of the people who have carved the history of CERN and of particle physics on the magnets, radiofrequency cavities, vacuum etc., and on the record performance of our machines. (orig./WL)

  19. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  20. New theoretical results in synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation)]. E-mail: bagrov@phys.tsu.ru; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil); Tlyachev, V.B. [Tomsk Institute of High Current Electronics, Akademicheskiy Avenue 4, Tomsk (Russian Federation); Jarovoi, A.T. [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation)

    2005-11-15

    One of the remarkable features of the relativistic electron synchrotron radiation is its concentration in small angle {delta}{approx}1/{gamma} (here {gamma}-relativistic factor: {gamma}=E/mc{sup 2}, E - energy, m - electron rest mass, c - light velocity) near rotation orbit plane [V.G. Bagrov, V.A. Bordovitsyn, V.G. Bulenok, V. Ya. Epp, Kinematical projection of pulsar synchrotron radiation profiles, in: Proceedings of IV ISTC Scientific Advisory Commitee Seminar on Basic Science in ISTC Aktivities, Akademgorodok, Novosibirsk, April 23-27, 2001, p. 293-300]. This theoretically predicted and experimentally confirmed feature is peculiar to total (spectrum summarized) radiating intensity. This angular distribution property has been supposed to be (at least qualitatively) conserved and for separate spectrum synchrotron radiation components. In the work of V.G. Bagrov, V.A. Bordovitsyn, V. Ch. Zhukovskii, Development of the theory of synchrotron radiation and related processes. Synchrotron source of JINR: the perspective of research, in: The Materials of the Second International Work Conference, Dubna, April 2-6, 2001, pp. 15-30 and in Angular dependence of synchrotron radiation intensity. http://lanl.arXiv.org/abs/physics/0209097, it is shown that the angular distribution of separate synchrotron radiation spectrum components demonstrates directly inverse tendency - the angular distribution deconcentration relatively the orbit plane takes place with electron energy growth. The present work is devoted to detailed investigation of this situation. For exact quantitative estimation of angular concentration degree of synchrotron radiation the definition of radiation effective angle and deviation angle is proposed. For different polarization components of radiation the dependence of introduced characteristics was investigated as a functions of electron energy and number of spectrum component.

  1. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.; Wuilleumier, F.

    1985-01-01

    This chapter discusses applications of synchrotron light in atomic and molecular physics. Use of the radiation from storage rings has expanded and lent access to new areas of absorption and photoemission spectroscopy and scattering experiments. Techniques applied in connection with synchrotron radiation are discussed including absorption spectroscopy, photoelectron spectroscopy, fluorescence spectroscopy and X-ray scattering. Problem areas that are being studied by the techniques mentioned above are discussed. Synchrotron radiation has provided the means for measuring the threshold-excitation and interference effects that signal the breakdown of the two-step model of atomic excitation/deexcitation. Synchrotron radiation provides more means of excited-state photoionization measurements

  2. Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling

    International Nuclear Information System (INIS)

    Xu, Yanzhi; Gbologah, Franklin E.; Lee, Dong-Yeon; Liu, Haobing; Rodgers, Michael O.; Guensler, Randall L.

    2015-01-01

    Highlights: • We present a practical fuel and emissions modeling tool for alternative fuel buses. • The model assesses well-to-wheels emissions impacts of bus fleet decisions. • Mode-based approach is used to account for duty cycles and local conditions. • A case study using real-world operations data from Atlanta, GA is presented. • Impacts of alternative bus options depend on operating and geographic features. - Abstract: Hybrid and electric powertrains and alternative fuels (e.g., compressed natural gas (CNG), biodiesel, or hydrogen) can often reduce energy consumption and emissions from transit bus operations relative to conventional diesel. However, the magnitude of these energy and emissions savings can vary significantly, due to local conditions and transit operating characteristics. This paper introduces the transit Fuel and Emissions Calculator (FEC), a mode-based life-cycle emissions modeling tool for transit bus and rail technologies that compares the performance of multiple alternative fuels and powertrains across a range of operational characteristics and conditions. The purpose of the FEC is to provide a practical, yet technically sophisticated tool for regulatory agencies and policy analysts in assessing transit fleet options. The FEC’s modal modeling approach estimates emissions as a function of engine load, which in turn is a function of transit service parameters, including duty cycle (idling and speed-acceleration profile), road grade, and passenger loading. This approach allows for customized assessments that account for local conditions. Direct emissions estimates are derived from the scaled tractive power (STP) operating mode bins and emissions factors employed in the U.S. EPA’s MOVES (MOtor Vehicle Emissions Simulator) model. Life-cycle emissions estimates are calculated using emissions factors from the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model. The case study presented in this paper

  3. Precision synchrotron radiation detectors

    International Nuclear Information System (INIS)

    Levi, M.; Rouse, F.; Butler, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab

  4. Infrared synchrotron radiation from electron storage rings

    International Nuclear Information System (INIS)

    Duncan, W.D.; Williams, G.P.

    1983-01-01

    Simple and useful approximations, valid at infrared wavelengths, to the equations for synchrotron radiation are presented and used to quantify the brightness and power advantage of current synchrotron radiation light sources over conventional infrared broadband laboratory sources. The Daresbury Synchrotron Radiation Source (SRS) and the Brookhaven National Synchrotron Light Source (vacuum ultraviolet) [NSLS(VUV)] storage rings are used as examples in the calculation of the properties of infrared synchrotron radiation. The pulsed nature of the emission is also discussed, and potential areas of application for the brightness, power, and time structure advantages are presented. The use of infrared free electron lasers and undulators on the next generation of storage ring light sources is briefly considered

  5. Synchrotron Elettra. Status and perspectives

    International Nuclear Information System (INIS)

    Remec, I.

    1992-01-01

    Synchrotron radiation and the possibilities for its applications are shortly presented. Elettra, the third generation synchrotron, now under construction in Trieste, Italy, is briefly described and its main characteristics are given. Current activities in Slovenia, related to Elettra, are presented. (author) [sl

  6. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  7. Synchrotron radiation

    International Nuclear Information System (INIS)

    Hallmeier, K.H.; Meisel, A.; Ranft, J.

    1982-01-01

    The physical background and the properties of synchrotron radiation are described. The radiation offers many useful applications in the fields of spectroscopy and structural investigations. Some examples are given

  8. Coherent Synchrotron Radiation as a Diagnostic Tool for the LCLS Longitudinal Feedback System

    CERN Document Server

    Wu, Juhao; Huang, Zhirong

    2005-01-01

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL). To ensure the vitality of FEL lasing, a longitudinal feedback system is required together with other diagnostics. In this paper, we study the possibility of using Coherent Synchrotron Radiation (CSR) from the chicane as the diagnostic tool for bunch length feedback. Calculations show that CSR is a good candidate, even for the non-Gaussian, double-horn longitudinal charge distribution. We further check the feasibility for low and high charge options, and also the possibility for detecting the microbunching.

  9. Modified hMG stimulated: an effective option in endometrial preparation for frozen-thawed embryo transfer in patients with normal menstrual cycles.

    Science.gov (United States)

    Huang, Pinxiu; Wei, Lihong; Li, Xinlin; Lin, Zhong

    2018-04-20

    To evaluate the clinical efficacy of modified human menopausal gonadotropin (hMG) stimulated, hormone replacement therapy (HRT), natural cycling and letrozole ovulation induction during endometrial preparation for frozen-thawed embryo transfer (FET) in patients with normal menstrual cycles. This retrospective analysis included a total of 5070 cycles of patients with normal menstrual patterns who underwent FET between October 2009 and September 2015. The patients were divided into four groups according to the method of endometrial preparation for FET: 1838 cycles were natural, 1666 underwent HRT, 340 underwent letrozole ovulation induction and 1226 underwent modified hMG stimulated. Reproduction-related clinical outcomes in the four groups were compared. The clinical pregnancy rates and live birth rates of patients in the modified hMG stimulated group were significantly higher than that in the other groups p .05). Modified hMG stimulated resulted in a higher pregnancy rate compared to the other treatment groups. Therefore, modified hMG stimulated may be an effective option in endometrial preparation for FET in patients with normal menstrual cycles.

  10. Protein Data Bank Depositions from Synchrotron Sources

    International Nuclear Information System (INIS)

    Jiang, J.; Sweet, R.

    2004-01-01

    A survey and analysis of Protein Data Bank (PDB) depositions from international synchrotron radiation facilities, based on the latest released PDB entries, are reported. The results ( ) show that worldwide, every year since 1999, more than 50% of the deposited X-ray structures have used synchrotron facilities, reaching 75% by 2003. In this web-based database, all PDB entries among individual synchrotron beamlines are archived, synchronized with the weekly PDB release. Statistics regarding the quality of experimental data and the refined model for all structures are presented, and these are analysed to reflect the impact of synchrotron sources. The results confirm the common impression that synchrotron sources extend the size of structures that can be solved with equivalent or better quality than home sources

  11. Investigation of economics of nuclear fuel cycle options in the Republic of Korea based on once-through - 5468

    International Nuclear Information System (INIS)

    Cho, S.K.; Yim, M.S.

    2015-01-01

    This study performs an economic evaluation of future nuclear fuel cycle options based on once-through strategy. Various factors of the future development in Korea are also considered including nuclear phase-out, continuous use of nuclear energy at varying growth rate, and the reunification of the Korean peninsula. A spreadsheet model is developed as part of the methodology of screening material flow and economic evaluation and results are discussed for policy planning for Korea as well as for nuclear developing countries. Results indicated that economics improves as the size of nuclear power system increases. We found some significant factors that affect LCOE (levelized cost of electricity) of the back end fuel cycle. Expanded nuclear power program with further construction of nuclear power plant (continuous use and/or the reunification) is a major political variable for LCOE. To keep the cost of nuclear power as low as possible, it is very important to have a proper strategy for the back-end fuel cycle including decommissioning. For continued use of nuclear energy, the Korea needs to develop soon a long-term policy for the back-end fuel cycle rather than taking the 'sit and watch' approach to make best out of the use of nuclear power into the future

  12. The profile of the electron beam in the PTB synchrotron, and its influence on radiometric measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Kaase, H.

    1976-01-01

    A simple method is described to determine the beam profile in an electron synchrotron; the measured results are compared with calculated values. Moreover, the influence of synchrotron- and betatron-oscillations on synchrotron radiation measurements is discussed, and a method is given to correct this. (orig.) [de

  13. Synchrotron infrared spectromicroscopy as a novel bioanalytical microprobe for individual living cells: Cytotoxicity considerations

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Bjornstad, Kathleen A.; McNamara, Morgan P.; Martin, Michael C.; McKinney, Wayne R.; Blakely, Eleanor A.

    2001-12-12

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging analytical tool capable of monitoring the biochemistry within an individual living mammalian cell in real time. This unique technique provides infrared (IR)spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Mid-IR photons are too low in energy (0.05-0.5 eV) to either break bonds or to cause ionization, and the synchrotron IR beam has been shown to produce minimal sample heating. However, an important question remains, ''Does the intense synchrotron beam induce any cytotoxic effects in living cells?'' In this work, we present the results from a series of standard biological assays to evaluate any short-and/or long-term effects on cells exposed to the synchrotron radiation-based infrared (SR-IR) beam. Cell viability was tested using alcian blue dye-exclusion and colony formation assays. Cell-cycle progression was tested with bromodeoxyuridine (BrdU) uptake during DNA synthesis. Cell metabolism was tested using an 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. All control, 5-, 10-, and 20-minute SR-IR exposure tests (267 total and over 1000 controls) show no evidence of cytotoxic effects. Concurrent infrared spectra obtained with each experiment confirm no detectable chemistry changes between control and exposed cells.

  14. An analysis of international nuclear fuel supply options

    Science.gov (United States)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet

  15. Advanced nuclear fuel cycles and radioactive waste management

    International Nuclear Information System (INIS)

    2006-01-01

    This study analyses a range of advanced nuclear fuel cycle options from the perspective of their effect on radioactive waste management policies. It presents various fuel cycle options which illustrate differences between alternative technologies, but does not purport to cover all foreseeable future fuel cycles. The analysis extends the work carried out in previous studies, assesses the fuel cycles as a whole, including all radioactive waste generated at each step of the cycles, and covers high-level waste repository performance for the different fuel cycles considered. The estimates of quantities and types of waste arising from advanced fuel cycles are based on best available data and experts' judgement. The effects of various advanced fuel cycles on the management of radioactive waste are assessed relative to current technologies and options, using tools such as repository performance analysis and cost studies. (author)

  16. Economic Analysis of Several Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Gao, Fanxing; Kim, Sung Ki

    2012-01-01

    Economics is one of the essential criteria to be considered for the future deployment of the nuclear power. With regard to the competitive power market, the cost of electricity from nuclear power plants is somewhat highly competitive with those from the other electricity generations, averaging lower in cost than fossil fuels, wind, or solar. However, a closer look at the nuclear power production brings an insight that the cost varies within a wide range, highly depending on a nuclear fuel cycle option. The option of nuclear fuel cycle is a key determinant in the economics, and therefrom, a comprehensive comparison among the proposed fuel cycle options necessitates an economic analysis for thirteen promising options based on the material flow analysis obtained by an equilibrium model as specified in the first article (Modeling and System Analysis of Different Fuel Cycle Options for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation). The objective of the article is to provide a systematic cost comparison among these nuclear fuel cycles. The generation cost (GC) generally consists of a capital cost, an operation and maintenance cost (O and M cost), a fuel cycle cost (FCC), and a decontaminating and decommissioning (D and D) cost. FCC includes a frontend cost and a back-end cost, as well as costs associated with fuel recycling in the cases of semi-closed and closed cycle options. As a part of GC, the economic analysis on FCC mainly focuses on the cost differences among fuel cycle options considered and therefore efficiently avoids the large uncertainties of the Generation-IV reactor capital costs and the advanced reprocessing costs. However, the GC provides a more comprehensive result covering all the associated costs, and therefrom, both GC and FCC have been analyzed, respectively. As a widely applied tool, the levelized cost (mills/KWh) proves to be a fundamental calculation principle in the energy and power industry, which is particularly

  17. Automated tuning of the advanced photon source booster synchrotron

    International Nuclear Information System (INIS)

    Biedron, S.G.; Milton, S.V.

    1997-01-01

    The acceleration cycle of the Advanced Photon Source (APS) booster synchrotron is completed within 223 ms and is repeated at 2 Hz. Unless properly corrected, transverse and longitudinal injection errors can lead to inefficient booster performance. In order to simplify daily operation, automated tuning methods have been developed. Through the use of beam position monitor (BPM) reading, transfer line corrector magnets, magnet ramp timing, and empirically determined response functions, the injection process is optimized by correcting the first turn trajectory to the measured closed orbit. These tuning algorithms and their implementation are described here along with an evaluation of their performance

  18. Support for Synchrotron Access by Environmental Scientists

    International Nuclear Information System (INIS)

    Daly, Michael; Madden, Andrew; Palumbo, Anthony; Qafoku, N.

    2006-01-01

    To support ERSP-funded scientists in all aspects of synchrotron-based research at the Advanced Photon Source (APS). This support comes in one or more of the following forms: (1) writing proposals to the APS General User (GU) program, (2) providing time at MRCAT/EnviroCAT beamlines via the membership of the Molecular Environmental Science (MES) Group in MRCAT/EnviroCAT, (3) assistance in experimental design and sample preparation, (4) support at the beamline during the synchrotron experiment, (5) analysis and interpretation of the synchrotron data, and (6) integration of synchrotron experimental results into manuscripts

  19. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    International Nuclear Information System (INIS)

    Lutz, James; Lekov, Alex; Chan, Peter; Whitehead, Camilla Dunham; Meyers, Steve; McMahon, James

    2006-01-01

    In 2001, the US Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered

  20. Protein Data Bank depositions from synchrotron sources.

    Science.gov (United States)

    Jiang, Jiansheng; Sweet, Robert M

    2004-07-01

    A survey and analysis of Protein Data Bank (PDB) depositions from international synchrotron radiation facilities, based on the latest released PDB entries, are reported. The results (http://asdp.bnl.gov/asda/Libraries/) show that worldwide, every year since 1999, more than 50% of the deposited X-ray structures have used synchrotron facilities, reaching 75% by 2003. In this web-based database, all PDB entries among individual synchrotron beamlines are archived, synchronized with the weekly PDB release. Statistics regarding the quality of experimental data and the refined model for all structures are presented, and these are analysed to reflect the impact of synchrotron sources. The results confirm the common impression that synchrotron sources extend the size of structures that can be solved with equivalent or better quality than home sources.

  1. Synchrotron radiation from spherically accreting black holes

    International Nuclear Information System (INIS)

    Ipser, J.R.; Price, R.H.

    1982-01-01

    Spherical accretion onto a Schwartzchild black hole, of gas with frozen-in magnetic field, is studied numerically and analytically for a range of hole masses and accretion rates in which synchrotron emission is the dominant radiative mechanism. At small radii the equipartition of magnetic, kinetic, and gravitational energy is assumed to apply, and the gas is heated by dissipation of infalling magnetic energy, turbulent energy, etc. The models can be classified into three types: (a) synchrotron cooling negligible, (b) synchrotron cooling important but synchrotron self-absorption negligible, (c) synchrotron cooling and self-absorption important. In the first case gas temperatures become very high near the horizon but luminosity efficiencies (luminosity/mass-energy accretion rate) are low. In cases (b) and (c) the gas flow near the horizon is essentially isothermal and luminosity efficiencies are fairly high. The analysis and results for the isothermal cases (b) and (c) are valid only for moderate dissipative heating and synchrotron self-absorption. If self-absorption is very strong or if dissipated energy is comparable to infall energy, Comptonization effects, not included in the analysis, become important

  2. Life cycle assessment of mobility options using wood based fuels--comparison of selected environmental effects and costs.

    Science.gov (United States)

    Weinberg, Jana; Kaltschmitt, Martin

    2013-12-01

    An environmental assessment and a cost analysis were conducted for mobility options using electricity, hydrogen, ethanol, Fischer-Tropsch diesel and methane derived from wood. Therefore, the overall life cycle with regard to greenhouse gas emissions, acidifying emissions and fossil energy demand as well as costs is analysed. The investigation is carried out for mobility options in 2010 and gives an outlook to the year 2030. Results show that methane utilization in the car is beneficial with regard to environmental impacts (e.g. 58.5 g CO2-eq./km) and costs (23.1 €-ct./km) in 2010, especially in comparison to hydrogen usage (132.4 g CO2-eq./km and 63.9 €-ct./km). The electric vehicle construction has high environmental impacts and costs compared to conventional vehicles today, but with technical improvements and further market penetration, battery electric vehicles can reach the level of concepts with combustion engines in future applications (e.g. cost decrease from 38.7 to 23.4 €-ct./km). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Synchrotron radiation

    International Nuclear Information System (INIS)

    Helliwell, J.R.; Walker, R.P.

    1985-01-01

    A detailed account of the research work associated with the Synchrotron Radiation Source at Daresbury Laboratory, United Kingdom, in 1984/85, is presented in the Appendix to the Laboratory's Annual Report. (U.K.)

  4. SU-E-T-266: Development of Evaluation System of Optimal Synchrotron Controlling Parameter for Spot Scanning Proton Therapy with Multiple Gate Irradiations in One Operation Cycle

    International Nuclear Information System (INIS)

    Yamada, T; Fujii, Y; Miyamoto, N; Matsuura, T; Takao, S; Matsuzaki, Y; Koyano, H; Shirato, H; Nihongi, H; Umezawa, M; Matsuda, K; Umegaki, K

    2015-01-01

    Purpose: We have developed a gated spot scanning proton beam therapy system with real-time tumor-tracking. This system has the ability of multiple-gated irradiation in a single synchrotron operation cycle controlling the wait-time for consecutive gate signals during a flat-top phase so that the decrease in irradiation efficiency induced by irregular variation of gate signal is reduced. Our previous studies have shown that a 200 ms wait-time is appropriate to increase the average irradiation efficiency, but the optimal wait-time can vary patient by patient and day by day. In this research, we have developed an evaluation system of the optimal wait-time in each irradiation based on the log data of the real-time-image gated proton beam therapy (RGPT) system. Methods: The developed system consists of logger for operation of RGPT system and software for evaluation of optimal wait-time. The logger records timing of gate on/off, timing and the dose of delivered beam spots, beam energy and timing of X-ray irradiation. The evaluation software calculates irradiation time in the case of different wait-time by simulating the multiple-gated irradiation operation using several timing information. Actual data preserved in the log data are used for gate on and off time, spot irradiation time, and time moving to the next spot. Design values are used for the acceleration and deceleration times. We applied this system to a patient treated with the RGPT system. Results: The evaluation system found the optimal wait-time of 390 ms that reduced the irradiation time by about 10 %. The irradiation time with actual wait-time used in treatment was reproduced with accuracy of 0.2 ms. Conclusion: For spot scanning proton therapy system with multiple-gated irradiation in one synchrotron operation cycle, an evaluation system of the optimal wait-time in each irradiation based on log data has been developed. Funding Support: Japan Society for the Promotion of Science (JSPS) through the FIRST

  5. Spin dynamics in electron synchrotrons

    International Nuclear Information System (INIS)

    Schmidt, Jan Felix

    2017-01-01

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  6. Answering Key Fuel Cycle Questions

    International Nuclear Information System (INIS)

    Piet, S.J.; Dixon, B.W.; Bennett, R.G.; Smith, J.D.; Hill, R.N.

    2004-01-01

    Given the range of fuel cycle goals and criteria, and the wide range of fuel cycle options, how can the set of options eventually be narrowed in a transparent and justifiable fashion? It is impractical to develop all options. We suggest an approach that starts by considering a range of goals for the Advanced Fuel Cycle Initiative (AFCI) and then posits seven questions, such as whether Cs and Sr isotopes should be separated from spent fuel and, if so, what should be done with them. For each question, we consider which of the goals may be relevant to eventually providing answers. The AFCI program has both ''outcome'' and ''process'' goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geologic repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are rea diness to proceed and adaptability and robustness in the face of uncertainties

  7. Direct observation of the phase space footprint of a painting injection in the Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    P. K. Saha

    2009-04-01

    Full Text Available The 3 GeV Rapid Cycling Synchrotron (RCS at Japan Proton Accelerator Research Complex is nearly at the operational stage with regard to the beam commissioning aspects. Recently, the design painting injection study has been commenced with the aim of high output beam power at the extraction. In order to observe the phase space footprint of the painting injection, a method was developed utilizing a beam position monitor (BPM in the so-called single pass mode. The turn-by-turn phase space coordinates of the circulating beam directly measured using a pair of BPMs entirely positioned in drift space, and the calculated transfer matrices from the injection point to the pair of BPMs with several successive turns were used together in order to obtain the phase space footprint of the painting injection. There are two such pairs of BPMs placed in two different locations in the RCS, the results from which both agreed and were quite consistent with what was expected.

  8. Direct observation of the phase space footprint of a painting injection in the Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Saha, P. K.; Shobuda, Y.; Hotchi, H.; Hayashi, N.; Takayanagi, T.; Harada, H.; Irie, Y.

    2009-04-01

    The 3 GeV Rapid Cycling Synchrotron (RCS) at Japan Proton Accelerator Research Complex is nearly at the operational stage with regard to the beam commissioning aspects. Recently, the design painting injection study has been commenced with the aim of high output beam power at the extraction. In order to observe the phase space footprint of the painting injection, a method was developed utilizing a beam position monitor (BPM) in the so-called single pass mode. The turn-by-turn phase space coordinates of the circulating beam directly measured using a pair of BPMs entirely positioned in drift space, and the calculated transfer matrices from the injection point to the pair of BPMs with several successive turns were used together in order to obtain the phase space footprint of the painting injection. There are two such pairs of BPMs placed in two different locations in the RCS, the results from which both agreed and were quite consistent with what was expected.

  9. Synchrotron Radiation

    International Nuclear Information System (INIS)

    Asfour, F.I

    2000-01-01

    Synchrotron light is produced by electron accelerators combined with storage rings. This light is generated over a wide spectral region; from infra-red (IR) through the visible and vacuum ultraviolet (VUV), and into the X-ray region. For relativistic electrons (moving nearly with the speed of light), most radiation is concentrated in a small cone with an opening angle of 1/gamma(some 0.1 to 1 milliradian),where gamma is the electron energy in units of rest energy (typically 10 3 -10 4 ). In synchrotron radiation sources (storage rings) highly relativistic electrons are stored to travel along a circular path for many hours. Radiation is caused by transverse acceleration due to magnetic forces(bending magnets). The radiation is emitted in pulses of 10-20 picosecond, separated by some 2 nanosecond or longer separation

  10. Fiber structural analysis by synchrotron radiation

    CERN Document Server

    Kojima, J I; Kikutani, T

    2003-01-01

    Topics of fiber structural analysis by synchrotron radiation are explained. There are only three synchrotron radiation facilities in the world, SPring-8 (Super Photon ring-8) in Japan, APS (Advanced Photon Source) in U.S.A. and ESRF (European Synchrotron Radiation Facility) in France. Online measurement of melt spinning process of PET and Nylon6 is explained in detail. Polypropylene and PBO (poly-p-phenylenebenzobisoxazole) was measured by WAXD (Wide Angle X-ray Diffraction)/SAXS (Small Angle X-ray Scattering) at the same time. Some examples of measure of drawing process of fiber are described. The structure formation process of spider's thread was measured. Micro beam of X-ray of synchrotron facility was improved and it attained to 65nm small angle resolving power by 10 mu m beamsize. (S.Y.)

  11. Radioactive Waste Generation in Pyro-SFR Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byung Heung; Ko, Won Il

    2011-01-01

    Which nuclear fuel cycle option to deploy is of great importance in the sustainability of nuclear power. SFR fuel cycle employing pyroprocessing (named as Pyro- SFR Cycle) is one promising fuel cycle option in the near future. Radioactive waste generation is a key criterion in nuclear fuel cycle system analysis, which considerably affects the future development of nuclear power. High population with small territory is one special characteristic of ROK, which makes the waste management pretty important. In this study, particularly the amount of waste generation with regard to the promising advanced fuel cycle option was evaluated, because the difficulty of deploying an underground repository for HLW disposal requires a longer time especially in ROK

  12. Nuclear Fuel Cycle System Analysis (I)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Kim, Ho Dong; Yoon, Ji Sup; Park, Seong Won

    2006-12-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle, and evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance and economics. The analysis shows that the GEN-IV Recycle appears to have an advantage in terms of sustainability, environment-friendliness and long-term proliferation-resistance, while it is expected to be more economically competitive, if uranium ore prices increase or costs of pyroprocessing and fuel fabrication decrease.

  13. Research using synchrotron radiation at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1982-01-01

    The National Synchrotron Light Source (NSLS) is now becoming operational with synchrotron radiation experiments beginning on the 700 MeV VUV electron storage ring. Commissioning of the 2.5 GeV x-ray storage ring has also begun with the experimental program expected to begin in 1983. The current status of the experimental program and instrumentation and the plans for future developments, will be discussed. Although some early results have been obtained on VUV beam lines no attempt will be made in this paper to describe them. Instead, an overview of the beam line characteristics will be given, with an indication of those already operational. In the oral presentation some initial experimental results will be discussed

  14. Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.

    2009-01-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe 'lessons learned' from dynamic simulations but attempt to answer the 'so what' question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof

  15. Synchrotron radiation applications in medical research

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1995-01-01

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ''gold standards'' to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications

  16. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J.; Lekov, A.; Chan, P.; Dunham Whitehead, C.; Meyers, S.; McMahon, J. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Environmental Energy Technologies Div.

    2006-03-01

    In 2001, the US Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered. (author)

  17. Atoms, molecules, clusters and synchrotron radiation

    International Nuclear Information System (INIS)

    Kui Rexi; Ju Xin

    1995-01-01

    The importance of synchrotron radiation, especially the third generation synchrotron radiation light source, in atomic, molecular and cluster physics is discussed and some views are presented on new methods which may become available for research in the above fields

  18. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays

    International Nuclear Information System (INIS)

    Yamashita, M.; Konishi, H.; Kozakura, T.; Mizuki, J.; Uchida, H.

    2005-01-01

    Atmospheric corrosion of steel proceeds under thin electrolyte film formed by rain and dew condensation followed by wet and dry cycles. It is said that rust layer formed on steel as a result of atmospheric corrosion strongly affects the corrosion behavior of steel. The effect of environmental corrosiveness on the formation process and structure of the rust layer is, however, not clear to date. In this study, in situ observation of the rusting process of a carbon steel covered with a thin film of Na 2 SO 4 or NaCl solution was performed under a wet/dry repeating condition by X-ray diffraction spectroscopy with white X-rays obtained from synchrotron radiation. The present in situ experiments successfully detected initial process of the rust formation. In the early cycles, the rust constituents were not well crystallized yet, but the presence of Fe(OH) 2 and Fe(OH) 3 was confirmed. In the subsequent cycles, two different solutions resulted in difference in preferential phase of the rust constituents. α-FeOOH was preferentially formed in the case of the Na 2 SO 4 solution film, whereas β-FeOOH appeared only under the NaCl solution film

  19. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  20. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  1. Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond

    International Nuclear Information System (INIS)

    Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M.

    2012-01-01

    The Enhanced CANDU 6 R (ECo R ) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

  2. Medical applications with synchrotron radiation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Tsukuba (Japan); Hyodo, K.; Ando, M. [KEK, Tsukuba (Japan); Akatsuka, T. [Yamagata Univ., Faculty of Engineering, Yamagata (Japan); Uyama, C. [National Cardiovascular Centre, Suita (Japan)

    1998-05-01

    In Japan, various medical applications of synchrotron X-ray imaging, such as angiography, monochromatic X-ray computed tomography (CT), radiography and radiation therapy, are being developed. In particular, coronary arteriography (CAG) is quite an important clinical application of synchrotron radiation. Using a two-dimensional imaging method, the first human intravenous CAG was carried out at KEK in May 1996; however, further improvements of image quality are required in clinical practice. On the other hand, two-dimensional aortographic CAG revealed canine coronary arteries as clearly as those on selective CAG, and coronary arteries less than 0.2 mm in diameter. Among applications of synchrotron radiation to X-ray CT, phase-contrast X-ray CT and fluorescent X-ray CT are expected to be very interesting future applications of synchrotron radiation. For actual clinical applications of synchrotron radiation, a medical beamline and a laboratory are now being constructed at SPring-8 in Harima. 55 refs.

  3. Experience with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Krinsky, S.

    1987-01-01

    The development of synchrotron radiation sources is discussed, emphasizing characteristics important for x-ray microscopy. Bending magnets, wigglers and undulators are considered as sources of radiation. Operating experience at the national Synchrotron Light Source on the VUV and XRAY storage rings is reviewed, with particular consideration given to achieved current and lifetime, transverse bunch dimensions, and orbit stability. 6 refs., 3 figs

  4. Coherence Inherent in an Incoherent Synchrotron Radio Source ...

    Indian Academy of Sciences (India)

    It is well known that synchrotron radiation mechanism does not allow MASER type coherent emission (Pacholczyk 1970). Here we show that coherence can naturally occur in a synchrotron ... cally thick region (Fig. 1), then divides the synchrotron spectrum into an incoherent. 1A thin flat circular unleavened Indian bread.

  5. Synchrotron light sources in developing countries

    Science.gov (United States)

    Mtingwa, Sekazi K.; Winick, Herman

    2018-03-01

    We discuss the role that synchrotron light sources, such as SESAME, could play in improving the socioeconomic conditions in developing countries. After providing a brief description of a synchrotron light source, we discuss the important role that they played in the development of several economically emerging countries. Then we describe the state of synchrotron science in South Africa and that country’s leadership role in founding the African Light Source initiative. Next, we highlight a new initiative called Lightsources for Africa, the Americas & Middle East Project, which is a global initiative led by the International Union of Pure and Applied Physics and the International Union of Crystallography, with initial funding provided by the International Council for Science. Finally, we comment on a new technology called the multibend achromat that has launched a new paradigm for the design of synchrotron light sources that should be attractive for construction in developing countries.

  6. Planning study for advanced national synchrotron-radiation facilities

    International Nuclear Information System (INIS)

    1984-01-01

    A new generation of synchrotron-radiation sources based on insertion devices offers gains in photon-beam brilliance as large as the gains that present-day synchrotron sources provided over conventional sources. This revolution in synchrotron capability and its impact on science and technology will be as significant as the original introduction of synchrotron radiation. This report recommends that insertion-device technology be pursued as our highest priority, both through the full development of insertion-device potential on existing machines and through the building of new facilities

  7. Overview and perspective of materials characterization by using synchrotron radiation

    International Nuclear Information System (INIS)

    Kamitsubo, Hiromichi

    2009-01-01

    A peculiarity of techniques and the methods of synchrotron radiation are explained. It consists of five sections such as introduction, synchrotron radiation, interaction between X-ray and materials, analytical methods of materials using synchrotron radiation and perspective and problems. The second section described the principles of synchrotron orbit radiation, synchrotron light source, the main formulae and schematic drawing of undulator, and the synchrotron radiation facilities in Japan. The third section explained behavior of X-ray in materials, absorption, reflection, refraction and scattering of X-ray. The fourth section stated many analytical methods of materials; the surface diffractometer, powder diffractometer, high-energy X-ray diffraction, core-electron absorption spectroscopy, micro-beam diffraction, X-ray fluorescence, X-ray absorption fine structure (XAFS), and photoemission spectroscopy (PES). A characteristic feature of synchrotron radiation contains the large wave length ranges from infrared to X-ray, high directivity and brightness, linear (circular) polarization, pulsed light, good control and stability. The brightness spectra of Spring-8 and SAGA-LS, concept of synchrotron light source, undulator and wiggler, nine synchrotron radiation facilities in Japan, mass absorption coefficients of Cu and Au, and analysis of materials using synchrotron radiation are illustrated. (S.Y.)

  8. Overview of Industrial Synchrotron Radiation Use

    Science.gov (United States)

    Laderman, Stephen S.

    1996-03-01

    Relevant, reliable and accessible synchrotron radiation methods can play an important role in industrial activities. To date, the application of synchrotron radiation based materials characterization methods by industrial concerns has followed the path of laboratory based x-ray methods: early adoption, continuous improvement, and a high degree of specialization to meet specific goals, which may change over time. Like all x-ray methods, their applicability to segments of the biotechnology, chemical, electronics, medical and metallurgical industries arises from a need to develop sophisticated processes for precisely controlling microstructures. An increasing number of those processes are being developed in ways which can, in principle, be more effectively studied if synchrotron radiation based analyses are performed. Technical limitations confined the efforts of early synchrotron radiation users to long-range research investigations. Nowadays, progress in data collection methods, analysis algorithims, accelerator performance, and worker training, have removed many constraints. However, commercial technologies are being improved at steadily higher rates, shortening the time between research, development and manufacturing and, in many cases, blurring their distinctions. Certainly, rapid rates of innovation increase the opportunities for synchrotron radiation techniques to bring competitive advantage since they can be used to shrink development times, to maintain yields and, perhaps, as part of advanced manufacturing. At the same time, rapid rates of innovation also impose stringent criteria on the reliability and timeliness of the supporting methods. Successful conventional x-ray methods have resulted from efforts to create useful new capabilities that effectively balance such forces. Currently, synchrotron radiation users throughout the world are pursuing analogous goals.

  9. Economic evaluation of multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Kuno, Yusuke; Omoto, Akira; Tanaka, Satoru

    2011-01-01

    Recently previous works have shown that multilateral nuclear fuel cycle approach has benefits not only of non-proliferation but also of cost effectiveness. This is because for most facilities in nuclear fuel cycle, there exist economies of scale, which has a significant impact on the costs of nuclear fuel cycle. Therefore, the evaluation of economic rationality is required as one of the evaluation factors for the multilateral nuclear fuel cycle approach. In this study, we consider some options with respect to multilateral approaches to nuclear fuel cycle in Asian-Pacific region countries that are proposed by the University of Tokyo. In particular, the following factors are embedded into each type: A) no involvement of assurance of services, B) provision of assurance of services including construction of new facility, without transfer of ownership, and C) provision of assurance of service including construction of new joint facilities with ownership transfer of facilities to multilateral nuclear fuel cycle approach. We show the overnight costs taking into account install and operation of nuclear fuel cycle facilities for each option. The economic parameter values such as uranium price, scale factor, and market output expansion influences the total cost for each option. Thus, we show how these parameter values and economic risks affect the total overnight costs for each option. Additionally, the international facilities could increase the risk of transportation for nuclear material compared to national facilities. We discuss the potential effects of this transportation risk on the costs for each option. (author)

  10. The Australian synchrotron research program

    International Nuclear Information System (INIS)

    Garrett, R.F.

    1998-01-01

    Full text: The Australian Synchrotron Research Program (ASRP) was established in 1996 under a 5 year grant from the Australian Government, and is managed by ANSTO on behalf of a consortium of Australian universities and research organisations. It has taken over the operation of the Australian National Beamline Facility (ANBF) at the Photon Factory, and has joined two CATS at the Advanced Photon Source: the Synchrotron Radiation Instrumentation CAT (SRI-CAT) and the Consortium for Advanced Radiation Sources (CARS). The ASRP thus manages a comprehensive range of synchrotron radiation research facilities for Australian science. The ANBF is a general purpose hard X-ray beamline which has been in operation at the Photon Factory since 1993. It currently caters for about 35 Australian research teams per year. The facilities available at the ANBF will be presented and the research program will be summarised. The ASRP facilities at the APS comprise the 5 sectors operated by SRI-CAT, BioCARS and ChemMatCARS. A brief description will be given of the ASRP research programs at the APS, which will considerably broaden the scope of Australian synchrotron science

  11. ENDIX. A computer program to simulate energy dispersive X-ray and synchrotron powder diffraction diagrams

    International Nuclear Information System (INIS)

    Hovestreydt, E.; Karlsruhe Univ.; Parthe, E.; Benedict, U.

    1987-01-01

    A Fortran 77 computer program is described which allows the simulation of energy dispersive X-ray and synchrotron powder diffraction diagrams. The input consists of structural data (space group, unit cell dimensions, atomic positional and displacement parameters) and information on the experimental conditions (chosen Bragg angle, type of X-ray tube and applied voltage or operating power of synchrotron radiation source). The output consists of the normalized intensities of the diffraction lines, listed by increasing energy (in keV), and of an optional intensity-energy plot. The intensities are calculated with due consideration of the wave-length dependence of both the anomalous dispersion and the absorption coefficients. For a better agreement between observed and calculated spectra provision is made to optionally superimpose, on the calculated diffraction line spectrum, all additional lines such as fluorescence and emission lines and escape peaks. The different effects which have been considered in the simulation are discussed in some detail. A sample calculation of the energy dispersive powder diffraction pattern of UPt 3 (Ni 3 Sn structure type) is given. Warning: the user of ENDIX should be aware that for a successful application it is necessary to adapt the program to correspond to the actual experimental conditions. Even then, due to the only approximately known values of certain functions, the agreement between observed and calculated intensities will not be as good as for angle dispersive diffraction methods

  12. Synchrotrons are also devoted to society

    International Nuclear Information System (INIS)

    Gacoin, M.P.; Cornuejols, D.; Cotte, M.; Deblay, P.; Mitchell, E.P.; McCarthy, J.; Fraissard, F.

    2013-01-01

    The ESRF and the SOLEIL synchrotrons are not only scientific instruments but also active players in the cultural and economic fields. This document gathers 6 short articles. The 2 first present the actions of SOLEIL and ESRS scientific teams towards the spreading of scientific knowledge in the public. The third article is dedicated to the uses of synchrotron radiation to the study of cultural objects to learn more about their fabrication, present state or the remedial actions that could be used to renovate them. The fourth and fifth articles present the contributions of ESRF and SOLEIL to the industrial world, in fact these contributions are not limited to the research field but also appear for quality assurance or the control of aging processes. Partnerships have been signed between both synchrotrons and enterprises to develop industrial products based on instrumentation or on the use of synchrotron radiation. The last article describes the procedure to have access to both facilities. (A.C.)

  13. Properties of synchrotron radiation

    International Nuclear Information System (INIS)

    Materlik, G.

    1982-01-01

    This paper forms the introductory chapter to a book concerning the use of synchrotron radiation for investigation of the structure and mechanism of biological macromolecules. After a historical section, the physics of synchrotron radiation is summarized so that the most promising experiments may be extrapolated. Irradiated power and intensity, polarization and angular distribution, brilliance of a real source, and developments such as wigglers and undulators are briefly dealt with. The paper includes a tabulated compilation of proposed and operating machines in 1982, with some of their characteristics. (U.K.)

  14. Core design options for high conversion BWRs operating in Th–233U fuel cycle

    International Nuclear Information System (INIS)

    Shaposhnik, Y.; Shwageraus, E.; Elias, E.

    2013-01-01

    Highlights: • BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. • Seed blanket optimization that includes assembly size array and axial dimensions. • Fully coupled MC with fuel depletion and thermo-hydraulic feedback modules. • Thermal-hydraulic analysis includes MCPR observation. -- Abstract: Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone “sandwiched” between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233 U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design

  15. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections

  16. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  17. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Dixon, B.W.; Piet, S.J.

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected

  18. Synchrotron radiation applications in biophysics and medicine

    International Nuclear Information System (INIS)

    Burattini, E.

    1985-01-01

    The peculiar properties of synchrotron radiation are briefly summarized. A short review on the possible applications of synchrotron radiation in two important fields like Biophysics and Medicine is presented. Details are given on experiments both in progress and carried out in many synchrotron radiation facilities, all over the world, using different techniques like X-ray absorption and fluorescence spectroscopy, X-ray fluorescence microanalysis, X-ray microscopy and digital subtraction angiography. Some news about the photon-activation therapy are briefly reported too

  19. Space-charge calculations in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Machida, S.

    1993-05-01

    One obvious bottleneck of achieving high luminosity in hadron colliders, such as the Superconducting Super Collider (SSC), is the beam emittance growth, due to space-charge effects in low energy injector synchrotrons. Although space-charge effects have been recognized since the alternating-gradient synchrotron was invented, and the Laslett tune shift usually calculated to quantify these effects, our understanding of the effects is limited, especially when the Laslett tune shift becomes a large fraction of the integer. Using the Simpsons tracking code, which we developed to study emittance preservation issues in proton synchrotrons, we investigated space-charge effects in the SSC Low Energy Booster (LEB). We observed detailed dependence on parameters such as beam intensity, initial emittance, injection energy, lattice function, and longitudinal motion. A summary of those findings, as well as the tracking technique we developed for the study, are presented.

  20. Control system options and strategies for supercritical CO2 cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Kulesza, K. P.; Sienicki, J. J.; Nuclear Engineering Division; Oregon State Univ.

    2009-06-18

    The Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton Cycle is a promising alternative to Rankine steam cycle and recuperated gas Brayton cycle energy converters for use with Sodium-Cooled Fast Reactors (SFRs), Lead-Cooled Fast Reactors (LFRs), as well as other advanced reactor concepts. The S-CO{sub 2} Brayton Cycle offers higher plant efficiencies than Rankine or recuperated gas Brayton cycles operating at the same liquid metal reactor core outlet temperatures as well as reduced costs or size of key components especially the turbomachinery. A new Plant Dynamics Computer Code has been developed at Argonne National Laboratory for simulation of a S-CO{sub 2} Brayton Cycle energy converter coupled to an autonomous load following liquid metal-cooled fast reactor. The Plant Dynamics code has been applied to investigate the effectiveness of a control strategy for the S-CO{sub 2} Brayton Cycle for the STAR-LM 181 MWe (400 MWt) Lead-Cooled Fast Reactor. The strategy, which involves a combination of control mechanisms, is found to be effective for controlling the S-CO{sub 2} Brayton Cycle over the complete operating range from 0 to 100 % load for a representative set of transient load changes. While the system dynamic analysis of control strategy performance for STARLM is carried out for a S-CO{sub 2} Brayton Cycle energy converter incorporating an axial flow turbine and compressors, investigations of the S-CO{sub 2} Brayton Cycle have identified benefits from the use of centrifugal compressors which offer a wider operating range, greater stability near the critical point, and potentially further cost reductions due to fewer stages than axial flow compressors. Models have been developed at Argonne for the conceptual design and performance analysis of centrifugal compressors for use in the SCO{sub 2} Brayton Cycle. Steady state calculations demonstrate the wider operating range of centrifugal compressors versus axial compressors installed in a S-CO{sub 2} Brayton Cycle as

  1. Control system options and strategies for supercritical CO2 cycles

    International Nuclear Information System (INIS)

    Moisseytsev, A.; Kulesza, K.P.; Sienicki, J.J.

    2009-01-01

    The Supercritical Carbon Dioxide (S-CO 2 ) Brayton Cycle is a promising alternative to Rankine steam cycle and recuperated gas Brayton cycle energy converters for use with Sodium-Cooled Fast Reactors (SFRs), Lead-Cooled Fast Reactors (LFRs), as well as other advanced reactor concepts. The S-CO 2 Brayton Cycle offers higher plant efficiencies than Rankine or recuperated gas Brayton cycles operating at the same liquid metal reactor core outlet temperatures as well as reduced costs or size of key components especially the turbomachinery. A new Plant Dynamics Computer Code has been developed at Argonne National Laboratory for simulation of a S-CO 2 Brayton Cycle energy converter coupled to an autonomous load following liquid metal-cooled fast reactor. The Plant Dynamics code has been applied to investigate the effectiveness of a control strategy for the S-CO 2 Brayton Cycle for the STAR-LM 181 MWe (400 MWt) Lead-Cooled Fast Reactor. The strategy, which involves a combination of control mechanisms, is found to be effective for controlling the S-CO 2 Brayton Cycle over the complete operating range from 0 to 100 % load for a representative set of transient load changes. While the system dynamic analysis of control strategy performance for STARLM is carried out for a S-CO 2 Brayton Cycle energy converter incorporating an axial flow turbine and compressors, investigations of the S-CO 2 Brayton Cycle have identified benefits from the use of centrifugal compressors which offer a wider operating range, greater stability near the critical point, and potentially further cost reductions due to fewer stages than axial flow compressors. Models have been developed at Argonne for the conceptual design and performance analysis of centrifugal compressors for use in the SCO 2 Brayton Cycle. Steady state calculations demonstrate the wider operating range of centrifugal compressors versus axial compressors installed in a S-CO 2 Brayton Cycle as well as the benefits in expanding the range

  2. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  3. Macromolecular crystallography using synchrotron radiation

    International Nuclear Information System (INIS)

    Bartunik, H.D.; Phillips, J.C.; Fourme, R.

    1982-01-01

    The use of synchrotron X-ray sources in macromolecular crystallography is described. The properties of synchrotron radiation relevant to macromolecular crystallography are examined. The applications discussed include anomalous dispersion techniques, the acquisition of normal and high resolution data, and kinetic studies of structural changes in macromolecules; protein data are presented illustrating these applications. The apparatus used is described including information on the electronic detectors, the monitoring of the incident beam and crystal cooling. (U.K.)

  4. Life-cycle air emissions from PV power systems

    International Nuclear Information System (INIS)

    Watt, M.E.; Johnson, A.J.; Outhred, H.R.; Ellis, M.

    1998-01-01

    This paper addresses the air emission of grid supply versus grid-connected and off-grid photovoltaic power generation, using the framework of life-cycle assessment, in the contents of rural household energy supply in Australia. Emissions of carbon dioxide, sulphur dioxde and nitrous oxides are calculated for the three life-cycle stages of manufacture, use and disposal. Sensitivities to materials and data inputs, as well as to component efficiencies, lifetimes and sizing are discussed. For each supply option, demand management options, including insulation and appliance choice, and the substitution of solar heating or bottled gas for electricity are considered. The best option in all cases, in terms of life-cycle air emissions, is a grid-connected photovoltaic system used to supply an energy-efficient household with a mix of solar, gas and electric appliances. However, in financial terms, with current Australian energy prices, this option represents a high capital and life-cycle costs. Additionally, for the grid options, electricity costs do not significantly disadvantage the high demand scenarios. Both results provide a clear illustration of current Australian energy-pricing policies being in conflict with long-term environmental sustainability. (Author)

  5. Radiological impacts of spent nuclear fuel management options

    International Nuclear Information System (INIS)

    Riotte, H.; Lazo, T.; Mundigl, S.

    2000-01-01

    An important technical study on radiological impacts of spent nuclear fuel management options, recently completed by the NEA, is intended to facilitate informed international discussions on the nuclear fuel cycle. The study compares the radiological impacts on the public and on nuclear workers resulting from two approaches to handling spent fuel from nuclear power plants: - the reprocessing option, that includes the recycling of spent uranium fuel, the reuse of the separated plutonium in MOX fuel, and the direct disposal of spent MOX fuel; and the once-through option, with no reprocessing of spent fuel, and its direct disposal. Based on the detailed research of a group of 18 internationally recognised experts, under NEA sponsorship, the report concludes that: The radiological impacts of both the reprocessing and the non-reprocessing fuel cycles studied are small, well below any regulatory dose limits for the public and for workers, and insignificantly low as compared with exposures caused by natural radiation. The difference in the radiological impacts of the two fuel cycles studied does not provide a compelling argument in favour of one option or the other. The study also points out that other factors, such as resource utilisation efficiency, energy security, and social and economic considerations would tend to carry more weight than radiological impacts in decision-making processes. (authors)

  6. PHOTOACOUSTIC SPECTROSCOPY USING A SYNCHROTRON LIGHT SOURCE

    International Nuclear Information System (INIS)

    JACKSON, R.S.; MICHAELIAN, K.H.; HOMES, C.C.

    2001-01-01

    We have investigated the use of a synchrotron as a source for infrared photoacoustic spectroscopy. A synchrotron has an intrinsically high radiance, which is beneficial when photoacoustic spectroscopy is applied to small samples, especially at long wavelengths

  7. Funding problems threaten Middle East's synchrotron

    CERN Multimedia

    McCabe, H

    1999-01-01

    Scientists will tour the Middle East to try to raise support for the Synchrotron radiation for Experimental Science and Applications in the Middle East project. The plan is to dismantle and move a decommissioned synchrotron from Berlin to the Middle East where scientists of any nationality would be able to use it (3 paragraphs).

  8. Application of synchrotron radiation to elemental analysis

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Hastings, J.B.; Howells, M.R.; Kraner, H.W.; Chen, J.R.

    1983-01-01

    The use of a synchrotron storage ring as a high brightness source for production of monoergic, variable energy, and highly polarized x-ray beams promises to revolutionize the field of elemental analysis. The results of exploratory work using the Cornell synchrotron facility, CHESS, will be described. Design considerations and features of the new X-Ray Microprobe Facility now under construction at the Brookhaven National Synchrotron Light Source will be presented. This facility will be used for bulk analysis and for microanalysis with an initial spatial resolution of the order of 30 μm

  9. Tune measurement in the NSLS booster synchrotron

    International Nuclear Information System (INIS)

    Blum, E.B.; Nawrocky, R.

    1993-01-01

    The NSLS booster synchrotron can accelerate an electron beam from approximately 80 to 750 MeV in 0.7 sec. The betatron tunes can change during acceleration by as much as 0.1 units, causing beam loss as they cross resonance lines. Precise measurements with a conventional swept spectrum analyzer have always been difficult because of the rapid variation of tune as the magnets are ramped. We are now using a system based on a Tektronix 3052 digital spectrum analyzer that can obtain a complete frequency spectrum over a 10 MHz bandwidth in 200 μsec. Betatron oscillations are stimulated for the measurements by applying white noise to the beam through stripline electrodes. We will describe the instrumentation, our measurements of tune as a function time during the acceleration cycle, and the resulting improvements to the booster operation

  10. Advanced fuel cycle cost estimation model and its cost estimation results for three nuclear fuel cycles using a dynamic model in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungki, E-mail: sgkim1@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ko, Wonil [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Youn, Saerom; Gao, Ruxing [University of Science and Technology, 217 Gajungro, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Bang, Sungsig, E-mail: ssbang@kaist.ac.kr [Korea Advanced Institute of Science and Technology, Department of Business and Technology Management, 291 Deahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2015-11-15

    Highlights: • The nuclear fuel cycle cost using a new cost estimation model was analyzed. • The material flows of three nuclear fuel cycle options were calculated. • The generation cost of once-through was estimated to be 66.88 mills/kW h. • The generation cost of pyro-SFR recycling was estimated to be 78.06 mills/kW h. • The reactor cost was identified as the main cost driver of pyro-SFR recycling. - Abstract: The present study analyzes advanced nuclear fuel cycle cost estimation models such as the different discount rate model and its cost estimation results. To do so, an analysis of the nuclear fuel cycle cost of three options (direct disposal (once through), PWR–MOX (Mixed OXide fuel), and Pyro-SFR (Sodium-cooled Fast Reactor)) from the viewpoint of economic sense, focusing on the cost estimation model, was conducted using a dynamic model. From an analysis of the fuel cycle cost estimation results, it was found that some cost gap exists between the traditional same discount rate model and the advanced different discount rate model. However, this gap does not change the priority of the nuclear fuel cycle option from the viewpoint of economics. In addition, the fuel cycle costs of OT (Once-Through) and Pyro-SFR recycling based on the most likely value using a probabilistic cost estimation except for reactor costs were calculated to be 8.75 mills/kW h and 8.30 mills/kW h, respectively. Namely, the Pyro-SFR recycling option was more economical than the direct disposal option. However, if the reactor cost is considered, the economic sense in the generation cost between the two options (direct disposal vs. Pyro-SFR recycling) can be changed because of the high reactor cost of an SFR.

  11. Contact microscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs

  12. Advanced nuclear fuel cycles - Main challenges and strategic choices

    International Nuclear Information System (INIS)

    Le Biez, V.; Machiels, A.; Sowder, A.

    2013-01-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness

  13. Advanced nuclear fuel cycles - Main challenges and strategic choices

    Energy Technology Data Exchange (ETDEWEB)

    Le Biez, V. [Corps des Mines, 35 bis rue Saint-Sabin, F-75011 Paris (France); Machiels, A.; Sowder, A. [Electric Power Research Institute, Inc. 3420, Hillview Avenue, Palo Alto, CA 94304 (United States)

    2013-07-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

  14. Evaluation and optimization of LWR fuel cycles

    International Nuclear Information System (INIS)

    Akbas, T.; Zabunoglu, O.; Tombakoglu, M.

    2001-01-01

    There are several options in the back-end of the nuclear fuel cycle. Discharge burn-up, length of interim storage period, choice of direct disposal or recycling and method of reprocessing in case of recycling affect the options and determine/define the fuel cycle scenarios. These options have been evaluated in viewpoint of some tangible (fuel cycle cost, natural uranium requirement, decay heat of high level waste, radiological ingestion and inhalation hazards) and intangible factors (technological feasibility, nonproliferation aspect, etc.). Neutronic parameters are calculated using versatile fuel depletion code ORIGEN2.1. A program is developed for calculation of cost related parameters. Analytical hierarchy process is used to transform the intangible factors into the tangible ones. Then all these tangible and intangible factors are incorporated into a form that is suitable for goal programming, which is a linear optimization technique and used to determine the optimal option among alternatives. According to the specified objective function and constraints, the optimal fuel cycle scenario is determined using GPSYS (a linear programming software) as a goal programming tool. In addition, a sensitivity analysis is performed for some selected important parameters

  15. Homogeneous Thorium Fuel Cycles in Candu Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada)

    2009-06-15

    The CANDU{sup R} reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy

  16. Synchrotron/crystal sample preparation

    Science.gov (United States)

    Johnson, R. Barry

    1993-01-01

    The Center for Applied Optics (CAO) of the University of Alabama in Huntsville (UAH) prepared this final report entitled 'Synchrotron/Crystal Sample Preparation' in completion of contract NAS8-38609, Delivery Order No. 53. Hughes Danbury Optical Systems (HDOS) is manufacturing the Advanced X-ray Astrophysics Facility (AXAF) mirrors. These thin-walled, grazing incidence, Wolter Type-1 mirrors, varying in diameter from 1.2 to 0.68 meters, must be ground and polished using state-of-the-art techniques in order to prevent undue stress due to damage or the presence of crystals and inclusions. The effect of crystals on the polishing and grinding process must also be understood. This involves coating special samples of Zerodur and measuring the reflectivity of the coatings in a synchrotron system. In order to gain the understanding needed on the effect of the Zerodur crystals by the grinding and polishing process, UAH prepared glass samples by cutting, grinding, etching, and polishing as required to meet specifications for witness bars for synchrotron measurements and for investigations of crystals embedded in Zerodur. UAH then characterized these samples for subsurface damage and surface roughness and figure.

  17. The Australian synchrotron

    International Nuclear Information System (INIS)

    Farhi, R.

    2005-06-01

    This document recalls the historical aspects of the Australian Synchrotron which will be implemented in 2007. It presents then the objectives of this program, the specifications of the ring and the light lines. (A.L.B.)

  18. Synchrotron radiation and structural proteomics

    CERN Document Server

    Pechkova, Eugenia

    2011-01-01

    This book presents an overview of the current state of research in both synchrotron radiation and structural proteomics from different laboratories worldwide. The book presents recent research results in the most advanced methods of synchrotron radiation analysis, protein micro- and nano crystallography, X-ray scattering and X-ray optics, coherent X-Ray diffraction, and laser cutting and contactless sample manipulation are described in details. The book focuses on biological applications and highlights important aspects such as radiation damage and molecular modeling.

  19. Dynamic response of a typical synchrotron magnet/girder assembly

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Smith, R.K.; Vogt, M.E.

    1993-06-01

    In the Advanced Photon Source, the synchrotron booster ring accelerates positrons to the required energy level of 7 GeV. The positrons are then injected into the storage ring where they continue to orbit for 10--15 h. The storage ring quadrupoles have very stringent vibration criteria that must be satisfied to ensure that beam emittance growth is within acceptable limits, viz., <10%. Because the synchrotron booster ring is not operated after particle insertion into the storage ring, its vibration response is not a critical issue relative to the performance of the storage ring beam. Nevertheless, the synchrotron pulses at a frequency of 2 Hz, and if a vibration response frequency of the synchrotron magnet/girder assembly were to coincide with the pulsation frequency or its near harmonics, large-amplitude motion could result, with the effect that it could compromise the operation of the synchrotron. Due to the complex dynamics of the synchrotron magnet/girder assembly, it is necessary to measure the dynamic response of a prototypic assembly and its components to ensure that the inherent dynamic response frequencies are not equal to 2 Hz or any near harmonics. Dynamic-response measurement of the synchrotron girder assembly and component magnets is the subject of this report

  20. Historical development of synchrotron x-ray diffraction topography

    International Nuclear Information System (INIS)

    Kawado, Seiji

    2011-01-01

    After a short history of X-ray diffraction topography, from the early stage of laboratory X-ray topography to recent synchrotron-radiation applications, is described, the development of science and technology for the synchrotron X-ray topography and its industrial applications are reviewed in more detail. In addition, the recent trend to synchrotron topography research is clarified on the basis of several data obtained from 256 papers which have been published since 2000. (author)

  1. Synchrotron radiation X-ray microfluorescence techniques

    Indian Academy of Sciences (India)

    Synchrotron X-ray imaging systems with fluorescence techniques was developed for biomedical researches in Brazilian Synchrotron Laboratory. An X-ray fluorescence microtomography system was implemented to analyse human prostate and breast samples and an X-ray microfluorescence system was implemented to ...

  2. Total and available metal contents in sediments by synchrotron radiation total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Moreira, Silvana; Sobrinho, Gilmar A.; Jesus, Edgar F.O. de; Lopes, Ricardo T.

    2002-01-01

    In this work the total and available contents of Al, Si, Cl, K, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Ba, Ce and Pb in sediments from river Atibaia were determined by Synchrotron Radiation Total Reflection X-Ray Fluorescence technique. The detection limits for K series varies from 200 ng.mL -1 for Al to 2 ng.mL -1 for Zn while for L series the value varies from 20 ng.mL -1 for Ba to 10 ng.mL -1 for Pb. The samples were submitted to two different processes, in order to obtain the total and biological available metal contents. The information about metal content is a important parameter for a correct evaluation about the hydrologic cycle in Piracicaba basin. All the measure were carried out at the National Synchrotron Light Laboratory, Campinas, SP, Brazil, using a white beam for excitation. (author)

  3. The synchrotron light source ROSY

    International Nuclear Information System (INIS)

    Einfeld, D.; Buettig, H.; Dienel, S.; Glaeser, W.; Goetz, T.; Guratzsch, H.; Hartmann, B.; Janssen, D.; Krug, H.; Linnemann, J.; Matz, W.; Murphy, J.B.; Neumann, W.; Oehme, W.; Picard, M.; Plesko, M.; Proehl, D.; Schlenk, R.; Tomassini, D.; Tyrroff, H.

    1994-01-01

    ROSY, a 3rd generation synchrotron light source, has been proposed to be built at the Research Center Rossendorf/Dresden in Germany. With its low emittance and optimized space for installing insertion devices ROSY will be the first synchrotron radiation source in the 3 GeV range in Europe, dedicated to materials research and industrial application. The critical wavelength of the synchrotron radiation spectra was designed to be 0.15 nm corresponding to a critical photon energy of 8.4 keV. It is proposed to use a ''modified multiple bend achromat'' (MBA) lattice in order to get a compact machine as well as a low emittance. For 3 GeV an emittance smaller than 30π nm rad can be obtained. With a fourfold symmetry and two larger straight sections within the achromatic arcs the circumference is 148 m. 23% of the circumference can be used for installing insertion devices. (orig.)

  4. Infrared microspectroscopy with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Carr, G.L.; Williams, G.P. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

    1997-09-01

    Infrared microspectroscopy with a high brightness synchrotron source can achieve a spatial resolution approaching the diffraction limit. However, in order to realize this intrinsic source brightness at the specimen location, some care must be taken in designing the optical system. Also, when operating in diffraction limited conditions, the effective spatial resolution is no longer controlled by the apertures typically used for a conventional (geometrically defined) measurement. Instead, the spatial resolution depends on the wavelength of light and the effective apertures of the microscope`s Schwarzchild objectives. The authors have modeled the optical system from the synchrotron source up to the sample location and determined the diffraction-limited spatial distribution of light. Effects due to the dependence of the synchrotron source`s numerical aperture on wavelength, as well as the difference between transmission and reflection measurement modes, are also addressed. Lastly, they examine the benefits (when using a high brightness source) of an extrinsic germanium photoconductive detector with cone optics as a replacement for the standard MCT detector.

  5. The echo-enabled harmonic generation options for FLASH II

    International Nuclear Information System (INIS)

    Deng, Haixiao; Decking, Winfried; Faatz, Bart

    2011-03-01

    FLASH II is an upgrade to the existing free electron laser (FEL) FLASH. The echo-enabled harmonic generation (EEHG) scheme is proposed to be a potential seeding option of FLASH II. In this paper, the possibility of EEHG operation of FLASH II is investigated for the first time. With a combination of existing numerical codes, i.e. a laser-beam interaction code in an undulator (LBICU), a beam tracking code in a chicane (ELEGANT) and an universal FEL simulating code (GENESIS), the effects of beam energy chirp and coherent synchrotron radiation (CSR) on EEHG operation are studied as well. In addition, several interesting issues concerning EEHG simulation are discussed. (orig.)

  6. Report of the Synchrotron Radiation Vacuum Workshop

    International Nuclear Information System (INIS)

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well

  7. Injection study of the Radiance 330 synchrotron with a 1.6 MeV RFQ linac

    Science.gov (United States)

    Wang, F.; Flanz, J.; Hamm, R.

    2012-09-01

    The ProTom Radiance 330 proton radiotherapy system provides the most advanced proton delivery capability to date. It supports true three-dimensional beam scanning with dynamic energy and intensity modulation. Most of the protons extracted from the synchrotron are used to treat the patient, which results in minimal neutron background in the treatment room. The patient dose rate depends upon the number of protons injected and the acceleration cycle time. Therefore, one can boost the dose rate by increasing the beam intensity at injection. Improvements to the existing tandem accelerator injector are already underway. However, an alternative way to attain higher intensity beam is to use an RFQ linac as an injector. To this end, a novel 1.6 MeV RFQ linac has been designed to specifically satisfy the small energy acceptance limits of the synchrotron. Simulations of the beam line optics and injection matching to the synchrotron have been performed using the computer codes PARMILA and TRACE-3D to determine if an additional bunching cavity is needed. Assessments of the space charge limit at the relatively low injection energy of 1.6 MeV and RF capture simulations have also been performed. Results of these studies are presented.

  8. Menstrual cyclicity post OC withdrawal in PCOS: Use of non-hormonal options.

    Science.gov (United States)

    Kulshreshtha, Bindu; Arora, Arpita; Pahuja, Isha; Sharma, Neera; Pant, Shubhi

    2016-08-01

    There is no data on menstrual cyclicity post oral contraceptive (OC) withdrawal with nonhormonal options in PCOS patients. OC could affect obesity, insulin and gonadotropins factors integral to pathogenesis of PCOS, thereby adversely affecting the HPG axis. Menstrual cycles of PCOS patients were retrospectively studied post OCP. Patients developing regular versus irregular cycles post OC were compared. Forty-eight PCOS patients were followed for an average of 1.9 years post OC. Thirty-six (75%) achieved regular cycles over a period of one year with other nonhormonal options like spironolactone and metformin. Seven patients required no treatment. Patients who continued to have irregular cycles had a longer pre OC cycle length (p PCOS may not require any treatment post OC.

  9. Elucidating oxygen electrocatalysis with synchrotron X-rays: PEM fuel cells and electrolyzers

    DEFF Research Database (Denmark)

    Pedersen, Anders Filsøe

    In this thesis electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) have been investigated using synchrotron based X-ray diffraction and X-ray absorption spectroscopy methods. The catalysts are based on Pt alloys and RuO2 for ORR and OER, respectively...... stability measurements showed that the in-plane compression relaxes during the first 2000-3000 cycles, explaining the loss of activity primarily in this range of cycling. For OER mass-selected nanoparticles of metallic Ru and thermally oxidized RuO2 were fabricated. Both materials are highly active for OER......, although the metallic Ru nanoparticles exceptionally so. However this comes as a trade-off in stability, as the metallic particles dissolves rapidly at OER conditions. In an in-situ XAS experiment the oxidation state of the nanoparticles were tracked as a function of potential. It was found...

  10. Synchrotron radiation and free electron laser activities in Novosibirsk

    International Nuclear Information System (INIS)

    Korchuganov, V.N.; Kulipanov, G.N.; Mezentsev, N.A.; Oreshkov, A.D.; Panchenko, V.E.; Pindyurin, V.F.; Skrinskij, A.N.; Sheromov, M.A.; Vinokurov, N.A.; Zolotarev, K.V.

    1994-01-01

    The results of studies realized in the Siberian synchrotron radiation centre within the frameworks of wide program of synchrotron radiation and free electron laser research are summarized. The technical information on the VEPP-2M, VEPP-3 and VEPP-4M storage rings used as synchrotron radiation sources is given. 10 refs.; 8 figs.; 12 tabs

  11. Synchrotron Radiation in eRHIC Interaction Region

    CERN Document Server

    Beebe-Wang, Joanne; Montag, Christoph; Rondeau, Daniel J; Surrow, Bernd

    2005-01-01

    The eRHIC currently under study at BNL consists of an electron storage ring added to the existing RHIC complex. The interaction region of this facility has to provide the required low-beta focusing while accommodating the synchrotron radiation generated by beam separation close to the interaction point. In the current design, the synchrotron radiation caused by 10GeV electrons bent by low-beta triplet magnets will be guided through the interaction region and dumped 5m downstream. However, it is unavoidable to stop a fraction of the photons at the septum where the electron and ion vacuum system are separated. In order to protect the septum and minimize the backward scattering of the synchrotron radiation, an absorber and collimation system will be employed. In this paper, we first present the overview of the current design of the eRHIC interaction region with special emphasis on the synchrotron radiation. Then the initial design of the absorber and collimation system, including their geometrical and physical p...

  12. Synchrotrons are also devoted to the society

    International Nuclear Information System (INIS)

    Gacoin, M.P.; Cornuejols, D.; Cotte, M.; Deblay, P.; Mitchell, E.P.; McCarthy, J.; Fraissard, F.

    2013-01-01

    The ESRF and the SOLEIL synchrotrons are not only scientific instruments but also active players in the cultural and economic fields. This document gathers 6 short articles. The 2 first present the actions of SOLEIL and ESRS scientific teams towards the spreading of scientific knowledge in the public. The third article is dedicated to the uses of synchrotron radiation to the study of cultural objects to learn more about their fabrication, present state or the remedial actions that could be used to renovate them. The fourth and fifth articles present the contributions of ESRF and SOLEIL to the industrial world, in fact these contributions are not limited to the research field but also appear for quality assurance or the control of aging processes. Partnerships have been signed between both synchrotrons and enterprises to develop industrial products based on instrumentation or on the use of synchrotron radiation. The last article describes the procedure to have access to both facilities. (A.C.)

  13. Early British synchrotrons, an informal history

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1997-02-01

    An historical account of the design and construction of early synchrotrons in the United Kingdom, based partly on personal reminiscences, is presented. Material is also drawn from archives at Birmingham and CERN. The document covers the period from plans for the world's first synchrotron at Malvern after the Second World War to work done at Harwell Laboratory for CERN in the period 1951-1953. (UK)

  14. Coherent Synchrotron Radiation: Theory and Simulations

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2012-01-01

    The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum

  15. Synchrotron environmental laboratory (SUL) at Anka

    International Nuclear Information System (INIS)

    Denecke, M.A.

    2002-01-01

    A research facility dedicated to environmental/geochemical research, the Synchrotron Environmental Laboratory (SUL), is planned to be installed and operated at ANKA. ANKA is the new synchrotron facility at the Research Centre Karlsruhe (FZK), Karlsruhe, Germany. ANKA is now in commissioning and planning operations for the fall of 2000. As the Institute for Nuclear Waste Disposal (INE) at FZK conducts a vigorous synchrotron-based research programme, INE was instrumental in the original impetus for installing such a facility at ANKA. These research activities at INE concentrate on actinide speciation in nuclear waste forms, geological media and geochemical model systems. In order for INE to direct their synchrotron research activities to ANKA, equipment and licensing required for performing experiments on actinide-containing samples is required. One great advantage of performing experiments on actinide-containing samples at ANKA is that the INE radiological laboratories lie in the near vicinity of the facility. This will minimise transport hazards and costs and allow experiments to be performed on samples whose characteristics may change with time. Experiments on radioactive samples with activities below the exemption level, according to German regulations, will be possible at ANKA at the start of operations. Licensing for work on higher levels of activity will be applied for in the future. The decades of experience in radiological work at FZK will facilitate development of procedure and equipment as prerequisites to licensing. A consortium of synchrotron radiation-user groups with environmental research interests has specified their requirements and needs for this facility. This scientific case serves as the foundation for the SUL design and is the basis for an application for federal funding. The SUL design reflects the heterogeneity and complexity of challenges facing researchers in the environmental/geochemical sciences. X-ray absorption fine structure (XAFS

  16. The high temperature reactor and its fuel cycle options

    International Nuclear Information System (INIS)

    1979-07-01

    The status of the HTR system in the Federal Republic of Germany as well as the consecutive steps and the probable cost of further development are presented. The considerations are based on a recycling Th/highly enriched uranium (HEU) fuel cycle which has been chosen as the main line of the German HTR R and D efforts. Alternative fuel cycles such as medium-enriched uranium (MEU) and low-enriched uranium (LEU) are discussed as well

  17. Current status of Hiroshima Synchrotron Radiation Center

    International Nuclear Information System (INIS)

    Taniguchi, Masaki

    2000-01-01

    The Hiroshima Synchrotron Radiation Center is a common facility for both research and education in the field of synchrotron radiation science. The role of the center is to promote original research, training of young scientists, international exchange and cooperative research with neighbouring universities, public organizations and industries. (author)

  18. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  19. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    International Nuclear Information System (INIS)

    Jones, Keith W.

    1999-01-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  20. Advanced fuel cycles options for LWRs and IMF benchmark definition

    International Nuclear Information System (INIS)

    Breza, J.; Darilek, P.; Necas, V.

    2008-01-01

    In the paper, different advanced nuclear fuel cycles including thorium-based fuel and inert-matrix fuel are examined under light water reactor conditions, especially VVER-440, and compared. Two investigated thorium based fuels include one solely plutonium-thorium based fuel and the second one plutonium-thorium based fuel with initial uranium content. Both of them are used to carry and burn or transmute plutonium created in the classical UOX cycle. The inert-matrix fuel consist of plutonium and minor actinides separated from spent UOX fuel fixed in Yttria-stabilised zirconia matrix. The article shows analysed fuel cycles and their short description. The conclusion is concentrated on the rate of Pu transmutation and Pu with minor actinides cumulating in the spent advanced thorium fuel and its comparison to UOX open fuel cycle. Definition of IMF benchmark based on presented scenario is given. (authors)

  1. Synchrotron control system of the HIMAC

    International Nuclear Information System (INIS)

    Takada, E.; Sato, K.; Itano, A.

    1994-01-01

    A structural design synopsis and the present status of the HIMAC synchrotron control system are described. The control system comprises of Timing System, (ring magnet) Power-supply Controller, Programmable Logic Controller, Static Var Compensator controller, Monitor Controller, RF control computer, Beam Transport control computer and the synchrotron main computer (denoted as CS, hereafter) that forms a local area cluster with man-machine interfacing computers, and communicates with HIMAC supervisor computer. (author)

  2. Recent Developments in Synchrotron Moessbauer Reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Deak, L.; Bottyan, L.; Major, M.; Nagy, D. L. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Spiering, H. [Johannes Gutenberg Universitaet, Mainz, Institute fuer Anorganische und Analytische Chemie (Germany); Szilagyi, E.; Tancziko, F. [KFKI Research Institute for Particle and Nuclear Physics (Hungary)

    2002-12-15

    Synchrotron Moessbauer Reflectometry (SMR), the grazing incidence nuclear resonant scattering of synchrotron radiation, can be applied to perform depth-selective phase analysis and to determine the isotopic and magnetic structure of thin films and multilayers. Principles and methodological aspects of SMR are briefly reviewed. Off-specular SMR provides information from the lateral structure of multilayers. In anti-ferromagneticly coupled systems the size of magnetic domains can be measured.

  3. Environmental assessment of different management options for individual waste fractions by means of life-cycle assessment modelling

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund

    2011-01-01

    and environmental factors involved, including energy generation from landfill gas and storage of biogenic carbon. Leachate and gas emissions associated to each individual waste fraction have been estimated by means of a mathematical modelling. This approach towards landfilling emissions allows for a more precise...... quantification of the landfill impacts when comparing management options for selected waste fractions.Results from the life-cycle impact assessment (LCIA) show that the environmental performance estimated for landfilling with energy recovery of the fractions “organics” and “recyclable paper” is comparable...... with composting (for “organics”) and incineration (for “recyclable paper”). This however requires high degree of control over gas and leachate emissions, high gas collection efficiency and extensive gas utilization at the landfill. For the other waste fractions, recycling and incineration are favourable, although...

  4. Optoelectronic Picosecond Detection of Synchrotron X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Stephen M. [Purdue Univ., West Lafayette, IN (United States)

    2017-08-04

    The goal of this research program was to develop a detector that would measure x-ray time profiles with picosecond resolution. This was specifically aimed for use at x-ray synchrotrons, where x-ray pulse profiles have Gaussian time spreads of 50-100 ps (FWHM), so the successful development of such a detector with picosecond resolution would permit x-ray synchrotron studies to break through the pulse width barrier. That is, synchrotron time-resolved studies are currently limited to pump-probe studies that cannot reveal dynamics faster than ~50 ps, whereas the proposed detector would push this into the physically important 1 ps domain. The results of this research effort, described in detail below, are twofold: 1) the original plan to rely on converting electronic signals from a semiconductor sensor into an optical signal proved to be insufficient for generating signals with the necessary time resolution and sensitivity to be widely applicable; and 2) an all-optical method was discovered whereby the x-rays are directly absorbed in an optoelectronic material, lithium tantalate, which can then be probed by laser pulses with the desired picosecond sensitivity for detection of synchrotron x-rays. This research program has also produced new fundamental understanding of the interaction of x-rays and optical lasers in materials that has now created a viable path for true picosecond detection of synchrotron x-rays.

  5. 2005 resource options report

    International Nuclear Information System (INIS)

    Morris, T.

    2005-01-01

    This resource options report (ROR) fulfils regulatory requirements in British Columbia's two-year resource planning process. It identifies a wide range of resources and technologies that could be used to meet BC Hydro's future electricity demand. As such, it facilitates a transparent public review of resource options which include both supply-side and demand-side options. The resource options that will be used in the 2005 integrated electricity plan (IEP) were characterized. This ROR also documents where there is a general agreement or disagreement on the resource type characterization, based on the First Nations and Stakeholder engagement. BC Hydro used current information to provide realistic ranges on volume and cost to characterize environmental and social attributes. The BC Hydro system was modelled to assess the benefit and cost of various resource options. The information resulting from this ROR and IEP will help in making decisions on how to structure competitive acquisition calls and to determine the level of transmission services needed to advance certain BC Hydro projects. The IEP forecasts the nature and quantity of domestic resources required over the next 20 years. A strategic direction on how those needs will be met has been created to guide the management of BC Hydro's energy resources. Supply-side options include near-commercial technologies such as energy storage, ocean waves, tidal, fuel cells and integrated coal gasification combined cycle technology. Supply-side options also include natural gas, coal, biomass, geothermal, wind, and hydro. 120 refs., 39 tabs., 21 figs., 6 appendices

  6. Advances and synergy of high pressure sciences at synchrotron sources

    International Nuclear Information System (INIS)

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  7. What is a synchrotron and why does Australia need one?

    CERN Document Server

    Nugent, K A

    2002-01-01

    Construction of a $157 million synchrotron will soon begin in Melbourne. The author describes what this facility means for Australian science. The Australian synchrotron is a third generation device. The facility would have the capacity to do a wide range of science and technology at the same time. A number of applications, which are the priority for the Australian synchrotron project are briefly described. The huge technological spin-offs of this knowledge have made synchrotrons an attractive proposition to state governments

  8. Techniques for materials research with synchrotron radiation x-rays

    International Nuclear Information System (INIS)

    Bowen, D.K.

    1983-01-01

    A brief introductory survey is presented of the properties and generation of synchrotron radiation and the main techniques developed so far for its application to materials problems. Headings are:synchrotron radiation; X-ray techniques in synchrotron radiation (powder diffraction; X-ray scattering; EXAFS (Extended X-ray Absorption Fine Structure); X-ray fluorescent analysis; microradiography; white radiation topography; double crystal topography); future developments. (U.K.)

  9. PERFORMANCE ANALYSIS OF MULTI-TURN EXTRACTION FROM THE PROTON SYNCHROTRON TO THE SUPER PROTON SYNCHROTRON

    CERN Document Server

    Abernethy, Samuel

    2016-01-01

    Within CERN's accelerator complex, the extraction from the Proton Synchrotron to the Super Proton Synchrotron has been done using the so-called ``Continuous Transfer" (CT) method since the 1970's. A new technique, known as Multi-Turn Extraction (MTE), has now been implemented and is in full operation. This report examines a holistic performance analysis of the novel technique in multiple aspects of the accelerator complex, as well as a direct comparison with its predecessor, CT, from the implementation of MTE in 2010 until the end of 2015.

  10. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  11. Limitations of heavy ion synchrotron acceleration for inertial fusion

    International Nuclear Information System (INIS)

    Berley, D.; Danby, G.T.

    1977-01-01

    The potential benefits from heavy ion inertial fusion motivate the rapid development of a program to test the principle. To define the program, accelerator parameters which have not hitherto been commonly considered must be studied interactively with basic questions of space charge limitations and charge exchange. Beam lifetime and power output efficiency may ultimately lead to a linear accelerator as the choice for an ignition device. For proof of principle, however, at power levels way beyond present inertial fusion experience, synchrotrons may have applicability at lower cost. The power and energy which can be delivered by the accelerating system to the reaction chamber are limited by space charge defocussing and intra beam charge exchange scattering, both of which are beam density dependent. These put constraints on linac injector energy, synchrotron aperture, synchrotron magnetic rigidity, acceleration time, ion species and charge to mass ratio. The accelerator system considered is classical. A linear accelerator injects into a synchrotron which accelerates the ion beam to the full energy delivered to the target. The maximum energy deliverable by a synchrotron is treated in section I. The targetting parameters and the energy gained through synchrotron acceleration completely determine the synchrotron aperture. These are discussed in sections II and III. The ion range in material is treated in section IV. The problem of intrabeam scattering is considered in section V. Finally, in section VI is a discussion of examples to meet specified goals

  12. Analytical research using synchrotron radiation based techniques

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2015-01-01

    There are many Synchrotron Radiation (SR) based techniques such as X-ray Absorption Spectroscopy (XAS), X-ray Fluorescence Analysis (XRF), SR-Fourier-transform Infrared (SRFTIR), Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. which are increasingly being employed worldwide in analytical research. With advent of modern synchrotron sources these analytical techniques have been further revitalized and paved ways for new techniques such as microprobe XRF and XAS, FTIR microscopy, Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. The talk will cover mainly two techniques illustrating its capability in analytical research namely XRF and XAS. XRF spectroscopy: XRF spectroscopy is an analytical technique which involves the detection of emitted characteristic X-rays following excitation of the elements within the sample. While electron, particle (protons or alpha particles), or X-ray beams can be employed as the exciting source for this analysis, the use of X-ray beams from a synchrotron source has been instrumental in the advancement of the technique in the area of microprobe XRF imaging and trace level compositional characterisation of any sample. Synchrotron radiation induced X-ray emission spectroscopy, has become competitive with the earlier microprobe and nanoprobe techniques following the advancements in manipulating and detecting these X-rays. There are two important features that contribute to the superb elemental sensitivities of microprobe SR induced XRF: (i) the absence of the continuum (Bremsstrahlung) background radiation that is a feature of spectra obtained from charged particle beams, and (ii) the increased X-ray flux on the sample associated with the use of tunable third generation synchrotron facilities. Detection sensitivities have been reported in the ppb range, with values of 10 -17 g - 10 -14 g (depending on the particular element and matrix). Keeping in mind its demand, a microprobe XRF beamline has been setup by RRCAT at Indus-2 synchrotron

  13. Synchrotron applications in wood preservation and deterioration

    Science.gov (United States)

    Barbara L. Illman

    2003-01-01

    Several non-intrusive synchrotron techniques are being used to detect and study wood decay. The techniques use high intensity synchrotron-generated X-rays to determine the atomic structure of materials with imaging, diffraction, and absorption. Some of the techniques are X-ray absorption near edge structure (XANES), X-ray fluorescence spectroscopy (XFS), X-ray...

  14. Synchrotron radiation sources: general features and vacuum system

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1985-01-01

    In the last years the electron or positron storage rings, which were until 1970 only used for high energy physics experiments, begun to be built in several countries exclusively as electromagnetic radiation source (synchrotron radiation). The sources are generally made up by injector (linear accelerator or microtron), 'booster' (synchrotron), storage ring, insertions ('Wigglers' and ondulators) and light lines. The interest by these sources are due to the high intensity, large spectrum (from infrared to the X-rays), polarization and pulsed structure of the produced radiation. For the ultra-vacuum obtainement, necessary for the functioning storage rings (p=10 -9 Torr), several special procedures are used. In Brazil the Synchrotron Radiation National Laboratory of the CNPq worked out a conceptual project of synchrotron radiation source, whose execution should begin by the construction of the several components prototypes. (L.C.) [pt

  15. Materials science and technology by synchrotron radiation

    International Nuclear Information System (INIS)

    Chikawa, J.

    1990-01-01

    In the present paper, features of the Photon Factory, a facility for synchrotron research installed at the National Laboratory for High Energy Physics in Japan, are outlined, and then the impact of the advent of synchrotron radiation is discussed in relation to its outcome during the past seven years. Prospects for future development of synchrotron radiation are also presented. The facility consists of an injector linac to accelerate electrons up to 2.5 GeV and a ring to store the accelerated electrons in a closed orbit. In the Photon Factory, a 400m-long linac has been constructed for use as injector for both the Photon Factory and the TRISTAN electron-positron collider. The storage ring is operated at the same electron energy of 2.5 GeV. The present report also describes some applications of synchrotron radiation, focusing on spectroscopy (X-ray fluorescence technique and time-resolved X-ray absorption spectroscopy), diffraction and scattering (surface structure studies and protein crystallography), and photo-chemical processing. (N.K.)

  16. Balance-of-plant options for the Heat-Pipe Power System

    International Nuclear Information System (INIS)

    Berte, M.; Capell, B.

    1997-09-01

    The Heat-Pipe Power System (HPS) is a near-term, low-cost space fission power system with the potential for utilizing various option for balance-of-plant options. The following options have been studied: a low-power thermoelectric design (14-kWe output), a small Brayton cycle system (60--75 kWe), and a large Brayton cycle system (250 kWe). These systems were analyzed on a preliminary basis, including mass, volume, and structure calculations. These analyses have shown that the HPS system can provide power outputs from 10--250 kWe with specific powers of ∼ 14 W/kg for a 14-kWe model to ∼ 100 W/kg for a 250-kWe model. The system designs considered in this study utilize a common component base to permit easy expansion and development

  17. CANDU fuel cycles - present and future

    International Nuclear Information System (INIS)

    Mooradian, A.J.

    1976-05-01

    The present commercially proven Canadian nuclear power system is based on a once-through natural uranium fuel cycle characterized by high uranium utilization and a high conversion efficiency. The cycle closes with secure retrievable storage of spent fuel. This cycle is based on a CANDU reactor concept which is now well understood. Both active and passive fuel storage options have been investigated and will be described in this paper. Future development of the CANDU system is focussed on conservation of uranium by plutonium and thorium recycle. The full exploitation of these options requires continued emphasis on neutron conservation, efficiency of extraction and fuel refabrication processes. The results of recent studies are discussed in this paper. (author)

  18. The Synchrotron Radiation Facility ESFR in Grenoble

    International Nuclear Information System (INIS)

    Haensel, R.

    1994-01-01

    The European Synchrotron Radiation Facility (ESFR) is the first synchrotron radiation source of the 3-th generation for Roentgen radiations.It permits a new series of experiments in the domains of physics, chemistry, materials studies, micromechanics, biology, medicine and crystallography. The main part of device represents the 850 meter storage ring of 6 GeV electrons. (MSA)

  19. Operation of the Australian Store.Synchrotron for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Grischa R. [Monash University, Clayton, Victoria 3800 (Australia); Aragão, David; Mudie, Nathan J.; Caradoc-Davies, Tom T. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); McGowan, Sheena; Bertling, Philip J.; Groenewegen, David; Quenette, Stevan M. [Monash University, Clayton, Victoria 3800 (Australia); Bond, Charles S. [The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia (Australia); Buckle, Ashley M. [Monash University, Clayton, Victoria 3800 (Australia); Androulakis, Steve, E-mail: steve.androulakis@monash.edu [Monash Bioinformatics Platform, Monash University, Clayton, Victoria 3800 (Australia)

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.

  20. Operation of the Australian Store.Synchrotron for macromolecular crystallography

    International Nuclear Information System (INIS)

    Meyer, Grischa R.; Aragão, David; Mudie, Nathan J.; Caradoc-Davies, Tom T.; McGowan, Sheena; Bertling, Philip J.; Groenewegen, David; Quenette, Stevan M.; Bond, Charles S.; Buckle, Ashley M.; Androulakis, Steve

    2014-01-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community

  1. Metrology of reflection optics for synchrotron radiation

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community

  2. Third generation synchrotron radiation applied to materials science

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Yun, W.

    1993-01-01

    Utility of synchrotron radiation for characterization of materials and ramifications of availability of new third-generation, high-energy, high-intensity sources of synchrotron radiation are discussed. Examples are given of power of x-ray analysis techniques to be expected with these new machines

  3. Propulsive options for a manned Mars transportation system

    International Nuclear Information System (INIS)

    Braun, R.D.; Blersch, D.J.

    1989-01-01

    In this investigation, five potential manned Mars transportation systems are compared. These options include: (1) a single vehicle, chemically propelled (CHEM) option, (2) a single vehicle, nuclear thermal propulsion (NTP) option, (3) a single vehicle solar electric propulsion (SEP) option, (4) a single vehicle hybrid nuclear electric propulsion (NEP)/CHEM option, and (5) a dual vehicle option (NEP cargo spacecraft and CHEM manned vehicle). In addition to utilizing the initial vehicle weight in low-earth orbit as a measure of mission feasibility, this study addresses the major technological barriers each propulsive scenario must surpass. It is shown that instead of a single clearly superior propulsion system, each means of propulsion may be favored depending upon the specified program policy and the extent of the desired manned flight time. Furthermore, the effect which aerobraking and multiple transfer cycles have upon mission feasibility is considered. 18 refs

  4. Use of synchrotron radiation in radiation biology research

    International Nuclear Information System (INIS)

    Yamada, Takeshi

    1981-01-01

    Synchrotron radiation (SR) holds great expectation as a new research tool in the new areas of material science, because it has the continuous spectral distribution from visible light to X-ray, and its intensity is 10 2 to 10 3 times as strong as that of conventional radiation sources. In the National Laboratory for High Energy Physics, a synchrotron radiation experimental facility has been constructed, which will start operation in fiscal 1982. With this SR, the photons having the wavelength in undeveloped region from vacuum ultraviolet to soft X-ray are obtained as intense mono-wavelength light. The SR thus should contribute to the elucidation of the fundamentals in the biological action of radiation. The following matters are described: synchrotron radiation, experimental facility using SR, electron storage ring, features of SR, photon factory plan and synchrotron radiation experimental facility, utilization of SR in radiation biology field. (J.P.N.)

  5. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Lazarz, N.M.

    1991-04-01

    This report discussion research being conducted at the National Synchrotron light source. In particular, this report contains operations summaries; symposia, workshops, and projects; NSLS highlights; and abstracts of science at the NSLS

  6. Research into real-option evaluation method

    International Nuclear Information System (INIS)

    Shiba, Tsuyoshi; Wakamatsu, Hitoshi

    2002-03-01

    As an evaluational method for valuation of a corporation, an investment project, a research and development, or the evaluation technique of an enterprise strategy, a real option analysis attracts attention instead of conventional Discount Cash Flow method. The reason is that it can divert the technique for the option valuation in financial engineering to the decision-making process performed according to change in investment environment. Related references, the analysis tools, the application examples, etc. were investigated about the decision-making technique using real option analysis, and this investigation considered the application method to decision-making of the research and development at Japan Nuclear Cycle Development Institute. Consequently, since the feature is in real option analysis being the evaluation technique on condition of that business conditions and business itself also change, the real option analysis fits for evaluation of a research and development that business conditions were opaque and it turns out that the businesses are highly flexible. Moreover, it turns out that it fits also for evaluation of a capital concentration type investment issue like power plants. (author)

  7. Status report of the Cornell High Energy Synchrotron Radiation Source (CHESS)

    International Nuclear Information System (INIS)

    Batterman, B.W.

    1980-01-01

    The Wilson Laboratory at Cornell University has done pioneering work on the development of high energy synchrotrons. In the last decade the 12 GeV Wilson Synchrotron was the most energetic electron synchrotron in the world. In 1975 plans were formulated at the Wilson Laboratory to build a new electron-positron storage ring to cover the range from 4-8 GeV. The storage ring was to be constructed in the same tunnel as the present synchrotron and to use the latter as an injector for the ring. A novel injection feature was to be incorporated, namely, vernier phase compression. In this scheme, positron coalesence is to be performed by compressing a 30-60 bunch positron beam by tranferring individual bunches from the storage ring to the synchrotron and stacking back into the storage ring. This procedure takes advantage of the slight circumferential difference between the storage ring and the synchrotron. Positron beams of 10 mA have been achieved in CESR at the present time. The first colliding beam studies were performed in an October 1979 two-week running period at which time CHESS, the synchrotron radiation source associated with CESR, also had its first extended experience with synchrotron light. (orig.)

  8. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  9. X-ray fluorescence imaging with synchrotron radiation

    International Nuclear Information System (INIS)

    Rivers, M.L.

    1987-01-01

    The micro-distribution of trace elements is of great interest in fields such as geochemistry, biology and material science. The synchrotron x-ray fluorescence microprobe provides a technique to quantitatively measure trace element compositions at individual points and to construct semiquantitative two dimensional maps of trace element compositions. This paper describes an x-ray fluorescence system used at the National Synchrotron Light Source

  10. Experimental demonstration of the KEK induction synchrotron

    International Nuclear Information System (INIS)

    Takayama, Ken; Torikai, Kota; Shimosaki, Yoshito; Kono, Tadaaki; Iwashita, Taiki; Arakida, Yoshio; Nakamura, Eiji; Shirakata, Masashi; Sueno, Takeshi; Wake, Masayoshi; Otsuka, Kazunori

    2007-01-01

    Recent progress in the KEK induction synchrotron is presented. In the recent experiment, by using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV Booster ring and captured by the barrier bucket created by the induction step-voltages was accelerated to 6 GeV in the KEK proton synchrotron

  11. High pressure and synchrotron radiation satellite workshop

    International Nuclear Information System (INIS)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A.

    2006-01-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations

  12. Synchrotron radiation and prospects of its applications

    Energy Technology Data Exchange (ETDEWEB)

    Kulipanov, G; Skrinskii, A

    1981-04-01

    Current and prospective applications are described of synchrotron radiation resulting from the motion of high-energy electrons or positrons in a magnetic field and covering a wide spectral range from the infrared to X-ray. The advantages of the synchrotron radiation include a big source luminance, a small angular divergence, the possibility of calculating the absolute intensity and the spectral distribution of the radiation. Special storage rings are most suitable as a source. Synchrotron radiation is applied in X-ray microscopy, energy diffractometry, atomic and molecular spectroscopy, in the structural analysis of microcrystals, very rapid diffractometry of biological objects and crystals, and in Moessbauer spectroscopy. The prospective applications include uses in metrology, medicine, X-ray lithography, elemental analysis, molecular microsurgery, and in radiation technology.

  13. Limitations on plasma acceleration due to synchrotron losses

    International Nuclear Information System (INIS)

    Barletta, W.A.; Lee, E.P.; Bonifacio, R.; De Salvo, L.

    1999-01-01

    In this letter we consider the effect of synchrotron radiation losses due to the betatron motion of the electron beam in its self-induced magnetic field in a plasma accelerator taking into account the charge neutralization factor. The most favorable case is where the plasma density is smaller than the beam density. The contrary regime is strongly disfavored by the synchrotron radiation loss for beams with characteristics for TeV energies. In both cases we find that upon increasing the plasma density the synchrotron losses kill the acceleration process, so that there are limitations on the maximum allowable plasma density

  14. 3 GeV Booster Synchrotron Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  15. The Synchrotron Topography Project (STP) at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Bilello, J.C.; Hmelo, A.B.; Liu, J.M.; Herley, P.J.; Chen, H.; Birnbaum, H.K.; Illinois Univ., Urbana; Green, R.E. Jr.

    1983-01-01

    The collaborators have participated in the Synchrotron Topography Project (STP) which has designed and developed instrumentation for an X-ray topography station at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The two principle instruments constructed consist of a White Beam Camera (WBC) and a Multiple Crystal Camera (MCC) with high planar collimation and wide area image coverage. It is possible to perform in situ studies in a versatile environmental chamber equipped with a miniature mechanical testing stage for both the WBC and MCC systems. Real-time video imaging plus a rapid feed cassette holder for high resolution photographic plates is available for recording topographs. Provisions are made for other types of photon detection as well as spectroscopy. The facilities for the entire station have been designed for remote operation using a LSI-11/23 plus suitable interfacing. These instruments will be described briefly and the current status of the program will be reviewed. (orig.)

  16. Emission of toxic components as a factor of the best practice options for waste management: Application of LCA (Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Stevanović-Čarapina Hristina D.

    2011-01-01

    Full Text Available Health and safety have been the major concerns in waste management. Waste must be managed in a way that minimizes risk to human health. Environmental concerns over the management and disposal of waste can be divided into two major areas: conservation of resources and pollution of the environment. Integrated Waste Management (IWM systems combine waste streams, waste collection, treatment and disposal methods, with the objective of achieving environmental benefits, economic optimization and societal acceptability. Integrated waste management using Life Cycle Assessment (LCA attempts to offer the most benign options for waste management. LCA is a compilation and evaluation of the inputs, the outputs and the potential environmental impacts of a product system throughout its life cycle. It can be successfully applied to municipal solid waste management systems to identify the overall environmental burdens and to assess the potential environmental impacts. This paper deals with the LCA of the two waste management options for final disposal of municipal waste, landfilling (landfill without landfill gas collection or leachate collection and sanitary landfilling (landfill with landfill gas collection and recovery and leachate collection and treatments analyzed for town Sombor, Serbia. The research is conducted with the use of the Software Package IWM-2. The indicators which are used in the assessment are air and water emissions of toxic compounds. The results indicated that waste disposal practice has a significant effect on the emission of the toxic components and environmental burdens. Sanitary landfilling of municipal solid waste significantly reduces toxic emission and negative influence on the environment.

  17. ITER fuel cycle

    International Nuclear Information System (INIS)

    Leger, D.; Dinner, P.; Yoshida, H.

    1991-01-01

    Resulting from the Conceptual Design Activities (1988-1990) by the parties involved in the International Thermonuclear Experimental Reactor (ITER) project, this document summarizes the design requirements and the Conceptual Design Descriptions for each of the principal subsystems and design options of the ITER Fuel Cycle conceptual design. The ITER Fuel Cycle system provides for the handling of all tritiated water and gas mixtures on ITER. The system is subdivided into subsystems for fuelling, primary (torus) vacuum pumping, fuel processing, blanket tritium recovery, and common processes (including isotopic separation, fuel management and storage, and processes for detritiation of solid, liquid, and gaseous wastes). After an introduction describing system function and conceptual design procedure, a summary of the design is presented including a discussion of scope and main parameters, and the fuel design options for fuelling, plasma chamber vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary and common processes. Design requirements are defined and design descriptions are given for the various subsystems (fuelling, plasma vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary/common processes). The document ends with sections on fuel cycle design integration, fuel cycle building layout, safety considerations, a summary of the research and development programme, costing, and conclusions. Refs, figs and tabs

  18. Comparing the Life Cycle Energy Consumption, Global ...

    Science.gov (United States)

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability

  19. Vacuum chambers full of ideas for the Swedish synchrotron

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    CERN’s Vacuum, Surfaces and Coatings group has contributed to the development of vacuum chambers for the MAX IV synchrotron, which has just been officially opened in Sweden.   A section of the new 3 GeV MAX IV synchrotron at the time of installation. In the centre of the magnets you can see the vacuum chamber developed in collaboration with CERN. (Photo: Marek Grabski, MAX IV Vacuum group) On 21 June, the King and the Prime Minister of Sweden officially opened MAX IV, a brand-new synchrotron in Lund, Sweden. The summer solstice, the longest day of the year, was deliberately chosen for the ceremony: MAX IV, a cutting-edge synchrotron, will deliver the brightest X-rays ever produced to more than 2000 users. Some 1500 kilometres away, a team at CERN followed the opening ceremony with a touch of pride. The Vacuum, Surfaces and Coatings group in the Technology department (TE-VSC) participated in the construction of this new synchrotron. Its contribution lies at the very hea...

  20. A comparison study on radioactive waste management effectiveness in various nuclear fuel cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong

    2001-07-01

    This study examines whether the DUPIC (Direct Use of Spent PWR Fuel In CANDU) fuel cycle make radioactive waste management more effective, by comparing it with other fuel cycles such as the PWR (Pressurized Water Reactor) once-through cycle, the HWR (Pressurized Heavy Water Reactor) once-through cycle and the thermal recycling option to use an existing PWR with MOX (Mixed Oxide) fuel. This study first focuses on the radioactive waste volume generated in all fuel cycle steps, which could be one of the measures of effectiveness of the waste management. Then the total radioactive waste disposition cost is estimated based on two units measuring; m3/GWe-yr and US$/GWe-yr. We find from the radioactive waste volume estimation that the DUPIC fuel cycle could have lower volumes for milling tailings, low level waste and spent fuel than those of other fuel cycle options. From the results of the disposition cost analysis, we find that the DUPIC waste disposition cost is the lowest among fuel cycle options. If the total waste disposition cost is used as a proxy for quantifying the easiness or difficulty in managing wastes, then the DUPIC option actually make waste management easier

  1. Thermal analysis of injection beam dump of high-intensity rapid-cycling synchrotron in J-PARC

    Science.gov (United States)

    Kamiya, J.; Saha, P. K.; Yamamoto, K.; Kinsho, M.; Nihei, T.

    2017-10-01

    The beam dump at the beam injection area in the J-PARC 3-GeV rapid cycling synchrotron (RCS) accepts beams that pass through the charge exchange foil without ideal electron stripping during the multi-turn beam injection. The injection beam dump consists of the beam pipe, beam stopper, radiation shield, and cooling mechanism. The ideal beam power into the injection beam dump is 400 W in the case of design RCS extraction beam power of 1 MW with a healthy foil, which has 99.7 % charge stripping efficiency. On the other hand, as a radiation generator, the RCS is permitted to be operated with maximum average beam power of 4 kW into the injection beam dump based on the radiation shielding calculation, in consideration of lower charge stripping efficiency due to the foil deterioration. In this research, to evaluate the health of the RCS injection beam dump system from the perspective of the heat generation, a thermal analysis was performed based on the actual configuration with sufficiently large region, including the surrounding concrete and soil. The calculated temperature and heat flux density distribution showed the validity of the mesh spacing and model range. The calculation result showed that the dumped 4 kW beam causes the temperature to increase up to 330, 400, and 140 °C at the beam pipe, beam stopper, and radiation shield, respectively. Although these high temperatures induce stress in the constituent materials, the calculated stress values were lower than the ultimate tensile strength of each material. Transient temperature analysis of the beam stopper, which simulated the sudden break of the charge stripper foil, demonstrated that one bunched beam pulse with the maximum beam power does not lead to a serious rise in the temperature of the beam stopper. Furthermore, from the measured outgassing rate of stainless steel at high temperature, the rise in beam line pressure due to additive outgassing from the heated beam pipe was estimated to have a negligible

  2. Synchrotron-radiation experiments with recoil ions

    International Nuclear Information System (INIS)

    Levin, J.C.

    1989-01-01

    Studies of atoms, ions and molecules with synchrotron radiation have generally focused on measurements of properties of the electrons ejected during, or after, the photoionization process. Much can also be learned, however, about the atomic or molecular relaxation process by studies of the residual ions or molecular fragments following inner-shell photoionization. Measurements are reported of mean kinetic energies of highly charged argon, krypton, and xenon recoil ions produced by vacancy cascades following inner-shell photoionization using white and monochromatic synchrotron x radiation. Energies are much lower than for the same charge-state ions produced by charged-particle impact. The results may be applicable to design of future angle-resolved ion-atom collision experiments. Photoion charge distributions are presented and compared with other measurements and calculations. Related experiments with synchrotron-radiation produced recoil ion, including photoionization of stored ions and measurement of shakeoff in near-threshold excitation, are briefly discussed. 24 refs., 6 figs., 1 tab

  3. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J. [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 North Charter Street, Madison, WI 53706-1507 (United States)

    2017-06-10

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  4. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    International Nuclear Information System (INIS)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J.

    2017-01-01

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  5. Study of 1 MW neutron source synchrotron dual frequency power circuit for the main ring magnets

    International Nuclear Information System (INIS)

    McGhee, D.G.

    1993-01-01

    This paper describes the proposed design of the resonant power circuits for the 1-MW neutron source synchrotron's main ring magnets. The synchrotron is to have a duty cycle of 30 Hz with a maximum upper limit of operation corresponding to 2.0 GeV and a maximum design value of 2.2 GeV. A stability of 30 ppM is the design goal for the main bending and focusing magnets (dipoles and quadruples), in order to achieve an overall stabffity of 100 ppm when random field and position errors of the magnets are included. The power circuits of this design are similar to those used in Argonne's Intense Pulsed Neutron Source (IPNS) where the energy losses during each cycle are supplied by continuous excitation from modulated multiphase DC power supplies. Since only 50% of the 30-Hz sinewave is used for acceleration, a dual-frequency resonant magnet circuit is used in this design. The 30-Hz repetition rate is maintained with a 20-Hz magnet guide field during acceleration and a 60-Hz reset field when no beam is present. This lengthens the guide-field rise time and shortens the fall time, improving the duty factor for acceleration. The maximum B dot is reduced by 33% during acceleration and hence, the maximum rf voltage/turn is reduced by 56%

  6. Influence of fuel costs on seawater desalination options

    International Nuclear Information System (INIS)

    Methnani, Mabrouk

    2007-01-01

    Reference estimates of seawater desalination costs for recent mega projects are all quoted in the range of US$0.50/m 3 . This however does not reflect the recent trends of escalating fossil fuel costs. In order to analyze the effect of these trends, a recently updated version of the IAEA Desalination Economic Evaluation Program, DEEP-3, has been used to compare fossil and nuclear seawater desalination options, under varied fuel cost and interest rate scenarios. Results presented for a gas combined-cycle and a modular high-temperature gas-cooled reactor design, show clear cost advantages for the latter, for both Multi-Effect Distillation (MED) and Reverse Osmosis (RO). Water production cost estimates for the Brayton cycle nuclear option are hardly affected by fuel costs, while combined cycle seawater desalination costs show an increase of more than 40% when fuel costs are doubled. For all cases run, the nuclear desalination costs are lower and if the current trend in fossil fuel prices continues as predicted by pessimist scenarios and the carbon tax carried by greenhouse emissions is enforced in the future, the cost advantage for nuclear desalination will be even more pronounced. Increasing the interest rate from 5 to 8% has a smaller effect than fuel cost variations. It translates into a water cost increase in the range of 10-20%, with the nuclear option being the more sensitive. (author)

  7. Inauguration of Proton Synchrotron

    CERN Multimedia

    1960-01-01

    On 5 February 1960, the Proton Synchrotron (PS) was formally inaugurated. The great Danish physicist, Niels Bohr, releases a bottle of champagne against a shielding block to launch the PS on its voyage in physics.

  8. Considerations Regarding ROK Spent Nuclear Fuel Management Options

    International Nuclear Information System (INIS)

    Braun, Chaim; Forrest, Robert

    2013-01-01

    In this paper we discuss spent fuel management options in the Republic of Korea (ROK) from two interrelated perspectives: Centralized dry cask storage and spent fuel pyroprocessing and burning in sodium fast reactors (SFRs). We argue that the ROK will run out of space for at-reactors spent fuel storage by about the year 2030 and will thus need to transition centralized dry cask storage. Pyroprocessing plant capacity, even if approved and successfully licensed and constructed by that time, will not suffice to handle all the spent fuel discharged annually. Hence centralized dry cask storage will be required even if the pyroprocessing option is successfully developed by 2030. Pyroprocessing is but an enabling technology on the path leading to fissile material recycling and burning in future SFRs. In this regard we discuss two SFR options under development in the U. S.: the Super Prism and the Travelling Wave Reactor (TWR). We note that the U. S. is further along in reactor development than the ROK. The ROK though has acquired more experience, recently in investigating fuel recycling options for SFRs. We thus call for two complementary joint R and D project to be conducted by U. S. and ROK scientists. One leading to the development of a demonstration centralized away-from-reactors spent fuel storage facility. The other involve further R and D on a combined SFR-fuel cycle complex based on the reactor and fuel cycle options discussed in the paper

  9. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S. R. [University of Science and Technology, Daejeon (Korea, Republic of); Choi, S. Y. [UNIST, Ulju (Korea, Republic of); Koc, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle.

  10. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    International Nuclear Information System (INIS)

    Yoon, S. R.; Choi, S. Y.; Koc, W. I.

    2015-01-01

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle

  11. An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Erich [Univ. of Texas, Austin, TX (United States); Scopatz, Anthony [Univ. of Wisconsin, Madison, WI (United States)

    2016-04-25

    Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.

  12. Chemical applications of synchrotron radiation: Workshop report

    International Nuclear Information System (INIS)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases

  13. Chemical applications of synchrotron radiation: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  14. A synchrotron radiation facility for x-ray astronomy

    DEFF Research Database (Denmark)

    Hall, C.J.; Lewis, R.A.; Christensen, Finn Erland

    1997-01-01

    A proposal for an x-ray optics test facility based at a synchrotron radiation source is presented. The facility would incorporate a clean preparation area, and a large evacuable test area. The advantages of using a synchrotron as the source of the test radiation are discussed. These include the a...

  15. Status of the National Synchrotron Light Source project

    International Nuclear Information System (INIS)

    Heese, R.N.

    1981-01-01

    The National Synchrotron Light Source is in its final stages of construction, and as the turn-on time for the 700 MeV vuv storage ring draws near, an overview of the project is presented. Emphasis is placed on the linac and booster synchrotron performance and the status of major subsystems

  16. Photoionization studies of atoms and molecules using synchrotron radiation

    International Nuclear Information System (INIS)

    Lindle, D.W.

    1988-01-01

    Photoionization studies of free atoms and molecules have undergone considerable development in the past decade, in large part due to the use of synchrotron radiation. The tunability of synchrotron radiation has permitted the study of photoionization processes near valence-and core-level ionization thresholds for atoms and molecules throught the Periodic Table. A general illustration of these types of study will be presented, with emphasis on a few of the more promising new directions in atomic and molecular physics being pursued with synchrotron radiation. (author) [pt

  17. Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jan Felix

    2017-07-14

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  18. The pressure behaviour of actinides via synchrotron radiation

    International Nuclear Information System (INIS)

    Haire, R.G.; Heathman, S.; Le Bihan, T.; Lindbaum, A.

    2002-01-01

    Various aspects of performing high-pressure studies with radioactive f-elements using synchrotrons as sources of X-rays are discussed. For ultra-high pressures, intense well-focused beams of 10 to 30 microns in diameter and a single wavelength of 0.3 to 0.7 angstrom are desired for angle dispersive diffraction measurements. Special considerations are necessary for the studies of transuranium elements under pressure at synchrotron facilities. Normally, with these actinides the pressure cells are prepared off-site and shipped to the synchrotron for study. Approved containment techniques must be provided to assure there is not a potential for the release of sample material. The goal of these high-pressure studies is to explore the fundamental science occurring as pressure is applied to the actinide samples. One of the primary effects of pressure is to reduce interatomic distances, and the goal is to ascertain the changes in bonding and electronic nature of the system that result as atoms and electronic orbitals are forced closer together. Concepts of the science being pursued with these f-elements are outlined. A brief discussion of the behaviour of americium metal under pressure performed recently at the ESRF is provided as an example of the high-pressure research being performed with synchrotron radiation. Also discussed here is the important role synchrotrons play and the techniques/procedures employed in high-pressure studies with actinides. (authors)

  19. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  20. The uses of synchrotron radiation sources for elemental and chemical microanalysis

    Science.gov (United States)

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.

    1990-01-01

    Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron X-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10 ??m with minimum detection limits in the 1-10 ppm range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. ?? 1990.

  1. National Laboratory of Synchrotron Radiation: technologic potential

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Rodrigues, A.R.D.

    1987-01-01

    The technological or industrial developments based on the accumulated experience by research group of condensed matter physics, in Brazil, are described. The potential of a National Laboratory of Synchrotron Radiation for personnel training, absorption and adaptation of economically important technologies for Brazil, is presented. Examples of cooperations between the Laboratory and some national interprises, and some industrial applications of the synchrotron radiation are done. (M.C.K.) [pt

  2. Nuclear Fuel Cycle Evaluation and Screening Findings on Partitioning and Transmutation

    International Nuclear Information System (INIS)

    Wigeland, R.A.; Taiwo, T.A.; Gehin, J.C.; Jubin, R.; Todosow, M.

    2015-01-01

    A Nuclear Fuel Cycle Evaluation and Screening (E and S) study has recently been completed in the United States. The study considered the entire fuel cycle, included considerations for both once-through and recycle fuel cycle options, evaluated a set of 40 fuel cycles that allowed a comprehensive assessment of fuel cycle performance, identified a relatively small number of promising fuel cycle options that have the potential for achieving substantial improvements compared to the current nuclear fuel cycle in the United States, and allowed the identification of research and development (R and D) activities needed to support the development of the promising fuel cycle options. Nine high-level criteria (Nuclear Waste Management, Proliferation Risk, Nuclear Material Security Risk, Safety, Environmental Impact, Resource Utilisation, Development and Deployment Risk, Institutional Issues, and Financial Risk and Economics) and associated metrics were used in the study to compare the performance of nuclear fuel cycle options to that of the current fuel cycle practiced in the United States. The study also evaluated a number of fuel cycle characteristics that may have the potential to impact future R and D directions. These included for example: 1) The fuel resources used, i. e., uranium and/or thorium. 2) Impact of extremely high burnup fuels. 3) Minor actinide recycle. 4) The impact of losses during separations (partitioning). 5) Critical versus subcritical (externally-driven) systems for material irradiation. 6) Impact of spectrum of irradiation system, i.e., fast, thermal or intermediate. 7) Waste generation reduction, all of which were quantified in the study. The E and S study has implemented a framework that can be used now and in the future to objectively inform on the potential of alternative nuclear fuel cycles, providing decision-makers and others with perspective on fuel cycle capabilities. (authors)

  3. Coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Agoh, Tomonori

    2006-01-01

    This article presents basic properties of coherent synchrotron radiation (CSR) with numerical examples and introduces the reader to important aspects of CSR in future accelerators with short bunches. We show interesting features of the single bunch instability due to CSR in storage rings and discuss the longitudinal CSR field via the impedance representation. (author)

  4. Bunch heating by coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Heifets, S.A.; Zolotorev, M.

    1995-10-01

    The authors discuss here effects which define the steady-state rms energy spread of a microbunch in a storage ring. It is implied that the longitudinal microwave instability is controlled by low α lattice. In this case the coherent synchrotron radiation, if exists, may be the main factor defining the bunch temperature. Another effect comes from the fact that a nonlinear momentum compaction of such lattices makes Haissinskii equation not applicable, and the coherent synchrotron radiation may effect not only bunch lengthening but the energy spread as well

  5. Pump-probe experiments in atoms involving laser and synchrotron radiation: an overview

    International Nuclear Information System (INIS)

    Wuilleumier, F J; Meyer, M

    2006-01-01

    The combined use of laser and synchrotron radiations for atomic photoionization studies started in the early 1980s. The strong potential of these pump-probe experiments to gain information on excited atomic states is illustrated through some exemplary studies. The first series of experiments carried out with the early synchrotron sources, from 1960 to about 1995, are reviewed, including photoionization of unpolarized and polarized excited atoms, and time-resolved laser-synchrotron studies. With the most advanced generation of synchrotron sources, a whole new class of pump-probe experiments benefiting from the high brightness of the new synchrotron beams has been developed since 1996. A detailed review of these studies as well as possible future applications of pump-probe experiments using third generation synchrotron sources and free electron lasers is presented. (topical review)

  6. Refraction-contrast bone imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Mori, Koichi; Sekine, Norio; Sato, Hitoshi; Shikano, Naoto; Shimao, Daisuke; Shiwaku, Hideaki; Hyodo, Kazuyuki; Oka, Hiroshi

    2002-01-01

    The X-ray refraction-contrast imaging using synchrotron radiation with some X-ray energies is successfully performed at B120B2 of SPring-8. The refraction-contrast images of bone samples such as human dried proximal phalanx, wrist, upper cervical vertebrae and sella turcica and as mouse proximal femur using the synchrotron X-ray are always better in image contrast and resolution than those of the absorption-contrast images using the synchrotron X-ray and/or the conventional X-ray tube. There is much likeness in the image contrast and resolution of trabeculae bone in the human dried proximal phalanx between X-ray energy of 30 keV at sample-to-film distance of 1 m and those of 40, 50 keV at those of 4,5 m, respectively. High-energy refraction-contrast imaging with suitable sample-to-film distance could reduce the exposure dose in human imaging. In the refraction-contrast imaging of human wrist, upper cervcal vertebrae, sella turcica and mouse proximal femur using the synchrotron X-ray, we can obtain better image contrast and resolution to correctly extract morphological information for diagnosis corresponding to each of the clinical field than those of the absorption-contrast images. (author)

  7. Synchrotron radiation facilities at DESY, a status report

    International Nuclear Information System (INIS)

    Koch, E.E.

    1979-12-01

    A short summary of the developments which have led to the present extensive use of Synchrotron Radiation at DESY is presented and a description of the Synchrotron Radiation facilities presently available and under development is given with emphasis on the new HASYLAB project at the storage ring DORIS. (orig.) 891 HSI/orig. 892 MKO

  8. Fifth school on Magnetism and Synchrotron Radiation

    CERN Document Server

    Beaurepaire, Eric; Scheurer, Fabrice; Kappler, Jean-Paul; Magnetism and Synchrotron Radiation : New Trends

    2010-01-01

    Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Fifth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.

  9. Characteristics of synchrotron radiation

    International Nuclear Information System (INIS)

    Brown, G.S.

    1984-01-01

    The characteristics and production of synchrotron radiation are qualitatively discussed. The spectral properties of wigglers and undulators are briefly described. Possible applications in condensed matter physics are outlined. These include atomic and molecular studies, crystallography, impurities in solids and radiographic imaging

  10. The national synchrotron: ray of hope or ring of fire?

    International Nuclear Information System (INIS)

    Hollis, T.

    2002-01-01

    While most agree the synchrotron will be a boost for Australian science, the author reports on concerns about the cost of building and operating the project Biotech industry representatives want to know how that $100 million will be used and want to see the government's justification for pouring more than a third of its total technology budget for 2001/2 into the synchrotron. They, and the opposition, also want to know where the private money will come from to make up the balance or whether the state will ultimately have to pitch in the rest itself. Indeed, an Auditor-General's report released last week warned of the need for comprehensive financial risk management of the facility. The National Synchrotron, to be built at Monash University, will be a hollow ring of about 60 metres diameter and initially housing nine beamlines, each capable of performing independent experiments simultaneously. According to Dr Richard Garrett, director of the Australian Synchrotron Research Program (http://www.ansto.gov.au/natfac/asrp.html) projection reports had indicated the local synchrotron user community would expand from about 350 researchers today to about 1200 by the time the National Synchrotron is built, with demand steadily increasing in the years following its completion

  11. The uses of synchrotron radiation sources for elemental and chemical microanalysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.

    1989-08-01

    Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron x-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10μm with minimum detection limits in the 1--10 ppM range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. 45 refs., 8 figs., 1 tab

  12. Synchrotron radiation laboratories at the Bonn electron accelerators. a status report

    Science.gov (United States)

    Hormes, J.

    1987-07-01

    At the Physikalisches Institut of the University in Bonn experiments with synchrotron radiation were carried out ever since 1962. At the moment (June 1986) all work takes place in the SR-laboratory at the 2.5 GeV synchrotron. A 3.5 GeV stretcher ring (ELSA) is under construction and will come into operation at the end of 1986. This accelerator will also run as a storage ring for synchrotron radiation experiments and a laboratory to be used at this machine is also under consideration. The SR experiments which are carried out in Bonn try to take advantage of the fact that we are still using a high energy synchrotron for our work. Besides basic research also applied work is done using synchrotron radiation even as a production tool for X-ray lithography.

  13. Synchrotron X-ray diffraction investigations on strains in the oxide layer of an irradiated Zircaloy fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Chollet, Mélanie, E-mail: melanie.chollet@psi.ch [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland); Valance, Stéphane; Abolhassani, Sousan; Stein, Gene [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland); Grolimund, Daniel [Paul Scherrer Institute, SLS, 5232 Villigen (Switzerland); Martin, Matthias; Bertsch, Johannes [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland)

    2017-05-15

    For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO{sub 2} are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components. - Highlights: •A Zircaloy-2 cladding irradiated 9 cycles was investigated thanks to synchrotron X-ray diffraction. •Microstructure and uniform strain through the oxide layer is revealed. •The m-ZrO{sub 2} uniform strain is oriented presenting compression along the (−111) plane. •Virtual tensor is built based on reflecting planes of families of grains. •Tensor components vary from tensile to compressive along the oxide layer.

  14. Synchrotron X-ray diffraction investigations on strains in the oxide layer of an irradiated Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Chollet, Mélanie; Valance, Stéphane; Abolhassani, Sousan; Stein, Gene; Grolimund, Daniel; Martin, Matthias; Bertsch, Johannes

    2017-01-01

    For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO 2 are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components. - Highlights: •A Zircaloy-2 cladding irradiated 9 cycles was investigated thanks to synchrotron X-ray diffraction. •Microstructure and uniform strain through the oxide layer is revealed. •The m-ZrO 2 uniform strain is oriented presenting compression along the (−111) plane. •Virtual tensor is built based on reflecting planes of families of grains. •Tensor components vary from tensile to compressive along the oxide layer.

  15. Low frequency interference between short synchrotron radiation sources

    Directory of Open Access Journals (Sweden)

    F. Méot

    2001-06-01

    Full Text Available A recently developed analytical formalism describing low frequency far-field synchrotron radiation (SR is applied to the calculation of spectral angular radiation densities from interfering short sources (edge, short magnet. This is illustrated by analytical calculation of synchrotron radiation from various assemblies of short dipoles, including an “isolated” highest density infrared SR source.

  16. MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; FENG,H.

    2000-12-01

    High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possible chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.

  17. Synchrotron radiation: its characteristics and applications

    International Nuclear Information System (INIS)

    Blewett, J.P.; Chasman, R.; Green, G.K.

    1977-01-01

    It has been known for a century that charged particles radiate when accelerated and that relativistic electrons in the energy range between 100 MeV and several GeV and constrained to travel in circular orbits emit concentrated, intense beams with broad continuous spectra that can cover the electromagnetic spectrum from infrared through hard X-rays. Recently the possible applications of this radiation have been appreciated and electron synchrotrons and electron storage rings are now being used in many centers for studies of the properties of matter in the solid, liquid and gaseous states. A brief history is presented of ''synchrotron radiation'' as it is now called. The basic properties of this radiation are described and the world-wide distribution is indicated of facilities for its production. Particular attention is given to the proposed facility at Brookhaven which will be the first major installation to be dedicated only to the production and use of synchrotron radiation. Finally, typical examples are given of applications in the areas of radiation absorption studies, techniques based on scattering of radiation, and advances based on X-ray lithography

  18. Tabletop synchrotron and its unique features

    CERN Document Server

    Yamada, H

    2002-01-01

    Two synchrotrons, AURORA and MIRRORCLE, were built in Ritsumeikan University. MIRRORCLE-20 is the smallest normal conduction synchrotron (15 cm orbit radius and 1.2 m outer diameter) in the world. It uses 2/3 resonance method for electron beam incidence but is not optimized for X-ray generation. MIRRORCLE-6 shall be optimized for X-ray generation. X-ray generated by MIRRORCLE shows very flat white light, rich in hard X-ray, pulse with width changeable from a few mu s to a few ms , wide radiation angle of 25 mrad at MIRRORCLE-20 and 80 mrad at MIRRORCLE-8 and high coherence. The feature such as pulsed light and high coherence is expected to new application which photon radiation cannot practice. Imaging experiments by MIRRORCLE were carried out by Cu plate, Al plate, Teflon and acryl plate. We took a photograph of insect, electric lamp, connector, and cyclotron. New X-ray generation mechanism, X-ray strength, development of tabletop synchrotron and features of X-ray beam are explained. (S.Y.)

  19. Tabletop synchrotron and its unique features

    International Nuclear Information System (INIS)

    Yamada, Hironari

    2002-01-01

    Two synchrotrons, AURORA and MIRRORCLE, were built in Ritsumeikan University. MIRRORCLE-20 is the smallest normal conduction synchrotron (15 cm orbit radius and 1.2 m outer diameter) in the world. It uses 2/3 resonance method for electron beam incidence but is not optimized for X-ray generation. MIRRORCLE-6 shall be optimized for X-ray generation. X-ray generated by MIRRORCLE shows very flat white light, rich in hard X-ray, pulse with width changeable from a few μs to a few ms , wide radiation angle of 25 mrad at MIRRORCLE-20 and 80 mrad at MIRRORCLE-8 and high coherence. The feature such as pulsed light and high coherence is expected to new application which photon radiation cannot practice. Imaging experiments by MIRRORCLE were carried out by Cu plate, Al plate, Teflon and acryl plate. We took a photograph of insect, electric lamp, connector, and cyclotron. New X-ray generation mechanism, X-ray strength, development of tabletop synchrotron and features of X-ray beam are explained. (S.Y.)

  20. Superelastic load cycling of Gum Metal

    International Nuclear Information System (INIS)

    Vorontsov, V.A.; Jones, N.G.; Rahman, K.M.; Dye, D.

    2015-01-01

    The superelastic beta titanium alloy, Gum Metal, has been found to accumulate plastic strain during tensile load cycling in the superelastic regime. This is evident from the positive drift of the macroscopic stress vs. strain hysteresis curve parallel to the strain axis and the change in its geometry subsequent to every load–unload cycle. In addition, there is a progressive reduction in the hysteresis loop width and in the stress at which the superelastic transition occurs. In situ synchrotron X-ray diffraction has shown that the lattice strain exhibited the same behaviour as that observed in macroscopic measurements and identified further evidence of plastic strain accumulation. The mechanisms responsible for the observed behaviour have been evaluated using transmission electron microscopy, which revealed a range of different defects that formed during load cycling. The formation of these defects is consistent with the classical mathematical theory for the bcc to orthorhombic martensitic transformation. It is the accumulation of these defects over time that alters its superelastic behaviour

  1. Synchrotron Infrared Science: Physics, Biology, Environmental Science and Coherence

    International Nuclear Information System (INIS)

    Martin, M.C.

    2004-01-01

    Full text: In recent years, infrared microscopy and spectroscopy has greatly benefited from a bright new source of light, namely synchrotrons. Synchrotrons provide a significant improvement in brightness, and therefore spatial resolution for mapping characteristic vibrational signatures of molecular species with high signal to noise. This has opened up new scientific directions for physicists, biologists, chemists, industrial applications, forensics, and more. I will present a brief overview of the technique followed by several scientific highlights of synchrotron infrared spectromicroscopy research being performed in Berkeley. I will then turn to the future by discussing our recent understanding of coherent synchrotron radiation (CSR). We are proposing a new ring which will use CSR to provide a far-infrared (THz) source having intensities between 7 and 10 orders of magnitude higher than present broadband sources. I will motivate and discuss the exciting capabilities of this revolutionary new source

  2. The application of synchrotron radiation to X-ray lithography

    International Nuclear Information System (INIS)

    Spiller, E.; Eastman, D.E.; Feder, R.; Grobman, W.D.; Gudat, W.; Topalian, J.

    1976-06-01

    Synchrotron radiation from the German electron synchrotron DESY in Hamburg has been used for X-ray lithograpgy. Replications of different master patterns (for magnetic bubble devices, fresnel zone plates, etc.) were made using various wavelengths and exposures. High quality lines down to 500 A wide have been reproduced using very soft X-rays. The sensitivities of X-ray resists have been evaluated over a wide range of exposures. Various critical factors (heating, radiation damage, etc.) involved with X-ray lithography using synchrotron radiation have been studied. General considerations of storage ring sources designed as radiation sources for X-ray lithography are discussed, together with a comparison with X-ray tube sources. The general conclusion is that X-ray lithography using synchrotron radiation offers considerable promise as a process for forming high quality sub-micron images with exposure times as short as a few seconds. (orig.) [de

  3. Performance and fuel cycle cost analysis of one Janus 30 conceptual design for several fuel element design options

    Energy Technology Data Exchange (ETDEWEB)

    Nurdin, Martias [Research Centre for Nuclear Techniques, National Atomic Energy Agency (Indonesia); Matos, J E; Freese, K E [RERTR Program, Argonne National Laboratory (United States)

    1983-09-01

    The performance and fuel cycle costs for a 25 MW, JANUS 30 reactor conceptual design by INTERATOM, Federal Republic of Germany, for BATAN, Republic of Indonesia have been studied using 19.75% enriched uranium in four fuel element design options. All of these fuel element designs have either been proposed by INTERATOM for various reactors or are currently in use with 93% enriched uranium in reactors in the Federal Republic of Germany. Aluminide, oxide, and silicide fuels were studied for selected designs using the range of uranium densities that are either currently qualified or are being developed and demonstrated internationally. These uranium densities include 1.7-2.3 g/cm{sup 3} in aluminide fuel, 1.7-3.2 g/cm{sup 3} in oxide fuel, and 2.9-6.8 g/cm{sup 3} in silicide fuel. As of November 1982) both the aluminide and the oxide fuels with about 1.7 g U/cm{sup 3} are considered to be fully-proven for licensing purposes. Irradiation screening and proof testing of fuels with uranium densities greater than 1.7 g/cm{sup 3} are currently in progress, and these tests need to be completed in order to obtain licensing authorization for routine reactor use. To assess the long-term fuel adaptation strategy as well as the present fuel acceptance, reactor performance and annual fuel cycle costs were computed for seventeen cases based on a representative end-of-cycle excess reactivity and duty factor. In addition, a study was made to provide data for evaluating the trade-off between the increased safety associated with thicker cladding and the economic penalty due to increased fuel consumption. (author)

  4. Synchrotron radiation

    International Nuclear Information System (INIS)

    Pattison, P.; Quinn, P.

    1990-01-01

    This report details the activities in synchrotron radiation and related areas at Daresbury Laboratory during 1989/90. The number and scope of the scientific reports submitted by external users and in-house staff is a reflection of the large amount of scheduled beamtime and high operating efficiency achieved at the Synchrotron Radiation Source (SRS) during the past year. Over 4000 hours of user beam were available, equivalent to about 80% of the total scheduled time. Many of the reports collected here illustrate the increasing technical complexity of the experiments now being carried out at Daresbury. Provision of the appropriate technical and scientific infrastructure and support is a continuing challenge. The development of the Materials Science Laboratory together with the existing Biological Support Laboratory will extend the range of experiments which can be carried out on the SRS. This will particularly facilitate work in which the sample must be prepared or characterised immediately before or during an experiment. The year 1989/90 has also seen a substantial upgrade of several stations, especially in the area of x-ray optics. Many of the advantages of the High Brightness Lattice can only be exploited effectively with the use of focusing optics. As the performance of these stations improves, the range of experiments which are feasible on the SRS will be extended significantly. (author)

  5. National Synchrotron Light Source safety-analysis report

    International Nuclear Information System (INIS)

    Batchelor, K.

    1982-07-01

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given

  6. Economic analyses of LWR fuel cycles

    International Nuclear Information System (INIS)

    Field, F.R.

    1977-05-01

    An economic comparison was made of three options for handling irradiated light-water reactor (LWR) fuel. These options are reprocessing of spent reactor fuel and subsequent recycle of both uranium and plutonium, reprocessing and recycle of uranium only, and direct terminal storage of spent fuel not reprocessed. The comparison was based on a peak-installed nuclear capacity of 507 GWe by CY 2000 and retirement of reactors after 30 years of service. Results of the study indicate that: Through the year 2000, recycle of uranium and plutonium in LWRs saves about $12 billion (FY 1977 dollars) compared with the throwaway cycle, but this amounts to only about 1.3% of the total cost of generating electricity by nuclear power. If deferred costs are included for fuel that has been discharged from reactors but not reprocessed, the economic advantage increases to $17.7 billion. Recycle of uranium only (storage of plutonium) is approximately $7 billion more expensive than the throwaway fuel cycle and is, therefore, not considered an economically viable option. The throwaway fuel cycle ultimately requires >40% more uranium resources (U 3 O 8 ) than does reprocessing spent fuel where both uranium and plutonium are recycled

  7. Optical systems for synchrotron radiation. Lecture 2. Mirror systems

    International Nuclear Information System (INIS)

    Howells, M.R.

    1986-02-01

    The process of reflection of VUV and x-radiation is summarized. The functions of mirrors in synchrotron beamlines are described, which include deflection, filtration, power absorption, formation of a real image, focusing, and collimation. Fabrication of optical surfaces for synchrotron radiation beamlines are described, and include polishing of a near spherical surface as well as bending a cylindrical surface to toroidal shape. The imperfections present in mirrors, aberrations and surface figure inaccuracy, are discussed. Calculation of the thermal load of a mirror in a synchrotron radiation beam and the cooling of the mirror are covered briefly. 50 refs., 7 figs

  8. Automation and Remote Synchrotron Data Collection

    International Nuclear Information System (INIS)

    Gilski, M.

    2008-01-01

    X-ray crystallography is the natural choice for macromolecular structure determination by virtue of its accuracy, speed, and potential for further speed gains, while synchrotron radiation is indispensable because of its intensity and tuneability. Good X-ray crystallographic diffraction patterns are essential and frequently this is achievable through using the few large synchrotrons located worldwide. Beamline time on these facilities have long queues, and increasing the efficiency of utilization of these facilities will help in expediting the structure determination process. Automation and remote data collection are therefore essential steps in ensuring that macromolecular structure determination becomes a very high throughput process. (author)

  9. Technique of infrared synchrotron acceleration diagnostics

    International Nuclear Information System (INIS)

    Mal'tsev, A.A.; Mal'tsev, M.A.

    1997-01-01

    Techniques of measuring of current and geometric parameters and evaluating of energy parameters of the ring bunch of relativistic low-energy electrons have been presented. They have been based on using the synchrotron radiation effect in its infrared spectral part. Fast infrared detectors have provided radiation detection in the spectral range Δλ ≅ 0.3-45 μm. The descriptions of some data monitoring and measuring systems developed in JINR for the realization of techniques of the infrared synchrotron acceleration diagnostics have been given. Infrared optics elements specially developed have been used in these systems

  10. Review of third and next generation synchrotron light sources

    International Nuclear Information System (INIS)

    Bilderback, Donald H; Elleaume, Pascal; Weckert, Edgar

    2005-01-01

    Synchrotron radiation (SR) is having a very large impact on interdisciplinary science and has been tremendously successful with the arrival of third generation synchrotron x-ray sources. But the revolution in x-ray science is still gaining momentum. Even though new storage rings are currently under construction, even more advanced rings are under design (PETRA III and the ultra high energy x-ray source) and the uses of linacs (energy recovery linac, x-ray free electron laser) can take us further into the future, to provide the unique synchrotron light that is so highly prized for today's studies in science in such fields as materials science, physics, chemistry and biology, for example. All these machines are highly reliant upon the consequences of Einstein's special theory of relativity. The consequences of relativity account for the small opening angle of synchrotron radiation in the forward direction and the increasing mass an electron gains as it is accelerated to high energy. These are familiar results to every synchrotron scientist. In this paper we outline not only the origins of SR but discuss how Einstein's strong character and his intuition and excellence have not only marked the physics of the 20th century but provide the foundation for continuing accelerator developments into the 21st century

  11. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures

  12. Synchrotron radiation in art and archaeology SRA 2005

    International Nuclear Information System (INIS)

    Pollard, A.M.; Janssens, K.; Artioli, G.; Young, M.L.; Casadio, F.; Schnepp, S.; Marvin, J.; Dunand, D.C.; Almer, J.; Fezzaa, K.; Lee, W.K.; Haeffner, D.R.; Reguer, S.; Dillmann, Ph.; Mirambet, F.; Susini, J.; Lagarde, P.; Pradell, T.; Molera, J.; Brunetti, B.; D'acapito, F.; Maurizio, C.; Mazzoldi, P.; Padovani, S.; Sgamellotti, A.; Garges, F.; Etcheverry, M.P.; Flank, A.M.; Lagarde, P.; Marcus, M.A.; Scheidegger, A.M.; Grolimund, D.; Pallot-Frossard, I.; Smith, A.D.; Jones, M.; Gliozzo, E.; Memmi-Turbanti, I.; Molera, J.; Vendrell, M.; Mcconachie, G.; Skinner, T.; Kirkman, I.W.; Pantos, E.; Wallert, A.; Kanngiesser, B.; Hahn, O.; Wilke, M.; NekaT, B.; Malzer, W.; Erko, A.; Chalmin, E.; Vignaud, C.; Farges, F.; Susini, J.; Menu, M.; Sandstrom, M.; Cotte, M.; Kennedy, C.J.; Wess, T.J.; Muller, M.; Murphy, B.; Roberts, M.A.; Burghammer, M.; Riekel, C.; Gunneweg, J.; Pantos, E.; Dik, J.; Tafforeau, P.; Boistel, R.; Boller, E.; Bravin, A.; Brunet, M.; Chaimanee, Y.; Cloetens, P.; Feist, M.; Hoszowska, J.; Jaeger, J.J.; Kay, R.F.; Lazzari, V.; Marivaux, L.; Nel, A.; Nemoz, C.; Thibault, X.; Vignaud, P.; Zabler, S.; Sciau, P.; Goudeau, P.; Tamura, N.; Doormee, E.; Kockelmann, W.; Adriaens, A.; Ryck, I. de; Leyssens, K.; Hochleitner, B.; Schreiner, M.; Drakopoulos, M.; Snigireva, I.; Snigirev, A.; Sanchez Del Rio, M.; Martinetto, P.; Dooryhee, E.; Suarez, M.; Sodo, A.; Reyes-Valerio, C.; Haro Poniatowski, E.; Picquart, M.; Lima, E.; Reguera, E.; Gunneweg, J.; Reiche, I.; Berger, A.; Bevers, H.; Duval, A.

    2005-01-01

    Materials - bones, artifacts, artwork,.... - lie at the heart of both archaeology and art conservation. Synchrotron radiation techniques provide powerful ways to interrogate these records of our physical and cultural past. In this workshop we will discuss and explore the current and potential applications of synchrotron radiation science to problems in archaeology and art conservation. This document gathers the abstracts of the presentations

  13. First turn simulations in the cooler synchrotron COSY

    International Nuclear Information System (INIS)

    Dinev, D.

    1991-07-01

    This paper is devoted to the first turn correction and related problems in particle accelerators of synchrotron type. The paper consists of two parts. The first part is a survey of the existing methods for first turn steering. The second part is entirely devoted to the first turn in the cooler synchrotron COSY which is under assembling in KFA-Julich, Germany. (orig.)

  14. Synchrotron radiation in art and archaeology SRA 2005

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, A M; Janssens, K; Artioli, G; Young, M L; Casadio, F; Schnepp, S; Marvin, J; Dunand, D C; Almer, J; Fezzaa, K; Lee, W K; Haeffner, D R; Reguer, S; Dillmann, Ph; Mirambet, F; Susini, J; Lagarde, P; Pradell, T; Molera, J; Brunetti, B; D' acapito, F; Maurizio, C; Mazzoldi, P; Padovani, S; Sgamellotti, A; Garges, F; Etcheverry, M P; Flank, A M; Lagarde, P; Marcus, M A; Scheidegger, A M; Grolimund, D; Pallot-Frossard, I; Smith, A D; Jones, M; Gliozzo, E; Memmi-Turbanti, I; Molera, J; Vendrell, M; Mcconachie, G; Skinner, T; Kirkman, I W; Pantos, E; Wallert, A; Kanngiesser, B; Hahn, O; Wilke, M; NekaT, B; Malzer, W; Erko, A; Chalmin, E; Vignaud, C; Farges, F; Susini, J; Menu, M; Sandstrom, M; Cotte, M; Kennedy, C J; Wess, T J; Muller, M; Murphy, B; Roberts, M A; Burghammer, M; Riekel, C; Gunneweg, J; Pantos, E; Dik, J; Tafforeau, P; Boistel, R; Boller, E; Bravin, A; Brunet, M; Chaimanee, Y; Cloetens, P; Feist, M; Hoszowska, J; Jaeger, J J; Kay, R F; Lazzari, V; Marivaux, L; Nel, A; Nemoz, C; Thibault, X; Vignaud, P; Zabler, S; Sciau, P; Goudeau, P; Tamura, N; Doormee, E; Kockelmann, W; Adriaens, A; Ryck, I de; Leyssens, K; Hochleitner, B; Schreiner, M; Drakopoulos, M; Snigireva, I; Snigirev, A; Sanchez Del Rio, M; Martinetto, P; Dooryhee, E; Suarez, M; Sodo, A; Reyes-Valerio, C; Haro Poniatowski, E; Picquart, M; Lima, E; Reguera, E; Gunneweg, J; Reiche, I; Berger, A; Bevers, H; Duval, A

    2005-07-01

    Materials - bones, artifacts, artwork,.... - lie at the heart of both archaeology and art conservation. Synchrotron radiation techniques provide powerful ways to interrogate these records of our physical and cultural past. In this workshop we will discuss and explore the current and potential applications of synchrotron radiation science to problems in archaeology and art conservation. This document gathers the abstracts of the presentations.

  15. Synchrotron X-ray induced solution precipitation of nanoparticles

    CERN Document Server

    Lee, H J; Hwu, Y; Tsai, W L

    2003-01-01

    By irradiating a solution in electroless Ni deposition using synchrotron X-rays, Ni composite was found to nucleate homogeneously and eventually precipitate in the form of nanoparticles. The size of the nanoparticles precipitated is rather uniform (100-300 nm depending on the applied temperature). By the addition of an organic acid, well-dispersed nanoparticles could be effectively deposited on glass substrate. The hydrated electrons (e sub a sub q sup -), products of radiolysis of water molecules by synchrotron X-rays, may be responsible for the effective reduction of the metal ions, resulting in homogeneous nucleation and nanoparticle formation. Our results suggest that synchrotron X-ray can be used to induce solution precipitation of nanoparticles and therefore lead to a new method of producing nanostructured particles and coating.

  16. Discussions for the shielding materials of synchrotron radiation beamline hutches

    International Nuclear Information System (INIS)

    Asano, Y.

    2006-01-01

    Many synchrotron radiation facilities are now under operation such as E.S.R.F., APS, and S.P.ring-8. New facilities with intermediated stored electron energy are also under construction and designing such as D.I.A.M.O.N.D., S.O.L.E.I.L., and S.S.R.F.. At these third generation synchrotron radiation facilities, the beamline shielding as well as the bulk shield is very important for designing radiation safety because of intense and high energy synchrotron radiation beam. Some reasons employ lead shield wall for the synchrotron radiation beamlines. One is narrow space for the construction of many beamlines at the experimental hall, and the other is the necessary of many movable mechanisms at the beamlines, for examples. Some cases are required to shield high energy neutrons due to stored electron beam loss and photoneutrons due to gas Bremsstrahlung. Ordinary concrete and heavy concrete are coming up to shield material of synchrotron radiation beamline hutches. However, few discussions have been performed so far for the shielding materials of the hutches. In this presentation, therefore, we will discuss the characteristics of the shielding conditions including build up effect for the beamline hutches by using the ordinary concrete, heavy concrete, and lead for shielding materials with 3 GeV and 8 GeV class synchrotron radiation source. (author)

  17. Assessment of Used Nuclear Fuel Inventory Relative to Disposition Options

    International Nuclear Information System (INIS)

    Wagner, John C.; Peterson, Joshua L.; Mueller, Don; Gehin, Jess C.; Worrall, Andrew; Taiwo, Temitope; Nutt, Mark; Williamson, Mark A.; Todosow, Mike; Wigeland, Roald; Halsey, William; Omberg, Ronald; Swift, Peter; Carter, Joe

    2013-01-01

    This paper presents a technical assessment of the current inventory [∼70,150 metric tons of heavy metal (MTHM) as of 2011] of U.S.-discharged used nuclear fuel (UNF) to support decisions regarding fuel cycle strategies and research, development and demonstration (RD and D) needs. The assessment considered discharged UNF from commercial nuclear electricity generation and defense and research programs and determined that the current UNF inventory can be divided into the following three categories: 1. Disposal - excess material that is not needed for other purposes; 2. Research - material needed for RD and D purposes to support waste management (e.g., UNF storage, transportation, and disposal) and development of alternative fuel cycles (e.g., separations and advanced fuels/reactors); and 3. Recycle/Recovery - material with inherent and/or strategic value. A set of key assumptions and attributes relative to the disposition options was used to categorize the current UNF inventory. Based on consideration of RD and D needs, time frames and material needs for deployment of alternative fuel cycles, characteristics of the current UNF inventory, and possible uses to support national security interests, it was determined that the vast majority of the category, without the need for retrieval for reuse or research purposes. Access to the material in the Research and Recycle/Recovery categories should be retained to support RD and D needs and national security interests. This assessment does not assume any decision about future fuel cycle options or preclude any potential options, including those with potential recycling of commercial UNF, since the ∼2,000 MTHM that is generated annually could provide the feedstock needed for deployment of alternative fuel cycles.

  18. Synchrotrons and their applications in medical imaging and therapy

    International Nuclear Information System (INIS)

    Lewis, R.

    2004-01-01

    Full text: Australasia's first synchrotron is being built on the campus of Monash University near Melbourne. Is it of any relevance to the medical imaging and radiation therapy communities? The answer is an unequivocal yes. Synchrotrons overcome many of the problems with conventional X-ray sources and as a result make it possible to demonstrate extraordinary advances in both X-ray imaging and indeed in radio-therapy. Synchrotron imaging offers us a window into what is possible and the results are spectacular. Specific examples include lung images that reveal alveolar structure and computed tomography of single cells. For therapy treatments are being pioneered that seem to be effective on high grade gliomas. An overview of the status of medical applications using synchrotrons will be given and the proposed Australian medical imaging and therapy facilities will be described and some of the proposed research highlighted. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  19. CERN PSB Beam Tests of CNAO Synchrotron's Digital LLRF

    CERN Document Server

    Angoletta, M E; De Martinis, C; Falbo, L; Findlay, A; Foglio, R; Hunt, S; Tourres, D; Vescovi, C

    2008-01-01

    The Italian National Centre for Oncological hAdrontherapy (CNAO), in its final construction phase, uses proton and carbon ion beams to treat patients affected by solid tumours. At the heart of CNAO is a 78- meter circumference synchrotron that accelerates particles to up to 400 MeV/u. The synchrotron relies on a digital LLRF system based upon Digital Signal Processors (DSPs) and Field Programmable Gate Array (FPGA). This system implements cavity servoing and beam control capabilities, such as phase and radial loops. Beam tests of the CNAO synchrotron LLRF system were carried out at CERN's Proton Synchrotron Booster (PSB) in autumn 2007, to verify the combined DSP/FPGA architecture and the beam control capabilities. For this, a prototype version of CNAO's LLRF system was adapted to the PSB requirements. This paper outlines the prototype system layout and describes the tests carried out and their results. In particular, system architecture and beam control capabilities were successfully proven by comparison wit...

  20. Design and construction of the prototype synchrotron radiation detector

    CERN Document Server

    Anderhub, H; Baetzner, D; Baumgartner, S; Biland, A; Camps, C; Capell, M; Commichau, V; Djambazov, L; Fanchiang, Y J; Flügge, G; Fritschi, M; Grimm, O; Hangarter, K; Hofer, H; Horisberger, Urs; Kan, R; Kaestli, W; Kenney, G P; Kim, G N; Kim, K S; Koutsenko, V F; Kraeber, M; Kuipers, J; Lebedev, A; Lee, M W; Lee, S C; Lewis, R; Lustermann, W; Pauss, Felicitas; Rauber, T; Ren, D; Ren, Z L; Röser, U; Son, D; Ting, Samuel C C; Tiwari, A N; Viertel, Gert M; Gunten, H V; Wicki, S W; Wang, T S; Yang, J; Zimmermann, B

    2002-01-01

    The Prototype Synchrotron Radiation Detector (PSRD) is a small-scale experiment designed to measure the rate of low-energy charged particles and photons in near the Earth's orbit. It is a precursor to the Synchrotron Radiation Detector (SRD), a proposed addition to the upgraded version of the Alpha Magnetic Spectrometer (AMS-02). The SRD will use the Earth's magnetic field to identify the charge sign of electrons and positrons with energies above 1 TeV by detecting the synchrotron radiation they emit in this field. The differential energy spectrum of these particles is astrophysically interesting and not well covered by the remaining components of AMS-02. Precise measurements of this spectrum offer the possibility to gain information on the acceleration mechanism and characteristics of all cosmic rays in our galactic neighbourhood. The SRD will discriminate against protons as they radiate only weakly. Both the number and energy of the synchrotron photons that the SRD needs to detect are small. The identificat...

  1. Real-time growth study of plasma assisted atomic layer epitaxy of InN films by synchrotron x-ray methods

    Energy Technology Data Exchange (ETDEWEB)

    Nepal, Neeraj [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Anderson, Virginia R. [American Society for Engineering Education, 1818 N Street NW, Washington, DC 20036; Johnson, Scooter D. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Downey, Brian P. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Meyer, David J. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; DeMasi, Alexander [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215; Robinson, Zachary R. [Department of Physics, SUNY College at Brockport, 350 New Campus Dr, Brockport, New York 14420; Ludwig, Karl F. [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215; Eddy, Charles R. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375

    2017-03-13

    The temporal evolution of high quality indium nitride (InN) growth by plasma-assisted atomic layer epitaxy (ALEp) on a-plane sapphire at 200 and 248 °C was probed by synchrotron x-ray methods. The growth was carried out in a thin film growth facility installed at beamline X21 of the National Synchrotron Light Source at Brookhaven National Laboratory and at beamline G3 of the Cornell High Energy Synchrotron Source, Cornell University. Measurements of grazing incidence small angle x-ray scattering (GISAXS) during the initial cycles of growth revealed a broadening and scattering near the diffuse specular rod and the development of scattering intensities due to half unit cell thick nucleation islands in the Yoneda wing with correlation length scale of 7.1 and 8.2 nm, at growth temperatures (Tg) of 200 and 248 °C, respectively. At about 1.1 nm (two unit cells) of growth thickness nucleation islands coarsen, grow, and the intensity of correlated scattering peak increased at the correlation length scale of 8.0 and 8.7 nm for Tg = 200 and 248 °C, respectively. The correlated peaks at both growth temperatures can be fitted with a single peak Lorentzian function, which support single mode growth. Post-growth in situ x-ray reflectivity measurements indicate a growth rate of ~0.36 Å/cycle consistent with the growth rate previously reported for self-limited InN growth in a commercial ALEp reactor. Consistent with the in situ GISAXS study, ex situ atomic force microscopy power spectral density measurements also indicate single mode growth. Electrical characterization of the resulting film revealed an electron mobility of 50 cm2/V s for a 5.6 nm thick InN film on a-plane sapphire, which is higher than the previously reported mobility of much thicker InN films grown at higher temperature by molecular beam epitaxy directly on sapphire. These early results indicated that in situ synchrotron x-ray study of the epitaxial growth kinetics of InN films is a very powerful method to

  2. An integrated life cycle sustainability assessment of electricity generation in Turkey

    International Nuclear Information System (INIS)

    Atilgan, Burcin; Azapagic, Adisa

    2016-01-01

    This paper presents for the first time an integrated life cycle sustainability assessment of the electricity sector in Turkey, considering environmental, economic and social aspects. Twenty life cycle sustainability indicators (11 environmental, three economic and six social) are used to evaluate the current electricity options. Geothermal power is the best option for six environmental impacts but it has the highest capital costs. Small reservoir and run-of-river power has the lowest global warming potential while large reservoir is best for the depletion of elements and fossil resources, and acidification. It also has the lowest levelised costs, worker injuries and fatalities but provides the lowest life cycle employment opportunities. Gas power has the lowest capital costs but it provides the lowest direct employment and has the highest levelised costs and ozone layer depletion. Given these trade-offs, a multi-criteria decision analysis has been carried out to identify the most sustainable options assuming different stakeholder preferences. For all the preferences considered, hydropower is the most sustainable option for Turkey, followed by geothermal and wind electricity. This work demonstrates the importance for energy policy of an integrated life cycle sustainability assessment and how tensions between different aspects can be reconciled to identify win-win solutions. - Highlights: •First integrated life cycle sustainability assessment of the electricity sector in Turkey. •11 environmental, three economic and six social sustainability indicators estimated. •Multi-criteria decision analysis carried out to identify most sustainable options. •Hydro is the most sustainable option for Turkey, followed by geothermal and wind. •This work demonstrates how tensions among sustainability aspects can be reconciled.

  3. White beam synchrotron fractography of molybdenum and niobium single crystals

    International Nuclear Information System (INIS)

    Bilello, J.C.; Hmelo, A.B.

    1983-01-01

    It has been demonstrated that a White Beam Synchrotron reflection technique can be used to characterize the fracture surface of Mo and Nb single crystals. This technique when used in conjunction with Berg-Barrett (or in the future monochromatic synchrotron topography) gives detailed information which correlates the internal defect structure to the cleavage surface morphology. In particular, synchrotron fractography has revealed the full extent of the plastic zone associated with a precursor crack, has clearly identified the nature of the initial crack where more than one precursor could have existed, and give detailed information on the extent of twinning and microtwinning. In comparison with other fractography methods for such semi-brittle metals the White Beam Synchrotron method not only achieves rapid data collection, but also provides internal defect structure correlation non-destructively. (author)

  4. Time-resolved materials science opportunities using synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by ∼tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities

  5. STUDIES ON THE RCMS RF SYSTEM.

    CERN Document Server

    Zhao, Y

    2003-01-01

    This note addresses the various options for the Rapid Cycling Medical Synchrotron (RCMS) RF. The study was divided into three cases, namely non-tuning, tuning and filter. Each case also includes a few options. The primary study was focused on the non-tuning options. However, it was found that it requires too much driver power to cover the wide band and thus causes the cost being too high to be competitive. The proposal of RCMS is not yet clear if it can be approved or not. The results of this study might be useful to other similar machines.

  6. STUDIES ON THE RCMS RF SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    ZHAO,Y.

    2003-01-22

    This note addresses the various options for the Rapid Cycling Medical Synchrotron (RCMS) RF. The study was divided into three cases, namely non-tuning, tuning and filter. Each case also includes a few options. The primary study was focused on the non-tuning options. However, it was found that it requires too much driver power to cover the wide band and thus causes the cost being too high to be competitive. The proposal of RCMS is not yet clear if it can be approved or not. The results of this study might be useful to other similar machines.

  7. Preliminar plan of a machine for the synchrotron radiation production

    International Nuclear Information System (INIS)

    Moscati, G.; Takahashi, J.; Miyao, Y.

    1985-01-01

    A preliminar plan, with all the technical specifications, for the construction of a machine for the synchrotron radiation production to be done by the National Synchrotron Radiation Laboratory in Brazil is presented. (L.C.) [pt

  8. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  9. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    International Nuclear Information System (INIS)

    Li, J.; McNelis, D.; Yim, M.S.

    2013-01-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC

  10. Panel backs next-generation synchrotron

    CERN Multimedia

    Service, R F

    1999-01-01

    A key federal panel recommended continued research into development of a fourth-generation synchrotron. It would be capable of creating x-ray pulses billions of times more intense than current designs (1 page).

  11. Power supplies for the injector synchrotron quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1995-01-01

    This light source note will describe the power supplies for the injector synchrotron quadrupole and sextupole magnets. The injector synchrotron has two families of quadrupole magnets. Each family consists of 40 quadrupole magnets connected in series. These magnets are energized by two phase-controlled, 12-pulse power supplies. Therefore, each power supply will be rated to deliver the necessary power to only 40 quadrupole magnets. The two families of sextupole magnets in the injector synchrotron each consists of 32 sextupole magnets connected in series, powered by a phase-controlled power supply. Thus, each power supply shall be capable of delivering power to only 32 sextupole magnets

  12. The 1.3GeV electron synchrotron INS-ES

    International Nuclear Information System (INIS)

    Yoshida, Katsuhide

    2006-01-01

    The 1.3GeV electron synchrotron at Institute for Nuclear Study, University of Tokyo (INS-ES) is the first high energy accelerator in Japan. It was constructed during 1956-1961 and shut down in 1999. It had played key roles in originating high energy physics in Japan. Based upon accelerator technologies developed in the construction and the operation of INS-ES, a 12 GeV proton synchrotron was built at KEK. INS-ES was also the base to promote synchrotron radiation science in Japan and to establish Photon Factory at KEK. After 1980, it was operated mainly to deliver tagged photon beam for high energy nuclear physics. (K.Y.)

  13. Synchrotron radiation, a powerful tool in research and technological development. Basic principles

    International Nuclear Information System (INIS)

    Jimenez M, J.

    2001-01-01

    The basic principles of synchrotron radiation emission in electron accelerators are presented. The main characteristics of synchrotron radiation, together with the physical principles that describe its interaction with different materials are also discussed. Different areas in which the development of synchrotron radiation has made a major impact are given. (Author)

  14. Life cycle cost and risk estimation of environmental management options

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.

    1996-01-01

    The evaluation process is demonstrated in this paper through comparative analysis of two alternative scenarios identified for the management of the alpha-contaminated fixed low-level waste currently stored at INEL. These two scenarios, the Base Case and the Delay Case, are realistic and based on actual data, but are not intended to exactly match actual plans currently being developed at INEL. Life cycle cost estimates were developed for both scenarios using the System Cost Model; resulting costs are presented and compared. Life cycle costs are shown as a function of time and also aggregated by pretreatment, treatment, storage, and disposal activities. Although there are some short-term cost savings for the Delay Case, cumulative life cycle costs eventually become much higher than costs for the Base Case over the same period of time, due mainly to the storage and repackaging necessary to accommodate the longer Delay Case schedule. Life cycle risk estimates were prepared using a new risk analysis method adapted to the System Cost Model architecture for automated, systematic cost/risk applications. Relative risk summaries are presented for both scenarios as a function of time and also aggregated by pretreatment, treatment, storage, and disposal activities. Relative risk of the Delay Case is shown to be higher than that of the Base Case. Finally, risk and cost results are combined to show how the collective information can be used to help identify opportunities for risk or cost reduction and highlight areas where risk reduction can be achieved most economically

  15. Space charge tracking code for a synchrotron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, M.B.; Tajima, T. [Univ. of Texas, Austin, TX (United States); Hiramoto, K. [Hitachi Ltd., Hitachi, Ibaraki (Japan). Hitachi Research Lab.

    1997-06-01

    An algorithm has been developed to compute particle tracking, including self-consistent space charge effects for synchrotron accelerators. In low-energy synchrotrons space charge plays a central role in enhancing emittance of the beam. The space charge effects are modeled by mutually interacting (through the Coulombic force) N cylindrical particles (2-{1/2}-dimensional dynamics) whose axis is in the direction of the equilibrium particle flow. On the other hand, their interaction with synchrotron lattice magnets is treated with the thin-lens approximation and in a fully 3-dimensional way. Since the existing method to treat space charge fully self-consistently involved 3-D space charge effect computation, the present method allows far more realistic physical parameters and runs in far shorter time (about 1/20). Some examples on space charge induced instabilities are presented.

  16. Reflectometry with synchrotron radiation

    International Nuclear Information System (INIS)

    Krumrey, Michael; Cibik, Levent; Fischer, Andreas; Gottwald, Alexander; Kroth, Udo; Scholze, Frank

    2014-01-01

    The measurement of the reflectivity for VUV, XUV, and X-radiation at the PTB synchrotron radiation sources is described. The corresponding data of the used beams are presented. Results of experiments on a Cu-Ni double-layer, SiO 2 , Si, and MgF 2 are presented. (HSI)

  17. High-pressure synchrotron infrared spectroscopy at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hemley, R.J.; Goncharov, A.F.; Lu, R.; Struzhkin, V.V.; Li, M.; Mao, H.K.

    1998-01-01

    The paper describes a synchrotron infrared facility for high-pressure spectroscopy and microspectroscopy at the National Synchrotron Light-Source (NSLS). Located at beamline U2B on the VUV ring of the NSLS, the facility utilizes a commercial FT-IR together with custom-built microscope optics designed for a variety of diamond anvil cell experiments, including low- and high- temperature studies. The system contains an integrated laser optical/grating spectrometer for concurrent optical experiments. The facility has been used to characterize a growing number of materials to ultrahigh pressure and has been instrumental of new high-pressure phenomena. Experiments on dense hydrogen to >200 GPa have led to the discovery of numerous unexpected properties of this fundamental system. The theoretically predicted molecular-atomic transition of H 2 O ice to the symmetric hydrogen-bonded structure has been identified, and new classes of high-density clathrates and molecular compounds have been characterized. Experiments on natural and synthetic mineral samples have been performed to study hydrogen speciation, phase transformations, and microscopic inclusions in multiphase assemblages. Detailed information on the behavior of new materials, including novel high-pressure glasses and ceramics, has also been obtained

  18. Nuclear Fuel Cycle Analysis and Simulation Tool (FAST)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Kim, Ho Dong

    2005-06-15

    This paper describes the Nuclear Fuel Cycle Analysis and Simulation Tool (FAST) which has been developed by the Korea Atomic Energy Research Institute (KAERI). Categorizing various mix of nuclear reactors and fuel cycles into 11 scenario groups, the FAST calculates all the required quantities for each nuclear fuel cycle component, such as mining, conversion, enrichment and fuel fabrication for each scenario. A major advantage of the FAST is that the code employs a MS Excel spread sheet with the Visual Basic Application, allowing users to manipulate it with ease. The speed of the calculation is also quick enough to make comparisons among different options in a considerably short time. This user-friendly simulation code is expected to be beneficial to further studies on the nuclear fuel cycle to find best options for the future all proliferation risk, environmental impact and economic costs considered.

  19. Modelisation of synchrotron radiation losses in realistic tokamak plasmas

    International Nuclear Information System (INIS)

    Albajar, F.; Johner, J.; Granata, G.

    2000-08-01

    Synchrotron radiation losses become significant in the power balance of high-temperature plasmas envisaged for next step tokamaks. Due to the complexity of the exact calculation, these losses are usually roughly estimated with expressions derived from a plasma description using simplifying assumptions on the geometry, radiation absorption, and density and temperature profiles. In the present article, the complete formulation of the transport of synchrotron radiation is performed for realistic conditions of toroidal plasma geometry with elongated cross-section, using an exact method for the calculation of the absorption coefficient, and for arbitrary shapes of density and temperature profiles. The effects of toroidicity and temperature profile on synchrotron radiation losses are analyzed in detail. In particular, when the electron temperature profile is almost flat in the plasma center, as for example in ITB confinement regimes, synchrotron losses are found to be much stronger than in the case where the profile is represented by its best generalized parabolic approximation, though both cases give approximately the same thermal energy contents. Such an effect is not included in present approximate expressions. Finally, we propose a seven-variable fit for the fast calculation of synchrotron radiation losses. This fit is derived from a large database, which has been generated using a code implementing the complete formulation and optimized for massively parallel computing. (author)

  20. 12 Experimental Techniques at Synchrotron Lightsource Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Peter L [US Department of Energy Office of Science Office Basic Energy Sciences; Rhyne, James J [US Department of Energy Office of Science Office of Basic Energy Sciences

    2015-01-01

    The unique properties of synchrotron radiation are its continuous spectrum, high flux and brightness, and high coherence, which make it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions from the atomic level to biological cells, thereby providing incisive probes for advanced research in materials science, physical and chemical sciences, metrology, geosciences, environmental sciences, biosciences, medical sciences, and pharmaceutical sciences. The features of synchrotron radiation are especially well matched to the needs of nanoscience.

  1. Atomic collision experiments using pulsed synchrotron radiation

    International Nuclear Information System (INIS)

    Arikawa, Tatsuo; Watanabe, Tsutomu.

    1982-01-01

    High intensity and continuous nature of the synchrotron radiation are the properties that are fundamentally important for studies of some atomic collision experiments, and many processes have been investigated by using these characteristics. However, so far the property that the radiation is highly polarized and pulsed in time has not been exploited significantly in atomic physics. As an example of the atomic processes relevant to such polarized and pulsed features of the synchrotron radiation, collisions involving optically-allowed excited atoms and molecules will be presented. (author)

  2. Uncertainty Analyses of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Miller, Laurence F.; Preston, J.; Sweder, G.; Anderson, T.; Janson, S.; Humberstone, M.; MConn, J.; Clark, J.

    2008-01-01

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development

  3. Uncertainty Analyses of Advanced Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

    2008-12-12

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

  4. Moessbauer spectroscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Bergmann, U.

    1994-01-01

    The short pulse nature of synchrotron radiation makes it possible to perform Moessbauer spectroscopy in the time domain, i.e. instead of measuring the transmitted intensity time integrated as a function of source/absorber velocity, the intensity of the scattered radiation is measured time differential. The resulting time spectrum is essentially source independent and complications in the data analysis which are related to the radioactive source are completely removed. Furthermore, the large brightness and well defined polarization of the synchrotron radiation can, e.g., speed up the data collection and facilitate studies of polarization phenomena. To illustrate these new spectroscopic possibilities, measurements of the temperature dependence and polarization dependence of forward scattering from alpha - sup 5 sup 7 Fe nuclei are presented and discussed 26 refs., 5 figs. (author)

  5. Australian synchrotron light source - (boomerang)

    International Nuclear Information System (INIS)

    Boldeman, J.

    2001-01-01

    The Australian National Synchrotron Light Source - (Boomerang) is to be installed at the Monash University in Victoria. This report provides some background to the proposed facility and discusses aspects of a prospective design. Recently, significant effort was devoted to refining the in principle design and a lattice providing an emittance od 18 nm rad was obtained with a distributed dispersion in the straight section of 0.29m. Exhaustive studies have been made of the economic benefits that would accrue to Australia to Australia following the installation of this facility. This design is a refinement of the design concept presented to the SRI -2000, Berlin (Boldeman, Einfeld et al), to the meeting of the 4th Asian Forum and the Preliminary Design Study presented to the Australian Synchrotron Research Program

  6. A novel molecular synchrotron for cold collision and EDM experiments.

    Science.gov (United States)

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-09-07

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed (88)SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles.

  7. Intense synchrotron radiation from a magnetically compressed relativistic electron layer

    International Nuclear Information System (INIS)

    Shearer, J.W.; Nowak, D.A.; Garelis, E.; Condit, W.C.

    1975-10-01

    Using a simple model of a relativistic electron layer rotating in an axial magnetic field, energy gain by an increasing magnetic field and energy loss by synchrotron radiation were considered. For a typical example, initial conditions were approximately 8 MeV electron in approximately 14 kG magnetic field, at a layer radius of approximately 20 mm, and final conditions were approximately 4 MG magnetic field approximately 100 MeV electron layer energy at a layer radius of approximately 1.0 mm. In the final state, the intense 1-10 keV synchrotron radiation imposes an electron energy loss time constant of approximately 100 nanoseconds. In order to achieve these conditions in practice, the magnetic field must be compressed by an imploding conducting liner; preferably two flying rings in order to allow the synchrotron radiation to escape through the midplane. The synchrotron radiation loss rate imposes a lower limit to the liner implosion velocity required to achieve a given final electron energy (approximately 1 cm/μsec in the above example). In addition, if the electron ring can be made sufficiently strong (field reversed), the synchrotron radiation would be a unique source of high intensity soft x-radiation

  8. A submicron synchrotron X-ray beam generated by capillary optics

    International Nuclear Information System (INIS)

    Engstroem, P.; Larsson, S.; Rindby, A.; Buttkewitz, A.; Garbe, S.; Gaul, G.; Knoechel, A.; Lechtenberg, F.; Deutsches Elektronen-Synchrotron

    1991-01-01

    A novel capillary optics technique for focusing synchrotron X-ray beams has been applied in an experiment performed at the DORIS storage ring at HASYLAB. This new technqiue, which utilizes the total reflection properties of X-rays inside small capillaries, has recently been applied to generate microbeams of X-rays, with a beam size down to about 10 μm using conventional X-ray tubes. The result from our recent experiment shows that capillary optics can also be used to generate a submicron beam of X-rays from a synchrotron light source. A description of the capillary unit, and the alignment procedure is given. The influence of the thermal load on the device caused by the intense flux of synchrotron radiation will be discussed. Future perspectives of the capillary techniques as applied to synchrotron radiation will be discussed. (orig.)

  9. A Project Of The 2.5 Gev Booster-synchrotron In Binp

    CERN Document Server

    Barbashin, V M; Kremyanskaya, E V; Kvardakov, V A; Levichev, E B; Mishnev, S I; Skrinsky, A N; Smaluk, V V

    2004-01-01

    A project of the 2.5 GeV booster synchrotron to provide effective injection of electron and positron beams into VEPP-2000 and VEPP-4M storage rings, and for future facilities, is developing in BINP. The beams are injected to synchrotron at 510 MeV energy from a damping ring, which is the part of the new injection facility [1]. Small transverse size of the beam extracted from the damping ring allows us to design the synchrotron with rather small acceptance. Therefore, the aperture can be reduced essentially, which also decreases dimensions of the magnets and their power-consuming. In this report, the synchrotron parameters are presented, the basic systems are briefly described.

  10. An introduction to synchrotron radiation techniques and applications

    CERN Document Server

    Willmott, Philip

    2011-01-01

    This book introduces the reader to the basic concepts of the generation and manipulation of synchrotron light, its interaction with matter, and the application of synchrotron light in the “classical” techniques, while including some of the most modern technological developments. As much as possible, complicated mathematical derivations and formulas are avoided. A more heuristic approach is adopted, whereby the general physical reasoning behind the equations is highlighted.

  11. Fundamentals of Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Sannibale, F.; Byrd, J.M.; Loftsdottir, A.; Martin, M.C.; Venturini, M.

    2004-01-01

    We present the fundamental concepts for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The analysis includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use these concepts to optimize the performance of a source for CSR emission

  12. Biomedical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Kwiatek, W.M.; Galka, M.; Hanson, A.L.; Paluszkiewicz, Cz.; Cichocki, T.

    2001-01-01

    Synchrotron radiation techniques application in medical diagnostics have been presented especially for: trace element analysis in tissues, elemental mapping, chemical speciation at trace levels, chemical structure determination. Presented techniques are very useful for early cancer discovery

  13. Synchrotron radiation

    International Nuclear Information System (INIS)

    Farge, Y.

    1982-01-01

    Synchrotron radiation is produced by electrons accelerated near the velocity of light in storage rings, which are used for high energy Physics experiments. The radiation light exhibits a wide spread continuous spectrum ranging from 01 nanometre to radiofrequency. This radiation is characterized by high power (several kilowatts) and intense brightness. The paper recalls the emission laws and the distinctive properties of the radiation, and gives some of the numerous applications in research, such as molecular spectroscopy, X ray diffraction by heavy proteins and X ray microlithography in LVSI circuit making [fr

  14. National synchrotron light source basic design and project status

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1981-01-01

    A summary description and the basic design parameters of the National Synchrotron Light Source, a facility for the generation of intense synchrotron radiation in the vuv and x-ray range is presented, the parameters of the sources are given, the presently planned facility beam lines are tabulated and the status of the project is indicated

  15. Atomic physics at high brilliance synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    Berry, G.; Cowan, P.; Gemmell, D.

    1994-08-01

    This report contains papers on the following topics: present status of SPring-8 and the atomic physics undulator beamline; recent photoabsorption measurements in the rare gases and alkalis in the 3 to 15 keV proton energy region; atomic and molecular physics at LURE; experiments on atoms, ions and small molecules using the new generation of synchrotron radiation sources; soft x-ray fluorescence spectroscopy using tunable synchrotron radiation; soft x-ray fluorescence spectroscopy excited by synchrotron radiation: Inelastic and resonant scattering near threshold; outer-shell photoionization of ions; overview of the APS BESSRC beamline development; the advanced light source: Research opportunities in atomic and molecular physics; Photoionization of the Ba + ion by 4d shell excitation; decay dynamics of inner-shell excited atoms and molecules; absorption of atomic Ca, Cr, Mn and Cu; High-resolution photoelectron studies of resonant molecular photoionization; radiative and radiationless resonant raman scattering by synchrotron radiation; auger spectrometry of atoms and molecules; some thoughts of future experiments with the new generation of storage rings; Electron spectroscopy studies of argon K-shell excitation and vacancy cascades; ionization of atoms by high energy photons; ion coincidence spectroscopy on rare gas atoms and small molecules after photoexcitation at energies of several keV; an EBIS for use with synchrotron radiation photoionization of multiply charged ions and PHOBIS; gamma-2e coincidence measurements the wave of the future in inner-shell electron spectroscopy; recoil momentum spectroscopy in ion-atom and photon-atom collisions; a study of compton ionization of helium; future perspectives of photoionization studies at high photon energies; and status report on the advanced photon source. These papers have been cataloged separately elsewhere

  16. Photonuclear physics at the Bonn synchrotrons. Present status and future plans at the Bonn synchrotron

    International Nuclear Information System (INIS)

    Mecking, B.A.

    1983-11-01

    The activities in the field of photonuclear physics at the Bonn 500 MeV and 2.5 GeV synchrotrons are reviewed. The experiments concentrate on photodisintegration and pion-photoproduction reactions on light nuclei. (orig.)

  17. Proposal for a national synchrotron light source

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1977-02-01

    Since 1971 discussions have been held at Brookhaven National Laboratory on the desirability of construction of a storage ring which would be used exclusively for production of intense beams of photons with wavelengths in the ultraviolet and X-ray ranges. A proposal is given which discusses in detail the machine, its characteristics, and its expected uses. The proposal includes: (1) characteristics of synchrotron radiation; (2) scientific justification for a synchrotron radiation facility; (3) facility design; (4) wiggler magnets; (5) experimental facilities; (6) buildings and utilities; (7) construction schedules, costs, and manpower; and (8) environmental assessment

  18. RF control system of the HIMAC synchrotron

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sato, K.; Itano, A.

    1992-01-01

    An RF control system of the HIMAC synchrotron has been constructed. In this control system we have adopted a digital feed back system with a digital synthesizer (DS). Combining a high power system, performance of the control system have been tested in a factory (Toshiba) with a simulator circuit of the synchrotron oscillation. Following this test, We had beam acceleration test with this control system at TARN-II in INS (Institute for Nuclear Study, University of Tokyo). This paper describes the RF control system and its tested results. (author)

  19. Reshuffle lifts French synchrotron hopes

    CERN Multimedia

    McCabe, H

    2000-01-01

    The sacking of Claude Allegre as research minister has raised doubts over the level of France's promised participation in the construction of Diamond but reawakened French hopes that the synchrotron Soleil may now be built (1 page).

  20. Synchrotron radiation sources: their properties and applications for VUV and X-ray spectroscopy

    International Nuclear Information System (INIS)

    Koch, E.E.

    1976-09-01

    Synchrotron radiation from accelerators and storage rings offers far reaching possibilities for many fields of basic and applied physics. The properties of synchrotron radiation, existing and planned synchrotron radiation facilities, as well as instrumental aspects are discussed. In order to illustrate the usefulness of the synchrotron radiation sources a few highlights from atomic, molelucar, and solid state spectroscopy are presented and examples from x-ray experiments and from the field of applied physics are given. (orig.) [de

  1. Transvenous coronary angiography in humans with synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1994-01-01

    The transvenous coronary angiography project at the National Synchrotron Light Source (NSLS) is presently undergoing a significant upgrade to the hardware and software in the synchrotron medical facility. When completed, the project will have reached a level of maturity in the imaging technology which will allow the research team to begin to concentrate on medical research programs. This paper will review the status of the project and imaging technology and will discuss the current upgrades and future advanced technology initiatives. The advantages of using the radiation from a synchrotron, over that from a standard x-ray source, were the motivation for the project. A total of 23 human imaging sessions have been carried out with in the project. The primary goals have been to establish the imaging parameters and protocol necessary to obtain clinically useful images

  2. Transvenous coronary angiography in humans with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomlinson, W.

    1994-10-01

    The transvenous coronary angiography project at the National Synchrotron Light Source (NSLS) is presently undergoing a significant upgrade to the hardware and software in the synchrotron medical facility. When completed, the project will have reached a level of maturity in the imaging technology which will allow the research team to begin to concentrate on medical research programs. This paper will review the status of the project and imaging technology and will discuss the current upgrades and future advanced technology initiatives. The advantages of using the radiation from a synchrotron, over that from a standard x-ray source, were the motivation for the project. A total of 23 human imaging sessions have been carried out with in the project. The primary goals have been to establish the imaging parameters and protocol necessary to obtain clinically useful images.

  3. RF-knockout Extraction System for the CNAO Synchrotron

    CERN Document Server

    Carmignani, Nicola; Serio, Mario; Balbinot, Giovanni; Bressi, Erminia; Caldara, Michele; Pullia, Marco; Bosser, Jacques; Venchi, Giuseppe

    2010-01-01

    The National Centre for Oncological Hadrontherapy (CNAO) is a centre in Italy for the treatment of patients affected by tumours with proton and carbon ions beams accelerated in a synchrotron. The synchrotron extraction method is based on the use of a betatron core. This work aims to verify, through a theoretical study and a simulation, the possibility of using the RF-knockout extraction method exploiting the existing hardware. A simulation program has been written to simulate the extraction system of the synchrotron with the purpose to define the parameters of the radio frequency. Two types of radio frequencies have been compared in order to obtain a constant spill with the minimum ripple: a carrier wave with a frequency and amplitude modulation, and a gaussian narrow band noise modulated in amplitude. Results of the simulation and considerations on the kicker characteristics are presented

  4. Proceedings of the GLOBAL 2009 congress - The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives

    International Nuclear Information System (INIS)

    2009-06-01

    TOP FUEL / Water Reactor Fuel Performance which shares some common technical sessions. The exhibition is the same for the two meetings. Intended participants and audiences include personnel working on all aspects of the NFC, such as scientific and technical topics, design challenges, industrial implementation, societal and institutional issues (including regulatory framework), and policy questions. The technical Program includes the following topical areas: 1 - Front End of the Fuel Cycle; 2 - Current Spent Nuclear Fuel Recycling; 3 - Waste Management Technologies And Strategies; 4 - Concepts for Transportation and Interim Storage of Spent Fuels and Conditioned Waste or Other Radioactive Materials; 5 - Nuclear Waste Repository Developments; 6 - Advanced Technologies for Fuel Recycling Including Partitioning of Specific Radionuclides; 7 - Advances in Reactor Cores Design and In-core Fuel Management; 8 - Transmutation Systems for Long Lived Radio Nuclides; 9 - Developments in Nuclear Non-Proliferation Technology, Policy and Implementation; 10 - Sustainable Fuel Cycle Options and Nuclear Material Management; 11 - Dismantling, Decommissioning and Material Management; 12 - Crosscutting Issues, Policies and Programs; 13 - Plenary Sessions

  5. Proceedings of the GLOBAL 2009 congress - The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    TOP FUEL / Water Reactor Fuel Performance which shares some common technical sessions. The exhibition is the same for the two meetings. Intended participants and audiences include personnel working on all aspects of the NFC, such as scientific and technical topics, design challenges, industrial implementation, societal and institutional issues (including regulatory framework), and policy questions. The technical Program includes the following topical areas: 1 - Front End of the Fuel Cycle; 2 - Current Spent Nuclear Fuel Recycling; 3 - Waste Management Technologies And Strategies; 4 - Concepts for Transportation and Interim Storage of Spent Fuels and Conditioned Waste or Other Radioactive Materials; 5 - Nuclear Waste Repository Developments; 6 - Advanced Technologies for Fuel Recycling Including Partitioning of Specific Radionuclides; 7 - Advances in Reactor Cores Design and In-core Fuel Management; 8 - Transmutation Systems for Long Lived Radio Nuclides; 9 - Developments in Nuclear Non-Proliferation Technology, Policy and Implementation; 10 - Sustainable Fuel Cycle Options and Nuclear Material Management; 11 - Dismantling, Decommissioning and Material Management; 12 - Crosscutting Issues, Policies and Programs; 13 - Plenary Sessions.

  6. Radiological impacts of spent nuclear fuel management options. A comparative study

    International Nuclear Information System (INIS)

    2000-01-01

    Given its potential significance for public health and the environment, the impact of radioactive releases during important steps of nuclear energy production must be considered when selecting among different fuel cycles. With this in mind, the OECD Nuclear Energy Agency (NEA) has undertaken a comparative study to the radiological impacts of two main fuel cycle options : one with and one without reprocessing of spent nuclear fuel. The study compares the respective impacts of the two options based on generic models and assumptions as well as actual data. It concludes that the difference between them is not significant. A wealth of recent data assembled and evaluated by an international expert team is provided in annex. (authors)

  7. Regions compete for French synchrotron

    CERN Multimedia

    2000-01-01

    Ten regions in France have placed bids to host the planned national synchrotron Soleil. Leading contenders include a joint bid from Ile-de-France and Essonne for Orsay, offering FF 1 billion towards the construction costs (2 paragraphs).

  8. Present status and future plans at INS 1.3 GeV electron synchrotron

    International Nuclear Information System (INIS)

    Yoshida, K.

    1984-01-01

    The 1.3 GeV electron synchrotron at the Institute for Nuclear Study, University of Tokyo, was completed in 1961, and it was the first accelerator in Japan that was able to be used for the study on particle physics. The brief chronicle is shown. One of the purposes to construct the electron synchrotron was to train accelerator physicists for the next big project of building a high energy proton synchrotron. This project led to the foundation of the National Laboratory for High Energy Physics, and the Photon Factory was completed in 1982 there. The electron synchrotron has been continuously operated for 22 years. Meanwhile, the major components such as the injector linac, the vacuum system and the of acceleration system were renewed. By these improvement, the beam intensity and stability of the synchrotron were much improved. The circulating current is now 160 mA, and the number of accelerated electrons is 2.5 x 10 12 /sec. These are the highest values in the world. The parameters of the present synchrotron and the operational status are shown. There are five beam channels, that is, bremsstrahlung channel, tagged photon beam, fast extracted electron beam, synchrotron light channel and detector test channel. The recent activities with the INS electron synchrotron and the future plans are summarized. (Kako, I.)

  9. The 400 GeV proton synchrotron

    International Nuclear Information System (INIS)

    1976-05-01

    A general account is given of the 400-GeV proton synchrotron, known as Super Proton Synchrotron (SPS), of the European Organization for Nuclear Research (CERN) at Geneva. A brief chapter on the history of the project covers the steps leading to the earlier plan for a 300-GeV accelerator at a new CERN laboratory elsewhere in Europe, abandoned in 1971 in favour of the present machine, and the progress of construction of the latter. The general features of the SPS design are outlined, illustrated by an aerial view of the CERN site, a plan of the SPS, and interior views of the SPS ring tunnel and main control room. (WSN)

  10. National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach

    Directory of Open Access Journals (Sweden)

    Ruxing Gao

    2017-12-01

    Full Text Available While the prospects look bright for nuclear energy development in China, no consensus about an optimum transitional path towards sustainability of the nuclear fuel cycle has been achieved. Herein, we present a preliminary study of decision making for China’s future nuclear energy systems, combined with a dynamic analysis model. In terms of sustainability assessment based on environmental, economic, and social considerations, we compared and ranked the four candidate options of nuclear fuel cycles combined with an integrated evaluation analysis using the Multi-Criteria Decision Making (MCDM method. An improved integrated weighting method was first applied in the nuclear fuel cycle evaluation study. This method synthesizes diverse subjective/objective weighting methods to evaluate conflicting criteria among the competing decision makers at different levels of expertise and experience. The results suggest that the fuel cycle option of direct recycling of spent fuel through fast reactors is the most competitive candidate, while the fuel cycle option of direct disposal of all spent fuel without recycling is the least attractive for China, from a sustainability perspective. In summary, this study provided a well-informed decision-making tool to support the development of national nuclear energy strategies.

  11. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    Science.gov (United States)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low

  12. Synchrotron light source data book: Version 4, Revision 05/96

    International Nuclear Information System (INIS)

    Murphy, J.B.

    1996-05-01

    This book is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-Ray Data Booklet address the use of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in practical units and a brief description of many of the existing and planned light source lattices

  13. Synchrotron light source data book: Version 4, Revision 05/96

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J.B.

    1996-05-01

    This book is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-Ray Data Booklet address the use of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in practical units and a brief description of many of the existing and planned light source lattices.

  14. 50 Years of synchrotrons Adams' Memorial lecture

    CERN Document Server

    Lawson, J D; CERN. Geneva

    1996-01-01

    Fifty years ago Frank Goward of the Atomic Energy Research Establishment Group at Malvern converted a small American betatron to make the worldÕs first synchrotron. At the same time Marcus Oliphant was planning to build at Birmingham a large proton machine with a ring magnet and variable magnetic field. Ideas for this had come to him during night-shifts tending the electromagnetic separators at Oak Ridge during the war. Some seven years later, in 1953, a group gathered together in Geneva to build the PS. A major contributor to the design work which had made this possible was John Adams. An account of some of the achievements in these eventful years will be presented. CERN has built nine synchrotrons/colliders and two temporary test rings. Eight machines are still running. The review will start with the PS, the first proton synchrotron based on the alternating gradient principle invented in 1952 at BNL. The design work of the PS team, under the enlightened leadership of J.B. Adams, and the construction of the...

  15. The Dow Chemical Company's synchrotron radiation effort - A case history

    International Nuclear Information System (INIS)

    Bubeck, R.A.; Bare, S.R.; DeKoven, B.M.; Heaney, M.D.; Rudolf, P.R.

    1994-01-01

    Synchrotron radiation is used in a broad array of technologies to study everything from molecular orientation at interfaces, through the structure of active catalyst phases. It is also a key to understanding structure-property relationships and providing fundamental information in polymers, ceramics, and other materials. The Dow Synchrotron User group, formed in 1991, has developed a long-term plan for effective utilization of synchrotron technology. The current efforts at Brookhaven National Lab. and Cornell High Energy Synchrotron Source are examined, as will the long-term commitment at the Advanced Photon Source. Current examples included are in-situ studies of polymer processing, surface and interfaces characterization, and real-time deformation studies. The APS is one of only three open-quotes Third Generationclose quotes synchrotron sources that are planned world-wide, the others being in France and Japan. With a scheduled completion date of mid-1995, the APS has remained both on-budget and ahead-of-schedule since ground-breaking in the spring of 1990. The DuPont - Northwestern University - Dow Collaborative Access Team (DND-CAT) is the first CAT to successfully pass all the necessary hurdles before beamline construction can begin. Some of the goals of the DND-CAT program are mentioned, together with the strengths of this unique collaborative effort

  16. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    International Nuclear Information System (INIS)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis

  17. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  18. Development of multilateral comparative evaluation method for fuel cycle system

    International Nuclear Information System (INIS)

    Tamaki, Hitoshi; Ikushima, Takeshi; Nomura, Yasushi; Nakajima, Kiyoshi.

    1998-03-01

    In the near future, Japanese nuclear fuel cycle system will be promoted by national nuclear energy policy, and it''s options i.e. once through, thermal cycle and fast breeder cycle must be selected by multilateral comparative evaluation method from various aspects of safety, society, economy, and e.t.c. Therefore such a problem can be recognized as a social problem of decision making and applied for AHP (Analytic Hierarchy Process) that can multilaterally and comparatively evaluate the problem. On comparative evaluation, much information are needed for decision making, therefore two kinds of databases having these information have been constructed. And then, the multilateral comparative evaluation method consisting of two kinds of databases and AHP for optimum selection of fuel cycle system option have been developed. (author)

  19. Nuclear technology options

    International Nuclear Information System (INIS)

    Salvatores, Massimo

    2013-01-01

    Different strategies and motivations in different countries have led to diverse options. In Europe the SNETP (Sustainable Nuclear Energy Technology Platform) has the objective of developing R&D supporting GEN-II (present) and GEN-III nuclear systems under development; allowing sustainability and minimisation of waste burden, promoting advanced Gen-IV Fast Reactors; and accounting for a Nuclear Cogeneration Industrial Initiative. A remarkable initiative in the USA has been the promotion of small modular reactors (SMRs) – at less than 300 MWe in capacity, much smaller than typical reactors – which can be an ideal choice for (remote) areas which cannot support a larger reactor. Compact scalable design offers a host of potential safety, construction and economic benefits. More “upbeat” strategies are expected in other areas of the world where significant increase in nuclear energy demand is predicted in the next decades. If this growth materialises, future fuel cycles characteristics, feasibility and acceptability will be crucial. This paper will discuss different scenarios for future fuel cycles, resources optimisation and/or waste minimization, the range from full fast reactor deployment to phase-out, management of spent nuclear fuel and the significant potential benefits of advanced cycles. The next 45 years will be dominated by deployment of standard large or medium size plants operating for 60 years. Available resources do allow it. However, fuel cycle will be a growing and most challenging issue and early assessments will be needed for public acceptance and policy decisions.

  20. Performance improvement: an active life cycle product management

    Science.gov (United States)

    Cucchiella, Federica; Gastaldi, Massimo; Lenny Koh, S. C.

    2010-03-01

    The management of the supply chain has gained importance in many manufacturing firms. Operational flexibility can be considered a crucial weapon to increase competitiveness in a turbulent marketplace. It reflects the ability of a firm to properly and rapidly respond to a variable and dynamic environment. For the firm operating in a fashion sector, the management of the supply chain is even more complex because the product life cycle is shorter than that of the firm operating in a non-fashion sector. The increase of firm flexibility level can be reached through the application of the real option theory inside the firm network. In fact, real option may increase the project value by allowing managers to more efficiently direct the production. The real option application usually analysed in literature does not take into account that the demands of products are well-defined by the product life cycle. Working on a fashion sector, the life cycle pattern is even more relevant because of an expected demand that grows according to a constant rate that does not capture the demand dynamics of the underlying fashion goods. Thus, the primary research objective of this article is to develop a model useful for the management of investments in a supply chain operating in a fashion sector where the system complexity is increased by the low level of unpredictability and stability that is proper of the mood phenomenon. Moreover, unlike the traditional model, a real option framework is presented here that considers fashion product characterised by uncertain stages of the production cycle.

  1. Noise characteristics of U. S. synchrotron radiation sources

    International Nuclear Information System (INIS)

    Powers, L.

    1986-01-01

    Noise characteristics of the U. S. x-ray synchrotron sources are compared in the 0--2.5-kHz region. In general, little difference is found in the characteristic frequencies of the noise on focused and unfocused beamlines of a particular source, but the magnitude and white-noise levels differ. The National Synchrotron Light Source shows the least characteristic noise and the noise that is observed is small in magnitude (2--3 times the white-noise level)

  2. K-Edge Subtraction Angiography with Synchrotron X-Rays

    CERN Document Server

    Giacomini, J C

    1996-01-01

    The purpose of this project was to utilize dual energy, monochromatic X-rays produced from synchrotrons radiation in order to obtain noninvasive medical imaging. The application of synchrotrons radiation to medical imaging is based on the principle of iodine dichromography, first described by Bertil Jacobson of the Karolinska Institute in 1953. Medical imaging using synchrotrons radiation and K-edge dichromography was pioneered at Stanford University under the leadership of Dr. Ed Rubenstein, and the late Nobel Laureate in Physics, Dr. Robert Hofstadter. With progressive refinements in hardware, clinical-quality images were obtained of human coronary arteries utilizing peripheral injections of iodinated contrast agent. These images even now are far superior to those being presented by investigators using MRI as an imaging tool for coronary arteries. However, new supplies and instruments in the cardiac catheterization laboratory have served to transform coronary angiography into an outpatient procedure, with r...

  3. The national synchrotron ray of hope or ring of fire?

    CERN Document Server

    Hollis, T

    2002-01-01

    While most agree the synchrotron will be a boost for Australian science, the author reports on concerns about the cost of building and operating the project Biotech industry representatives want to know how that $100 million will be used and want to see the government's justification for pouring more than a third of its total technology budget for 2001/2 into the synchrotron. They, and the opposition, also want to know where the private money will come from to make up the balance or whether the state will ultimately have to pitch in the rest itself. Indeed, an Auditor-General's report released last week warned of the need for comprehensive financial risk management of the facility. The National Synchrotron, to be built at Monash University, will be a hollow ring of about 60 metres diameter and initially housing nine beamlines, each capable of performing independent experiments simultaneously. According to Dr Richard Garrett, director of the Australian Synchrotron Research Program (http://www.ansto.gov.au/natf...

  4. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kisaka, Shota [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa, 252-5258 (Japan); Tanaka, Shuta J., E-mail: kisaka@phys.aoyama.ac.jp, E-mail: sjtanaka@center.konan-u.ac.jp [Department of Physics, Konan University, Kobe, Hyogo, 658-8501 (Japan)

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ -ray pulsars (≲10{sup 6} year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳10{sup 6} year). Using the analytical model, we derive the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L {sub sd} ≲ 10{sup 34} erg s{sup −1}, non-dipole magnetic field components should be dominant at the emission region. For the γ -ray pulsars with L {sub sd} ≲ 10{sup 35} erg s{sup −1}, observed γ -ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.

  5. Effect of advanced fuel cycles on waste management policies

    International Nuclear Information System (INIS)

    Cavedon, J.M.; Haapalehto, T.

    2005-01-01

    The study aims at analysing a range of future fuel cycle options from the perspective of their impact on waste repository demand and specification. The study would focus on: Assessment of the characteristics of radioactive wastes arising from advanced nuclear fuel cycle options, repository performance analysis studies using source terms for waste arising from such advanced nuclear fuel cycles, identification of new options for waste management and disposal. Three families of fuel cycles having increasing recycling capabilities are assessed. Each cycle is composed of waste generating and management processes. Examples of waste generating processes are fuel factories (7 types) and reprocessing plants (7 types). Packaging and conditioning plants (7) and disposal facilities are examples of waste management processes. The characteristic of all these processes have been described and then total waste flows are summarised. In order to simplify the situation, three waste categories have been defined based on the IAEA definitions in order to emphasize the major effects of different types of waste. These categories are: short-life waste for surface or sub-surface disposal, long-life low heat producing waste for geological disposal, high-level waste for geological disposal. The feasibilities of the fuel cycles are compared in terms of economics, primary resource consumption and amount of waste generated. The effect of high-level waste composition for the repository performance is one of the tools in these comparisons. The results of this will be published as an NEA publication before the end of 2005. (authors)

  6. A preliminary study of synchrotron light sources for x-ray lithography

    International Nuclear Information System (INIS)

    Hoffmann, C.R.; Bigham, C.B.; Ebrahim, N.A.; Sawicki, J.A.; Taylor, T.

    1989-02-01

    A preliminary study of synchrotron light sources has been made, primarily oriented toward x-ray lithography. X-ray lithography is being pursued vigorously in several countries, with a goal of manufacturing high-density computer chips (0.25 μm feature sizes), and may attain commercial success in the next decade. Many other applications of soft x-rays appear worthy of investigation as well. The study group visited synchrotron radiation facilities and had discussions with members of the synchrotron radiation community, particularly Canadians. It concluded that accelerator technology for a conventional synchrotron light source appropriate for x-ray lithography is well established and is consistent with skills and experience at Chalk River Nuclear Laboratories. Compact superconducting systems are being developed also. Their technical requirements overlap with capabilities at Chalk River. (32 refs)

  7. Development of compact synchrotron light source LUNA for x-ray lithography

    International Nuclear Information System (INIS)

    Takahashi, M.; Mandai, S.; Hoshi, Y.; Kohno, Y.

    1992-01-01

    A compact synchrotron light source LUNA has been developed by Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI), especially for x-ray lithography. It consists of a 45-MeV linac as an electron injector and an 800-MeV synchrotron. The peak wavelength of synchrotron radiation is around 10 A. The installation of LUNA was completed in April 1989 at the Tsuchiura Facility of IHI. The synchrotron radiation was first observed in December 1989. A stored beam current of 50 mA at 800 MeV and a lifetime over 1 h have been achieved. At present, experiments are still continuing to increase the stored current and the lifetime. X-ray lithography testing is scheduled to begin in a clean room in this facility. This paper describes the outline of LUNA and the present status

  8. Use of a synchrotron radiation x-ray microprobe for elemental analysis at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1980-01-01

    The National Synchrotron Light Source (NSLS) is a facility consisting of a 700 MeV and a 2.5 GeV electron storage ring and dedicated to providing synchrotron radiation in the energy range from the vacuum ultraviolet to high energy x rays. Some of the properties of synchrotron radiation that contribute to its usefulness for x-ray fluorescence are: a continuous, tunable energy spectrum, strong collimation in the horizontal plane, high polarization in the storage ring plane, and relatively low energy deposition. The highest priority is for the development of an x-ray microprobe beam line capable of trace analysis in the parts per million range with spatial resolution as low as one micrometer. An eventual capability for bulk sample analysis is also planned with sensitivities in the more favorable cases beings low as 50 parts per billion in dry biological tissue. The microprobe technique has application to a variety of fields including the geological, medical, materials and environmental sciences. Examples of investigations include multielemental trace analysis across grain boundaries for the study of diffusion and cooling processes in geological and materials sciences samples; in leukocytes and other types of individual cells for studying the relationship between trace element concentrations and disease or nutrition; and in individual particles in air pollution samples

  9. Economical viability of the nuclear option in Mexico

    International Nuclear Information System (INIS)

    Ortiz, R.; Alonso, G.; Sanchez, J.

    2006-01-01

    Due to the high volatility of the gas prices and the concern for CO2 emissions, the nuclear option seems to be an option that needs to consider in a electricity expansion portfolio. In this paper a levelized electricity cost analysis is performed to compared different scenarios of electricity generation using combined cycles by using gas and nuclear power stations. The scenarios comprises different discount rates for the investment that goes from 5% to 12%, gas prices from 4.44 USD/mmBTU to 7 USD/mmBTU and overnight cost for Nuclear Power Plants from 1200 USD/kW to 1600 USD/kW. The overall cash flow including investment is analyzed during the whole life of the power plants to test the convenience of the best option in the long run

  10. Partitioning and transmutation: Radioactive waste management option

    International Nuclear Information System (INIS)

    Stanculescu, A.

    2005-01-01

    destruction (coupled with Th fuel cycle). Reduction of long-term hazard of spent fuel or HLW by transforming long-lived radionuclides into short-lived or inactive elements is one of the main P and T objectives. Hazard reduction (P and T objective) requires very different and much more fundamental measures as compared to risk reduction. Nuclear Fuel Cycle Options are discussed: Conventional, once through fuel cycle with direct disposal of spent fuel, aqueous reprocessing fuel cycle with vitrification of high-level liquid waste (RFC) and advanced fuel cycle with partitioning of actinides

  11. Synchrotron radiation losses in Engineering Test Reactors (ETRs)

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1987-11-01

    In next-generation Engineering Test Reactors (ETRs), one major objective is envisioned to be a long-pulse or steady-state burn using noninductive current drive. At the high temperatures needed for efficient current drive, synchrotron radiation could represent a large power loss, especially if wall reflectivity (R) is very low. Many INTOR-class ETR designs [Fusion Engineering Reactor (FER), Next European Torus (NET), OTR, Tokamak Ignition/Burn Engineering Reactor (TIBER), etc.] call for carbon-covered surfaces for which wall reflectivity is uncertain. Global radiation losses are estimated for these devices using empirical expressions given by Trubnikov (and others). Various operating scenarios are evaluated under the assumption that the plasma performance is limited by either the density limit (typical of the ignition phase) or the beta limit (typical of the current drive phase). For a case with ≥90% wall reflectivity, synchrotron radiation is not a significant contribution to the overall energy balance (the ratio of synchrotron to alpha power is less than 10 to 20%, even at ∼ 30 keV) and thus should not adversely alter performance in these devices. In extreme cases with 0% wall reflectivity, the ratio of synchrotron radiation to alpha power may approach 30 to 60% (depending on the device and limiting operating scenario), adversely affecting the performance characteristics. 12 refs., 7 tabs

  12. Operation of the Australian Store.Synchrotron for macromolecular crystallography.

    Science.gov (United States)

    Meyer, Grischa R; Aragão, David; Mudie, Nathan J; Caradoc-Davies, Tom T; McGowan, Sheena; Bertling, Philip J; Groenewegen, David; Quenette, Stevan M; Bond, Charles S; Buckle, Ashley M; Androulakis, Steve

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.

  13. The three-dimensional microstructure of polycrystalline materials unravelled by synchrotron light

    DEFF Research Database (Denmark)

    Ludwig, W.; King, A.; Herbig, M.

    2011-01-01

    The three-dimensional microstructure of polycrystalline materials unravelled by synchrotron light Synchrotron radiation X-ray imaging and diffraction techniques offer new possibilities for non-destructive bulk characterization of polycrystalline materials. Minute changes in electron density (diff...

  14. Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques.

    Science.gov (United States)

    Doeff, Marca M; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C; Conry, Thomas

    2013-11-11

    Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives. The extremely bright and tunable x-rays produced by synchrotron radiation allow rapid acquisition of high-resolution data that provide information about these processes. Transformations in the bulk materials, such as phase transitions, can be directly observed using X-ray diffraction (XRD), while X-ray absorption spectroscopy (XAS) gives information about the local electronic and geometric structures (e.g. changes in redox states and bond lengths). In situ experiments carried out on operating cells are particularly useful because they allow direct correlation between the electrochemical and structural properties of the materials. These experiments are time-consuming and can be challenging to design due to the reactivity and air-sensitivity of the alkali metal anodes used in the half-cell configurations, and/or the possibility of signal interference from other cell components and hardware. For these reasons, it is appropriate to carry out ex situ experiments (e.g. on electrodes harvested from partially charged or cycled cells) in some cases. Here, we present detailed protocols for the preparation of both ex situ and in situ samples for experiments involving synchrotron radiation and demonstrate how these experiments are done.

  15. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved

  16. Medical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1992-01-01

    Ever since the first diagnostic X-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become incrasingly important. Both in clinical medicine and basic research the use of X-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved. (orig.)

  17. Synchrotron radiation in atomic physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1998-01-01

    Much of present understanding of atomic and molecular structure and dynamics was gained through studies of photon-atom interactions. In particular, observations of the emission, absorption, and scattering of X rays have complemented particle-collision experiments in elucidating the physics of atomic inner shells. Grounded on Max von Laue's theoretical insight and the invention of the Bragg spectrometer, the field's potential underwent a step function with the development of synchrotron-radiation sources. Notably current third-generation sources have opened new horizons in atomic and molecular physics by producing radiation of wide tunability and exceedingly high intensity and polarization, narrow energy bandwidth, and sharp time structure. In this review, recent advances in synchrotron-radiation studies in atomic and molecular science are outlined. Some tempting opportunities are surveyed that arise for future studies of atomic processes, including many-body effects, aspects of fundamental photon-atom interactions, and relativistic and quantum-electrodynamic phenomena. (author)

  18. Fast infrared detectors for beam diagnostics with synchrotron radiation

    International Nuclear Information System (INIS)

    Bocci, A.; Marcelli, A.; Pace, E.; Drago, A.; Piccinini, M.; Cestelli Guidi, M.; De Sio, A.; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Beam diagnostic is a fundamental constituent of any particle accelerators either dedicated to high-energy physics or to synchrotron radiation experiments. All storage rings emit radiations. Actually they are high brilliant sources of radiation: the synchrotron radiation emission covers from the infrared range to the X-ray domain with a pulsed structure depending on the temporal characteristics of the stored beam. The time structure of the emitted radiation is extremely useful as a tool to perform time-resolved experiments. However, this radiation can be also used for beam diagnostic to determine the beam stability and to measure the dimensions of the e - or e + beam. Because of the temporal structure of the synchrotron radiation to perform diagnostic, we need very fast detectors. Indeed, the detectors required for the diagnostics of the stored particle bunches at third generation synchrotron radiation sources and FEL need response times in the sub-ns and even ps range. To resolve the bunch length and detect bunch instabilities, X-ray and visible photon detectors may be used achieving response times of a few picoseconds. Recently, photon uncooled infrared devices optimized for the mid-IR range realized with HgCdTe semiconductors allowed to obtain sub-nanosecond response times. These devices can be used for fast detection of intense IRSR sources and for beam diagnostic. We present here preliminary experimental data of the pulsed synchrotron radiation emission of DAΦNE, the electron positron collider of the LNF laboratory of the INFN, performed with new uncooled IR detectors with a time resolution of a few hundreds of picoseconds

  19. New Pulsed Orbit Bump Magnets for the Fermilab Booster Synchrotron

    CERN Document Server

    Lackey, James; John, Carson; Kashikhin, Vladimir; Makarov, Alexander; Prebys, Eric

    2005-01-01

    The beam from the Fermilab Linac is injected onto a bump in the closed orbit of the Booster Synchrotron where a carbon foil strips the electrons from the Linac’s negative ion hydrogen beam. Although the Booster itself runs at 15Hz, heat dissipation in the orbit bump magnets has been one limitation to the fraction of the cycles that can be used for beam. New, 0.28T pulsed window frame dipole magnets have been constructed that will fit into the same space as the old ones, run at the full repetition rate of the Booster, and provide a larger bump to allow a cleaner injection orbit. The new magnets use a high saturation flux density Ni-Zn ferrite in the yoke rather than laminated steel. The presented magnetic design includes two and three dimensional magnetic field calculations with eddy currents and ferrite nonlinear effects.

  20. The nuclear fuel cycle, an overview

    International Nuclear Information System (INIS)

    Ballery, J.L.; Cazalet, J.; Hagemann, R.

    1995-01-01

    Because uranium is widely distributed on the face of the Earth, nuclear energy has a very large potential as an energy source in view of future depletion of fossil fuel reserves. Also future energy requirements will be very sizeable as populations of developing countries are often growing and make the energy question one of the major challenges for the coming decades. Today, nuclear contributes some 340 GWe to the energy requirements of the world. Present and future nuclear programs require an adequate fuel cycle industry, from mining, refining, conversion, enrichment, fuel fabrication, fuel reprocessing and the storage of the resulting wastes. The commercial fuel cycle activities amount to an annual business in the 7-8 billions of US Dollars in the hands of a large number of industrial operators. This paper gives details about companies and countries involved in each step of the fuel cycle and about the national strategies and options chosen regarding the back end of the fuel cycle (waste storage and reprocessing). These options are illustrated by considering the policy adopted in three countries (France, United Kingdom, Japan) versed in reprocessing. (J.S.). 13 figs., 2 tabs

  1. Status and schedule of J-PARC 50 GeV synchrotron

    International Nuclear Information System (INIS)

    Oogoe, Takao; Yoshioka, Masakazu; Kobayashi, Hitoshi; Takeuchi, Yasunori; Shirakata, Masashi; Shirakabe, Yoshihisa; Kuniyasu, Yuu; Oki, Hiroshi; Takiyama, Youichi

    2005-01-01

    Japan Proton Accelerator Research Complex (J-PARC) is the research complex based on three high intensity proton Accelerators: a linac, a 3 GeV synchrotron (RCS), and a 50 GeV synchrotron (MR). The construction of the MR started in 2002, and its beam commissioning is scheduled in January of 2008. The accelerator tunnel of the J-PARC 50 GeV Synchrotron is still under construction, and will be completed at the end of 2006. Installation of accelerator-components is scheduled to start in July 2005 in parallel with civil and utility construction. This document describes how to install accelerator components in the tunnel and civil engineering of the tunnel. (author)

  2. The relativistic foundations of synchrotron radiation.

    Science.gov (United States)

    Margaritondo, Giorgio; Rafelski, Johann

    2017-07-01

    Special relativity (SR) determines the properties of synchrotron radiation, but the corresponding mechanisms are frequently misunderstood. Time dilation is often invoked among the causes, whereas its role would violate the principles of SR. Here it is shown that the correct explanation of the synchrotron radiation properties is provided by a combination of the Doppler shift, not dependent on time dilation effects, contrary to a common belief, and of the Lorentz transformation into the particle reference frame of the electromagnetic field of the emission-inducing device, also with no contribution from time dilation. Concluding, the reader is reminded that much, if not all, of our argument has been available since the inception of SR, a research discipline of its own standing.

  3. Synchrotron Physics and Industry: new opportunities for technology transfer

    International Nuclear Information System (INIS)

    Williams, P.

    2002-01-01

    Full text: In 1979, with the opening in the UK of the world's first dedicated synchrotron light source, the SRS, experimental science in virtually every discipline underwent what amounted to a major revolution. The unique nature of synchrotron radiation, with its intensity, brightness, polarization, time structure and energy spectrum offer an unequalled probe of matter in all its states. The decades since have seen the development of a wide range of associated experimental techniques which harness the power of this radiation, including photoemission, EXAFS, spectroscopy, imaging and, of course, protein crystallography. These in turn have been applied to studies from surface science to molecular biology. The advances using synchrotron radiation throughout the 1980s and '90s naturally had a major impact on fundamental research, particularly in unraveling the structures of large proteins and in understanding the properties of semiconductors and surfaces. Much of this work could not have been accomplished without access to one of the world's increasing number of synchrotron facilities, of which there are now approaching 100. However, industrial awareness of the opportunities afforded by the use of synchrotron radiation was restricted to the handful of major multinational corporations, primarily in Europe, the USA and Japan, whose fundamental research staff had access. While there were major programmes in certain specific areas, such as X-ray lithography for semiconductor LSI fabrication, the general level of industrial involvement was low. But today, this is changing. In protein crystallography, for example, the use of synchrotron radiation in structure determination puts the 1PX' technique on the same level as NMR in terms of its routine utility. It has become an essential tool to drug designers in biopharmaceuticals, where access to the structural data is increasingly thought of almost as a service, rather than fundamental research. Pioneering work on medical imaging

  4. Current options for the back end of the fuel cycle

    International Nuclear Information System (INIS)

    Sue Ion

    2000-01-01

    Two strategic issues facing the nuclear industry are the claimed risks of (a) weapons proliferation, and (b) environmental contamination; both affect the choice between open and closed fuel cycles. The choice for plutonium lies between supposedly permanent disposal and bumming/utilisation as a fuel. Disposal while never irretrievable could create an economically decisive obstacle to constructive use of material of great value for future global energy. Utilisation in energy supply will both restrict access to separated stockpiles and allow the inventory size to be managed with efficient use of this energy resource. Recycling recovers valuable materials for further use and allows the spent fuel stockpile to be managed. However, risk of diversion to weapon proliferation depends not on the extent of plutonium stocks but on access to a minute proportion of them, and would not be directly altered by any foreseeable increase or reduction in the well managed inventory. A key issue is to decide how in future to recover from the fuel cycle the accessible stock required to sustain it. The fear of environmental contamination is principally based on increasingly disputed health risks from radiation well below the variation in natural levels. Neither this nor the proliferation issue appears to justify insisting on the once through cycle and so wasting a finite resource that will almost certainly be needed in the coming decades. (author)

  5. Synchrotrons: biomedical applications of the most versatile radiation source of all

    International Nuclear Information System (INIS)

    Lewis, R.

    2003-01-01

    Synchrotrons are the brightest and most versatile sources of radiation that have ever been devised. The spectrum extends from the infra-red to hard X-rays and the application range is just as wide. Applications range from radiotherapy to archaeology and from genomics to mineral identification. For a property of particle accelerators that was for many years seen as a problem, the transformation has been remarkable. There are now more than 50 synchrotron facilities worldwide and the number is still growing rapidly. Some 25 years after the first dedicated machines came into operation, Australia is about to enter the field with a national facility being built at Monash University in Melbourne. The largest impact of synchrotrons has been in the X-ray region of the spectrum where the performance gain over conventional sources is many orders of magnitude. In fact synchrotrons are the only significant improvement in X-ray production since the rotating anode was first marketed in 1929. The possibilities opened up by the availability of monochromatic, tightly collimated beams of enormous intensity has impacted on practically every area of science. Following a brief overview of synchrotron radiation production, the various prominent techniques that synchrotron radiation has made possible will be reviewed. Particular emphasis will be placed on the biomedical applications which include; 1. advanced imaging techniques exploiting X-ray phase contrast 2. radiotherapy using microbeams 3. structural biology 4. elemental, chemical and molecular structure mapping of live wet samples

  6. Synchrotron radiation: a new perspectives for structure examinations

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Kozhakhmetov, S.K.; Turkebaev, T.Eh.

    2001-01-01

    An important task of radiation material testing is manufacture of multifunctional, stable and cheap materials with designed properties. A materials successful operation in an extemal conditions (high temperatures and pressures, high radiation fluences and charged particles, and etc.) imply an joint decision of physical, chemical, mechanical and other problems. The decision of these problems includes at least examination for structural, phase content, oxidation stability, thermal stability, mechanical strength, thin-film-coverings controlled synthesis (both the passivating and the catalytic) compatible with main matrix, and etc. Synchrotron radiation sources application for these problems are highly perspective. Solution of a set of problems on structural examinations for a materials exposed to high radiation fluences and operating in extemal condition is planning with use of the DELSY third generation synchrotron radiation source constructing at the Joint Institute for Nuclear Research (Dubna). In the paper the principal parameters of the DELSY synchrotron radiation source are given

  7. National synchrotron light source medical personnel protection interlock

    International Nuclear Information System (INIS)

    Buda, S.; Gmur, N.F.; Larson, R.; Thomlinson, W.

    1998-01-01

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated

  8. NATIONAL SYNCHROTRON LIGHT SOURCE MEDICAL PERSONNEL PROTECTION INTERLOCK

    Energy Technology Data Exchange (ETDEWEB)

    BUDA,S.; GMUR,N.F.; LARSON,R.; THOMLINSON,W.

    1998-11-03

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated.

  9. Conceptual design of the Argonne 6-GeV synchrotron light source

    International Nuclear Information System (INIS)

    Cho, Y.; Crosbie, E.; Khoe, T.

    1985-01-01

    The Argonne National Laboratory Synchrotron Light Source Storage Ring is designed to have a natural emittance of 6.5 X 10 -9 m for circulating 6-GeV positrons. Thirty of the 32 long straight sections, each 6.5-m long, will be available for synchrotron light insertion devices. A circulating positron current of 300 mA can be injected in about 8 min. from a booster synchrotron operating with a repetition time of 1.2 sec. The booster synchrotron will contain two different rf systems. The lower frequency system (38.97 MHz) will accept positrons from a 360-MeV linac and will accelerate them to 2.25 GeV. The higher frequency system (350.76 MHz) will accelerate the positrons to 6 GeV. The positrons will be produced from a 300-MeV electron beam on a tungsten target

  10. Synchrotron Radiation and Faraday Rotation

    NARCIS (Netherlands)

    Heald, George

    2015-01-01

    Synchrotron radiation and its degree of linear polarization are powerful tracers of magnetic fields that are illuminated by cosmic ray electrons. Faraday rotation of the linearly polarized radiation is induced by intervening line-of-sight magnetic fields that are embedded in ionized plasmas. For

  11. In situ SAXS study on cationic and non-ionic surfactant liquid crystals using synchrotron radiation.

    Science.gov (United States)

    Fritscher, C; Hüsing, N; Bernstorff, S; Brandhuber, D; Koch, T; Seidler, S; Lichtenegger, H C

    2005-11-01

    In situ synchrotron small-angle X-ray scattering was used to investigate various surfactant/water systems with hexagonal and lamellar structures regarding their structural behaviour upon heating and cooling. Measurements of the non-ionic surfactant Triton X-45 (polyethylene glycol 4-tert-octylphenyl ether) at different surfactant concentrations show an alignment of the lamellar liquid-crystalline structure close to the wall of the glass capillaries and also a decrease in d-spacing following subsequent heating/cooling cycles. Additionally, samples were subjected to a weak magnetic field (0.3-0.7 T) during heating and cooling, but no influence of the magnetic field was observed.

  12. Status of feasibility study for various technical options of FBR systems

    International Nuclear Information System (INIS)

    Kani, Yoshio

    2000-01-01

    JNC (Japan Nuclear Cycle Development Institute) has started a new research project of feasibility studies (F/S) for a wide variety option of fast breeder reactor (FBR) and related fuel cycle in order to develop an economically competitive FBR cycle system fro commercialization. JNC and the electric untilities in Japan have established a new organization in JNC to perform the F/S since July 1, 1999. The organization has undertaken feasibility studies (F/S) in order to determine promising FBR cycle concepts and define necessary RandD tasks. The long-term targets of commercialized FBR cycle system are set as ensuring safety, economic competitiveness relative to future LWRs, efficient utilization of resources, reduction in environmental burden, and enhancement of nuclear non-proliferation. This paper describes the progress of design studies for a wide variety of technical options of FBR plants in the framework of the F/S. We make efforts towards considering all key issues so as not to fail to notice the best concept in a commercialized stage. In the study of technical options, the identified coolant types are sodium, heavy metal (lead and lead-bismuth), gas (carbon dioxide and helium ) and water (boiling water, pressurized water and supercritical water). The classified types of fuel are mixed oxide, nitride and metal. Design studies of small size modular plant concepts are also performed. We study many reactor concepts in combination with a coolant type and a fuel type, understand characteristics of each reactor concept based on our experience and an extensive survey of literature, and make a draft design of each reactor concept for rough estimation of construction costs. We also check how far the concept accomplishes each index (safety, economy, resource utilization, etc.) of design requirements, and will select several promising reactor concepts. (author)

  13. Criteria for proliferation resistance of nuclear fuel cycle options

    International Nuclear Information System (INIS)

    Kiriyama, Eriko; Pickett, Susan; Suzuki, Tatsujiro

    2000-01-01

    In order to understand the concept of nuclear proliferation resistance, this paper examines the technical definitions of proliferation resistance. Although nuclear proliferation resistance is often included as one of the major goals of advanced reactor research and development, the criteria for nuclear proliferation resistance of nuclear fuel cycles is not defined clearly. The implied meaning of proliferation resistance was compared in proposals regarding the nuclear fuel cycle. Discrepancies amongst the proposals regarding the technical definition of proliferation resistance is found. While all these proposals indicate proliferation resistance, few clearly spell out exactly what criteria they are measuring themselves against. However we found there are also common feature in many proposals. They are; (1) Reduction of Pu, (2) Less separated Weapon Usable Materials, (3) Fewer steps, (4) Barrier for Weapon Usable Materials. Recognizing that there are numerous political and infrastructure measures that may also be taken to guard against proliferation risks, we have focused here on the definition of proliferation resistance in terms of technical characteristics. Another important conclusion is that in many proposals proliferation resistance is only one of the important criteria such as energy security, economical efficiency, and safety. (author)

  14. Synchrotron radiation sources for photobiology and ultraviolet, visible and infrared spectroscopy

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1980-01-01

    The advantages of synchrotron radiation in several types of spectroscopy, microscopy and diffraction studies are clear. The availability of synchrotron radiation will expand rapidly in the early 1980's as experimental programs start at the new generation of dedicated storage rings

  15. Transition Analysis of Promising U.S. Future Fuel Cycles Using ORION

    International Nuclear Information System (INIS)

    Sunny, Eva E.; Worrall, Andrew; Peterson, Joshua L.; Powers, Jeffrey J.; Gehin, Jess C.; Gregg, Robert

    2015-01-01

    The US Department of Energy Office of Fuel Cycle Technologies performed an evaluation and screening (E&S) study of nuclear fuel cycle options to help prioritize future research and development decisions. Previous work for this E&S study focused on establishing equilibrium conditions for analysis examples of 40 nuclear fuel cycle evaluation groups (EGs) and evaluating their performance according to a set of 22 standardized metrics. Following the E&S study, additional studies are being conducted to assess transitioning from the current US fuel cycle to future fuel cycle options identified by the E&S study as being most promising. These studies help inform decisions on how to effectively achieve full transition, estimate the length of time needed to undergo transition from the current fuel cycle, and evaluate performance of nuclear systems and facilities in place during the transition. These studies also help identify any barriers to achieve transition. Oak Ridge National Laboratory (ORNL) Fuel Cycle Options Campaign team used ORION to analyze the transition pathway from the existing US nuclear fuel cycle—the once-through use of low-enriched-uranium (LEU) fuel in thermal-spectrum light water reactors (LWRs)—to a new fuel cycle with continuous recycling of plutonium and uranium in sodium fast reactors (SFRs). This paper discusses the analysis of the transition from an LWR to an SFR fleet using ORION, highlights the role of lifetime extensions of existing LWRs to aid transition, and discusses how a slight delay in SFR deployment can actually reduce the time to achieve an equilibrium fuel cycle.

  16. Singapore Synchrotron Light Source - Status, first results, program

    CERN Document Server

    Moser, H O; Kempson, V C; Kong, J R; Li, Z W; Nyunt, T; Qian, H J; Rossmanith, R; Tor, P H; Wilhelmi, O; Yang, P; Zheng, H W; Underhay, I J

    2003-01-01

    The Singapore Synchrotron Light Source is a general-purpose synchrotron radiation facility serving research organisations and industry. Beamlines active or coming up within 2002 include lithography for micro/nanofabrication, phase contrast imaging, surface science, and X-ray diffraction and absorption. An infrared spectro/microscopy beamline is expected to become operational in 2003. Further beamlines are under discussion with user groups. The Microtron Undulator Radiation Facility (MURF) is under development to provide brilliant VUV radiation and to prepare for subsequent development of an EUV and X-ray FEL.

  17. Development of the protein crystallography by synchrotron radiation

    International Nuclear Information System (INIS)

    Yamamoto, Masaki

    2014-01-01

    Since crystal structure determination of the first protein by Kendrew in 1959, protein crystallography developed into the leading role of the protein structure study by various technology developments. Especially the utilization of synchrotron radiation from the 1990s brought innovative progress of protein crystallography on the data quality and the phasing method and had expanded the samples targets including membrane proteins and suprarmolecular complexes. Here I give the outline of the history and the future prospects of the protein crystallography from the role of synchrotron radiation. (author)

  18. Characteristics of synchrotron radiation and of its sources

    International Nuclear Information System (INIS)

    Krinsky, S.; Perlman, M.L.; Watson, R.E.

    1979-01-01

    Synchrotron light emission and the classical relativistic electromagnetic theory describing it are reviewed. The electron optics of storage rings are considered in some detail, beginning with the ideal electron orbit and the distribution which electrons take around it. This is folded with the process of synchrotron light emission itself to define the effective photon source. The predictions of classical relativistic theory are compared with experiment, and one finds agreement within the experimental uncertainties. Further refinements, such as wiggler magnets and free electron lasers are also considered

  19. Photoemission studies using laboratory and synchrotron sources

    International Nuclear Information System (INIS)

    Phase, D.M.

    2012-01-01

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet soft and hard X-ray photons, are having great impact on physics, chemistry, biology materials science and other areas research. In particular synchrotron radiation has revolutionized photoelectron spectroscopy by enhancing its capabilities for investigating the electronic properties of solids. The first Indian synchrotron storage ring, Indus- 1 is in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (PES) beamline on this 450 MeV storage ring. A storage ring of this kind is most suitable for investigation in the energy range from few electron volts to around five hundred electron volts. In this lecture we will describe the details of PES beamline and its experimental station. Till date the different university users carried out photoemission measurements on variety of samples. Some of the spectra recorded by users will be presented in order to show the capability of this beamline. In the later part we will report a review of our recent research work carried out on dilute magnetic thin films using this beamline. (author)

  20. The Stanford Synchrotron Radiation Laboratory, 20 years of synchrotron light

    International Nuclear Information System (INIS)

    Cantwell, K.

    1993-08-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) is now operating as a fully dedicated light source with low emittance electron optics, delivering high brightness photon beams to 25 experimental stations six to seven months per year. On October 1, 1993 SSRL became a Division of the Stanford Linear Accelerator Center, rather than an Independent Laboratory of Stanford University, so that high energy physics and synchrotron radiation now function under a single DOE contract. The SSRL division of SLAC has responsibility for operating, maintaining and improving the SPEAR accelerator complex, which includes the storage ring and a 3 GeV injector. SSRL has thirteen x-ray stations and twelve VUV/Soft x-ray stations serving its 600 users. Recently opened to users is a new spherical grating monochromator (SGM) and a multiundulator beam line. Circularly polarized capabilities are being exploited on a second SGM line. New YB 66 crystals installed in a vacuum double-crystal monochromator line have sparked new interest for Al and Mg edge studies. One of the most heavily subscribed stations is the rotation camera, which has been recently enhanced with a MAR imaging plate detector system for protein crystallography on a multipole wiggler. Under construction is a new wiggler-based structural molecular biology beam line with experimental stations for crystallography, small angle scattering and x-ray absorption spectroscopy. Plans for new developments include wiggler beam lines and associated facilities specialized for environmental research and materials processing

  1. On the polarized beam acceleration in medium energy synchrotrons

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1992-01-01

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined

  2. On the polarized beam acceleration in medium energy synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1992-12-31

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined.

  3. Stanford Synchrotron Radiation Light Source (SSRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The SSRL at SLAC National Accelerator Laboratory was built in 1974 to take and use for synchrotron studies the intense x-ray beams from the SPEAR storage ring that...

  4. Fuel cycles - a key to future CANDU success

    International Nuclear Information System (INIS)

    Kuran, S.; Hopwood, J.; Hastings, I.J.

    2011-01-01

    Globally, fuel cycles are being evaluated as ways of extending nuclear fuel resources, addressing security of supply and reducing back-end spent-fuel management. Current-technology thermal reactors and future fast reactors are the preferred platform for such fuel cycle applications and as an established thermal reactor with unique fuel-cycle capability, CANDU will play a key role in fulfilling such a vision. The next step in the evolution of CANDU fuel cycles will be the introduction of Recovered Uranium (RU), derived from conventional reprocessing. A low-risk RU option applicable in the short term comprises a combination of RU and Depleted Uranium (DU), both former waste streams, giving a Natural Uranium Equivalent (NUE) fuel. This option has been demonstrated in China, and all test bundles have been removed from the Qinshan 1 reactor. Additionally, work is being done on an NUE full core, a Thorium demonstration irradiation and an Advanced Fuel CANDU Reactor(AFCR). AECL is developing other fuel options for CANDU, including actinide waste burning. AECL has developed the Enhanced CANDU 6 (EC6) reactor, upgraded from its best-performing CANDU 6 design. High neutron economy, on-power refueling and a simple fuel bundle provide the EC6 with the flexibility to accommodate a range of advanced fuels, in addition to its standard natural uranium. (author)

  5. Challenges and opportunities in synchrotron radiation optics

    Science.gov (United States)

    Rehn, V.

    Design necessities germaine to advances in optics for experimentation with synchrotron radiation are explored. Objectives for development include improved beam-line performance using new mirror materials or coatings, filtering and order-sorting enhancement, and lower surface scattering. A summary is presented of optical systems currently in use, together with requirements imposed by storage rings and experimental design. Advances are recommended in intensity, collimation, focus, and spectral purity of synchrotron beam lines. Any new storage ring mirror is noted to be required to dissipate several hundred watts, something which polished Cu is mentioned as being capable of handling, while standard SiO2 mirrors cannot.

  6. Synchrotron and Simulations Techniques Applied to Problems in Materials Science: Catalysts and Azul Maya Pigments

    International Nuclear Information System (INIS)

    Chianelli, R.

    2005-01-01

    Development of synchrotron techniques for the determination of the structure of disordered, amorphous and surface materials has exploded over the past twenty years due to the increasing availability of high flux synchrotron radiation and the continuing development of increasingly powerful synchrotron techniques. These techniques are available to materials scientists who are not necessarily synchrotron scientists through interaction with effective user communities that exist at synchrotrons such as the Stanford Synchrotron Radiation Laboratory (SSRL). In this article we review the application of multiple synchrotron characterization techniques to two classes of materials defined as ''surface compounds.'' One class of surface compounds are materials like MoS 2-x C x that are widely used petroleum catalysts used to improve the environmental properties of transportation fuels. These compounds may be viewed as ''sulfide supported carbides'' in their catalytically active states. The second class of ''surface compounds'' is the ''Maya Blue'' pigments that are based on technology created by the ancient Maya. These compounds are organic/inorganic ''surface complexes'' consisting of the dye indigo and palygorskite, a common clay. The identification of both surface compounds relies on the application of synchrotron techniques as described in this report

  7. Biochemical profiling of rat embryonic stem cells grown on electrospun polyester fibers using synchrotron infrared microspectroscopy.

    Science.gov (United States)

    Doncel-Pérez, Ernesto; Ellis, Gary; Sandt, Christophe; Shuttleworth, Peter S; Bastida, Agatha; Revuelta, Julia; García-Junceda, Eduardo; Fernández-Mayoralas, Alfonso; Garrido, Leoncio

    2018-06-01

    Therapeutic options for spinal cord injuries are severely limited; current treatments only offer symptomatic relief and rehabilitation focused on educating the individual on how to adapt to their new situation to make best possible use of their remaining function. Thus, new approaches are needed, and interest in the development of effective strategies to promote the repair of neural tracts in the central nervous system inspired us to prepare functional and highly anisotropic polymer scaffolds. In this work, an initial assessment of the behavior of rat neural progenitor cells (NPCs) seeded on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber scaffolds using synchrotron-based infrared microspectroscopy (SIRMS) is described. Combined with a modified touch imprint cytology sample preparation method, this application of SIRMS enabled the biochemical profiles of NPCs on the coated polymer fibers to be determined. The results showed that changes in the lipid and amide I-II spectral regions are modulated by the type and coating of the substrate used and the culture time. SIRMS studies can provide valuable insight into the early-stage response of NPCs to the morphology and surface chemistry of a biomaterial, and could therefore be a useful tool in the preparation and optimization of cellular scaffolds. Graphical abstract Synchrotron IR microspectroscopy can provide insight into the response of neural progenitor cells to synthetic scaffolds.

  8. Initial scientific uses of coherent synchrotron radiation inelectron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Basov, D.N.; Feikes, J.; Fried, D.; Holldack, K.; Hubers, H.W.; Kuske, P.; Martin, M.C.; Pavlov, S.G.; Schade, U.; Singley, E.J.; Wustefeld, G.

    2004-11-23

    The production of stable, high power, coherent synchrotron radiation at sub-terahertz frequency at the electron storage ring BESSY opens a new region in the electromagnetic spectrum to explore physical properties of materials. Just as conventional synchrotron radiation has been a boon to x-ray science, coherent synchrotron radiation may lead to many new innovations and discoveries in THz physics. With this new accelerator-based radiation source we have been able to extend traditional infrared measurements down into the experimentally poorly accessible sub-THz frequency range. The feasibility of using the coherent synchrotron radiation in scientific applications was demonstrated in a series of experiments: We investigated shallow single acceptor transitions in stressed and unstressed Ge:Ga by means of photoconductance measurements below 1 THz. We have directly measured the Josephson plasma resonance in optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} for the first time and finally we succeeded to confine the sub-THz radiation for spectral near-field imaging on biological samples such as leaves and human teeth.

  9. Surface, interface and bulk materials characterization using Indus synchrotron sources

    International Nuclear Information System (INIS)

    Phase, Deodatta M.

    2014-01-01

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet, soft and hard x-ray photons, are having great impact on physics, chemistry, biology, materials science and other areas research. In particular synchrotron radiation has revolutionized materials characterization techniques by enhancing its capabilities for investigating the structural, electronic and magnetic properties of solids. The availability of synchrotron sources and necessary instrumentation has led to considerable improvements in spectral resolution and intensities. As a result, application scope of different materials characterization techniques has tremendously increased particularly in the analysis of solid surfaces, interfaces and bulk materials. The Indian synchrotron storage ring, Indus-1 and Indus-2 are in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (AlPES) beam line on Indus-1 storage ring of 450 MeV and polarized light beam line for soft x-ray absorption spectroscopy (SXAS) on Indus-2 storage ring of 2.5 GeV. (author)

  10. Proceedings of the Meeting on Techniques and Applications of Synchrotron Radiation

    International Nuclear Information System (INIS)

    1983-01-01

    Several techniques and applications of the synchrotron radiation used in Physics, Biophysics and Chemistry are extensively discussed. The major part of the subjects of the works treat with the possible implantation of a national synchrotron radiation laboratory in Brazil. (L.C.) [pt

  11. Ring artifact reduction in synchrotron X-ray tomography through helical acquisition

    NARCIS (Netherlands)

    D.M. Pelt (Daniël); D.Y. Parkinson (Dilworth)

    2017-01-01

    textabstractIn synchrotron X-ray tomography, systematic defects in certain detector elements can result in arc-shaped artifacts in the final reconstructed image of the scanned sample. These ring artifacts are commonly found in many applications of synchrotron tomography, and can make

  12. Simulation, measurement, and mitigation of beam instability caused by the kicker impedance in the 3-GeV rapid cycling synchrotron at the Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Saha, P. K.; Shobuda, Y.; Hotchi, H.; Harada, H.; Hayashi, N.; Kinsho, M.; Tamura, F.; Tani, N.; Yamamoto, M.; Watanabe, Y.; Chin, Yong Ho; Holmes, J. A.

    2018-02-01

    The transverse impedance of eight extraction pulsed kicker magnets is a strong beam instability source in the 3-GeV rapid cycling synchrotron (RCS) at the Japan Proton Accelerator Research Complex. Significant beam instability occurs even at half of the designed 1 MW beam power when the chromaticity (ξ ) is fully corrected for the entire acceleration cycle by using ac sextupole (SX) fields. However, if ξ is fully corrected only at the injection energy by using dc SX fields, the beam is stable. In order to study realistic beam instability scenarios, including the effect of space charge and to determine practical measures to accomplish 1 MW beam power, we enhance the orbit particle tracking code to incorporate all realistic time-dependent machine parameters, including the time dependence of the impedance itself. The beam stability properties beyond 0.5 MW beam power are found to be very sensitive to a number of parameters in both simulations and measurements. In order to stabilize a beam at 1 MW beam power, two practical measures based on detailed and systematic simulation studies are determined, namely, (i) proper manipulation of the betatron tunes during acceleration and (ii) reduction of the dc SX field to reduce the ξ correction even at injection. The simulation results are well reproduced by measurements, and, as a consequence, an acceleration to 1 MW beam power is successfully demonstrated. In this paper, details of the orbit simulation and the corresponding experimental results up to 1 MW of beam power are presented. To further increase the RCS beam power, beam stability issues and possible measures beyond 1 MW beam power are also considered.

  13. HSC5: synchrotron radiation and neutrons for cultural heritage studies

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Anne [Institut Neel - CNRS, 38 - Grenoble (France); Artioli, G. [Padova Univ. (Italy); Bleuet, P.; Cotte, M.; Tafforeau, P.; Susini, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Dumas, P.; Somogyl, A. [SOLEIL Synchrotron, 91 - Gif sur Yvette (France); Cotte, M. [Centre de Recherche et de Restauration des Musees de France, UMR171, 75 - Paris (France)]|[European Synchrotron Radiation Facility, 38 - Grenoble (France); Kockelmann, W. [Science and Technology Facilities Council, Rutherford Appleton Lab. (United Kingdom); Kolar, J. [Ljubljana Univ., Morana RTD, Slovenia, Faculty of Chemistry and Chemical Technology (Slovenia); Areon, I. [Nova Gorica Univ. (Slovenia); Meden, A.; Strlie, M. [Ljubljana Univ., Faculty of Chemistry and Chemical Technology (Slovenia); Pantos, M. [Daresbury Laboratory, Warrington (United Kingdom); Vendrell, M. [Barcelona Univ., dept. of Crystallography and Mineralogy (Spain); Wess, T. [Cardiff Univ., School of Optometry and Institute of Vision (Ireland); Gunneweg, J. [Hebrew Univ., Jerusalem (Israel)

    2007-07-01

    Synchrotron and neutron sources offer recent and additional insight into the records of our cultural past. Over the last years, there has been an increasing demand for access to synchrotron radiation- and neutron-based techniques, and their applications in the fields of archaeological science and cultural heritage. The purpose of this Hercules Specialized Course is to give the participants an introduction to the basic principles of synchrotron radiation and neutron techniques (imaging, microscopy, diffraction, absorption and fluorescence, IR spectroscopy). The school provides cross-disciplinary examples illustrating the abilities of these techniques in a representative range of scientific cases concerning painting, archaeological artefacts, inks, pigments, fossils and the Dead Sea scrolls. This document gathers only the resumes of the lectures.

  14. HSC5: synchrotron radiation and neutrons for cultural heritage studies

    International Nuclear Information System (INIS)

    Michel, Anne; Artioli, G.; Bleuet, P.; Cotte, M.; Tafforeau, P.; Susini, J.; Dumas, P.; Somogyl, A.; Cotte, M.; Kockelmann, W.; Kolar, J.; Areon, I.; Meden, A.; Strlie, M.; Pantos, M.; Vendrell, M.; Wess, T.; Gunneweg, J.

    2007-01-01

    Synchrotron and neutron sources offer recent and additional insight into the records of our cultural past. Over the last years, there has been an increasing demand for access to synchrotron radiation- and neutron-based techniques, and their applications in the fields of archaeological science and cultural heritage. The purpose of this Hercules Specialized Course is to give the participants an introduction to the basic principles of synchrotron radiation and neutron techniques (imaging, microscopy, diffraction, absorption and fluorescence, IR spectroscopy). The school provides cross-disciplinary examples illustrating the abilities of these techniques in a representative range of scientific cases concerning painting, archaeological artefacts, inks, pigments, fossils and the Dead Sea scrolls. This document gathers only the resumes of the lectures

  15. Molecular photoemission studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems

  16. Real options and asset valuation in competitive energy markets

    Science.gov (United States)

    Oduntan, Adekunle Richard

    methodologies for gas-fired thermal power plants by factoring in uncertainty from gas supply/consumption imbalance which is usually faced by gas-fired power generators. This source of uncertainty arises because of mismatch between natural gas and electricity wholesale markets. Natural gas markets in North America operate on a day-ahead basis while power plants are dispatched in real time. Inability of a power generator to match its gas supply and consumption in real time, leading to unauthorized gas over-run or under-run, attracts penalty charges from the gas supplier to the extent that the generator can not manage the imbalance through other means. By considering an illustrative power plant operating in Ontario, we show effects of gas-imbalance on dispatch strategies on a daily cycling operation basis and the resulting impact on net revenue. Similarly, we employ the developed valuation framework to value a peaking hydroelectric power plant. This application also builds on previous real options valuation work for peaking hydroelectric power plants by considering their operations in a joint energy and ancillary services market. Specifically, the valuation model is developed to capture the value of a peaking power plant whose owner has the flexibility to participate in a joint operating reserve market and an energy market, which is currently the case in the Ontario wholesale power market. The model factors in water inflow uncertainty into the reservoir forebay of a hydroelectric facility and also considers uncertain energy and operating reserve prices. The switching options considered include (i) a joint energy and operating reserve bid (ii) an energy only bid and (iii) a do nothing (idle) strategy. Being an energy limited power plant, by doing nothing at a decision interval, the power asset operator is able to timeshift scarce water for use at a future period when market situations are expected to be better. Finally, the developed valuation framework was employed to optimize

  17. Synchrotron radiation techniques for the characterization of Nb$_{3}$Sn superconductors

    CERN Document Server

    Scheuerlein, C; Buta, F

    2009-01-01

    The high flux of high energy x-rays that can be provided through state-of-the-art high energy synchrotron beam lines has enabled a variety of new experiments with the highly absorbing Nb$_{3}$Sn superconductors. We report different experiments with Nb$_{3}$Sn strands that have been conducted at the ID15 High Energy Scattering beam line of the European Synchrotron Radiation Facility (ESRF). Synchrotron x-ray diffraction has been used in order to monitor phase transformations during in-situ reaction heat treatments prior to Nb$_{3}$Sn formation, and to monitor Nb$_{3}$Sn growth. Fast synchrotron micro-tomography was applied to study void growth during the reaction heat treatment of Internal Tin strands. The elastic strain in the different phases of fully reacted Nb$_{3}$Sn composite conductors can be measured by high resolution x-ray diffraction during in-situ tensile tests.

  18. Conceptual design of the Argonne 6-GeV synchrotron light source

    International Nuclear Information System (INIS)

    Cho, Y.; Crosbie, E.; Khoe, T.

    1985-01-01

    The Argonne National Laboratory Synchrotron Light Source Storage Ring is designed to have a natural emittance of 6.5 x 10 -9 m for circulating 6-GeV positrons. Thirty of the 32 long straight sections, each 6.5-m long, will be available for synchrotron light insertion devices. A circulating positron current of 300 mA can be injected in about 8 min. from a booster synchrotron operating with a repetition time of 1.2 sec. The booster synchrotron will contain two different RF systems. The lower frequency system (38.97 MHz) will accept positrons from a 360-MeV linac and will accelerate them to 2.25 GeV. The higher frequency system (350.76 MHz) will accelerate the positrons to 6 GeV. The positrons will be produced from a 300-MeV electron beam on a tungsten target. A conceptual layout is shown

  19. The exploitation of the Saturne synchrotron during the first quarter of 1959; L'exploitation du synchrotron Saturne pendant le 1er trimestre 1959

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-05-15

    After having recalled some important events which occurred in 1958 regarding the operation of the Saturne synchrotron, this document first reports facts concerning the operation of the synchrotron (technical incidents are mentioned), experiments performed on the equipment (trajectory anomalies), physics experiments (use of fixed targets and of a target with radial projection, experiments in a bubble chamber), measures and measurements regarding protection against radiations during the first quarter of 1959.

  20. Radiological Considerations in the Desgin of Synchrotron Radiation Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ipe, Nisy E.

    1999-01-06

    As synchrotron radiation (SR) facilities are rapidly being designed and built all over the world, the radiological considerations should be weighed carefully at an early stage in the design of the facility. This necessitates the understanding and identification of beam losses in the machines, especially the storage ring. The potential sources of radiation are photons and neutrons from loss of injected or stored beam, gas bremsstrahlung and synchrotron radiation. Protection against radiation is achieved through the adequate design of the shielding walls of the storage ring and the synchrotron radiation beam lines. In addition safety systems such as stoppers and shutters provide protection in the forward direction for entry into the experimental enclosures. Special care needs to be exercised in the design of SR experimental enclosures to minimize radiation leakage through penetrations and gaps between doors and walls, and doors and floors.

  1. Efficiency evaluation of slow extraction from the synchrotron

    International Nuclear Information System (INIS)

    Kazarinov, N.Yu.; Mikhajlov, V.A.

    1986-01-01

    Analytical calculation of slow extraction of the beam out of the JINR synchrotron is made. The formulae for evaluation of the sextupole amplitudes and phases, quadrupole lens gradient range are obtained, the connection with circulated and extracted beam parameters is shown. The formulae for calculating optimal position of the septum-magnet or electrostatic septum are presented. On this basis the formula for estimating the efficiency of beam slow extraction out of the synchrotron is obtained under assumption that in the septum region during the extraction a quasistationary distribution of the beam density occurs

  2. X-ray energy-dispersive diffractometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Buras, B.; Staun Olsen, J.; Gerward, L.

    1977-03-01

    In contrast to bremsstrahlung from X-ray tubes, synchrotron radiation is very intense, has a smooth spectrum, its polarization is well defined, and at DESY the range of useful photon energies can be extended to about 70 keV and higher. In addition the X-ray beam is very well collimated. Thus synchrotron radiation seems to be an ideal X-ray source for energy-dispersive diffractometry. This note briefly describes the experimental set up at DESY, shows examples of results, and presents the underlying 'philosophy' of the research programme. (Auth.)

  3. Design of a wire imaging synchrotron radiation detector

    International Nuclear Information System (INIS)

    Kent, J.; Gomez-Cadenas, J.J.; Hogan, A.; King, M.; Rowe, W.; Watson, S.; Von Zanthier, C.; Briggs, D.D.; Levi, M.

    1990-01-01

    This paper documents the design of a detector invented to measure the positions of synchrotron radiation beams for the precision energy spectrometers of the Stanford Linear Collider (SLC). The energy measurements involve the determination, on a pulse-by-pulse basis, of the separation of pairs of intense beams of synchrotron photons in the MeV energy range. The detector intercepts the beams with arrays of fine wires. The ejection of Compton recoil electrons results in charges being developed in the wires, thus enabling a determination of beam positions. 10 refs., 4 figs

  4. Applications of synchrotron radiation in Biophysics

    International Nuclear Information System (INIS)

    Bemski, G.

    1983-01-01

    A short introduction to the generation of the synchrotron radiation is made. Following, the applications of such a radiation in biophysics with emphasis to the study of the hemoglobin molecule are presented. (L.C.) [pt

  5. Synchrotron radiation and biomedical imaging

    International Nuclear Information System (INIS)

    Luccio, A.

    1986-08-01

    In this lecture we describe the characteristics of Synchrotron radiation as a source of X rays. We discuss the properties of SR arc sources, wigglers, undulators and the use of backscattering of laser light. Applications to angiography, X ray microscopy and tomography are reviewed. 16 refs., 23 figs

  6. Transition analysis of promising U.S. future fuel cycles using ORION - 5114

    International Nuclear Information System (INIS)

    Sunny, E.; Worrall, A.; Peterson, J.; Powers, J.; Gehin, J.

    2015-01-01

    The US Department of Energy Office of Fuel Cycle Technologies performed an evaluation and screening (E/S) study of nuclear fuel cycle options to help prioritize future research and development decisions. Previous work for this E/S study focused on establishing equilibrium conditions for analysis examples of 40 nuclear fuel cycle evaluation groups and evaluating their performance according to a set of 22 standardized metrics. Following the E/S study, additional studies are being conducted to assess transition period from the current US fuel cycle to future fuel cycle options identified by the E/S study as being most promising. These studies help inform decisions on how to effectively achieve full transition, estimate the length of time needed to undergo transition from the current fuel cycle, and evaluate performance of nuclear systems and facilities in place during the transition. These studies also help identify any barriers to achieve transition. Oak Ridge National Laboratory (ORNL) Fuel Cycle Options Campaign team used ORION to analyze the transition pathway from the existing US nuclear fuel cycle - the once-through use of low-enriched-uranium (LEU) fuel in thermal-spectrum light water reactors (LWRs) - to a new fuel cycle with continuous recycling of plutonium and uranium in sodium fast reactors (SFRs). This paper discusses the analysis of the transition from an LWR to an SFR fleet using ORION, highlights the role of lifetime extensions of existing LWRs to aid transition, and discusses how a slight delay in SFR deployment can actually reduce the time to achieve an equilibrium fuel cycle. (authors)

  7. An assessment of research opportunities and the need for synchrotron radiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held.

  8. An assessment of research opportunities and the need for synchrotron radiation facilities

    International Nuclear Information System (INIS)

    1995-01-01

    The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held

  9. ERL Option for LHeC

    CERN Document Server

    Hao, Y; Litvinenko, VN; Ptitsyn, V; Trbojevic, D; Tsoupas, N

    2010-01-01

    We present a self-consistent system for a 3-pass 60-GeV energy recovery linac, including arc optics design, linac cryomodule, splitters and combiners, overall layout, compensation schemes for synchrotron-radiation energy losses either using a higher-harmonic RF system or optimizing the beam phases in the main linacs, coherent energy loss from resistive wall and coherent synchrotron radiation, and simulations of beam break up as a function of HOM frequency spread.

  10. Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon

    International Nuclear Information System (INIS)

    Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

    1999-01-01

    Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors

  11. Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon.

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

    1999-07-21

    Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors.

  12. Physics and technology challenges of ultra low emittance synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Krinsky, S.

    1991-01-01

    There is a great activity throughout the world in the development of synchrotron radiation facilities to serve as sources for basic and applied research. We discuss some of the the opportunities and challenges presented by the development of ever higher brightness synchrotron radiation sources. 39 refs.

  13. Swiss synchrotron light source at the Paul Scherrer Institute at Villigen

    International Nuclear Information System (INIS)

    1996-02-01

    The brochure describes the Swiss project for a synchrotron light source to be built at the Paul Scherrer Institute at Villigen. According to the project the synchrotron light source shall be realized up to the year 2001 at costs of 165 Million Swiss Francs. figs., tabs

  14. The synchrotron radiation

    International Nuclear Information System (INIS)

    Chevallier, P.

    1994-01-01

    Synchrotron Radiation is a fantastic source of electromagnetic radiation the energy spectrum of which spreads continuously from the far infrared to hard X-rays. For this reason a wide part of the scientific community, fundamentalists as well as industry, is concerned by its use. We shall describe here the main properties of this light source and give two examples of application in the field of characterization of materials: EXAFS (Extended X-Ray Absorption Fine Structure) and X-ray fluorescence. (author). 8 figs., 21 refs

  15. Biological physics and synchrotron radiation

    International Nuclear Information System (INIS)

    Filhol, J.M.; Chavanne, J.; Weckert, E.

    2001-01-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  16. DESY: Synchrotron and storage rings

    CERN Multimedia

    1972-01-01

    An improvement programme has been under way for several years at the 7.5 GeV électron synchrotron at DESY. In particular it has been designed to increase the accelerated beam intensity, to achieve better quality of the ejected électron beams and photon beams and to improve machine reliability.

  17. Biological physics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Filhol, J M; Chavanne, J [European Synchrotron Radiation Facility, 38 - Grenoble (France); Weckert, E [Hasylab at Desy, Hamburg (Germany); and others

    2001-07-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  18. Synchrotron radiation in material science

    International Nuclear Information System (INIS)

    Zanotto, E.D.

    1983-01-01

    A brief review on the several experimental techniques (XRD, SAXS, EXAFS, IRRS, etc...) which, utilizing of synchrotron radiation can be applied in glass structural studies, is presented. The major part of these techniques can be also used for studies of other materials such as polymers, metals, etc... (L.C.) [pt

  19. Synchrotron radiation: appendix to the Daresbury annual report 1990/91

    International Nuclear Information System (INIS)

    1991-01-01

    This Appendix to the Annual Report of the Daresbury Laboratory of the United Kingdom Science and Engineering Research Council contains the 1990 Annual Report of the Synchrotron Radiation Facilities Committee, specifications for the beamlines and stations, the index for the synchrotron radiation user reports, the reports themselves and the list of publications detailing work performed on the Synchrotron Radiation Source. By far the largest part of the Appendix is taken up with the user reports for the period 1990 to 1991. They include reports on structural determination of sodium methyl, an investigation of DNA-Binding Proteins, monitoring of vital processes in live cells, the structure of semiconductor interfaces, the structure and properties of glasses and soft x-ray absorption spectroscopy of liquid samples. (author)

  20. Nuclear Waste Vitrification in the U.S.: Recent Developments and Future Options

    International Nuclear Information System (INIS)

    Vienna, John D.

    2010-01-01

    Nuclear power plays a key role in maintaining current world wide energy growth while minimizing the greenhouse gas emissions. A disposition path for used nuclear fuel (UNF) must be found for this technology to achieve its promise. One likely option is the recycling of UNF and immobilization of the high-level waste (HLW) by vitrification. Vitrification is the technology of choice for immobilizing HLW from defense and commercial fuel reprocessing around the world. Recent advances in both recycling technology and vitrification show great promise in closing the nuclear fuel cycle in an efficient and economical fashion. This article summarizes the recent trends developments and future options in waste vitrification for both defense waste cleanup and closing the nuclear fuel cycle in the U.S.