WorldWideScience

Sample records for cyclin d1 protein

  1. Expression and significance of cyclin D1, p27kipl protein in bronchioloalveolar carcinoma

    Institute of Scientific and Technical Information of China (English)

    袁键群; 许敬尧; 张静; 何启才; 祝佳; 盛彩霞

    2004-01-01

    Purpose: To investigate the relationship between expression of cell cycle-related protein cyclin D1, p27kipl and the pathogenesis of bronchioloalveolar carcinoma (BAC) and the value of prediction of prognosis. Methods: Cyclin D1 and p27kipl protein were detected by immunohistochemical En Vision method in 43 BACs. Results: The positivity of cyclin D1 in BAC was 65.1% (28/43), which was significantly higher than that in normal pulmonary tissue (0/13), P0.05), while cyclin D1 expression was found to be negatively correlated with tumor size (P0.05), but was negatively correlated with stromal fibrosis, lymph node metastasis and clinical stage (P<0.05); and positively associated with postoperative survival period (P<0.01). The survival rate of p27kipl positive group was significantly higher than that of p27kipl negative group (P<0.01). No statistically significant correlation was found between cyclin D1 and p27kipl expression. Conclusions: Increased cyclin D1 expression and decreased p27kipl expression are related to the pathogenesis of BAC; decreased p27kipl expression is associated with metastasis progression; immunodetection ofp27kipl is useful for assessment of prognosis.

  2. Expression and significance of cyclin D1, p27kip1 protein in bronchioloalveolar carcinoma

    Institute of Scientific and Technical Information of China (English)

    袁键群; 许敬尧; 张静; 何启才; 祝佳; 盛彩霞

    2004-01-01

    Purpose: To investigate the relationship between expression of cell cycle-related protein cyclin D1, p27kipl and the pathogenesis of bronchioloalveolar carcinoma (BAC) and the value of prediction of prognosis. Methods: Cyclin D 1 and p27kip 1 protein were detected by immunohistochemical En Vision method in 43 BACs. Results: The positivity of cyclin D 1 in BAC was 65.1% (28/43), which was significantly higher than that in normal pulmonary tissue (0/13), P<0.01. No statistically significant association was found between cyclin D1 expression data and sex, age, tobacco-use history, histologic subtype (mucinous vs nonmucinous), stromal fibrosis, lymph node metastasis, clinical stage or postoperative survival period (P>0.05), while cyclin D1 expression was found to be negatively correlated with tumor size (P<0.05). The positivity of p27kipl in BACs was 51.2% (22/43), significantly lower than that in normal pulmonary tissue (12/13), P<0.01. p27kipl expression level was not associated with sex, age, tobacco-use history, tumor size or histologic subtype (P>0.05), but was negatively correlated with stromal fibrosis, lymph node metastasis and clinical stage (P<0.05); and positively associated with postoperative survival period (P<0.01). The survival rate of p27kipl positive group was significantly higher than that of p27kipl negative group (P<0.01). No statistically significant correlation was found between cyclin D 1 and p27kipl expression. Conclusions: Increased cyclin D1 expression and decreased p27kip 1 expression are related to the pathogenesis of BAC;decreased p27kipl expression is associated with metastasis progression; immunodetection ofp27kip 1 is useful for assessment of prognosis.

  3. EXPRESSION OF p16, CYCLIN D1 AND RB PROTEIN IN GASTRIC CARCINOMA AND PREMALIGNANT LESIONS

    Institute of Scientific and Technical Information of China (English)

    缪林; 赵志泉; 季国忠; 范志宁; 金宁; 刘政; 张平; 程铁华

    2003-01-01

    Objective: To investigate the expression of p16, cyclin D1 and Rb protein in gastric carcinoma and premalignant lesions including dysplastic gastric mucosa and intestinal metaplasia gastric mucosa. Methods: Using SP immunohistochemical methods, the expression of pl6, cyclin D1 and Rb proteins was detected in 10 specimens of normal gastric mucosa, 15 specimens of dysplastic gastric mucosa, 15 specimens of intestinal metaplasia gastric mucosa, 30 specimens of gastric carcinoma. The clinical characteristics of the 30 patients with gastric carcinoma were analysed to explore the relationship between the parameter detected and biological action of gastric cancer. Results: Expression of p16 protein was detected in 90% of normal gastric mucosa, 86.67% of dysplastic gastric mucosa, 86.67% of intestinal metaplasia gastric mucosa, 36.67% of gastric carcinoma. The positive rate of p16 protein expression in gastric carcinoma is significantly lower than that in normal gastric mucosa and gastric premalignant lesions mucosa (P<0.01). Expression of cyclin D1 protein was detected in 10% of normal gastric mucosa, 20% of dysplastic gastric mucosa, 20% of intestinal metaplasia gastric mucosa, 53.33% of gastric carcinoma. The positive rate of cyclin D1, protein expression in gastric carcinoma is significantly higher than that in normal gastric mucosa and gastric premalignant lesions mucosa (P<0.05). Expression of Rb protein was detected in 90% of normal gastric mucosa, 80% of dysplastic gastric mucosa, 80% of intestinal metaplasia gastric mucosa, 50% of gastric carcinoma. The positive rate of Rb protein expression in gastric carcinoma is significantly lower than that in normal gastric mucosa (P<0.05). The expression of p16, cyclin D1 gene were associated with the degree of differentiation of gastric carcinoma, lymphnodes metastasis and distant metastasis. Conclusion: p16, Cyclin D1 and Rb gene play important role in gastric carcinoma genesis. The expression of p16, cyclin D1 and Rb gene

  4. Clinical significance of the phosphorylation of MAPK and protein expression of cyclin D1 in human osteosarcoma tissues.

    Science.gov (United States)

    Wu, Jian; Cui, Lei-Lei; Yuan, Jun; Wang, Yuan; Song, Shu

    2017-04-01

    The aim of the present study was to investigate the significance of the phosphorylation of mitogen-activated protein kinase (MAPK) and the protein expression of cyclin D1 in human osteosarcoma tissues. Human osteosarcoma tissue samples were collected from 30 patients, benign bone tumor samples were collected from 30 patients, and normal bone tissues were collected from 10 individuals as controls. Immunohistochemistry was performed to measure the levels of phosphorylated (p)-MAPK and cyclin D1 protein in cases of human osteosarcoma. The results showed that the positive rates of MAPK and cyclin D1 in osteosarcoma were 86.67% (26/30) and 73.00% (22/30), respectively. The positive staining rates of MAPK and cyclin D1 in benign bone tumor tissues were 10.00% (3/30) and 3.30% (1/30), respectively. The positive rate in the normal bone tissues was 0% (0/30), which was significantly lower, compared with that of the cancerous bone tissue. The positive rates of MAPK and cyclin D1 in osteosarcoma were increased (P<0.05), and the expression of cyclin D1 and p‑MAPK were positively correlated. The phosphorylation of MAPK may be important in the development of osteosarcoma, and the overactivation of MAPK may induce high expression of cyclin D1 and induce tumor cells to proliferate continuously.

  5. A jumonji (Jarid2) protein complex represses cyclin D1 expression by methylation of histone H3-K9.

    Science.gov (United States)

    Shirato, Haruki; Ogawa, Satoko; Nakajima, Kuniko; Inagawa, Masayo; Kojima, Mizuyo; Tachibana, Makoto; Shinkai, Yoichi; Takeuchi, Takashi

    2009-01-09

    Covalent modifications of histone tails have critical roles in regulating gene expression. Previously, we identified the jumonji (jmj, Jarid2) gene, the jmjC domain, and a Jmj family. Recently, many Jmj family proteins have been shown to be histone demethylases, and jmjC is the catalytic domain. However, Jmj does not have histone demethylase activity because the jmjC domain lacks conserved residues for binding to cofactors. Independently of these studies, we previously showed that Jmj binds to the cyclin D1 promoter and represses the transcription of cyclin D1. Here, we show the mechanisms by which Jmj represses the transcription of cyclin D1. We found that a protein complex of Jmj had histone methyltransferase activity toward histone H3 lysine 9 (H3-K9). We also found that Jmj bound to the H3-K9 methyltransferases G9a and GLP. Expression of Jmj recruited G9a and GLP to the cyclin D1 promoter and increased H3-K9 methylation. Inactivation of both G9a and GLP, but not of only G9a, inhibited the methylation of H3-K9 in the cyclin D1 promoter and repression of cyclin D1 expression by Jmj. These results suggest that Jmj methylates H3-K9 and represses cyclin D1 expression through G9a and GLP, and that Jmj family proteins can regulate gene expression by not only histone demethylation but also other histone modification.

  6. Cyclin D1 (Bcl-1, PRAD1) protein expression in low-grade B-cell lymphomas and reactive hyperplasia.

    OpenAIRE

    Yang, W. I.; Zukerberg, L R; Motokura, T.; Arnold, A.; Harris, N. L.

    1994-01-01

    Mantle cell (centrocytic) lymphoma (MCL) and occasional cases of B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia (B-SLL/CLL) show a characteristic translocation, t(11:14)(q13;q32) involving rearrangement of the Bcl-1 region. Recently it was shown that the key Bcl-1 region oncogene is cyclin D1/PRAD1; cyclin D1 mRNA was shown to be overexpressed in cases of MCL. We examined cyclin D1 protein expression in low-grade B-cell lymphomas and reactive lymphoid hyperplasias using polycl...

  7. The tight junction protein ZO-2 blocks cell cycle progression and inhibits cyclin D1 expression.

    Science.gov (United States)

    Gonzalez-Mariscal, Lorenza; Tapia, Rocio; Huerta, Miriam; Lopez-Bayghen, Esther

    2009-05-01

    ZO-2 is an adaptor protein of the tight junction that belongs to the MAGUK protein family. ZO-2 is a dual localization protein that in sparse cultures is present at the cell borders and the nuclei, whereas in confluent cultures it is concentrated at the cell boundaries. Here we have studied whether ZO-2 is able to regulate the expression of cyclin D1 (CD1) and cell proliferation. We have demonstrated that ZO-2 negatively regulates CD1 transcription by interacting with c-Myc at an E box present in CD1 promoter. We have further found that ZO-2 transfection into epithelial MDCK cells triggers a diminished expression of CD1 protein and decreases the rate of cell proliferation in a wound-healing assay.

  8. Rescue of cyclin D1 deficiency by knockin cyclin E

    NARCIS (Netherlands)

    Geng, Y.; Whoriskey, W.; Park, M.Y.; Bronson, R.T.; Medema, R.H.; Li, T.; Weinberg, R.A.; Sicinski, P.

    1999-01-01

    D-type cyclins and cyclin E represent two very distinct classes of mammalian G1 cyclins. We have generated a mouse strain in which the coding sequences of the cyclin D1 gene (Ccnd1) have been deleted and replaced by those of human cyclin E (CCNE). In the tissues and cells of these mice, the expressi

  9. Cyclin D1 (Bcl-1, PRAD1) protein expression in low-grade B-cell lymphomas and reactive hyperplasia.

    Science.gov (United States)

    Yang, W. I.; Zukerberg, L. R.; Motokura, T.; Arnold, A.; Harris, N. L.

    1994-01-01

    Mantle cell (centrocytic) lymphoma (MCL) and occasional cases of B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia (B-SLL/CLL) show a characteristic translocation, t(11:14)(q13;q32) involving rearrangement of the Bcl-1 region. Recently it was shown that the key Bcl-1 region oncogene is cyclin D1/PRAD1; cyclin D1 mRNA was shown to be overexpressed in cases of MCL. We examined cyclin D1 protein expression in low-grade B-cell lymphomas and reactive lymphoid hyperplasias using polyclonal and monoclonal antibodies to cyclin D1 protein. Definite nuclear staining was seen in 15 of 15 MCLs, 1 of 7 B-SLL/CLLs, 0 of 7 reactive hyperplasias, 0 of 10 follicular lymphomas, and 0 of 4 lymphomas of mucosa-associated lymphoid tissue using immunoperoxidase stains on paraffin-embedded sections. Best results were obtained with the affinity-purified polyclonal antibody on microwave-treated, formalin-fixed, paraffin-embedded tissue. MCLs showed diffuse nuclear staining, whereas the one positive B-SLL/CLL showed dot-like or globular nuclear staining. Nuclear cyclin D1 protein can be detected in all cases of MCL and in rare cases of B-SLL/CLL using an immunohistochemical technique on formalin-fixed, paraffin-embedded tissue, and it does not appear to be detectable in reactive hyperplasias and other low-grade B-cell lymphomas. This protein may be useful in subclassification of low-grade B-cell lymphomas. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:7518196

  10. THE EXPRESSION AND CLINICAL SIGNIFICANCE OF P21 (WAF1/CIP1)AND CYCLIN D1 PROTEIN IN COLORECTAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To study the effect of P21 (WAF1/CIP1) and cyclin D1 and their relationship in colorec- tal carcinoma. Methods The expression of P21 and cyclin D1 was studied in 40 colorectal carcinoma and 10 normal tissues using S-P immunohistochemical technique. Results Decreased expression of P12 and overexpression of cyclin D1 were revealed in colorectal carcinoma. Decreased expression of P21 was related to lymph node metastasis. No cor- relation was found between cyclin D1 and clinicopathological parameters. Conclusion Decreased expression of P21 and overexpression of cyclin D1 may be involved in colorectal tumorigenesis,and were associated with poor prognosis. No correlation was found between P21 and cyclin D1 in colorectai carcinoma.

  11. Retinoblastoma and p16 proteins in mammary carcinoma: their relationship to cyclin D1 and histopathological parameters.

    Science.gov (United States)

    Dublin, E A; Patel, N K; Gillett, C E; Smith, P; Peters, G; Barnes, D M

    1998-02-20

    The cell cycle-associated retinoblastoma protein (pRb) and p16 protein were demonstrated using immuno-histochemistry on paraffin sections from 192 cases of invasive breast carcinoma. Abnormal expression of pRb was defined as negative staining and was seen in 17% of tumours. Such abnormal expression was significantly more frequent in tumours with negative oestrogen receptor (ER) status. There was also a trend for tumours which were negative for pRb to be grade III ductal carcinomas. There was no association between p16 staining and any histopathological parameter, though, surprisingly, log-rank analysis showed that strong staining was associated with a poor outcome. There was a significant inverse relationship between pRb and p16 expression and a significant positive association between pRb and cyclin D1. In a Cox multivariate analysis, which included cyclin D1, neither pRb nor p16 was an independent predictor of patient outcome.

  12. The LIM-only protein FHL2 mediates ras-induced transformation through cyclin D1 and p53 pathways.

    Directory of Open Access Journals (Sweden)

    Charlotte Labalette

    Full Text Available BACKGROUND: Four and a half LIM-only protein 2 (FHL2 has been implicated in multiple signaling pathways that regulate cell growth and tissue homeostasis. We reported previously that FHL2 regulates cyclin D1 expression and that immortalized FHL2-null mouse embryo fibroblasts (MEFs display reduced levels of cyclin D1 and low proliferative activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we address the contribution of FHL2 in cell transformation by investigating the effects of oncogenic Ras in FHL2-null context. We show that H-RasV12 provokes cell cycle arrest accompanied by accumulation of p53 and p16(INK4a in immortalized FHL2(-/- MEFs. These features contrast sharply with Ras transforming activity in wild type cell lines. We further show that establishment of FHL2-null cell lines differs from conventional immortalization scheme by retaining functional p19(ARF/p53 checkpoint that is required for cell cycle arrest imposed by Ras. However, after serial passages of Ras-expressing FHL2(-/- cells, dramatic increase in the levels of D-type cyclins and Rb phosphorylation correlates with the onset of cell proliferation and transformation without disrupting the p19(ARF/p53 pathway. Interestingly, primary FHL2-null cells overexpressing cyclin D1 undergo a classical immortalization process leading to loss of the p19(ARF/p53 checkpoint and susceptibility to Ras transformation. CONCLUSIONS/SIGNIFICANCE: Our findings uncover a novel aspect of cellular responses to mitogenic stimulation and illustrate a critical role of FHL2 in the signalling network that implicates Ras, cyclin D1 and p53.

  13. Association of cyclin D1, p16 and retinoblastoma protein expressions with prognosis and metastasis of gallbladder carcinoma

    Institute of Scientific and Technical Information of China (English)

    Hong-Bing Ma; Hai-Tao Hu; Zheng-Li Di; Zuo-Ren Wang; Jing-Sen Shi; Xi-Jing Wang; Yi Li

    2005-01-01

    AIM: To investigate the role of cydin D1, p16 and retinoblastoma in cancerous process of gallbladder carcinomas and to assess the relation between cyclin D1, p16, Rb and the biological characteristics of gallbladder carcinoma.METHODS: Forty-one gallbladder carcinoma, 7 gallbladder adenoma and 14 chronic cholecystitis specimens were immunohistochemically and histopathologically investigated for the relation of cyclin D1, p16 and Rb with Nevin staging and pathologic grading.RESULTS: The expression rates of abnormal cyclin D1 in gallbladder carcinoma (68.3%)and gallbladder adenoma(57.1%) were significantly higher than those in chronic cholecystitis (7.1%) (P<0.05). No significant difference was found both among the pathological grades G1, G2 and G3and among Nevin stagings S1-S2, S3 and S4-S5 of gallbladder carcinoma. The positive rates of p16 (48.8%) and Rb(58.5%) in gallbladder carcinoma were significantly lower compared to those in adenoma (100.0%) and cholecystitis(100.0%) (P<0.05). The positive rates of p16 and Rb in Nevin stagings S1-S2 (80.0% and 90.0%) and S3 (46.2%and 61.5%) gallbladder carcinomas were significantly higher than those in S4-S5 (33.3% and 38.8%) (P<0.05),and those in pathologic grades G1 (54.5% and 81.8%) and G2 (50.0% and 62.5%) gallbladder carcinoma were significantly higher than those in G3 (28.6% and 35.7%)(P<0.05). The protein expression of p16 and Rb had a negative-correlation in gallbladder carcinoma (r = -0.2993,P<0.05), and this negative-correlation was correlated with Nevin staging (P<0.05). Moreover, the protein expression of p16 and cyclin D1 had a negative-correlation in gallbladder carcinoma (r = -0.9417, P<0.05).CONCLUSION: Cyclin D1 may play a role in the early stage of gallbladder carcinoma. Mutation of p16 and Rb genes might be correlated with progression of gallbladder carcinoma.Analysis of p16 and Rb can estimate the prognosis of gallbladder carcinoma. Expression of p16 and Rb may be correlated with Nevin

  14. Cyclin D1 expression in prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, R.A.; Ravinal, R.C.; Costa, R.S.; Lima, M.S. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Tucci, S. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Divisão de Urologia, Ribeirão Preto, SP, Brasil, Divisão de Urologia, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Muglia, V.F. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Medicina Interna (Centro de Ciência da Imagem), Ribeirão Preto, SP, Brasil, Departamento de Medicina Interna (Centro de Ciência da Imagem), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Reis, R.B. Dos [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Divisão de Urologia, Ribeirão Preto, SP, Brasil, Divisão de Urologia, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, G.E.B. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-05-09

    The purpose of this study was to investigate the relationship between cyclin D1 expression and clinicopathological parameters in patients with prostate carcinoma. We assessed cyclin D1 expression by conventional immunohistochemistry in 85 patients who underwent radical prostatectomy for prostate carcinoma and 10 normal prostate tissue samples retrieved from autopsies. We measured nuclear immunostaining in the entire tumor area and based the results on the percentage of positive tumor cells. The preoperative prostate-specific antigen (PSA) level was 8.68±5.16 ng/mL (mean±SD). Cyclin D1 staining was positive (cyclin D1 expression in >5% of tumor cells) in 64 cases (75.4%) and negative (cyclin D1 expression in ≤5% of tumor cells) in 21 cases (including 15 cases with no immunostaining). Normal prostate tissues were negative for cyclin D1. Among patients with a high-grade Gleason score (≥7), 86% of patients demonstrated cyclin D1 immunostaining of >5% (P<0.05). In the crude analysis of cyclin D1 expression, the high-grade Gleason score group showed a mean expression of 39.6%, compared to 26.9% in the low-grade Gleason score group (P<0.05). Perineural invasion tended to be associated with cyclin D1 expression (P=0.07), whereas cyclin D1 expression was not associated with PSA levels or other parameters. Our results suggest that high cyclin D1 expression could be a potential marker for tumor aggressiveness.

  15. Expressions of beta-catenin, APC Protein, C-myc and Cyclin D1 in Ovarian Epithelial Tumor and Their Implication

    Institute of Scientific and Technical Information of China (English)

    LIN Xiao; LI Yu; MI Can

    2007-01-01

    Objective: To investigate the expressions of beta-catenin, protein APC (adenomatous polyposis coli protein), c-myc and cyclin D1 and their implication in ovarian epithelial tumor. Methods: Immunohistochemical staining with SP method was conducted to identify the expressions of beta-catenin, APC protein, c-myc and cyclin D1 in ovarian epithelial tumor in 48 cases. Results: The abnormal expression rate of beta-catenin in malignant and borderline ovarian epithelial tumors was higher than that in benign epithelial tumors (P<0.01). The expression rates of c-myc and cyclin-D1 in ovarian malignant and borderline epithelial tumors were higher than those in benign epithelial tumors too(P<0.05). The prevalence of APC protein positive expression in benign epithelial tumors were significantly greater than that in malignant epithelial tumors (P<0.05). A significant negative correlation was found between beta-catenin and APC protein in ovarian epithelial tumors; while a significant positive correlation was found between beta-catenin, c-myc and cyclin-D1 in ovarian epithelial tumor (P<0.05). Conclusion: The abnormal expressions of Beta-catenin, APC protein, c-myc and cyclin-D1 might be used to indicate the malignance transform of ovarian epithelial tumors.

  16. Altered expression of the cell cycle regulatory protein cyclin D1 in the rat dentate gyrus after adrenalectomy-induced granular cell lass

    NARCIS (Netherlands)

    Postigo, JA; Van der Werf, YD; Korf, J; Krugers, HJ

    1998-01-01

    The loss of dentate gyrus (DG) granular cells after removal of the rat adrenal glands (ADX) is mediated by a process that is apoptotic in nature. The present study was initiated to compare changes in the immunocytochemical distribution of the cell-cycle regulatory protein cyclin D1, which has been

  17. Relationship between expression of pRb and cyclin D1 protein and prognosis in gastric carcinoma%胃癌中pRb和cyclin D1蛋白表达与预后的关系

    Institute of Scientific and Technical Information of China (English)

    龙延滨; 王国荣; 王小强; 何文宪

    2003-01-01

    目的:探讨pRb和cyclin D1蛋白表达与胃癌进展及预后的关系.方法:采用S-P免疫组化法检测了53例进展期胃癌中pRb和cyclin D1蛋白表达的情况,并随访其术后5年生存状况.结果:在进展期胃癌中pRb和cyclin D1表达率分别为47.16%和75.47%,在正常胃粘膜中表达率分别为100%和20%,两组有显著差异性.pRb的表达与淋巴结是否转移、临床分期及术后生存时间有显著相关性.而cyclin D1表达与胃癌临床病理参数及术后生存时间无关.结论:pRb表达可反映胃癌进展及预后.

  18. Multifaceted interactions and regulation between antizyme and its interacting proteins cyclin D1, ornithine decarboxylase and antizyme inhibitor.

    Science.gov (United States)

    Liu, Yen-Chin; Lee, Chien-Yun; Lin, Chi-Li; Chen, Hui-Yi; Liu, Guang-Yaw; Hung, Hui-Chih

    2015-09-15

    Ornithine decarboxylase (ODC), cyclin D1 (CCND1) and antizyme inhibitor (AZI) promote cell growth. ODC and CCND1 can be degraded through antizyme (AZ)-mediated 26S proteasomal degradation. This paper describes a mechanistic study of the molecular interactions between AZ and its interacting proteins. The dissociation constant (Kd) of the binary AZ-CCND1 complex and the respective binding sites of AZ and CCND1 were determined. Our data indicate that CCND1 has a 4-fold lower binding affinity for AZ than does ODC and an approximately 40-fold lower binding affinity for AZ than does AZI. The Kd values of AZ-CCND1, AZ-ODC and AZ-AZI were 0.81, 0.21 and 0.02 μM, respectively. Furthermore, the Kd values for CCND1 binding to the AZ N-terminal peptide (AZ34-124) and AZ C-terminal peptide (AZ100-228) were 0.92 and 8.97 μM, respectively, indicating that the binding site of CCND1 may reside at the N-terminus of AZ, rather than the C-terminus. Our data also show that the ODC-AZ-CCND1 ternary complex may exist in equilibrium. The Kd values of the [AZ-CCND1]-ODC and [AZ-ODC]-CCND1 complexes were 1.26 and 4.93 μM, respectively. This is the first paper to report the reciprocal regulation of CCND1 and ODC through AZ-dependent 26S proteasomal degradation.

  19. Expression and clinical significance of Cyclin D1 and CDX2 protein in gastric carcinoma%Cyclin D1和CDX2蛋白在胃癌组织中的表达及临床意义

    Institute of Scientific and Technical Information of China (English)

    谷化平; 黄勇; 尚培中

    2013-01-01

    目的:探讨细胞周期素D1(Cyclin D1)和尾型同源转录因子-2(CDX2)蛋白的表达与胃癌(GC)临床病理特征及患者生存期的关系.方法:应用免疫组织化学技术检测120例GC、60例肠上皮化生(IM)、60例异型增生(GED)和20例正常胃黏膜(NGM)组织中Cyclin D1和CDX2蛋白的表达,并结合GC的病理学行为和临床随访资料进行分析.结果:Cyclin D1在GC组织中表达阳性率为61.7%,显著高于GED、IM和NGM组织(35.0%、16.7%、0),差异有统计学意义(P<0.05),GED组织高于IM和NGM组织,差异亦有统计学意义(P<0.05).CDX2在GC、GED、IM组织中表达阳性率分别为56.7%、68.3%和91.7%,显著高于NGM组织(0),差异有统计学意义(P<0.05);IM组织高于GC和GED组织,差异亦有统计学意义(P<0.05);GC组织与GED组织之间差异无统计学意义(P>0.05).Cyclin D1和CDX2表达与GC分化程度、浆膜浸润、淋巴结转移和患者生存期相关(P<0.05).Cyclin D1和CDX2表达呈显著负相关(r=-0.34,P<0.05).结论:Cyclin D1和CDX2均参与了GC的发生发展,均可作为辅助GC诊断、预测生物学行为和评估预后的参考指标.

  20. Expression and clinical significance of APC,β-catenin and cyclinD1 proteins in colorectal carcinoma%大肠癌中APC、β-catenin和cyclinD1的表达及其临床意义

    Institute of Scientific and Technical Information of China (English)

    戴文斌; 任占平; 陈蔚麟; 杜娟; 石喆; 唐德艳

    2007-01-01

    目的:探讨APC、β-catenin和cyclinD1在大肠癌发生、发展过程中的作用.方法:应用免疫组织化学方法检测30例正常大肠黏膜、30例大肠腺瘤、10例大肠腺瘤恶变及50例大肠癌组织中APC、β-catenin和cyclinD1蛋白的表达情况.结果:大肠癌和大肠腺瘤恶变APC阳性率分别为44.0%,40.0%,显著低于大肠腺瘤(86.7%)和正常大肠黏膜(100%)(P《0.01).大肠癌、大肠腺瘤恶变和大肠腺瘤β-catenin胞浆和/或胞核异位表达率分别为:62.0%,50.0%,30.O%,显著高于正常大肠黏膜(0)(P《0.01),大肠癌β-catenin异位表达率显著高于大肠腺瘤(P《0.01).大肠癌中B-catenin膜表达缺失率为:46.0%,显著高于大肠腺瘤(10.0%)和正常大肠黏膜(0)(P《0.01).大肠癌、大肠腺瘤恶变、大肠腺瘤cyclinD1阳性率分别为:66.0%,60.0%,30.O%,显著高于正常大肠黏膜(0)(P《0.01),大肠癌cyclinD1阳性率显著高于大肠腺瘤(P《0.01).β-catenin膜表达缺失和cyclinD1高表达与大肠癌组织分化程度、浸润深度、淋巴结转移、Dukes分期有关.APC蛋白表达与大肠癌组织分化程度有关.大肠癌中β-catenin异位表达与cyclinD1阳性表达呈正相关关系(r=0.57,P《0.01),而与APC阳性表达呈负相关关系(r=-0.39,P《0.05).结论:APC失表达和/或β-catenin异位表达,可能是原癌基因cyclinD1激活的重要原因,并在大肠癌发生过程中起重要作用,可能是大肠癌发生的早期事件.β-catenin膜表达缺失和cyclinD1高表达与大肠癌的侵袭、转移有关.

  1. Cigarette smoke extract alters the cell cycle via the phospholipid transfer protein/transforming growth factor-β1/CyclinD1/CDK4 pathway.

    Science.gov (United States)

    Chai, Xue-Min; Li, You-Lun; Chen, Hong; Guo, Shu-Liang; Shui, Li-Li; Chen, Ya-Juan

    2016-09-05

    This study was aimed to investigate the effect of phospholipid transfer protein (PLTP) on cigarette smoke extract (CSE)-induced alteration of the cell cycle and the possible mechanism. Male Wistar rats and the rat alveolar epithelial cell line (RLE-6TN) were exposed to normal air or different concentrations of CSE. Then PLTP siRNA was transfected into cells and an inhibitor of transforming growth factor-β1 (TGF-β1) was administered prior to CSE exposure. Histological changes and cell cycle stage were recorded, as were the expression levels of PLTP, TGF-β1, CyclinD1 and CDK4. Resulting morphological changes included diffuse interstitial substance incrassation and elevated alveolar rupturing. Flow cytometry analysis revealed an increase in the number of cells in the G1 phase in a time- and dose-related manner. Both PLTP and TGF-β1 were up-regulated at protein and mRNA levels, whereas CyclinD1 and CDK4 expression was down-regulated after CSE exposure. Furthermore, PLTP siRNA significantly suppressed CSE-induced TGF-β1 expression, resulting in up-regulation of CyclinD1 and CDK4, but the TGF-β1 inhibitor was not able to abrogate CSE-induced PLTP over-expression. In conclusion, PLTP may operate upstream of the TGF-β1/CyclinD1/CDK4 pathway and may mediate the CSE-induced G1 arrest in RLE-6TN cells. Our work provides some new insight into the relation between PLTP and cell cycle progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Translokin (Cep57) interacts with cyclin D1 and prevents its nuclear accumulation in quiescent fibroblasts.

    Science.gov (United States)

    Ruiz-Miró, Maria; Colomina, Neus; Fernández, Rita M H; Garí, Eloi; Gallego, Carme; Aldea, Martí

    2011-05-01

    Nuclear accumulation of cyclin D1 because of altered trafficking or degradation is thought to contribute directly to neoplastic transformation and growth. Mechanisms of cyclin D1 localization in S phase have been studied in detail, but its control during exit from the cell cycle and quiescence is poorly understood. Here we report that translokin (Tlk), a microtubule-associated protein also termed Cep57, interacts with cyclin D1 and controls its nucleocytoplasmic distribution in quiescent cells. Tlk binds to regions of cyclin D1 also involved in binding to cyclin-dependent kinase 4 (Cdk4), and a fraction of cyclin D1 associates to the juxtanuclear Tlk network in the cell. Downregulation of Tlk levels results in undue nuclear accumulation of cyclin D1 and increased Cdk4-dependent phosphorylation of pRB under quiescence conditions. In turn, overexpression of Tlk prevents proper cyclin D1 accumulation in the nucleus of proliferating cells in an interaction-dependent manner, inhibits Cdk4-dependent phosphorylation of pRB and hinders cell cycle progression to S phase. We propose that the Tlk acts as a key negative regulator in the pathway that drives nuclear import of cyclin D1, thus contributing to prevent pRB inactivation and to maintain cellular quiescence.

  3. Cyclin D1 in the Liver: Role of Noncanonical Signaling in Liver Steatosis and Hormone Regulation

    Science.gov (United States)

    Núñez, Kelley G.; Gonzalez-Rosario, Janet; Thevenot, Paul T.; Cohen, Ari J.

    2017-01-01

    Background: Cyclin D1 is an important protein for cell cycle progression; however, functions independent of the cell cycle have been described in the liver. Cyclin D1 is also involved in DNA repair, is overexpressed in many cancers, and functions as a proto-oncogene. The lesser-known roles of Cyclin D1, specifically in hepatocytes, impact liver steatosis and hormone regulation in the liver. Methods: A comprehensive search of PubMed was conducted using the keywords Cyclin D1, steatosis, lipogenesis, and liver transplantation. In this article, we review the results from this literature search, with a focus on the role of Cyclin D1 in hepatic lipogenesis and gluconeogenesis, as well as the impact and function of this protein in hepatic steatosis. Results: Cyclin D1 represses carbohydrate response element binding protein (ChREBP) and results in a decrease in transcription of fatty acid synthase (FAS) and acetyl-coenzyme A carboxylase (ACC). Cyclin D1 also inhibits peroxisome proliferator-activated receptor gamma (PPARγ) which is involved in hepatic lipogenesis. Cyclin D1 inhibits both hepatocyte nuclear factor 4 alpha (HNF4α) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) and represses transcription of lipogenic genes FAS and liver-type pyruvate kinase (Pklr), along with the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Conclusion: Cyclin D1 represses multiple proteins involved in both lipogenesis and gluconeogenesis in the liver. Targeting Cyclin D1 to decrease hepatic steatosis in patients with nonalcoholic fatty liver disease or alcoholic fatty liver disease may help improve patient health and the quality of the donor liver pool.

  4. Epstein-Barr virus-encoded latent membrane protein 1 modulates cyclin D1 by c-Jun/Jun B heterodimers

    Institute of Scientific and Technical Information of China (English)

    SONG; Xin; TAO; Yongguang; ZENG; Liang; YANG; Jing; TANG; F

    2005-01-01

    In our recent studies, we found that LMP1 encoded by Epstein-Barr virus could accelerate the formation of active c-Jun/Jun B heterodimer. We studied the regulation of cyclinD1 by c-Jun/Jun B heterodimers by laser scanning confocal influorescence microscopy, Western blot, luciferase activity assay, super-EMSA and flow cytometry in the Tet-on-LMP1 HNE2 cell line, in which LMP1 expression was regulated by Tet-on system. c-Jun/Jun B heterodimers induced by LMP1 could up regulate cyclin D1 promoter activity and expression. Overexpression of cyclinD1 accelerated the progression of cell cycle.

  5. Berberine Suppresses Cyclin D1 Expression through Proteasomal Degradation in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2016-11-01

    Full Text Available The aim of this study is to explore the underlying mechanism on berberine-induced Cyclin D1 degradation in human hepatic carcinoma. We observed that berberine could suppress both in vitro and in vivo expression of Cyclin D1 in hepatoma cells. Berberine exhibits dose- and time-dependent inhibition on Cyclin D1 expression in human hepatoma cell HepG2. Berberine increases the phosphorylation of Cyclin D1 at Thr286 site and potentiates Cyclin D1 nuclear export to cytoplasm for proteasomal degradation. In addition, berberine recruits the Skp, Cullin, F-box containing complex-β-Transducin Repeat Containing Protein (SCFβ-TrCP complex to facilitate Cyclin D1 ubiquitin-proteasome dependent proteolysis. Knockdown of β-TrCP blocks Cyclin D1 turnover induced by berberine; blocking the protein degradation induced by berberine in HepG2 cells increases tumor cell resistance to berberine. Our results shed light on berberine′s potential as an anti-tumor agent for clinical cancer therapy.

  6. Expression of p16 protein and cyclinD1 protein in transitional cell carcinoma(TCC) of urinary bladder and their implications%p16和cyclinD1蛋白在膀胱移行细胞癌中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    张孝斌; 程帆; 张杰; 陈立新

    2002-01-01

    目的探讨p16、cyclinD1蛋白表达与膀胱移行细胞癌(TCC)临床分期、病理分级及预后的关系.方法采用免疫组化S-P法检测59例膀胱TCC中p16、cyclinD1蛋白的表达.结果膀胱TCC组织中p16蛋白阳性表达率为42.4%,随临床分期、病理分级增高而下降,cyclinD1蛋白阳性表达率为61%,随临床分期增高而上升;p16、cyclinD1蛋白表达间呈负相关;p16阳性组和cyclinD1阴性组复发率明显低于p16阴性组和cyclinD1阳性组;p16阳性组和cyclinD1阴性组3年存活率明显高于p16阴性组和cyclinD1阳性组.结论p16、cyclinD1蛋白检测可作为膀胱TCC辅助诊断及预后判断的参考指标.

  7. Histone deacetylase inhibitor, Trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Charles Coombes R

    2006-02-01

    Full Text Available Abstract Background Cyclin D1 is an important regulator of G1-S phase cell cycle transition and has been shown to be important for breast cancer development. GSK3β phosphorylates cyclin D1 on Thr-286, resulting in enhanced ubiquitylation, nuclear export and degradation of the cyclin in the cytoplasm. Recent findings suggest that the development of small-molecule cyclin D1 ablative agents is of clinical relevance. We have previously shown that the histone deacetylase inhibitor trichostatin A (TSA induces the rapid ubiquitin-dependent degradation of cyclin D1 in MCF-7 breast cancer cells prior to repression of cyclin D1 gene (CCND1 transcription. TSA treatment also resulted in accumulation of polyubiquitylated GFP-cyclin D1 species and reduced levels of the recombinant protein within the nucleus. Results Here we provide further evidence for TSA-induced ubiquitin-dependent degradation of cyclin D1 and demonstrate that GSK3β-mediated nuclear export facilitates this activity. Our observations suggest that TSA treatment results in enhanced cyclin D1 degradation via the GSK3β/CRM1-dependent nuclear export/26S proteasomal degradation pathway in MCF-7 cells. Conclusion We have demonstrated that rapid TSA-induced cyclin D1 degradation in MCF-7 cells requires GSK3β-mediated Thr-286 phosphorylation and the ubiquitin-dependent 26S proteasome pathway. Drug induced cyclin D1 repression contributes to the inhibition of breast cancer cell proliferation and can sensitize cells to CDK and Akt inhibitors. In addition, anti-cyclin D1 therapy may be highly specific for treating human breast cancer. The development of potent and effective cyclin D1 ablative agents is therefore of clinical relevance. Our findings suggest that HDAC inhibitors may have therapeutic potential as small-molecule cyclin D1 ablative agents.

  8. A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation.

    Directory of Open Access Journals (Sweden)

    Hiroshi Okabe

    Full Text Available Cyclin D1 regulates G1 progression. Its transcriptional regulation is well understood. However, the mechanism underlying cyclin D1 ubiquitination and its subsequent degradation is not yet clear. We report that cyclin D1 undergoes increased degradation in the cytoplasm during S phase in a variety of cancer cells. This is mediated by phosphorylation at Thr286 through the activity of the Ras/Raf/MEK/ERK cascade and the F-box protein FBXW8, which is an E3 ligase. The majority of FBXW8 is expressed in the cytoplasm during G1 and S phase. In contrast, cyclin D1 accumulates in the nucleus during G1 phase and exits into the cytoplasm in S phase. Increased cyclin D1 degradation is linked to association with FBXW8 in the cytoplasm, and enhanced phosphorylation of cyclin D1 through sustained ERK1/2 signaling. Depletion of FBXW8 caused a significant accumulation of cyclin D1, as well as sequestration of CDK1 in the cytoplasm. This resulted in a severe reduction of cell proliferation. These effects could be rescued by constitutive nuclear expression of cyclin D1-T286A. Thus, FBXW8 plays an essential role in cancer cell proliferation through proteolysis of cyclin D1. It may present new opportunities to develop therapies targeting destruction of cyclin D1 or its regulator E3 ligase selectively.

  9. Expression and signification of cell cycle regulation protein Cyclin D1-CDK4-p21 in scar cancer%细胞周期调控系统相关因子 Cyclin D1-CDK4-p21在瘢痕癌中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    林宇静; 郭瑞珍; 王海青

    2014-01-01

    Objective Dysfunction of cell cycle regulation is one of the key factors for cellular carcinogenesis .This paper aimed to study the expression and significance of cell cycle regulation protein Cyclin D 1-CDK4-p21 in scar cancer . Methods The expressions of Cyclin D1, CDK4 and p21 protains were detected in scar cancer group , pathological scar group and normal skin group respectively by using immunohistochemical staining (SP).The mRNA expression levels of Cyclin D1, CDK4 and p21 were detected by the use of nucleic acid-mediated in-situ hybridization .Correlation analysis was made on the indexes , and the average optical density and positive area were analyzed using image analysis . Results The expressions of Cyclin D1, CDK4 and p21 protains and the mRNA ex-pression levels of cyclin D1, CDK4 and p21 were high in scar cancer group, low in pathological scar group , and negative in normal skin group.The mean optical density and positive area in scar cancer group were significantly different from pathological scar group and normal skin group (P0.05).In terms of correlation analysis , the expressions of Cyclin D 1 and CDK4 as well as p21 and CDK4 in scar cancer tissue were both in posi-tive correlations. Conclusion The occurrence of scar cancer is related to the abnormal expression of Cyclin D 1 and CDK4.The complex formed by Cyclin D1 and CDK4 may promote the G1/S transition, proliferation and tumorigenesis of scar cancer .In scar canc-er, the inhibition of Cyclin D1-CDK4 complex might be caused by other members of CKI family or even inbibitors of other families apart from CDK family.%目的:细胞周期调控机制失调是细胞增生肿瘤发生的重要因素。文中探讨细胞周期调控系统相关因子Cyclin D1-CDK4-p21在瘢痕癌中的表达及意义。方法选取遵义医学院病理教研室和中山大学附属第五医院病理科2005-2011年石蜡包埋标本,分为瘢痕癌组、病理性瘢痕组和正常皮肤组。应

  10. Expression of Cyclin D1 and P16 in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Dey, Biswajit; Raphael, Vandana; Khonglah, Yookarin; GiriLynrah, Kyrshanlang

    2015-10-01

    BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the lethal cancers with a high incidence rate in Asia. Many genes including cyclin D1 and p16 play important role in its carcinogenesis. We aimed to analyze the expressions of cyclin D1 and p16 with the various clinicopathological characteristics of ESCC. METHODS We examined 30 biopsy samples of ESCC for cyclin D1 and p16 protein expressions using immunohistochemistry. Immunointensity was classified as no immunostaining (-), weakly immunostaining (+), weak immunostaining (++) and strongly positive immunostaining (+++). RESULTS Out of the 30 cases, positive expression of cyclin D1 was detected in 26 cases (86.7%). The percentage of tumors with invasion to the adventitia (88.2%), lymph node metastasis (87.5%), and tumors which were poorly differentiated (92.9%) were higher in cyclin D1 positive tumors than in the cyclin D1 negative tumors. However no significant association was found between cyclin D1 expression and the different clinicopathological parameters.There were 22 cases of ESCC (73.3 %) which showed negativity for p16. The percentage of tumors with invasion to the adventitia (82.4%) and poorly differentiated tumors (92.9%) were higher in the p16 negative tumors than in the p16 positive tumors. There was significant association between the histological grade and p16 expression (p=0.012). However, there were no significant association with regard to site, size and lymph node status of the tumors and p16 expression. CONCLUSION The study shows that alterations of cyclin D1 and p16 play an important role in ESCC. Loss of p16 expression was associated with poor differentiation.

  11. The Down syndrome-related protein kinase DYRK1A phosphorylates p27(Kip1) and Cyclin D1 and induces cell cycle exit and neuronal differentiation.

    Science.gov (United States)

    Soppa, Ulf; Schumacher, Julian; Florencio Ortiz, Victoria; Pasqualon, Tobias; Tejedor, Francisco J; Becker, Walter

    2014-01-01

    A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G₁ phase. Sustained overexpression of DYRK1A induced G₀ cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27(Kip1) on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27(Kip1) Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome.

  12. Silencing of the Menkes copper-transporting ATPase (Atp7a) gene increases cyclin D1 protein expression and impairs proliferation of rat intestinal epithelial (IEC-6) cells.

    Science.gov (United States)

    Gulec, Sukru; Collins, James F

    2014-10-01

    The Menkes copper-transporting ATPase (Atp7a) has dual roles in mammalian enterocytes: pumping copper into the trans-Golgi network (to support cuproenzyme synthesis) and across the basolateral membrane (to deliver dietary copper to the blood). Atp7a is strongly induced in the rodent duodenum during iron deprivation, suggesting that copper influences iron homeostasis. To investigate this possibility, Atp7a was silenced in rat intestinal epithelial (IEC-6) cells. Irrespective of its influence on iron homeostasis, an unexpected observation was made in the Atp7a knockdown (KD) cells: the cells grew slower (∼40% fewer cells at 96h) and were larger than negative-control shRNA-transfected cells. Lack of Atp7a activity thus perturbed cell cycle control. To elucidate a possible molecular mechanism, expression of two important cell cycle control proteins was assessed. Cyclin D1 (CD1) protein expression increased in Atp7a KD cells whereas proliferating-cell nuclear antigen (PCNA) expression was unaltered. Increased CD1 expression is consistent with impaired cell cycle progression. Expression of additional cell proliferation marker genes (p21 and Ki67) was also investigated; p21 expression increased, whereas Ki67 decreased, both consistent with diminished cell growth. Further experiments were designed to determine whether increased cellular copper content was the trigger for the altered growth phenotype of the Atp7a KD cells. Copper loading, however, did not influence the expression patterns of CD1, p21 or Ki67. Overall, these findings demonstrate that Atp7a is required for normal proliferation of IEC-6 cells. How Atp7a influences cell growth is unclear, but the underlying mechanism could relate to its roles in intracellular copper distribution or cuproenzyme synthesis. Copyright © 2014. Published by Elsevier GmbH.

  13. EXPRESSION AND SIGNIFICANCE OF CYCLIN D1 IN HUMAN HEPATOCELLULAR CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    杨连君; 司晓辉

    2001-01-01

    Objective: To elucidate the expression and significance of cell cycle protein cyclin D1 in human hepatocellular carcinoma (HCC). Methods: The expression of cyclin D1 protein in 29 cases of HCC tissues was detected by immunohistochemical ABC method, and the relationship between its positive rate and pathological grades of HCC tissues was analyzed. Results: The positive rate of cyclin D1 in HCC tissues was 58.6%(17 in 29 cases), whereas only 18.2% (2 cases of 11 cases) in the non-tumor liver tissues immediately adjacent to HCC tissues (LAH). There was significant difference between grade II and LAH tissues (P<0.05), and between grade I and grade III on the positive rate of cyclin D1 (P<0.05), respectively. Conclusion: Cyclin D1 may be regarded as an oncogenic marker during the genesis and development of HCC, and its role in the transforming process from G1 phase to S phase of HCC cells needs further studies.

  14. 哈蟆油对雌性衰老大鼠子宫组织p16和cyclinD1蛋白表达的影响%Effect of Oviductus Ranae on expression of uterus tissue p16 and cyclinD1 protein in aged female rats

    Institute of Scientific and Technical Information of China (English)

    姚晖; 康秀兰; 彭荣芳; 黄志恩; 谢伟贤; 梁磊

    2013-01-01

    . Meanwhile, OR could enhance expression of cyclinDl in u-terus of female aged rats. The possible anti-aging effects of OR is producing regulation of pl6, cyclinDl signaling pathways to promote expression of the proliferation regulatory protein and the signaling pathways, which plays an important role in delaying aging.%目的 探讨哈蟆油(OR)对D-半乳糖所致雌性衰老大鼠子宫组织细胞增殖负性调控因子p16和正性调控因子cyclinD1蛋白表达的影响,进一步探讨OR延缓雌性大鼠生殖器官衰老机制.方法 SPF级SD雌性青年大鼠40只随机分为模型组(D-gal组)、维生素E(VE组)、哈蟆油高剂量组(OR-H组)、中剂量组(OR-M)、低剂量组(OR-L组),每组8只,D-半乳糖颈背部皮下注射42 d,建立亚急性衰老模型.另取雌性青年大鼠8只,同样部位每日注射生理盐水,作为空白组.第15天开始灌胃给药,给药时间28 d.给药结束后,免疫组化法检测衰老大鼠子宫组织p16和免疫印迹法检测cyclinD1蛋白的表达情况.结果 雌性衰老大鼠子宫组织免疫组化结果表明,子宫组织p16阳性染色多为胞浆着色,见于子宫内膜、上皮细胞胞浆、子宫间质腺体腺上皮细胞胞浆,外膜上皮也有表达,弥漫性、灶性分布均有.D-gal组p16阳性细胞积分与空白组比较升高(P<0.01).OR各剂量组与D-gal组相比,p16阳性细胞积分降低,差异有显著性(P均<0.01).免疫印迹法结果表明D-gal组子宫组织cyclinD1蛋白表达与空白组比较降低,差异有显著性(p<0.01).OR-H、M、L组cyclin D1蛋白表达与D-gal组比较,表达均升高(P值均<0.01),OR-H组尤为明显.结论 应用OR可以减缓衰老子宫组织结构的损伤,改善衰老子宫萎缩和衰老程度,OR可降低雌性衰老大鼠子宫组织细胞增殖负性调控因子p16蛋白的高表达,同时显著提高细胞增殖正性调控因子cyclinD1蛋白的表达,促进衰老雌性大鼠子宫细胞增殖.哈蟆油延缓雌性生殖器官衰老

  15. EXPRESSION OF P16 AND CYCLIN D1 IN THE COURSE OF CARCINOGENESIS OF THE STOMACH

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-long; XU Feng; LI Yan-jie

    1999-01-01

    Objective: To determine p16 and cyclin D1 expression in the specimen of gastric carcinoma, atypic hyperplasia, atrophic gastritis, superficial gastritis and normal gastric mucosa. Methods: Using immunohistochemical method (ABC), the samples of 58 adenocarcinomas, 22 atypic hyperplasias, 28 atrophic gastritis,27 superficial gastritis and 15 gastric epitheliums were analyzed. Results: Positive immunostaining rate for p16 protein was the highest in normal gastric mucosa and decreased with the lesions progressing from superficial gastritis to atrophic gastritis to atypital hyperplasia and to adenocarcinoma (85%, 78.6%, 31.8%,48.3% respectively); Positive immunostaining of cyclin D1 can observed in atrophic gastritis. With the lesions progressing from atrophic gastritis to atypical hyperplasia to adenocarcinoma, its expression rate increased (17.9%, 36.4%, 53.4% respectively), and there was a significant difference between adenocarcinoma and atrophic gastritis group (P<0.05). An interesting observation was that inverse expression between p16and cyclin D1, was shown in most of gastric cancer detected. Conclusion: It is indicated that p16 and cyclin D1 play an important role in the gastric carcinogenesis, the inverse expression between p16 and cyclin D1 suggested that there is a suppression trend in them.

  16. THE OVEREXPRESSION AND SIGNIFICANCE OF CYCLIN D1 AND P53 IN CERVICAL SQUAMOUS CELL CARCINOMAS

    Institute of Scientific and Technical Information of China (English)

    王晓丽; 王梅; 李明众; 宋天保; 任娟; 尚菊战

    2002-01-01

    Objective To investigate the significance of ov erexpresson of cyclin D1 and P53 protein in cervical squamous cell carcinomas.Methods Fifty cases of in vasive cervical squamous cell carcinomas and 10 cases of normal cervical squamou s epithelia were investigated with immunihistochemical technique. Results The overexpression of cyclin D1 and P53 in invasive cer vical carcinomas was 70% and 50 %, respectively. There was no overexpression of them in the control group. The o verexpression of cyclin D1 in grade Ⅱ and Ⅲ was much higher than that in grad eⅠ(P<0.05). The overexpresson of cyclin D1 in stage Ⅲ of cervical carcinom a was significantly higher than that in stage Ⅱ (P<0.05). The overexpress ion of P53 in grade Ⅱ and grade Ⅲ of cervical carcinoma was remarkably higher than that in grade Ⅰ (P<0.05).Conclusion The action point of both cyclin D1 and P53 may be at G1/S transition. The overexpression of them was associated with development and progression of cervical carcinoma probably in different mechanisms and differen t pathways.

  17. Cyclin D1 in ASM Cells from Asthmatics Is Insensitive to Corticosteroid Inhibition.

    Science.gov (United States)

    Allen, Jodi C; Seidel, Petra; Schlosser, Tobias; Ramsay, Emma E; Ge, Qi; Ammit, Alaina J

    2012-01-01

    Hyperplasia of airway smooth muscle (ASM) is a feature of the remodelled airway in asthmatics. We examined the antiproliferative effectiveness of the corticosteroid dexamethasone on expression of the key regulator of G(1) cell cycle progression-cyclin D1-in ASM cells from nonasthmatics and asthmatics stimulated with the mitogen platelet-derived growth factor BB. While cyclin D1 mRNA and protein expression were repressed in cells from nonasthmatics in contrast, cyclin D1 expression in asthmatics was resistant to inhibition by dexamethasone. This was independent of a repressive effect on glucocorticoid receptor translocation. Our results corroborate evidence demonstrating that corticosteroids inhibit mitogen-induced proliferation only in ASM cells from subjects without asthma and suggest that there are corticosteroid-insensitive proliferative pathways in asthmatics.

  18. Cyclin D1 repression of peroxisome proliferator-activated receptor gamma expression and transactivation.

    Science.gov (United States)

    Wang, Chenguang; Pattabiraman, Nagarajan; Zhou, Jian Nian; Fu, Maofu; Sakamaki, Toshiyuki; Albanese, Chris; Li, Zhiping; Wu, Kongming; Hulit, James; Neumeister, Peter; Novikoff, Phyllis M; Brownlee, Michael; Scherer, Philipp E; Jones, Joan G; Whitney, Kathleen D; Donehower, Lawrence A; Harris, Emily L; Rohan, Thomas; Johns, David C; Pestell, Richard G

    2003-09-01

    The cyclin D1 gene is overexpressed in human breast cancers and is required for oncogene-induced tumorigenesis. Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor selectively activated by ligands of the thiazolidinedione class. PPAR gamma induces hepatic steatosis, and liganded PPAR gamma promotes adipocyte differentiation. Herein, cyclin D1 inhibited ligand-induced PPAR gamma function, transactivation, expression, and promoter activity. PPAR gamma transactivation induced by the ligand BRL49653 was inhibited by cyclin D1 through a pRB- and cdk-independent mechanism, requiring a region predicted to form an helix-loop-helix (HLH) structure. The cyclin D1 HLH region was also required for repression of the PPAR gamma ligand-binding domain linked to a heterologous DNA binding domain. Adipocyte differentiation by PPAR gamma-specific ligands (BRL49653, troglitazone) was enhanced in cyclin D1(-/-) fibroblasts and reversed by retroviral expression of cyclin D1. Homozygous deletion of the cyclin D1 gene, enhanced expression by PPAR gamma ligands of PPAR gamma and PPAR gamma-responsive genes, and cyclin D1(-/-) mice exhibit hepatic steatosis. Finally, reduction of cyclin D1 abundance in vivo using ponasterone-inducible cyclin D1 antisense transgenic mice, increased expression of PPAR gamma in vivo. The inhibition of PPAR gamma function by cyclin D1 is a new mechanism of signal transduction cross talk between PPAR gamma ligands and mitogenic signals that induce cyclin D1.

  19. CyclinD1 and Survivin expression in parotid gland tumors%CyclinD1和Survivin在腮腺肿瘤中的表达

    Institute of Scientific and Technical Information of China (English)

    李云杉

    2014-01-01

    ObjectiveTo explore the cell cycle protein (CyclinD1) and apoptosis inhibiting factor (Survivin) expression in parotid gland tumors in the relationship.MethodsSelect from October 19, 2012 to 2012 on July 19 days the hospital for treatment of 54 patients with parotid gland tumor pathological section. ResultsCyclinD1 in the normal group, benign tumor and malignant tumor group, the positive rate of 5.0%, 25.0% and 70.6%, respectively, expression increased obviously, the difference was statistically significant (P<0.05), Survivin in the normal group, benign tumor and malignant tumor group were 0.0%, 30.0% and 67.6%, respectively, to express obviously increased, the difference was statistically significant (P<0.05). ConclusionCyclinD1 and Survivin in parotid gland tumor development played a synergy, can be used as important reference for diagnosis and treatment of parotid gland.%目的:探究细胞周期蛋白(CyclinD1)和凋亡抑制因子(Survivin)在腮腺肿瘤中的表达关系。方法选取自2012年10月19日~2014年7月19日来我院进行治疗的54例腮腺肿瘤患者的病理切片。结果 CyclinD1在常人组、良性肿瘤组和恶性肿瘤组的阳性率分别为5.0%、25.0%和70.6%,表现明显增高,差异有统计学意义(P<0.05),Survivin在常人组、良性肿瘤组和恶性肿瘤组的阳性率分别为0.0%、30.0%和67.6%,表达明显增高,差异有统计学意义(P<0.05)。结论 CyclinD1与Survivin在腮腺肿瘤的发展中起到了协同作用,可作为腮腺诊治的重要参考依据。

  20. Clinicopathological significance of p16, cyclin D1, Rb and MIB-1 levels in skull base chordoma and chondrosarcoma

    Institute of Scientific and Technical Information of China (English)

    Jun-qi Liu; Qiu-hang Zhang; Zhen-lin Wang

    2015-01-01

    Objective: To investigate the expression of p16, cyclin D1, retinoblastoma tumor suppressor protein (Rb) and MIB-1 in skull base chordoma and chondrosarcoma tissues, and to determine the clinicopathological significance of the above indexes in these diseases.Methods: A total of 100 skull base chordoma, 30 chondrosarcoma, and 20 normal cartilage tissue samples were analyzed by immunohistochemistry.The expression levels of p16, cyclinD1,Rb and MIB-1 proteins were assessed for potential correlation with the clinicopathological features.Results: As compared to normal cartilage specimen (control), there was decreased expression of p16, and increased expression of cyclin D1, Rb and MIB-1 proteins, in both skull base chordoma and chondrosarcoma specimens.MIB-1 LI levels were significantly increased in skull base chordoma specimens with negative expression of p16, and positive expression of cyclin D1 and Rb (P < 0.05).Significantly elevated MIB-1 LI was also detected in skull base chondrosarcoma tissues, while there was negative expression of p16, cyclin D1 and Rb (P < 0.05).In skull base chordoma, p16 negatively correlated with cyclin D1 and Rb, while cyclin D1 positively correlated with Rb.Additionally, p16, cyclin D1, Rb, or MIB-1 expression showed no correlation with age, gender, or pathological classification of patients with skull base chordoma (P > 0.05).However, p16 and MIB-1 levels correlated with the intradural invasion, and expression of p16, Rb and MIB-1 correlated with the number of tumor foci (P < 0.05).Further, the expression of p16 and MIB-1 appeared to correlate with the prognosis of patients with skull base chordoma.Conclusions: The abnormal expression of p16, cyclin D1 and Rb proteins might be associated with the tumorigenesis of skull base chordoma and chondrosarcoma.

  1. Berberine Suppresses Cyclin D1 Expression through Proteasomal Degradation in Human Hepatoma Cells

    OpenAIRE

    Ning Wang; Xuanbin Wang; Hor-Yue Tan; Sha Li; Chi Man Tsang; Sai-Wah Tsao; Yibin Feng

    2016-01-01

    The aim of this study is to explore the underlying mechanism on berberine-induced Cyclin D1 degradation in human hepatic carcinoma. We observed that berberine could suppress both in vitro and in vivo expression of Cyclin D1 in hepatoma cells. Berberine exhibits dose- and time-dependent inhibition on Cyclin D1 expression in human hepatoma cell HepG2. Berberine increases the phosphorylation of Cyclin D1 at Thr286 site and potentiates Cyclin D1 nuclear export to cytoplasm for proteasomal degrada...

  2. Alternative splicing variants of human Fbx4 disturb cyclin D1 proteolysis in human cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Xiufeng; Zhang, Ting; Wang, Jie; Li, Meng; Zhang, Xiaolei; Tu, Jing [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Sun, Shiqin [College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319 (China); Chen, Xiangmei, E-mail: xm_chen6176@bjmu.edu.cn [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Lu, Fengmin [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China)

    2014-04-25

    Highlights: • The expression of Fbx4 was significantly lower in HCC tissues. • Novel splicing variants of Fbx4 were identified. • These novel variants are much more abundant in human cancer tissues and cells. • The novel Fbx4 isoforms could promote cell proliferation and migration in vitro. • These isoforms showed less capability for cyclin D1 binding and degradation. - Abstract: Fbx4 is a specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination and subsequent degradation of cyclin D1 and Trx1. Two isoforms of human Fbx4 protein, the full length Fbx4α and the C-terminal truncated Fbx4β have been identified, but their functions remain elusive. In this study, we demonstrated that the mRNA level of Fbx4 was significantly lower in hepatocellular carcinoma tissues than that in the corresponding non-tumor tissues. More importantly, we identified three novel splicing variants of Fbx4: Fbx4γ (missing 168–245nt of exon1), Fbx4δ (missing exon6) and a N-terminal reading frame shift variant (missing exon2). Using cloning sequencing and RT-PCR, we demonstrated these novel splice variants are much more abundant in human cancer tissues and cell lines than that in normal tissues. When expressed in Sk-Hep1 and NIH3T3 cell lines, Fbx4β, Fbx4γ and Fbx4δ could promote cell proliferation and migration in vitro. Concordantly, these isoforms could disrupt cyclin D1 degradation and therefore increase cyclin D1 expression. Moreover, unlike the full-length isoform Fbx4α that mainly exists in cytoplasm, Fbx4β, Fbx4γ, and Fbx4δ locate in both cytoplasm and nucleus. Since cyclin D1 degradation takes place in cytoplasm, the nuclear distribution of these Fbx4 isoforms may not be involved in the down-regulation of cytoplasmic cyclin D1. These results define the impact of alternative splicing on Fbx4 function, and suggest that the attenuated cyclin D1 degradation by these novel Fbx4 isoforms provides a new insight for aberrant

  3. THE OVEREXPRESSION AND SIGNIFICANCE OF CYCLIN D1 AND P53 IN CERVICAL SQUAMOUS CELL CARCINOMAS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To investigate the significance of overexpresson of eyclin D1 and P53 protein in cervical squamous cell carcinomas.Methods:Fifty cases of invasive cervical squamous cell carcinomas and 10 Cases of normal cervical squamous epithelia were investigated with immunihistochemical technique.Results:The overexpressioin of cyclin D1 and P53 in invasive cervical carcinomas was 70% and 50%,respectively,There was no overexpression of them in the control group.The overexpression of cyclin D1 in grade Ⅱand Ⅲ was much higher than that in grade I(P<0.05),The overexpresson of cyclin D1 in stage Ⅲof cervical carcinoma was significantly higher than that in stage Ⅱ(P<0.05).The overexpression of P53 in grade -Ⅱand gradeⅢ of cervical carcinoma was remarkably higher than that in grade I(P<0.05),Conclusion:The action point of both cyclin D1 and P53 may be at G1/S transtition.The overexpression of them was associated with development and progression of cervical carcinoma probably in different mechanisms and different pathways.

  4. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype

    Science.gov (United States)

    Mozos, Ana; Royo, Cristina; Hartmann, Elena; De Jong, Daphne; Baró, Cristina; Valera, Alexandra; Fu, Kai; Weisenburger, Dennis D.; Delabie, Jan; Chuang, Shih-Sung; Jaffe, Elaine S.; Ruiz-Marcellan, Carmen; Dave, Sandeep; Rimsza, Lisa; Braziel, Rita; Gascoyne, Randy D.; Solé, Francisco; López-Guillermo, Armando; Colomer, Dolors; Staudt, Louis M.; Rosenwald, Andreas; Ott, German; Jares, Pedro; Campo, Elias

    2009-01-01

    Background Cyclin D1-negative mantle cell lymphoma is difficult to distinguish from other small B-cell lymphomas. The clinical and pathological characteristics of patients with this form of lymphoma have not been well defined. Overexpression of the transcription factor SOX11 has been observed in conventional mantle cell lymphoma. The aim of this study was to determine whether this gene is expressed in cyclin D1-negative mantle cell lymphoma and whether its detection may be useful to identify these tumors. Design and Methods The microarray database of 238 mature B-cell neoplasms was re-examined. SOX11 protein expression was investigated immunohistochemically in 12 cases of cyclin D1-negative mantle cell lymphoma, 54 cases of conventional mantle cell lymphoma, and 209 additional lymphoid neoplasms. Results SOX11 mRNA was highly expressed in conventional and cyclin D1-negative mantle cell lymphoma and in 33% of the cases of Burkitt’s lymphoma but not in any other mature lymphoid neoplasm. SOX11 nuclear protein was detected in 50 cases (93%) of conventional mantle cell lymphoma and also in the 12 cyclin D1-negative cases of mantle cell lymphoma, the six cases of lymphoblastic lymphomas, in two of eight cases of Burkitt’s lymphoma, and in two of three T-prolymphocytic leukemias but was negative in the remaining lymphoid neoplasms. Cyclin D2 and D3 mRNA levels were significantly higher in cyclin D1-negative mantle cell lymphoma than in conventional mantle cell lymphoma but the protein expression was not discriminative. The clinico-pathological features and outcomes of the patients with cyclin D1-negative mantle cell lymphoma identified by SOX11 expression were similar to those of patients with conventional mantle cell lymphoma. Conclusions SOX11 mRNA and nuclear protein expression is a highly specific marker for both cyclin D1-positive and negative mantle cell lymphoma. PMID:19880778

  5. Placental Estrogen Suppresses Cyclin D1 Expression in the Nonhuman Primate Fetal Adrenal Cortex*

    Science.gov (United States)

    Dumitrescu, Adina; Aberdeen, Graham W.; Pepe, Gerald J.

    2014-01-01

    We have previously shown that estrogen selectively suppresses growth of the fetal zone of the baboon fetal adrenal cortex, which produces the C19-steroid precursors, eg, dehydroepiandrosterone sulfate, which are aromatized to estrogen within the placenta. In the present study, we determined whether fetal adrenal expression of cell cycle regulators are altered by estrogen and thus provide a mechanism by which estrogen regulates fetal adrenocortical development. Cyclin D1 mRNA levels in the whole fetal adrenal were increased 50% (P < .05), and the number of cells in the fetal adrenal definitive zone expressing cyclin D1 protein was increased 2.5-fold (P < .05), whereas the total number of cells in the fetal zone and fetal serum dehydroepiandrosterone sulfate levels were elevated 2-fold (P < .05) near term in baboons in which fetal serum estradiol levels were decreased by 95% (P < .05) after maternal administration of the aromatase inhibitor letrozole and restored to normal by concomitant administration of letrozole plus estradiol throughout second half of gestation. However, fetal adrenocortical expression of cyclin D2, the cyclin-dependent kinase (Cdk)-2, Cdk4, and Cdk6, and Cdk regulatory proteins p27Kip1 and p57Kip2 were not changed by letrozole or letrozole plus estradiol administration. We suggest that estrogen controls the growth of the fetal zone of the fetal adrenal by down-regulating cyclin D1 expression and thus proliferation of progenitor cells within the definitive zone that migrate to the fetal zone. We propose that estrogen restrains growth and function of the fetal zone via cyclin D1 to maintain estrogen levels in a physiological range during primate pregnancy. PMID:25247468

  6. Placental estrogen suppresses cyclin D1 expression in the nonhuman primate fetal adrenal cortex.

    Science.gov (United States)

    Dumitrescu, Adina; Aberdeen, Graham W; Pepe, Gerald J; Albrecht, Eugene D

    2014-12-01

    We have previously shown that estrogen selectively suppresses growth of the fetal zone of the baboon fetal adrenal cortex, which produces the C19-steroid precursors, eg, dehydroepiandrosterone sulfate, which are aromatized to estrogen within the placenta. In the present study, we determined whether fetal adrenal expression of cell cycle regulators are altered by estrogen and thus provide a mechanism by which estrogen regulates fetal adrenocortical development. Cyclin D1 mRNA levels in the whole fetal adrenal were increased 50% (P < .05), and the number of cells in the fetal adrenal definitive zone expressing cyclin D1 protein was increased 2.5-fold (P < .05), whereas the total number of cells in the fetal zone and fetal serum dehydroepiandrosterone sulfate levels were elevated 2-fold (P < .05) near term in baboons in which fetal serum estradiol levels were decreased by 95% (P < .05) after maternal administration of the aromatase inhibitor letrozole and restored to normal by concomitant administration of letrozole plus estradiol throughout second half of gestation. However, fetal adrenocortical expression of cyclin D2, the cyclin-dependent kinase (Cdk)-2, Cdk4, and Cdk6, and Cdk regulatory proteins p27(Kip1) and p57(Kip2) were not changed by letrozole or letrozole plus estradiol administration. We suggest that estrogen controls the growth of the fetal zone of the fetal adrenal by down-regulating cyclin D1 expression and thus proliferation of progenitor cells within the definitive zone that migrate to the fetal zone. We propose that estrogen restrains growth and function of the fetal zone via cyclin D1 to maintain estrogen levels in a physiological range during primate pregnancy.

  7. Resibufogenin Induces G1-Phase Arrest through the Proteasomal Degradation of Cyclin D1 in Human Malignant Tumor Cells.

    Directory of Open Access Journals (Sweden)

    Masami Ichikawa

    Full Text Available Huachansu, a traditional Chinese medicine prepared from the dried toad skin, has been used in clinical studies for various cancers in China. Resibufogenin is a component of huachansu and classified as bufadienolides. Resibufogenin has been shown to exhibit the anti-proliferative effect against cancer cells. However, the molecular mechanism of resibufogenin remains unknown. Here we report that resibufogenin induces G1-phase arrest with hypophosphorylation of retinoblastoma (RB protein and down-regulation of cyclin D1 expression in human colon cancer HT-29 cells. Since the down-regulation of cyclin D1 was completely blocked by a proteasome inhibitor MG132, the suppression of cyclin D1 expression by resibufogenin was considered to be in a proteasome-dependent manner. It is known that glycogen synthase kinase-3β (GSK-3β induces the proteasomal degradation of cyclin D1. The addition of GSK-3β inhibitor SB216763 inhibited the reduction of cyclin D1 caused by resibufogenin. These effects on cyclin D1 by resibufogenin were also observed in human lung cancer A549 cells. These findings suggest that the anti-proliferative effect of resibufogenin may be attributed to the degradation of cyclin D1 caused by the activation of GSK-3β.

  8. EXPRESSION OF CYCLIN D1 AND CDK4 IN OSTEOSARCOMA OF THE JAWS

    Institute of Scientific and Technical Information of China (English)

    司晓辉; 刘正

    2001-01-01

    Objective: To analyze cyclin D1 and cyclin- dependent kinase 4 (CDK4) expression and their significance in osteosarcoma of the jaws. Methods: Immunohistochemical ABC method was used to detect the expression of cyclin D1 and CDK4 in 20 cases of osteosarcoma and 8 cases of osteochondroma of the jaws. Results: The positive rates of cyclin D1 and CDK4 were 65% (13/20) and 60% (12/20), respectively. There was significant positive correlation between cyclin D1 and CDK4 expression (gs=0.48, P<0.05). Both cyclin D1 and CDK4 were present in 1/8 (12.5%) osteochondroma. The positive rate was remarkably different between osteosarcoma and osteochondroma (P<0.05). Conclusion: Cyclin D1 and CDK4 are overexpressed in osteosarcoma of the jaws and closely related to its occurrence and development.

  9. Mantle cell lymphoma in cyclin D1 transgenic mice with Bim-deficient B cells.

    Science.gov (United States)

    Katz, Samuel G; Labelle, James L; Meng, Hailong; Valeriano, Regina P; Fisher, Jill K; Sun, Heather; Rodig, Scott J; Kleinstein, Steven H; Walensky, Loren D

    2014-02-06

    Mantle cell lymphoma (MCL) is a highly aggressive B-cell lymphoma resistant to conventional chemotherapy. Although defined by the characteristic t(11;14) translocation, MCL has not been recapitulated in transgenic mouse models of cyclin D1 overexpression alone. Indeed, several genetic aberrations have been identified in MCL that may contribute to its pathogenesis and chemoresistance. Of particular interest is the frequent biallelic deletion of the proapoptotic BCL-2 family protein BIM. BIM exerts its pro-death function via its α-helical BH3 death domain that has the dual capacity to inhibit antiapoptotic proteins such as BCL-2 and MCL-1 and directly trigger proapoptotic proteins such as the mitochondrial executioner protein BAX. To evaluate a functional role for Bim deletion in the pathogenesis of MCL, we generated cyclin D1-transgenic mice harboring Bim-deficient B cells. In response to immunization, Eμ(CycD1)CD19(CRE)Bim(fl/fl) mice manifested selective expansion of their splenic mantle zone compartment. Three distinct immune stimulation regimens induced lymphomas with histopathologic and molecular features of human MCL in a subset of mice. Thus, deletion of Bim in B cells, in the context of cyclin D1 overexpression, disrupts a critical control point in lymphoid maturation and predisposes to the development of MCL. This genetic proof of concept for MCL pathogenesis suggests an opportunity to reactivate the death pathway by pharmacologic mimicry of proapoptotic BIM.

  10. Effects of ischemic preconditioning on cyclinD1 expression during early ischemic reperfusion in rats

    Institute of Scientific and Technical Information of China (English)

    Fang-Gang Cai; Jian-Sheng Xiao; Qi-Fa Ye

    2006-01-01

    AIM: To observe the effect of ischemic preconditioning on cyclinD1 expression in rat liver cells during early ischemic reperfusion.METHODS: Fifty-four SD rats were randomly divided into ischemic preconditioning group (IP), ischemia/reperfusion group (IR) and sham operation group (SO). The IP and IR groups were further divided into four sub-groups (n = 6). Sham operation group (SO)served as the control group (n = 6). A model of partial liver ischemia/reperfusion was used, in which rats were subjected to liver ischemia for 60 min prior to reperfusion. The animals in the IP group underwent ischemic preconditioning twice for 5 min each time prior to the ischemia/reperfusion challenge. After 0, 1, 2, and 4 h of reperfusion, serum and liver tissue in each group were collected to detect the level of serum ALT, liver histopathology and expression of cyclinD1 mRNA and protein. Flow cytometry was used to detect cell cycle as the quantity indicator of cell regeneration.RESULTS: Compared with IR group, IP group showed asignificantly lower ALT level in 1 h to 4 h sub-groups (P< 0.05). Proliferation index(PI) indicated by the S-phase and G2/M-phase ratio [(S+G2/M)/(G0/G1+S+G2/M)] was significantly increased in IP group at 0 and 1 h (26.44± 7.60% vs 18.56 ± 6.40%,41.87 ± 7.27% vs 20.25 ±6.70%, P < 0.05). Meanwhile, cyclinD1 protein expression could be detected in IP group. But in IR group, cyclinD1 protein expression occurred 2 h after reperfusion. The expression of cyclinD1 mRNA increased significantly in IP group at 0 and 1 h (0.568 ± 0.112 vs 0.274 ± 0.069, 0.762± 0.164 vs 0.348 ± 0.093, P < 0.05).CONCLUSION: Ischemic preconditioning can protect liver cells against ischemia/reperfusion injury, which may be related to cell proliferation and expression of cyclinD1 during early ischemic reperfusion.

  11. Differential roles of cyclin D1 and D3 in pancreatic ductal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Leung Lisa

    2010-02-01

    Full Text Available Abstract Background The cyclin D1 (CCND1 and cyclin D3 (CCND3 are frequently co-overexpressed in pancreatic ductal adenocarcinoma (PDAC. Here we examine their differential roles in PDAC. Results CCND1 and CCND3 expression were selectively suppressed by shRNA in PDAC cell lines with expression levels of equal CCND1 and CCND3 (BxPC3, enhanced CCND1 (HPAC or enhanced CCND3 (PANC1. Suppression of cell proliferation was greater with CCND3 than CCND1 downregulation. CCND3 suppression led to a reduced level of phosphorylated retinoblastoma protein (Ser795p-Rb/p110 and resulted in decreased levels of cyclin A mRNA and protein. A global gene expression analysis identified deregulated genes in D1- or D3-cyclin siRNA-treated PANC1 cells. The downregulated gene targets in CCND3 suppressed cells were significantly enriched in cell cycle associated processes (p Conclusions Our results suggest that CCND3 is the primary driver of the cell cycle, in cooperation with CCND1 that integrates extracellular mitogenic signaling. We also present evidence that CCND1 plays a role in tumor cell migration. The results provide novel insights for common and differential targets of CCND1 and CCND3 overexpression during pancreatic duct cell carcinogenesis.

  12. 9-顺维A酸诱导肺癌细胞L78凋亡及其与Rb和Cyclin D1基因表达的关系%The Interrelationship Between the Apoptosis of L78 Cell-line of the Lung Cancer and It's Expression of Rb, Cyclin D1 Gene Protein Induced by 9-cis-retinoic Acid

    Institute of Scientific and Technical Information of China (English)

    游庆军; 金小寅; 于雪艳; 胡国强; 刘志慧; 张世国

    2002-01-01

    目的研究9-顺维A酸(9-cis-retinoic acid, 9-cis RA)诱导肺鳞癌细胞株L78凋亡作用及其与Rb、Cyclin D1基因表达的关系,初步探讨其作用机制. 方法体外培养肺鳞癌细胞株L78,随机分为两组,实验组:加入浓度为5 μmol/L的9-cis RA;对照组:加入浓度为0.1%二甲亚砜.两组均培养48小时后用免疫组织化学法检测L78细胞中Rb基因表达率,用流式细胞仪技术分别检测Rb、Cyclin D1基因表达率和肿瘤细胞凋亡率, 并研究三者之间的相关关系. 结果实验组肺鳞癌细胞株L78细胞Rb基因表达明显增强,Cyclin D1基因表达降低,细胞凋亡率增高(P<0.01).Rb基因表达率与细胞凋亡发生率呈正相关(r=0.854,P<0.05),Cyclin D1基因表达率与细胞凋亡发生率呈负相关(r=-0.812,P<0.05). 结论 9-cis RA可能通过Rb基因表达增强和Cyclin D1基因表达降低途径,使细胞明显阻滞在G0/G1期,并诱导肺鳞癌细胞株L78细胞凋亡.

  13. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States); Lee, Seong-Ho, E-mail: slee2000@umd.edu [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. Black-Right-Pointing-Pointer PCA enhanced transcriptional downregulation of cyclin D1 gene. Black-Right-Pointing-Pointer PCA suppressed HDAC2 expression and activity. Black-Right-Pointing-Pointer These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  14. Expressions of SOX2 and CyclinD1 in epithelial ovarian cancer tissue%卵巢上皮性癌组织中 SOX2和 CyclinD1的表达

    Institute of Scientific and Technical Information of China (English)

    姚俊阁; 李红雨; 赵书君; 张慧; 张艳艳; 郭欢欢

    2014-01-01

    目的:检测卵巢上皮性癌组织中SOX2和CyclinD1的表达。方法:分别采用免疫组化SP法和RT-PCR法检测20例正常卵巢上皮组织、20例卵巢良性上皮性肿瘤组织及43例卵巢上皮性癌组织中SOX2和CyclinD1蛋白及mRNA的表达。结果:3种组织间SOX2、CyclinD1蛋白及mRNA的表达差异有统计学意义(蛋白:χ2=32.998,mRNA:F=454.222、398.284,P均<0.05);卵巢上皮性癌组织中SOX2、CyclinD1蛋白及mRNA的表达高于卵巢良性上皮性肿瘤组织及正常卵巢上皮组织( P均<0.05)。 SOX2、CyclinD1蛋白的表达均与卵巢上皮性癌FIGO分期、分化程度及淋巴结转移有关(P均<0.05)。卵巢上皮性癌组织中SOX2、CyclinD1蛋白的表达有关联(rp =0.422,P<0.05)。结论:SOX2和CyclinD1在卵巢上皮性癌组织中高表达,二者可能协同参与卵巢上皮性癌的发生及发展。%Aim:To explore the expressions and clinical significance of SOX 2 and CyclinD1 in epithelial ovarian canc-er tissue.Methods:Immunohistochemical SP method and RT-PCR were used to separately detect the expressions of SOX 2 and CyclinD1 in 20 cases of normal epithelial ovarian tissue , 20 cases of benign epithelial ovarian neoplasm tissue , and 43 cases of epithelial ovarian cancer tissue .Results:The expressions of SOX2 and CyclinD1 protein and mRNA in epithelial ovarian cancer tissue were significantly higher than those in benign epithelial ovarian neoplasm tissue and normal epithelial ovarian tissue(protein:χ2 =32.998;mRNA:F=454.222,398.284, all P<0.05).The expressions of SOX2 and CyclinD1 protein in epithelial ovarian cancer tissue were related to FIGO stage , histological differentiation and lymph node metastasis (P<0.05).The expression of SOX2 protein was associated with that of CyclinD1 protein in epithelial ovarian cancer tissue (rp =0.422,P<0.05).Conclusion: SOX2 and CyclinD1 are both over-expressed in epithelial ovarian cancer

  15. Activation of the EGFR/Akt/NF-κB/cyclinD1 survival signaling pathway in human cholesteatoma epithelium.

    Science.gov (United States)

    Liu, Wei; Yin, Tuanfang; Ren, Jihao; Li, Lihua; Xiao, Zian; Chen, Xing; Xie, Dinghua

    2014-02-01

    Cholesteatoma is a benign keratinizing squamous epithelial lesion characterized by the hyper-proliferation of keratinocytes with abundant production of keratin debris in the middle ear. The epidermal growth factor receptor (EGFR)/Akt/nuclear factor-kappa B (NF-κB)/cyclinD1 signaling pathway is one of the most important pathways in regulating cell survival and proliferation. We hypothesized that the EGFR/Akt/NF-κB/cyclinD1 signaling pathway may be activated and involved in the cellular hyperplasia mechanism in acquired cholesteatoma epithelium. Immunohistochemical staining of phosphorylated EGFR (p-EGFR), phosphorylated Akt (p-Akt), activated NF-κB and cyclinD1 protein was performed in 40 cholesteatoma samples and 20 samples of normal external auditory canal (EAC) epithelium. Protein expression of p-EGFR, p-Akt, activated NF-κB and cyclinD1 in cholesteatoma epithelium was significantly increased when compared with normal EAC epithelium (p epithelium, a significant positive association was observed between p-EGFR and p-Akt expression and between the expressions of p-Akt and NF-κB, NF-κB and cyclinD1, respectively (p 0.05). The increased protein expression of p-EGFR, p-Akt, NF-κB and cyclinD1 and their associations in cholesteatoma epithelium suggest that the EGFR/Akt/NF-κB/cyclinD1 survival signaling pathway is active and may be involved in the regulatory mechanisms of cellular hyperplasia in cholesteatoma epithelium.

  16. Expression and Significance of APC, β-catenin, C-myc,and Cyclin D1 Proteins in Colorectal Carcinoma%APC、β-catenin、C-myc和Cyclin D1在大肠癌组织中的表达及其意义

    Institute of Scientific and Technical Information of China (English)

    戴文斌; 任占平; 陈蔚麟; 杜娟; 石喆; 唐德艳

    2007-01-01

    背景与目的:Wnt信号转导通路成员各癌基因、抑癌基因的异常,激活下游相关靶基因的转录,在肿瘤发生发展中起重要作用.本研究通过检测不同大肠组织中APC、β-catenin、C-myc和Cyclin D1的表达情况,探讨其在大肠癌发生中的意义.方法:应用免疫组织化学方法检测30例正常大肠粘膜、30例大肠腺瘤、10例大肠腺瘤恶变及50例大肠癌组织中APC、β-catenin、C-myc和Cyclin D1蛋白的表达情况.以β-catenin在细胞膜表达为正常表达,而在胞浆和/或胞核表达为异位表达.结果:大肠癌和大肠腺瘤恶变组织APC阳性率分别为44.0%和40.0%,显著低于大肠腺瘤(86.7%)和正常大肠粘膜(100%)(P<0.01).大肠癌、大肠腺瘤恶变组织和大肠腺瘤β-catenin胞浆和/或胞核异位表达率分别为62.0%、50.0%、30.0%,均显著高于正常大肠粘膜(0%)(P<0.01),大肠癌β-catenin异位表达率显著高于大肠腺瘤(P<0.01).大肠癌、大肠腺瘤恶变组织、大肠腺瘤中C-myc表达率分别为56.0%、60.0%、46.7%,均显著高于正常大肠粘膜(0%)(P<0.01),而Cyclin D1阳性率分别为66.0%、60.0%、30.0%,均显著高于正常大肠粘膜(0%)(P<0.01).大肠癌Cyclin D1表达率显著高于大肠腺瘤(P<0.01).大肠癌中β-catenin异位表达与C-myc和Cyclin D1表达呈正相关关系(r=0.63,P<0.01;r=0.57,P<0.01),而与APC表达呈负相关关系(r=-0.39,P<0.05).结论:大肠癌组织中存在APC低表达和/或β-catenin异位表达,以及C-myc和Cyclin D1的过度表达,4种基因蛋白可能在大肠癌发生过程中起重要作用.

  17. Immunohistochemical comparison of cyclin D1 and P16 in odontogenic keratocyst and unicystic ameloblastoma

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Razavi

    2013-01-01

    Conclusion: Cyclin D1 did show a higher staining intensity in UAs compared to the keratocysts, although the expression of P16 was similar in the studied groups. The invasive growth of OKC might be related to the state of expression of cyclin D1 and P16 in the epithelium of this cyst.

  18. Anticancer activity of calyx of Diospyros kaki Thunb. through downregulation of cyclin D1 via inducing proteasomal degradation and transcriptional inhibition in human colorectal cancer cells.

    Science.gov (United States)

    Park, Su Bin; Park, Gwang Hun; Song, Hun Min; Son, Ho-Jun; Um, Yurry; Kim, Hyun-Seok; Jeong, Jin Boo

    2017-09-05

    Although it has been reported to contain high polyphenols, the pharmacological studies of the calyx of Diospyros kaki Thunb (DKC) have not been elucidated in detail. In this study, we elucidated anti-cancer activity and potential molecular mechanism of DKC against human colorectal cancer cells. Anti-cell proliferative effect of 70% ethanol extracts from the calyx of Diospyros kaki (DKC-E70) was evaluated by MTT assay. The effect of DKC-E70 on the expression of cyclin D1 in the protein and mRNA level was evaluated by Western blot and RT-PCR, respectively. DKC-E70 suppressed the proliferation of human colorectal cancer cell lines such as HCT116, SW480, LoVo and HT-29. Although DKC-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by DKC-E70 occurred at the earlier time than that of cyclin D1 mRNA, which indicates that DKC-E70-mediated downregulation of cyclin D1 protein may be a consequence of the induction of degradation and transcriptional inhibition of cyclin D1. In cyclin D1 degradation, we found that cyclin D1 downregulation by DKC-E70 was attenuated in presence of MG132. In addition, DKC-E70 phosphorylated threonine-286 (T286) of cyclin D1 and T286A abolished cyclin D1 downregulation by DKC-E70. We also observed that DKC-E70-mediated T286 phosphorylation and subsequent cyclin D1 degradation was blocked in presence of the inhibitors of ERK1/2, p38 or GSK3β. In cyclin D1 transcriptional inhibition, DKC-E70 inhibited the expression of β-catenin and TCF4, and β-catenin/TCF-dependent luciferase activity. Our results suggest that DKC-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through cyclin D1 degradation by T286 phosphorylation dependent on ERK1/2, p38 or GSK3β, and cyclin D1 transcriptional inhibition through Wnt signaling. From these findings, DKC-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

  19. α-、β-catenin和cyclin D1在乳腺癌中的表达及意义%The expressions and significance of α-,β-catenins and cyclin D1 in breast cancers

    Institute of Scientific and Technical Information of China (English)

    Liang Zeng; Senlin Chen; Zhihong Liu; Jianfeng Yang

    2008-01-01

    Objective:To study the relationship between expressions of α-,β-catenins and cyclin D1 and the occurrence,infiltration and metastasis of breast cancer.Methods:High sensitive S-P immunohistochemical method was used to detect the protein expressions of α-,β-catenins and cyclin D1 in the 60 cases of breast cancer tissues.Results:Abnormal immunoreactivities of α- and β-catenins were observed in 37(61.7%)and 42(70%)cases of breast Cancer tissues,respectively.There were 28 cases(46.7%)who showed cyclin D1 overexpression.The abnormal expression rates of α -and β-catenins in infiltrating lobular carcinoma(ILC)were significantly higher than those in infiltrating ductal Carcinoma(IDC)(P<0.05),but they had no relations to the extenl of differentiation and lymphatic metastasis of breasl Cancer(P>0.05).The overexpression rate of cyclin D1 was correlated with tumor stage and lymphatic metastasis of breast cancer(P<0.05),but not with histological type and lhe extent of differentiation(P>0.05).Cyclin D1 overexpression was observed in 57.1%(24/42)of these cases that showed abnormal staining of β-catenin,but only observed in 22.2%(4/18)of these cases with normal membranous staining of β-catenin.There was a significantly positive correlation between the abnormal expression of β-catenin and overexpression of cyclin D1(rs=0.321.P<0.05).Conclusion:The abnormal expression of β-Catenin may play an important role in the genesis of breast cancer by triggering cyclin D1 overexpression in breast cancer.The abnormal expressions of α- and β-catenins are not a key factor in malignant cell metastasis in breast cancer,but may also involve in the progress.

  20. Expression of Cyclin d1 protein and CCND1 та PNKP genes in peripheral blood mononuclear cells in clean up worker of Chornobyl accident with different state of immune system.

    Science.gov (United States)

    Bazyka, D A; Kubashko, A V; Ilyenko, I M; Belyaev, O A; Pleskach, O J

    2015-12-01

    Meta. Doslidyty zminy rivniv Cyclin D1+ klityn ta asotsiyovanykh geniv CCND1 ta PNKP u mononuklearakh peryfe rychnoI krovi v uchasnykiv likvidatsiI naslidkiv avariI (ULNA) na ChAES z riznym imunnym statusom v zalezhnosti vid dozy oprominennia.Materialy i metody. Proanalizovano vidnosnyy riven' Cyclin D1+ klityn u mononuklearakh peryferychnoI krovi 39 ULNA na ChAES, cholovikiv, oprominenykh u dozi u diapazoni (0,01–2,00) Gr. Imunologichnyy status obstezhenykh vyz nachavsia za rivnem CD3/19, CD4/8, CD3/HLA DR, SD3/16/56 metodom protochnoI tsytofluorymetriI ta za vmistom Ig klasiv A,M,G metodom imunofermentnogo analizu u krovi. Ekspresiia geniv CCND1 ta PNKP, iaki pov’iazani z Syclin D1, provodylos' za metodom polimeraznoI lantsiugovoI reaktsiI u real'nomu chasi. Porivniannia rezul'tativ zdiysniuva los' iz vidpovidnymy danymy, otrymanymy vid 18 zdorovykh cholovikiv, iaki ne maly kontaktu z ionizuiuchym vyp rominiuvanniam vyshche pryrodn'ogo fonu.Rezul'taty. Pokazano, shcho vidsotok Suclin D1+ klityn zbil'shuiet'sia za normu v osib, oprominenykh u dozi > 0,1 Gr, ta koreliuie z dozoiu oprominennia (rs = 0,417, p = 0,048). Vidkhylennia rivnia Cyclin D1+ klityn za mezhi kontrol'nykh zna chen' pov’iazuiet'sia zi zminamy v klitynniy ta gumoral'niy lankakh imunitetu. Zmenshennia vidsotku Cyclin D1+ klityn za mezhi kontrol'nykh znachen' v ULNA na ChAES iz dozoiu 0,35 Gr, zbil'shennia vidsotku Cyclin D1+ klityn asotsiiuiet'sia zi znyzhenniam CD3+ ta tendentsiieiu shchodo znyzhennia CD3+16+56+ limfotsytiv u poiednanni zi zbil'shen niam rivnia IgG. Zbil'shennia rivniv CD4+, CD19+, Ireg. ta IgG suprovodzhuiet'sia poiavoiu koreliatsiynykh zv’iazkiv mizh Cyclin D1+ ta CD3 16+56+ klitynamy (rs = 0,872, p = 0,049), Cyclin D1+ ta CD8+ i IgG (rs = 0,683, p = 0,042; rs = 0,809, p = 0,014), Cyclin D1+ ta CD4+ (rs = 0,602, p = 0,029), Cyclin D1+ ta CD19+ i IgM (rs = 0,604, p = 0,017; rs = 0,538, p = 0,038) vidpovidno. V ULNA, oprominenykh u dozi > 0,1 Gr, fiksuiet'sia znyzhennia

  1. Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α.

    Science.gov (United States)

    Bhalla, Kavita; Liu, Wan-Ju; Thompson, Keyata; Anders, Lars; Devarakonda, Srikripa; Dewi, Ruby; Buckley, Stephanie; Hwang, Bor-Jang; Polster, Brian; Dorsey, Susan G; Sun, Yezhou; Sicinski, Piotr; Girnun, Geoffrey D

    2014-10-01

    Hepatic gluconeogenesis is crucial to maintain normal blood glucose during periods of nutrient deprivation. Gluconeogenesis is controlled at multiple levels by a variety of signal transduction and transcriptional pathways. However, dysregulation of these pathways leads to hyperglycemia and type 2 diabetes. While the effects of various signaling pathways on gluconeogenesis are well established, the downstream signaling events repressing gluconeogenic gene expression are not as well understood. The cell-cycle regulator cyclin D1 is expressed in the liver, despite the liver being a quiescent tissue. The most well-studied function of cyclin D1 is activation of cyclin-dependent kinase 4 (CDK4), promoting progression of the cell cycle. We show here a novel role for cyclin D1 as a regulator of gluconeogenic and oxidative phosphorylation (OxPhos) gene expression. In mice, fasting decreases liver cyclin D1 expression, while refeeding induces cyclin D1 expression. Inhibition of CDK4 enhances the gluconeogenic gene expression, whereas cyclin D1-mediated activation of CDK4 represses the gluconeogenic gene-expression program in vitro and in vivo. Importantly, we show that cyclin D1 represses gluconeogenesis and OxPhos in part via inhibition of peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) activity in a CDK4-dependent manner. Indeed, we demonstrate that PGC1α is novel cyclin D1/CDK4 substrate. These studies reveal a novel role for cyclin D1 on metabolism via PGC1α and reveal a potential link between cell-cycle regulation and metabolic control of glucose homeostasis.

  2. RhoA signaling modulates cyclin D1 expression in human lung fibroblasts; implications for idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Hoban PR

    2006-06-01

    Full Text Available Abstract Background Idiopathic Pulmonary Fibrosis (IPF is a debilitating disease characterized by exaggerated extracellular matrix deposition and aggressive lung structural remodeling. Disease pathogenesis is driven by fibroblastic foci formation, consequent on growth factor overexpression and myofibroblast proliferation. We have previously shown that both CTGF overexpression and myofibroblast formation in IPF cell lines are dependent on RhoA signaling. As RhoA-mediated regulation is also involved in cell cycle progression, we hypothesise that this pathway is key to lung fibroblast turnover through modulation of cyclin D1 kinetic expression. Methods Cyclin D1 expression was compared in primary IPF patient-derived fibroblasts and equivalent normal control cells. Quantitative real time PCR was employed to examine relative expression levels of cyclin D1 mRNA; protein expression was confirmed by western blotting. Effects of Rho signaling were investigated using transient transfection of constitutively active and dominant negative RhoA constructs as well as pharmacological inhibitors. Cellular proliferation of lung fibroblasts was determined by BrdU incorporation ELISA. To further explore RhoA regulation of cyclin D1 in lung fibroblasts and associated cell cycle progression, an established Rho inhibitor, Simvastatin, was incorporated in our studies. Results Cyclin D1 expression was upregulated in IPF compared to normal lung fibroblasts under exponential growth conditions (p Conclusion These findings report for the first time that cyclin D1 expression is deregulated in IPF through a RhoA dependent mechanism that influences lung fibroblast proliferation. This potentially unravels new molecular targets for future anti-IPF strategies; accordingly, Simvastatin inhibition of Rho-mediated cyclin D1 expression in IPF fibroblasts merits further exploitation.

  3. Cyclin D1 fine-tunes the neurogenic output of embryonic retinal progenitor cells

    Directory of Open Access Journals (Sweden)

    Choi Yoon

    2009-05-01

    Full Text Available Abstract Background Maintaining the correct balance of proliferation versus differentiation in retinal progenitor cells (RPCs is essential for proper development of the retina. The cell cycle regulator cyclin D1 is expressed in RPCs, and mice with a targeted null allele at the cyclin D1 locus (Ccnd1-/- have microphthalmia and hypocellular retinas, the latter phenotype attributed to reduced RPC proliferation and increased photoreceptor cell death during the postnatal period. How cyclin D1 influences RPC behavior, especially during the embryonic period, is unclear. Results In this study, we show that embryonic RPCs lacking cyclin D1 progress through the cell cycle at a slower rate and exit the cell cycle at a faster rate. Consistent with enhanced cell cycle exit, the relative proportions of cell types born in the embryonic period, such as retinal ganglion cells and photoreceptor cells, are increased. Unexpectedly, cyclin D1 deficiency decreases the proportions of other early born retinal neurons, namely horizontal cells and specific amacrine cell types. We also found that the laminar positioning of horizontal cells and other cell types is altered in the absence of cyclin D1. Genetically replacing cyclin D1 with cyclin D2 is not efficient at correcting the phenotypes due to the cyclin D1 deficiency, which suggests the D-cyclins are not fully redundant. Replacement with cyclin E or inactivation of cyclin-dependent kinase inhibitor p27Kip1 restores the balance of RPCs and retinal cell types to more normal distributions, which suggests that regulation of the retinoblastoma pathway is an important function for cyclin D1 during embryonic retinal development. Conclusion Our findings show that cyclin D1 has important roles in RPC cell cycle regulation and retinal histogenesis. The reduction in the RPC population due to a longer cell cycle time and to an enhanced rate of cell cycle exit are likely to be the primary factors driving retinal hypocellularity

  4. COMBINED DETECTION OF CYCLIN D1, P27 AND DNA CONTENT IN ESOPHAGEAL CANCER

    Institute of Scientific and Technical Information of China (English)

    MA Ping; YIN Yuan-qin; WANG Xiao-hua

    2006-01-01

    Objective: To investigate the expressions of cyclin D1 and p27 and DNA content in esophageal cancer and adjacent normal tissues, and to discuss the relationship between them. Methods: The cyclinD1 and p27 were detected by immunohistochemical staining; DNA content was measured by flow cytometry. Results: The positive expression rates of cyclinD1 and p27 in cancer were 45.8% and 33.3% respectively, the DNA content in the positive group of cyclinD1 was higher than that in the negative group of cyclinD1(1.54(0.21 versus 1.08(0.43, P<0.05), while the DNA content and SPF (S-phase fraction) in the positive group of p27 were lower than those in the negative group (1.10(0.19 and 5.56%(5.18% versus 1.66(0.28 and 19.78%(6.12%, P<0.05). Conclusion: The data show that the expression of cyclinD1 and p27 are related to the ontogenesis and progression of esophageal cancer. The combined detection of cyclinD1, p27 and DNA content may be indicators of diagnosis and assessment of esophageal cancer.

  5. Role of CyclinD1 and CDK4 in the Carcinogenesis Induced by Silica

    Institute of Scientific and Technical Information of China (English)

    KE-XIA YAN; BING-CI LIU; XIANG-LIN SHI; BAO-RONG YOU; MING XU

    2005-01-01

    Objective To study the role of cyclinD1 and CDK4 in malignant transformation of human fetal lung diploid fibroblast cell line(2BS) induced by silica. Methods Recombination vectors with sense and antisense pXJ41-cyclinD1 and pXJ41-CDK4 were constructed, and then transfected into the malignant transformed cells induced by silica, respectively. At the same time, pXJ41-neo was used as the control. Results During the progress of the malignant transformation of 2BS cells induced by silica, cyclinD1 and CDK4 were overexpressed. Antisense RNA suppressed cyclinD1 and CDK4 gene expression in the antisense pXJ41-cyclinD1 and pXJ41-CDK4 transfected cells. Antisense RNA led to cell cycle arrest, resulting in lengthened G1 phase (the percentages of cells in the G1 phase changed from 45.1% to 52.7% and 58.0% for cyclinD1 and CDK4 transfected cells, respectively), and eventually attenuated the increase of the proliferation of malignant transformed cells induced by silica. Compared with malignant transformed cells induced by silica, cells transfected with antisense pXJ41-cyclinD1 and pXJ41-CDK4 showed obviously reduced growth rates. On the 8th day, the suppression rates were 58.69 and 77.43% (the growth rate of malignant transformed cells induced by silica was 100%), doubling time changed from 21.0 h to 31.4 h and 21.0 h to 42.7 h, respectively, the growth capacities on soft agar of cells transfected by antisense pXJ41-cyclinD1 and pXJ41-CDK4 decreased obviously. Conclusion CyclinD1 and CDK4 play an important role in maintaining transformed phenotype of the cancer cells.

  6. RhoA promotes epidermal stem cell proliferation via PKN1-cyclin D1 signaling

    Science.gov (United States)

    Wang, Fan; Zhan, Rixing; Chen, Liang; Dai, Xia; Wang, Wenping; Guo, Rui; Li, Xiaoge; Li, Zhe; Wang, Liang; Huang, Shupeng; Shen, Jie

    2017-01-01

    Objective Epidermal stem cells (ESCs) play a critical role in wound healing, but the mechanism underlying ESC proliferation is not well defined. Here, we explore the effects of RhoA on ESC proliferation and the possible underlying mechanism. Methods Human ESCs were enriched by rapid adhesion to collagen IV. RhoA(+/+)(G14V), RhoA(-/-)(T19N) and pGFP control plasmids were transfected into human ESCs. The effect of RhoA on cell proliferation was detected by cell proliferation and DNA synthesis assays. Induction of PKN1 activity by RhoA was determined by immunoblot analysis, and the effects of PKN1 on RhoA in terms of inducing cell proliferation and cyclin D1 expression were detected using specific siRNA targeting PKN1. The effects of U-46619 (a RhoA agonist) and C3 transferase (a RhoA antagonist) on ESC proliferation were observed in vivo. Results RhoA had a positive effect on ESC proliferation, and PKN1 activity was up-regulated by the active RhoA mutant (G14V) and suppressed by RhoA T19N. Moreover, the ability of RhoA to promote ESC proliferation and DNA synthesis was interrupted by PKN1 siRNA. Additionally, cyclin D1 protein and mRNA expression levels were up-regulated by RhoA G14V, and these effects were inhibited by siRNA-mediated knock-down of PKN1. RhoA also promoted ESC proliferation via PKN in vivo. Conclusion This study shows that the effect of RhoA on ESC proliferation is mediated by activation of the PKN1-cyclin D1 pathway in vitro, suggesting that RhoA may serve as a new therapeutic target for wound healing. PMID:28222172

  7. Expressions of cyclin D1 and p27kip1 in carcinogenesis of stomach mucosa

    Institute of Scientific and Technical Information of China (English)

    Qunqing Liu; Guiying Zhang

    2008-01-01

    Objective: To evaluate the relationship between the expressions of cyclin D1 and p27kipl in the canceration course of the stomach.Methods: The immunohistochemical staining technique (SP method) was used to detect the expressions of cyclin D1, p27kip1 in chronic superficial gastritis (CSG), chronic atrophic gastritis (CAG), intestinal metaplasia (IM), dysplasia (DYS), gastric carcinoma (GCA) biopsy specimens.Results: The positive cyclin D1 expression rates increased with the progressing from CAG→IM→DYS→GCA respectively, and those in IM, DYS and GCA were different from those in CSG, P<0.05, while DYS group was indifferent from GCA group, P>0.05.The positive p27k'pl expression rates decreased with the mucosa progressing from CAG→IM→DYS→GCA.There was a negative correlation between the expression cyclin D1 and p27kip1 (y=-0.53, P=0.000).Conclusion: Expression rates of cyclin D1 in the canceration course of the stomach mucosa trend were increased and those of p27kip1 were decreased; the abnormal expressions of them were found in the early term of the canceration course of the stomach mucosa, and the inverse expression suggests there may be a negative feedback regulatory loop between cyclin D1 and p27kip1.

  8. Expression of cyclin D1 and p16 in psoriasis before and after phototherapy.

    Science.gov (United States)

    Abou EL-Ela, M; Nagui, N; Mahgoub, D; El-Eishi, N; Fawzy, M; El-Tawdy, A; Abdel Hay, R; Rashed, L

    2010-10-01

    Psoriasis vulgaris (PV) is characterized by keratinocyte hyperproliferation. Altered expression of cell-cycle regulatory genes involved in the cyclin D1 ⁄ p16 INK4-pRb pathway may contribute to this epidermal hyperproliferation. To assess the expression of cyclin D1 and p16 in psoriasis, and to evaluate the effect of phototherapy on their expression. The study population comprised 25 patients with PV and 10 healthy controls. Patients were treated with 24 sessions of either narrowband ultraviolet (UV) B or psoralen UVA. Skin biopsies were taken from the affected skin of each patient before and after treatment, and from the healthy controls, to examine cyclin D1 and p16 expression. Before phototherapy, the mean value of cyclin D1 concentration in patients was significantly greater than that in controls and the mean value of p16 concentration in patients was significantly lower than that in controls. Following treatment, we detected a significant decrease in cyclin D1 and a significant increase in p16. Cyclin D1 upregulation and p16 downregulation may play a role in the pathogenesis of psoriasis. Normalization of the levels of both parameters may be a mechanism by which phototherapy induces remission in psoriasis.

  9. Stage-specific requirement for cyclin D1 in glial progenitor cells of the cerebral cortex.

    Science.gov (United States)

    Nobs, Lionel; Baranek, Constanze; Nestel, Sigrun; Kulik, Akos; Kapfhammer, Josef; Nitsch, Cordula; Atanasoski, Suzana

    2014-05-01

    Despite the vast abundance of glial progenitor cells in the mouse brain parenchyma, little is known about the molecular mechanisms driving their proliferation in the adult. Here we unravel a critical role of the G1 cell cycle regulator cyclin D1 in controlling cell division of glial cells in the cortical grey matter. We detect cyclin D1 expression in Olig2-immunopositive (Olig2+) oligodendrocyte progenitor cells, as well as in Iba1+ microglia and S100β+ astrocytes in cortices of 3-month-old mice. Analysis of cyclin D1-deficient mice reveals a cell and stage-specific molecular control of cell cycle progression in the various glial lineages. While proliferation of fast dividing Olig2+ cells at early postnatal stages becomes gradually dependent on cyclin D1, this particular G1 regulator is strictly required for the slow divisions of Olig2+/NG2+ oligodendrocyte progenitors in the adult cerebral cortex. Further, we find that the population of mature oligodendrocytes is markedly reduced in the absence of cyclin D1, leading to a significant decrease in the number of myelinated axons in both the prefrontal cortex and the corpus callosum of 8-month-old mutant mice. In contrast, the pool of Iba1+ cells is diminished already at postnatal day 3 in the absence of cyclin D1, while the number of S100β+ astrocytes remains unchanged in the mutant.

  10. Cyclin D1 Expression and Its Correlation with Histopathological Differentiation in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Swati Saawarn

    2012-01-01

    Full Text Available Background. Cyclin D1 regulates the G1 to S transition of cell cycle. Its deregulation or overexpression may lead to disturbance in the normal cell cycle control and tumour formation. Overexpression of cyclin D1 has been reported in various tumors of diverse histogenesis. This case control retrospective study was carried out to study the immunohistochemical reactivity and expression of cyclin D1 and its association with site, clinical staging, and histopathological differentiation of oral squamous cell carcinoma (OSCC. Methods. Forty formalin-fixed paraffin-embedded tissue blocks of biopsy specimens of oral squamous cell carcinoma were immunohistochemically evaluated for expression of cyclin D1. Results. Cyclin D1 expression was seen in 45% cases of OSCC. It did not correlate with site and clinical staging. Highest expression was seen in well-differentiated, followed by moderately differentiated, and poorly differentiated squamous cell carcinomas, with a statistically significant correlation. Conclusion. Cyclin D1 expression significantly increases with increase in differentiation.

  11. Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy

    Science.gov (United States)

    Huang, Shuai; Zou, Xiao; Zhu, Jie-Ning; Fu, Yong-Heng; Lin, Qiu-Xiong; Liang, Ye-You; Deng, Chun-Yu; Kuang, Su-Juan; Zhang, Meng-Zhen; Liao, Yu-Lin; Zheng, Xi-Long; Yu, Xi-Yong; Shan, Zhi-Xin

    2015-01-01

    Cyclins/retinoblastoma protein (pRb) pathway participates in cardiomyocyte hypertrophy. MicroRNAs (miRNAs), the endogenous small non-coding RNAs, were recognized to play significant roles in cardiac hypertrophy. But, it remains unknown whether cyclin/Rb pathway is modulated by miRNAs during cardiac hypertrophy. This study investigates the potential role of microRNA-16 (miR-16) in modulating cyclin/Rb pathway during cardiomyocyte hypertrophy. An animal model of hypertrophy was established in a rat with abdominal aortic constriction (AAC), and in a mouse with transverse aortic constriction (TAC) and in a mouse with subcutaneous injection of phenylephrine (PE) respectively. In addition, a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocyte and based on Ang-II-induced neonatal mouse ventricular cardiomyocyte respectively. We demonstrated that miR-16 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes in rats and mice. Overexpression of miR-16 suppressed rat cardiac hypertrophy and hypertrophic phenotype of cultured cardiomyocytes, and inhibition of miR-16 induced a hypertrophic phenotype in cardiomyocytes. Expressions of cyclins D1, D2 and E1, and the phosphorylated pRb were increased in hypertrophic myocardium and hypertrophic cardiomyocytes, but could be reversed by enforced expression of miR-16. Cyclins D1, D2 and E1, not pRb, were further validated to be modulated post-transcriptionally by miR-16. In addition, the signal transducer and activator of transcription-3 and c-Myc were activated during myocardial hypertrophy, and inhibitions of them prevented miR-16 attenuation. Therefore, attenuation of miR-16 provoke cardiomyocyte hypertrophy via derepressing the cyclins D1, D2 and E1, and activating cyclin/Rb pathway, revealing that miR-16 might be a target to manage cardiac hypertrophy. PMID:25583328

  12. Immunohistochemical comparison of cyclin D1 and P16 in odontogenic keratocyst and unicystic ameloblastoma.

    Science.gov (United States)

    Razavi, Seyed Mohammad; Poursadeghi, Hamid; Aminzadeh, Atousa

    2013-03-01

    The different growth mechanism and biologic behavior of the odontogenic keratocyst (OKC) compared to other odontogenic cysts might be related to the proliferating capacity of its epithelium. In this study, the aim was to evaluate and compare the distribution and staining intensity of P16 and cyclin D1 in OKC and unicystic ameloblastoma (UA). In this descriptive analytic study, hematoxylin- and eosin-stained slides of OKCs and UAs available from the archives of the oral pathology laboratory of the Esfahan School of Dentistry were examined. Twenty-five noninflamed solitary odontogenic keratocysts and 25 unicystic ameloblastomas (of either type) were selected and stained immunohistochemically. Distribution and staining intensity score (SID score) for P16- and cyclin D1-positive cells was calculated in both groups. Results were analyzed statistically with Wilcoxon, Friedman, and Mann-Whitney tests; P P16-positive cells was observed in the basal and suprabasal layers of keratocysts (P > 0.05) and central portions of UAs (P > 0.05). Expression of Cyclin D1 was higher in UAs compared to keratocyts (P P16 did not show a significant difference between the two study groups (P > 0.05). Cyclin D1 did show a higher staining intensity in UAs compared to the keratocysts, although the expression of P16 was similar in the studied groups. The invasive growth of OKC might be related to the state of expression of cyclin D1 and P16 in the epithelium of this cyst.

  13. Reduced expression of cyclin D2 is associated with poor recurrence-free survival independent of cyclin D1 in stage III non-small cell lung cancer.

    Science.gov (United States)

    Ko, Eunkyung; Kim, Yujin; Park, Seong-Eun; Cho, Eun Yoon; Han, Jungho; Shim, Young Mog; Park, Joobae; Kim, Duk-Hwan

    2012-08-01

    Compared to well-known function of cyclin D1 in lung cancer, the role of cyclin D2 is not clear. This study was aimed at understanding the clinicopathological significance of cyclin D2 in primary non-small cell lung cancer (NSCLC). We retrospectively analyzed expression statuses of cyclin D1, cyclin D2, p16, p21, p27, Ki-67, and phospho-pRb (Ser-807/811) using immunohistochemistry in 626 NSCLCs. Cyclin D2 was expressed in normal lung tissue, and its expression was reduced in 170 (27%) of 626 NSCLCs with a median duration of follow-up of 64 months. Mean phospho-pRb (Ser-807/811) levels were not associated with expression levels of cyclin D2 (P=0.15). The relationship between recurrence and the reduced expression of cyclin D2 was not homogenous by stage (Breslow-Day test for homogeneity, P=0.04). Reduced expression of cyclin D2 was not associated with patient's prognosis in 370 stage I, 112 stage II, and 18 stage IV NSCLCs. However, for 126 stage III NSCLCs, reduced expression of cyclin D2 was adversely associated with recurrence-free survival (RFS) (hazard ratio [HR]=3.71, 95% CI=1.54-13.17; P=0.01), independent of histology and expression of cyclin D1. The reduced expression of cyclin D2 was not associated with the overexpression of cyclin D1 (P=0.65). The present study suggests that reduced expression of cyclin D2 in stage III NSCLC may be associated with poor RFS. And, cyclin D2 may have a distinct role from cyclin D1 in NSCLC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. HIV-1 expression induces cyclin D1 expression and pRb phosphorylation in infected podocytes: cell-cycle mechanisms contributing to the proliferative phenotype in HIV-associated nephropathy

    Directory of Open Access Journals (Sweden)

    Husain Mohammad

    2002-09-01

    Full Text Available Abstract Background The aberrant cell-cycle progression of HIV-1-infected kidney cells plays a major role in the pathogenesis of HIV-associated nephropathy, however the mechanisms whereby HIV-1 induces infected glomerular podocytes or infected tubular epithelium to exit quiescence are largely unknown. Here, we ask whether the expression of HIV-1 genes in infected podocytes induces cyclin D1 and phospho-pRb (Ser780 expression, hallmarks of cyclin D1-mediated G1 → S phase progression. Results We assessed cyclin D1 and phospho-pRb (Ser780 expression in two well-characterized models of HIV-associated nephropathy pathogenesis: HIV-1 infection of cultured podocytes and HIV-1 transgenic mice (Tg26. Compared to controls, cultured podocytes expressing HIV-1 genes, and podocytes and tubular epithelium from hyperplastic nephrons in Tg26 kidneys, had increased levels of phospho-pRb (Ser780, a target of active cyclin D1/cyclin-dependent kinase-4/6 known to promote G1 → S phase progression. HIV-1-infected podocytes showed markedly elevated cyclin D1 mRNA and cyclin D1 protein, the latter of which did not down-regulate during cell-cell contact or differentiation, suggesting post-transcriptional stabilization of cyclin D1 protein levels by HIV-1. The selective suppression of HIV-1 transcription by the cyclin-dependent kinase inhibitor, flavopiridol, abrogated cyclin D1 expression, underlying the requirement for HIV-1 encoded products to induce cyclin D1. Indeed, HIV-1 virus deleted of nef failed to induce cyclin D1 mRNA to the level of other single gene mutant viruses. Conclusions HIV-1 expression induces cyclin D1 and phospho-pRb (Ser780 expression in infected podocytes, suggesting that HIV-1 activates cyclin D1-dependent cell-cycle mechanisms to promote proliferation of infected renal epithelium.

  15. Berberine inhibits cyclin D1 expression via suppressed binding of AP-1 transcription factors to CCND1 AP-1 motif

    Institute of Scientific and Technical Information of China (English)

    Ye LUO; Yu HAO; Tai-ping SHI; Wei-wei DENG; Na LI

    2008-01-01

    Aim: To verify the suppressive effect of berberine on the proliferation of the human pulmonary giant cell carcinoma cell line PG and to demonstrate the mecha-nisms behind the antitumoral effects of berberine. Methods: The proliferative effects of PG cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetry. The cell cycle was examined by flow cytometry. The expression level of cyclin D1 was detected by RT-PCR. The activities of the activating protein-1 (AP-1) and NF-κB signaling pathways related to cyclin D1 were examined by luciferase assay. The cytoplasmic level of c-Jun was detected by Western blot analysis. An electrophoretic mobility shift assay was used to examiae the binding of transcription factors to the cyclin D1 gene (CCNDl) AP-1 motif. Results: The results showed that the proliferation of PG cells treated with different concentrations (10, 20, and 40 μg/mL) of berberine for 24 and 48 h was suppressed significantly compared to the control group. After treatment with berberine, the proportion of PG cells at the G0/G1 phase increased, while cells at the S and G2/M phases decreased. Berberine could inhibit the expression of cyclin D1 in PG cells. Berberine inhibited the activity of the AP-1 signaling pathway, but had no significant effect on the NF-κB signaling pathway. Berberine suppressed the expression of c-Jun and decreased the binding of tran-scription factors to the CCND1 AP-1 motif. Conclusion: Berberine suppresses the activity of the AP-1 signaling pathway and decreases the binding of transcrip-tion factors to the CCND1 AP-1 motif. This is one of the important mechanisms behind the antitumoral effects of berberine as a regulator of cyclin D1.

  16. Alteration of the Cyclin D1/p16-pRB Pathway, Cellular Proliferation and Apoptosis in Glioma

    Institute of Scientific and Technical Information of China (English)

    WANGCun-zu; FUZhen; ZHAOZhu.qing

    2004-01-01

    To study the alteration of cyclin D1, p16 and pRB in glioma, analyze proliferation and apoptosis of tmnor cells, and discuss the pathogenesis of glioma, Methods : Thirty-seven glioma specimens were classified as astrocytoma(25 cases, including 7 fibrillary cases; 6 protoplasmic cases; 12 anaplastic cases), and glioblastoma( 12 cases, including 4 GBM cases). Ten normal brain tissues were taken as controls. The expression of cyclin D1, p16 and pRB were detected by imrnunohistochemical method, Cellular proliferation was assessed by Ki-67 label index( Ki-67 LI). Cellular apoptosis was detected by TUNEL and apoptotic indices(AI) was calculated. Resu/ts: The alterations of three proteins were cyclin D1 overexpression( 28/37,75.7% ), p16 and pRB deletion( 20/37.54.1% and 12/37,32.4% ), which were closely related to tumor types, particularly in malignant glioma. Ki-67 LI and AI were higher when pRB pathway was abnormal. Apoptosis was minor in astrocytic tumors( astrocytomas, 0.010±0.002; glioblastomas, 0.057±0.016). Condusion:The abnormalities of cyclin DI/pl6-pRB pathway correlated closely with pathogenesis of glioma.

  17. Investigating the Role of Cyclin D1 in the Promotion of Genomic Instability and Breast Cancer

    Science.gov (United States)

    2011-09-01

    20mM Tris, 40mM MgCl2, 2.5mM EGTA). Beads containing SCFFbx4 complexes 6 were then mixed with Sf9 -produced purified cyclin D1 substrate, ATP...ubiquitylation reactions with Sf9 -purified cyclin D1/CDK4 as substrate, in the presence of E1, E2, 1 ubiquitin, and ATP. 2 3 Figure 6. Fbx4 loss drives cell...kinase/methyltrans- ferase reactions with purified recombinant PRMT5/MEP50 pro- duced in Sf9 cells. PRMT5-dependent methyltransferase activity was

  18. Circadian variation in expression of G1 phase cyclins D1 and E and cyclin-dependent kinase inhibitors p16 and p21 in human bowel mucosa

    Institute of Scientific and Technical Information of China (English)

    John Griniatsos; George Marinos; John Bramis; Panayiotis O Michail; Othon P Michail; Stamatios Theocharis; Antonios Arvelakis; Ioannis Papaconstantinou; Evangelos Felekouras; Emmanouel Pikoulis; Ioannis Karavokyros; Chris Bakoyiannis

    2006-01-01

    AIM: To evaluate whether the cellular proliferation rate in the large bowel epithelial cells is characterized by circadian rhythm.METHODS: Between January 2003 and December 2004,twenty patients who were diagnosed as suffering from primary, resectable, non-metastatic adenocarcinoma of the lower rectum, infiltrating the sphincter mechanism,underwent abdominoperineal resection, total mesorectal excision and permanent left iliac colostomy. In formalinfixed and paraffin-embedded biopsy specimens obtained from the colostomy mucosa every six hours (00:00,06:00, 12:00, 18:00 and 24:00), we studied the expression of G1 phase cydins (D1 and E) as well as the expression of the G1 phase cyclin-dependent kinase (CDK)inhibitors p16 and p21 as indicators of cell cycle progression in colonic epithelial cells using immunohistochemical methods.RESULTS: The expression of both cyclins showed a similar circadian fashion obtaining their lowest and highest values at 00:00 and 18:00, respectively (P< 0.001).A circadian rhythm in the expression of CDK inhibitor proteins p16 and p21 was also observed, with the lowest levels obtained at 12:00 and 18:00 (P<0.001), respectively. When the complexes cyclins D1-p21 and E-p21were examined, the expression of the cyclins was adversely correlated to the p21 expression throughout the day. When the complexes the cyclins D1-p16 and E-p16were examined, high levels of p16 expression were correlated to low levels of cyclin expression at 00:00, 06:00and 24:00. Meanwhile, the highest expression levels of both cyclins were correlated to high levels of p16 expression at 18:00.CONCLUSION: Colonic epithelial cells seem to enter the G1 phase of the cell cycle during afternoon (between 12:00 and 18:00) with the highest rates obtained at 18:00. From a clinical point of view, the present results suggest that G1-phase specific anticancer therapies in afternoon might maximize their anti-tumor effect while minimizing toxicity.

  19. The tumor suppressor, parafibromin, mediates histone H3 K9 methylation for cyclin D1 repression.

    Science.gov (United States)

    Yang, Yong-Jin; Han, Jeung-Whan; Youn, Hong-Duk; Cho, Eun-Jung

    2010-01-01

    Parafibromin, a component of the RNA polymerase II-associated PAF1 complex, is a tumor suppressor linked to hyperparathyroidism-jaw tumor syndrome and sporadic parathyroid carcinoma. Parafibromin induces cell cycle arrest by repressing cyclin D1 via an unknown mechanism. Here, we show that parafibromin interacts with the histone methyltransferase, SUV39H1, and functions as a transcriptional repressor. The central region (128-227 amino acids) of parafibromin is important for both the interaction with SUV39H1 and transcriptional repression. Parafibromin associated with the promoter and coding regions of cyclin D1 and was required for the recruitment of SUV39H1 and the induction of H3 K9 methylation but not H3 K4 methylation. RNA interference analysis showed that SUV39H1 was critical for cyclin D1 repression. These data suggest that parafibromin plays an unexpected role as a repressor in addition to its widely known activity associated with transcriptional activation. Parafibromin as a part of the PAF1 complex might downregulate cyclin D1 expression by integrating repressive H3 K9 methylation during transcription.

  20. The coffee diterpene kahweol suppresses the cell proliferation by inducing cyclin D1 proteasomal degradation via ERK1/2, JNK and GKS3β-dependent threonine-286 phosphorylation in human colorectal cancer cells.

    Science.gov (United States)

    Park, Gwang Hun; Song, Hun Min; Jeong, Jin Boo

    2016-09-01

    Kahweol as a coffee-specific diterpene has been reported to exert anti-cancer properties. However, the mechanism responsible for the anti-cancer effects of kahweol is not fully understood. The main aim of this investigation was to determine the effect of kahweol on cell proliferation and the possible mechanisms in human colorectal cancer cells. Kahweol inhibited markedly the proliferation of human colorectal cancer cell lines such as HCT116, SW480. Kahweol decreased cyclin D1 protein level in HCT116 and SW480 cells. Contrast to protein levels, cyclin D1 mRNA level and promoter activity did not be changed by kahweol treatment. MG132 treatment attenuated kahweol-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in kahweol-treated cells. Kahweol increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated cyclin D1 degradation by kahweol. Inhibition of ERK1/2 by PD98059, JNK by SP600125 or GSK3β by LiCl suppressed cyclin D1 phosphorylation and downregulation by kahweol. Furthermore, the inhibition of nuclear export by LMB attenuated cyclin D1 degradation by kahweol. In conclusion, kahweol-mediated cyclin D1 degradation may contribute to the inhibition of the proliferation in human colorectal cancer cells.

  1. ATF7 is stabilized during mitosis in a CDK1-dependent manner and contributes to cyclin D1 expression.

    Science.gov (United States)

    Schaeffer, Etienne; Vigneron, Marc; Sibler, Annie-Paule; Oulad-Abdelghani, Mustapha; Chatton, Bruno; Donzeau, Mariel

    2015-01-01

    The transcription factor ATF7 undergoes multiple post-translational modifications, each of which has distinct effects upon ATF7 function. Here, we show that ATF7 phosphorylation on residue Thr112 exclusively occurs during mitosis, and that ATF7 is excluded from the condensed chromatin. Both processes are CDK1/cyclin B dependent. Using a transduced neutralizing monoclonal antibody directed against the Thr112 epitope in living cells, we could demonstrate that Thr112 phosphorylation protects endogenous ATF7 protein from degradation, while it has no effect on the displacement of ATF7 from the condensed chromatin. The crucial role of Thr112 phosphorylation in stabilizing ATF7 protein during mitosis was confirmed using phospho-mimetic and phospho-deficient mutants. Finally, silencing ATF7 by CRISPR/Cas9 technology leads to a decrease of cyclin D1 protein expression levels. We propose that mitotic stabilized ATF7 protein re-localizes onto chromatin at the end of telophase and contributes to induce the cyclin D1 gene expression.

  2. THE EXPRESSION OF p16 AND CYCLIN D1 IN PROLIFERATIVE ENDOMETRIUM AND ENDOMETRIAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To studythe role of p16 and cyclin in the genesis and development of endometrial car-cinoma. Methods 12 cases of normal endometrium, 22 cases of proliferative endometrium and 41 cases of endome- trial carcinoma were detected for the expression of p16 and cyclin D1 by means of immunohistochemical S-P. Results In normal endometrium p16 was expressed while cyclm D1was almost negative in the proliferative phase, but both of them were negative in the secretory phase. Among the groups of the simple and compound hyperplasia, the atypical hyperplasia and the endometrial carcinoma,the expression of p16 showed a descending tendency, while the expression of cyclin showed an ascending tendency. In endometrial carcinomas the expression of p16 was significantly lower than that of normal endometrium and proliferative endometrium (P<0. 01 ,P<0.05). However, the expression of cy- clin in proliferate endometrium and endometrial carcinoma was significantly higher than that in normal endometri- un (P<0. 05,P<0. 01). The overexpression of cyclin D1 in the atypical hyperplasia group was obviously different from that in the simple and compound hyperplasia group (P<0.01). In endometrial carcinoma,the expression of p16 was decreasing with the descending of cell differentiate degree, on the opposite, the expression of cyclin was in-creased and there existed a negative correlation between them. It was also observed that the overexpression of cyclin was significant different between and ( P <0. 01 ). Conclusion p1 6 is a negative regulating factor of cell cycle in endometrial carcinoma, while cyclin is a positive one. Both of them are important in the genesis and devel-opment of endometrial carcinoma. The Iow expression of p1 6 and the overexpression of cyclin are related with the malicious biological behaviors of endometrial carcinoma and maybe play an important role in the judgement of prog- nosis. Overexpression of cyclin may be an earlier molecular event in the genesis of

  3. Nm A Study of their Relationship with Prognosis and Protein Expression of p16,Rb,cylinD1 and PCNA in Lung Cancer%肺癌中p16及pRB与cyclinD1和PCNA基因蛋白的表达及预后意义的评估

    Institute of Scientific and Technical Information of China (English)

    许德凤; 高和; 笪冀平; 刘锦铭; 张开泰; 张波

    2004-01-01

    目的:研究抑癌基因蛋白p16、pRB、细胞周期素D1(cyclinD1)及PCNA在肺癌中的表达及与预后的关系.方法:应用免疫组织化学方法检测p16、pRB、cyclinD1及PCNA的表达,结果由COX回归模型与Kaplan-Meier单因素分析处理.结果:1)65例肺癌标本均示PCNA阳性,但表达程度不同,非小细胞肺癌(NSCLC)>小细胞肺癌(SCLC),P<0.05.PCNA高表达与p16-、pRB+、PT状况、远处转移呈正相关.增殖指数(PI)Ⅰ~Ⅱ级的生存时间≥24个月为81.82%,Ⅲ~Ⅳ级为18.18%,P<0.01.2)p16阳性率为50.77%,p16的表达与腺癌分化程度有关,高分化>中分化>低分化,P<0.01,与鳞癌分化无关.p16+与p16-患者生存期≥24个月的比率分别为72.73%和27.27%,P<0.05.pRB阳性表达率为58.46%,鳞癌、腺癌较高,SCLC较低,与生存期无关.cyclinD1阳性表达率为60.00%,其中磷癌72.41%,腺癌58.33%,SCLC 25.00%,P=0.05.3)p16-/pRB+细胞增殖活性较强,生存期较短;cyclinD1+/p16-/pRB+生存期较短,增殖活性较强.结论:PCNA及p16分别是肺癌进展及预后判断的独立指标;PCNA、p16、pRB、cyclinD1联合检测对肺癌的预后评估更有价值和更客观;小细胞肺癌pRB表达的缺失具有鉴别诊断意义.

  4. A study of their relationship with prognosis and protein expression of p16, pRB, cylinD1 and PCNA in NSCLC%NSCLC中p16、pRB、cyclinD1和PCNA基因蛋白的表达及预后意义的评估

    Institute of Scientific and Technical Information of China (English)

    许德凤; 高和; 笪冀平; 刘锦铭; 张开泰; 张波; 张锦

    2003-01-01

    目的研究抑癌基因蛋白p16、pRB、细胞周期素D1(cyclin D1)及PCNA在非小细胞肺癌(NSCLC)中的表达及与预后的关系.方法复查全部57例NSCLC患者病理切片,重新进行TNM分期和随访,应用免疫组化方法检测p16、pRB、cyclin D1及PCNA的表达,结果由Cox回归模型与Kaplan-Meier单因素分析处理.结果 (1)57例NSCLC标本均示PCNA阳性, PCNA高表达与p16(-)、pRB(+)、PT状况、远处转移呈正相关.增殖指数(PI)Ⅰ-Ⅱ级的生存时间≥24个月为81.82%,Ⅲ-Ⅳ级为18.18%,P<0.01.(2)细胞周期相关蛋白,p16阳性率是49.12%,p16的表达与腺癌分化有关,高分化>中分化>低分化,P<0.01.p16(+)与p16(-)患者生存期≥24个月的比率分别是72.73%和27.27%,P<0.05.pRB阳性表达率是64.91%.cyclin D1阳性表达率是64.91%.(3)p16(-)、pRB(+)细胞增殖活性较强,生存期较短;cyclinD1(+)、p16(-)、pRB(+)生存期较短,增殖活性较强.结论 PCNA及p16分别是NSCLC进展和预后判断的独立指标;PCNA、p16、pRB、cyclin D1联合检测对NSCLC的预后评估更有价值和客观.

  5. [Recombination and identification of sense and antisence CyclinD1 eukaryotic expression vectors and the effects of the vectors on the proliferation of airway smooth muscle cell in asthmatic rats].

    Science.gov (United States)

    Qiao, Li-Fen; Xu, Yong-Jian; Liu, Xian-Sheng; Xie, Jun-Gang; Du, Chun-Ling; Zhang, Jian; Ni, Wang; Chen, Shi-Xin

    2008-03-01

    This study is to investigate the expression of CyclinD1 in asthmatic rats and construct expression plasmids of sense and antisense CyclinD1 gene and transfect them to asthmatic airway smooth muscle cell to study the effects of CyclinD1 on the proliferation of airway smooth muscle cells in asthmatic rats. CyclinD1 cDNA was obtained by RT-PCR of total RNA extracted from the airway smooth muscle in asthmatic rats. The sequence was inserted into eukaryotic expression vector pcDNA3.1 (+) to recombinate the sense and antisense pcDNA3.1-CyclinD1 eukaryotic expression vector. The two recombinations and vector were then separately transfected into airway smooth muscle cell in asthmatic rats by using liposome. The expression level of CyclinD1 was certificated by Western blotting analysis. The proliferations of ASMCs isolated from asthmatic rats were examined with cell cycle analysis, MTT colorimetric assay and proliferating cell nuclear antigen (PCNA) immunocytochemical staining. Results showed (1) Compared with control group, the content of CyclinD1 was significantly increased; (2) It was comformed by restriction endonucleasa digestion and DNA sequence analysis that the expression plasmid of sense and antisense CyclinD1 were successfully recombinated. There was significant change of CyclinD1 expression between vector and sense CyclinD1 transfected cells, and the expression level of CyclinD1 in ASMC transfected with antisense CyclinD1 was lower than that in vector transfected cells (P <0.01); (3) In the asthmatic groups, compared with the vecter group, the percentage of S + G2M phase, absorbance A value of MTT and the expression rate of PCNA protein in ASMC transfected with pcDNA3. 1-CyclinD1 vector significantly increased. The values decreased remarkably in the pcDNA3,1-as CyclinD1 group. Statistical analysis revealed that there were significant differences in these indicators of cell proliferation in three groups (P <0.01). In the normal groups, statistical analysis

  6. Prognostic significance of cyclinD1 amplification and the co-alteration of cyclinD1/pRb/ppRb in patients with esophageal squamous cell carcinoma.

    Science.gov (United States)

    Wang, M-T; Chen, G; An, S-J; Chen, Z-H; Huang, Z-M; Xiao, P; Ben, X-S; Xie, Z; Chen, S-L; Luo, D-L; Tang, J-M; Lin, J-Y; Zhang, X-C; Wu, Y-L

    2012-01-01

    CyclinD1/pRb/ppRb is one of the most important pathways regulating the cell cycle, and related with the development of many cancers. However, the co-alteration of CyclinD1/pRb/ppRb in esophageal squamous cell carcinomas is less understood. This study aims to analyze the combined prognostic significance of cyclinD1 (CCND1) DNA amplification and the co-alteration of CCND1/pRb/ppRB in patients with esophageal squamous cell carcinoma. CCND1 DNA amplification and the protein expression of CCND1, pRb, and ppRb on 100 tumor specimens and 11 normal tissues were detected using real-time quantitative reverse transcription polymerase chain reaction and immunohistochemistry, respectively. Their prognosis significance was analyzed by Kaplan-Meier method. We found that 41% of the patients had CCND1 DNA amplification, which had a short survival time compared with the patients without CCND1 amplification (25.63 months vs. not reached, P=0.007). The patients with the co-alternation of CCND1(+) /pRb(-) /ppRb(+) protein expression levels have a poorer overall survival than the others (11.4 vs. 43.4 months, P=0.001). Cox regression analysis showed that the co-alternation of CCND1/pRb/ppRb and CyclinD1 amplification were the two most independent prognosis factors of patients with esophageal cancer. These findings suggested that CCND1 amplification and co-alternation of CCND1(+) /pRb(-) /ppRb(+) may play a crucial role in the prognostic evaluation of patients with esophageal cancer, and the patients with CCND1(+) /pRb(-) /ppRb(+) have the worst prognosis in all the patients. The results also indicated that the patients with CCND1 amplification or co-alternation of CyclinD1(+) /pRb(-) /ppRb(+) might be the preponderant people for therapy targeting the CCND1/pRb/ppRb pathway in the future.

  7. PAC exhibits potent anti-colon cancer properties through targeting cyclin D1 and suppressing epithelial-to-mesenchymal transition.

    Science.gov (United States)

    Al-Qasem, Abeer; Al-Howail, Huda A; Al-Swailem, Mashael; Al-Mazrou, Amer; Al-Otaibi, Basem; Al-Jammaz, Ibrahim; Al-Khalaf, Huda H; Aboussekhra, Abdelilah

    2016-03-01

    Colorectal cancer (CRC) is a major cause of cancer morbidity and mortality worldwide. Although response rates and overall survival have been improved in recent years, resistance to multiple drug combinations is inevitable. Therefore, the development of more efficient drugs, with fewer side effects is urgently needed. To this end, we have investigated in the present report the effect of PAC, a novel cucumin analogue, on CRC cells both in vitro and in vivo. We have shown that PAC induces apoptosis, mainly via the internal mitochondrial route, and inhibits cell proliferation through delaying the cell cycle at G2/M phase. Interestingly, the pro-apoptotic effect was mediated through STAT3-dependent down-regulation of cyclin D1 and its downstream target survivin. Indeed, change in the expression level of cyclin D1 modulated the expression of survivin and the response of CRC cells to PAC. Furthermore, using the ChIP assay, we have shown PAC-dependent reduction in the binding of STAT3 to the cyclin D1 promoter in vivo. Additionally, PAC suppressed the epithelial-to-mesenchymal process through down-regulating the mesenchymal markers (N-cadherin, vimentin and Twist1) and inhibiting the invasion/migration abilities of the CRC cells via repressing the pro-migration/invasion protein kinases AKT and ERK1/2. In addition, PAC inhibited tumor growth and repressed the JAK2/STAT3, AKT/mTOR and MEK/ERK pathways as well as their common downstream effectors cyclin D1 and survivin in humanized CRC xenografts. Collectively, these results indicate that PAC has potent anti-CRC effects, and therefore could constitute an effective alternative chemotherapeutic agent, which may consolidate the adjuvant treatment of colon cancer.

  8. Effect of human papillomavirus on cell cycle-related proteins p16INK4A, p21waf1/cip1, p53 and cyclin D1 in sinonasal inverted papilloma and laryngeal carcinoma. An in situ hybridization study

    Directory of Open Access Journals (Sweden)

    Marian Danilewicz

    2011-04-01

    Full Text Available Human papillomavirus (HPV infection is implicated as an important risk factor in the development of head and neck cancers. Many studies focusing on the relationships between HPV infection and cell cycle proteins immunoexpression in laryngeal lesions have provided contradictory results. The aim of this study was to evaluate the relationships between HPV DNA presence and p16INK4a, p21waf1/cip1, p53 and cyclin D1 immunoexpression in heterogenous HPV-positive and HPV-negative groups of laryngeal cancers and inverted papillomas. The HPV DNA expression was detected using an in situ hybridization method and immunoexpression of p16INK4a, p21waf1/cip1, p53 and cyclin D1 using immunohistochemistry. The immunoexpression of p21waf1/ /cip1 and p53 proteins was lower in the HPV-positive group compared to the HPV-negative group, although only the difference of p53 staining was statistically significant. The immunoexpression of p16INK4a and cyclin D1 was significantly increased in the HPV-positive group compared to the HPV-negative group. The increased immunoexpression of p16INK4a and cyclin D1, and the lower immunoexpression of p21waf1/cip1 and p53 in the HPV-positive group compared to the HPV-negative group, supports the hypothesis that HPV may play an important role in cell cycle dysregulation. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 1, pp. 34–40

  9. Gene expression of miRNA-138 and cyclin D1 in oral lichen planus.

    Science.gov (United States)

    Ghallab, Noha A; Kasem, Rehab Fawzy; El-Ghani, Safa Fathy Abd; Shaker, Olfat G

    2017-03-08

    This study aimed to evaluate microRNA-138 (miR-138) gene expression and its target cyclin D1 (CCND1) gene and protein expression in oral lichen planus (OLP) mucosa in an attempt to investigate their possible roles in OLP immunopathogenesis. Sixty oral biopsy specimens were harvested from 30 healthy subjects and 30 OLP patients, subdivided into reticular, atrophic, and erosive groups (n = 10 each). Samples were subjected to quantitative real-time polymerase chain reaction analysis for quantification of miR-138 and CCND1 relative gene expression and immunohistochemical analysis to determine CCND1 protein expression. Samples from OLP patients had a significant underexpression of miR-138 gene and overexpression of CCND1 at both gene and protein levels compared to normal mucosa samples. The lowest levels of miR-138 expression were observed in atrophic and erosive OLP compared to reticular OLP, and the highest levels of CCND1 gene and protein expression were in atrophic OLP. An inverse correlation was demonstrated between the miR-138 expression and both CCND1 gene and protein expression in OLP patients. A significant positive correlation between CCND1 gene and protein expression was also observed. Downregulation of miR-138 increases the gene and protein expression of its potential target CCND1 in OLP mucosa which might have a pivotal role in the disease pathogenesis. This research implied that miR-138 may have a role in identification of symptomatic OLP lesions. MiR-138 might be considered as a potential tool in future OLP molecular therapy.

  10. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuesong; Gong, Xuhai [Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001 (China); Chen, Jing [Department of Neurology, Daqing Longnan Hospital, Daqing, Heilongjiang, 163001 China (China); Zhang, Jinghui [Department of Cardiology, The Fourth Hospital of Harbin City, Harbin, Heilongjiang 150026 (China); Sun, Jiahang [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China); Guo, Mian, E-mail: guomian_hyd@163.com [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China)

    2015-05-08

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.

  11. Peroxisome proliferator-activated receptor gamma agonists induce proteasome-dependent degradation of cyclin D1 and estrogen receptor alpha in MCF-7 breast cancer cells.

    Science.gov (United States)

    Qin, Chunhua; Burghardt, Robert; Smith, Roger; Wormke, Mark; Stewart, Jessica; Safe, Stephen

    2003-03-01

    Treatment of MCF-7 cells with the peroxisome proliferator-activated receptor (PPAR) gamma agonists ciglitazone or 15-deoxy-Delta 12,14-prostaglandin J2 resulted in a concentration- and time-dependent decrease of cyclin D1 and estrogen receptor (ER) alpha proteins, and this was accompanied by decreased cell proliferation and G(1)-G(0)-->S-phase progression. Down-regulation of cyclin D1 and ER alpha by PPARgamma agonists was inhibited in cells cotreated with the proteasome inhibitors MG132 and PSII, but not in cells cotreated with the protease inhibitors calpain II and calpeptin. Moreover, after treatment of MCF-7 cells with 15-deoxy-Delta 12,14-prostaglandin J2 and immunoprecipitation with cyclin D1 or ER alpha antibodies, there was enhanced formation of ubiquitinated cyclin D1 and ER alpha bands. Thus, PPARgamma-induced inhibition of breast cancer cell growth is due, in part, to proteasome-dependent degradation of cyclin D1 (and ER alpha), and this pathway may be important for other cancer cell lines.

  12. Immunohistochemical analysis of p53, cyclinD1, RB1, c-fos and N-ras gene expression in hepatocellular carcinoma in Iran

    Institute of Scientific and Technical Information of China (English)

    SJ Moghaddam; EN Haghighi; S Samiee; N Shahid; AR Keramati; S Dadgar; MR Zali

    2007-01-01

    AIM: To study the effect of some genes especially those involved in cell cycle regulation on hepatocellular carcinoma.METHODS: Paraffin-embedded tissue samples of 25 patients (18 males and 7 females) with hepatocellular carcinoma were collected from 22 pathology centers in Tehran during 2000-2001, and stained using immunohistochemistry method (avidin-biotin-peroxidase)for detection of p53, cyclinD1, RB1, c-fos and N-ras proteins.RESULTS: Six (24%), 5 (20%), 12 (48%) and 2 samples (8%) were positive for p53, cyclinD1, C-fos and N-ras expression, respectively. Twenty-two (88%) samples had alterations in the G1 cell-cycle checkpoint protein expression (RB1 or cyclinD1). P53 positive samples showed a higher (9 times) risk of being positive for RB1 protein than p53 negative samples. Loss of expression of RB1 in association with p53 over-expression was observed in 4 (66.7%) of 6 samples. Loss of expression of RB1 was seen in all cyclinD1 positive, 20 (90.9%) N-ras negative, and 11 (50%) C-fos positive samples,respectively. CyclinD1 positive samples showed a higher (2.85 and 4.75 times) risk of being positive for c-fos and N-ras expression than cyclinD1 negative samples.CONCLUSION: The expression of p53, RB1 and c-fos genes appears to have a key role in the pathogenesis of hepatocellular carcinoma in Iran. Simultaneous overexpression of these genes is significantly associated with their loss of expression during development of hepatocellular carcinoma.

  13. Hairy cell leukemia with translocation (11;20)(q13;q11) and overexpression of cyclin D1.

    Science.gov (United States)

    Ishida, F; Kitano, K; Ichikawa, N; Ito, T; Kohara, Y; Taniguchi, T; Motokura, T; Kiyosawa, K

    1999-08-01

    We report on a male Japanese patient with hairy cell leukemia (HCL). A cytogenetic study with lipopolysaccharide stimuli showed a novel translocation (11;20)(q13;q11) in 10% of the analyzed cells. Northern blot analysis and RT-PCR analysis for cyclin D1 revealed the overexpression of cyclin D1, although the southern blot analysis of PRAD1 gene showed no rearrangement. In this particular case, the t(11;20)(q13;q11) might play some role in the oncogenesis of HCL and the overexpression of cyclin D1.

  14. p14ARF post-transcriptional regulation of nuclear cyclin D1 in MCF-7 breast cancer cells: discrimination between a good and bad prognosis?

    Directory of Open Access Journals (Sweden)

    Eileen M McGowan

    Full Text Available As part of a cell's inherent protection against carcinogenesis, p14ARF is upregulated in response to hyperproliferative signalling to induce cell cycle arrest. This property makes p14ARF a leading candidate for cancer therapy. This study explores the consequences of reactivating p14ARF in breast cancer and the potential of targeting p14ARF in breast cancer treatment. Our results show that activation of the p14ARF-p53-p21-Rb pathway in the estrogen sensitive MCF-7 breast cancer cells induces many hallmarks of senescence including a large flat cell morphology, multinucleation, senescence-associated-β-gal staining, and rapid G1 and G2/M phase cell cycle arrest. P14ARF also induces the expression of the proto-oncogene cyclin D1, which is most often associated with a transition from G1-S phase and is highly expressed in breast cancers with poor clinical prognosis. In this study, siRNA knockdown of cyclin D1, p21 and p53 show p21 plays a pivotal role in the maintenance of high cyclin D1 expression, cell cycle and growth arrest post-p14ARF induction. High p53 and p14ARF expression and low p21/cyclin D1 did not cause cell-cycle arrest. Knockdown of cyclin D1 stops proliferation but does not reverse senescence-associated cell growth. Furthermore, cyclin D1 accumulation in the nucleus post-p14ARF activation correlated with a rapid loss of nucleolar Ki-67 protein and inhibition of DNA synthesis. Latent effects of the p14ARF-induced cellular processes resulting from high nuclear cyclin D1 accumulation included a redistribution of Ki-67 into the nucleoli, aberrant nuclear growth (multinucleation, and cell proliferation. Lastly, downregulation of cyclin D1 through inhibition of ER abrogated latent recurrence. The mediation of these latent effects by continuous expression of p14ARF further suggests a novel mechanism whereby dysregulation of cyclin D1 could have a double-edged effect. Our results suggest that p14ARF induced-senescence is related to late

  15. Effect of cAMP analogs on cyclinD1 expression of human breast cancer cells%cAMP类似物对人乳腺癌细胞cyclinD1表达的影响

    Institute of Scientific and Technical Information of China (English)

    王锦华; 陈奎生; 张云汉; 罗伟

    2003-01-01

    目的探讨cAMP类似物对人乳腺癌细胞增殖相关cyclinD1基因表达的影响.方法体外分组原代培养人乳腺癌细胞,采用原位杂交方法研究cAMP类似物对人乳腺癌细胞中cyclinD1基因表达的变化.结果 8-Br-cAMP、8-Cl-cAMP均下调乳腺癌细胞中cyclinD1基因表达,且后者下降作用更明显.结论 cAMP类似物可通过影响与乳腺癌细胞增殖相关cyclinD1表达从而抑制乳腺癌细胞生长.

  16. 胃癌组织中p16、 Cyclin D1和Survivin的表达及其相关性%Expression and correlation of p16, Cyclin D1 and Survivin in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    魏卓文; 党冬梅

    2014-01-01

    目的 研究p16、Cyclin D1和Survivin在胃癌中的表达及其相关性.方法 应用免疫组化S-P法检测正常胃黏膜组织、不典型增生和胃癌组织中p16、Cyclin D1和Survivin的表达.结果 正常胃黏膜和不典型增生组织中p16的表达率高于Cyclin D1和Survivin的表达,胃癌组织中p16的表达率低于二者;p16、Cyclin D1和Survivin的表达与胃癌患者年龄、性别均无关;p16的表达与淋巴结转移相关(P<0.05);Cyclin D1的表达与组织分化程度、淋巴结转移相关(P <0.001;P <0.05);Survivin的表达与组织分化程度相关(P<0.05).且p16与Cyclin D1在胃癌组织中的表达呈负相关(r=-0.486),p16与Survivin也呈负相关(r=-0.518),Cyclin D1与Survivin呈正相关(r=0.431).结论 p16、Cyclin D1和Survivin与胃癌的发生发展和预后关系密切.

  17. Detection of cyclin D1 mRNA by hybridization sensitive NIC-oligonucleotide probe.

    Science.gov (United States)

    Kovaliov, Marina; Segal, Meirav; Kafri, Pinhas; Yavin, Eylon; Shav-Tal, Yaron; Fischer, Bilha

    2014-05-01

    A large group of fluorescent hybridization probes, includes intercalating dyes for example thiazole orange (TO). Usually TO is coupled to nucleic acids post-synthetically which severely limits its use. Here, we have developed a phosphoramidite monomer, 10, and prepared a 2'-OMe-RNA probe, labeled with 5-(trans-N-hexen-1-yl-)-TO-2'-deoxy-uridine nucleoside, dU(TO), (Nucleoside bearing an Inter-Calating moiety, NIC), for selective mRNA detection. We investigated a series of 15-mer 2'-OMe-RNA probes, targeting the cyclin D1 mRNA, containing one or several dU(TO) at various positions. dU(TO)-2'-OMe-RNA exhibited up to 7-fold enhancement of TO emission intensity upon hybridization with the complementary RNA versus that of the oligomer alone. This NIC-probe was applied for the specific detection of a very small amount of a breast cancer marker, cyclin D1 mRNA, in total RNA extract from cancerous cells (250 ng/μl). Furthermore, this NIC-probe was found to be superior to our related NIF (Nucleoside with Intrinsic Fluorescence)-probe which could detect cyclin D1 mRNA target only at high concentrations (1840 ng/μl). Additionally, dU(T) can be used as a monomer in solid-phase oligonucleotide synthesis, thus avoiding the need for post-synthetic modification of oligonucleotide probes. Hence, we propose dU(TO) oligonucleotides, as hybridization probes for the detection of specific RNA in homogeneous solutions and for the diagnosis of breast cancer.

  18. Coffee Polyphenols Change the Expression of STAT5B and ATF-2 Modifying Cyclin D1 Levels in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Carlota Oleaga

    2012-01-01

    Full Text Available Background. Epidemiological studies suggest that coffee consumption reduces the risk of cancer, but the molecular mechanisms of its chemopreventive effects remain unknown. Objective. To identify differentially expressed genes upon incubation of HT29 colon cancer cells with instant caffeinated coffee (ICC or caffeic acid (CA using whole-genome microarrays. Results. ICC incubation of HT29 cells caused the overexpression of 57 genes and the underexpression of 161, while CA incubation induced the overexpression of 12 genes and the underexpression of 32. Using Venn-Diagrams, we built a list of five overexpressed genes and twelve underexpressed genes in common between the two experimental conditions. This list was used to generate a biological association network in which STAT5B and ATF-2 appeared as highly interconnected nodes. STAT5B overexpression was confirmed at the mRNA and protein levels. For ATF-2, the changes in mRNA levels were confirmed for both ICC and CA, whereas the decrease in protein levels was only observed in CA-treated cells. The levels of cyclin D1, a target gene for both STAT5B and ATF-2, were downregulated by CA in colon cancer cells and by ICC and CA in breast cancer cells. Conclusions. Coffee polyphenols are able to affect cyclin D1 expression in cancer cells through the modulation of STAT5B and ATF-2.

  19. Coffee polyphenols change the expression of STAT5B and ATF-2 modifying cyclin D1 levels in cancer cells.

    Science.gov (United States)

    Oleaga, Carlota; Ciudad, Carlos J; Noé, Véronique; Izquierdo-Pulido, Maria

    2012-01-01

    Epidemiological studies suggest that coffee consumption reduces the risk of cancer, but the molecular mechanisms of its chemopreventive effects remain unknown. To identify differentially expressed genes upon incubation of HT29 colon cancer cells with instant caffeinated coffee (ICC) or caffeic acid (CA) using whole-genome microarrays. ICC incubation of HT29 cells caused the overexpression of 57 genes and the underexpression of 161, while CA incubation induced the overexpression of 12 genes and the underexpression of 32. Using Venn-Diagrams, we built a list of five overexpressed genes and twelve underexpressed genes in common between the two experimental conditions. This list was used to generate a biological association network in which STAT5B and ATF-2 appeared as highly interconnected nodes. STAT5B overexpression was confirmed at the mRNA and protein levels. For ATF-2, the changes in mRNA levels were confirmed for both ICC and CA, whereas the decrease in protein levels was only observed in CA-treated cells. The levels of cyclin D1, a target gene for both STAT5B and ATF-2, were downregulated by CA in colon cancer cells and by ICC and CA in breast cancer cells. Coffee polyphenols are able to affect cyclin D1 expression in cancer cells through the modulation of STAT5B and ATF-2.

  20. Prevalence and clinical implications of cyclin D1 expression in diffuse large B-cell lymphoma (DLBCL) treated with immunochemotherapy

    DEFF Research Database (Denmark)

    Ok, Chi Young; Xu-Monette, Zijun Y; Tzankov, Alexandar

    2014-01-01

    BACKGROUND: Cyclin D1 expression has been reported in a subset of patients with diffuse large B-cell leukemia (DLBCL), but studies have been few and generally small, and they have demonstrated no obvious clinical implications attributable to cyclin D1 expression. METHODS: The authors reviewed 1435...... patients expressed cyclin D2. Gene expression profiling indicated that 17 tumors were of the germinal center type, and 13 were of the activated B-cell type. Genetic aberrations of B-cell leukemia/lymphoma 2 (BCL2), BCL6, v-myc avian myelocytomatosis viral oncogene homolog (MYC), mouse double minute 2...

  1. MicroRNA-520b inhibits growth of hepatoma cells by targeting MEKK2 and cyclin D1.

    Directory of Open Access Journals (Sweden)

    Weiying Zhang

    Full Text Available Growing evidence indicates that the deregulation of microRNAs (miRNAs contributes to the tumorigenesis. We previously revealed that microRNA-520b (miR-520b was involved in the complement attack and migration of breast cancer cells. In this report, we show that miR-520b is an important miRNA in the development of hepatocellular carcinoma (HCC. Our data showed that the expression levels of miR-520b were significantly reduced in clinical HCC tissues and hepatoma cell lines. We observed that the introduction of miR-520b dramatically suppressed the growth of hepatoma cells by colony formation assays, 5-ethynyl-2-deoxyuridine (EdU incorporation assays and 3-(4,5- dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. Moreover, ectopic expression of miR-520b was able to inhibit the growth of hepatoma cells in nude mice. Further studies revealed that the mitogen-activated protein kinase kinase kinase 2 (MEKK2 and cyclin D1 were two of direct target genes of miR-520b. Silencing of MEKK2 or cyclin D1 was able to inhibit the growth of hepatoma cells in vitro and in vivo, which is consistent with the effect of miR-520b overexpression on the growth of hepatoma cells. In addition, miR-520b significantly decreased the phosphorylation levels of c-Jun N-terminal kinase (p-JNK, a downstream effector of MEKK2 or retinoblastoma (p-Rb, a downstream effector of cyclin D1. In conclusion, miR-520b is able to inhibit the growth of hepatoma cells by targeting MEKK2 or cyclin D1 in vitro and in vivo. Our findings provide new insights into the role of miR-520b in the development of HCC, and implicate the potential application of miR-520b in cancer therapy.

  2. Construction of CyclinD1 Gene Overexpression Lentivirus Vector and Its Effect on the Proliferation of Neural Stem Cells%CyclinD1基因过表达慢病毒载体的构建和对神经干细胞增殖的影响

    Institute of Scientific and Technical Information of China (English)

    马俊芳; 崔博; 沈东超; 崔丽英

    2015-01-01

    Objective:In order to study the effect of cyclinD1 on neural stem cell proliferation, the cyclinD1 gene overexpression lentiviral vector was constructed and the expression of cyclinD1 in neural stem cells in mice after transfection was tested. Methods: Nestin promoter-Ccnd1 gene was inserted into plenti6 lentiviral expression vec-tors by DNA recombination technique. Lentiviral vector plenti-D1 was established after recombination. Recombi-nant lentiviral vector was detected by DNA sequencing. The plenti-D1 was transfected into 293T cell line. The viruses yielded by 293T cell were transfected into mouse embryonic neural stem cells. The expression of cyclinD1 was detected by real-time PCR and Western Blot analysis after transfection. We studied the effects of different MOI values of plenti-D1 on neural stem cell proliferation by MTT assay. Results: It was confirmed by DNA sequencing that the cyclinD1 gene sequencing was correctly inserted into the vector, and that the cyclinD1 gene overexpression lentiviral vector was successfully constructed. After extracting the infected cells, the real-time PCR showed cy-clinD1 mRNA overexpression was significantly higher than the control groups; Western Blot analysis was used to detect expression of cyclinD1 protein in neural stem cells. The cyclinD1 gene overexpression lentiviral vector was significantly up-regulated in mRNA level or in protein level in neural stem cells. When the MOI was 10, 20, and 50, the viruses significantly promoted the proliferation of neural stem cells. Conclusion: The cyclinD1 gene overex-pression lentiviral vector was successfully constructed and it efficiently up-regulated the expression of cyclinD1 in mouse embryonic neural stem cells. CyclinD1 overexpression can promote the proliferation of neural stem cells.%目的:针对小鼠 cyclinD1基因构建质粒并进行慢病毒包装,转染小鼠神经干细胞,检测其表达水平。方法:根据 cyclinD1基因信息,采用 DNA

  3. 针灸对环磷酰胺所致骨髓抑制小鼠骨髓细胞周期调节蛋白Cyclin D1表达及细胞周期的动态影响%Study on Dynamic Effect of Acupuncture on Marrow Cell Cycle Regulatory Protein Cyclin D1 Expression and Cell Cycle in Mice with Cyclophosphamide Induced Myelosuppression

    Institute of Scientific and Technical Information of China (English)

    路玫; 曹大明; 赵喜新; 李道明; 李建伟; 金玉晶; 秦庆广; 高杨

    2011-01-01

    Objective To explore the molecular biological mechanism of acupuncture and moxibustion (A&M) in reducing chemotherapy-related toxicity, relieving myelosuppression and increasing peripheral white blood cells (WBC).Methods Two hundred and twenty-four male Kunming mice of clean grade were randomized equally into 4 groups, the blank control group (A), the model group (B), the acupuncture group (C), and the moxibustion group (D).Except those in Group A, mice were duplicated into myelosuppression model with cyclophosphamide (CTX) using the accepted method.After being modeled, mice in Group C and D were treated with acupuncture and moxibustion respectively, once a day for 7 successive days, while those in Group A and B were dealt with the same actions (seizing and fixing) every day but no therapy was given.From day 2 to day 7 of the treatment, 8 mice were taken from every group per day and killed in batches.Their peripheral WBC was counted and bone marrow for detecting Cyclin D1 expression and percentages of bone marrow cells in different cycle stages using immunohistochemistry and flow cytometer respectively.Results WBC count restored to exceed the baseline in group C and D at day 5 of the treatment, being one day earlier than that in group B.Cyclin D1 expression in the bone marrow raised in Group C and D, and reached the peak at day 4, showing significant difference as compared with that in Group B ( P <0.01 ).The phase G1 marrow cell percentages in Group C and D was lower than that in Group B at all days of detection, showing statistical significance at day 2 -4 (P<0.05 or P<0.01 ); while the percentages of phase S and G2-M cells in the two treated groups was higher than that in group B all the times.Conclusions While CTX damaged marrow cells, it intervened the cell cycle regularity and reduced the DNA content to cause myelosuppression and leucocytopenia.A&M therapy could improve the Cyclin D1 expression, speed up the cell transition from phase G1 to phase S and

  4. 细胞周期调控相关蛋白Cyclin D1、CDK 4和pRb在新疆维吾尔族妇女宫颈癌中的表达及意义%Expression and Significance of CyclinD1, CDK4 and pRb in Cervical Carcinomas in Xinjiang Uigur Women

    Institute of Scientific and Technical Information of China (English)

    付锦艳; 潘晓琳; 杨安强

    2009-01-01

    Objective To study the expression and tsignificance of Cyclin D1, CDK4 and the levels of phosphorylated pRb in cervical carcinoma in Xinjiang Uigur Women. Methods The expression of Cyclin D1,CDK4 protein and phosphorylation status of pRb were detected by immunohistochemistry in 64 cervical carcinoma tissues and 43 normal cervical tissues. Results In cervical carcinomas, the positive rate of Cyclin D1 and CDK4 were 70% and 87%, respectively. There were significant differences of CyclinD1 and CDK4 protein compared with normal cervical tissues(P<0.01). Phosphorylation status of pRb had significant difference in the two groups (P<0.01). Conclusion The overexpression of Cyclin D1 and CDK4 and the hyperphosphorylation of pRb may have relationship with carcinogenesis and the development of cervical cancer in Xinjiang Uigur Women.%目的 探讨细胞周期调控相关蛋白Cyclin D1、CDK 4和pRb磷酸化状态在新疆维吾尔族妇女宫颈癌(简称维族)中表达及其意义.方法 应用免疫组织化学方法 检测64例维族宫颈癌及43例维族正常宫颈组织中Cyclin D1、CDK 4表达和pRb磷酸化状态.结果 Cyclin D1和CDK4在宫颈癌组中阳性率分别为70%、87%,与正常宫颈组相比,差异有统计学意义(P<0.05),pRb磷酸化在两组中差异有统计学意义(P<0.01).结论 Cyclin D1与CDK4蛋白的高表达及pRb高磷酸化可能与维族宫颈癌发生发展有关.

  5. FGFR-1、cyclinD1在乳腺癌中的表达及其临床意义%Expression and clinical significance of FGFR-1, cyclinD1 in breast carcinoma

    Institute of Scientific and Technical Information of China (English)

    邓敏; 解瑞飞; 王惠

    2016-01-01

    目的 探讨成纤维生长因子受体(fibroblast growth factor receptor,FGFR-1)及细胞周期蛋白D1 (cyclinD1)在乳腺癌组织中的表达及其临床意义.方法 应用原位杂交及免疫组织化学S-P法检测乳腺癌、乳腺纤维腺瘤和正常乳腺组织中FGFR-1、cyclinD1 mRNA及蛋白水平的表达.结果 在乳腺癌中,FGFR-1蛋白和FGFR-1基因的阳性率分别为70.0%(21/30)、70.0%(21/30),cyclinD1蛋白和cyclinD1基因的阳性率分别为66.7%(20/30)、76.7%(23/30),明显高于纤维腺瘤与正常乳腺组织(P<0.05),FGFR-1表达与cyclinD1表达一致.结论 FGFR-1的过表达在人类乳腺癌的发生、发展中起重要作用,其机制可能通过上调cyclinD1的表达发挥作用,FGFR-1、cyclinD1的过度表达可作为判断乳腺癌预后的重要指标.

  6. Human RAD6 Promotes G1-S Transition and Cell Proliferation through Upregulation of Cyclin D1 Expression

    Science.gov (United States)

    Biskup, Ewelina; Liu, Yan; Chen, Pei-Chao; Chang, Jian-Feng; Jiang, Wenjie; Jing, Yuanya; Chen, Youwei; Jin, Hui; Chen, Su

    2014-01-01

    Protein ubiquitinylation regulates protein stability and activity. RAD6, an E2 ubiquitin-conjugating enzyme, which that has been substantially biochemically characterized, functions in a number of biologically relevant pathways, including cell cycle progression. In this study, we show that RAD6 promotes the G1-S transition and cell proliferation by regulating the expression of cyclin D1 (CCND1) in human cells. Furthermore, our data indicate that RAD6 influences the transcription of CCND1 by increasing monoubiquitinylation of histone H2B and trimethylation of H3K4 in the CCND1 promoter region. Our study presents, for the first time, an evidence for the function of RAD6 in cell cycle progression and cell proliferation in human cells, raising the possibility that RAD6 could be a new target for molecular diagnosis and prognosis in cancer therapeutics. PMID:25409181

  7. Human RAD6 promotes G1-S transition and cell proliferation through upregulation of cyclin D1 expression.

    Directory of Open Access Journals (Sweden)

    Fengfeng Cai

    Full Text Available Protein ubiquitinylation regulates protein stability and activity. RAD6, an E2 ubiquitin-conjugating enzyme, which that has been substantially biochemically characterized, functions in a number of biologically relevant pathways, including cell cycle progression. In this study, we show that RAD6 promotes the G1-S transition and cell proliferation by regulating the expression of cyclin D1 (CCND1 in human cells. Furthermore, our data indicate that RAD6 influences the transcription of CCND1 by increasing monoubiquitinylation of histone H2B and trimethylation of H3K4 in the CCND1 promoter region. Our study presents, for the first time, an evidence for the function of RAD6 in cell cycle progression and cell proliferation in human cells, raising the possibility that RAD6 could be a new target for molecular diagnosis and prognosis in cancer therapeutics.

  8. 甲状腺乳头状癌组织中SOX2和 CyclinD1的表达及相关性%Expressions of SOX2 and CyclinD1 in the Papillary Thyroid Carcinoma

    Institute of Scientific and Technical Information of China (English)

    董斌

    2016-01-01

    目的:探讨甲状腺乳头状癌组织中性别决定区 Y 框蛋白(SOX2)和细胞周期素 D1CyclinD1)的表达及相关性。方法采用免疫组化 S-P 法检测100例甲状腺乳头状癌和50例癌旁正常甲状腺组织中 SOX2和 CyclinD1的表达,并分析两者与甲状腺乳头状癌患者临床病理参数的关系。结果甲状腺乳头状癌组织中 SOX2和 CyclinD1的阳性率分别为80.0%和73.0%,均高于癌旁正常甲状腺组织的10.0%和4.0%,差异有统计学意义(P <0.05)。甲状腺乳头状癌组织中 SOX2和 CyclinD1的表达与其临床分期、淋巴结转移关系密切(P <0.05)。甲状腺乳头状癌组织中 SOX2和 CyclinD1的表达呈正相关(r =0.597,P <0.05)。结论甲状腺乳头状癌组织中 SOX2和 CyclinD1存在表达,两者可能共同参与了甲状腺乳头状癌的疾病进展。%Objective To investigate the expressions of sex determining region Y-box(SOX2)and CyclinD1 in the patients with papillary thyroid carcinoma and the correlation. Methods Immunohistochemical S-P method was used to detect the expressions of SOX2 and CyclinD1 in the 100 patients with papillary thyroid carcinoma and 50 pa-tients with paraneoplastic normal thyroid tissues,their relationship with clinicopathological parameters were ana-lyzed. Results The positive rates of SOX2 and CyclinD1 in the papillary thyroid carcinoma were 80. 0% and 73. 0% ,and were 10. 0% and 4. 0% in the paraneoplastic normal thyroid tissues(P < 0. 05). The expressions of SOX2 and CyclinD1 in the papillary thyroid carcinoma were related with clinical stage and lymph node metastasis (P < 0. 05). In the papillary thyroid carcinoma,the expression of SOX2 was positively related with CyclinD1(r =0. 597,P < 0. 05). Conclusion high expressions of SOX2 and CyclinD1 are observed in the papillary thyroid carci-noma,and may be related to the development of papillary thyroid carcinoma.

  9. Detection of mRNA of the cyclin D1 breast cancer marker by a novel duplex-DNA probe.

    Science.gov (United States)

    Segal, Meirav; Yavin, Eylon; Kafri, Pinhas; Shav-Tal, Yaron; Fischer, Bilha

    2013-06-27

    Previously, we have described 5-((4-methoxy-phenyl)-trans-vinyl)-2'-deoxy-uridine, 6, as a fluorescent uridine analogue exhibiting a 3000-fold higher quantum yield (Φ 0.12) and maximum emission (478 nm) which is 170 nm red-shifted as compared to uridine. Here, we utilized 6 for preparation of labeled oligodeoxynucleotide (ODN) probes based on MS2 and cyclin D1 (a known breast cancer mRNA marker) sequences. Cyclin D1-derived labeled-ssODN showed a 9.5-fold decrease of quantum yield upon duplex formation. On the basis of this finding, we developed the ds-NIF (nucleoside with intrinsic fluorescence)-probe methodology for detection of cyclin D1 mRNA, by which the fluorescent probe is released upon recognition of target mRNA by the relatively dark NIF-duplex-probe. Indeed, we successfully detected, a ss-deoxynucleic acid (DNA) variant of cyclin D1 mRNA using a dark NIF-labeled duplex-probe, and monitoring the recognition process by fluorescence spectroscopy and gel electrophoresis. Furthermore, we successfully detected cyclin D1 mRNA in RNA extracted from cancerous human cells, using ds-NIF methodology.

  10. HTLV-1 basic leucine zipper factor downregulates cyclin D1 expression via interactions with NF-κB.

    Science.gov (United States)

    Ma, Yunyun; Zhang, Bo; Wang, Dong; Qian, Lili; Song, Xianmei; Wang, Xueyin; Yang, Chaokuan; Zhao, Guoqiang

    2017-03-01

    Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus. It can cause adult T cell leukemia (ATL) and other diseases. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ), which is encoded by the minus-strand of the provirus, is expressed in all cases of ATL and involved in T cell proliferation. However, the exact mechanism underlying its growth-promoting activity is poorly understood. Herein, we demonstrated that HBZ suppressed cyclin D1 expression by inhibiting the nuclear factor (NF)-κB signaling pathway. Among the potential mechanisms of cyclin D1 inhibition mediated by HBZ, we found that HBZ suppressed cyclin D1 promoter activity. Luciferase assay analysis revealed that HBZ repressed cyclin D1 promoter activity by suppressing NF-κB‑driven transcription mediated by the p65 subunit. Using an immunoprecipitation assay, we found that HBZ could bind to p65, but not p50. Finally, we showed that HBZ selectively interacted with p65 via its AD+bZIP domains. By suppressing cyclin D1 expression, HBZ can alter cell cycle progression of HTLV-1-infected cells, which may be critical for oncogenesis.

  11. Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression.

    Directory of Open Access Journals (Sweden)

    Heidi Loponen

    Full Text Available Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1 and p21(Cip1 expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.

  12. Expressions and significances of CKS1 and CyclinD1 in breast carcinoma%乳腺癌组织中CKS1和CyclinD1的表达及相关分析

    Institute of Scientific and Technical Information of China (English)

    刘晓丽; 马礼鸿; 王全义

    2013-01-01

    Objective:To investigate the expressions and significances of cyclin kinase subunitl(CKSl) and CyclinDl in breast carcinoma. Methods : Expressions of CKS1 and CyclinDl in 105 cases of breast carcinoma were assessed by immunohistochemical technique(SP method) and those in 100 cases of breast fibroadenoma(control group) were simultaneously detected. Expressions and significances of CKS1 and CyclinDl in breast carcinoma tissues were analyzed. Results; Positive rates of CKS1 and CyclinDl in breast carcinoma were 80.9%(85/105) and 85.7%(90/105). Positive rates of CKS1 and CyclinDl in breast fibroadenoma were 22%(22/ 100) and 19%( 19/100). Positive expressions of two genes were in correlation with lymphatic vessel invasion and lymph node metastasis in breast carcinoma. Positive rates of CKS1 and CyclinDl in breast carcinoma were higher than those in breast fibroadenoma(P< 0.05): Positive expressions of CKS1 and CyclinDl in breast carcinoma were in positive correlation (r=0.677,P<0.05). Conclusions: Positive expressions of CKS1 and CyclinDl are significantly higher in breast carcinoma than in breast fibroadenoma. Positive expressions of CKS1 and CyclinDl in breast carcinoma are positively related with lymphatic vessel invasion and metastasis of lymph node. Expressions of CKS1 and CyclinDl may play a role in evaluating the prognosis and guiding the clinical treatment for breast carcinoma.%目的:探讨细胞周期蛋白依赖性激酶调节亚基1 (cyclin kinase subunit1,CKS1)和细胞周期蛋白D1 (CyclinD1)在乳腺癌组织的表达及意义.方法:采用免疫组化SP法检测105例乳腺癌组织中CKS1和CyclinD1的表达,并同时检测100例乳腺纤维腺瘤作为对照,分析其在乳腺癌组织中的表达及临床意义.结果:CKS1和CyclinD1在乳腺癌组织中的阳性率分别为80.9% (85/105)和85.7%(90/105),在乳腺纤维腺瘤中的阳性率分别为22%(22/100)和19%(19/100).乳腺癌中两基因蛋白的阳性表达与淋巴管侵犯、淋

  13. Cyclin D1 depletion induces DNA damage in mantle cell lymphoma lines.

    Science.gov (United States)

    Mohanty, Suchismita; Mohanty, Atish; Sandoval, Natalie; Tran, Thai; Bedell, Victoria; Wu, Jun; Scuto, Anna; Murata-Collins, Joyce; Weisenburger, Dennis D; Ngo, Vu N

    2017-03-01

    Elevated cyclin D1 (CCND1) expression levels in mantle cell lymphoma (MCL) are associated with aggressive clinical manifestations related to chemoresistance, but little is known about how this important proto-oncogene contributes to the resistance of MCL. Here, we showed that RNA interference-mediated depletion of CCND1 increased caspase-3 activities and induced apoptosis in the human MCL lines UPN-1 and JEKO-1. In vitro and xenotransplant studies revealed that the toxic effect of CCND1 depletion in MCL cells was likely due to increase in histone H2AX phosphorylation, a DNA damage marker. DNA fiber analysis suggested deregulated replication initiation after CCND1 depletion as a potential cause of DNA damage. Finally, in contrast to depletion or inhibition of cyclin-dependent kinase 4, CCND1 depletion increased chemosensitivity of MCL cells to replication inhibitors hydroxyurea and cytarabine. Our findings have an important implication for CCND1 as a potential therapeutic target in MCL patients who are refractory to standard chemotherapy.

  14. Oncogene abnormalities in a series of primary melanomas of the sinonasal tract: NRAS mutations and cyclin D1 amplification are more frequent than KIT or BRAF mutations.

    Science.gov (United States)

    Chraybi, Meriem; Abd Alsamad, Issam; Copie-Bergman, Christiane; Baia, Maryse; André, Jocelyne; Dumaz, Nicolas; Ortonne, Nicolas

    2013-09-01

    Primary malignant melanoma of sinonasal tract is a rare but severe form of melanoma. We retrospectively analyzed 17 cases and focused on the histologic presentation and the expression of c-Kit, epidermal growth factor receptor (EGFR), cyclin D1/Bcl-1, PS100, and HMB45 and searched for BRAF, NRAS, and KIT mutations that are known to be associated with melanoma subtypes, together with amplifications of KIT, cyclin D1, cyclin-dependent kinase 4, MDM2, and microphthalmia-associated transcription factor using quantitative polymerase chain reaction. In most cases (78%), an in situ component was evidenced. Invasive components were composed of diffuse areas of rhabdoid, epithelioid, or spindle cells and, in most cases, lacked inflammatory reaction, suggesting that an immune escape phenomenon probably develops when the disease progresses. EGFR was rarely and weakly expressed in the in situ component of 2 cases. None of the investigated case showed BRAF V600E, but 1 had a D594G mutation. NRAS mutations in exon 2 (G12D or G12A) were found in 3 cases (18%), and a KIT mutation in exon 11 (L576P), in 1, whereas c-Kit was expressed at the protein level in half of the cases. Amplifications of cyclin D1 were evidenced in 5 cases, confirmed in 3 by fluorescence in situ hybridization, but this was not always correlated with protein expression, found in 8 patients (62.5%), 3 having no significant amplification. In conclusion, primary malignant melanoma of sinonasal tract is not associated with BRAF V600E mutations. Instead, NRAS or KIT mutations and cyclin D1 amplification can be found in a proportion of cases, suggesting that primary malignant melanoma of sinonasal tract is heterogeneous at the molecular level and should not be sensitive to therapeutic approaches aiming at BRAF.

  15. Ras、MAPK、Cyclin D1与皮肤瘢痕癌的相关性研究%Correlation of Ras, MAPK and Cyclin D1 with skin scar cancer

    Institute of Scientific and Technical Information of China (English)

    郭瑞珍; 王海青; 欧小波

    2013-01-01

    目的 探讨Ras/Raf/MAPK信号通路和通路下游靶基因Cyclin D1与皮肤瘢痕癌的相关性.方法 (1)用激光扫描共聚焦显微技术对病理性瘢痕和瘢痕癌进行K-ras、H-ras、N-ras免疫荧光双标记;(2)提取DNA,检测病理性瘢痕和瘢痕癌组织中K-ras、H-ras、N-ras第12、13位密码子的突变;(3)采用免疫组化SP法检测正常皮肤、病理性瘢痕和瘢痕癌组织中MAPK、Cyclin D1蛋白的表达;(4)采用原位杂交技术检测3组组织中MAPK mRNA、Cyclin D1 mRNA的表达.结果 (1)免疫荧光双标记K-ras、H-ras、N-ras在病理性瘢痕上皮中呈较弱荧光为弱阳性,在瘢痕癌组织中呈较强荧光为强阳性;(2)在病理性瘢痕和瘢痕癌中未发现K-ras、H-ras、N-ras第12、13位密码子突变;(3)MAPK和Cyclin D1的蛋白及mRNA在正常皮肤表皮均呈阴性或弱阳性,在皮肤病理性瘢痕上皮中呈弱阳性,在瘢痕癌组织中呈强阳性.瘢痕癌组表达水平(阳性面积)、表达强度(平均光密度)与正常皮肤、病理性瘢痕组比较,差异均有统计学意义(P<0.01),正常皮肤组与病理性瘢痕组比较,差异无统计学意义(P>0.05).结论 (1)Ras、MAPK、Cyclin D1基因的高表达与瘢痕癌的发生密切相关,各种基因共同发挥了协同作用;(2)K-ras、H-ras、N-ras第12、13位密码子突变与瘢痕癌的发生无相关性.%Purpose To explore the correlation of Ras/Raf/MAPK signaling pathway and the pathway downstream target gene Cyelin Dl with the skin scar cancer.Methods ( 1 ) scanning confocal microscopy and immunofluorescence double labeling of the K-ras, H-ras and N-ras were conducted in the paraffin-embedded tissue sections of pathological scars and scar cancer.( 2 ) DNA was extracted through skin pathological scar tissues and scar carcinoma tissues, and then H-ras, N-ras and K-ras mutations in codons 12 and 13 were analyzed using PCR and sequencing.( 3 ) the expression of MAPK and Cyclin Dl protein was detected in normal

  16. MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1.

    Directory of Open Access Journals (Sweden)

    Wang Hui

    Full Text Available Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb and proliferating cell nuclear antigen (PCNA in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3'-untranslated regions (3'-UTR of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.

  17. Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression

    Directory of Open Access Journals (Sweden)

    Colquhoun Alison

    2009-03-01

    Full Text Available Abstract Background Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results GLA caused a significant decrease in tumour size (75 ± 8.8% and reduced MVD by 44 ± 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF (71 ± 16% and the VEGF receptor Flt1 (57 ± 5.8% but not Flk1. Expression of ERK1/2 was also reduced by 27 ± 7.7% and 31 ± 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2 was reduced by 35 ± 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 ± 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 ± 18% while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 ± 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 ± 7.3% while p21 remained unchanged. The expression of p53 was increased (44 ± 16% by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 ± 11% of BrdU incorporation into the tumour in vivo. Conclusion Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein

  18. OVCA1 expression and its correlation with the expression levels of cyclin D1 and p16 in cervical cancer and intraepithelial neoplasia

    Science.gov (United States)

    Tong, Rui; Yang, Qing; Wang, Chunyan; Bi, Fangfang; Jiang, Bing

    2017-01-01

    The present study aimed to examine the associations between the protein and mRNA expression levels of ovarian cancer gene 1 (OVCA1), cyclin D1 and p16 and high-risk human papillomavirus (HR-HPV) infection in cervical lesions. The protein expression levels of OVCA1, cyclin D1 and p16 in 66 cases of cervical cancer, 64 cases of cervical intraepithelial neoplasia (CIN) and 34 normal cervix tissues were detected using immunohistochemistry. The mRNA expression levels of OVCA1, cyclin D1 and p16 in cervical cancer and normal cervix cells were detected using real-time polymerase chain reaction. The results revealed that the protein expression levels of OVCA1 increased gradually, whereas its mRNA expression levels decreased gradually, in the progression from normal cervix tissue to CIN and cervical cancer (Pcervical cancer, were observed (Pcervical cancer or the presence of lymph node metastasis (P>0.05). The expression levels of OVCA1 mRNA and protein were positively correlated with the levels of p16 expression (Pcervical lesions, particularly in the early stages. In addition, the mechanisms underlying the effects of OVCA1 during cervical cancer development may involve p16 and HPV, as the levels of OVCA1 in cervical lesions were correlated with abnormal expression of p16 and HR-HPV infection. PMID:28521400

  19. OVCA1 expression and its correlation with the expression levels of cyclin D1 and p16 in cervical cancer and intraepithelial neoplasia.

    Science.gov (United States)

    Tong, Rui; Yang, Qing; Wang, Chunyan; Bi, Fangfang; Jiang, Bing

    2017-05-01

    The present study aimed to examine the associations between the protein and mRNA expression levels of ovarian cancer gene 1 (OVCA1), cyclin D1 and p16 and high-risk human papillomavirus (HR-HPV) infection in cervical lesions. The protein expression levels of OVCA1, cyclin D1 and p16 in 66 cases of cervical cancer, 64 cases of cervical intraepithelial neoplasia (CIN) and 34 normal cervix tissues were detected using immunohistochemistry. The mRNA expression levels of OVCA1, cyclin D1 and p16 in cervical cancer and normal cervix cells were detected using real-time polymerase chain reaction. The results revealed that the protein expression levels of OVCA1 increased gradually, whereas its mRNA expression levels decreased gradually, in the progression from normal cervix tissue to CIN and cervical cancer (Pcervical cancer, were observed (Pcervical cancer or the presence of lymph node metastasis (P>0.05). The expression levels of OVCA1 mRNA and protein were positively correlated with the levels of p16 expression (Pcervical lesions, particularly in the early stages. In addition, the mechanisms underlying the effects of OVCA1 during cervical cancer development may involve p16 and HPV, as the levels of OVCA1 in cervical lesions were correlated with abnormal expression of p16 and HR-HPV infection.

  20. Endothelin—1 promoted proliferation of vascular smooth muscle cell through pathway of extracellular signal—regulated kinase and cyclin D1

    Institute of Scientific and Technical Information of China (English)

    ZHANGYing-Min; WANGKe-Qiang; ZHOUGuo-Min; ZHOJi; GEJun-Bo

    2003-01-01

    AIM:To investigate whether endothelin-1(ET-1) can promote human umbilical artery smooth muscle artery smooth muscle cell (HUASMC) proliferation through pathway of extracellular signal-regulated kinase (ERK) and cyclin D1.METHODS: The effects of ET-1 and PD98059 on HUASMC were evaluated by MTT assay. The content of DNA was defined by [3H]TdR assay and cell cycle was analyzed by flow cytomerty. Western blot analysis was employed to detect the active phosphorylated state of ERK and the expression of cylin D1.RESULTS:Firstly, ET-1(100nmol/L) stimulated HUASMC proliferation compared with the group withou ET-1(P<0.05) and PD98059 group (P<0.05). PD98059 inhibited the HUASMC proliferation stimulated by ET-1(P<0.05). Secondly, ET-1 stimulated DNA synthesis of HUASMC compared with the group without ET-1(P<0.05). Thirdly, ET-1 promoted the cell cycle transition from G0/G1 phase to S phase. G0/G1 phase cell percentage was obviously decreased compared with the group without ET-1(P<0.05). S phase cell percentage was increased compared with the group without ET-1(P<0.05). Fourthly, ET-1 increased the phosphorylated level of ERK and the expression of cylin D1, an inhibitor of ERK blocked phosphorylated level of ERK and cyclin D1 expression. ERK phosphorylated level of ET-1 group was evidently increased compared with PD98059 group (P<0.05), Cyclin D1 protein expression also was increased compared with PD98059 group (P<0.05). While nonphosphorylated ERK expression remained unchanged. CONCLUSION:Endothelin-1 promoted vascular smooth muscle cell proliferation through pathway of ERK and cyclin D1.

  1. pRb和CyclinD1在胃癌发生发展中的表达%Expression of pRb and CyclinD1 in occurrence and development of gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    王国荣; 何文宪; 王彦芳; 郑焱

    2002-01-01

    目的:探讨pRb和CyclinD1在胃癌发生发展中的作用及两者的相关性.方法:用S-P免疫组织化学法检测pRb和CyclinD1的表达水平.结果:pRb的表达与肿瘤大小、浸润程度、是否转移有显著相关性.在胃癌形成的几个环节中,pRb的表达呈明显下调趋势;反之,CyclinD1的表达呈明显的上调趋势.结论:pRb的失表达和CyclinD1的过表达可能在胃癌的发生发展中起重要作用."Rb路径"的失衡可能是胃癌成因之一.

  2. 乳香提取物对大鼠乙酸胃溃疡β-catenin和Cyclin D1的影响%Effect of Frankincense Extract on β-catenin and Cyclin D1 of Gastric Ulcer Rats

    Institute of Scientific and Technical Information of China (English)

    梅武轩; 余娜

    2015-01-01

    目的:探讨乳香提取物对大鼠乙酸胃溃疡β-catenin和Cyclin D1的影响.方法:用冰醋酸制备大鼠慢性胃溃疡模型,随机分为3组,分别灌服生理盐水、乳香提取物、奥美拉唑等.免疫组织化学方法检测30 d和60 d胃黏膜β-caternin和Cyclin D1的蛋白表达.结果:第30 d中药组、西药组α-catenin、Cyclin D1表达增强,与模型组比较,有显著性差异(P<0.05);第60d模型组、中药组和西药组β-catenin表达均无显著性差异(P>0.05).结论:乳香提取物能上调胃粘膜β-catenin、CyclinD1的表达,加快细胞的增殖,而促进溃疡的愈合,可能是乳香“生肌”的作用机理之一.

  3. Cyclin D1 gene amplification in the primary nasopharyngeal carcinoma by interphase FISH%应用间期FISH技术探讨cyclinD1基因在鼻咽癌中的扩增

    Institute of Scientific and Technical Information of China (English)

    黄贻学; 方嬿; 郭颖; 郝亚萍; 李辉梅; 曾益新

    2000-01-01

    目的:检测cyclinD1基因在鼻咽癌(nasopharyngeal carcinoma,NPC)细胞中的扩增情况,探讨cyclinD1基因在NPC发生及发展中的作用.方法:应用间期Micro FISH技术.结果:83例NPC病例可见23例(占27.71%)出现cyclinD1扩增;其中Ⅰ、Ⅱ期病例扩增的有5例,Ⅲ、Ⅳ期病例扩增的有18例;23例扩增中16例(69.56%)伴有颈淋巴结转移.结论:cyclinD1扩增与NPC的中晚期发展可能有一定关系,并与颈淋巴结转移呈正相关.

  4. Curcumol induces cell cycle arrest in colon cancer cells via reactive oxygen species and Akt/ GSK3β/cyclin D1 pathway.

    Science.gov (United States)

    Wang, Juan; Li, Xu-Mei; Bai, Zhun; Chi, Bi-Xia; Wei, Yan; Chen, Xu

    2017-07-04

    Curcuma kwangsiensis S. G. Lee & C. F. Liang (Guangxi ezhu, in Chinese) belongs to the Zingiberaceae family, has been used as a traditionally Chinese medicine nearly 2000 year. Curcumol is one of the guaiane-type sesquiterpenoid hemiketal isolated from medicine plant Curcuma kwangsiensis S. G. Lee & C. F. Liang, which has been reported possesses anti-cancer effects. Our previous study found that the most contribution to inhibit nasopharyngeal carcinoma cell growth was curcumol. To assess the effect of curcumol on cell cycle arrest against human colon cancer cells (CRC) cells (LoVo and SW480) and explore its mechanism in vitro and in vivo. Curcumol was dissolved in absolute ethyl alcohol. The concentration of absolute ethyl alcohol in the control group or in experimental samples was always 1/500 (v/v) of the final medium volume. LoVo and SW480 cells were treated with different concentrations of curcumol (0, 53, 106, 212 and 424μM). And then the cell cycle of each group was examined by flow cytometry. The protein levels of PI3K, p-Akt, cyclin D1, cyclin E, CDK2, CDK4 and GSK3β were determined by Western blot. The mRNA expression of PI3K, Akt, cyclin D1, CDK4, P27, p21, and P16 in the treated cells were analyzed by real-time RT-PCR. In addition, the antitumor activity of curcumol was evaluated in nude mice bearing orthotopic tumor implants. Curcumol induced cell cycle arrest in G1/S phase. RT-qPCR and Western blot data showed that curcumol enhanced the expression of GSK3β, P27, p21 and P16, and decreased the levels of PI3K, phosphorylated Akt (p-Akt), cyclin D1, CDK4, cyclin E and CDK2. Furthermore, curcumol induced reactive oxygen species (ROS) generation in LoVo cells, and ROS scavenger N-acetylcysteine (NAC) significantly reversed curcumol-induced cell growth inhibition. Besides, curcumol also prevented the growth of human colon cancer cells xenografts in nude mouse, accompanied by the reduction of PI3K, Akt, cyclin D1, CDK4, cycln E and significant increase of

  5. cyclin D1、pRb在大肠癌中的表达及其临床意义

    Institute of Scientific and Technical Information of China (English)

    朱龙贤; 黄文斌; 朱晓群; 齐琼

    2000-01-01

    目的研究大肠癌中cyclin D1和pRb的表达与临床病理参数之间的关系以及二者之间的关系.方法采用免疫组化方法S-P法检测67例大肠癌、40例癌旁粘膜和40例正常粘膜中cyclin D1和pRb的表达.结果大肠癌中cyclin D1和pRb的阳性率分别为44.8%和100.0%,明显高于癌旁粘膜和正常粘膜(P<0.05),cyclin D1在低分化癌的过表达率高于高分化癌(P<0.05),C+D期的过表达率明显高于A+B期(P<0.01);pRb在C+D期的过表达率高于A+B期(P<0.05),pRb的过表达率与肿瘤的分化程度无关(P<0.05).相关分析表明,cyclinD1和pRb无明显相关(P>0.05).结论cyclin D1参与了大肠癌的发生并与肿瘤的分化程度和Duke's分期有关,而pRb与肿瘤的分化程度无关.

  6. Knocking-down of CREPT prohibits the progression of oral squamous cell carcinoma and suppresses cyclin D1 and c-Myc expression.

    Science.gov (United States)

    Ma, Juntao; Ren, Yipeng; Zhang, Lei; Kong, Xiangpan; Wang, Tong; Shi, Yueyi; Bu, Rongfa

    2017-01-01

    As a regulator essential for many cell cycle-related proteins, the robust expression of Cell cycle-Related and Expression-elevated Protein in Tumor (CREPT) implicates a poor diagnosis of endoderm and mesoderm-derived tumors. Whether CREPT plays the same role in the tumorigenesis derived from ectodermal tissues remains elusive. To explore the role of CREPT in ectoderm-derived tumors, cells from 7oral squamous cell carcinoma (OSCC) lines and 84clinical OSCC samples were exploited in this study. Quantitative PCR, Western blot assay and immunohistochemistry were applied in the evaluation of CREPT, cyclin D1 and c-Myc expression. Knocking-down of CREPT was performed by lentivirus delivering specific shRNA of CREPT. The effects of CREPT on OSCC were examined by cell proliferation, colony formation, apoptosis, cell migration and xenograft implantation experiments. Compared with human normal oral keratinocytes, OSCC cell lines showed a significantly elevated expression of CREPT in both mRNA and protein levels. Consistently, samples from OSCC patients also exhibited a noticeably stronger CREPT expression than the noncancerous samples. In contrast, knocking down of CREPT in OSCC cell lines significantly reduced proliferation, colony formation and migration as well as the expression of cyclin D1 and c-Myc, but promoted apoptosis. Statistical analysis also suggested that CREPT expression was significantly correlated with the T and N classification of OSCC. Furthermore, CAL27 mouse xenograft model confirmed that down-regulation of CREPT prohibited cyclin D1 and c-Myc expression, through which decreased the in vivo tumor growth, but increased the survival ratio of hosts. In OSCC cell lines, up-regulated CREPT expression enhanced cell proliferation, migration and cell cycle as well as promoted cyclin D1 and c-Myc expression as it did in endoderm and mesoderm-origin tumors. Our study strongly suggests that CREPT could be used as a marker for the OSCC prognosis and might work as a

  7. Construction of Cyclin D1 siRNA Vector and Effect on Proliferation of Human HepG2 Cancer Cells%Cyclin D1-siRNA真核质粒的构建及对HepG2肝癌细胞增殖的影响

    Institute of Scientific and Technical Information of China (English)

    王一; 连小云; 张玎; 王晖; 王岐山

    2011-01-01

    Objective To explore the effect of cyclinDl gene blocking by siRNA on proliferation and cell cycle of HepG2 liver caicenoma cells. Methods Four pairs of DNA templates coding siRNA,synthesized against cyclinDl and cloned into the vector PGE-l?were identified by restriction ndonuclease digestion analysis,PCR and DNA sequencing cells were then transfected with these four PGE-1-siRNAs and the negative control. After G418 selection,RT-PCR and Western blot were used to detect the expression of cyclinDl gene. Cell growth curve were drived by MTT assays. Results Restriction en-donuclease digestion analysis and DNA sequencing results all showed that the target segments were cloned PGE-1 vector respectively after the postive-siRNA was chosen to transfected into HepG2 cells,the expression of cyclinDlmRNA and protein was marketly decreased. The results showed that after interfering,the HepG2 cells cell growth were signifencantly inhibited. Conclusion The cyclinDl-specific siRNA mediated by PGE-1 could effectively knockdown the expression of gene and inhibits the proliferation potential ability of HepG2 cells.%目的 利用PGE-1建立针对抑制cyclinD1功能的siRNA 真核表达载体以及对肝癌HepG2细胞增殖和周期的影响.方法 针对cyclinD1 mRNA序列设计合成4对寡核苷酸,退火后连接到PGE-1质粒中,PCR及测序鉴定.用脂质体将重组质粒转染到HepG2中,RT-PCR cyclinD1 mRNA的表达,G418筛选后用RT-PCR和Westernblot技术分别检测cyclinD1 mRNA和蛋白质水平;流式细胞仪测定细胞周期的变化;MTT法测定细胞的生长.结果 在设计的4条靶序列中有一序列重组成质粒后,可明显抑制cyclinD1的表达;目的 序列表达载体转染HepG2细胞后,可以明显减少G2-M期细胞的比例,当HepG2细胞稳定转染针对cyclinD1的干扰质粒后,mRNA和蛋白质的表达也明显降低;HepG2细胞cyclinD1表达降低后,其生长也受到明显抑制.结论 成功构建针对siRNA-cyclinD1真核质粒,在体

  8. 头颈部鳞癌中端粒酶活性与调节蛋白p16、CyclinD1和pRb表达的关系%TELOMERASE ACTIVITY, CELL CYCLE REGULATORY PROTEINS P16 CYCLIND1 AND PRB IN HUMAN HEAD AND NECK SQUAMOUS CELL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    王笑; 李全胜; 刘剑锋

    2007-01-01

    目的:探讨端粒酶活性与细胞周期调节蛋白p16、cyclinD1和pRb的关系.方法:采用TRAP-PCR-ELISA法对32例原发头颈部鳞癌组织进行端粒酶活性检测,并应用免疫组织化学方法检测细胞周期调节蛋白p16、CyclinD1和pRb的表达.结果:32例原发头颈部鳞癌中,有27例端粒酶活化,阳性率为84.4%.p16、CyclinD1、pRb的总异常率为90.6%(29/32),其中p16和pRb蛋白表达缺失分别为62.5%(20/32)和34.4%(11/32),CyclinD1过表达为34.4%(11/32).p16与pRb呈负相关性(P<0.01).端粒酶活性与细胞周期调节蛋白p16、CyclinD1和pRb总异常无相关性;端粒酶活性与p16、CyclinD1和pRb两两之间无相关性;p16、pRb的表达组与失活组端粒酶活性值无统计学差异,CyclinD1的正常表达组和过表达组端粒酶活性值无差异;但按照p16、CyclinD1和pRb表达不同将32例标本分成八组后,分析发现p16+/pRb-/CyclinD1过表达组端粒酶活性值明显高于其它组,其余各组间无统计学差异(P>0.05).结论:端粒酶活化与头颈部鳞癌的发生发展有密切关系.p16/CyclinD1/pRb通路异常与HNSCC的发病机制密切相关.头颈部鳞癌中端粒酶活性与p16、CyclinD1和pRb的确切关系有待深入研究.

  9. Matrine promotes G0/G1 arrest and down-regulates cyclin D1 expression in human rhabdomyosarcoma cells.

    Science.gov (United States)

    Guo, L; Xue, T Y; Xu, W; Gao, J Z

    2013-09-01

    Matrine has a broad-spectrum of anti-cancer effects and is efficient in the inhibition of proliferation of hepatoma cells, leukemia cells and neuroblastoma cell. However, its efficacy and tentative mechanisms in rhabdomyosarcoma have not been addressed before. This study aimed to investigate the effects of Matrine on cell cycle and expression of cyclin D1 in human rhabdomyosarcoma cells (RD cell line). RD cell line was treated with different concentrations (0, 0.5, 1.0, and 1.5 mg/mL) of Matrine, and cell proliferation and cell cycle were evaluated using, respectively, MTT assay and flow cytometry. The effect of Matrine on cyclin D1 mRNA levels was measured by RT-PCR. There was a dose-dependent inhibition of proliferation in the matrine-treated group (inhibition of proliferation rate in control cells 12.70 ± 0.35%; Matrine-treated cells [0.5, 1.0, and 1.5 mg/mL]: 31.16 ± 0.11%, 42.96 ± 0.9%, and 57.26 ± 0.8%). The G0 / G1 ratio in study groups were, respectively, 58.44 ± 3.57%, 64.79 ± 2.03%, 69.97 ± 2.89% and 75.03 ± 1.23%.Cyclin D1 mRNA levels progressively diminished (control group ratio of cyclin D1 / β-actin: 0.59 ± 0.06; Matrine: 0.35 ± 0.05, 0.27 ± 0.02 and 0.04 ± 0.03). All aforementioned changes were significant (PMatrine markedly suppresses cell proliferation in RD cells by decreasing expression of cyclin D1 mRNA and blocking the cell cycle at the G0 / G1 stage.

  10. Molecular evolution of cyclin proteins in animals and fungi

    Directory of Open Access Journals (Sweden)

    Afonnikov Dmitry A

    2011-07-01

    Full Text Available Abstract Background The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. Results We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. Conclusions The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events.

  11. Zona occludens-2 inhibits cyclin D1 expression and cell proliferation and exhibits changes in localization along the cell cycle.

    Science.gov (United States)

    Tapia, Rocio; Huerta, Miriam; Islas, Socorro; Avila-Flores, Antonia; Lopez-Bayghen, Esther; Weiske, Jörg; Huber, Otmar; González-Mariscal, Lorenza

    2009-02-01

    Here, we have studied the effect of the tight junction protein zona occludens (ZO)-2 on cyclin D1 (CD1) protein expression. CD1 is essential for cell progression through the G1 phase of the cell cycle. We have found that in cultures of synchronized Madin-Darby canine kidney cells, ZO-2 inhibits cell proliferation at G0/G1 and decreases CD1 protein level. These effects occur in response to a diminished CD1 translation and an augmented CD1 degradation at the proteosome triggered by ZO-2. ZO-2 overexpression decreases the amount of Glycogen synthase kinase-3beta phosphorylated at Ser9 and represses beta-catenin target gene expression. We have also explored the expression of ZO-2 through the cell cycle and demonstrate that ZO-2 enters the nucleus at the late G1 phase and leaves the nucleus when the cell is in mitosis. These results thus explain why in confluent quiescent epithelia ZO-2 is absent from the nucleus and localizes at the cellular borders, whereas in sparse proliferating cultures ZO-2 is conspicuously present at the nucleus.

  12. Expression of E2F -1 and cyclinD1 in colorectal adenocarcinoma and its significance%大肠癌E2F -1、CyclinD1的表达及其意义

    Institute of Scientific and Technical Information of China (English)

    王蕾; 何妍; 李希芳; 刘岩; 时志民; 刘惠民

    2011-01-01

    Objective To study the expression of E2K - 1 and ryclinDl in human colorectal adenocarcinoma and its significance. Methods Terminal deoxynucleotidyl transferase - mediated nick end labeling TUNEL method and immunohistochemical SP method were used to detect 78 cases of colorectal adenocarcinoma, 20 cases of normal eoloreclal mucosa, 30 cases of colorectal polyps, and 30 cases of coloreotal adenoma cells in situ withered death ( Al) , and E2F - 1 and cyclinDl expression. Results The positive expression rate of E2F - 1 and cyclinDl in esophageal carcinoma was much higher than that in colorectal mucosa, colorectal polyps, and colorectal adenoma (P < 0. 05 ). The expression of E2F - 1 was closely correlated with the differentiation, TNM and lymph node metastasis (P <0. 05). Conclusions E2F - 1 and cyclinDl are closely related to the occurrence of colorectal adenocarcinoma. Both of them are important biological markers in colorectal adenocarcinoma occurrence and development.%目的 探讨E2F -1和cyclinD1在大肠腺癌组织中的表达及其意义 方法 采用脱氧核糖核酸末端转移酶介导的TUNEL法缺口末端标记和免疫组化SP法检测大肠腺癌78例、正常大肠黏膜20例、大肠息肉30例,以及大肠腺瘤细胞30例的原位凋亡(Al)及E2F-1和cyclin D1的表达情况.结果 E2F-1和cyclin D1在大肠腺癌中的阳性率显著高于正常大肠黏膜、大肠息肉以及大肠腺瘤(P<0.05).E2F-1表达与大肠腺癌的病理分化程度、淋巴结转移和临床分期具有相关性(P<0 05).从正常大肠黏膜、大肠息肉、大肠腺瘤到大肠腺癌细胞凋亡呈梯度降低.结论 E2F -1和cyclinD1的表达与大肠腺癌发生关系密切,是大肠腺癌发生、发展的重要生物学标记物

  13. Mitochondrial reactive oxygen species perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of PP2A in lowdose irradiated human fibroblasts.

    Science.gov (United States)

    Shimura, Tsutomu; Sasatani, Megumi; Kamiya, Kenji; Kawai, Hidehiko; Inaba, Yohei; Kunugita, Naoki

    2016-01-19

    Here we investigated the cellular response of normal human fibroblasts to repeated exposure to low-dose radiation. In contrast to acute single radiation, low-dose fractionated radiation (FR) with 0.01 Gy/fraction or 0.05 Gy/fraction for 31 days increased in mitochondrial mass, decreased cellular levels of the antioxidant glutathione and caused persistent accumulation of mitochondrial reactive oxygen species (ROS). Excess ROS promoted oxidative inactivation of protein phosphatase PP2A which in turn led to disruption of normal negative feed-back control of AKT/cyclin D1 signaling in cells treated with long-term FR. The resulting abnormal nuclear accumulation of cyclin D1 causes growth retardation, cellular senescence and genome instability in low-dose irradiated cells. Thus, loss of redox control and subsequently elevated levels of ROS perturb signal transduction as a result of oxidative stress. Our study highlights a specific role of mitochondrial ROS in perturbation of AKT/cyclin D1 cell cycle signaling after low-dose long-term FR. The antioxidants N-acetyl-L-cysteine, TEMPO and mitochondrial-targeted antioxidant Mito-TEMPO provided protection against the harmful cell cycle perturbations induced by low-dose long-term FR.

  14. DYRK1A-mediated Cyclin D1 Degradation in Neural Stem Cells Contributes to the Neurogenic Cortical Defects in Down Syndrome

    Directory of Open Access Journals (Sweden)

    Sònia Najas

    2015-02-01

    Full Text Available Alterations in cerebral cortex connectivity lead to intellectual disability and in Down syndrome, this is associated with a deficit in cortical neurons that arises during prenatal development. However, the pathogenic mechanisms that cause this deficit have not yet been defined. Here we show that the human DYRK1A kinase on chromosome 21 tightly regulates the nuclear levels of Cyclin D1 in embryonic cortical stem (radial glia cells, and that a modest increase in DYRK1A protein in transgenic embryos lengthens the G1 phase in these progenitors. These alterations promote asymmetric proliferative divisions at the expense of neurogenic divisions, producing a deficit in cortical projection neurons that persists in postnatal stages. Moreover, radial glial progenitors in the Ts65Dn mouse model of Down syndrome have less Cyclin D1, and Dyrk1a is the triplicated gene that causes both early cortical neurogenic defects and decreased nuclear Cyclin D1 levels in this model. These data provide insights into the mechanisms that couple cell cycle regulation and neuron production in cortical neural stem cells, emphasizing that the deleterious effect of DYRK1A triplication in the formation of the cerebral cortex begins at the onset of neurogenesis, which is relevant to the search for early therapeutic interventions in Down syndrome.

  15. Immunohistochemical expression of cyclin D1, p16Ink4a, p21WAF1, and Ki-67 correlates with the severity of cervical neoplasia.

    Science.gov (United States)

    Portari, Elyzabeth A; Russomano, Fábio B; de Camargo, Maria J; Machado Gayer, Carlos R; da Rocha Guillobel, Heloísa C; Santos-Rebouças, Cíntia B; Brito Macedo, Jacyara M

    2013-09-01

    High-risk human papillomaviruses are closely associated with cervical cancer and its precursor lesions through interactions between the E6 and E7 oncoproteins and the cell-cycle regulatory proteins, such as p53 and pRb, respectively. As other molecules involved in the cell-cycle control seem to be important for human papillomavirus (HPV)-mediated cervical carcinogenesis, we have analyzed the expression of p53, p21, p16, cyclin D1, and Ki-67 and the presence of HPV (HPV pool and HPV-16) by immunohistochemical studies using tissue microarray in low squamous intraepithelial lesions (n=50), high squamous intraepithelial lesions (n=98), and cervical carcinoma (n=18). We have found a significant increase in the expression of p16 and p21 (Pcancer. In contrast, cyclin D1 expression showed a significant decrease in more severe lesions (PKi-67, p21, and p53 positivity increased with the cell-layer level and the lesion severity, with stronger correlations being observed for p16 and Ki-67. High positivity for HPV pool (96.3%) and HPV-16 (77.5%) immunostaining was detected in all cases, with an association between p16 and cyclin D1 expression and HPV-16 infection. Our tissue microarray results corroborate the usefulness of the immunohistochemical assessment of cell-cycle biomarkers in distinguishing different groups of precursor lesions of the cervix and cervical carcinoma.

  16. Gain of 11q/cyclin D1 overexpression is an essential early step in skin cancer development and causes abnormal tissue organization and differentiation.

    Science.gov (United States)

    Burnworth, B; Popp, S; Stark, H-J; Steinkraus, V; Bröcker, E B; Hartschuh, W; Birek, C; Boukamp, P

    2006-07-27

    Non-melanoma skin cancers, in particular keratoacanthomas (KAs) and squamous cell carcinomas (SCCs), have become highly frequent tumor types especially in immune-suppressed transplant patients. Nevertheless, little is known about essential genetic changes. As a paradigm of 'early' changes, that is, changes still compatible with tumor regression, we studied KAs by comparative genomic hybridization and show that gain of chromosome 11q is not only one of the most frequent aberration (8/18), but in four tumors also the only aberration. Furthermore, 11q gain correlated with amplification of the cyclin D1 locus (10/14), as determined by fluorescence in situ hybridization, and overexpression of cyclin D1 protein (25/31), as detected by immunohistochemistry. For unraveling the functional consequence, we overexpressed cyclin D1 in HaCaT skin keratinocytes. These cells only gained little growth advantage in conventional and in organotypic co-cultures. However, although the control vector-transfected cells formed a well-stratified and orderly differentiated epidermis-like epithelium, they showed deregulation of tissue architecture with an altered localization of proliferation and impaired differentiation. The most severe phenotype was seen in a clone that additionally upregulated cdk4 and p21. These cells lacked terminal differentiation, exhibited a more autonomous growth in vitro and in vivo and even formed tumors in two injection sites with a growth pattern resembling that of human KAs. Thus, our results identify 11q13 gain/cyclin D1 overexpression as an important step in KA formation and point to a function that exceeds its known role in proliferation by disrupting tissue organization and thereby allowing abnormal growth.

  17. Vitamin C Inhibits Benzo[a]pyrene-lnduced Cell Cycle Changes Partly via Cyclin D1/ E2F Pathway in Human Embryo Lung Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    AI GAO; BING-CI LIU; XIANG-LIN SHI; CHUAN-SHU HUANG; XIAO-WEI JLA; BAO-RONG YOU; MENG YE; FU-HAI SHEN; HONG-JU DU

    2006-01-01

    Objective To study the molecular mechanism of the inhibitory effects of vitamin C on benzo[a]pyrene (B[a]P)-induced changes of cell cycle in human embryo lung fibroblast (HELF) cells. Methods The stable transfectants, HELF transfected with antisense cyclin D1 and antisense CDK4, were established. Cells were cultured and pretreated with vitamin C before stimulation with B[a]P for 24 h. The expression levels of cyclin D1, CDK4, E2F1, and E2F4 were determined by Western blot. Flow cytometric analysis was employed to detect the distributions of cell cycle. Results B[a]P significantly elevated the expression levels of cyclin D1, E2F1, and E2F4 in HELF cells. Vitamin C decreased the expression levels of cyclin D1, E2F1, and E2F4 in B[a]P-stimulated HELF cells. Dose-dependent relationships were not found between the different concentrations of vitamin C (10, 100, 500, 1000, and 5000 μmol/L) and the expression levels of cyclin D1, E2F1, and E2F4 in HELF cells. The expression levels of cyclin D1, E2F1, and E2F4 in B[a]P-treated transfectants were lower than those in B[a]P-treated HELF cells. The expression levels of cyclin D1 and E2F4 treated with vitamin C and antisense cyclin D1 were decreased compared with those treated with antisense cyclin D1 alone. The effects of vitamin C combined with antisense CDK4 on the expression levels of cyclin D1 and E2F1/E2F4 were similar to those of antisense CDK4 alone. B[a]P progressed HELF cells from G1 to S phase. Both vitamin C and antisense cyclin D1 suppressed the changes of cell cycle progressed by B[a]P. However, antisenseCDK4 did not attenuate the above changes. Vitamin C combined with antisense CDK4 markedly suppressed B[a]P-induced changes of cell cycle as compared with antisense CDK4. But the inhibitory effects of vitamin C combined with antisense cyclin D1 on B[a]P-induced changes of cell cycle were similar to those of vitamin C alone or antisense cyclin D1 alone. Conclusions B[a]P progressed HELF cells from G1 to S phase via

  18. Effects of Cyclin D1 Antisense Oligodeoxyneucleotides on the Growth and Expression of G1 Phase Regulators in Gastric Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    帅晓明; 韩高雄; 王国斌

    2003-01-01

    To investigate the effects of Cyclin D1 antisense oligodeoxyneucleotides (ASODN) on the growth, cell cycle progression and expression of G1 phase regulators in human gastric carcinoma cell lines SGC7901 and HS746T, phosphorothioate-modified Cyclin D1 ASODN were encapsulated by LipofectAMINE2000 and transfected into gastric carcinoma cells. Dose-dependent inhibitory effects were induced by Cyclin D1 ASODN in two gastric carcinoma cell lines. Treatment of gastric carcinoma cells with 0.2 μmol/L Cyclin D1 ASODN for 24 h could significantly inhibit their growth in vitro and in vivo, reduce expression of Cyclin DlmRNA to 26.3 % (SGC7901) and 17.3 %(HS746T) respectively. The percentage of cells in G0/G1 phase was increased as revealed by flow cytometry. Immunohistochemical staining showed that the expression of p21 was increased and the expression of Cyclin D1 and pRb was decreased in the two cell lines; the expression of p27 was increased in HS746T, but unchanged in SGC7901. Cyclin D1 ASODN could inhibit the growth and the expression of Cyclin D1 mRNA in gastric carcinoma cells, influence the cell cycle and expression of its regulators.

  19. CARMA3 is overexpressed in colon cancer and regulates NF-{kappa}B activity and cyclin D1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning; Xu, Yingying; Song, Yongxi; Wu, Jianhua [Department of General Surgery, First Affiliated Hospital of China Medical University, Shenyang (China); Xu, Huimian, E-mail: xuhuimianpaper@yahoo.com.cn [Department of General Surgery, First Affiliated Hospital of China Medical University, Shenyang (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer CARMA3 expression is elevated in colon cancers. Black-Right-Pointing-Pointer CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. Black-Right-Pointing-Pointer CARMA3 upregulates cyclinD1 through NF-{kappa}B activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-I{kappa}B levels and NF-{kappa}B activity and its overexpression increased p-I{kappa}B expression and NF-{kappa}B activity. NF-{kappa}B inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-{kappa}B mediated upregulation of cyclin D1.

  20. Expression of pRb, p53, p16 and cyclin D1 and their clinical implications in urothelial carcinoma.

    Science.gov (United States)

    Lee, Kyungji; Jung, Eun Sun; Choi, Young-Jin; Lee, Kyo Young; Lee, Ahwon

    2010-10-01

    The aim of this study was to assess immunohistochemical expression of p53, pRb, p16, and cyclin D1, alone or in combination, as prognostic indicators and to investigate their correlation with clinocopathologic features of urothelial carcinoma. Immunohistochemical staining for p53, pRb, p16, and cyclin D1 was performed on a tissue microarray from 103 patients with urothelial carcinoma who underwent radical cystectomy. Of the patient samples analyzed, 36 (35%), 61 (59%), 47 (46%) and 30 (29%) had altered expression of p53, pRb, p16, and cyclin D1, respectively. Abnormal expression of p53 and pRb correlated with depth of invasion (P=0.040 and P=0.044, respectively). Cyclin D1 expression was associated with tumor stage and recurrence (P=0.017 and P=0.036, respectively). Altered pRb was significantly correlated with overall survival (P=0.040). According to the expression pattern of pRb and p53, p53/pRb (altered/normal) had worse survival than p53/pRb (normal/altered) (P=0.022). Alteration of all markers had worse survival than all normal (P=0.029). As determined by multivariate analysis, tumor stage, lymph node metastasis and the combined expression of p53 and pRb are independent prognostic factors. In conclusion, immunohistochemical evaluation of cell cycle regulators, especially the p53/pRb combination, might be useful in planning appropriate treatment strategies.

  1. Identification of a human cyclin D1-derived peptide that induces human cytotoxic CD4 T cells.

    Directory of Open Access Journals (Sweden)

    Tao Dao

    Full Text Available Cyclin D1 is over-expressed in various human tumors and therefore can be a potential oncogenic target antigen. However, only a limited number of T cell epitopes has been characterized. We aimed at identifying human cyclin D1-derived peptides that include both CD4 and CD8 T cell epitopes and to test if such multi-epitope peptides could yield improved cytotoxic CD8 T cell responses as well as cytotoxic CD4 T cells. Five HLA-DR.B1-binding peptides containing multiple overlapping CD4 epitopes and HLA-A0201-restricted CD8 T cell epitopes were predicted by computer algorithms. Immunogenicity of the synthetic peptides was assessed by stimulating T cells from healthy donors in vitro and the epitope recognition was measured by IFN-gamma ELISPOT and (51Chromium release assays. A HLA-DR.B1 peptide, designed "DR-1", in which a HLA-A0201-binding epitopes (D1-1 was imbedded, induced CD3 T cell responses against both DR-1 and D1-1 peptides in IFN-gamma ELISPOT assay. This suggested processing of the shorter D1-1 epitope from the DR-1 sequence. However, only DR-1-stimulated CD4 or CD3 T cells possessed cytotoxicity against peptide-pulsed autologous DCs and a cancer cell line, that expresses a high level of cyclin D1. Monoclonal antibody to HLA-DR abrogated the epitope-specific responses of both CD3 and CD4 T cells, demonstrating class II-mediated killing. Our studies suggest a possible role of CD4 T cells in anti-tumor immunity as cytotoxic effectors against HLA-DR expressing cancers and provide a rationale for designing peptide vaccines that include CD4 epitopes.

  2. Upregulation of ATF-3 is correlated with prognosis and proliferation of laryngeal cancer by regulating Cyclin D1 expression.

    Science.gov (United States)

    Feng, Jiapeng; Sun, Qingfeng; Wu, Tianyi; Lu, Jianguang; Qu, Lingmei; Sun, Yanan; Tian, Linli; Zhang, Binghui; Li, Dandan; Liu, Ming

    2013-01-01

    This study aimed to investigate the expression and significance of ATF-3 in laryngeal squamous cell carcinoma (LSCC). Expression of ATF-3 was examined using immunohistochemistry methods in samples from 83 cases of LSCC carcinoma. MTT assay was used to detect proliferation of Hep-2 cells after ATF-3 knocked down by siRNA lentivirus. A mouse model was used to investigate the inhibitive role of ATF-3 siRNA in LSCC xenografts. Realtime RCR was used to detect Cyclin D1 expression after ATF-3 downregulation in Hep-2 cells. The expression of ATF-3 was positively detected in all the 83 cases of LSCC cancer tissues while Only 4 cases of adjacent non-neoplastic tissues were detected with positive ATF-3 expression. The ATF-3 expression was statistically related with T stage, neck nodal metastasis, clinical stage and prognosis of LSCC. Both cell proliferation in vitro and tumor growth in vivo were suppressed after ATF-3 knockdown. Furthermore, the expression of Cyclin D1 was decreased after ATF-3 downregulation in Hep-2 cells. ATF-3 is involved in the progress of LSCC, and may provide clinical information for evaluation of prognosis of LSCC. The oncologic role of ATF-3 may be correlated with Cyclin D1 regulation.

  3. Overexpression of Hyaluronan-binding Protein 1 (HABP1/p32/gC1qR) in HepG2 Cells Leads to Increased Hyaluronan Synthesis and Cell Proliferation by Up-regulation of Cyclin D1 in AKT-dependent Pathway*

    Science.gov (United States)

    Kaul, Rachna; Saha, Paramita; Saradhi, Mallampati; Prasad, Ramachandra L. A.; Chatterjee, Soumya; Ghosh, Ilora; Tyagi, Rakesh K.; Datta, Kasturi

    2012-01-01

    Overexpression of the mature form of hyaluronan-binding protein 1 (HABP1/gC1qR/p32), a ubiquitous multifunctional protein involved in cellular signaling, in normal murine fibroblast cells leads to enhanced generation of reactive oxygen species (ROS), mitochondrial dysfunction, and ultimately apoptosis with the release of cytochrome c. In the present study, human liver cancer cell line HepG2, having high intracellular antioxidant levels was chosen for stable overexpression of HABP1. The stable transformant of HepG2, overexpressing HABP1 does not lead to ROS generation, cellular stress, and apoptosis, rather it induced enhanced cell growth and proliferation over longer periods. Phenotypic changes in the stable transformant were associated with the increased “HA pool,” formation of the “HA cable” structure, up-regulation of HA synthase-2, and CD44, a receptor for HA. Enhanced cell survival was further supported by activation of MAP kinase and AKT-mediated cell survival pathways, which leads to an increase in CYCLIN D1 promoter activity. Compared with its parent counterpart HepG2, the stable transformant showed enhanced tumorigenicity as evident by its sustained growth in low serum conditions, formation of the HA cable structure, increased anchorage-independent growth, and cell-cell adhesion. This study suggests that overexpression of HABP1 in HepG2 cells leads to enhanced cell survival and tumorigenicity by activating HA-mediated cell survival pathways. PMID:22451658

  4. Relationship of Ras, MAPK and CyclinD1 Pathway in Carcinogenesis of Cutaneous Pathologic Scar%Ras、MAPK、CyclinD1与皮肤病理性瘢痕癌变相关性研究

    Institute of Scientific and Technical Information of China (English)

    郭瑞珍; 王海青; 胡成久; 张素素

    2013-01-01

    Objective To detect the function of Ras/Raf/MAPK pathway and the downstream target gene CyclinD1 in the carcinogenesis of cutaneous pathologic scar.Methods (1) We adopted immunofluorescence dual staining for K-ras,H-ras and N-ras in the pathologic scar and carcinoma of scar,respectively,and observed under laser confocal microscopy; (2) Immunohistochemistry (IHC) for MAPK and CyclinD1 were used for normal skin,pathologic scar and carcinoma of scar,respectively; (3) In situ hybridization (ISH) was used for mRNA detection of MAPK and CyclinD1 ; (4) The 12th and 13th codon mutations of K-ras,H-ras and N-ras were detected by genetic sequencing.Results (1) The dual labeling of immunofluorescence of K-ras,H-ras and N-ras showed weak positive in pathologic scar,while the carcinoma of scar were strong positive.(2) ISH for mRNA of MAPK and CyclinD1 showed negative or weak positive in the normal epidermis and pathological scar,but strong positive in the carcinoma of scar.The expression level(positive area) and intensity (average optical density) between the carcinoma group and normal skin group or pathologic scar group were statistical different (P<0.01); but without statistical difference between normal skin group and pathologic scar group (P>0.05).(3) Genetic sequencing did not show mutation on the 12th or 13th codon.Conclusion (1) Ras,MAPK and CyclinD1 were not early signals for carcinogenesis of pathologic scar.(2) The 12th or 13th codon mutation of K-ras,H-ras and Nras was not related with the carcinogenesis of pathologic scar.%目的 探讨Ras/Raf/MAPK信号通路及其通路下游靶基因CyclinD1与病理性瘢痕癌变的相关性.方法 (1)激光扫描共聚焦显微技术,对病理性瘢痕和瘢痕癌组织进行K-ras、H-ras、N-ras免疫荧光双标记.(2)免疫组织化学SP法分别检测正常皮肤、病理性瘢痕和瘢痕癌三组组织中MAPK、CyclinD1蛋白的表达.(3)原位杂交技术检测三组组织中MAPK mRNA、CyclinD1 mRNA的表达.(4)

  5. Quercetin reduces cyclin D1 activity and induces G1 phase arrest in HepG2 cells.

    Science.gov (United States)

    Zhou, Jin; Li, L U; Fang, L I; Xie, Hua; Yao, Wenxiu; Zhou, Xiang; Xiong, Zhujuan; Wang, L I; Li, Zhixi; Luo, Feng

    2016-07-01

    Quercetin is able to inhibit proliferation of malignant tumor cells; however, the exact mechanism involved in this biological process remains unclear. The current study utilized a quantitative proteomic analysis to explore the antitumor mechanisms of quercetin. The leucine of HepG2 cells treated with quercetin was labeled as d3 by stable isotope labeling by amino acids in cell culture (SILAC). The isotope peaks of control HepG2 cells were compared with the d3-labeled HepG2 cells by mass spectrometry (MS) to identify significantly altered proteins. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analyses were subsequently employed to verify the results of the MS analysis. A flow cytometry assay was designed to observe the influence of various quercetin treatment concentrations on the cell cycle distribution of HepG2 cells. The results indicated that quercetin is able to substantially inhibit proliferation of HepG2 cells and induce an obvious morphological alteration of cells. According to the MS results, the 70 credibly-changed proteins that were identified may play important roles in multiple cellular processes, including protein synthesis, signaling, cytoskeletal processes and metabolism. Among these functional proteins, the expression of cyclin D1 (CCND1) was found to be significantly decreased. RT-PCR and western blot analyses verified the SILAC-MS results of decreased CCND1 expression. In summary, flow cytometry revealed that quercetin is able to induce G1 phase arrest in HepG2 cells. Based on the aforementioned observations, it is suggested that quercetin exerts antitumor activity in HepG2 cells through multiple pathways, including interfering with CCND1 gene expression to disrupt the cell cycle and proliferation of HepG2 cells. In the future, we aim to explore this effect in vivo.

  6. Metronomic Ceramide Analogs Inhibit Angiogenesis in Pancreatic Cancer through Up-regulation of Caveolin-1 and Thrombospondin-1 and Down-regulation of Cyclin D1

    Directory of Open Access Journals (Sweden)

    Guido Bocci

    2012-09-01

    Full Text Available AIMS: To evaluate the antitumor and antiangiogenic activity of metronomic ceramide analogs and their relevant molecular mechanisms. METHODS: Human endothelial cells [human dermal microvascular endothelial cells and human umbilical vascular endothelial cell (HUVEC] and pancreatic cancer cells (Capan-1 and MIA PaCa-2 were treated with the ceramide analogs (C2, AL6, C6, and C8, at low concentrations for 144 hours to evaluate any antiproliferative and proapoptotic effects and inhibition of migration and to measure the expression of caveolin-1 (CAV-1 and thrombospondin-1 (TSP-1 mRNAs by real-time reverse transcription-polymerase chain reaction. Assessment of extracellular signal-regulated kinases 1 and 2 (ERK1/2 and Akt phosphorylation and of CAV-1 and cyclin D1 protein expression was performed by ELISA. Maximum tolerated dose (MTD gemcitabine was compared against metronomic doses of the ceramide analogs by evaluating the inhibition of MIA PaCa-2 subcutaneous tumor growth in nude mice. RESULTS: Metronomic ceramide analogs preferentially inhibited cell proliferation and enhanced apoptosis in endothelial cells. Low concentrations of AL6 and C2 caused a significant inhibition of HUVEC migration. ERK1/2 and Akt phosphorylation were significantly decreased after metronomic ceramide analog treatment. Such treatment caused the overexpression of CAV-1 and TSP-1 mRNAs and proteins in endothelial cells, whereas cyclin D1 protein levels were reduced. The antiangiogenic and antitumor impact in vivo of metronomic C2 and AL6 regimens was similar to that caused by MTD gemcitabine. CONCLUSIONS: Metronomic C2 and AL6 analogs have antitumor and antiangiogenic activity, determining the up-regulation of CAV-1 and TSP-1 and the suppression of cyclin D1.

  7. The binding specificity of Translocated in LipoSarcoma/FUsed in Sarcoma with lncRNA transcribed from the promoter region of cyclin D1

    OpenAIRE

    Yoneda, Ryoma; Suzuki, Shiho; Mashima, Tsukasa; Kondo, Keiko; Nagata, Takashi; Katahira, Masato; Kurokawa, Riki

    2016-01-01

    Background Translocated in LipoSarcoma (TLS, also known as FUsed in Sarcoma) is an RNA/DNA binding protein whose mutation cause amyotrophic lateral sclerosis. In previous study, we demonstrated that TLS binds to long noncoding RNA, promoter-associated ncRNA-D (pncRNA-D), transcribed from the 5? upstream region of cyclin D1 (CCND1), and inhibits the expression of CCND1. Results In order to elucidate the binding specificity between TLS and pncRNA-D, we divided pncRNA-D into seven fragments and ...

  8. 膀胱移行细胞癌组织中Hec 1、Cyclin D1的表达变化及意义

    Institute of Scientific and Technical Information of China (English)

    韩镇远; 钟甘平; 李向前; 史庭凯

    2010-01-01

    目的 观察癌症高表达蛋白(Hec 1)和细胞周期蛋白D1(Cyclin D1)在膀胱移行细胞癌(TCC)组织中的表达变化,并探讨其临床意义.方法 采用免疫组化SP法检测15例正常膀胱黏膜、85例TCC组织及20例癌旁组织中的Hec 1和Cyclin D1.结果 TCC组织中Hec 1、Cyclin D1阳性表达率均明显高于正常膀胱组织及癌旁组织(P均<0.05).Cyclin D1的表达与TCC病理分级、临床分期有关(P均<0.05),Hec 1的表达与TCC临床分期有关(P<0.05).TCC组织中Hec 1和Cyclin D1的表达呈正相关(r=0.265,P<0.05).结论 Hec 1和Cyclin D1在TCC中过表达,可作为TCC病理分级和临床分期的判断指标.

  9. P120ctn overexpression enhances β-catenin-E-cadherin binding and down regulates expression of survivin and cyclin D1 in BEL-7404 hepatoma cells

    Institute of Scientific and Technical Information of China (English)

    Chao-Zan Nong; Li-Li Pan; Wei-Sheng He; Xi-Liang Zha; Hai-Hong Ye; Hua-Yi Huang

    2006-01-01

    AIM: To understand the role of P120ctn in E-cadherin-mediated cell-cell adhesion and signaling as well as in hepatoma cell biological function.METHODS: We stably overexpressed p120ctn isoform 3A in BEL-7404 human hepatoma cells and studied the effect of p120ctn on β-catenin and E-cadherin binding as well as p120ctn and β-catenin subcellular localization using immunoprecipitation, Western blotting and confocalmicroscopy. We also investigated the inhibitory effect of p120ctn transfection on the expression of apoptotic protein survivin survivin and cell cycle regulator cyclin D1in the cells.RERULTS: Western blotting indicated that p120ctn expression increased after cells were transfected with p120ctn isoform 3A. The protein was located mainly at membrane under immunofluorescent microscope.β-catenin nuclear expression was reduced after overexpression of p120ctn isoform 3A. The p120ctn-E-cadherin binding increased after transfection of p120ctn isoform 3A. Furthermore, overexpression of p120ctn down regulated the expression of apoptotic protein survivin and cell cycle regulator cyclin D1. These effects led to reduction of cell proliferation.CONCLUSION: Our results indicate that p120ctn plays an important role in regulating the formation of E-cadherin and -catenin complex, cell apoptosis, cell cycle and cancer cell biological function.

  10. Transgenic mice with mammary gland targeted expression of human cortactin do not develop (pre-malignant) breast tumors: studies in MMTV-cortactin and MMTV-cortactin/-cyclin D1 bitransgenic mice.

    NARCIS (Netherlands)

    Rossum, A.G. van; Bragt, M.P. van; Schuuring-Scholtes, E.; Ploeg, J.C. van der; Krieken, J.H.J.M. van; Kluin, P.M.; Schuuring, E.

    2006-01-01

    BACKGROUND: In human breast cancers, amplification of chromosome 11q13 correlates with lymph node metastasis and increased mortality. To date, two genes located within this amplicon, CCND1 and EMS1, were considered to act as oncogenes, because overexpression of both proteins, respectively cyclin D1

  11. The Rho GTPase Effector ROCK Regulates Cyclin A, Cyclin D1, and p27Kip1 Levels by Distinct Mechanisms

    OpenAIRE

    Croft, Daniel R; Olson, Michael F.

    2006-01-01

    The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. H...

  12. Expression of Survivin, CyclinD1, p21WAF1, Caspase-3 in Cervical Cancer and Its Relation with Prognosis

    Institute of Scientific and Technical Information of China (English)

    LU Shi; ZHANG Baohua; WANG Zehua

    2005-01-01

    The implications of Survivin, CyclinD1, p21WAF1, Caspase-3 in the development, progression and prognosis in cervical cancer were investigated. By using immunohistochemical SP method, the expression of Survivin, CyclinD1, p21WAF1 , Caspase-3 was detected in 41 cases of cervical cancer, 17 cases of cervical intraepithelial neoplasia (CIN) and 10 cases of normal tissues, and their relation with pathological grade, clinical stage, metastasis and survival time was analyzed.The results showed that the positive expression rate of Survivin, CyclinD1 in cervical cancer was significantly higher than in CIN group and normal control group (P<0.05). The median survival time in the patients with cervical cancer positive for Survivin and CyclinD1 was significantly shorter than in those with negative expression (P<0.05). The expression of both Survivin and CyclinD1 was not related with tumor grade, clinical stage and metastasis (P>0. 05). The positive expression rate of p21WAF1 , Caspase-3 in cervical ca rcer was significantly lower than in CIN group and normal control group (P<0.05), and had a close relation with tumor grade (P<0.05). The expression of Survivin in cervical cancer in cervical cancer was negatively associated with that of Caspase-3 (P<0.01), but positively with that of CyclinD1 (P<0.01). Cox Multivariate analysis revealed that Survivin was the independent prognostic indicator influencing the survival time of the patients with cervical cancer (P<0.05). It was suggested that the high expression of Survivin or CyclinD1, and low expression of p21WAF1 or Caspase-3 was closely correlated with the development of cervical cancer. Survivin and CyclinD1 could be used as a useful indicator to predict the prognosis of cervical cancer.

  13. Cyclin D1 is a useful marker for soft tissue Ewing's sarcoma/peripheral Primitive Neuroectodermal Tumor in children and adolescents: A comparative immunohistochemical study with rhabdomyosarcoma.

    Science.gov (United States)

    Magro, Gaetano; Brancato, Franca; Musumeci, Giuseppe; Alaggio, Rita; Parenti, Rosalba; Salvatorelli, Lucia

    2015-01-01

    Cyclin D1 amplification and/or overexpression contribute to the loss of the regulatory circuits that govern G1-S transition phase of the cell cycle, playing pivotal roles in different human malignant tumors, including breast, colon, prostate cancer, lymphoma, melanoma and neuroblastoma. In vitro studies have shown that cyclin D1 is overexpressed in Ewing's sarcoma (EWS)/peripheral Primitive Neuroectodermal Tumor (pPNET), but not in rhabdomyosarcoma cell lines. Only a few immunohistochemical studies are available on cyclin D1 expression in EWS/pPNET, which confirmed its expression only in a limited number of cases. The aim of the present study was a comparative immunohistochemical analysis of the expression and distribution of cyclin D1 in a large series of pediatric/adolescent soft tissue EWS/pPNETs and rhabdomyosarcomas (both embryonal and alveolar subtypes) to assess its potential usefulness in their differential diagnosis. Notably cyclin D1 was strongly and diffusely expressed in all cases (20/20) of EWS/pPNET, while it was lacked in all cases (15/15) of rhabdomyosarcomas. Immunohistochemical overexpression of cyclin D1 in EWS/pPNET is a novel finding which could be exploitable as a diagnostic immunomarker for this tumor. Although highly sensitive, cyclin D1 is not specific for EWS/pPNET, and thus it should not be evaluated alone but in the context of a wide immunohistochemical panel. Accordingly, we first emphasize that when pathologists are dealing with a small round blue cell tumor of soft tissues in pediatric/adolescent patients, a strong and diffuse nuclear expression of cyclin D1 is of complementary diagnostic value to CD99 and FLI-1 in confirming diagnosis of EWS/pPNET and in ruling out rhabdomyosarcoma.

  14. The p-ERK–p-c-Jun–cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjia [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Song, Ting [Nursing Department of Orthopedics 3rd Ward, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Ni, Leng; Yang, Genhuan; Song, Xitao; Wu, Lifei [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Liu, Bao, E-mail: liubao72@yahoo.com.cn [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Liu, Changwei, E-mail: liucw@vip.sina.com [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China)

    2014-10-24

    Highlights: • Smooth muscle cells proliferated after exposure to cigarette smoke extract. • The p-ERK, p-c-Jun, and cyclinD1 expressions increased in the process. • The p-ERK inhibitor, U0126, can reverse these effects. • The p-ERK → p-c-Jun → cyclinD1 pathway is involved in the process. - Abstract: An epidemiological survey has shown that smoking is closely related to atherosclerosis, in which excessive proliferation of vascular smooth muscle cells (SMCs) plays a key role. To investigate the mechanism underlying this unusual smoking-induced proliferation, cigarette smoke extract (CSE), prepared as smoke-bubbled phosphate-buffered saline (PBS), was used to induce effects mimicking those exerted by smoking on SMCs. As assessed by Cell Counting Kit-8 detection (an improved MTT assay), SMC viability increased significantly after exposure to CSE. Western blot analysis demonstrated that p-ERK, p-c-Jun, and cyclinD1 expression increased. When p-ERK was inhibited using U0126 (inhibitor of p-ERK), cell viability decreased and the expression of p-c-Jun and cyclinD1 was reduced accordingly, suggesting that p-ERK functions upstream of p-c-Jun and cyclinD1. When a c-Jun over-expression plasmid was transfected into SMCs, the level of cyclinD1 in these cells increased. Moreover, when c-Jun was knocked down by siRNA, cyclinD1 levels decreased. In conclusion, our findings indicate that the p-ERK–p-c-Jun–cyclinD1 pathway is involved in the excessive proliferation of SMCs exposed to CSE.

  15. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Christopher C.; Bloodworth, Jeffrey C. [Division of Pharmacology, Columbus, OH 43210 (United States); Mythreye, Karthikeyan [Duke University, Department of Medicine, Durham, NC 27708 (United States); Lee, Nam Y., E-mail: lee.5064@osu.edu [Division of Pharmacology, Columbus, OH 43210 (United States); Davis Heart and Lung Research Institute, Columbus, OH 43210 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.

  16. Effects of Chloroquine on GFAP, PCNA and Cyclin D1 in Hippocampus and Cerebral Cortex of Rats with Seizures Induced by Pentylenetetrazole

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuhua; ZHU Changgeng; LIU Qingying; WANG Wei

    2005-01-01

    The effects of chloroquine on glial fibrillary acidic protein (GFAP), proliferation cell nuclear antigen (PCNA) and Cyclin D1 in hippocampus and cerebral cortex of rats with seizures induced by pentylenetetrazole (PTZ) were observed in the present study. Forty-eight male adult Sprague-Dawley (SD) rats were randomly divided into control group, chloroquine intervening group, and PTZ group. The behavior and electroencephalogram (EEG) were observed and recor ded. GFAP and PCNA were examined with immunohistochemistry. The content of Cyclin D1 in hippocampus and cerebral cortex was inspected with Western blot. The results showed no seizure activity in the control group, severe seizure activity in the PTZ group (Ⅳ-Ⅴ degree), and slight seizure activity ( Ⅰ - Ⅲ degree) in the chloroquine intervening group (P<0. 05). EEG recordings showed no epileptic spikes in the control group, high amplitude with fast frequency in the PTZ group, low-amplitude and slow frequency in the chloroquine intervening group. The expression of GFAP and the positive index of PCNA in the PTZ group were higher than those of control group (P <0.05 and P<0.01, respectively). No differences in GFAP expression and PCNA index were observed between chloroquine intervening and control groups (P>0.05). The content of Cyclin D1 in hippocampus and cerebral cortex was significantly higher in the PTZ group than in control and chloroquine intervening groups (P< 0.05). Therefore, it is considered that chloroquine, by inhibiting the functions and proliferation of glial cells in the hippocampus and cerebral cortex, can alleviate the seizure activities. These results suggest that chloroquine may be an ideal anticonvulsant in preventing and treating epilepsy.

  17. The Abnormal Expressions of pRb and Cyclin D1 in Laryngeal Squamous Cell Carcinoma Patients%喉鳞状细胞癌患者视网膜母细胞瘤蛋白和细胞周期调节蛋白 D1异常表达

    Institute of Scientific and Technical Information of China (English)

    曾汉荣; 杨虹女; 李文星; 涂兴; 李志华; 孔维佳

    2016-01-01

    Objective:To investigate the abnormal expressions of retinoblastoma protein (pRb) and cell cycle protein D1 (Cyclin D1) in laryngeal squamous cell carcinoma (LSCC) patients .Method:All pathological specimens , which were respectively included 12 cases of LSCC group and vocal cord polyp (VCP group) as well as laryngeal precarcinoma lesions (LPL group) were selected from patients ,who were accepted radical surgery treatments be‐cause of different diseases of laryngeal tissures .The expression of pRb and Cyclin D1 were detected by Western‐blotting methods .Moreover ,correlational difference between different proteins were analyzed and compared by used statistical software in the mentioned above three groups .Results:Compared with VCP group ,the expression of pRb was markedly decreased (P<0 .01) ,and the expression of Cyclin D1 was notably increased in LPL group (P<0 . 01) .Compared with LPL group ,however ,the quantitative levels of pRb was furtherly decreased (P<0 .01) ,mo‐reover ,the quantitative levels of Cyclin D1 was significenlly increased in LSCC group (P<0 .01) .The expression of pRb had significant negative correlation with that of Cyclin D 1 with -0 .94 in VCP group and -0 .83 in LPL group as well -0 .92 in LSCC group (P of all < 0 .001) .Conclusion:The occurrence and development of patients with LSCC might have significant relationship with that pRb was severely decreased and Cyclin D 1 was significantly in‐creased .%目的:探讨喉鳞状细胞癌(LSCC)患者视网膜母细胞瘤蛋白(pRb)和细胞周期调节蛋白D1Cyclin D1)的异常表达及其相关性。方法:选择36例喉部疾病手术患者,包括LSCC (LSCC组)、声带息肉(息肉组)和癌前病变(癌前组)各12例,各组均于手术后取病变组织,采用Western‐blotting检测pRb和Cyclin D1蛋白表达水平,统计学分析各组两指标差异及相关性。结果:与息肉组比较,癌前组 pRb表达水平降低( P<0.01),Cyclin

  18. Id2 regulates the proliferation of squamous cell carcinoma in vitro via the NF-κB/Cyclin D1 pathway

    Institute of Scientific and Technical Information of China (English)

    Chuan Wang; Qiang Chen; Yuki Hamajima; Wei Sun; Yi-Qing Zheng; Xiao-Hua Hu; Frank G.Ondrey; Ji-Zhen Lin

    2012-01-01

    Squamous cell carcinoma (SCC) is a significant cause of cancer morbidity and mortality worldwide,with an incidence of up to 166 cases per 100 000 population.It arises in the skin,upper aerodigestive tract,lung,and cervix and affects more than 200 000 Americans each year.We report here that a microarray experiment comparing 41 SCC and 13 normal tissue specimens showed that Id2,a gene that controls the cell cycle,was significantly up-regulated in SCC.Enforced expression of Id2 in vitro stimulated the proliferation of SCC cells and up-regulated the transcription of nuclear factor kappa B (NF-κB) and cyclin D1.Enhancement of the NF-κB activity with p65 significantly increased the cell proliferation and the transcription of cyclin D1,whereas inhibition of the NF-κB activity with I kappa B alpha mutant (IκBα M) and pyrroline dithiocarbamate (PDTC) abrogated cell proliferation and transcription of cyclin D1.Furthermore,a mutated NF-κB binding site in the cyclin D1 promoter fully abrogated the Id2- induced transcription of cyclin D1.Taken together,these data indicate that Id2 induces SCC tumor growth and proliferation through the NF-κB/cyclin D1 pathway.

  19. Post-transcriptional regulation of cyclins D1, D3 and G1 and proliferation of human cancer cells depend on IMP-3 nuclear localization.

    Science.gov (United States)

    Rivera Vargas, T; Boudoukha, S; Simon, A; Souidi, M; Cuvellier, S; Pinna, G; Polesskaya, A

    2014-05-29

    RNA-binding proteins of the IMP family (insulin-like growth factor 2 (IGF2) mRNA-binding proteins 1-3) are important post-transcriptional regulators of gene expression. Multiple studies have linked high expression of IMP proteins, and especially of IMP-3, to an unfavorable prognosis in numerous types of cancer. The specific importance of IMP-3 for cancer transformation remains poorly understood. We here show that all three IMPs can directly bind the mRNAs of cyclins D1, D3 and G1 (CCND1, D3 and G1) in vivo and in vitro, and yet only IMP-3 regulates the expression of these cyclins in a significant manner in six human cancer cell lines of different origins. In the absence of IMP-3, the levels of CCND1, D3 and G1 proteins fall dramatically, and the cells accumulate in the G1 phase of the cell cycle, leading to almost complete proliferation arrest. Our results show that, compared with IMP-1 and IMP-2, IMP-3 is enriched in the nucleus, where it binds the transcripts of CCND1, D3 and G1. The nuclear localization of IMP-3 depends on its protein partner HNRNPM and is indispensable for the post-transcriptional regulation of expression of the cyclins. Cytoplasmic retention of IMP-3 and HNRNPM in human cancer cells leads to significant drop in proliferation. In conclusion, a nuclear IMP-3-HNRNPM complex is important for the efficient synthesis of CCND1, D3 and G1 and for the proliferation of human cancer cells.

  20. SUMO modification of Stra13 is required for repression of cyclin D1 expression and cellular growth arrest.

    Directory of Open Access Journals (Sweden)

    Yaju Wang

    Full Text Available Stra13, a basic helix-loop-helix (bHLH transcription factor is involved in myriad biological functions including cellular growth arrest, differentiation and senescence. However, the mechanisms by which its transcriptional activity and function are regulated remain unclear. In this study, we provide evidence that post-translational modification of Stra13 by Small Ubiquitin-like Modifier (SUMO dramatically potentiates its ability to transcriptionally repress cyclin D1 and mediate G(1 cell cycle arrest in fibroblast cells. Mutation of SUMO acceptor lysines 159 and 279 located in the C-terminal repression domain has no impact on nuclear localization; however, it abrogates association with the co-repressor histone deacetylase 1 (HDAC1, attenuates repression of cyclin D1, and prevents Stra13-mediated growth suppression. HDAC1, which promotes cellular proliferation and cell cycle progression, antagonizes Stra13 sumoylation-dependent growth arrest. Our results uncover an unidentified regulatory axis between Stra13 and HDAC1 in progression through the G(1/S phase of the cell cycle, and provide new mechanistic insights into regulation of Stra13-mediated transcriptional repression by sumoylation.

  1. The different roles of cyclinD1-CDK4 in STP and mGluR-LTD during the postnatal development in mice hippocampus area CA1

    Directory of Open Access Journals (Sweden)

    Wang Huili

    2007-05-01

    Full Text Available Abstract Background Cell-cycle-related proteins, such as cyclins or cyclin-dependent kinases, may have functions beyond that of cell cycle regulation. The expression and translocation of cyclinD1-CDK4 in post-mitotic neurons indicate that they may have supplementary functions in differentiated neurons that might be associated with neuronal plasticity. Results In the present study, our findings showed that the expression of CDK4 was localized mostly in nuclei and cytoplasm of pyramidal cells of CA1 at postnatal day 10 (P10; whereas at P28 staining of CDK4 could be detected predominantly in the cytoplasm but not nuclei. Basal synaptic transmission was normal in the presence of CDK4 inhibitor. Short-term synaptic plasticity (STP was impaired in CDK4 inhibitor pre-treated slices both from neonatal (P8-15 and adolescent (P21-35 animals; however there was no significant change in paired-pulse facilitation (PPF in slices pre-incubated with the CDK4 inhibitor from adolescent animals. By the treatment of CDK4 inhibitor, the induction or the maintenance of Long-term potentiation (LTP in response to a strong tetanus and NMDA receptor-dependent long-term depression (LTD were normal in hippocampus. However, long-term depression (LTD induced either by group I metabotropic glutamate receptors (mGluRs agonist or by paired-pulse low-frequency stimulation (PP-LFS was impaired in CDK4 inhibitor pretreated slices both from neonatal and adolescent animals. But the effects of the CDK4 inhibitor at slices from adolescent animals were not as robust as at slices from neonatal animals. Conclusion Our results indicated that the activation of cyclinD1-CDK4 is required for short-term synaptic plasticity and mGluR-dependent LTD, and suggested that this cyclin-dependent kinase may have different roles during the postnatal development in mice hippocampus area CA1.

  2. Modulations of benzo[a]pyrene-induced DNA adduct, cyclin D1 and PCNA in oral tissue by 1,4-phenylenebis(methylene)selenocyanate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kun-Ming [Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 (United States); Sacks, Peter G. [Department of Basic Sciences, College of Dentistry, New York University, New York, NY 10010 (United States); Spratt, Thomas E.; Lin, Jyh-Ming; Boyiri, Telih [Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 (United States); Schwartz, Joel [University of Illinois, College of Dentistry, Chicago, IL 60612 (United States); Richie, John P.; Calcagnotto, Ana [Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033 (United States); Das, Arunangshu; Bortner, James [Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 (United States); Zhao, Zonglin [Department of Basic Sciences, College of Dentistry, New York University, New York, NY 10010 (United States); Department of Environmental Medicine, School of Medicine, New York University, New York, NY 10010 (United States); Amin, Shantu [Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033 (United States); Guttenplan, Joseph [Department of Basic Sciences, College of Dentistry, New York University, New York, NY 10010 (United States); Department of Environmental Medicine, School of Medicine, New York University, New York, NY 10010 (United States); El-Bayoumy, Karam, E-mail: kee2@psu.edu [Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 (United States)

    2009-05-22

    Tobacco smoking is an important cause of human oral squamous cell carcinoma (SCC). Tobacco smoke contains multiple carcinogens include polycyclic aromatic hydrocarbons typified by benzo[a]pyrene (B[a]P). Surgery is the conventional treatment approach for SCC, but it remains imperfect. However, chemoprevention is a plausible strategy and we had previously demonstrated that 1,4-phenylenebis(methylene)selenocyanate (p-XSC) significantly inhibited tongue tumors-induced by the synthetic 4-nitroquinoline-N-oxide (not present in tobacco smoke). In this study, we demonstrated that p-XSC is capable of inhibiting B[a]P-DNA adduct formation, cell proliferation, cyclin D1 expression in human oral cells in vitro. In addition, we showed that dietary p-XSC inhibits B[a]P-DNA adduct formation, cell proliferation and cyclin D1 protein expression in the mouse tongue in vivo. The results of this study are encouraging to further evaluate the chemopreventive efficacy of p-XSC initially against B[a]P-induced tongue tumors in mice and ultimately in the clinic.

  3. Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways

    DEFF Research Database (Denmark)

    Friedrichsen, Birgitte N; Neubauer, Nicole; Lee, Ying C;

    2006-01-01

    pathways leading to mitosis by incretins and cytokines, respectively. The response to both GLP-1 and GIP was completely blocked by the protein kinase A (PKA) inhibitor, H89. In addition, the phosphoinositol 3-kinase (PI3K) inhibitor wortmannin and the mitogen-activated protein kinase kinase (MEK) inhibitor...... PD98059, both inhibited GLP-1- and GIP-stimulated proliferation. The p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, had no inhibitory effect on either GLP-1 or GIP stimulated proliferation. Cyclin Ds act as molecular switches for the G0/G1-S phase transition in many cell types...

  4. leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3.

    Science.gov (United States)

    Saxena, Neeraj K; Vertino, Paula M; Anania, Frank A; Sharma, Dipali

    2007-05-01

    Numerous epidemiological studies documented that obesity is a risk factor for breast cancer development in postmenopausal women. Leptin, the key player in the regulation of energy balance and body weight control also acts as a growth factor on certain organs in both normal and disease state. In this study, we analyzed the role of leptin and the molecular mechanism(s) underlying its action in breast cancer cells that express both short and long isoforms of leptin receptor. Leptin increased MCF7 cell population in the S-phase of the cell cycle along with a robust increase in CYCLIN D1 expression. Also, leptin induced Stat3-phosphorylation-dependent proliferation of MCF7 cells as blocking Stat3 phosphorylation with a specific inhibitor, AG490, abolished leptin-induced proliferation. Using deletion constructs of CYCLIN D1 promoter and chromatin immunoprecipitation assay, we show that leptin induced increase in CYCLIN D1 promoter activity is mediated through binding of activated Stat3 at the Stat binding sites and changes in histone acetylation and methylation. We also show specific involvement of coactivator molecules, histone acetyltransferase SRC1, and mediator complex in leptin-mediated regulation of CYCLIN D1 promoter. Importantly, silencing of SRC1 and Med1 abolished the leptin induced increase in CYCLIN D1 expression and MCF7 cell proliferation. Intriguingly, recruitment of both SRC1 and Med1 was dependent on phosphorylated Stat3 as AG490 treatment inhibited leptin-induced recruitment of these coactivators to CYCLIN D1 promoter. Our data suggest that CYCLIN D1 may be a target gene for leptin mediated growth stimulation of breast cancer cells and molecular mechanisms involve activated Stat3-mediated recruitment of distinct coactivator complexes.

  5. Cyclin D1、Ki -67在口腔黏膜白斑和口腔鳞癌中的表达%Expression and significance of cyclin D1 and Ki - 67 in oral leukoplakia and oral squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    何伟; 陈欢; 陈卫民

    2016-01-01

    ①目的探讨 Cyclin D1、Ki -67在口腔黏膜白斑和口腔鳞癌中的表达及意义。②方法免疫组化 SP 法检测10例正常口腔黏膜、12例上皮单纯增生性黏膜白斑、23例上皮不典型增生性白斑、42例口腔鳞癌组织中的 Cyclin D1、Ki-67蛋白表达情况,使用 SPSS 17.0软件包对数据进行统计学处理。③结果 Cyclin D1在上皮不典型增生性白斑和口腔鳞癌蛋白阳性表达率为39.1%、42.9%,显著高于上皮单纯增生性白斑(16.7%)和正常口腔黏膜(10.0%),差异具有统计学意义( P <0.05);Ki -67在上皮不典型增生性白斑和口腔鳞癌蛋白阳性表达率为78.3%、90.5%,显著高于上皮单纯增生性白斑(41.7%)和正常口腔黏膜(30.0%),差异具有统计学意义( P <0.05);Cyclin D1在口腔鳞癌中的表达与肿瘤分化程度及淋巴结转移有关( P <0.05),与临床分期无关( P >0.05),Ki -67在口腔鳞癌中的表达与肿瘤分化程度、临床分期及淋巴结转移均有关( P <0.05);Cyclin D1与 Ki -67在口腔鳞癌组织中的表达呈正相关。④结论 Cyclin D1、Ki-67在上皮不典型增生性白斑和口腔鳞癌中的高表达提示二者在口腔黏膜白斑的癌变和口腔鳞癌的发生发展中起重要作用。%Objective To study the expression and significance of cyclin D1and Ki - 67 in oral leu‐koplakia and oral squamous cell carcinoma .Methods Immunohistochemistry of SP method was used to detect the expression of 10 cases of normal oral mucosa ,12 cases of simple epithelial hyperplasia type leukoplakia ,23 cases of atypical epithelial proliferative leukoplakia ,42 cases of oral squamous cell carci‐noma of cyclin D1 and Ki - 67 protein expression ,using SPSS 17 .0 software package was used for data processing .Results Cyclin D1 in epithelial dysplasia leukoplakia and oral squamous cell carcinoma posi

  6. Early B-cell-specific inactivation of ATM synergizes with ectopic CyclinD1 expression to promote pre-germinal center B-cell lymphomas in mice.

    Science.gov (United States)

    Yamamoto, K; Lee, B J; Li, C; Dubois, R L; Hobeika, E; Bhagat, G; Zha, S

    2015-06-01

    Ataxia telangiectasia-mutated (ATM) kinase is a master regulator of the DNA damage response. ATM is frequently inactivated in human B-cell non-Hodgkin lymphomas, including ~50% of mantle cell lymphomas (MCLs) characterized by ectopic expression of CyclinD1. Here we report that early and robust deletion of ATM in precursor/progenitor B cells causes cell autonomous, clonal mature B-cell lymphomas of both pre- and post-germinal center (GC) origins. Unexpectedly, naive B-cell-specific deletion of ATM is not sufficient to induce lymphomas in mice, highlighting the important tumor suppressor function of ATM in immature B cells. Although EμCyclinD1 is not sufficient to induce lymphomas, EμCyclinD1 accelerates the kinetics and increases the incidence of clonal lymphomas in ATM-deficient B-cells and skews the lymphomas toward pre-GC-derived small lymphocytic neoplasms, sharing morphological features of human MCL. This is in part due to CyclinD1-driven expansion of ATM-deficient naive B cells with genomic instability, which promotes the deletions of additional tumor suppressor genes (i.e. Trp53, Mll2, Rb1 and Cdkn2a). Together these findings define a synergistic function of ATM and CyclinD1 in pre-GC B-cell proliferation and lymphomagenesis and provide a prototypic animal model to study the pathogenesis of human MCL.

  7. Early B-cell Specific Inactivation of ATM Synergizes with Ectopic CyclinD1 Expression to Promote Pre-germinal center B-cell Lymphomas in Mice

    Science.gov (United States)

    Yamamoto, Kenta; Lee, Brian J.; Li, Chen; Dubois, Richard L.; Hobeika, Elias; Bhagat, Govind; Zha, Shan

    2017-01-01

    Ataxia Telangiectasia Mutated (ATM) kinase is a master regulator of the DNA damage response. ATM is frequently inactivated in human B-cell non-Hodgkin Lymphomas (B-NHL), including ~50% of mantle cell lymphomas (MCLs) characterized by ectopic expression of CyclinD1. Here we report that early and robust deletion of ATM in precursor/progenitor B-cells causes cell-autonomous, clonal mature B cell lymphomas of both pre- and post-germinal center (GC) origins. Unexpectedly naïve B cell specific deletion of ATM is not sufficient to induce lymphomas in mice, highlighting the important tumor suppressor function of ATM in immature B cells. While EμCyclinD1 is not sufficient to induce lymphomas, EμCyclinD1 accelerates the kinetics and increased the incidence of clonal lymphomas in ATM-deficient B-cells and skews the lymphomas towards pre-GC derived small lymphocytic neoplasms sharing morphological features of human MCL. This is in part due to CyclinD1-driven expansion of ATM-deficient naïve B cells with genomic instability, which promotes the deletions of additional tumor suppressor genes (i.g. Trp53, Mll2, Rb1 and Cdkn2a). Together these findings define a synergistic function of ATM and CyclinD1 in pre-germinal center B-cell proliferation and lymphomagenesis and provide a prototypic animal model to study the pathogenesis of human MCL. PMID:25676421

  8. Prognostic and clinicopathological features of E-cadherin, α-catenin, β-catenin, γ-catenin and D1 cyclin expression in human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Ying-Cheng Lin; Ming-Yao Wu; De-Rui Li; Xian-Ying Wu; Rui-Ming Zheng

    2004-01-01

    AIM: To investigate the expression of E-cadherin, α-catenin,β-catenin, γ-catenin and cyclin D1 in patients with esophageal squamous cell carcinoma (ESCC), and analyze their interrelationship with clinicopathological variables and their effects on prognosis.METHODS: Expression of E-cadherin, α-catenin, β-catenin,γ-catenin and cyclin D1 was determined by EnVision or SABC immunohistochemical technique in patients with ESCC consecutively, their correlation with clinical characteristics was evaluated and analyzed by univariate analysis.RESULTS: The reduced expression rate of E-cadherin, α-catenin, β-catenin and γ-catenin was 88.7%, 69.4%, 35.5%and 53.2%, respectively. Cyclin D1 positive expression rate was 56.5%. Expression of γ-catenin was inversely correlated with the degree of tumor differentiation and lymph node metastasis (x2 = 4.183 and x2 = 5.035, respectively, P<0.05),whereas the expression of E-cadherin was correlated only with the degree of differentiation (x2 = 5.769, P<0.05).Reduced expression of E-cadherin and γ-catenin was associated with poor differentiation of tumor, reduced expression of γ-catenin was also associated with lymph node metastasis. There obviously existed an inverse correlation between level of E-cadherin and γ-catenin protein and survival. The 3-year survival rates were 100% and56% in E-cadherin preserved expression group and in reduced expression one and were 78% and 48% in γ-catenin preserved expression group and in reduced expression one,respectively. The differences were both statistically significant. Correlation analysis showed the expression level of α-catenin correlated with that of E-cadherin and β-catenin(P<0.05).CONCLUSION: The reduced expression of E-cadherin and γ-catenin, but not α-catenin, β-catenin and cydin D1, implies more aggressive malignant behaviors of esophageal carcinoma cells and predicts the poor prognosis of patients.

  9. p21WAF1、cyclinD1和pRb在膀胱移行细胞癌中的表达及其意义%Expression of p21WAF1,cyclin D1 and pRb in bladder transitional cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    米振国; 马志方; 王东文; 刘红耀; 杨晓峰

    2002-01-01

    目的探讨p21WAF1、细胞周期蛋白D1(cyclin D1)和pRb在膀胱移行细胞癌(BTCC)中的表达及相互关系和其意义.方法应用免疫组织化学SP法检测57例BTCC患者癌组织中p21WAF1、Cyclin D1和pRb的蛋白表达.结果 p21WAF1、cyclin D1和pRb的阳性表达率分别为36.8%、49.1%和45.6%,p21WAF1随病理分级升高阳性率显著下降,cyclin D1和pRb的表达与BTCC的病理分级、临床分期和有无转移均相关,p21WAF1与pRb的表达呈负相关,cyclin D1和pRb的表达呈正相关,而p21WAF1与cyclin D1的表达无关.结论 p21WAF1/cyclin D1/pRb通路异常与BTCC的发生发展密切相关,p21WAF1的改变可能为癌变的早期事件,联合检测p21WAF1、cyclin D1和pRb可较准确地评价BTCC的生物学特性,估计预后,指导治疗.

  10. Alteration of the Cyclin D1/p16-pRB Pathway,Cellular Proliferation and Apoptosis in Glioma%人脑胶质瘤中cyclin D1/p16-pRB路径异常以及细胞增殖和凋亡的变化

    Institute of Scientific and Technical Information of China (English)

    王存祖; 傅震; 赵竹

    2004-01-01

    Objective: To study the alteration of cyclin D1, p16 and pRB in glioma, analyze proliferation and apoptosis of tumor cells, and discuss the pathogenesis of glioma. Methods:Thirty-seven glioma specimens were classified as astrocytoma(25 cases, including 7 fibrillary cases; 6 protoplasmic cases; 12 anaplasfic cases), and glioblastoma( 12 cases,including 4 GBM cases). Ten normal brain tissues were taken as controls. The expression of cyclin D1, p16 and pRB were detected by immunohistochemical method. Cellular proliferation was assessed by Ki-67 label index(Ki-67 LI). Cellular apoptosis was detected by TUNEL and apoptotic indices(Al) was calculated. Results: The alterations of three proteins were cyclin D1 overexpression( 28/37,75.7% ), p16 and pRB deletion(20/37,54.1% and 12/37,32.4% ), which were closely related to tumor types, particularly in malignant glioma. Ki-67 LI and AI were higher when pRB pathway was abnormal. Apoptosis was minor in astrocytic tumors(astrocytomas,0.010 ± 0.002;glioblastomas,0.057 + 0.016). Conclusion: The abnormalities of cyclin D1/p16-pRB pathway correlated closely with pathogenesis of glioma.%目的:研究Gl→S调控点中cyclin Dl、p16及pRB基因在胶质瘤中表达情况,分析与细胞增殖和凋亡的关系,探讨肿瘤发生的原因.方法:37例人脑胶质瘤标本按WHO分类标准(1990)分为:星形细胞瘤(25例,纤维型7例,原浆型6例,间变型12例),胶质母细胞瘤(12例,包括GBM4例).正常对照脑组织10例.cyclin Dl、p16和Ki-67的表达用免疫组化的方法,凋亡细胞通过TUNEL进行检测,细胞增殖和凋亡的评估分别用Ki-67LI和凋亡指数(AI).结果:3种因子在胶质瘤中都存在着异常,其中cyclin Dl表现为过度表达(28/37,75.7%),p16、pRB表现为缺失(20/37,56.8%和12/37,32.4%),且都与肿瘤分型有关,在恶性肿瘤中更加明显;pRB路径的异常在胶质瘤中更是频发事件,与肿瘤恶化有关;pRB路径异常时,Ki-67LI和AI均明显增高;凋讯发

  11. The expression and significance of pRb2/p130,CyclinD1 and VEGF in endometrial carci-noma%VEGF和pRb2/p130、CyclinD1在子宫内膜癌中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    覃睿; 梁科庆; 温伟; 莫秋荣

    2015-01-01

    Objective:To investigate the expressions of pRb2/p130,CyclinD1 protein and VEGF,their correlation and relationship with the pathological clinical features of normal endometrial tissue,endometrial hyperplasia,atypical endometrial hyperplasia and human endometrial carcinoma. Methods:Thirty normal endometrial tissue,30 endometrial hyperplasia,40 atypical endometrial hyperplasia and 68 endometrial carcinomas were collected. Immunohistochemistri-cal methods were used to detect their pRb2/p130,CycinD1 protein and VEGF expressions. Results:In the atypical endometrial hyperplasia,the expressions of VEGF were significantly higher than that of normal(p﹤0. 05). VEGF and CyclinD1 expression were positive correlated. In the endometrial carcinomas,the expression of VEGF was associated with tumor grade and ER. The expressions of VEGF were significantly higher than that of endometrial hyperplasia( p﹤0. 05). There was negative correlation between the expressions of pRb2/p130 protein and that of VEGF(r= -0. 243, p=0. 045). There was positive correlation between the expressions of CyclinD1 protein,ER and that of VEGF(r=0. 337,p=0. 005;r =4. 628,p =0. 031,respectively). Conclusion:The abnormal expression of pRb2/p130,Cy-clinD1 protein and VEGF in the atypical endometrial hyperplasia and that of endometrial carcinomas,combined to-gether,may be as screening index of precancerous lesions and endometrial cancer aggressiveness. Estrogen-receptor may be regulate production of VEGF.%目的:探讨pRb2/p130、CyclinD1蛋白和VEGF在正常子宫内膜、子宫内膜增殖症、非典型子宫内膜增殖症和子宫内膜癌中的表达、相关性及与临床病理特征的关系。方法:免疫组织化学EnVision二步法检测pRb2/p130、CyclinD1蛋白和VEGF在30例正常增生期子宫内膜、30例子宫内膜增殖症、40例非典型子宫内膜增殖症和68例子宫内膜癌中的表达。结果:在非典型子宫内膜增殖症中,VEGF的表达显著高于正常

  12. Functional Variants at the 11q13 Risk Locus for Breast Cancer Regulate Cyclin D1 Expression through Long-Range Enhancers

    Science.gov (United States)

    French, Juliet D.; Ghoussaini, Maya; Edwards, Stacey L.; Meyer, Kerstin B.; Michailidou, Kyriaki; Ahmed, Shahana; Khan, Sofia; Maranian, Mel J.; O’Reilly, Martin; Hillman, Kristine M.; Betts, Joshua A.; Carroll, Thomas; Bailey, Peter J.; Dicks, Ed; Beesley, Jonathan; Tyrer, Jonathan; Maia, Ana-Teresa; Beck, Andrew; Knoblauch, Nicholas W.; Chen, Constance; Kraft, Peter; Barnes, Daniel; González-Neira, Anna; Alonso, M. Rosario; Herrero, Daniel; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Luccarini, Craig; Baynes, Caroline; Conroy, Don; Dennis, Joe; Bolla, Manjeet K.; Wang, Qin; Hopper, John L.; Southey, Melissa C.; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Fasching, Peter A.; Loehberg, Christian R.; Ekici, Arif B.; Beckmann, Matthias W.; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Aitken, Zoe; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Milne, Roger L.; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Benitez, Javier; Anton-Culver, Hoda; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Meindl, Alfons; Lichtner, Peter; Schmutzler, Rita K.; Engel, Christoph; Brauch, Hiltrud; Hamann, Ute; Justenhoven, Christina; Aaltonen, Kirsimari; Heikkilä, Päivi; Aittomäki, Kristiina; Blomqvist, Carl; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Wu, Anna H.; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O.; Lambrechts, Diether; Peeters, Stephanie; Smeets, Ann; Floris, Giuseppe; Chang-Claude, Jenny; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Bonanni, Bernardo; Sardella, Domenico; Couch, Fergus J.; Wang, Xianshu; Pankratz, Vernon S.; Lee, Adam; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Teo, Soo Hwang; Yip, Cheng Har; Ng, Char-Hong; Vithana, Eranga Nishanthie; Kristensen, Vessela; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Devilee, Peter; Seynaeve, Caroline; García-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Czene, Kamila; Klevebring, Daniel; Schoof, Nils; Hooning, Maartje J.; Martens, John W.M.; Collée, J. Margriet; Tilanus-Linthorst, Madeleine; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Balasubramanian, Sabapathy P.; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Pharoah, Paul D.P.; Healey, Catherine S.; Shah, Mitul; Pooley, Karen A.; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Hartman, Mikael; Miao, Hui; Sng, Jen-Hwei; Sim, Xueling; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Sangrajrang, Suleeporn; Gaborieau, Valerie; McKay, James; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Godwin, Andrew K.; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Chen, Shou-Tung; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Ponder, Bruce A.J.; Nevanlinna, Heli; Brown, Melissa A.; Chenevix-Trench, Georgia; Easton, Douglas F.; Dunning, Alison M.

    2013-01-01

    Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causative variant rs554219 increases risk of breast cancer, reduces both binding of ELK4 transcription factor and luciferase activity in reporter assays, and may be associated with low cyclin D1 protein levels in tumors. Another candidate variant, rs78540526, lies in the same enhancer element. Risk association signal 2, rs75915166, creates a GATA3 binding site within a silencer element. Chromatin conformation studies demonstrate that these enhancer and silencer elements interact with each other and with their likely target gene, CCND1. PMID:23540573

  13. High nuclear grade, frequent mitotic activity, cyclin D1 and p53 overexpression are associated with stromal invasion in mammary intracystic papillary carcinoma.

    Science.gov (United States)

    Zhang, Cunxian; Zhang, Peng; Hao, Jie; Quddus, M Ruhul; Steinhoff, Margaret M; Sung, C James

    2005-01-01

    Stromal invasion is identified with difficulty in routine hematoxylin-eosin-stained sections of core needle biopsy specimens from mammary intracystic papillary carcinomas. The goal of this study was to determine if nuclear grade, mitotic activity, and immunohistochemical stains for p53 and cyclin D1 would assist in differentiating intracystic papillary carcinomas without stromal invasion (ICPC) from tumors with stromal invasion (ICPC-INVA). Eight cases of ICPC and 12 cases of ICPC-INVA were reviewed. Hematoxylin-eosin slides were examined to determine the histologic features. Immunohistochemistry was performed using monoclonal antibodies to human p53 and cyclin D1. Fisher's exact test was used to compare the nuclear grade, mitotic activity, and immunoreactivity between ICPC and ICPC-INVA. High nuclear grade was more often associated with ICPC-INVA than with ICPC, although the difference was not statistically significant (p = 0.069). Frequent mitotic activity was associated with ICPC-INVA more than with ICPC (p = 0.0198). All cases of ICPC were negative for either p53 or cyclin D1, whereas 7 of 12 cases (58.3%) of ICPC-INVA were positive for either cyclin D1 alone (3 cases), p53 alone (3 cases), or both cyclin D1 and p53 (1 case) (p = 0.0147). Identical nuclear grade, mitotic activity, and immunostaining patterns were seen in the intracystic and the invasive components, and in the core biopsy and the excision of the same tumor. When any one of the positive indicators (high nuclear grade, frequent mitotic activity, or positive immunostains for cyclin D1 and/or p53) was present, the positive predictive value for stromal invasion was 91.7%. When none of the positive indicators was present, the negative predictive value was 87.5%.

  14. 膀胱移行细胞癌细胞周期蛋白D1的表达及其意义%Expression and Significance of CyclinD1 in Transitional Cell Carcinoma of Bladder

    Institute of Scientific and Technical Information of China (English)

    漆贯华; 宋旭

    2001-01-01

    目的:检测细胞周期蛋白D1(cyclinD1)在膀胱移行细胞癌(TCC)中的表达,研究其与该肿瘤生物学行为的关系.方法:应用免疫组化SP法检测33例膀胱TCC和12例正常膀胱cyclinD1组织的表达.结果:cyclinD1阳性表达率膀胱TCC组为54.54%,对照组无表达(P=0.001);临床分期To~TJ为76.19%,T2~T4为16.67%;肿瘤分级G1为81.25%,G2为40.00%,G3为14.28%;随着肿瘤分期分级上升,阳性表达率逐渐升高(P=0.001,P=0.001);但与肿瘤的复发性差异无显著性(P=0.183).结论:cyclinD1在膀胱TCC形成的早期起重要的作用;在评估膀胱TCC的生物学行为方面有着重要的临床意义.

  15. p21WAF1、Cyclin D1和PRb在膀胱移行细胞癌中的表达及其意义%Expression of p21WAF1, Cyclin D1 and PRb in Bladder Transitional Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    米振国; 马志方; 王东文; 刘红耀; 杨晓峰

    2002-01-01

    目的:探讨p21WAF1、细胞周期蛋白D1(Cyclin D1)和PRb在膀胱移行细胞癌(BTCC)中的表达及相互关系及其意义。方法:应用免疫组织化学SP法检测57例BTCC患者癌组织中p21WAF1、Cyclin D1和PRb的蛋白表达。结果:p21WAF1、Cyclin D1和PRb的阳性表达率分别为36.8%、49.1%和45.6%,p21WAF1随病理分级升高阳性率显著下降,Cylin D1和PRb的表达与BTCC的病理分级、临床分期和有无转移均相关,p21WAF1与PRb的表达呈负相关,Cyclin D1和PRb的表达呈正相关,而p21WAF1与Cyclin D1的表达无关。结论:p21WAF1/Cyclin D1/PRb通路异常与BTCC的发生发展密切相关,p21WAF1的改变可能为癌变的早期事件,联合检测p21WAF1、Cyclin D1和PRb可较准确地评价BTCC的生物学特性,估计预后,指导治疗。

  16. Methylation of CpG islands of p16(INK4a) and cyclinD1 overexpression associated with progression of intraductal proliferative lesions of the breast.

    Science.gov (United States)

    Liu, Tieju; Niu, Yun; Feng, Yumei; Niu, Ruifang; Yu, Yong; Lv, Ajuan; Yang, Yi

    2008-11-01

    P16(INK4a) is a tumor suppressor gene frequently inactivated by aberrant promoter hypermethylation. In this study, p16(INK4a) methylation was evaluated in intraductal proliferative lesions of the breast, using real-time quantitative polymerase chain reaction (MethyLight) and methylation-sensitive restriction endonuclease polymerase chain reaction. Immunohistochemistry was performed to compare and validate the methylation analysis. P16(INK4a) methylation associated with oncogene cyclinD1 expression, detected through the use of in situ hybridization and immunohistochemistry, was likewise characterized. P16(INK4a) methylation displayed varying significance among different types of intraductal proliferative lesions. Both the positive rate and the median quantitative methylation value increased with the evolution of intraductal proliferative lesions through the use of quantitative and qualitative assays. P16(INK4a) methylation was positively correlated to cyclinD1 overexpression. This study demonstrated that p16(INK4a) methylation served as the silencing mechanism of p16(INK4a) protein expression and played a crucial role in the intraductal proliferative lesions' progression. In the differential diagnosis of intraductal proliferative lesions, quantitative DNA methylation analysis of p16(INK4a) by MethyLight may be used as a surrogate, especially to distinguish atypical ductal hyperplasia from usual ductal hyperplasia and low-grade ductal carcinoma in situ. Furthermore, this study discovered that flat epithelial atypia do not share similar molecular profiles of p16(INK4a) epigenetic modification with atypical ductal hyperplasia and low-grade ductal carcinoma in situ.

  17. Exisulind in combination with celecoxib modulates epidermal growth factor receptor, cyclooxygenase-2, and cyclin D1 against prostate carcinogenesis: in vivo evidence.

    Science.gov (United States)

    Narayanan, Bhagavathi A; Reddy, Bandaru S; Bosland, Maarten C; Nargi, Dominick; Horton, Lori; Randolph, Carla; Narayanan, Narayanan K

    2007-10-01

    Nonsteroidal anti-inflammatory drugs mediate anticancer effects by modulating cyclooxygenase-2 (COX-2)-dependent and/or COX-2-independent mechanism(s); however, the toxicity issue is a concern with single agents at higher doses. In this study, we determined the combined effect of celecoxib, a COX-2 inhibitor, along with exisulind (sulindac sulfone/Aptosyn) at low doses in prostate cancer. We used a sequential regimen of N-methyl-N-nitrosourea + testosterone to induce prostate cancer in Wistar-Unilever rats. Following carcinogen treatment, celecoxib and exisulind individually and their combination at low doses were given in NIH-07 diet for 52 weeks. We determined the incidence of prostatic intraepithelial neoplasia, adenocarcinomas, rate of tumor cell proliferation, and apoptosis. Immunohistochemical and Western blot analysis were done to determine COX-2, epidermal growth factor receptor (EGFR), Akt, androgen receptor, and cyclin D1 expression. Serum prostaglandin E2 and tumor necrosis factor-alpha levels were determined using enzyme immunoassay/ELISA assays. The rats that received celecoxib in combination with exisulind at low doses showed a significant decrease in prostatic intraepithelial neoplasia and adenocarcinomas as well as an enhanced rate of apoptosis. An overall decrease in COX-2, EGFR, Akt, androgen receptor, and cyclin D1 expression was found associated with tumor growth inhibition. Reduced serum levels of COX-2 protein, prostaglandin E2, and tumor necrosis factor-alpha indicated anti-inflammatory effects. A strong inhibition of total and phosphorylated form of EGFR (Tyr(992) and Tyr(845)) and Akt (Ser(473)) was significant in rats given with these agents in combination. In this study, we show for the first time that the combination of celecoxib with exisulind at low doses could prevent prostate carcinogenesis by altering key molecular events.

  18. Role of NADPH oxidases in inducing a selective increase of oxidant stress and cyclin D1 and checkpoint 1 over-expression during progression to human gastric adenocarcinoma.

    Science.gov (United States)

    Montalvo-Javé, Eduardo E; Olguín-Martínez, Marisela; Hernández-Espinosa, Diego R; Sánchez-Sevilla, Lourdes; Mendieta-Condado, Edgar; Contreras-Zentella, Martha L; Oñate-Ocaña, Luis F; Escalante-Tatersfield, Tomás; Echegaray-Donde, Agustín; Ruiz-Molina, Juan M; Herrera, Miguel F; Morán, Julio; Hernández-Muñoz, Rolando

    2016-04-01

    Gastric cancer is one of the main causes of global mortality. Here, reactive oxygen species (ROS) could largely contribute to gastric carcinogenesis. Hence, the present work was aimed to assess the role of ROS, oxidant status, NADPH oxidases (NOXs) expression, during human gastric adenocarcinoma. We obtained subcellular fraction from samples of gastric mucosa taken from control subjects (n = 20), and from 40 patients with gastric adenocarcinoma, as well as samples of distant areas (tumour-free gastric mucosa). Parameters indicative of lipid peroxidation and cell proliferation were selectively increased in both tumour-free and in cancerous gastric mucosa, despite of glutathione (GSH) content, glutathione reductase (GR) and superoxide dismutase (SOD) activities were increased in the adenocarcinoma. These high levels of antioxidant defences inversely correlated with down-regulated expression for NOX2 and 4; however, over-expression of NOX1 occurred with increased caspase-3 activity and overexpressed checkpoint 1 (MDC1) and cyclin D1 proteins. In the tumour-free mucosa an oxidant stress took place, without changing total GSH but with decreased activities for GR and mitochondrial SOD; moreover, over-expression of checkpoint 1 (MDC1) correlated with lower NOX2 and 4 expression in this mucosa. Chronically injured gastric mucosa increases lipoperoxidative events and cell proliferation. In the adenocarcinoma, cell proliferation was further enhanced, oxidant stress decreased which seemed to be linked to NOX1, MDC1 and cyclin D1 over-expression, but with a lower NOXs activity leading a 'low tone' of ROS formation. Therefore, our results could be useful for early detection and treatment of gastric adenocarcinoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Quantitative analysis of expression of cyclin D1 and CDK4 in normal, inflammatory and malignant epithelia of cheek mucosa%cyclin D1和CDK4在口腔正常上皮、炎症及鳞癌中表达的定量分析

    Institute of Scientific and Technical Information of China (English)

    马妍; Tipoe,GL; 等

    2001-01-01

    AIM To evaluate the expression and significance of cyclinD1/CDK4in normal epithelia (N), inflammatory (IF) and squamous cell cacinoma (SCC) of cheek mucosa. METHODS Oringinal pathology specimens were collected cut and immunostained by cyclin D1 monoclonal antibody and CDK4 polyclonal antibody, using the avidin-biotin peroxidase complex technique (ABC). RESULTS There was statistical significance between the N group and SCC group, but not between the N group and IF group. Cyclin D1 and CDK4 were overexpressed in SCC. CONCLUSION Overexpression of cyclinD1 and CDK4 in SCC may be due to the gene amplification and/or other related factors. The variations of cyclin D1and CDK4 in different subgroups of SCC may be a helpful indicator for tumor grading.%目的 通过检测口腔粘膜的正常上皮、非特异性炎症上皮及鳞癌中cyclinD1与CDK4的表达,探讨其在上皮组织不同状态中的变化及意义.方法 用临床病理标本,设立对照,选择cyclinD1和CDK4抗体免疫组化染色.结果 cyclinD1和CDK4在正常口腔上皮与口腔鳞癌上皮、非特异性炎症与口腔鳞癌上皮中的表达间有统计学差别(P<0.05),正常组与炎症组间无差别,cyclinD1及CDK4在口腔鳞癌上皮中过表达(P<0.05).结论 cyclinD1与CDK4过表达的机制可能由于基因扩增或其他因素使其蓄积,口腔鳞癌组分级间的差异性提示其可作为肿瘤分级的评价指标之一.

  20. RNA干扰沉默CyclinD1基因对胰腺癌AsPC-1细胞增殖和凋亡的影响%Effects of silencing cyclin D1 gene on the proliferation and apoptosis of pancreatic carcinoma AsPC-1 cells by RNA interference

    Institute of Scientific and Technical Information of China (English)

    肖卫东; 李勇; 李学明; 蔡军; 邓君; 曾林山; 胡伟

    2011-01-01

    目的 探讨以细胞周期蛋白(Cyclin) D1为靶基因的RNA干扰对胰腺癌AsPC-1细胞增殖和凋亡的影响,为胰腺癌的靶向治疗提供依据.方法 用含有10% FBS的DMEM培养液在37℃、5%CO2培养箱中常规培养AsPC-1细胞,至对数生长期后接种于96孔培养板中,随机分为实验组、阴性对照组、空白对照组,并采用LipofectamineTM2000脂质体分别转染Cyclin D1-小干扰RNA(siRNA)、阴性对照siRNA、脂质体,48 h时收集细胞.应用荧光定量PCR法和Western blot法分别检测细胞中Cyclin D1 mRNA和蛋白表达水平,MTT法检测细胞体外增殖活力,流式细胞仪检测细胞周期分布及凋亡率(AI).结果与空白对照组和阴性对照组相比,实验组Cyclin D1 mRNA和蛋白表达均明显下调,细胞生长速度明显减慢,Go/G1细胞比例显著增大、S期细胞比例则明显降低、AI显著升高(P均<0.01).结论 Cyclin D1-siRNA能通过沉默靶基因表达抑制AsPC-1细胞生长、改变细胞周期分布、诱导细胞凋亡,可作为胰腺癌基因治疗的一个有效靶点.%Objective To investigate the effect of silencing Cyclin Dl gene on the proliferation, cell cycle and apopto-sis of pancreatic carcinoma AsPC-1 cells by RNA interference, and provide evidence for the targeted therapy of pancreatic carcinoma. Methods AsPC-1 cells were cultured in DMEM supplemented with 10% fetal bovine serum, and incubated in a cell incubator with 5% CO2 at 37 ℃. Cells at exponential growth phase were planted on 96 well culture plate, and randomly divided into experimental group, negative control group and blank control group, Cyclin Dl-siRNA, negative-siRNA and lipofectamine were transfected into AsPC-1 cells mediated by Lipofectamine TM 2000, and the cells were collected at 48 h after transfection. The expression of Cyclin Dl Mrna and protein of the transfected cells were analyzed by real-time RT-PCR and Western blot, cell growth was measured with MTT assay, cell cycle and

  1. Cyclin D1, p16(INK) (4A) and p27(Kip1) in pancreatic adenocarcinoma: assessing prognostic implications through quantitative image analysis.

    Science.gov (United States)

    Georgiadou, Despoina; Sergentanis, Theodoros N; Sakellariou, Stratigoula; Filippakis, George M; Zagouri, Flora; Vlachodimitropoulos, Dimitris; Psaltopoulou, Theodora; Lazaris, Andreas C; Patsouris, Efstratios; Zografos, George C

    2014-12-01

    The prognostic significance of cyclin D1, p16(INK) (4A) and p27(Kip1) expression has been documented in several human malignancies; however, their prognostic potential in pancreatic adenocarcinoma is still unclear. This study aimed to assess the correlation of the aforementioned molecules with clinicopathological parameters and prognosis. Sixty patients with pancreatic ductal adenocarcinoma underwent surgical resection at a single institution; immunohistochemical staining of the studied markers was quantified by Ιmage analysis system. Cyclin D1 overexpression was positively associated with grade, neural infiltration and vascular invasion, whereas p27 positively correlated with age. Higher cyclin D1 expression indicated poorer survival (adjusted HR = 9.75, 95%CI: 1.48-64.31, p = 0.018, increment: one unit in H-score), whereas a marginal trend toward an association between p16 positivity and improved survival was observed (adjusted HR = 0.58, 95%CI: 0.32-1.05, p = 0.072 regarding positive vs negative cases). No significant association with overall survival was noted regarding p27. In conclusion, cyclin D1 overexpression and possibly p16 loss of expression in pancreatic adenocarcinoma seem to be adverse prognostic factors, whereas p27 expression did not seem to possess such prognostic properties. Further validation of the present findings in studies encompassing larger samples seems to be needed.

  2. Construction and Identification of a Vector Expressing RNA Interference Aimed at the Human CyclinD1 Gene and its Expression in Vitro

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    OBJECTIVE To construct a eukaryotic expression vector for RNA interference of the human cyclinD1 gene, and to detect its interference effect in human ovarian cancer cells (HO-8910).METHODS Four target gene segments were synthesized and cloned into the pSUPER vector respectively to construct four recombinant eukaryotic expression vectors, pSUPER-C1~4. The four recombinant vectors were identified by enzyme digestion analysis and DNA sequencing. Then HO-8910 cells were transfected with the pSUPER-C1~4 vectors and subjected to G418 selection. In G418-resistant cells, the interference effect was detected by RT-PCR.RESULTS Enzyme digestion analysis and DNA sequencing showed that the target segments were cloned into the pSUPER vector. The four recombinant vectors inhibited transcription of the cyclinD1 gene. The pSUPER-C2 vector had a better interference effect.CONCLUSION The sequence-specific siRNA effectively interfered with expression of the cyclinD1 gene that was selected. The transcription and expression of the cyclinD1 gene were inhibited effectively by the constructed RNAi eukaryotic expression vectors in the ovarian cancer cells. These results indicate that it is possible to search for a new tumor gene therapy method.

  3. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry.

    Science.gov (United States)

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Lee, Marietta Y W T; Lee, Ernest Y C; Zhang, Zhongtao

    2015-05-20

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21(WAF1), DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21(WAF1) and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21(WAF1), Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value.

  4. Toll-Like Receptor 1/2 and 5 Ligands Enhance the Expression of Cyclin D1 and D3 and Induce Proliferation in Mantle Cell Lymphoma.

    Directory of Open Access Journals (Sweden)

    Katy Mastorci

    Full Text Available Mantle cell lymphoma (MCL is an aggressive B-cell non-Hodgkin's lymphoma with a still undefined etiology. Several lines of evidence are consistent with the possible involvement of peculiar microenvironmental stimuli sustaining tumor cell growth and survival, as the activation of Toll-like receptors (TLR 4 and 9. However, little is known about the contribution of other TLRs of pathogenic relevance in the development of MCL. This study reports evidence that MCL cell lines and primary MCL cells express different levels of TLR2 and TLR5, and that their triggering is able to further activate the Akt, MAPK, and NF-κB signaling cascades, known to be altered in MCL cells. This leads to the enhancement of cyclin D1 and D3 over-expression, occurring at post-translational level through a mechanism that likely involves the Akt/GSK-3α/β pathway. Interestingly, in primary B cells, TLR1/2 or TLR5 ligands increase protein level of cyclin D1, which is not usually expressed in normal B cells, and cyclin D3 when associated with CD40 ligand (CD40L, IL-4, and anti-human-IgM co-stimulus. Finally, the activation of TLR1/2 and TLR5 results in an increased proliferation of MCL cell lines and, in the presence of co-stimulation with CD40L, IL-4, and anti-human-IgM also of primary MCL cells and normal B lymphocytes. These effects befall together with an enhanced IL-6 production in primary cultures. Overall, our findings suggest that ligands for TLR1/2 or TLR5 may provide critical stimuli able to sustain the growth and the malignant phenotype of MCL cells. Further studies aimed at identifying the natural source of these TLR ligands and their possible pathogenic association with MCL are warranted in order to better understand MCL development, but also to define new therapeutic targets for counteracting the tumor promoting effects of lymphoma microenvironment.

  5. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin, E-mail: yhcheng@mail.cmu.edu.tw [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Hung, Chein-Hui [Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Puizi City, Chiayi 613, Taiwan, ROC (China); Chang, Nai Wen [Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, ROC (China); Lin, Chingju [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China)

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  6. Activation of cyclin D1 by estradiol and spermine in MCF-7 breast cancer cells: a mechanism involving the p38 MAP kinase and phosphorylation of ATF-2.

    Science.gov (United States)

    Lewis, Joan S; Vijayanathan, Veena; Thomas, T J; Pestell, Richard G; Albanese, Chris; Gallo, Michael A; Thomas, Thresia

    2005-01-01

    Estradiol (E2) and the naturally occurring polyamines (putrescine, spermidine, and spermine) play important roles in breast cancer cell growth and differentiation. We examined the effects of E2 and spermine on the phosphorylation and DNA binding of activating transcription factor-2 (ATF-2) in MCF-7 breast cancer cells. ATF-2 is a transcription factor involved in estrogenic regulation of cyclin D1 gene, and thereby cell cycle progression. DNA affinity immunoblot assays showed a six- to eightfold increase in the binding of ATF-2 to a 74-mer ATF/CRE oligonucleotide (ODN1) from cyclin D1 promoter in the presence of 4 nM E2 and 0.5 mM spermine, compared to untreated control. Individual treatments with E2 or spermine caused a twofold or lower increase in ATF-2 binding to ODN1. Immunoblotting with phospho-ATF-2 antibody showed that increased DNA binding of ATF-2 was associated with its phosphorylation. A p38 MAP kinase inhibitor, PD169316, inhibited ATF-2 phosphorylation. In contrast, the MEK-ERK1/2 inhibitor, PD98059, or the JNK inhibitor, SP600125, had no significant effect on DNA binding of ATF-2. Cyclin D1 promoter (-1745CD1) activity increased by approximately 12-fold (above control) in the presence of E2 and spermine, compared to a sixfold increase in the presence of E2 alone and a twofold increase with spermine. Cells transfected with a dominant negative mutant of ATF-2 showed decreased transactivation of cyclin D1 promoter in response to E2 and spermine. These results indicate that spermine can enhance E2-induced cell signaling and cyclin D1 transcription by activation of the p38 MAP kinase and phosphorylation of ATF-2, contributing to breast cancer cell proliferation.

  7. CyclinA2-Cyclin-dependent Kinase Regulates SAMHD1 Protein Phosphohydrolase Domain.

    Science.gov (United States)

    Yan, Junpeng; Hao, Caili; DeLucia, Maria; Swanson, Selene; Florens, Laurence; Washburn, Michael P; Ahn, Jinwoo; Skowronski, Jacek

    2015-05-22

    SAMHD1 is a nuclear deoxyribonucleoside triphosphate triphosphohydrolase that contributes to the control of cellular deoxyribonucleoside triphosphate (dNTP) pool sizes through dNTP hydrolysis and modulates the innate immune response to viruses. CyclinA2-CDK1/2 phosphorylates SAMHD1 at Thr-592, but how this modification controls SAMHD1 functions in proliferating cells is not known. Here, we show that SAMHD1 levels remain relatively unchanged during the cell division cycle in primary human T lymphocytes and in monocytic cell lines. Inactivation of the bipartite cyclinA2-CDK-binding site in the SAMHD1 C terminus described herein abolished SAMHD1 phosphorylation on Thr-592 during S and G2 phases thus interfering with DNA replication and progression of cells through S phase. The effects exerted by Thr-592 phosphorylation-defective SAMHD1 mutants were associated with activation of DNA damage checkpoint and depletion of dNTP concentrations to levels lower than those seen upon expression of wild type SAMHD1 protein. These disruptive effects were relieved by either mutation of the catalytic residues of the SAMHD1 phosphohydrolase domain or by a Thr-592 phosphomimetic mutation, thus linking the Thr-592 phosphorylation state to the control of SAMHD1 dNTPase activity. Our findings support a model in which phosphorylation of Thr-592 by cyclinA2-CDK down-modulates, but does not inactivate, SAMHD1 dNTPase in S phase, thereby fine-tuning SAMHD1 control of dNTP levels during DNA replication. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. CyclinA2-Cyclin-dependent Kinase Regulates SAMHD1 Protein Phosphohydrolase Domain*

    Science.gov (United States)

    Yan, Junpeng; Hao, Caili; DeLucia, Maria; Swanson, Selene; Florens, Laurence; Washburn, Michael P.; Ahn, Jinwoo; Skowronski, Jacek

    2015-01-01

    SAMHD1 is a nuclear deoxyribonucleoside triphosphate triphosphohydrolase that contributes to the control of cellular deoxyribonucleoside triphosphate (dNTP) pool sizes through dNTP hydrolysis and modulates the innate immune response to viruses. CyclinA2-CDK1/2 phosphorylates SAMHD1 at Thr-592, but how this modification controls SAMHD1 functions in proliferating cells is not known. Here, we show that SAMHD1 levels remain relatively unchanged during the cell division cycle in primary human T lymphocytes and in monocytic cell lines. Inactivation of the bipartite cyclinA2-CDK-binding site in the SAMHD1 C terminus described herein abolished SAMHD1 phosphorylation on Thr-592 during S and G2 phases thus interfering with DNA replication and progression of cells through S phase. The effects exerted by Thr-592 phosphorylation-defective SAMHD1 mutants were associated with activation of DNA damage checkpoint and depletion of dNTP concentrations to levels lower than those seen upon expression of wild type SAMHD1 protein. These disruptive effects were relieved by either mutation of the catalytic residues of the SAMHD1 phosphohydrolase domain or by a Thr-592 phosphomimetic mutation, thus linking the Thr-592 phosphorylation state to the control of SAMHD1 dNTPase activity. Our findings support a model in which phosphorylation of Thr-592 by cyclinA2-CDK down-modulates, but does not inactivate, SAMHD1 dNTPase in S phase, thereby fine-tuning SAMHD1 control of dNTP levels during DNA replication. PMID:25847232

  9. Influence of HBx gene deletion mutation (HBx-d382) on cyclin D1, cyclinG1 and E2F1 expression in L02 cells%HBx基因缺失突变体(HBx-d382)对L02细胞cyclinD1cyclinG1和E2F1表达的影响

    Institute of Scientific and Technical Information of China (English)

    胡志亮; 侯周华; 符小玉; 陈莉; 谢萍; 欧阳奕; 杨永峰; 谭德明

    2011-01-01

    目的 前期的研究成功构建了稳定表达HBx基因及其缺失突变体( HBx-d382)的L02细胞,分别命名为L02/HBx和L02/HBx-d382,并证实其可导致肝细胞恶性转化.该研究进一步探讨HBx-d382对L02细胞G1期细胞周期调控相关基因cyclinD1,cyclinG1和E2F1表达的影响.方法 实验分为L02/pcDNA3.0(稳定转染pcDNA3.0)、L02/HBx和L02/HBx-d382(分别稳定转染质粒pcDNA3.0/HBx和pcDNA3.0/HBx-d382)3组.通过实时定量PCR以及wester-blot检测转染HBx基因及其缺失突变体HBx-d382后L02细胞cyclinD1cyclinG1和E2F1表达的改变.结果 实时定量PCR以及wester-blot结果表明稳定表达HBx基因或HBx-d382的L02细胞cyclinD1cyclinG1和E2F1表达上调,表达HBx-d382的L02细胞上调最为明显.结论 HBx-d382可能通过上调cyclinD1cyclinG1和E2F1从而影响细胞G1期调控,进一步导致肝细胞恶性转化.

  10. Impact of simultaneous assay, the PCNA, cyclinD1, and DNA content with specimens before and after preoperative radiotherapy on prognosis of esophageal cancer-possible incorporation into clinical TNM staging system

    Institute of Scientific and Technical Information of China (English)

    Shu-Chai Zhu; Ren Li; Yu-Xiang Wang; Wei Feng; Juan Li; Rong Qiu

    2005-01-01

    AIM: The aim of the present study is to use immunohistochemical methods to investigate the clinical implications of tumor markers in esophageal squamous cell carcinoma and evaluate their impact on prognosis.METHODS: From November 1990 to December 1996, 47patients were treated with preoperative radiation followed by radical esophagectomy. All patients were confirmed pathologically as suffering from squamous cell carcinoma.Immunohistochemical stain was done for PCNA, cyclinD1 protein expression and DNA content analyzed by image cytometry. Kaplan-Meier method for single prognostic factor and log-rank test was used to test the significant difference. Cox stepwise regression model and prognosis index model were used for survival analysis with multiple prognostic factors.RESULTS: Radio-pathological change, T stage and N stage, as the traditional prognostic factors had statistical difference in 3-, 5- and 10-year survival rates. While, tumor cell proliferating marked PCNA, cyclinD1 and DNA content served as independent prognostic factors of esophageal carcinoma. There was definitely an identity between the single and multiple factor analyses. PI was more accurate to evaluate the prognosis of esophageal carcinoma.CONCLUSION: It is possible that tumor cell proliferating marked PCNA, cyclinD1 and DNA content would become the endpoints for evaluating the prognosis of esophageal carcinoma.

  11. Altered cerebellum development and impaired motor coordination in mice lacking the Btg1 gene: Involvement of cyclin D1.

    Science.gov (United States)

    Ceccarelli, Manuela; Micheli, Laura; D'Andrea, Giorgio; De Bardi, Marco; Scheijen, Blanca; Ciotti, MariaTeresa; Leonardi, Luca; Luvisetto, Siro; Tirone, Felice

    2015-12-01

    Cerebellar granule neurons develop postnatally from cerebellar granule precursors (GCPs), which are located in the external granule layer (EGL) where they massively proliferate. Thereafter, GCPs become postmitotic, migrate inward to form the internal granule layer (IGL), further differentiate and form synapses with Purkinje cell dendrites. We previously showed that the Btg family gene, Tis21/Btg2, is required for normal GCP migration. Here we investigated the role in cerebellar development of the related gene, Btg1, which regulates stem cell quiescence in adult neurogenic niches, and is expressed in the cerebellum. Knockout of Btg1 in mice caused a major increase of the proliferation of the GCPs in the EGL, whose thickness increased, remaining hyperplastic even after postnatal day 14, when the EGL is normally reduced to a few GCP layers. This was accompanied by a slight decrease of differentiation and migration of the GCPs and increase of apoptosis. The GCPs of double Btg1/Tis21-null mice presented combined major defects of proliferation and migration outside the EGL, indicating that each gene plays unique and crucial roles in cerebellar development. Remarkably, these developmental defects lead to a permanent increase of the adult cerebellar volume in Btg1-null and double mutant mice, and to impairment in all mutants, including Tis21-null, of the cerebellum-dependent motor coordination. Gain- and loss-of-function strategies in a GCP cell line revealed that Btg1 regulates the proliferation of GCPs selectively through cyclin D1. Thus, Btg1 plays a critical role for cerebellar maturation and function.

  12. Distinct Effects of Mitogens and the Actin Cytoskeleton on CREB and Pocket Protein Phosphorylation Control the Extent and Timing of Cyclin A Promoter Activity

    Science.gov (United States)

    Bottazzi, Maria Elena; Buzzai, Monica; Zhu, Xiaoyun; Desdouets, Chantal; Bréchot, Christian; Assoian, Richard K.

    2001-01-01

    Soluble mitogens and adhesion-dependent organization of the actin cytoskeleton are required for cells to enter S phase in fibroblasts. The induction of cyclin A is also required for S-phase entry, and we now report that distinct effects of mitogens and the actin cytoskeleton on the phosphorylation of CREB and pocket proteins regulate the extent and timing of cyclin A promoter activity, respectively. First, we show that CREB phosphorylation and binding to the cyclic AMP response element (CRE) determines the extent, but not the timing, of cyclin A promoter activity. Second, we show that pocket protein inactivation regulates the timing, but not the extent, of cyclin A promoter activity. CREB phosphorylation and CRE occupancy are regulated by soluble mitogens alone, while the phosphorylation of pocket proteins requires both mitogens and the organized actin cytoskeleton. Mechanistically, cytoskeletal integrity controls pocket protein phosphorylation by allowing for sustained ERK signaling and, thereby, the expression of cyclin D1. Our results lead to a model of cyclin A gene regulation in which mitogens play a permissive role by stimulating early G1-phase phosphorylation of CREB and a distinct regulatory role by cooperating with the organized actin cytoskeleton to regulate the duration of ERK signaling, the expression of cyclin D1, and the timing of pocket protein phosphorylation. PMID:11604497

  13. miR-338-3p Is Down-Regulated by Hepatitis B Virus X and Inhibits Cell Proliferation by Targeting the 3′-UTR Region of CyclinD1

    Directory of Open Access Journals (Sweden)

    Xiaoyu Fu

    2012-07-01

    Full Text Available Hepatitis B virus X protein (HBx is recognized as an oncogene in hepatocellular carcinoma (HCC. HBx regulates microRNA expression, including down-regulating miR-338-3p in LO2 cells. Here, we investigated miR-338-3p function in HBx-mediated hepatocarcinogenesis. In 23 HBV-infected HCC clinical patient tumor and adjacent non-tumor control tissues, 17 and 19 tumors expressed HBx mRNA and protein, respectively. When considered as a group, HBV-infected HCC tumors had lower miR-338-3p expression than controls; however, miR-338-3p was only significantly down-regulated in HBx-positive tumors, indicating that HBx inversely correlated with miR-338-3p. Functional characterization of miR-338-3p indicated that miR-338-3p mimics inhibited cell proliferation by inducing cell cycle arrest at the G1/S phase as assessed by EdU and cell cycle assays in HBx-expressing LO2 cells. CyclinD1, containing two putative miR-338-3p targets, was confirmed as a direct target using 3′-UTR luciferase reporter assays from cells transfected with mutated binding sites. Mutating the 2397–2403 nt binding site conferred the greatest resistance to miR-338-3p suppression of CyclinD1, indicating that miR-338-3p suppresses CyclinD1 at this site. Overall, this study demonstrates that miR-338-3p inhibits proliferation by regulating CyclinD1, and HBx down-regulates miR-338-3p in HCC. This newly identified miR-338-3p/CyclinD1 interaction provides novel insights into HBx-mediated hepatocarcinogenesis and may facilitate therapeutic development against HCC.

  14. Cyclin D1 gene polymorphism as a risk factor for squamous cell carcinoma of the upper aerodigestive system in non-alcoholics

    DEFF Research Database (Denmark)

    Nishimoto, Ines Nobuko; Pinheiro, Nidia Alice; Rogatto, Silvia Regina;

    2004-01-01

    Squamous cell carcinoma of the upper aerodigestive tract (UADT) is associated with environmental factors, especially tobacco and alcohol consumption. Genetic factors, including cyclin D1 (CCND1) polymorphism have been suggested to play an important role in tumorigenesis and progression of UADT...... in non-alcoholics. However, further epidemiological studies are needed to establish the exact role of CCND1 polymorphism and the development of UADT cancers....

  15. Effects of Cyclooxygenase Inhibitors in Combination with Taxol on Expression of Cyclin D1 and Ki-67 in a Xenograft Model of Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    Liang Wan

    2012-08-01

    Full Text Available The present study was designed to investigate the effects of cyclooxygenase (COX inhibitors in combination with taxol on the expression of cyclin D1 and Ki-67 in human ovarian SKOV-3 carcinoma cells xenograft-bearing mice. The animals were treated with 100 mg/kg celecoxib (a COX-2 selective inhibitor alone, 3 mg/kg SC-560 (a COX-1 selective inhibitor alone by gavage twice a day, 20 mg/kg taxol alone by intraperitoneally (i.p. once a week, or celecoxib/taxol, SC-560/celecoxib, SC-560/taxol or SC-560/celecoxib/taxol, for three weeks. To test the mechanism of the combination treatment, the index of cell proliferation and expression of cyclin D1 in tumor tissues were determined by immunohistochemistry. The mean tumor volume in the treated groups was significantly lower than control (p < 0.05, and in the three-drug combination group, tumor volume was reduced by 58.27% (p < 0.01; downregulated cell proliferation and cyclin D1 expression were statistically significant compared with those of the control group (both p < 0.01. This study suggests that the effects of COX selective inhibitors on the growth of tumors and decreased cell proliferation in a SKOV-3 cells mouse xenograft model were similar to taxol. The three-drug combination showing a better decreasing tendency in growth-inhibitory effect during the experiment may have been caused by suppressing cyclin D1 expression.

  16. PinX1 suppresses bladder urothelial carcinoma cell proliferation via the inhibition of telomerase activity and p16/cyclin D1 pathway.

    Science.gov (United States)

    Liu, Jian-Ye; Qian, Dong; He, Li-Ru; Li, Yong-Hong; Liao, Yi-Ji; Mai, Shi-Juan; Tian, Xiao-Peng; Liu, Yan-Hui; Zhang, Jia-Xing; Kung, Hsiang-Fu; Zeng, Yi-Xin; Zhou, Fang-Jian; Xie, Dan

    2013-11-23

    PIN2/TRF1-interacting telomerase inhibitor1 (PinX1) was recently suggested as a putative tumor suppressor in several types of human cancer, based on its binding to and inhibition of telomerase. Moreover, loss of PinX1 has been detected in many human malignancies. However, the possible involvement of PinX1 and its clinical/prognostic significance in urothelial carcinoma of the bladder (UCB) are unclear. The PinX1 expression profile was examined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry (IHC) in UCB tissues and adjacent normal urothelial bladder epithelial tissues. PinX1 was overexpressed and silenced in UCB cell lines to determine its role in tumorigenesis, development of UCB, and the possible mechanism. PinX1 expression in UCB was significantly down-regulated at both mRNA and protein level as compared with that in normal urothelial bladder epithelial tissues. PinX1 levels were inversely correlated with tumor multiplicity, advanced N classification, high proliferation index (Ki-67), and poor survival (P p16/cyclin D1 pathway. These findings suggest that down-regulation of PinX1 play an important role in the tumorigenesis and development of UCB and that the expression of PinX1 as detected by IHC is an independent molecular marker in patients with UCB.

  17. Activation of P27kip1-cyclin D1/E-CDK2 pathway by polysaccharide from Phellinus linteus leads to S-phase arrest in HT-29 cells.

    Science.gov (United States)

    Zhong, Shi; Ji, Dong-Feng; Li, You-Gui; Lin, Tian-Bao; Lv, Zhi-Qiang; Chen, Hua-Ping

    2013-11-25

    Our previous study showed that polysaccharide (P1) from Phellinus linteus exhibits a significant inhibitive activity on human colorectal carcinoma cells (HT-29). However its novel molecular mechanism remains unknown. To obtain insights into P1's mechanism of action, we examined its effects on cell proliferation in vitro and in vivo, cell cycle distribution, apoptosis, autophagy, and expression of several cell cycle interrelated proteins in HT-29 cells. Interestingly, we found that volume and weight of the solid tumor significantly decreased in P1 (200mg/kg)-treated mice compared with the control. However, slightly increased the body weight of the P1 treated tumor-bearing mice, with no significant increased ALT, AST levels in serum and LPO concentration in liver and kidney indicated that P1 has no toxicity to mammals at a dose of 200mg/kg. Furthermore, P1 caused a significantly dose-dependent increase in the S-phase cell cycle, but no apoptosis and autophagy in HT-29 cells. RT-PCR and Western blot results showed significantly down-regulated expressions of cyclin D1, cyclin E, and CDK2, as well as increased expressions of P27kip1 in P1 (100 μg/mL)-treated HT-29 cells. These results suggested that the activation of P27kip1-cyclin D1/E-CDK2 pathway is involved in P1-induced S-phase cell cycle arrest in HT-29 cells.

  18. Trichosanthin inhibiting PC3 proil ferationv ai down-regulation the expression of p-ERK and Cyc lin D1%天花粉蛋白通过下调p-ERK及Cyclin D1表达抑制PC3细胞增殖

    Institute of Scientific and Technical Information of China (English)

    黄益玲; 胡火军; 尤程程; 黄迎娣; 黄利鸣

    2015-01-01

    目的:探讨天花粉蛋白(TCS)体外对前列腺癌细胞(PC3)生长的抑制作用及可能机制。方法采用噻唑蓝(MTT)检测TCS对PC3细胞的抑制作用。流式细胞术( FCM)检测TCS对PC3细胞周期的影响,Western印迹检测TCS对ERK、p-ERK及细胞周期调节蛋白Cyclin D1表达的影响。结果 MTT 结果显示 TCS 能有效抑制 PC3细胞的生长,具有时间及剂量依赖性。流式细胞检测发现 TCS能够将 PC3细胞阻滞于 G1期, Western 印迹检测TCS能抑制ERK磷酸化及细胞周期调节蛋白Cyclin D1的表达。结论 TCS对PC3细胞的增殖具有明显的抑制作用,其作用机制可能与抑制丝裂原活化蛋白激酶( MAPK)细胞增殖信号通路及降低Cyclin D1表达,从而诱导细胞发生G1期阻滞有关。%[Abstrca t] Obj ective To explore the inhibition effect of Trichosanthin (TCS) on prostate cancer PC3 cells and investigate the pos-sible mechanism .Methods MTT assay was used to detect the proliferation inhibition effect of TCS on PC 3 cells,cell cycle was analyzed by flow cytometry.Expressions of p-ERK and Cyclin D1 protein were detected by Western blot .Results TCS could inhibit the growth of PC 3 cell in a time and dose dependent manner .FCM detection showed that TCS could arrest PC 3 cells in G1 Phase.Western blot found that the protein expressions of p-ERK and Cyclin D1 were decreased after treated with TCS .Conclusions TCS could inhibit the proliferation of PC 3 cells by down-regulating the mitogen activated protein kinase pathway and inducing the G 1 phase arrest.

  19. Cyclin D1 inhibits whereas c-Myc enhances the cytotoxicity of cisplatin in mouse pancreatic cancer cells via regulation of several members of the NF-κB and Bcl-2 families

    Directory of Open Access Journals (Sweden)

    Ayman El-Kady

    2011-01-01

    Full Text Available Background: Cisplatin (CDDP is a drug used for treatment of many types of malignancy but pancreatic cancer is relatively resistant to it. This study aims to determine whether and how cyclin D1 (D1 and c-Myc influence the response of pancreatic cancer cells to CDDP. Materials and Methods: Ela-mycPT mouse pancreatic cancer cells were transfected with D1 or c-myc cDNA and treated with CDDP alone or together with NPCD, an inhibitor of cyclin dependent ckinase (CDK 4 and 6. Reverse transcription followed by polymerase chain reaction (RT-PCR and western blot assays were used to determine the mRNA and protein levels of interested genes. Cell viability was determined using 3-(4, 5-Dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT assay. Results: Treatment of Ela-mycPT1 cells with CDDP caused an increase in c-myc expression but a slightly latent decrease in D1 expression, whereas D1 and c-Myc proteins repressed each other. D1 or c-Myc rendered Ela-mycPT1 cells resistant or sensitive, respectively, to CDDP. D1 induced the expression of several members of the NF-κB family, including RelA, RelB, Nfκb1 and Nfκb2. D1 also induced BIRC5 and several pro-survival members of the Bcl-2 gene family, including Bcl-2, Mcl-1 and Bad while it decreased the level of the pro-apoptotic Noxa. Inhibition of CDK4 or CDK6 kinase activity by NPCD did not affect these effects of D1. In contrast, c-Myc in Ela-mycPT1 and Ela-mycPT4 cells has the opposite effects to D1 on the expression of most of these apoptosis regulating genes. Conclusion: Our results suggest that induction of c-Myc and inhibition of D1 may be mechanisms for CDDP to elicit cytotoxicity. On the other hand, D1 induces whereas c-Myc represses the expression of key NF-κB family members to induce and repress, respectively, the expression of BIRC5 and several Bcl-2 family members, in turn inhibiting or enhancing the response to CDDP.

  20. Monoclonal antibody raised against human mitotic cyclin B1, identifies cyclin B-like mitotic proteins in synchronized onion (Allium cepa L.) root meristem.

    Science.gov (United States)

    Chaudhuri, S K; Ghosh, S

    1997-03-01

    Cyclin B-like mitotic proteins have been detected in synchronized Allium cepa L. root tip cells by using mouse monoclonal anti-cyclin B1 antibody raised against human cyclin B1. Immunoblot shows two closely placed isoforms of cyclin B-like proteins having an apparent molecular weight around 54 kDa. In vivo [35S]-methionine labelling followed by immunoprecipitation and autoradiography indicates that cyclin B-like proteins are mainly synthesized in the G2 phase of the cell cycle and destroyed in late mitosis. Immunoblotting data depict that the level of cyclin B-like proteins reaches the maximum at the late G2 to early M phase; and it becomes degraded in the late hours of mitosis. Moreover, the cyclin B isoforms are stabilized in colchicine-arrested metaphase cells as already reported in animal cells.

  1. Role of the mTORC1 complex in satellite cell activation by RNA-induced mitochondrial restoration: dual control of cyclin D1 through microRNAs.

    Science.gov (United States)

    Jash, Sukanta; Dhar, Gunjan; Ghosh, Utpalendu; Adhya, Samit

    2014-10-01

    During myogenesis, satellite stem cells (SCs) are induced to proliferate and differentiate to myogenic precursors. The role of energy sensors such as the AMP-activated protein kinase (AMPK) and the mammalian Target of Rapamycin (mTOR) in SC activation is unclear. We previously observed that upregulation of ATP through RNA-mediated mitochondrial restoration (MR) accelerates SC activation following skeletal muscle injury. We show here that during regeneration, the AMPK-CRTC2-CREB and Raptor-mTORC-4EBP1 pathways were rapidly activated. The phosho-CRTC2-CREB complex was essential for myogenesis and activated transcription of the critical cell cycle regulator cyclin D1 (Ccnd1). Knockdown (KD) of either mTORC or its subunit Raptor delayed SC activation without influencing the differentiation program. KD of 4EBP1 had no effect on SC activation but enhanced myofiber size. mTORC1 positively regulated Ccnd1 translation but destabilized Ccnd1 mRNA. These antithetical effects of mTORC1 were mediated by two microRNAs (miRs) targeted to the 3' untranslated region (UTR) of Ccnd1 mRNA: miR-1 was downregulated in mTORC-KD muscle, and depletion of miR-1 resulted in increased levels of mRNA without any effect on Ccnd1 protein. In contrast, miR-26a was upregulated upon mTORC depletion, while anti-miR-26a oligonucleotide specifically stimulated Ccnd1 protein expression. Thus, mTORC may act as a timer of satellite cell proliferation during myogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Experiment study of the effect of Fuzhenghuayu decoction on cyclinD1 during liver regeneration in rats%扶正化瘀方对大鼠肝再生过程中cyclinD1影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    张玉果; 赵素贤; 李建梅; 任伟光; 李亚; 南月敏

    2013-01-01

    Objective To investigate the effect of Fuzhenghuayu decoction on cyclinD1 expression and liver regeneration rate during liver regeneration in rats 72 hours after partial hepatectomy. Methods Twenty-four male Wistar rats were randomized into 4 groups:sham-operation group (control group) ,partial hepatectomy group (PH group) ,partial hepatectomy + Fuzhenghuayu decoction group (PH + Fuzheng group) ,partial hepatectomy + pHGF group (PH +pHGF group) ,with 6 rats ineach group. The rats in PH group,PH + Fuzheng group and PH + pHGF group were hepatectomized (left lobe and median lobe, about 70% of liver total weight) , however, the rats in sham-operation group were performed with sham operation only . The rats in PH + Fuzheng group and in PH + pHGF group were given Fuzhenghuayu decoction 1 ml/100 g by gavage and intraperitoneal injection with pHGF 1 ml/ 100 g,once a day ,from 3 days before the experiment to end of the experiment. The rats were sacrificed 72 hours after the operation , and liver regeneration rate and mitotic indexes were calculated , and the expression levels of cyclinD1 were detected by immunohistostaining and fluorescent quantitation PCR . Resufl S As compared with those in sham-operation group, the mitotic indexes, expression levels of cyclin D1 mRNA of liver tissues and positive rate of cyclin D1 of hepatic nucleus in PH group ,PH + Fuzheng group ,PH + pHGF group were significantly increased ( P 0.05).结论 扶正化瘀方可上调正常大鼠肝大部切除术后72 h时肝细胞cyclinD1的表达,从而促进肝再生.

  3. Inhibition of the CyclinD1 promoter in response to sonic hedgehog signaling pathway transduction is mediated by Gli1

    Science.gov (United States)

    Lin, Zhongxiao; Sheng, Hansong; You, Chaoguo; Cai, Ming; Zhang, Yiping; Yu, Li Sheng; Yu, Xiaoming; Lin, Jian; Zhang, Nu

    2017-01-01

    Medulloblastoma (MB) is the most common malignant tumor of the central nervous system in children. Accumulating evidence suggests a major role for the activation of the sonic hedgehog (SHH) signaling pathway in the development of MB cells; however, the mechanisms underlying the effect of this pathway on tumor survival and growth remain poorly understood. The Gli family zinc finger 1 (Gli1) transcription factor is considered as a mediator of the SHH signaling pathway in MB cells. Therefore, the present study investigated whether the SHH signaling pathway promotes the apoptosis of MB cells via downregulation of Gli1. GANT61, a novel Gli1 inhibitor, is known to have an in vitro activity against tumors. In the current study, Daoy cells were treated with different concentrations of GANT61 for 24 h, and the effect on cell proliferation was assayed by cell counting kit-8 assay. In addition, the cell cycle progression and apoptosis were assayed by flow cytometry analysis and hematoxylin-eosin (HE) staining. The effects of GANT61 treatment on SHH signaling pathway at the mRNA level were assayed by polymerase chain reaction (PCR). To further elucidate the inhibitory effects of GANT61 on the expression of Gli1 and CyclinD1, their protein levels were examined by western blot and immunofluorescence. The results indicated that GANT61 significantly inhibited the proliferation of Daoy cells in a dose-dependent manner, compared with the control group (PSHH pathway activity in MB, and may be a novel agent for use in combined chemotherapeutic regimens. PMID:28123507

  4. Distinction between Asymptomatic Monoclonal B-cell Lymphocytosis with Cyclin D1 Overexpression and Mantle Cell Lymphoma: From Molecular Profiling to Flow Cytometry

    Science.gov (United States)

    Espinet, Blanca; Ferrer, Ana; Bellosillo, Beatriz; Nonell, Lara; Salar, Antonio; Fernández-Rodríguez, Concepción; Puigdecanet, Eulàlia; Gimeno, Javier; Garcia-Garcia, Mar; Carmen Vela, Maria; Luño, Elisa; Collado, Rosa; Navarro, José Tomás; de la Banda, Esmeralda; Abrisqueta, Pau; Arenillas, Leonor; Serrano, Cristina; Lloreta, Josep; Miñana, Belén; Cerutti, Andrea; Florensa, Lourdes; Orfao, Alberto; Sanz, Ferran; Solé, Francesc; Dominguez-Sola, David; Serrano, Sergio

    2015-01-01

    Purpose According to current diagnostic criteria, mantle cell lymphoma (MCL) encompasses the usual, aggressive variants and rare, nonnodal cases with monoclonal asymptomatic lymphocytosis, cyclin D1–positive (MALD1). We aimed to understand the biology behind this clinical heterogeneity and to identify markers for adequate identification of MALD1 cases. Experimental Design We compared 17 typical MCL cases with a homogeneous group of 13 untreated MALD1 cases (median follow-up, 71 months). We conducted gene expression profiling with functional analysis in five MCL and five MALD1. Results were validated in 12 MCL and 8 MALD1 additional cases by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and in 24 MCL and 13 MALD1 cases by flow cytometry. Classification and regression trees strategy was used to generate an algorithm based on CD38 and CD200 expression by flow cytometry. Results We found 171 differentially expressed genes with enrichment of neoplastic behavior and cell proliferation signatures in MCL. Conversely, MALD1 was enriched in gene sets related to immune activation and inflammatory responses. CD38 and CD200 were differentially expressed between MCL and MALD1 and confirmed by flow cytometry (median CD38, 89% vs. 14%; median CD200, 0% vs. 24%, respectively). Assessment of both proteins allowed classifying 85% (11 of 13) of MALD1 cases whereas 15% remained unclassified. SOX11 expression by qRT-PCR was significantly different between MCL and MALD1 groups but did not improve the classification. Conclusion We show for the first time that MALD1, in contrast to MCL, is characterized by immune activation and driven by inflammatory cues. Assessment of CD38/CD200 by flow cytometry is useful to distinguish most cases of MALD1 from MCL in the clinical setting. MALD1 should be identified and segregated from the current MCL category to avoid overdiagnosis and unnecessary treatment. PMID:24352646

  5. Krüppel-like factor (KLF) 5 mediates cyclin D1 expression and cell proliferation via interaction with c-Jun in Ang II-induced VSMCs

    OpenAIRE

    Liu, Yu; Wen, Jin-kun; Dong, Li-Hua; Zheng, Bin; Han, Mei

    2009-01-01

    Aim: To elucidate how krüppel-like factor (KLF5) activates cyclin D1 expression in Ang II-induced vascular smooth muscle cells (VSMC) proliferation. Methods: An adenoviral vector containing the full-length cDNA of KLF5 and a recombinant plasmid expressing c-Jun were constructed. MTT assay and flow cytometric analysis were used to determine the effect of Ang II on cell growth. The luciferase assay and chromatin immunoprecipitation were used to detect the relationship between KLF5 and c-Jun in ...

  6. Expression and significance of eIF4E and CyclinD1 in endometrial hyperplasia and endometrial carcinoma%eIF4E和CyclinD1在子宫内膜增生症和子宫内膜样腺癌中的表达及其意义

    Institute of Scientific and Technical Information of China (English)

    孙乐水; 葛霞

    2013-01-01

    Objective: To study the expression and clinical significance of eIF4E and CyclinDl in endometrial hyperplasia and endometrial carcinoma. Methods: The expressions of eIF4E and CyclinDl in 40 cases of simple hyperplasia, 40 cases of complex hyperplasia( 25 cases of atypical hyperplasia) ,65 cases of endometrial carcinoma and 15 cases of normal proliferative endometrium were detected by means of immunohistochemical EliVision, the related pathological parameters were analyzed. Results: The positive expression of eIF4E in normal proliferative endometrium, simple endometrial hyperplasia, complex endometrial hyperplasia, atypical hyperplasia and endometriod adenocarcinoma was 53. 33% ,72. 50% ,80. 00% ,84. 00% and 90. 77% ,respectively; while the positive expression of CyclinDl was 6. 67% ,52. 50% ,70. 33% , 80. 00% and 81. 54% , respectively. The expression of eIF4E was only significantly different between the endometrial carcinoma and the normal proliferative endometrium ( P0. 05) . Statistical analysis showed that there was a positive correlation between eIF4E and CyclinDl expression in endometriod adenocarcinoma (P 0.05).在子宫内膜样腺癌中,eIF4E、CyclinD1表达呈正相关关系(P<0.01).结论:eIF4E、CyclinD1在子宫内膜样腺癌中均高表达,两者的异常表达共同作用促进子宫内膜样腺癌的发展,两者有协同作用.

  7. Expression of cell cycle regulator p57kip2, cyclinE protein and proliferating cell nuclear antigen in human pancreatic cancer: An immunohistochemical study

    Institute of Scientific and Technical Information of China (English)

    Hui Yue; Hui-Yong Jiang

    2005-01-01

    AIM: To investigate the effects of p57kip2, cyclinE protein and proliferating cell nuclear antigen (PCNA) on occurrence and progression of human pancreatic cancer.METHODS: The expression of p57kip2, cyclinE protein and PCNA in tumor tissues and adjacent tissues from 32patients with pancreatic cancer was detected by SP immunohistochemical technique.RESULTS: The positive expression rate of p57kip2 protein in tumor tissues was 46.9%, which was lower than that in adjacent pancreatic tissues (x2 = 5.317, P<0.05). P57kip2protein positive expression remarkably correlated with tumor cell differentiation (P<0.05), but not with lymph node metastasis (P>0.05). The positive expression rate of cyclinE protein in tumor tissues was 68.8%, which was higher than that in adjacent pancreatic tissues (x2 = 4.063,P<0.05). CyclinE protein positive expression significantly correlated with tumor cell differentiation and lymph node metastasis (P<0.05). The positive expression rate of PCNA in the tumor tissues was 71.9%, which was higher than that in adjacent pancreatic tissues (x2 = 5.189, P<0.05).PCNA positive expression remarkably correlated with tumor cell differentiation and lymph node metastasis (P<0.05).CONCLUSION: The decreased expression of p57kip2 and/or overexpression of cyclinE protein and PCNA may contribute to the occurrence and progression of pancreatic cancer.p57kip2, cyclinE protein, and PCNA play an important role in occurrence and progression of pancreatic cancer.

  8. Bromodichloromethane induces cell proliferation in different tissues of male F344 rats by suppression of E-cadherin expression via hypermethylation or transcriptional activation of c-myc and cyclin D1.

    Science.gov (United States)

    Liao, Jing; Li, Xiao-Feng; Zhou, Shun-Chang; Luo, Yan; Liu, Ai-Lin; Lu, Wen-Qing

    2013-11-25

    The aim of this study was to investigate the mechanism of bromodichloromethane (BDCM) - induced cell proliferation in different tissues of male F344 rats. Rats were administered at doses of 0 and 100mg/kg/day BDCM dissolved in corn oil by gavage for 5 days/week for 1, 4, 8 and 12 weeks. Then the colon, kidney and liver were collected. No histologic lesions were observed in the colon of rats exposed to BDCM, while there were mild nephrotoxicity and marginal hepatotoxicity related to BDCM treatment. Moreover, BDCM enhanced cell proliferation in the colon and kidney but not in the liver. In colons, hypermethylation in E-cadherin promoter might be associated with inhibition of mRNA and protein expression after 12 weeks of BDCM exposure. In kidneys, BDCM decreased E-cadherin mRNA expression, accompanying with transcriptional activation of c-myc and cyclin D1. However, suppression of E-cadherin mRNA and protein expression occurred in the absence of significant changes in DNA methylation. Therefore, suppression of E-cadherin expression via hypermethylation or transcriptional activation of c-myc and cyclin D1 may be involved in BDCM-induced cell proliferation in different tissues of male F344 rats.

  9. 9-顺-维A酸诱导肺鳞、腺癌细胞株凋亡与CyclinD1和Rb基因表达的关系%Relationship between Cyclin D1,Rb gene expression and 9-cis-retinoic acid-induced apoptosis in human lung carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    游庆军; 沈振亚; 金小寅; 蒋锡初; 于雪艳; 胡国强

    2003-01-01

    目的探讨9-顺-维A酸(9-cis-retinoic acid 9-cis RA)诱导肺癌细胞株凋亡作用及其与Cyclin D1、Rb基因表达的关系.方法体外培养肺鳞癌细胞株L78、肺腺癌细胞株PG,随机分为两组,实验组加9-cis RA使其终浓度为5?μmol/L,对照组加入二甲亚砜使其终浓度为0.1%,培养48?h后用流式细胞仪技术分别检测Cyclin D1、Rb基因表达率,同时用DNA凋亡分析法检测肿瘤细胞凋亡发生率,研究三者之间的相关关系.结果 L78、PG细胞实验组中细胞凋亡发生率显著增高,两株细胞中凋亡发生率与Cyclin D1基因表达率之间负相关(L78:r=-0.707,P<0.05;PG:r=-0.785,P<0.01),与Rb基因表达率之间明显正相关(L78:r=0.743,P<0.01;PG:r=0.755,P<0.01).结论 9-cis RA可能通过Rb基因表达增加和Cyclin D1基因表达减少途径使L78、PG细胞明显阻滞在G0/G1期,并诱导肺癌细胞凋亡.

  10. Cyclin A-Cdk2 Phosphorylates BH3 only Protein Bad in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    HE Kan; CHEN Yue; LI Jing-hua; ZHAN Zhuo; WU Yong-ge; KONG Wei; JIN Ying-hua

    2007-01-01

    Increasing evidence suggests that Cyclin A-Cdk2 activity is required in the apoptosis process induced by various stimuli. To determine a specific substrate of Cyclin A-Cdk2 for apoptosis, in this study, we carried out anin vitro kinase assay using immunoprecipitated complex Cyclin A-Cdk2 as an enzyme source, and recombinant protein GST-Bad as a substrate. Our study showed that Bad was clearly phosphorylated by Cyclin A-Cdk2 in vitro. To examine whether protein Bad can also be phosphorylated by Cyclin A-Cdk2 kinase in vivo, we transiently overexpressed protein Bad with Cyclin A or Cdk2-dn, a dominant negative version of Cdk2, in Hela cells and determined the phosphorylation status of protein Bad. The test showed that protein Bad was clearly phosphorylated in Cyclin A overexpressed cells,but not in Cdk2-dn or mock transfectent. Moreover, etoposide also caused the phosphorylation of endogenetic Bad. In conclusion, here we provide first time evidence that protein Bad can be a substrate of Cyclin A-Cdk2 apoptosis for in vitro and in vivo.

  11. Marine steroids as potential anticancer drug candidates: In silico investigation in search of inhibitors of Bcl-2 and CDK-4/Cyclin D1.

    Science.gov (United States)

    Saikia, Surovi; Kolita, Bhaskor; Dutta, Partha P; Dutta, Deep J; Neipihoi; Nath, Shyamalendu; Bordoloi, Manobjyoti; Quan, Pham Minh; Thuy, Tran Thu; Phuong, Doan Lan; Long, Pham Quoc

    2015-10-01

    Star fishes (Asteroidea) are rich in polar steroids with diverse structural characteristics. The structural modifications of star fish steroids occur at 3β, 4β, 5α, 6α (or β), 7α (or β), 8, 15α (or β) and 16β positions of the steroidal nucleus and in the side chain. Widely found polar steroids in starfishes include polyhydroxysteroids, steroidal sulfates, glycosides, steroid oligoglycosides etc. Bioactivity of these steroids is less studied; only a few reports like antibacterial, cytotoxic activity etc. are available. In continuation of our search for bioactive molecules from natural sources, we undertook in silico screening of steroids from star fishes against Bcl-2 and CDK-4/Cyclin D1 - two important targets of progression and proliferation of cancer cells. We have screened 182 natural steroids from star fishes occurring in different parts of the world and their 282 soft-derivatives by in silico methods. Their physico-chemical properties, drug-likeliness, binding potential with the selected targets, ADMET (absorption, distribution, metabolism, toxicity) were predicted. Further, the results were compared with those of existing steroidal and non steroidal drugs and inhibitors of Bcl-2 and CDK-4/Cyclin D1. The results are promising and unveil that some of these steroids can be potent leads for cancer treatments.

  12. The prognostic significance of β-catenin, cyclin D1 and PIN1 in minor salivary gland carcinoma: β-catenin predicts overall survival.

    Science.gov (United States)

    Schneider, Sven; Thurnher, Dietmar; Seemann, Rudolf; Brunner, Markus; Kadletz, Lorenz; Ghanim, Bahil; Aumayr, Klaus; Heiduschka, Gregor; Lill, Claudia

    2016-05-01

    Minor salivary gland carcinoma is a rare and heterogeneous type of cancer. Molecular prognostic and predictive markers are sparse. The aim of this study was to identify new prognostic and predictive markers in minor salivary gland carcinoma. 50 tissue samples of carcinomas of the minor salivary glands (adenoid cystic carcinoma n = 23, mucoepidermoid carcinoma n = 12, adenocarcinoma n = 10, carcinoma ex pleomorphic adenoma n = 2, salivary duct carcinoma n = 1, clear cell carcinoma n = 1, basal cell carcinoma n = 1) were immunohistochemically stained for β-catenin, cyclin D1 and PIN1. Expression patterns were analyzed and correlated to clinical outcome of 37 patients with complete clinical data. High expression of membranous β-catenin was linked to significantly better overall survival in patients with adenoid cystic carcinoma (log rank test, χ (2) = 13.3, p = .00397, Bonferroni corrected p = .024). PIN1 and cyclin D1 did not show any significant correlation to patients' clinical outcome. Expression of β-catenin in adenoid cystic carcinoma of the minor salivary glands significantly correlates with better overall survival. Hence, evaluation of β-catenin might serve as a clinical prognostic marker.

  13. Citrus auraptene suppresses cyclin D1 and significantly delays N-methyl nitrosourea induced mammary carcinogenesis in female Sprague-Dawley rats

    Directory of Open Access Journals (Sweden)

    Grand Robert

    2009-07-01

    Full Text Available Abstract Background Breast cancer is a major problem in the United States leading to tens of thousands of deaths each year. Although citrus auraptene suppresses cancer in numerous rodent models, its role in breast cancer prevention previously has not been reported. Thus, our goal was to determine the anticarcinogenic effects of auraptene against breast cancer. Methods The effects of auraptene on cell proliferation of MCF-7 and MDA-MB-231 human breast carcinoma cells in culture was assessed by measuring metabolism of a substrate to a formazan dye. Dietary effects of auraptene on tumor incidence, multiplicity and latency were studied in the N-methyl nitrosourea (MNU induced mammary carcinogenesis model in female Sprague Dawley rats. The concentration of auraptene in rat tissues was analyzed by reverse phase HPLC. Cyclin D1 expression in MCF-7 cells and rat tumors was measured by western blot. Results Auraptene (500 ppm significantly delayed median time to tumor by 39 days compared to the MNU only group (p Conclusion Overall, these observations suggest that the predominant effect of auraptene was to delay the development of tumors possibly through the suppression of cyclin D1 expression. These results point to the potential chemopreventive effects of auraptene in mammary carcinogenesis.

  14. Clinical significance of expression of livin and cyclin D1 in chronic atrophic gastritis with intestinal metaplasia%Livin和CyclinD1在慢性萎缩性胃炎伴肠化黏膜中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    陈吉; 崔宏; 高美丽; 崔琴

    2012-01-01

    目的:探讨凋亡抑制蛋白Livin和细胞周期蛋白D1(CyclinDI)在慢性萎缩性胃炎(chronicatrophic gastritis,CAG)伴肠化癌变过程中的表达及其相关性.方法:应用免疫组织化学染色S-P法检测Livin和CyclinD1在30例慢性浅表性胃炎(chronicsuperficial gastritis,CSG)、35例CAG非肠化、35例CAG伴肠化、30例胃癌组织中的表达,并同时研究二者在CAG伴肠化癌变中表达的相关性.结果:在CSG、CAG非肠化、CAG伴肠化、胃癌中Livin、CyclinD1的阳性表达率分别为:0%、10%; 28.57%、14.29%; 45.71%、37.14%; 66.67%、53.33%,二者在CAG(非肠化)和CSG对比均有统计学意义(P<0.05);CAG(伴肠化)与CAG(非肠化)相比,CyclinD1的阳性表达率有统计学意义(P<0.05); Livin和CyclinD1在CAG伴肠化、胃癌组织中表达呈正相关.结论:Livin、CyclinD1蛋白在CAG(伴肠化)和胃癌组织中表达呈上调状态,且CAG(伴肠化)和胃癌组织间无显著差异,二者表达一致,提示CAG(伴肠化)已具有癌变的分子生物学特征.二者在胃癌的发生、发展中起协同作用,对其进行联合检测将有助于胃癌的早期诊断.%AIM: To investigate the expression of livin and cyclinDl in chronic atrophic gastritis with intestinal metaplasia.METHODS: Immunohistochemistry was used to examine the expression of livin and cyclin Dl in 30 cases of chronic superficial gastritis, 35 cases of atrophic gastritis without intestinal metaplasia, 35 cases of atrophic gastritis with intestinal metaplasia, and 30 cases of gastric carcinoma. We also explored the correlation between livin and cyclin Dl expression in chronic atrophic gastritis and gastric carcinoma.RESULTS: The positive rates of livin expression in the specimens of chronic superficial gastritis,atrophic gastritis without intestinal metaplasia, atrophic gastritis with intestinal metaplasia, and gastric carcinoma were 0%, 28.57%, 45.71% and 66.67%, respectively, and the corresponding rates for

  15. Different Patterns of Cyclin D1/CDK4-E2F-1/4 Pathways in Human Embryo Lung Fibroblasts Treated by Benzo[a]pyrene at Different Doses1

    Institute of Scientific and Technical Information of China (English)

    MENG YE; BING-CI LIU; XIANG-LIN SHI; BAO-RONG YOU; HONG-JU DU; XIAO-WEI JIA; FU-HAI SHEN

    2008-01-01

    Objective To investigate the roles of the cyclin D1/CDK4 and E2F-1/4 pathways and compare their work patterns in cell cycle changes induced by different doses of B[a]P. Methods Human embryo lung fibroblasts(HELFs)were treated with 2 μmol/L or 100 μmol/L B[a]P which were provided with some characteristics of transformed cells (T-HELFs).Cyclin D1,CDK4 and E2F-1/4 expressions were determined by Westem blotting.Flow cytometry was used to detect the distribution of cell cycle.Results After B[a]P treatment,the proportion of the first gap(G1)phase cells decreased.CDK4 and E2F-4 expression did not change significantly.In 2 μmol/L treated cells,a marked overexpression of cyclin D1 and E2F-1 was observed.However,in T-HELFs overexpression was limited to cyclin D1 only,and no overexpression of E2F-1 was observed.The decreases of G1 phase in response to B[a]P treatment were blocked in antisense cyclin D1 and antisense CDK4 transfected HELFs (A-D1 and A-K4)and T-HELFs(T-A-D1 and T-A-K4).Atier 2 μmol/L B[a]P treatment,overexpression of E2F-1 was attenuated in A-D1,and E2F-4 expression was decreased significantly in A-K4.In T-A-D1 and T-A-K4,E2F-4 expression was increased significantly,compared with T-HELFs.The E2F-1 expression remained unchanged in T-A-D1 and T-A-K4.Conclusions Cyclin D1/CDK4-E2F-1/4 pathways work in different patterns in response to low dose and high dose B[a]P treatment.In HELFs treated with 2 μmol/L B[a]P, cyclin D1 positively regulates the E2F-1 expression while CDK4 negatively regulates the E2F-4 expression;however,in HELFs treated with 100 μmol/L B[a]P,both cyclin D1 and CDK4 negatively regulate the E2F-4 expression.

  16. 结直肠癌组织ATF3及其靶基因Cyclin D1与Maspin表达的临床意义分析%Expression of ATF3 and target genes Cyclin D1 and Maspin in colorectal cancer tissues

    Institute of Scientific and Technical Information of China (English)

    臧盛兵; 郁万媛; 陈虹; 施磊健; 李婷婷; 陈安敏; 陈虹; 黄爱民

    2012-01-01

    OBJECTIVE: To study the expressions of ATF3 and its target genes Cyclin Dland Maspin in colorectal neoplasms by tissue chips, and investigate the meaning of ATF3 expression in colorectal neoplasms. METHODS: Tissue chips were constructed, which contained colorectal cancer and non-neoplastic colorectal mucosa tissue. The expressions of ATF3,Cyclin D1 and Maspin were determined by immunohistochemistry assay. RRSULTS: The expressions of ATF3 (70. 3%),Cyclin D1 (51.4%) and Maspin (59. 5%) in colorectal neoplasms were higher than that in normal colorectal mucosa tissue (21. 6% ,2. 7% and 13. 5% respectively) .which showed significantly difference (all P values were 0. 000). ATF3 expression had not association with age,gender,tumor location,tumor size or histological type,but with invasive extent and lymphatic node metastasis, the expressions of ATF3 in colorectal neoplasms invading the serous membrane (83. 3%) and lymphatic node metastasis (92. 3%) were higher than that in those invading muscularis propria (38. 9%) and without lymphatic node metastasis (45. 7%) ,χ2 values were 13. 290 and 17. 110,and all P values were 0. 000. Cyclin Dl expression was not associated with age,gender,tumor location or tumor size,but with histological type,invasive extent and lymphatic node metastasis. The expression of Cyclin D1 in colorectal cancer with low differentiation (71. 4%), serous membrane invasion (61. 1%) and lymphatic node metastasis (69. 2%) were higher than that in those with high differentiation (39. 1%), muscularis propria invasion (28. 8%) and without lymphatic node metastasis (31. 4%) ,χ2 values were7. 268,6. 019 and 10. 550,and P values were 0. 007,0. 014 and 0. 001 respectively. Maspin expressions were not significantly associated with age, gender, tumor location, tumor size, histological type, invasive extent or lymphatic node metastasis (all P>0. 05). ATF3,Cyclin D1 and Maspin wew all high expressions in colorectal neoplasms, ATF3 expression was positively

  17. Immortalization of Fetal Bovine Colon Epithelial Cells by Expression of Human Cyclin D1, Mutant Cyclin Dependent Kinase 4, and Telomerase Reverse Transcriptase: An In Vitro Model for Bacterial Infection.

    Directory of Open Access Journals (Sweden)

    Kengo Kuroda

    Full Text Available Cattle are the economically important animals in human society. They are essential for the production of livestock products such as milk and meats. The production efficiency of livestock products is negatively impacted by infection with zoonotic pathogens. To prevent and control infectious diseases, it is important to understand the interaction between cattle tissue and pathogenic bacteria. In this study, we established an in vitro infection model of an immortalized bovine colon-derived epithelial cell line by transducing the cells with lentiviral vectors containing genes encoding cell cycle regulators cyclin D1, mutant cyclin dependent kinase 4 (CDK4, and human telomerase reverse transcriptase (TERT. The established cell line showed continuous cell proliferation, expression of epithelial markers, and an intact karyotype, indicating that the cells maintained their original nature as colon-derived epithelium. Furthermore, we exposed the established cell line to two strains of Salmonella enterica and EHEC. Interestingly, S. Typhimurium showed higher affinity for the established cell line and invaded the cytoplasm than S. Enteritidis. Quantitative RT-PCR revealed that gene expression of Toll-like receptor 1 (TLR1, TLR 2 and TLR 3, whereas TLR 4, 5 and 6 were not detectable in established cells. Our established immortalized colon-derived epithelial cell should be a useful tool for studies evaluating the molecular mechanisms underlying bacterial infection.

  18. BRAF inhibitor therapy-associated melanocytic lesions lack the BRAF V600E mutation and show increased levels of cyclin D1 expression.

    Science.gov (United States)

    Mudaliar, Kumaran; Tetzlaff, Michael T; Duvic, Madeleine; Ciurea, Ana; Hymes, Sharon; Milton, Denái R; Tsai, Kenneth Y; Prieto, Victor G; Torres-Cabala, Carlos A; Curry, Jonathan L

    2016-04-01

    Newly appearing or changing melanocytic lesions (MLs) are a recently reported toxicity of BRAF inhibitor (BRAFi) therapy. Morphologically, MLs associated with BRAFi therapy (BRAFi-MLs) may demonstrate alarming features of melanoma with an epithelioid cell phenotype with notable cytologic atypia. We sought to characterize the clinicopathological and molecular features of BRAFi-MLs. A retrospective review over a 4-year period revealed 20 patients in which 44 MLs (including 11 control nevi) were characterized by histopathology, review of clinical medical records, and immunohistochemical (IHC) studies (with anti-BRAF V600E, anti-BAP1, anti-cyclin D1, and anti-p16); the percentage of IHC+ cells was scored. Of the 20 patients, 3 (15%) whose BRAFi-MLs were biopsied had a second primary cutaneous melanoma. Of the 44 BRAFi-MLs tested, 37 (100%) of 37 MLs available for BRAF V600E testing lacked expression in contrast to 1 (9%) of 11 control nevi (lesions not associated with targeted therapy). A significantly higher level of cyclin D1 expression (>50% IHC+ cells) was more commonly seen in BRAFi-MLs (44%) than in control nevi (9%). No difference in p16 expression in melanocytes was seen between the 2 groups. BRAF mutation status distinctly differs between BRAFi-MLs from melanomas and nevi biopsied in patients who do not receive BRAFi therapy. Morphologically, BRAFi-MLs demonstrate a greater degree of atypia than do control nevi. Furthermore, BRAFi-MLs with coexisting cutaneous keratinocyte toxicity developed during fewer days of targeted therapy. Paradoxical activation of the MAPK pathway in BRAF(WT) melanocytes may account for ~15% to 21% of patients developing a second new primary melanoma within a year of starting BRAFi therapy; thus, close clinical surveillance is warranted.

  19. Urinary bladder lesions after the chernobyl accident. Immunohistochemical assessment of p53, proliferating cell nuclear antigen, cyclin D1 and p21[sup WAF1/Cip1

    Energy Technology Data Exchange (ETDEWEB)

    Romanenko, A.; Zaparin, W.; Vinnichenko, W.; Vozianov, A. (Academy of Medical Sciences of Ukraine, Kiev (Ukraine)); Lee, C.C.R.; Yamamoto, Shinji; Hori, Taka-aki; Wanibuchi, Hideki; Fukushima, Shoji

    1999-02-01

    During the 11-year period subsequent to the Chernobyl accident, the incidence of urinary bladder cancer in Ukraine has increased from 26.2 to 36.1 per 100,000 population. Cesium-137 ([sup 137]Cs) accounts for 80-90% of the incorporated radioactivity in this population, which has been exposed to long-term, low-dose ionizing radiation, and 80% of the more labile pool of cesium is excreted via the urine. The present study was performed to evaluate the histopathological features and the immunohistochemical status of p53, p21[sup WAF1/Cip1], cyclin D1 and PCNA (proliferating cell nuclear antigen) in urinary bladder mucosa of 55 males (49-92 years old) with benign prostatic hyperplasia who underwent surgery in Kiev, Ukraine, in 1995 and 1996. Group I (28 patients) inhabiting radiocontaminated areas of the country, group II (17 patients) from Kiev city with less radiocontamination and a control group III (10 patients) living in so-called ''clean'' areas of Ukraine were compared. In groups I and II, an increase in multiple areas of moderate or severe dysplasia or carcinoma in situ was seen in 42 (93%) of 45 cases. In addition, two small transitional cell carcinomas were found in one patient in each of groups I and II. Nuclear accumulation of p53, PCNA, cyclin D1, and to a lesser extent p21[sup WAF1/Cip1], was significantly increased in both groups I and II as compared with the control group III, indicating possible transformation events or enhancement of repair activities, that may precede the defect in the regulatory pathway itself, at least in the G1 phase of the cell cycle. Our results suggest that early malignant transformation is taking place in the bladder urothelium of people in the radiocontaminated areas of Ukraine and that this could possibly lead sometime in the future to an increased incidence of urinary bladder cancer. (author)

  20. Alteration of the Cyclin D1/p16-pRB Pathway, Cellular Proliferation and Apoptosis in Gliomas%人脑胶质瘤中cyclin D1/p16-pRB路径异常以及细胞增殖和凋亡的变化

    Institute of Scientific and Technical Information of China (English)

    王存祖; 傅震; 赵竹青

    2003-01-01

    目的:研究G1→S调控点中细胞周期数D1(cyclin D1)、p16及视网膜母细胞瘤蛋白(pRB)基因在胶质瘤中表达情况,分析与细胞增殖和凋亡的关系,探讨肿瘤发生的原因.方法:37例人脑胶质瘤标本按WHO分类标准(1990)分为:星形细胞瘤25例(纤维型7例,原浆型6例,间变型12例),胶质母细胞瘤12例(包括GBM 4例).正常对照脑组织10例.cyclinD1、p16、pRB和Ki-67的表达用免疫组化的方法,凋亡细胞通过TUNEL进行检测,细胞增殖和凋亡的评估分别用Ki-67 LI和凋亡指数(AI).结果:三种因子在胶质瘤中都存在着异常,其中cyclinD1表现为过度表达(29/37,78.4%),p16、pRB表现为缺失(21/37,56.8%和13/37,35.1%),且都与肿瘤分型有关,在恶性肿瘤中更加明显;pRB路径的异常在胶质瘤中更为频发,与肿瘤恶化有关;pRB路径异常时,Ki-67 LI和AI均明显增高;在星形细胞的肿瘤中,凋亡发生比较少见(星形细胞瘤:0.010±0.002;胶质母细胞瘤:0.057±0.016),与肿瘤分型有关.结论:cyclin D1/p16-pRB路径的异常与胶质瘤的发生和生长关系密切.

  1. Role of cyclinD1 in cigarette smoke extract promoting the proliferation of airway smooth muscle cells in bronchial asthmatic rat%周期蛋白D1在香烟提取物促进支气管哮喘大鼠气道平滑肌细胞增殖中的作用

    Institute of Scientific and Technical Information of China (English)

    张晓宇; 马利军; 徐永健; 刘先胜; 张珍祥

    2010-01-01

    目的 观察支气管哮喘大鼠气道平滑肌细胞(ASMCs)周期蛋白D1(cyclinD1)的表达变化,探讨cyclinD1在香烟提取物(CSE)促进哮喘大鼠ASMCs增殖中所起的作用.方法 16只SD大鼠随机分为对照组(n=8)和哮喘组(n=8).原代培养大鼠ASMCs,分为对照组(A组)、对照+CSE组(B组)、哮喘组(C组)、哮喘+CSE组(D组)、哮喘+CSE+pcDNA3.1组(E组)和哮喘+CSE+pcDNA3.1-ascyclinD1组(F组).检测ASMCs增殖及cyclinD1 mR-NA、蛋白表达情况.结果 ASMCs增殖水平及cyclinD1 mRNA、蛋白表达水平比较,A组与C组,C组与D组,D组与F组间均有统计学差异(P均<0.01).结论 正常与哮喘大鼠ASMCs在CSE干预后增殖明显加快,cyclinD1表达明显增加.CSE可能是通过cyclinD1参与调控哮喘大鼠ASMCs的增殖.

  2. Pin1、β-连接素和细胞周期素D1在老年肺癌组织中的表达及临床意义%The expressions of Pin1,β-catenin and cyclin D1 in elderly lung carcinomas and their significance

    Institute of Scientific and Technical Information of China (English)

    Jian Liu; Jun Zhao; Jianming Yang

    2008-01-01

    Objective:To investigate the expressions and correlations of Pin1,β-catenin and cyclin D1 in elderly lung carcinomas.Methods:The expressions of Pin1,β-catenin and cyclin D1 were examined in the specimens of 92 elderly lung carcinomas and 10 normal lung tissues by immunohistochemistry and explored the relationship between the expression levels and clinicopathological factors.Results:(1) The overexpression of Pin1 and cyclin D1 in lung carcinomas was 46 (50%)cases and 60 (65.22%) cases respectively and 56 (60.82%) cases showed positive immunoreactivity for β-catenin in the nuclear and (or) cytoplasmic fraction in tumor tissues,In normal tissue,the expressions of Pin1 and cyclin D1 were negative,the expression of β-catenin was lied in cell membrane.(2) In lung carcinomas the expressions of Pin1,β-catenin and cyclin D1 correlated with tumor differentiation (P<0.05).The pesitive expression rate and intensity of Pin1 correlated with tumor stage (P=0.032) and lymph node positive disease (P=0.041).The expression of β-catenin correlated with lymph node positive disease (P=0.012).(3) High expression levels of Pin1 correlated with aberrant β-catenin expression (P=0.000) but did not show a correlation with cyclin D1 (P=0.157).Conclusion:In elderly lung carcinomas,the positive expression of Pin1 causes abnormal accumulation of β-catenin and actives its target gene,however,this target gene was not cyclin DI.The detection of Pin1 expression had some clinical significance in estimating prognosis of elderly patient with lung carcinomas.

  3. p16 Cyclin D1在妊娠滋养细胞疾病组织中 的表达及意义%Expression of pi6 and Cyclin D1 in the tissues of gestational trophoblastic diseases and its significance

    Institute of Scientific and Technical Information of China (English)

    梁劲荃; 赵或明; 梁睿; 主改霞; 孙润琴

    2001-01-01

    Objective To detect the significance of p16 and CyclinD1 in the tumorigenesis of trophoblastic tumors.Methods Immunohistochemical SP method was used to detect the p16 and CyclinD1 gene expression in the tissues of 49 cases of trophoblastic diseases ( the primary curretage tissues of moles 32 cases, invasive moles 12 cases and choriocarcinoma 5 cases ) and 4 cases of normal chorion of early gestation. Results The expression of p16 and CyclinD1 was respectively all positive and all negative in the chorion of early gestation. When the moles that didn′t transform to malignancy, the moles that did transform and the trophoblasfic tumors were detected,a descending tendency of p16 expression was found ,while the expression of CyclinD1 showed an ascending tendency. The positive rate of p16 expression was significantly different between the following groups: the moles transforming malignantly later and the moles that didnt transform,the moles that didnt transform and the invasive moles( P 0.05). Conclusions The absent expression of the cell cycle regulating gene pi6 and the excessive expression of cyclinD1 may play a key role in the malignant transformation of trophocyte and in the development of invasive moles. Detection of p16 and Cyclin D1 expression in the primary curretage tissues of moles may be of great value in assessing the prognosis of moles.%目的探讨p16、CyclinD1基因在滋养细胞肿瘤发生方面的意义。方法用免疫组化SP法,对49例滋养细胞疾病组织(葡萄胎首次清宫标本32例,侵蚀性葡萄胎及绒癌子宫标本分别为12例和5例)和4例早孕正常绒毛组织中p16和CyclinD1进行检测。结果在早孕绒毛组织中,pi6和CyclinD1表达分别为全部阳性和全部阴性。在不恶变葡萄胎、以后发生恶变的葡萄胎和滋养细胞肿瘤中p16表达呈下降趋势,CyclinD1表达呈上升趋势。p16和CyclinD1表达阳性率在不恶变葡萄胎与以后发生恶变的葡萄胎组间、在不恶变

  4. 细胞周期p16-cyclin D1-pRb调节通路与人卵巢浆液性囊腺癌的相关性研究%Study on the Correlation Between the p16-cyclin D1-pRb Pathway and Human Serous Ovarian Carcinoma

    Institute of Scientific and Technical Information of China (English)

    王刚; 王世阆; 王靖华; 张崇淑

    2002-01-01

    目的:探讨细胞周期p16-pRb-cyclin D1调节通路及各因子在浆液性卵巢肿瘤发生和发展中的作用.方法:应用免疫组化LsAB法检测一组浆液性卵巢肿瘤中p16、pRb和cyc1in D1蛋白表达情况.结果:卵巢浆液性囊腺癌原发灶和淋巴结转移灶中p16表达阳性率明显低于正常卵巢、良性肿瘤和交界性肿瘤;p16-pRb-cyclin D1调节通路异常率却呈相反趋势变化,且通路异常与浆液性囊腺癌FIGO分期、组织学分级及预后无明显相关性.p16表达阳性患者术后生存率高于阴性患者(P=0.0006).pRb和cyclin D1表达情况与卵巢浆液性囊腺癌组织学分级、FIGO分期无明显关系.卵巢浆液性肿瘤组织中p16和pRb蛋白表达呈负相关.结论:p16蛋白在卵巢浆液性肿瘤的发生、发展中可能起着较为重要的作用.p16-pRb-cyclin D1调节通路异常在浆液性卵巢肿瘤虽很常见,但其具体作用尚不清楚.

  5. Effect of metformin on the expression of Cyclin Dl in human gastric cancer Cells%二甲双胍对胃癌细胞株增生及Cyclin D1表达的影响

    Institute of Scientific and Technical Information of China (English)

    魏德强; 王冰; 王烈

    2010-01-01

    目的 观察二甲双胍在体外对人胃癌细胞株SGC-7901生长的作用,并初步探讨其作用机制.方法 体外培养胃癌SGC-7901细胞,MTT法测二甲双胍在不同浓度和不同作用时间对胃癌细胞增生的影响;Western blot法检测二甲双胍对胃癌细胞CycLn D1表达的影响.结果 MTT法结果显示:用不同浓度(50 mmol/L、100 mmol/L)的二甲双胍处理胃癌细胞SGC-7901在24h.48h、72h后,50 mmol/L二甲双胍对于胃癌细胞生长抑制率分别为32.93%、48.64%和61.40%.100 mmol/L二甲双胍对于胃癌细胞生长抑制率分别为35.34%、75.44%和88.30%,不同浓度的二甲双胍对于胃癌细胞生长抑制率与对照组相比具有显著性差异(P<0.05),100mmoL/L二甲双胍对于胃癌细胞生长抑制与50mmol/L二甲双胍对于胃癌细胞生长抑制率相比具有显著性差异(P<0.05)二甲双胍呈时间、浓度依赖性抑制胃癌细胞的增生.胃癌细胞高表达Cyclin D1,Western blot检测表明二甲双胍能显著降低Cycfin D1蛋白的表达,且呈一定时间、剂量依赖性.结论 二甲双胍可以下调胃癌细胞株SGC-7901 Cycfin D1的表达,抑制胃癌细胞的增生.%Objective To investigate the effect of metformin on human gastric cancer line SGC-7901 in vitro, trying to explore the mechanism involved. Methods Human gastric cancer SGC-7901 cell was cultured in vitro, MTT was used to study the effects of metformin on cell growth with different concentration or different time. Western blot was used to investigate the influence of metformin on the expression of Cyclin Dl in cell line . Results The result of MTT showed human gastric cancer SGC-7901 cell was cultured in vitro and was exposed to metformin in different concentration (50 mmol/L, 100 mmol/L) for 24 h,48 h,72 h. The inhibitory rates of 50 mmol/L metformin on the effects of metformin on cell growth was 32.93% ,48.64% and 61.40% and the inhibitory rates of 100 mmol/L metformin on the effects of metformin on cell

  6. An EBV recombinant deleted for residues 130-159 in EBNA3C can deregulate p53/Mdm2 and Cyclin D1/CDK6 which results in apoptosis and reduced cell proliferation.

    Science.gov (United States)

    Shukla, Sanket Kumar; Jha, Hem Chandra; El-Naccache, Darine W; Robertson, Erle S

    2016-04-05

    Epstein-Barr virus (EBV), a gamma herpes virus is associated with B-cell malignancies. EBNA-3C is critical for in vitro primary B-cell transformation. Interestingly, the N terminal domain of EBNA3C which contains residues 130-159, interacts with various cellular proteins, such as p53, Mdm2, CyclinD1/Cdk6 complex, and E2F1. In the current reverse genetics study, we deleted the residues 130-159 aa within EBNA3C open reading frame (ORF) by BACmid recombinant engineering methodology. Our experiments demonstrated that deletion of the 130-159 aa showed a reduction in cell proliferation. Also, this recombinant virus showed with higher infectivity of human peripheral blood mononuclear cells (PBMCs) compared to wild type EBV. PBMCs- infected with recombinant EBV deleted for 130-159 residues have differential expression patterns for the p53/Mdm2, CyclinD1/Cdk6 and pRb/E2F1 pathways compared to wild type EBV-infected PBMCs. PBMCs infected with recombinant virus showed increased apoptotic cell death which further resulted in activation of polymerase 1 (PARP1), an important contributor to apoptotic signaling. Interestingly, cells infected with this recombinant virus showed a dramatic decrease in chromosomal instability, indicated by the presence of increased multinucleation and micronucleation. In addition infection with recombinant virus have increased cells in G0/G1 phase and decreased cells in S-G2M phase when compared to wild type infected cells. Thus, these differences in signaling activities due to 29 amino acid residues of EBNA3C is of particular significance in deregulation of cell proliferation in EBV-infected cells.

  7. Helicobacter pylori Induced Phosphatidylinositol-3-OH Kinase/mTOR Activation Increases Hypoxia Inducible Factor-1α to Promote Loss of Cyclin D1 and G0/G1 Cell Cycle Arrest in Human Gastric Cells

    Science.gov (United States)

    Canales, Jimena; Valenzuela, Manuel; Bravo, Jimena; Cerda-Opazo, Paulina; Jorquera, Carla; Toledo, Héctor; Bravo, Denisse; Quest, Andrew F. G.

    2017-01-01

    Helicobacter pylori (H. pylori) is a human gastric pathogen that has been linked to the development of several gastric pathologies, such as gastritis, peptic ulcer, and gastric cancer. In the gastric epithelium, the bacterium modifies many signaling pathways, resulting in contradictory responses that favor both proliferation and apoptosis. Consistent with such observations, H. pylori activates routes associated with cell cycle progression and cell cycle arrest. H. pylori infection also induces the hypoxia-induced factor HIF-1α, a transcription factor known to promote expression of genes that permit metabolic adaptation to the hypoxic environment in tumors and angiogenesis. Recently, however, also roles for HIF-1α in the repair of damaged DNA and inhibition of gene expression were described. Here, we investigated signaling pathways induced by H. pylori in gastric cells that favor HIF-1α expression and the consequences thereof in infected cells. Our results revealed that H. pylori promoted PI3K/mTOR-dependent HIF-1α induction, HIF-1α translocation to the nucleus, and activity as a transcription factor as evidenced using a reporter assay. Surprisingly, however, transcription of known HIF-1α effector genes evaluated by qPCR analysis, revealed either no change (LDHA and GAPDH), statistically insignificant increases SLC2A1 (GLUT-1) or greatly enhance transcription (VEGFA), but in an HIF-1α-independent manner, as quantified by PCR analysis in cells with shRNA-mediated silencing of HIF-1α. Instead, HIF-1α knockdown facilitated G1/S progression and increased Cyclin D1 protein half-life, via a post-translational pathway. Taken together, these findings link H. pylori-induced PI3K-mTOR activation to HIF-1α induced G0/G1 cell cycle arrest by a Cyclin D1-dependent mechanism. Thus, HIF-1α is identified here as a mediator between survival and cell cycle arrest signaling activated by H. pylori infection. PMID:28401064

  8. Mechanistic Target of Rapamycin (mTOR) Inhibition Synergizes with Reduced Internal Ribosome Entry Site (IRES)-mediated Translation of Cyclin D1 and c-MYC mRNAs to Treat Glioblastoma.

    Science.gov (United States)

    Holmes, Brent; Lee, Jihye; Landon, Kenna A; Benavides-Serrato, Angelica; Bashir, Tariq; Jung, Michael E; Lichtenstein, Alan; Gera, Joseph

    2016-07-01

    Our previous work has demonstrated an intrinsic mRNA-specific protein synthesis salvage pathway operative in glioblastoma (GBM) tumor cells that is resistant to mechanistic target of rapamycin (mTOR) inhibitors. The activation of this internal ribosome entry site (IRES)-dependent mRNA translation initiation pathway results in continued translation of critical transcripts involved in cell cycle progression in the face of global eIF-4E-mediated translation inhibition. Recently we identified compound 11 (C11), a small molecule capable of inhibiting c-MYC IRES translation as a consequence of blocking the interaction of a requisite c-MYC IRES trans-acting factor, heterogeneous nuclear ribonucleoprotein A1, with its IRES. Here we demonstrate that C11 also blocks cyclin D1 IRES-dependent initiation and demonstrates synergistic anti-GBM properties when combined with the mechanistic target of rapamycin kinase inhibitor PP242. The structure-activity relationship of C11 was investigated and resulted in the identification of IRES-J007, which displayed improved IRES-dependent initiation blockade and synergistic anti-GBM effects with PP242. Mechanistic studies with C11 and IRES-J007 revealed binding of the inhibitors within the UP1 fragment of heterogeneous nuclear ribonucleoprotein A1, and docking analysis suggested a small pocket within close proximity to RRM2 as the potential binding site. We further demonstrate that co-therapy with IRES-J007 and PP242 significantly reduces tumor growth of GBM xenografts in mice and that combined inhibitor treatments markedly reduce the mRNA translational state of cyclin D1 and c-MYC transcripts in these tumors. These data support the combined use of IRES-J007 and PP242 to achieve synergistic antitumor responses in GBM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. p16、细胞周期蛋白D1和pRb在头颈部鳞癌的表达及其意义%Expression of p16, cyclinD1 and pRb in head and neck squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    陶泽璋; 刘剑锋; 肖伯奎; 杨强; 华清泉

    2000-01-01

    目的:探讨p16、细胞周期蛋白Dl(cyclinD1)和pRb在头颈部鳞癌(head and neck squamous cell carcinoma,HNSCC)的表达及他们的相互关系和其意义.方法:应用免疫组织化学方法检测32例原发HNSCC患者癌组织中p16、cyclinD1和pRb的蛋白表达.结果:p16、cyclinD1、pRb的总异常率为90.6%(29/32),其中p16和pRb蛋白表达缺失分别为62.5%(20/32)和34.4%(11/32),cyclinD1过表达为34.4%(11/32).p16与pRb呈负相关性(P<0.01).p16、cyclinD1、pRb的异常与HNSCC的临床分期、淋巴结状态、肿瘤分化无相关性.结论:p16/cyclinD1/pRb通路异常与HNSCC的发病机制密切相关;p16缺失是HNSCC中较常见的分子异常,可能是癌变的早期事件;p16与pRb表达呈明显的负相关性.

  10. [Ru(pipe)(dppb)(bipy)]PF6: A novel ruthenium complex that effectively inhibits ERK activation and cyclin D1 expression in A549 cells.

    Science.gov (United States)

    Ferreira-Silva, Guilherme A; Ortega, Marina M; Banionis, Marco A; Garavelli, Graciana Y; Martins, Felipe T; Dias, Julia S M; Viegas, Cláudio; Oliveira, Jaqueline C de; Nascimento, Fabio B do; Doriguetto, Antonio C; Barbosa, Marilia I F; Ionta, Marisa

    2017-10-01

    Lung cancer is the most frequent type of cancer worldwide. In Brazil, only 14% of the patients diagnosed with lung cancer survived 5years in the last decades. Although improvements in the therapeutic approach, it is relevant to identify new chemotherapeutic agents. In this framework, ruthenium metal compounds emerge as a promising alternative to platinum-based compounds once they displayed lower cytotoxicity and more selectivity for tumor cells. The present study aimed to evaluate the antitumor potential of innovative ruthenium(II) complex, [Ru(pipe)(dppb)(bipy)]PF6 (PIPE) on A549 cells, which is derived from non-small cell lung cancer. Results demonstrated that PIPE effectively reduced the viability and proliferation rate of A549 cells. When PIPE was used at 9μM there was increase in G0/G1 cell population with concomitant reduction in frequency of cells in S-phase, indicating cell cycle arrest in G1/S transition. Antiproliferative activity of PIPE was associated to its ability of reducing cyclin D1 expression and ERK phosphorylation levels. Cytotoxic activity of PIPE on A549 cells was observed when PIPE was used at 18μM, which was associated to its ability of inducing apoptosis by intrinsic pathway. Taken together, the data demonstrated that PIPE is a promising antitumor agent and further in vivo studies should be performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. [Retracted] Epidermal growth factor-stimulated human cervical cancer cell growth is associated with EGFR and cyclin D1 activation, independent of COX-2 expression levels.

    Science.gov (United States)

    Narayanan, Rajkishen; Kim, Hye Na; Narayanan, Narayanan K; Nargi, Dominick; Narayanan, Bhagavathi

    2017-01-01

    Following the publication of this article, which was concerned with the expression of phosphorylated epidermal growth factor receptor (pEGFR) and cyclin D1 activation independently of the expression levels of cyclo-oxygenase-2, an interested reader drew to our attention apparent anomalies associated with the western blot data shown in Fig. 2C. Following an internal investigation at the New York University School of Medicine, we were requested to produce the original film, or the scan of the image of the film, for verification. Unfortunately, we were unable to provide the original film or scanned image to disprove the allegation, since the original pEGFR image could not be found. Therefore, the Investigation Committee recommended that this article be retracted, and we are withdrawing the article in line with the request. All the authors agree to the retraction of this paper. We sincerely regret any inconvenience this has caused. [the original article was published in the International Journal of Oncology 40: 13-20, 2012; DOI: 10.3892/ijo.2011.1211].

  12. miR-1 suppresses the growth of esophageal squamous cell carcinoma in vivo and in vitro through the downregulation of MET, cyclin D1 and CDK4 expression

    Science.gov (United States)

    JIANG, SEN; ZHAO, CHAO; YANG, XIAODI; LI, XIANGYANG; PAN, QING; HUANG, HAIJIN; WEN, XUYANG; SHAN, HUSHENG; LI, QIANWEN; DU, YUNXIANG; ZHAO, YAPING

    2016-01-01

    Several aberrant microRNAs (miRNAs or miRs) have been implicated in esophageal cancer (EC), which is widely prevalent in China. However, their role in EC tumorigenesis has not yet been fully elucidated. In the present study, we determined that miR-1 was downregulated in esophageal squamous cell carcinoma (ESCC) tissues compared with adjacent non-neoplastic tissues using RT-qPCR, and confirmed this using an ESCC cell line. Using a nude mouse xenograft model, we confirmed that the re-expression of miR-1 significantly inhibited ESCC tumor growth. A tetrazolium assay and a trypan blue exclusion assay revealed that miR-1 suppressed ESCC cell proliferation and increased apoptosis, whereas the silencing of miR-1 promoted cell proliferation and decreased apoptosis, suggesting that miR-1 is a novel tumor suppressor. To elucidate the molecular mechanisms of action of miR-1 in ESCC, we investigated putative targets using bioinformatics tools. MET, cyclin D1 and cyclin-dependent kinase 4 (CDK4), which are involved in the hepatocyte growth factor (HGF)/MET signaling pathway, were found to be targets of miR-1. miR-1 expression inversely correlated with MET, cyclin D1 and CDK4 expression in ESCC cells. miR-1 directly targeted MET, cyclin D1 and CDK4, suppressing ESCC cell growth. The newly identified miR-1/MET/cyclin D1/CDK4 axis provides new insight into the molecular mechanisms of ESCC pathogenesis and indicates a novel strategy for the diagnosis and treatment of ESCC. PMID:27247259

  13. Effects of ursodeoxycholic acid on liver regeneration and Cyclin D1 expression in rats%熊去氧胆酸对大鼠肝再生和细胞周期蛋白D1表达的影响

    Institute of Scientific and Technical Information of China (English)

    张有福; 董秀山; 闫曙光; 赵浩亮

    2010-01-01

    目的 观察熊去氧胆酸对大鼠肝再生和细胞周期蛋白D1(Cyclin D1)表达的影响.方法 雄性Wistar大鼠分为对照组和熊去氧胆酸组(UDCA组),各32例.对照组给予标准饲料,UDCA组给予0.3%UDCA饲料,7d后行70%肝部分切除术(PH).于术后0、1、2、3 d四个时间点观察大鼠肝细胞增殖和Cyclin D1表达情况.结果 两组大鼠在0d时PCNA蛋白几乎不表达,在PH后1d,PCNA蛋白标记指数迅速上升达高峰,而UDCA组PCNA标记指数显著高于对照组(40.70±4.73比33.24±5.59,P0.05).UDCA组在PH术后1、2 d Cyclin D1表达明显高于对照组(P0.05).结论 熊去氧胆酸可促进肝细胞增殖,并且上调Cyclin D1表达.%Objective To investigate the effect of ursodeoxycholic acid(UDCA) on liver regeneration and Cyclin Dl expression in rats. Methods Male Wistar rats were randomly divided into two groups (re=32 in each group: the control group in which the rats were fed on standard diets, and the UDCA group in which rats were given 1% UDCA diets. Seven days later, 70% partial hepatectomy (PH) was performed. On the day 0,1,2 and 3 after PH, the rat liver regeneration and Cyclin Dl expression were examined. Results On the day 0, the PCNA was hardly expressed in all rats. On the day 1 after PH, the PC-NA labeling index reached a peak, and it was significantly higher in the UDCA group than in the control group (40.70±4.73 vs 33. 24 ± 5. 59, P0.05). On day 1, 2 after PH, the expression of Cyclin Dl in the UDCA group was significantly higher than in the control group (P0.05 ). Conclusion UDCA can promote liver regeneration, and increase the expression of Cyclin D1.

  14. Combination of atorvastatin with sulindac or naproxen profoundly inhibits colonic adenocarcinomas by suppressing the p65/β-catenin/cyclin D1 signaling pathway in rats.

    Science.gov (United States)

    Suh, Nanjoo; Reddy, Bandaru S; DeCastro, Andrew; Paul, Shiby; Lee, Hong Jin; Smolarek, Amanda K; So, Jae Young; Simi, Barbara; Wang, Chung Xiou; Janakiram, Naveena B; Steele, Vernon; Rao, Chinthalapally V

    2011-11-01

    Evidence supports the protective role of nonsteroidal anti-inflammatory drugs (NSAID) and statins against colon cancer. Experiments were designed to evaluate the efficacies atorvastatin and NSAIDs administered individually and in combination against colon tumor formation. F344 rats were fed AIN-76A diet, and colon tumors were induced with azoxymethane. One week after the second azoxymethane treatment, groups of rats were fed diets containing atorvastatin (200 ppm), sulindac (100 ppm), naproxen (150 ppm), or their combinations with low-dose atorvastatin (100 ppm) for 45 weeks. Administration of atorvastatin at 200 ppm significantly suppressed both adenocarcinoma incidence (52% reduction, P = 0.005) and multiplicity (58% reduction, P = 0.008). Most importantly, colon tumor multiplicities were profoundly decreased (80%-85% reduction, P sulindac or naproxen. Also, a significant inhibition of colon tumor incidence was observed when given a low-dose atorvastatin with either sulindac (P = 0.001) or naproxen (P = 0.0005). Proliferation markers, proliferating cell nuclear antigen, cyclin D1, and β-catenin in tumors of rats exposed to sulindac, naproxen, atorvastatin, and/or combinations showed a significant suppression. Importantly, colon adenocarcinomas from atorvastatin and NSAIDs fed animals showed reduced key inflammatory markers, inducible nitric oxide synthase and COX-2, phospho-p65, as well as inflammatory cytokines, TNF-α, interleukin (IL)-1β, and IL-4. Overall, this is the first report on the combination treatment using low-dose atorvastatin with either low-dose sulindac or naproxen, which greatly suppress the colon adenocarcinoma incidence and multiplicity. Our results suggest that low-dose atorvastatin with sulindac or naproxen might potentially be useful combinations for colon cancer prevention in humans.

  15. Triphala Extract Suppresses Proliferation and Induces Apoptosis in Human Colon Cancer Stem Cells via Suppressing c-Myc/Cyclin D1 and Elevation of Bax/Bcl-2 Ratio

    Directory of Open Access Journals (Sweden)

    Ramakrishna Vadde

    2015-01-01

    Full Text Available Colon cancer is the second leading cause of cancer related deaths in the USA. Cancer stem cells (CSCs have the ability to drive continued expansion of the population of malignant cells. Therefore, strategies that target CSCs could be effective against colon cancer and in reducing the risk of relapse and metastasis. In this study, we evaluated the antiproliferative and proapoptotic effects of triphala, a widely used formulation in Indian traditional medicine, on HCT116 colon cancer cells and human colon cancer stem cells (HCCSCs. The total phenolic content, antioxidant activity, and phytochemical composition (LC-MS-MS of methanol extract of triphala (MET were also measured. We observed that MET contains a variety of phenolics including naringin, quercetin, homoorientin, and isorhamnetin. MET suppressed proliferation independent of p53 status in HCT116 and in HCCSCs. MET also induced p53-independent apoptosis in HCCSCs as indicated by elevated levels of cleaved PARP. Western blotting data suggested that MET suppressed protein levels of c-Myc and cyclin D1, key proteins involved in proliferation, and induced apoptosis through elevation of Bax/Bcl-2 ratio. Furthermore, MET inhibited HCCSCs colony formation, a measure of CSCs self-renewal ability. Anticancer effects of triphala observed in our study warrant future studies to determine its efficacy in vivo.

  16. Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-kappaB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation.

    Science.gov (United States)

    Takada, Yasunari; Bhardwaj, Anjana; Potdar, Pravin; Aggarwal, Bharat B

    2004-12-09

    Nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin have been shown to suppress transcription factor NF-kappaB, which controls the expression of genes such as cyclooxygenase (COX)-2 and cyclin D1, leading to inhibition of proliferation of tumor cells. There is no systematic study as to how these drugs differ in their ability to suppress NF-kappaB activation and NF-kappaB-regulated gene expression or cell proliferation. In the present study, we investigated the effect of almost a dozen different commonly used NSAIDs on tumor necrosis factor (TNF)-induced NF-kappaB activation and NF-kappaB-regulated gene products, and on cell proliferation. Dexamethasone, an anti-inflammatory steroid, was included for comparison with NSAIDs. As indicated by DNA binding, none of the drugs alone activated NF-kappaB. All compounds inhibited TNF-induced NF-kappaB activation, but with highly variable efficacy. The 50% inhibitory concentration required was 5.67, 3.49, 3.03, 1.25, 0.94, 0.60, 0.38, 0.084, 0.043, 0.027, 0.024, and 0.010 mM for aspirin, ibuprofen, sulindac, phenylbutazone, naproxen, indomethacin, diclofenac, resveratrol, curcumin, dexamethasone, celecoxib, and tamoxifen, respectively. All drugs inhibited IkappaBalpha kinase and suppressed IkappaBalpha degradation and NF-kappaB-regulated reporter gene expression. They also suppressed NF-kappaB-regulated COX-2 and cyclin D1 protein expression in a dose-dependent manner. All compounds inhibited the proliferation of tumor cells, with 50% inhibitory concentrations of 6.09, 1.12, 0.65, 0.49, 1.01, 0.19, 0.36, 0.012, 0.016, 0.047, 0.013, and 0.008 mM for aspirin, ibuprofen, sulindac, phenylbutazone, naproxen, indomethacin, diclofenac, resveratrol, curcumin, dexamethasone, celecoxib, and tamoxifen, respectively. Overall these results indicate that aspirin and ibuprofen are least potent, while resveratrol, curcumin, celecoxib, and tamoxifen are the most potent anti-inflammatory and antiproliferative agents of those we

  17. The effect of the ginger on the apoptosis of hippochampal cells according to the expression of BAX and Cyclin D1 genes and histological characteristics of brain in streptozotocin male diabetic rats.

    Science.gov (United States)

    Molahosseini, A; Taghavi, M M; Taghipour, Z; Shabanizadeh, A; Fatehi, F; Kazemi Arababadi, M; Eftekhar Vaghefe, S H

    2016-10-31

    Diabetes is the most common endocrine disorder in humans with multiple complications including nervous system damages. The aim of the present study was to determine the effect of ginger extract on apoptosis of the neurons of hippocampus, via evaluation of BAX and Cyclin D1 and also histological analysis, in male diabetic rats. In this experimental study, 60 Wistar rats (220 ± 30gr) were conducted in 5 groups as follow: diabetic group treated with saline (group 1), normal group treated with saline (group 2), diabetic group treated with ginger (group 3), diabetic group treated with ginger-insulin (group 4), diabetic group treated with insulin (group 5). STZ (60 mg/kg) was intraperitoneally used to induce the diabetes. Expression levels of BAX and Cyclin D1 were examined using Real-Time PCR technique and the normality of neurons was evaluated using H&E staining method. The results showed that blood glucose level significantly decreased in group 4 when compared to group 1. In molecular analysis, there was no significant difference between groups regarding the expression of BAX gens, while, the expression of Cyclin D1 were significantly decreased in group 4 compared with group 1. Histological analysis revealed that pathological symptoms were lower in group 4 than the other diabetic groups. The results of present study showed that the ginger in addition to lowering blood sugar level, changes the expression of Cyclin D1 gene and histological characteristics in a positive manner. This means that the ginger may protects neurons of the hippocampus from apoptosis in diabetic patients.

  18. Study on Effect of Oviductus Ranae on the Expression of p16, p21 and CyclinD1 in Liver Tissues of Aged Female Rats%哈蟆油对雌性衰老大鼠肝脏组织p16,p21和细胞周期蛋白D1蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    姚晖; 邓虹珠; 张继平; 姜晓刚; 梁颖; 黄志恩; 梁磊

    2012-01-01

    目的 探讨哈蟆油(OR)对D-半乳糖所致雌性衰老大鼠肝脏组织p16、p21和细胞周期蛋白D1蛋白表达的影响,进一步探讨哈蟆油延缓雌性大鼠机体衰老机制.方法 SPF级SD雌性青年大鼠40只随机分为D-半乳糖组、维生素E组、哈蟆油高剂量组、中剂量组、低剂量组,每组8只,D-半乳糖颈背部皮下注射42 d,建立亚急性衰老模型.另取雌性青年大鼠8只,同样部位每日注射生理盐水,作为空白对照组.第15天开始灌胃给药,给药时间28 d.给药结束后,免疫组化法检测衰老大鼠肝脏组织p16和p21蛋白的表达情况,蛋白免疫印迹法检测哈蟆油对雌性衰老大鼠肝脏组织细胞周期蛋白D1表达的影响.结果 雌性衰老大鼠肝脏组织免疫组化结果表明,p16和p21多为胞浆表达,弥漫性、灶性分布均有.D-半乳糖组p16和p21阳性细胞积分与空白组比较升高,差异有显著性(P<0.01).与D-半乳糖组相比,哈蟆油中、低剂量组,p16阳性细胞积分降低,差异有显著性(P值均<0.01),哈蟆油各剂量组p21阳性细胞积分降低,差异有显著性(P值均<0.01).肝脏组织蛋白免疫印迹法结果表明,D-半乳糖组肝脏组织细胞周期蛋白D1蛋白表达与空白组比较降低,差异有显著性(P<0.01).哈蟆油各剂量组细胞周期蛋白D1蛋白表达与D-半乳糖组比较,表达均升高(P值均<0.01),哈蟆油高剂量组尤为明显.结论 哈蟆油可降低肝脏组织p16、p21蛋白的高表达.同时显著提高细胞增殖正性调控因子细胞周期蛋白D1蛋白的表达,促进衰老雌性大鼠肝细胞增殖.哈蟆油延缓雌性衰老作用可能通过调控肝脏p16,p21,细胞周期蛋白D1信号通路来促进有关增殖调控蛋白表达发挥延缓衰老作用.%OBJECTIVE To investigate the effect of Oviductus Ranae (OR) on the expression of pl6, p21 and cyclinDl protein in liver tissue of D-galactose-induced aging female rats and to further explore the anti

  19. Investigation of cyclin D1 rs9344 G>A polymorphism in colorectal cancer: a meta-analysis involving 13,642 subjects

    Directory of Open Access Journals (Sweden)

    Qiu H

    2016-10-01

    Full Text Available Hao Qiu,1,* Chengguo Cheng,2,* Yafeng Wang,3 Mingqiang Kang,4 Weifeng Tang,4,5 Shuchen Chen,4 Haiyong Gu,6 Chao Liu,5 Yu Chen7,8 1Department of Immunology, School of Medicine, Jiangsu University, 2Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 3Department of Cardiology, The People’s Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, 4Department of Thoracic Surgery, Affiliated Union Hospital, Fujian Medical University, Fuzhou, 5Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 6Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 7Department of Medical Oncology, Fujian Provincial Cancer Hospital, Fujian Medical University Cancer Hospital, 8Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: The relationship between cyclin D1 (CCND1 rs9344 G>A polymorphism and colorectal cancer (CRC risk is still ambiguous. To obtain a precise estimation of the relationship, we performed an extensive meta-analysis based on the eligible studies. Crude odds ratios with their 95% confidence intervals were harnessed to determine the strength of correlation between CCND1 rs9344 G>A polymorphism and CRC risk under the allele, the homozygote, the dominant, and the recessive genetic models, respectively (28 studies with 5,784 CRC cases and 7,858 controls. Our results indicated evidence of the association between CCND1 rs9344 G>A polymorphism and the increased risk of CRC in four genetic models: A vs G, AA vs GG, AA+GA vs GG, and AA vs GA+GG. In a stratified analysis by cancer type of CRC, there was an increased risk of sporadic CRC found in three genetic models: A vs G, AA vs GG, and AA+GA vs GG. In a stratified analysis by ethnicity, there was an increased CRC risk found among Asians in allele comparison

  20. Structural basis of divergent cyclin-dependent kinase activation by Spy1/RINGO proteins

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Denise A.; Fifield, Bre-Anne; Marceau, Aimee H.; Tripathi, Sarvind; Porter, Lisa A.; Rubin, Seth M. (UCSC); (Windsor)

    2017-06-30

    Cyclin-dependent kinases (Cdks) are principal drivers of cell division and are an important therapeutic target to inhibit aberrant proliferation. Cdk enzymatic activity is tightly controlled through cyclin interactions, posttranslational modifications, and binding of inhibitors such as the p27 tumor suppressor protein. Spy1/RINGO (Spy1) proteins bind and activate Cdk but are resistant to canonical regulatory mechanisms that establish cell-cycle checkpoints. Cancer cells exploit Spy1 to stimulate proliferation through inappropriate activation of Cdks, yet the mechanism is unknown. We have determined crystal structures of the Cdk2-Spy1 and p27-Cdk2-Spy1 complexes that reveal how Spy1 activates Cdk. We find that Spy1 confers structural changes to Cdk2 that obviate the requirement of Cdk activation loop phosphorylation. Spy1 lacks the cyclin-binding site that mediates p27 and substrate affinity, explaining why Cdk-Spy1 is poorly inhibited by p27 and lacks specificity for substrates with cyclin-docking sites. We identify mutations in Spy1 that ablate its ability to activate Cdk2 and to proliferate cells. Our structural description of Spy1 provides important mechanistic insights that may be utilized for targeting upregulated Spy1 in cancer.

  1. Expression of p21 (Waf1/Cip1) in head and neck cancer in relation to proliferation, differentiation, p53 status and cyclin D1 expression

    NARCIS (Netherlands)

    Oijen, M.G.C.T. van; Tilanus, M.G.; Medema, R.H.; Slootweg, P.J.

    1998-01-01

    p21(Waf1/Cipl) is a critical downstream effector in the p53-dependent pathway of growth control and causes growth arrest through inhibition of cyclin-dependent kinases. In this study 67% of 43 head and neck squamous cell carcinoma (HNSCC) and 60% of 15 tumour-adjacent oral dysplasias overexpressed p

  2. Protein kinase D1 deficiency promotes differentiation in epidermal keratinocytes

    Science.gov (United States)

    Choudhary, Vivek; Olala, Lawrence O.; Kaddour-Djebbar, Ismail; Helwa, Inas; Bollag, Wendy B.

    2014-01-01

    Background Protein kinase D (PKD or PKD1) is a serine/threonine protein kinase that has been shown to play a role in a variety of cellular processes; however, the function of PKD1 in the skin has not been fully investigated. The balance between proliferation and differentiation processes in the predominant cells of the epidermis, the keratinocytes, is essential for normal skin function. Objective To investigate the effect of PKD1 deficiency on proliferation and differentiation of epidermal keratinocytes. Methods We utilized a floxed PKD1 mouse model such that infecting epidermal keratinocytes derived from these mice with an adenovirus expressing Cre-recombinase allowed us to determine the effect of PKD1 gene loss in vitro. Proliferation and differentiation were monitored using qRT-PCR, Western blot, transglutaminase activity assays, [3H]thymidine incorporation into DNA and cell cycle analysis. Results A significant decrease in PKD1 mRNA and protein levels was achieved in adenoviral Cre-recombinase-infected cells. Deficiency of PKD1 resulted in significant increases in the mRNA and protein expression of various differentiation markers such as loricrin, involucrin, and keratin 10 either basally and/or upon stimulation of differentiation. PKD1-deficient keratinocytes also showed an increase in transglutaminase expression and activity, indicating an anti-differentiative role of PKD1. Furthermore, the PKD1-deficient keratinocytes exhibited decreased proliferation. However, PKD1 loss had no effect on stem cell marker expression. Conclusions Cre-recombinase-mediated knockdown represents an additional approach demonstrating that PKD1 is an anti-differentiative, pro-proliferative signal in mouse keratinocytes. PMID:25450094

  3. [A cyclin A-like protein is localized in the cells of Physarum polycephalum and functions in the cell cycle].

    Science.gov (United States)

    Li, Xiao-Xue; Li, Gui-Ying; Xing, Miao

    2003-05-01

    The subcellular distribution of a Cyclin A-like protein in the cells of Physarum polycephalum and the function of the protein in the cell cycle were studied by immunoelectron microscope and anti-Cyclin A antibody blocking. After labeled with an anti-Cyclin A monoclonal antibody, the density of gold particles in the labeled specimens was much higher than that in the control, indicating that a Cyclin A-like protein existed in Physarum polycephalum. In the labeled specimen, the gold particles density of the nucleus was higher than that of cytoplasm, which was similar to that of the control, demonstrating that the Cyclin A-like protein was a nuclear protein. The gold particles density of the nuclei varied during the cell cycle. The highest appeared in S phase and the lowest came in metaphase and ana-telophase, which was close to that in the control. From S phase to metaphase, the gold particle densities dropped down gradually. The changes in the gold particle density showed the changes in the content of the Cyclin A-like protein. After treated with the anti-Cyclin A antibody in S phase and G2 phase respectively, the nuclei of Physarum polycephalum were arrested in the phases and the morphology of these nuclei became irregular. When treated with the anti-Cyclin A antibody in prophase, the nuclei appeared abnormal. These results suggested that the Cyclin A-like protein is important in cell cycle regulation of Physarum polycephalum, essentially in S/G2 and G2/M changes.

  4. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells.

    Science.gov (United States)

    Recchia, Anna Grazia; Musti, Anna Maria; Lanzino, Marilena; Panno, Maria Luisa; Turano, Ermanna; Zumpano, Rachele; Belfiore, Antonino; Andò, Sebastiano; Maggiolini, Marcello

    2009-03-01

    In androgen sensitive LNCaP prostate cancer cells, the proliferation induced by the epidermal growth factor (EGF) involves a cross-talk between the EGF receptor (EGFR) and the androgen receptor (AR). In lung cancer the role of the EGF-EGFR transduction pathway has been documented, whereas androgen activity has received less attention. Here we demonstrate that in LNCaP and A549 non-small cell lung cancer (NSCLC), AR and EGFR are required for either 5alpha-dihydrotestosterone (DHT) or EGF-stimulated cell growth. Only EGF activated ERK signaling and up-regulated early gene expression, while DHT triggered the expression of classical AR-responsive genes with the exception of the EGF-induced PSA transcript in A549 cells. DHT and EGF up-regulated cyclinD1 (CD1) at both mRNA and protein levels in A549 cells, while in LNCaP cells each mitogen increased only CD1 protein expression. In both cell contexts, CD1 up-regulation was prevented by selective inhibitors as well as by knock-down of either AR or EGFR and also inhibiting p38MAPK and the mammalian target of rapamycin (mTOR) pathways. Interestingly, p38MAPK and mTOR repression prevented the activation of the mTOR target ribosomal p70S6 kinase induced by DHT and EGF, indicating that p38MAPK acts as an upstream mTOR regulator. In addition, the proliferative effects promoted by both DHT and EGF in LNCaP and A549 cancer cells were no longer observed blocking either p38MAPK or mTOR activity. Hence, our data suggest that p38MAPK-dependent activation of the mTOR/CD1 pathway may represent a mechanism through which AR and EGFR cross-talk contributes to prostate and lung cancer progression.

  5. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism

    DEFF Research Database (Denmark)

    Szekeres, Ferenc; Chadt, Alexandra; Tom, Robby Z

    2012-01-01

    The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL...... be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice....... In conclusion, TBC1D1 plays a role in regulation of glucose metabolism in skeletal muscle. Moreover, functional TBC1D1 is required for AICAR- or contraction-induced metabolic responses, implicating a role in energy-sensing signals....

  6. 鱼藤素对斑马鱼胚胎中细胞周期蛋白D1基因下调的作用:整胚原位杂交检测%Deguelin down-regulates the expression of cyclin D1 gene in zebrafish embroys through the whole mount in situ hybridization

    Institute of Scientific and Technical Information of China (English)

    海洋; 吴新荣

    2015-01-01

    BACKGROUND:In the early development of zebrafish embryos, cels divide and proliferate rapidly, but low concentration of deguelin can delay the development of zebrafish embryos. OBJECTIVE:To observe the effect of different concentrations of deguelin on cyclin D1 gene expression in zebrafish embryos. METHODS:Though normal fertilization, zebrafish embryos that incubated to the 2-cel stage (about 0.75 hour after fertilization) and shield stage (6 hours after fertilization) were colected and put into 12-wel plates treated with 100, 200, 400 nmol/L deguelin at 28.5℃in an incubator til the shield period and 24 hours after fertilization, respectively. Simultaneously embroys treated with 1% dimethyl sulfoxide solution were as a control group, cultured in the same conditions. Cyclin D1 RNA probes were prepared for the whole mountin situhybridization, observing staining by an upright fluorescent microscope camera to detect the effect of deguelin on cyclin D1 expression in zebrafish embryos. RESULTS AND CONCLUSION:Deguelin showed significant negative regulation on the expression of cyclin D1 gene in zebrafish embryos. Cyclin D1 expressed in outsourcing cels in embryos of shield stage, and a significant reduction in the expression of cyclin D1 came up with the increasing concentrations of deguelin. In the 400 nmol/L deguelin treatment group, there was nearly no expression of cyclin D1. Cyclin D1 expressed in the brain, central nervous system, immature eye, somites, trunk, and tail of embryos at 24 hours after fertilization, and reduced significantly in the 100 nmol/L deguelin treatment group, especialy in the proliferative area. In the 200 and 400 nmol/L treatment groups, the embryonic development slowed down signficantly, and cyclin D1 gene mainly expressed in the dorsal ectoderm cels.%背景:斑马鱼胚胎发育早期,细胞分裂增殖快速,低浓度的鱼藤素可以延缓斑马鱼胚胎发育。目的:观察鱼藤素对斑马鱼胚胎中细胞周期蛋白D1

  7. Colocalization of β-catenin with Notch intracellular domain in colon cancer: a possible role of Notch1 signaling in activation of CyclinD1-mediated cell proliferation.

    Science.gov (United States)

    Gopalakrishnan, Natarajan; Saravanakumar, Marimuthu; Madankumar, Perumal; Thiyagu, Mani; Devaraj, Halagowder

    2014-11-01

    The Wnt and Notch1 signaling pathways play major roles in intestinal development and tumorigenesis. Sub-cellular localization of β-catenin has been implicated in colorectal carcinogenesis. However, the β-catenin and Notch intracellular domain (NICD) interaction has to be addressed. Immunohistochemistries of β-catenin, NICD, and dual immunofluorescence of β-catenin and NICD were analyzed in colorectal tissues and HT29 cell line. Moreover, real-time PCR analysis of CyclinD1, Hes1 and MUC2 was done in HT29 cells upon N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) treatment. Dual staining emphasized the strong interaction of β-catenin and NICD in adenoma and adenocarcinoma than in normal tissues. Hes1 transcript levels were decreased 1.5- and 7.1-fold in 12.5 and 25 µM DAPT-treated HT29 cells. CyclinD1 transcript levels decreased 1.2- and 1.6-fold, and MUC2 transcript level increased 4.3- and 7.5-fold in 12.5 and 25 µM DAPT-treated HT29 cells. The results of this study showed that the sub-cellular localization of β-catenin converges with NICD inducing proliferation through the activation of CyclinD1 and Hes1. Moreover, the inhibition of Notch1 signaling by DAPT leads to the arrest of cell proliferation and induces apoptosis leading to the upregulation of MUC2, a secretory cell lineage marker.

  8. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation

    Science.gov (United States)

    Chen, Bill B.; Glasser, Jennifer R.; Coon, Tiffany A.; Zou, Chunbin; Miller, Hannah L.; Fenton, Moon; McDyer, John F.; Boyiadzis, Michael

    2012-01-01

    Hematologic maligancies exhibit a growth advantage by up-regulation of components within the molecular apparatus involved in cell-cycle progression. The SCF (Skip-Cullin1-F-box protein) E3 ligase family provides homeostatic feedback control of cell division by mediating ubiquitination and degradation of cell-cycle proteins. By screening several previously undescribed E3 ligase components, we describe the behavior of a relatively new SCF subunit, termed FBXL2, that ubiquitinates and destabilizes cyclin D2 protein leading to G0 phase arrest and apoptosis in leukemic and B-lymphoblastoid cell lines. FBXL2 expression was strongly suppressed, and yet cyclin D2 protein levels were robustly expressed in acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) patient samples. Depletion of endogenous FBXL2 stabilized cyclin D2 levels, whereas ectopically expressed FBXL2 decreased cyclin D2 lifespan. FBXL2 did not bind a phosphodegron within its substrate, which is typical of other F-box proteins, but uniquely targeted a calmodulin-binding signature within cyclin D2 to facilitate its polyubiquitination. Calmodulin competes with the F-box protein for access to this motif where it bound and protected cyclin D2 from FBXL2. Calmodulin reversed FBXL2-induced G0 phase arrest and attenuated FBXL2-induced apoptosis of lymphoblastoid cells. These results suggest an antiproliferative effect of SCFFBXL2 in lymphoproliferative malignancies. PMID:22323446

  9. The Hematopoietic Transcription Factor AML1 (RUNX1) Is Negatively Regulated by the Cell Cycle Protein Cyclin D3

    Science.gov (United States)

    Peterson, Luke F.; Boyapati, Anita; Ranganathan, Velvizhi; Iwama, Atsushi; Tenen, Daniel G.; Tsai, Schickwann; Zhang, Dong-Er

    2005-01-01

    The family of cyclin D proteins plays a crucial role in the early events of the mammalian cell cycle. Recent studies have revealed the involvement of AML1 transactivation activity in promoting cell cycle progression through the induction of cyclin D proteins. This information in combination with our previous observation that a region in AML1 between amino acids 213 and 289 is important for its function led us to investigate prospective proteins associating with this region. We identified cyclin D3 by a yeast two-hybrid screen and detected AML1 interaction with the cyclin D family by both in vitro pull-down and in vivo coimmunoprecipitation assays. Furthermore, we demonstrate that cyclin D3 negatively regulates the transactivation activity of AML1 in a dose-dependent manner by competing with CBFβ for AML1 association, leading to a decreased binding affinity of AML1 for its target DNA sequence. AML1 and its fusion protein AML1-ETO have been shown to shorten and prolong the mammalian cell cycle, respectively. In addition, AML1 promotes myeloid cell differentiation. Thus, our observations suggest that the direct association of cyclin D3 with AML1 functions as a putative feedback mechanism to regulate cell cycle progression and differentiation. PMID:16287839

  10. 围手术期营养支持对结直肠癌患者细胞周期蛋白D1表达及复发转移的影响%Effects of perioperative total parenteral nutrition support on cyclin D1 expression, recurrence and metastasis of colorectal cancer cells

    Institute of Scientific and Technical Information of China (English)

    刘彦; 陶凯雄; 王国斌

    2010-01-01

    Objective To evaluate the effects of perioperative total parenteral nutrition on cyclin D1, recurrence and metastasis of colorectal cancer cells. Methods A total of 120 patients with colorectal carcinoma were randomly divided into two groups, namely group A (total parenteral nutrition,TPN,60 cases) and group B (non total parenteral nutrition, NTPN, 60 cases). In group A, the patients were given with TPN (including glucose, intralipid, amino acid, and vitamins, etc.) for 10 days perioperation (7 days preoperatively and 3 days postoperatively). In group B, the patients did not receive any nutrition support perioperative nutrition support. The samples were obtained by colonoscopy preoperatively or during operation. Apoptosis was detected by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) technique,expression of proliferating cell nuclear antigen (PCNA) by immunohistochemical staining, and the expression of cyclin D1 by in situ hybridization. The apoptotic index (AI), the proliferating index (PI), and the expression of cyclin D1 were calculated perioperatively and postoperatively. Results After perioperative nutrition support, the expression rates of cyclin D1, PI and AI in group A and group B were (35.23±5.12)% and (37.53±5.31)%, (7.21±2.56)% and (8.75±3.84)%, (53.45±7.74)% and (56.74±8.02)% respectively. There were no significant difference of PI, AI and the expression of cyclin D1 (all P>0.05) between two groups. The 3-year recurrent rates in two groups were 16.7% and 15.0%(P>0.05). Conclusion Perioperative TPN can not promote proliferation and apoptosis of carcinoma cells, and has no significant impact on the expression of cyclin D1, recurrence or metastasis of colorectal cancer.%目的 探讨围手术期营养支持对结直肠癌患者肿瘤细胞cyclin D1表达及复发转移的影响.方法 将120例结直肠癌患者按其是否行营养支持分为营养支持组(60例)和对照组(60例).围手术期营养支持方案:葡

  11. DNA methyltrans-ferase 3b regulating the Cyclin D1 gene expression by microRNA-145 in the human hepatocellular carcinoma cell line%肝癌细胞DNA甲基转移酶3b通过微小RNA-145调节细胞周期素D1基因表达的研究

    Institute of Scientific and Technical Information of China (English)

    王佳辰; 司亚卿; 秦贯军

    2014-01-01

    Objective To discuss the mechanism of the DNA methyltrans-ferase 3b (DNMT3b) regulating the Cyclin D1 gene expression in SMMC7721 cell line.Methods DNMT3b small interfering RNA (siRNA) was transfected into SMMC-7721 cells.Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression of the microRNA (miR)-145 and Cyclin D1 mRNA.MSP was used to detect whether the promoter of miR-145 was methylated.Results DNMT3b has been successfully suppressed in the culture cells transfected by miR-145 with a transfection efficiency over 90% ; The methylation status of miR-145 gene showed no significant differences between two groups (P >0.05) ; The expression of miR-145 was significantly higher than in control group (P < 0.01) and the change between two groups had no difference (P > 0.05).Conclusion DNMT3b can regulate the expression of Cyclin D1 by miR-145,affect the cell cycle and cause a large number of apoptosis of SMMC-7721 cells.%目的 探讨DNA甲基转移酶3b(DNMT3b)在人肝癌细胞株(SMMC7721)中调节细胞周期素(Cyclin) D1基因表达的机制.方法 用DNMT3b的小干扰RNA(siRNA)表达载体转染SMMC7721细胞抑制DNMT3b的表达;采用逆转录-聚合酶链反应(RT-PCR)检测微小RNA(miR)-145、Cyclin D1 mRNA表达的变化;用甲基化特异性PCR (MSP)技术检测miR-145基因启动子区甲基化状态的变化.结果 siRNA转染肝癌细胞的效率可达90%以上,DNMT3b成功被抑制;两组中miR-145基因启动子区甲基化水平的差异无统计学意义(P>0.05);实验组miR-145表达水平明显高于对照组(P<0.01),但Cylin D1 mRNA表达水平的差异无统计学意义(P>0.05).结论 DNMT3b可以通过miR-145调节Cyclin D1的表达,从而影响细胞周期,进而引起肝癌细胞的大量凋亡.

  12. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation.

    Science.gov (United States)

    Jiang, Hai; Wu, Jianchun; He, Chen; Yang, Wending; Li, Honglin

    2009-04-01

    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kappaB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdk1 activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chk1 and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  13. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    Institute of Scientific and Technical Information of China (English)

    Hai Jiang; Jianchun Wu; Chen He; Wending Yang; Honglin Li

    2009-01-01

    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdkl activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chkl and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  14. Effects of metformin alone or in combination with compound C on proliferation and cyclinD1 expression in mouse breast cancer 4T1 cells%二甲双胍单用或联合compound C对小鼠4T1乳腺癌细胞增殖和细胞周期蛋白D1表达的影响

    Institute of Scientific and Technical Information of China (English)

    杜洪泉; 黄丽莉; 贾爱华; 蒋群龙; 张光珍; 白洁

    2014-01-01

    metformin concentration ( F=54.41 , 61.69 , 75.84 , all P=0.000 ) , but showed no significant difference ( F=1.87 , P=0.190 ) between 10 mmol/L metformin plus compound C group and control group . Conclusions Metformin can inhibit the cell proliferation of mouse breast cancer 4T1 cells, but compound C can antagonize the inhibition of metformin .Metformin can decrease cyclin D 1 protein expression by activating AMPK pathway in mouse breast cancer 4T1 cells.

  15. Chronobiologic contrast of expression of p53, p16, and cyclin D1 in hepatocarcinoma cells%肝癌细胞p53、p16及细胞周期蛋白D1表达的时间生物学对比

    Institute of Scientific and Technical Information of China (English)

    余万霰; 张永虹; 蔡勇; 周晓军

    2002-01-01

    目的对比肝癌细胞中p53、p16和细胞周期蛋白D1(Cyclin D1)表达强度的时段特征.方法按年周期3个时段采集肝癌组织标本,每1个时段20例,均为肝细胞型肝癌及Edmondson-Steinet分级控制在Ⅱ~Ⅲ级内,用免疫组织化学S-P法进行p53、p16和Cyclin D1蛋白表达实验,表达强度按等级数据用秩和检验方法进行时段对比.结果p16表达出现时段差异有显著性(H=10.334,P<0.05),即4~7月份为表达高峰期.结论肝细胞癌变及其生长的基因调控的时间生物学机制,p16可能起到重要作用.

  16. Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2

    Directory of Open Access Journals (Sweden)

    Gu Jenny

    2007-02-01

    Full Text Available Abstract Background The mechanisms underlying protein function and associated conformational change are dominated by a series of local entropy fluctuations affecting the global structure yet are mediated by only a few key residues. Transitional Dynamic Analysis (TDA is a new method to detect these changes in local protein flexibility between different conformations arising from, for example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET uses TDA to identify important residue contact changes that have a large impact on global fluctuation. We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2, a system with crystal structures of this protein in multiple functionally relevant conformations and experimental data revealing the importance of local fluctuation changes for protein function. Results TDA and PIVET successfully identified select residues that are responsible for conformation specific regional fluctuation in the activation cycle of Cyclin Dependent Kinase 2 (CDK2. The detected local changes in protein flexibility have been experimentally confirmed to be essential for the regulation and function of the kinase. The methodologies also highlighted possible errors in previous molecular dynamic simulations that need to be resolved in order to understand this key player in cell cycle regulation. Finally, the use of entropy compensation as a possible allosteric mechanism for protein function is reported for CDK2. Conclusion The methodologies embodied in TDA and PIVET provide a quick approach to identify local fluctuation change important for protein function and residue contacts that contributes to these changes. Further, these approaches can be used to check for possible errors in protein dynamic simulations and have the potential to facilitate a better understanding of the contribution of entropy to protein allostery and function.

  17. Parathyroid hormone-related protein enhances human ß-cell proliferation and function with associated induction of cyclin-dependent kinase 2 and cyclin E expression.

    Science.gov (United States)

    Guthalu Kondegowda, Nagesha; Joshi-Gokhale, Sheela; Harb, George; Williams, Katoura; Zhang, Xiao Ying; Takane, Karen K; Zhang, Pili; Scott, Donald K; Stewart, Andrew F; Garcia-Ocaña, Adolfo; Vasavada, Rupangi C

    2010-12-01

    Inducing human β-cell growth while enhancing function is a major goal in the treatment of diabetes. Parathyroid hormone-related protein (PTHrP) enhances rodent β-cell growth and function through the parathyroid hormone-1 receptor (PTH1R). Based on this, we hypothesized that PTH1R is expressed in human β-cells and that PTHrP has the potential to enhance human β-cell proliferation and/or function. PTH1R expression, β-cell proliferation, glucose-stimulated insulin secretion (GSIS), and expression of differentiation and cell-cycle genes were analyzed in human islets transduced with adenoviral PTHrP constructs or treated with PTHrP peptides. The effect of overexpression of late G1/S cell cycle molecules was also assessed on human β-cell proliferation. We found that human β-cells express PTH1R. More importantly, overexpression of PTHrP causes a significant approximately threefold increase in human β-cell proliferation. Furthermore, the amino terminus PTHrP(1-36) peptide is sufficient to increase replication as well as expression of the late G1/S cell-cycle proteins cyclin E and cyclin-dependent kinase 2 (cdk2) in human islets. Notably, PTHrP(1-36) also enhances GSIS. Finally, overexpression of cyclin E alone, but not cdk2, augments human β-cell proliferation, and when both molecules are expressed simultaneously there is a further marked synergistic increase in replication. PTHrP(1-36) peptide enhances human β-cell proliferation as well as function, with associated upregulation of two specific cell-cycle activators that together can induce human β-cell proliferation several fold. The future therapeutic potential of PTHrP(1-36) for the treatment of diabetes is especially relevant given the complementary therapeutic efficacy of PTHrP(1-36) in postmenopausal osteoporosis.

  18. Adenocarcinoma of the esophagogastric junction: relationship between clinicopathological data and p53, cyclin D1 and Bcl-2 immunoexpressions Adenocarcinoma da junção esôfago-gástrica: relação entre os dados cllnipatológicos e a imunoexpressão de p53, ciclina D1 e Bcl-2

    Directory of Open Access Journals (Sweden)

    Dárcio Matenhauer Lehrbach

    2009-12-01

    Full Text Available CONTEXT: Esophagogastric junction adenocarcinoma has an aggressive behavior, and TNM (UICC staging is not always accurate enough to categorize patient's outcome. OBJECTIVES: To evaluated p53, cyclin D1 and Bcl-2 immunoexpressions in esophagogastric junction adenocarcinoma patients, without Barrett's esophagus, and to compared to clinicopathological characteristics and survival rate. METHODS: Tissue sections from 75 esophagogastric junction adenocarcinomas resected from 1991 to 2003 were analyzed by immunohistochemistry for p53, cyclin D1 and Bcl-2 using streptavidin-biotin-peroxidase method. The mean follow-up time was 60 months SD = 61.5 (varying from 4 to 273 months. RESULTS: Fifty (66.7% of the tumors were intestinal type and 25 (33.3% were diffuse. Vascular, lymph node and perineural infiltration were verified in 16%, 80% and 68% of the patients, respectively. The patients were distributed according to the TNM staging in IA in 4 (5.3%, IB in 10 (13.3%, II in 15 (20%, IIA in 15 (20%, IIIB in 15 (20% and IV in 16 (21.3%. Immunohistochemical analysis was positive for p53, cyclin D1 and bcl-2 in 68%, 18.7% and 100%, respectively. There was no association between immunoexpression and vascular and/or perineural invasions, clinicopathological characteristics and patients' survival rate. CONCLUSION: In this selected population, there was no association between the immunomarkers, p53, cyclin D1 and bcl-2 and clinicopathological data and/or overall survival.CONTEXTO: O adenocarcinoma da junção esôfago-gástrica tem um comportamento agressivo e o estádio TNM não é sempre suficiente para categorizar o paciente de acordo com a evolução do mesmo. OBJETIVO: Avaliar a imunoexpressão do p53, ciclina D1 e Bcl-2 em pacientes com adenocarcinoma da junção esôfago-gástrica sem esôfago de Barrett e comparar com as características clínicas e sobrevida. MÉTODOS: Cortes histológicos de 75 adenocarcinomas da esôfago-gástrica ressecados de 1991 a

  19. A tumor suppressor C53 protein antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    OpenAIRE

    Jiang, Hai; Wu, Jianchun; He, Chen; Yang, Wending; Li, Honglin

    2009-01-01

    Cyclin dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint (1). More recently, Wang et al (2007) found that C53/LZAP may function as a tumor suppressor via inhibiting NF-κB signaling (2). We report here identification of C53 protein as a novel...

  20. PAX2 and cyclin D1 expression in the distinction between cervical microglandular hyperplasia and endometrial microglandular-like carcinoma: a comparison with p16, vimentin, and Ki67.

    Science.gov (United States)

    Stewart, Colin J R; Crook, Maxine L

    2015-01-01

    Microglandular hyperplasia (MGH) is a common endocervical alteration that in most cases presents no diagnostic difficulty. However, MGH rarely shows atypical features that may mimic endocervical neoplasia, while conversely endometrial carcinomas can show deceptively bland MGH-like appearances. It has been suggested that immunohistochemical analysis is useful in this context, but relatively few studies have specifically investigated microglandular pattern lesions and the results have been conflicting. In this study, we have examined a series of MGH (n=24), atypical MGH (n=2), and endometrial microglandular-like carcinomas (EMC, n=8), with a panel of antibodies including PAX2, cyclin D1, p16, vimentin, and Ki67. Loss of PAX2 staining was identified only in EMC but had relatively poor sensitivity for a malignant diagnosis (3/8 cases). Seven EMCs showed p16 expression and staining was diffuse (≥50% cells) in 6 cases, whereas all conventional MGH lesions were negative. However, 1 case of atypical MGH was also p16-positive. Cyclin D1, vimentin, and Ki67 did not reliably distinguish the benign and malignant microglandular lesions because of considerable overlap in staining patterns. In summary, none of the antibodies examined proved completely sensitive and specific, but a p16-positive/PAX2-negative phenotype favored a diagnosis of EMC. Pathologists should be aware that EMC, like some other types of endometrial carcinoma, are commonly p16-positive to avoid misinterpretation as a primary endocervical neoplasm. In practice, correlation of the histologic, immunohistologic, and clinical findings is necessary for accurate interpretation of microgandular-pattern lesions, particularly in small biopsy samples.

  1. The prognostic implication of the expression of EGFR, p53, cyclin D1, Bcl-2 and p16 in primary locally advanced oral squamous cell carcinoma cases: a tissue microarray study.

    Science.gov (United States)

    Solomon, Monica Charlotte; Vidyasagar, M S; Fernandes, Donald; Guddattu, Vasudev; Mathew, Mary; Shergill, Ankur Kaur; Carnelio, Sunitha; Chandrashekar, Chetana

    2016-12-01

    Oral squamous cell carcinomas comprise a heterogeneous tumor cell population with varied molecular characteristics, which makes prognostication of these tumors a complex and challenging issue. Thus, molecular profiling of these tumors is advantageous for an accurate prognostication and treatment planning. This is a retrospective study on a cohort of primary locally advanced oral squamous cell carcinomas (n = 178) of an Indian rural population. The expression of EGFR, p53, cyclin D1, Bcl-2 and p16 in a cohort of primary locally advanced oral squamous cell carcinomas was evaluated. A potential biomarker that can predict the tumor response to treatment was identified. Formalin-fixed paraffin-embedded tumor blocks of (n = 178) of histopathologically diagnosed cases of locally advanced oral squamous cell carcinomas were selected. Tissue microarray blocks were constructed with 2 cores of 2 mm diameter from each tumor block. Four-micron-thick sections were cut from these tissue microarray blocks. These tissue microarray sections were immunohistochemically stained for EGFR, p53, Bcl-2, cyclin D1 and p16. In this cohort, EGFR was the most frequently expressed 150/178 (84%) biomarker of the cases. Kaplan-Meier analysis showed a significant association (p = 0.038) between expression of p53 and a poor prognosis. A Poisson regression analysis showed that tumors that expressed p53 had a two times greater chance of recurrence (unadjusted IRR-95% CI 2.08 (1.03, 4.5), adjusted IRR-2.29 (1.08, 4.8) compared with the tumors that did not express this biomarker. Molecular profiling of oral squamous cell carcinomas will enable us to categorize our patients into more realistic risk groups. With biologically guided tumor characterization, personalized treatment protocols can be designed for individual patients, which will improve the quality of life of these patients.

  2. Epidermal Growth Factor Induces Proliferation of Hair Follicle-Derived Mesenchymal Stem Cells Through Epidermal Growth Factor Receptor-Mediated Activation of ERK and AKT Signaling Pathways Associated with Upregulation of Cyclin D1 and Downregulation of p16.

    Science.gov (United States)

    Bai, Tingting; Liu, Feilin; Zou, Fei; Zhao, Guifang; Jiang, Yixu; Liu, Li; Shi, Jiahong; Hao, Deshun; Zhang, Qi; Zheng, Tong; Zhang, Yingyao; Liu, Mingsheng; Li, Shilun; Qi, Liangchen; Liu, Jin Yu

    2017-01-15

    The maintenance of highly proliferative capacity and full differentiation potential is a necessary step in the initiation of stem cell-based regenerative medicine. Our recent study showed that epidermal growth factor (EGF) significantly enhanced hair follicle-derived mesenchymal stem cell (HF-MSC) proliferation while maintaining the multilineage differentiation potentials. However, the underlying mechanism remains unclear. Herein, we investigated the role of EGF in HF-MSC proliferation. HF-MSCs were isolated and cultured with or without EGF. Immunofluorescence staining, flow cytometry, cytochemistry, and western blotting were used to assess proliferation, cell signaling pathways related to the EGF receptor (EGFR), and cell cycle progression. HF-MSCs exhibited surface markers of mesenchymal stem cells and displayed trilineage differentiation potentials toward adipocytes, chondrocytes, and osteoblasts. EGF significantly increased HF-MSC proliferation as well as EGFR, ERK1/2, and AKT phosphorylation (p-EGFR, p-ERK1/2, and p-AKT) in a time- and dose-dependent manner, but not STAT3 phosphorylation. EGFR inhibitor (AG1478), PI3K-AKT inhibitor (LY294002), ERK inhibitor (U0126), and STAT3 inhibitor (STA-21) significantly blocked EGF-induced HF-MSC proliferation. Moreover, AG1478, LY294002, and U0126 significantly decreased p-EGFR, p-AKT, and p-ERK1/2 expression. EGF shifted HF-MSCs at the G1 phase to the S and G2 phase. Concomitantly, cyclinD1, phosphorylated Rb, and E2F1expression increased, while that of p16 decreased. In conclusion, EGF induces HF-MSC proliferation through the EGFR/ERK and AKT pathways, but not through STAT-3. The G1/S transition was stimulated by upregulation of cyclinD1 and inhibition of p16 expression.

  3. Mesenchymal stem cells promote liver regeneration and prolong survival in small-for-size liver grafts: involvement of C-Jun N-terminal kinase, cyclin D1, and NF-κB.

    Directory of Open Access Journals (Sweden)

    Weijie Wang

    Full Text Available BACKGROUND: The therapeutic potential of mesenchymal stem cells (MSCs has been highlighted recently for treatment of acute or chronic liver injury, by possibly differentiating into hepatocyte-like cells, reducing inflammation, and enhancing tissue repair. Despite recent progress, exact mechanisms of action are not clearly elucidated. In this study, we attempted to explore whether and how MSCs protected hepatocytes and stimulated allograft regeneration in small-for-size liver transplantation (SFSLT. METHODS: SFSLT model was established with a 30% partial liver transplantation (30PLT in rats. The differentiation potential and characteristics of bone marrow derived MSCs were explored in vitro. MSCs were infused transvenously immediately after graft implantation in therapy group. Expressions of apoptosis-, inflammatory-, anti-inflammatory-, and growth factor-related genes were measured by RT-PCR, activities of transcription factors AP-1 and NF-κB were analyzed by EMSA, and proliferative responses of the hepatic graft were evaluated by immunohistochemistry and western blot. RESULTS: MSCs were successfully induced into hepatocyte-like cells, osteoblasts and adipocytes in vitro. MSCs therapy could not only alleviate ischemia reperfusion injury and acute inflammation to promote liver regeneration, but also profoundly improve one week survival rate. It markedly up-regulated the mRNA expressions of HGF, Bcl-2, Bcl-XL, IL-6, IL-10, IP-10, and CXCR2, however, down-regulated TNF-α. Increased activities of AP-1 and NF-κB, as well as elevated expressions of p-c-Jun, cyclin D1, and proliferating cell nuclear antigen (PCNA, were also found in MSCs therapy group. CONCLUSION: These data suggest that MSCs therapy promotes hepatocyte proliferation and prolongs survival in SFSLT by reducing ischemia reperfusion injury and acute inflammation, and sustaining early increased expressions of c-Jun N-terminal Kinase, Cyclin D1, and NF-κB.

  4. Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion.

    Science.gov (United States)

    Malhi, Moolchand; Gui, Hongbing; Yao, Lei; Aschenbach, Jörg R; Gäbel, Gotthold; Shen, Zanming

    2013-01-01

    We tested the hypothesis that the proliferative effects of intraruminal butyrate infusions on the ruminal epithelium are linked to upregulation in cyclin D1 (CCND1), the cyclin-dependent kinase 4 (CDK4), and their possible association with enhanced absorption of short-chain fatty acids (SCFA). Goats (n=23) in 2 experiments (Exp.) were fed 200 g/d concentrate and hay ad libitum. In Exp. 1, goats received an intraruminal infusion of sodium butyrate at 0.3 (group B, n=8) or 0 (group C, n=7) g/kg of body weight (BW) per day before morning feeding for 28 d and were slaughtered 8 h after the butyrate infusion. In Exp. 2, goats (n=8) received butyrate infusion and feeding as in Exp. 1. On d 28, epithelial samples were biopsied from the antrium ruminis at 0, 3, and 7 h after the last butyrate infusion. In Exp. 1, the ruminal molar proportional concentration of butyrate increased in group B by about 110% after butyrate infusion and remained elevated for 1.5 h; thereafter, it gradually returned to the baseline (preinfusion) level. In group C, the molar proportional concentration of butyrate was unchanged over the time points. The length and width of papillae increased in B compared with C; this was associated with increased numbers of cells and cell layers in the epithelial strata and an increase in the surface area of 82%. The mRNA expression of CCND1 increased transiently at 3 h but returned to the preinfusion level at 7 h following butyrate infusion in Exp. 2. However, it did not differ between B and C in Exp. 1, in which the ruminal epithelium was sampled at 8 h after butyrate infusion. The mRNA expression of the monocarboxylate transporter MCT4, but not MCT1, was stably upregulated in B compared with C. The estimated absorption rate of total SCFA (%/h) increased in B compared with C. We conclude that transient increases in cyclin D1 transcription contribute to butyrate-induced papillae growth and subsequently to the increased absorption of SCFA in the ruminal epithelium

  5. Limited prognostic value of tissue protein expression levels of cyclin E in Danish ovarian cancer patients

    DEFF Research Database (Denmark)

    Heeran, Mel C; Høgdall, Claus K; Kjaer, Susanne K

    2012-01-01

    The primary objective of this study was to assess the expression of cyclin E in tumour tissues from 661 patients with epithelial ovarian tumours. The second was to evaluate whether cyclin E tissue expression levels correlate with clinico-pathological parameters and prognosis of the disease. Using...... tissue arrays (TA), we analysed the cyclin E expression levels in tissues from 168 women with borderline ovarian tumours (BOT) (147 stage I, 4 stage II, 17 stage III) and 493 Ovarian cancer (OC) patients (127 stage I, 45 stage II, 276 stage III, 45 stage IV). Using a 10% cut-off level for cyclin E......-off value showed that cyclin E had no independent prognostic value. In conclusion, we found cyclin E expression in tumour tissue to be of limited prognostic value to Danish OC patients....

  6. Parathyroid Hormone–Related Protein Enhances Human β-Cell Proliferation and Function With Associated Induction of Cyclin-Dependent Kinase 2 and Cyclin E Expression

    Science.gov (United States)

    Guthalu Kondegowda, Nagesha; Joshi-Gokhale, Sheela; Harb, George; Williams, Katoura; Zhang, Xiao Ying; Takane, Karen K.; Zhang, Pili; Scott, Donald K.; Stewart, Andrew F.; Garcia-Ocaña, Adolfo; Vasavada, Rupangi C.

    2010-01-01

    OBJECTIVE Inducing human β-cell growth while enhancing function is a major goal in the treatment of diabetes. Parathyroid hormone–related protein (PTHrP) enhances rodent β-cell growth and function through the parathyroid hormone-1 receptor (PTH1R). Based on this, we hypothesized that PTH1R is expressed in human β-cells and that PTHrP has the potential to enhance human β-cell proliferation and/or function. RESEARCH DESIGN AND METHODS PTH1R expression, β-cell proliferation, glucose-stimulated insulin secretion (GSIS), and expression of differentiation and cell-cycle genes were analyzed in human islets transduced with adenoviral PTHrP constructs or treated with PTHrP peptides. The effect of overexpression of late G1/S cell cycle molecules was also assessed on human β-cell proliferation. RESULTS We found that human β-cells express PTH1R. More importantly, overexpression of PTHrP causes a significant approximately threefold increase in human β-cell proliferation. Furthermore, the amino terminus PTHrP(1-36) peptide is sufficient to increase replication as well as expression of the late G1/S cell-cycle proteins cyclin E and cyclin-dependent kinase 2 (cdk2) in human islets. Notably, PTHrP(1-36) also enhances GSIS. Finally, overexpression of cyclin E alone, but not cdk2, augments human β-cell proliferation, and when both molecules are expressed simultaneously there is a further marked synergistic increase in replication. CONCLUSIONS PTHrP(1-36) peptide enhances human β-cell proliferation as well as function, with associated upregulation of two specific cell-cycle activators that together can induce human β-cell proliferation several fold. The future therapeutic potential of PTHrP(1-36) for the treatment of diabetes is especially relevant given the complementary therapeutic efficacy of PTHrP(1-36) in postmenopausal osteoporosis. PMID:20876711

  7. Role of the mTORC1 Complex in Satellite Cell Activation by RNA-Induced Mitochondrial Restoration: Dual Control of Cyclin D1 through MicroRNAs

    OpenAIRE

    Jash, Sukanta; Dhar, Gunjan; Ghosh, Utpalendu; Adhya, Samit

    2014-01-01

    During myogenesis, satellite stem cells (SCs) are induced to proliferate and differentiate to myogenic precursors. The role of energy sensors such as the AMP-activated protein kinase (AMPK) and the mammalian Target of Rapamycin (mTOR) in SC activation is unclear. We previously observed that upregulation of ATP through RNA-mediated mitochondrial restoration (MR) accelerates SC activation following skeletal muscle injury. We show here that during regeneration, the AMPK-CRTC2-CREB and Raptor-mTO...

  8. Regulation of the retinoblastoma protein-related p107 by G1 cyclin complexes

    NARCIS (Netherlands)

    Beijersbergen, R.L.; Carlée, L.; Kerkhoven, R.M.; Bernards, R.A.

    1995-01-01

    The orderly progression through the cell cycle is mediated by the sequential activation of several cyclin/cyclin-dependent kinase (cdk) complexes. These kinases phosphorylate a number of cellular substrates, among which is the product of the retinoblastoma gene, pRb. Phosphorylation of pRb in late G

  9. Lin-28 homologue A (LIN28A) promotes cell cycle progression via regulation of cyclin-dependent kinase 2 (CDK2), cyclin D1 (CCND1), and cell division cycle 25 homolog A (CDC25A) expression in cancer.

    Science.gov (United States)

    Li, Ning; Zhong, Xiaomin; Lin, Xiaojuan; Guo, Jinyi; Zou, Lian; Tanyi, Janos L; Shao, Zhongjun; Liang, Shun; Wang, Li-Ping; Hwang, Wei-Ting; Katsaros, Dionyssios; Montone, Kathleen; Zhao, Xia; Zhang, Lin

    2012-05-18

    The RNA-binding protein LIN28A regulates the translation and stability of a large number of mRNAs as well as the biogenesis of certain miRNAs in embryonic stem cells and developing tissues. Increasing evidence indicates that LIN28A functions as an oncogene promoting cancer cell growth. However, little is known about its molecular mechanism of cell cycle regulation in cancer. Using tissue microarrays, we found that strong LIN28A expression was reactivated in about 10% (7.1-17.1%) of epithelial tumors (six tumor types, n = 369). Both in vitro and in vivo experiments demonstrate that LIN28A promotes cell cycle progression in cancer cells. Genome-wide RNA-IP-chip experiments indicate that LIN28A binds to thousands of mRNAs, including a large group of cell cycle regulatory mRNAs in cancer and embryonic stem cells. Furthermore, the ability of LIN28A to stimulate translation of LIN28A-binding mRNAs, such as CDK2, was validated in vitro and in vivo. Finally, using a combined gene expression microarray and bioinformatics approach, we found that LIN28A also regulates CCND1 and CDC25A expression and that this is mediated by inhibiting the biogenesis of let-7 miRNA. Taken together, these results demonstrate that LIN28A is reactivated in about 10% of epithelial tumors and promotes cell cycle progression by regulation of both mRNA translation (let-7-independent) and miRNA biogenesis (let-7-dependent).

  10. Lin-28 Homologue A (LIN28A) Promotes Cell Cycle Progression via Regulation of Cyclin-dependent Kinase 2 (CDK2), Cyclin D1 (CCND1), and Cell Division Cycle 25 Homolog A (CDC25A) Expression in Cancer*

    Science.gov (United States)

    Li, Ning; Zhong, Xiaomin; Lin, Xiaojuan; Guo, Jinyi; Zou, Lian; Tanyi, Janos L.; Shao, Zhongjun; Liang, Shun; Wang, Li-Ping; Hwang, Wei-Ting; Katsaros, Dionyssios; Montone, Kathleen; Zhao, Xia; Zhang, Lin

    2012-01-01

    The RNA-binding protein LIN28A regulates the translation and stability of a large number of mRNAs as well as the biogenesis of certain miRNAs in embryonic stem cells and developing tissues. Increasing evidence indicates that LIN28A functions as an oncogene promoting cancer cell growth. However, little is known about its molecular mechanism of cell cycle regulation in cancer. Using tissue microarrays, we found that strong LIN28A expression was reactivated in about 10% (7.1–17.1%) of epithelial tumors (six tumor types, n = 369). Both in vitro and in vivo experiments demonstrate that LIN28A promotes cell cycle progression in cancer cells. Genome-wide RNA-IP-chip experiments indicate that LIN28A binds to thousands of mRNAs, including a large group of cell cycle regulatory mRNAs in cancer and embryonic stem cells. Furthermore, the ability of LIN28A to stimulate translation of LIN28A-binding mRNAs, such as CDK2, was validated in vitro and in vivo. Finally, using a combined gene expression microarray and bioinformatics approach, we found that LIN28A also regulates CCND1 and CDC25A expression and that this is mediated by inhibiting the biogenesis of let-7 miRNA. Taken together, these results demonstrate that LIN28A is reactivated in about 10% of epithelial tumors and promotes cell cycle progression by regulation of both mRNA translation (let-7-independent) and miRNA biogenesis (let-7-dependent). PMID:22467868

  11. Cyclin-dependent kinase 5, a node protein in diminished tauopathy: a systems biology approach

    Directory of Open Access Journals (Sweden)

    John Fredy Castro-Alvarez

    2014-09-01

    Full Text Available Alzheimer's disease (AD is the most common cause of dementia worldwide. One of the main pathological changes that occurs in AD is the intracellular accumulation of hyperphosphorylated Tau protein in neurons. Cyclin-dependent kinase 5 (CDK5 is one of the major kinases involved in Tau phosphorylation, directly phosphorylating various residues and simultaneously regulating various substrates such as kinases and phosphatases that influence Tau phosphorylation in a synergistic and antagonistic way. It remains unknown how the interaction between CDK5 and its substrates promotes Tau phosphorylation, and systemic approaches are needed that allow an analysis of all the proteins involved. In this review, the role of the CDK5 signaling pathway in Tau hyperphosphorylation is described, an in silico model of the CDK5 signaling pathway is presented. The relationship among these theoretical and computational models shows that the regulation of Tau phosphorylation by PP2A and GSK3β is essential under basal conditions and also describes the leading role of CDK5 under excitotoxic conditions, where silencing of CDK5 can generate changes in these enzymes to reverse a pathological condition that simulates AD.

  12. Chromosomal and Extrachromosomal Instability of the cyclin D2 Gene is Induced by Myc Overexpression

    Directory of Open Access Journals (Sweden)

    Sabine Mai

    1999-08-01

    Full Text Available We examined the expression of cyclins D1, D2, D3, and E in mouse B-lymphocytic tumors. Cyclin D2 mRNA was consistently elevated in plasmacytomas, which characteristically contain Myc-activating chromosome translocations and constitutive c-Myc mRNA and protein expression. We examined the nature of cyclin D2 overexpression in plasmacytomas and other tumors. Human and mouse tumor cell lines that exhibited c-Myc dysregulation displayed instability of the cyclin D2 gene, detected by Southern blot, fluorescent in situ hybridization (FISH, and in extrachromosomal preparations (Hirt extracts. Cyclin D2 instability was not seen in cells with low levels of c-Myc protein. To unequivocally demonstrate a role of c-Myc in the instability of the cyclin D2 gene, a Myc-estrogen receptor chimera was activated in two mouse cell lines. After 3 to 4 days of Myc-ERTm activation, instability at the cyclin D2 locus was seen in the form of extrachromosomal elements, determined by FISH of metaphase and interphase nuclei and of purified extrachromosomal elements. At the same time points, Northern and Western blot analyses detected increased cyclin D2 mRNA and protein levels. These data suggest that Myc-induced genomic instability may contribute to neoplasia by increasing the levels of a cell cycle—regulating protein, cyclin D2, via intrachromosomal amplification of its gene or generation of extrachromosomal copies.

  13. Automated Quantitative Analysis of p53, Cyclin D1, Ki67 and pERK Expression in Breast Carcinoma Does Not Differ from Expert Pathologist Scoring and Correlates with Clinico-Pathological Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Cass, Jamaica D. [Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston K7L 3N6 (Canada); Varma, Sonal [Department of Pathology and Molecular Medicine, Queen’s University, Kingston K7L 3N6 (Canada); Day, Andrew G. [Kingston General Hospital, Kingston K7L 2V7 (Canada); Sangrar, Waheed [Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston K7L 3N6 (Canada); Rajput, Ashish B. [Department of Pathology and Molecular Medicine, Queen’s University, Kingston K7L 3N6 (Canada); Raptis, Leda H.; Squire, Jeremy [Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston K7L 3N6 (Canada); Madarnas, Yolanda [Department of Oncology, Queen’s University, Kingston K7L 3N6 (Canada); SenGupta, Sandip K. [Department of Pathology and Molecular Medicine, Queen’s University, Kingston K7L 3N6 (Canada); Elliott, Bruce E., E-mail: elliottb@queensu.ca [Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston K7L 3N6 (Canada); Department of Pathology and Molecular Medicine, Queen’s University, Kingston K7L 3N6 (Canada)

    2012-07-18

    There is critical need for improved biomarker assessment platforms which integrate traditional pathological parameters (TNM stage, grade and ER/PR/HER2 status) with molecular profiling, to better define prognostic subgroups or systemic treatment response. One roadblock is the lack of semi-quantitative methods which reliably measure biomarker expression. Our study assesses reliability of automated immunohistochemistry (IHC) scoring compared to manual scoring of five selected biomarkers in a tissue microarray (TMA) of 63 human breast cancer cases, and correlates these markers with clinico-pathological data. TMA slides were scanned into an Ariol Imaging System, and histologic (H) scores (% positive tumor area x staining intensity 0–3) were calculated using trained algorithms. H scores for all five biomarkers concurred with pathologists’ scores, based on Pearson correlation coefficients (0.80–0.90) for continuous data and Kappa statistics (0.55–0.92) for positive vs. negative stain. Using continuous data, significant association of pERK expression with absence of LVI (p = 0.005) and lymph node negativity (p = 0.002) was observed. p53 over-expression, characteristic of dysfunctional p53 in cancer, and Ki67 were associated with high grade (p = 0.032 and 0.0007, respectively). Cyclin D1 correlated inversely with ER/PR/HER2-ve (triple negative) tumors (p = 0.0002). Thus automated quantitation of immunostaining concurs with pathologists’ scoring, and provides meaningful associations with clinico-pathological data.

  14. Amplification and protein overexpression of cyclin D1 : Predictor of occult nodal metastasis in early oral cancer

    NARCIS (Netherlands)

    Noorlag, Rob; Boeve, Koos; Witjes, Max J. H.; Koole, Ronald; Peeters, Ton L. M.; Schuuring, Ed; Willems, Stefan M.; van Es, Robert J. J.

    2017-01-01

    Background. Accurate nodal staging is pivotal for treatment planning in early (stage I-II) oral cancer. Unfortunately, current imaging modalities lack sensitivity to detect occult nodal metastases. Chromosomal region 11q13, including genes CCND1, Fas-associated death domain (FADD), and CTTN, is ofte

  15. The HTLV-1 Tax protein binding domain of cyclin-dependent kinase 4 (CDK4 includes the regulatory PSTAIRE helix

    Directory of Open Access Journals (Sweden)

    Grassmann Ralph

    2005-09-01

    Full Text Available Abstract Background The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1 is leukemogenic in transgenic mice and induces permanent T-cell growth in vitro. It is found in active CDK holoenzyme complexes from adult T-cell leukemia-derived cultures and stimulates the G1- to-S phase transition by activating the cyclin-dependent kinase (CDK CDK4. The Tax protein directly and specifically interacts with CDK4 and cyclin D2 and binding is required for enhanced CDK4 kinase activity. The protein-protein contact between Tax and the components of the cyclin D/CDK complexes increases the association of CDK4 and its positive regulatory subunit cyclin D and renders the complex resistant to p21CIP inhibition. Tax mutants affecting the N-terminus cannot bind cyclin D and CDK4. Results To analyze, whether the N-terminus of Tax is capable of CDK4-binding, in vitro binding -, pull down -, and mammalian two-hybrid analyses were performed. These experiments revealed that a segment of 40 amino acids is sufficient to interact with CDK4 and cyclin D2. To define a Tax-binding domain and analyze how Tax influences the kinase activity, a series of CDK4 deletion mutants was tested. Different assays revealed two regions which upon deletion consistently result in reduced binding activity. These were isolated and subjected to mammalian two-hybrid analysis to test their potential to interact with the Tax N-terminus. These experiments concurrently revealed binding at the N- and C-terminus of CDK4. The N-terminal segment contains the PSTAIRE helix, which is known to control the access of substrate to the active cleft of CDK4 and thus the kinase activity. Conclusion Since the N- and C-terminus of CDK4 are neighboring in the predicted three-dimensional protein structure, it is conceivable that they comprise a single binding domain, which interacts with the Tax N-terminus.

  16. Cip/Kip cyclin-dependent protein kinase inhibitors and the road to polyploidy

    Directory of Open Access Journals (Sweden)

    DePamphilis Melvin L

    2009-06-01

    Full Text Available Abstract Cyclin-dependent kinases (CDKs play a central role in the orderly transition from one phase of the eukaryotic mitotic cell division cycle to the next. In this context, p27Kip1 (one of the CIP/KIP family of CDK specific inhibitors in mammals or its functional analogue in other eukarya prevents a premature transition from G1 to S-phase. Recent studies have revealed that expression of a second member of this family, p57Kip2, is induced as trophoblast stem (TS cells differentiate into trophoblast giant (TG cells. p57 then inhibits CDK1 activity, an enzyme essential for initiating mitosis, thereby triggering genome endoreduplication (multiple S-phases without an intervening mitosis. Expression of p21Cip1, the third member of this family, is also induced in during differentiation of TS cells into TG cells where it appears to play a role in suppressing the DNA damage response pathway. Given the fact that p21 and p57 are unique to mammals, the question arises as to whether one or both of these proteins are responsible for the induction and maintenance of polyploidy during mammalian development.

  17. Cyclin D-1, interleukin-6, HER-2/neu, transforming growth factor receptor-II and prediction of relapse in women with early stage, hormone receptor-positive breast cancer treated with tamoxifen.

    Science.gov (United States)

    Muss, Hyman B; Bunn, Janice Yanushka; Crocker, Abigail; Plaut, Karen; Koh, James; Heintz, Nick; Rincon, Mercedes; Weaver, Donald L; Tam, Diane; Beatty, Barbara; Kaufman, Peter; Donovan, Michael; Verbel, David; Weiss, Linda

    2007-01-01

    We hypothesized that amplification or overexpression of HER-2 (c-erbB-2), the Ki-67 antigen (Mib1), cyclin D-1 (CD1), interleukin-6 (IL-6), or the transforming growth factor beta II receptor, (TGFbetaRII), would predict relapse in women with early stage, estrogen (ER) and/or progesterone receptor (PR) positive breast cancer treated with tamoxifen. Conditional logistic regression models and a new novel analytic method - support vector machines (SVM) were used to assess the effect of multiple variables on treatment outcome. All patients had stage I-IIIa breast cancer (AJCC version 5). We paired 63 patients who were disease-free on or after tamoxifen with 63 patients who had relapsed (total 126); both disease-free and relapsed patients were matched by duration of tamoxifen therapy and time to recurrence. These 126 patients also served as the training set for SVM analysis and 18 other patients used as a validation set for SVM. In a multivariate analysis, larger tumor size, increasing extent of lymph node involvement, and poorer tumor grade were significant predictors of relapse. When HER-2 or CD1 were added to the model both were borderline significant predictors of relapse. The SVM model, after including all of the clinical and marker variables in the 126 patients as a training set, correctly predicted relapse in 78% of the 18 patient validation samples. In this trial, HER-2 and CD1 proved of borderline significance as predictive factors for recurrence on tamoxifen. An SVM model that included all clinical and biologic variables correctly predicted relapse in >75% of patients.

  18. The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression.

    Science.gov (United States)

    Abraham, M; Klein, S; Bulvik, B; Wald, H; Weiss, I D; Olam, D; Weiss, L; Beider, K; Eizenberg, O; Wald, O; Galun, E; Avigdor, A; Benjamini, O; Nagler, A; Pereg, Y; Tavor, S; Peled, A

    2017-04-07

    CXCR4 is a key player in the retention and survival of human acute myeloid leukemia (AML) blasts in the bone marrow (BM) microenvironment. We studied the effects of the CXCR4 antagonist BL-8040 on the survival of AML blasts, and investigated the molecular mechanisms by which CXCR4 signaling inhibition leads to leukemic cell death. Treatment with BL-8040 induced the robust mobilization of AML blasts from the BM. In addition, AML cells exposed to BL-8040 underwent differentiation. Furthermore, BL-8040 induced the apoptosis of AML cells in vitro and in vivo. This apoptosis was mediated by the upregulation of miR-15a/miR-16-1, resulting in downregulation of the target genes BCL-2, MCL-1 and cyclin-D1. Overexpression of miR-15a/miR-16-1 directly induced leukemic cell death. BL-8040-induced apoptosis was also mediated by the inhibition of survival signals via the AKT/ERK pathways. Importantly, treatment with a BCL-2 inhibitor induced apoptosis and act together with BL-8040 to enhance cell death. BL-8040 also synergized with FLT3 inhibitors to induce AML cell death. Importantly, this combined treatment prolonged the survival of tumor-bearing mice and reduced minimal residual disease in vivo. Our results provide a rationale to test combination therapies employing BL-8040 and BCL-2 or FLT3 inhibitors to achieve increased efficacy of these agents.Leukemia advance online publication, 7 April 2017; doi:10.1038/leu.2017.82.

  19. EXPRESSION AND RELATIVITY OF CYCLIND1 IN THE BIOLOGICAL BEHAVIOUR OF TEANSITIONAL CELL CARCINOMA OF BLADDER%cyclinD1表达与膀胱移行细胞癌生物学行为关系的研究

    Institute of Scientific and Technical Information of China (English)

    宋旭; 眭元庚; 吴宏飞; 徐正铨

    2001-01-01

    目的:检测cyciinD1在膀胱移行细胞癌(TCC)中的表达,探讨其与该肿瘤生物学行为的关系.方法:应用免疫组化SP法检测45例膀胱TCC和12例正常膀胱cyclinD1组织的表达.结果:膀胱TCC组cyclinD1阳性表达率为55.56%,对照组无表达;临床分期T0~T1为78.5%,T2~T4为11.76%;肿瘤分级G1为85%,G2为46.67%,G3为10%,随着肿瘤分期分级上升,阳性表达率逐渐升高;但在肿瘤初发和复发及单发和多发之间差异无显著性.结论:cyclinD1在膀胱TCC形成的早期起重要的作用;在评估膀胱TCC的生物学行为方面有着重要的临床意义.

  20. Cyclin C regulates adipogenesis by stimulating transcriptional activity of CCAAT/enhancer binding protein alpha.

    Science.gov (United States)

    Song, Ziyi; Xiaoli, Alus M; Zhang, Quanwei; Zhang, Yi; Yang, Ellen S T; Wang, Sven; Chang, Rui; Zhang, Zhengdong D; Yang, Gongshe; Strich, Randy; Pessin, Jeffrey E; Yang, Fajun

    2017-03-28

    Brown adipose tissue (BAT) is important for maintaining energy homeostasis and adaptive thermogenesis in rodents and humans. As disorders arising from dysregulated energy metabolism, such as obesity and metabolic diseases, have increased, so has interest in the molecular mechanisms in adipocyte biology. Using a functional screen, we identified cyclin C (CycC), a conserved subunit of the Mediator complex, as a novel regulator for brown adipocyte formation. siRNA-mediated CycC knockdown (KD) in brown preadipocytes impaired the early transcriptional program of differentiation, and genetic knockout (KO) of CycC completely blocked the differentiation process. RNA-seq analyses of CycC-KD revealed a critical role of CycC in activating genes co-regulated by peroxisome proliferator activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha (C/EBPα). Overexpression of PPARγ2 or addition of the PPARγ ligand rosiglitazone rescued the defects in CycC-KO brown preadipocytes, and efficiently activated the PPARγ-responsive promoters in both wild-type (WT) and CycC-KO cells, suggesting that CycC is not essential for PPARγ transcriptional activity. In contrast, CycC-KO significantly reduced C/EBPα-dependent gene expression. Unlike for PPARγ, overexpression of C/EBPα could not induce C/EBPα target gene expression in CycC-KO cells or rescue the CycC-KO defects in brown adipogenesis, suggesting that CycC is essential for C/EBPα-mediated gene activation. CycC physically interacted with C/EBPα and this interaction was required for C/EBPα transactivation domain activity. Consistent with the role of C/EBPα in white adipogenesis, CycC-KD also inhibited differentiation of 3T3-L1 cells into white adipocytes. Together, these data indicate that CycC activates adipogenesis by stimulating the transcriptional activity of C/EBPα.

  1. DNA-PKcs Negatively Regulates Cyclin B1 Protein Stability through Facilitating Its Ubiquitination Mediated by Cdh1-APC/C Pathway.

    Science.gov (United States)

    Shang, Zeng-Fu; Tan, Wei; Liu, Xiao-Dan; Yu, Lan; Li, Bing; Li, Ming; Song, Man; Wang, Yu; Xiao, Bei-Bei; Zhong, Cai-Gao; Guan, Hua; Zhou, Ping-Kun

    2015-01-01

    The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair. DNA-PKcs has also been shown recently functioning in mitotic regulation. Here, we report that DNA-PKcs negatively regulates the stability of Cyclin B1 protein through facilitating its ubiquitination mediated by Cdh1 / E 3 ubiquitin ligase APC/C pathway. Loss of DNA-PKcs causes abnormal accumulation of Cyclin B1 protein. Cyclin B1 degradation is delayed in DNA-PKcs-deficient cells as result of attenuated ubiquitination. The impact of DNA-PKcs on Cyclin B1 stability relies on its kinase activity. Our study further reveals that DNA-PKcs interacts with APC/C core component APC2 and its co-activator Cdh1. The destruction of Cdh1 is accelerated in the absence of DNA-PKcs. Moreover, overexpression of exogenous Cdh1 can reverse the increase of Cyclin B1 protein in DNA-PKcs-deficient cells. Thus, DNA-PKcs, in addition to its direct role in DNA damage repair, functions in mitotic progression at least partially through regulating the stability of Cyclin B1 protein.

  2. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA

    2016-05-01

    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  3. Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia

    Science.gov (United States)

    Liou, Geou-Yarh; Döppler, Heike; Braun, Ursula B.; Panayiotou, Richard; Scotti Buzhardt, Michele; Radisky, Derek C.; Crawford, Howard C.; Fields, Alan P.; Murray, Nicole R.; Wang, Q. Jane; Leitges, Michael; Storz, Peter

    2015-02-01

    The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.

  4. Isolation and characterization of mutant Sinorhizobium meliloti NodD1 proteins with altered responses to luteolin.

    Science.gov (United States)

    Peck, Melicent C; Fisher, Robert F; Bliss, Robert; Long, Sharon R

    2013-08-01

    NodD1, a member of the NodD family of LysR-type transcriptional regulators (LTTRs), mediates nodulation (nod) gene expression in the soil bacterium Sinorhizobium meliloti in response to the plant-secreted flavonoid luteolin. We used genetic screens and targeted approaches to identify NodD1 residues that show altered responses to luteolin during the activation of nod gene transcription. Here we report four types of NodD1 mutants. Type I (NodD1 L69F, S104L, D134N, and M193I mutants) displays reduced or no activation of nod gene expression. Type II (NodD1 K205N) is constitutively active but repressed by luteolin. Type III (NodD1 L280F) demonstrates enhanced activity with luteolin compared to that of wild-type NodD1. Type IV (NodD1 D284N) shows moderate constitutive activity yet can still be induced by luteolin. In the absence of luteolin, many mutants display a low binding affinity for nod gene promoter DNA in vitro. Several mutants also show, as does wild-type NodD1, increased affinity for nod gene promoters with added luteolin. All of the NodD1 mutant proteins can homodimerize and heterodimerize with wild-type NodD1. Based on these data and the crystal structures of several LTTRs, we present a structural model of wild-type NodD1, identifying residues important for inducer binding, protein multimerization, and interaction with RNA polymerase at nod gene promoters.

  5. Zebrafish cyclin Dx is required for development of motor neuron progenitors, and its expression is regulated by hypoxia-inducible factor 2α.

    Science.gov (United States)

    Lien, Huang-Wei; Yuan, Rey-Yue; Chou, Chih-Ming; Chen, Yi-Chung; Hung, Chin-Chun; Hu, Chin-Hwa; Hwang, Sheng-Ping L; Hwang, Pung-Pung; Shen, Chia-Ning; Chen, Chih-Lung; Cheng, Chia-Hsiung; Huang, Chang-Jen

    2016-06-21

    Cyclins play a central role in cell-cycle regulation; in mammals, the D family of cyclins consists of cyclin D1, D2, and D3. In Xenopus, only homologs of cyclins D1 and D2 have been reported, while a novel cyclin, cyclin Dx (ccndx), was found to be required for the maintenance of motor neuron progenitors during embryogenesis. It remains unknown whether zebrafish possess cyclin D3 or cyclin Dx. In this study, we identified a zebrafish ccndx gene encoding a protein which can form a complex with Cdk4. Through whole-mount in situ hybridization, we observed that zccndx mRNA is expressed in the motor neurons of hindbrain and spinal cord during development. Analysis of a 4-kb promoter sequence of the zccndx gene revealed the presence of HRE sites, which can be regulated by HIF2α. Morpholino knockdown of zebrafish Hif2α and cyclin Dx resulted in the abolishment of isl1 and oligo2 expression in the precursors of motor neurons, and also disrupted axon growth. Overexpression of cyclin Dx mRNA in Hif2α morphants partially rescued zccndx expression. Taken together, our data indicate that zebrafish cyclin Dx plays a role in maintaining the precursors of motor neurons.

  6. Effect of regulatory factor of cell cycle p27kip1 and cyclinE proteins on the genesis and progression of human pancreatic cancer%细胞周期调控因子P27kip1和周期蛋白E在胰腺癌发生发展中的作用

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To investigate effect of p27kip1 and cyclinE proteins on the genesis and progression of human pancreatic cancer. Methods The expression of p27kip1 and cyclinE in tumor tissue and adjacent tissue of 32 patients with pancreatic cancer were detected by SP immunohistochemical technique.Results p27kip1 protein positive expression rate in tumor tissue of pancreatic cancer was 56% , which was lower than that in adjacent pancreatic tissue (P< 0.05),p27kip1 protein positive expression correlated significantly with tumor cell differentiation and lymphy node metastasis(P< 0.05);cyclinE positive expression rate was 69% , which was higher than that in adjacent pancreatic tissue(P< 0.05), cyclinE positive expression also correlated significantly with tumor cell differentiation and lymphy node metastasis(P<0.05). Conclusions p27kip1 and cyclinE proteins may play an important role in genesis and progression of pancreatic cancer.

  7. The Interaction between Cyclin B1 and Cytomegalovirus Protein Kinase pUL97 is Determined by an Active Kinase Domain.

    Science.gov (United States)

    Steingruber, Mirjam; Socher, Eileen; Hutterer, Corina; Webel, Rike; Bergbrede, Tim; Lenac, Tihana; Sticht, Heinrich; Marschall, Manfred

    2015-08-11

    Replication of human cytomegalovirus (HCMV) is characterized by a tight virus-host cell interaction. Cyclin-dependent protein kinases (CDKs) are functionally integrated into viral gene expression and protein modification. The HCMV-encoded protein kinase pUL97 acts as a CDK ortholog showing structural and functional similarities. Recently, we reported an interaction between pUL97 kinase with a subset of host cyclins, in particular with cyclin T1. Here, we describe an interaction of pUL97 at an even higher affinity with cyclin B1. As a striking feature, the interaction between pUL97 and cyclin B1 proved to be strictly dependent on pUL97 activity, as interaction could be abrogated by treatment with pUL97 inhibitors or by inserting mutations into the conserved kinase domain or the nonconserved C-terminus of pUL97, both producing loss of activity. Thus, we postulate that the mechanism of pUL97-cyclin B1 interaction is determined by an active pUL97 kinase domain.

  8. The Interaction between Cyclin B1 and Cytomegalovirus Protein Kinase pUL97 is Determined by an Active Kinase Domain

    Directory of Open Access Journals (Sweden)

    Mirjam Steingruber

    2015-08-01

    Full Text Available Replication of human cytomegalovirus (HCMV is characterized by a tight virus-host cell interaction. Cyclin-dependent protein kinases (CDKs are functionally integrated into viral gene expression and protein modification. The HCMV-encoded protein kinase pUL97 acts as a CDK ortholog showing structural and functional similarities. Recently, we reported an interaction between pUL97 kinase with a subset of host cyclins, in particular with cyclin T1. Here, we describe an interaction of pUL97 at an even higher affinity with cyclin B1. As a striking feature, the interaction between pUL97 and cyclin B1 proved to be strictly dependent on pUL97 activity, as interaction could be abrogated by treatment with pUL97 inhibitors or by inserting mutations into the conserved kinase domain or the nonconserved C-terminus of pUL97, both producing loss of activity. Thus, we postulate that the mechanism of pUL97-cyclin B1 interaction is determined by an active pUL97 kinase domain.

  9. A tumor suppressor C53 protein antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    Science.gov (United States)

    Jiang, Hai; Wu, Jianchun; He, Chen; Yang, Wending; Li, Honglin

    2009-01-01

    Cyclin dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint (1). More recently, Wang et al (2007) found that C53/LZAP may function as a tumor suppressor via inhibiting NF-κB signaling (2). We report here identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdk1 activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexrepsssion. Intriguingly, we found that C53 interacts with checkpoint kinase 1 (Chk1) and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell cycle progression and DNA damage response. PMID:19223857

  10. Curcumin improves the efficacy of cisplatin by targeting cancer stem-like cells through p21 and cyclin D1-mediated tumour cell inhibition in non-small cell lung cancer cell lines.

    Science.gov (United States)

    Baharuddin, Puteri; Satar, Nazilah; Fakiruddin, Kamal Shaik; Zakaria, Norashikin; Lim, Moon Nian; Yusoff, Narazah Mohd; Zakaria, Zubaidah; Yahaya, Badrul Hisham

    2016-01-01

    Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10-40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may

  11. The Regulation of Human Cyclin E Protein Levels by the Ubiquitin Proteolytic Pathway

    Science.gov (United States)

    2000-09-01

    7-11 Paper published in Molecular Cell ................................................. 8-11 4 INTRODUCTION Cyclins have been...the CDK2 inhibitor p21. These data were published this year in Molecular Cell in February (see appended copy of paper). KEY RESEARCH ACCOMPLISHMENTS...during the second year of support appeared in the February issue of Molecular Cell . I am applying for a faculty position with the data reported here as

  12. Polycomb protein SCML2 regulates the cell cycle by binding and modulating CDK/CYCLIN/p21 complexes.

    Science.gov (United States)

    Lecona, Emilio; Rojas, Luis Alejandro; Bonasio, Roberto; Johnston, Andrew; Fernández-Capetillo, Oscar; Reinberg, Danny

    2013-12-01

    Polycomb group (PcG) proteins are transcriptional repressors of genes involved in development and differentiation, and also maintain repression of key genes involved in the cell cycle, indirectly regulating cell proliferation. The human SCML2 gene, a mammalian homologue of the Drosophila PcG protein SCM, encodes two protein isoforms: SCML2A that is bound to chromatin and SCML2B that is predominantly nucleoplasmic. Here, we purified SCML2B and found that it forms a stable complex with CDK/CYCLIN/p21 and p27, enhancing the inhibitory effect of p21/p27. SCML2B participates in the G1/S checkpoint by stabilizing p21 and favoring its interaction with CDK2/CYCE, resulting in decreased kinase activity and inhibited progression through G1. In turn, CDK/CYCLIN complexes phosphorylate SCML2, and the interaction of SCML2B with CDK2 is regulated through the cell cycle. These findings highlight a direct crosstalk between the Polycomb system of cellular memory and the cell-cycle machinery in mammals.

  13. Relationships between D1 protein, xanthophyll cycle and photodamage-resistant capacity in rice (Orysa sativa L.)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Relationships between D1 protein, xanthophyll cycle and subspecific difference of photodamage-resistant capacity have been studied in O. japonica rice varieties 02428 and 029 (photoinhibition-tolerance) and O. indica rice varieties 3037 and Palghar (photoinhibition-sensitivity) and their reciprocal cross F1 hybrids after photoinhibitory treatment. It was shown that PSⅡ photochemical efficiency (Fv /Fm) decreased, and xanthophyll cycle from violaxanthin (V), via anaxanthin (A), to zeaxanthin (Z) was enhanced and non-photochemical quenching (qN) increased accordingly in SM-pretreated leaves of rice when the synthesis of D1 protein was inhibited, and that there was a decrease in qN and, as a result, more loss of D1 protein and a big decrease in Fv /Fm in DTT-pretreated leaves when xanthophyll cycle was inhibited. O. japonica subspecies had a higher maintaining capacity of D1 protein and a decrease of Fv /Fm in a more narrow range, and exhibited more resistance against photodamage, as compared with O. indica subspecies. The above physiological indexes in reciprocal cross F1 hybrids, though between the values of their parents, were closer to maternal lines than to paternal lines. Experimental results support the concept that the turnover capacity for D1 protein is an important physiological basis of photoinhibition-tolerance, and will provide the physiological basis for selection of the photoinhibition-tolerant parents and develop a new approach to breed hybrids with high photosynthetic efficiency.

  14. The protein kinase D1 COOH terminus: marker or regulator of enzyme activity?

    Science.gov (United States)

    Qiu, Weihua; Zhang, Fan; Steinberg, Susan F

    2014-10-01

    Protein kinase D1 (PKD1) is a Ser/Thr kinase implicated in a wide variety of cellular responses. PKD1 activation is generally attributed to a PKC-dependent pathway that leads to phosphorylation of the activation loop at Ser(744)/Ser(748). This modification increases catalytic activity, including that toward an autophosphorylation site (Ser(916)) in a postsynaptic density-95/disks large/zonula occludens-1 (PDZ)-binding motif at the extreme COOH terminus. However, there is growing evidence that PKD1 activation can also result from a PKC-independent autocatalytic reaction at Ser(744)/Ser(748) and that certain stimuli increase in PKD1 phosphorylation at Ser(744)/S(748) without an increase in autophosphorylation at Ser(916). This study exposes a mechanism that results in a discrepancy between PKD1 COOH-terminal autocatalytic activity and activity toward other substrates. We show that PKD1 constructs harboring COOH-terminal epitope tags display high levels of in vitro activation loop autocatalytic activity and activity toward syntide-2 (a peptide substrate), but no Ser(916) autocatalytic activity. Cell-based studies show that the COOH-terminal tag, adjacent to PKD1's PDZ1-binding motif, does not grossly influence PKD1 partitioning between soluble and particulate fractions in resting cells or PKD1 translocation to the particulate fraction following treatment with PMA. However, a COOH-terminal tag that confers a high level of activation loop autocatalytic activity decreases the PKC requirement for agonist-dependent PKD1 activation in cells. The recognition that COOH-terminal tags alter PKD1's pharmacological profile is important from a technical standpoint. The altered dynamics and activation mechanisms for COOH-terminal-tagged PKD1 enzymes also could model the signaling properties of localized pools of enzyme anchored through the COOH terminus to PDZ domain-containing scaffolding proteins.

  15. PSD-95 regulates D1 dopamine receptor resensitization, but not receptor-mediated Gs-protein activation

    Institute of Scientific and Technical Information of China (English)

    Peihua Sun; Jingru Wang; Weihua Gu; Wei Cheng; Guo-zhang Jin; Eitan Friedman; Jie Zheng; Xuechu Zhen

    2009-01-01

    The present study aims to define the role of postsynaptic density (PSD)-95 in the regulation of dopamine (DA) receptor function. We found that PSD-95 physically associates with either D1 or D2 DA receptors in co-transfected HEK-293 cells. Stimulation of DA receptors altered the association between D1 receptor and PSD-95 in a time-depen-dent manner. Functional assays indicated that PSD-95 co-expression did not affect D1 receptor-stimulated cAMP pro-duction, Gs-protein activation or receptor desensitization. However, PSD-95 accelerated the recovery of internalized membrane receptors by promoting receptor recycling, thus resulting in enhanced resensitization of internalized D1 receptors. Our results provide a novel mechanism for regulating DA receptor recycling that may play an important role in postsynaptic DA functional modulation and synaptic neuroplasticity.

  16. Phospholipase D1 modulates protein kinase C-epsilon in retinal pigment epithelium cells during inflammatory response.

    Science.gov (United States)

    Tenconi, Paula E; Giusto, Norma M; Salvador, Gabriela A; Mateos, Melina V

    2016-12-01

    Inflammation is a key factor in the pathogenesis of several retinal diseases. In view of the essential role of the retinal pigment epithelium in visual function, elucidating the molecular mechanisms elicited by inflammation in this tissue could provide new insights for the treatment of retinal diseases. The aim of the present work was to study protein kinase C signaling and its modulation by phospholipases D in ARPE-19 cells exposed to lipopolysaccharide. This bacterial endotoxin induced protein kinase C-α/βII phosphorylation and protein kinase-ε translocation to the plasma membrane in ARPE-19 cells. Pre-incubation with selective phospholipase D inhibitors demonstrated that protein kinase C-α phosphorylation depends on phospholipase D1 and 2 while protein kinase C-ε activation depends only on phospholipase D1. The inhibition of α and β protein kinase C isoforms with Go 6976 did not modify the reduced mitochondrial function induced by lipopolysaccharide. On the contrary, the inhibition of protein kinase C-α, β and ε with Ro 31-8220 potentiated the decrease in mitochondrial function. Moreover, inhibition of protein kinase C-ε reduced Bcl-2 expression and Akt activation and increased Caspase-3 cleavage in cells treated or not with lipopolysaccharide. Our results demonstrate that through protein kinase C-ε regulation, phospholipase D1 protects retinal pigment epithelium cells from lipopolysaccharide-induced damage.

  17. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    Full Text Available BACKGROUND: Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we found that AMPK-induced phospholipase D1 (PLD1 activation is required for (14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT stimulates PLD activity, while AMPK-dominant negative (DN inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA, which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator regulate (14C-glucose uptake and cell surface glucose transport (GLUT 4 through ERK stimulation by AMPK-mediated PLD1 activation. CONCLUSIONS/SIGNIFICANCE: These results

  18. Cyclin-like F-box protein plays a role in growth and development of the three model species Medicago truncatula, Lotus japonicus, and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Boycheva I

    2015-08-01

    Full Text Available Irina Boycheva,1 Valya Vassileva,2 Miglena Revalska,1 Grigor Zehirov,2 Anelia Iantcheva1 1Department of Functional Genetics Legumes, 2AgroBioInstitute, Department of Plant Stress Molecular Biology, Institute of Plant Physiology and Genetics, Sofia, Bulgaria Abstract: In eukaryotes, F-box proteins are one of the main components of the SCF complex that belongs to the family of ubiquitin E3 ligases, which catalyze protein ubiquitination and maintain the balance between protein synthesis and degradation. In the present study, we clarified the role and function of the gene encoding cyclin-like F-box protein from Medicago truncatula using transgenic plants of the model species M. truncatula, Lotus japonicas, and Arabidopsis thaliana generated by Agrobacterium-mediated transformation. Morphological and transcriptional analyses combined with flow cytometry and histochemistry demonstrated the participation of this protein in many aspects of plant growth and development, including processes of indirect somatic embryogenesis and symbiotic nodulation. The cyclin-like F-box gene showed expression in all plant organs and tissues comprised of actively dividing cells. The observed variations in root and hypocotyl growth, leaf and silique development, ploidy levels, and leaf parameters in the obtained transgenic lines demonstrated the effects of this gene on organ development. Furthermore, knockdown of cyclin-like F-box led to accumulation of higher levels of the G2/M transition-specific gene cyclin B1:1 (CYCB1:1, suggesting its possible role in cell cycle control. Together, the collected data suggest a similar role of the cyclin-like F-box protein in the three model species, providing evidence for the functional conservation of the studied gene. Keywords: cyclin-like F-box, model legumes, Arabidopsis thaliana, plant growth, plant development, cell cycle

  19. Expression, localization and clinical application of exogenous Smith proteins D1 in gene transfected HEp-2 cells.

    Science.gov (United States)

    Wang, Su-li; Wang, Fang-fang; Chen, Shun-le; Shen, Nan; Xue, Feng; Ye, Ping; Bao, Chun-de; Gu, Yue-ying; Yu, Chong-zhao; Wilson, Alisa; Wallace, Daniel J; Weisman, Michael H; Lu, Liang-jing

    2013-06-01

    To establish an improved substrate for an indirect immunofluorescence test (IIF) to detect anti-Sm antibody. Full-length Smith protein D1(Sm-D1) complementary DNA was obtained from human larynx carcinoma cell line HEp-2 by reverse transcription - polymerase chain reaction (RT-PCR) and cloned into the mammalian expression vector pEGFP-C1. The recombinant plasmid pEGFP-Sm-D1 was transfected into HEp-2 cells. The expression, localization and antigenicity of fusion proteins of green fluorescent protein (GFP) in transfected cells were confirmed by means of immunoblotting (IBT), confocal fluorescence microscopy and IIF analysis. Transfected HEp-2 cells were analyzed with reference serum and compared with untransfected HEp-2 cells by IIF. Stable expression of the Sm-D1-GFP was maintained for more than ten generations. This Sm-D1-GFP showed the antigenicity of Sm-D1 with a characteristic phenotype in IIF.Six of 12 serum specimens from systemic lupus erythematosus contained both 29/28 and 13.5 kDa proteins and showed characteristic immunofluorescent patterns. The same phenomenon appeared in 3/6 serum samples which contained 29/28 kDa proteins only. Sera from 10 healthy donors did not react with HEp-Sm-D1 or HEp-2 at 1:80 attenuant degrees. No alteration in expression, localization and morphology was observed when HEp-Sm-D1 or HEp-2 interacted with the reference sera which could react with Ro/SSA, La/SSB, β2GP1, centromere, histone, and Scl-70 antibodies in routine IIF tests. As a new kind of substrate of IIF, HEp-Sm-D1 can be used to detect anti-Sm antibodies. Transfected HEp-2 cells keep the immunofluorescent property of HEp-2 cells in immunofluorescence anti-nuclear antibody (IFANA) test and could potentially be used as substrate for routine IFANA detection. © 2012 The Authors International Journal of Rheumatic Diseases © 2012 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  20. Regulation of GATA-binding protein 2 levels via ubiquitin-dependent degradation by Fbw7: involvement of cyclin B-cyclin-dependent kinase 1-mediated phosphorylation of THR176 in GATA-binding protein 2.

    Science.gov (United States)

    Nakajima, Tomomi; Kitagawa, Kyoko; Ohhata, Tatsuya; Sakai, Satoshi; Uchida, Chiharu; Shibata, Kiyoshi; Minegishi, Naoko; Yumimoto, Kanae; Nakayama, Keiichi I; Masumoto, Kazuma; Katou, Fuminori; Niida, Hiroyuki; Kitagawa, Masatoshi

    2015-04-17

    A GATA family transcription factor, GATA-binding protein 2 (GATA2), participates in cell growth and differentiation of various cells, such as hematopoietic stem cells. Although its expression level is controlled by transcriptional induction and proteolytic degradation, the responsible E3 ligase has not been identified. Here, we demonstrate that F-box/WD repeat-containing protein 7 (Fbw7/Fbxw7), a component of Skp1, Cullin 1, F-box-containing complex (SCF)-type E3 ligase, is an E3 ligase for GATA2. GATA2 contains a cell division control protein 4 (Cdc4) phosphodegron (CPD), a consensus motif for ubiquitylation by Fbw7, which includes Thr(176). Ectopic expression of Fbw7 destabilized GATA2 and promoted its proteasomal degradation. Substitution of threonine 176 to alanine in GATA2 inhibited binding with Fbw7, and the ubiquitylation and degradation of GATA2 by Fbw7 was suppressed. The CPD kinase, which mediates the phosphorylation of Thr(176), was cyclin B-cyclin-dependent kinase 1 (CDK1). Moreover, depletion of endogenous Fbw7 stabilized endogenous GATA2 in K562 cells. Conditional Fbw7 depletion in mice increased GATA2 levels in hematopoietic stem cells and myeloid progenitors at the early stage. Increased GATA2 levels in Fbw7-conditional knock-out mice were correlated with a decrease in a c-Kit high expressing population of myeloid progenitor cells. Our results suggest that Fbw7 is a bona fide E3 ubiquitin ligase for GATA2 in vivo.

  1. The D1 and D2 proteins of dinoflagellates: unusually accumulated mutations which influence on PSII photoreaction.

    Science.gov (United States)

    Iida, Satoko; Kobiyama, Atsushi; Ogata, Takehiko; Murakami, Akio

    2008-01-01

    Plastid encoded genes of the dinoflagellates are rapidly evolving and most divergent. The importance of unusually accumulated mutations on structure of PSII core protein and photosynthetic function was examined in the dinoflagellates, Symbiodinium sp. and Alexandrium tamarense. Full-length cDNA sequences of psbA (D1 protein) and psbD (D2 protein) were obtained and compared with the other oxygen-evolving photoautotrophs. Twenty-three amino acid positions (7%) for the D1 protein and 34 positions (10%) for the D2 were mutated in the dinoflagellates, although amino acid residues at these positions were conserved in cyanobacteria, the other algae, and plant. Many mutations were likely to distribute in the N-terminus and the D-E interhelical loop of the D1 protein and helix B of D2 protein, while the remaining regions were well conserved. The different structural properties in these mutated regions were supported by hydropathy profiles. The chlorophyll fluorescence kinetics of the dinoflagellates was compared with Synechocystis sp. PCC6803 in relation to the altered protein structure.

  2. Basaloid Squamous Cell Carcinoma of the Head and Neck: Subclassification into Basal, Ductal, and Mixed Subtypes Based on Comparison of Clinico-pathologic Features and Expression of p53, Cyclin D1, Epidermal Growth Factor Receptor, p16, and Human Papillomavirus

    Directory of Open Access Journals (Sweden)

    Kyung-Ja Cho

    2017-07-01

    Full Text Available Background Basaloid squamous cell carcinoma (BSCC is a rare variant of squamous cell carcinoma with distinct pathologic characteristics. The histogenesis of BSCC is not fully understood, and the cancer has been suggested to originate from a totipotent primitive cell in the basal cell layer of the surface epithelium or in the proximal duct of secretory glands. Methods Twenty-six cases of head and neck BSCC from Asan Medical Center, Seoul, Korea, reported during a 14-year-period were subclassified into basal, ductal, and mixed subtypes according to the expression of basal (cytokeratin [CK] 5/6, p63 or ductal markers (CK7, CK8/18. The cases were also subject to immunohistochemical study for CK19, p53, cyclin D1, epidermal growth factor receptor (EGFR, and p16 and to in situ hybridization for human papillomavirus (HPV, and the results were clinico-pathologically compared. Results Mixed subtype (12 cases was the most common, and these cases showed hypopharyngeal predilection, older age, and higher expression of CK19, p53, and EGFR than other subtypes. The basal subtype (nine cases showed frequent comedo-necrosis and high expression of cyclin D1. The ductal subtype (five cases showed the lowest expression of p53, cyclin D1, and EGFR. A small number of p16- and/or HPV-positive cases were not restricted to one subtype. BSCC was the cause of death in 19 patients, and the average follow-up period for all patients was 79.5 months. Overall survival among the three subtypes was not significantly different. Conclusions The results of this study suggest a heterogeneous pathogenesis of head and neck BSCC. Each subtype showed variable histology and immunoprofiles, although the clinical implication of heterogeneity was not determined in this study.

  3. Crosstalk between SOXB1 proteins and WNT/β-catenin signaling in NT2/D1 cells.

    Science.gov (United States)

    Mojsin, Marija; Topalovic, Vladanka; Vicentic, Jelena Marjanovic; Schwirtlich, Marija; Stanisavljevic, Danijela; Drakulic, Danijela; Stevanovic, Milena

    2015-11-01

    During early vertebrate embryogenesis, the expression of SOXB1 proteins is precisely regulated by a number of different mechanisms, including Wnt/β-catenin signaling. This is essential for controlling the balance between stemness and differentiation in embryonic stem cells. In the present study, we analyzed the molecular mechanism of LiCl action in NT2/D1 cells and examined the crosstalk between SOXB1 proteins and Wnt signaling in this model system. We have shown that LiCl increases β-catenin level, induces its translocation to the nucleus and consequently up-regulates β-catenin/Tcf-dependent transcription in NT2/D1 cells. Our results also suggest that LiCl treatment leads to increased expression of SOX2 and SOX3 proteins in NT2/D1 cells through activation of canonical Wnt signaling. Finally, we have detected a negative feedback loop between β-catenin and SOX2 expression in NT2/D1 cells. Since β-catenin and SOX2 have been linked to processes of self-renewal and pluripotency, our results have implications for future research on the maintenance of stemness and lineage commitment of embryonic stem cells.

  4. Analysis of the interaction proteins of PIH1D1%与PIH1D1相互作用的蛋白分析

    Institute of Scientific and Technical Information of China (English)

    章元; 张业

    2016-01-01

    目的 分析细胞中与PIH1D1相互作用的蛋白.方法 构建稳定表达FLAG-HA双标签标记的PIH1D1蛋白的HEK293T细胞株,利用FLAG-HA串联亲和纯化(TAP)双标签纯化实验,对目的条带进行质谱分析.结果 成功构建稳定表达FLAG-HA双标签标记的PIH1D1细胞株.通过质谱分析得到了PIH1D1相互作用的蛋白数据,包括细胞质内RNA PolⅡ组装复合物成员RPAP3、UXT、PFD2和PFD6等,凋亡复合物成员MONAD/WDR92等,钙调蛋白信号通路中的PIP和CALM1以及代谢通路中的PKM和LCN1等.结论 PIH1D1与细胞中RPAP3、UXT、PFD2、PFD6、MONAD/WDR92、PIP、CALM1、PKM和LCN1等相互作用,提示PIH1D1可能参与细胞中RNApol Ⅱ组装、细胞凋亡、钙调蛋白通路等多种生理过程.

  5. Cyclin-Dependent Kinase CRK9, Required for Spliced Leader trans Splicing of Pre-mRNA in Trypanosomes, Functions in a Complex with a New L-Type Cyclin and a Kinetoplastid-Specific Protein.

    Science.gov (United States)

    Badjatia, Nitika; Park, Sung Hee; Ambrósio, Daniela L; Kirkham, Justin K; Günzl, Arthur

    2016-03-01

    In eukaryotes, cyclin-dependent kinases (CDKs) control the cell cycle and critical steps in gene expression. The lethal parasite Trypanosoma brucei, member of the phylogenetic order Kinetoplastida, possesses eleven CDKs which, due to high sequence divergence, were generically termed CDC2-related kinases (CRKs). While several CRKs have been implied in the cell cycle, CRK9 was the first trypanosome CDK shown to control the unusual mode of gene expression found in kinetoplastids. In these organisms, protein-coding genes are arranged in tandem arrays which are transcribed polycistronically. Individual mRNAs are processed from precursor RNA by spliced leader (SL) trans splicing and polyadenylation. CRK9 ablation was lethal in cultured trypanosomes, causing a block of trans splicing before the first transesterification step. Additionally, CRK9 silencing led to dephosphorylation of RNA polymerase II and to hypomethylation of the SL cap structure. Here, we tandem affinity-purified CRK9 and, among potential CRK9 substrates and modifying enzymes, discovered an unusual tripartite complex comprising CRK9, a new L-type cyclin (CYC12) and a protein, termed CRK9-associated protein (CRK9AP), that is only conserved among kinetoplastids. Silencing of either CYC12 or CRK9AP reproduced the effects of depleting CRK9, identifying these proteins as functional partners of CRK9 in vivo. While mammalian cyclin L binds to CDK11, the CRK9 complex deviates substantially from that of CDK11, requiring CRK9AP for efficient CRK9 complex formation and autophosphorylation in vitro. Interference with this unusual CDK rescued mice from lethal trypanosome infections, validating CRK9 as a potential chemotherapeutic target.

  6. The Arabidopsis Thylakoid Protein PAM68 Is Required for Efficient D1 Biogenesis and Photosystem II Assembly[W

    Science.gov (United States)

    Armbruster, Ute; Zühlke, Jessica; Rengstl, Birgit; Kreller, Renate; Makarenko, Elina; Rühle, Thilo; Schünemann, Danja; Jahns, Peter; Weisshaar, Bernd; Nickelsen, Jörg; Leister, Dario

    2010-01-01

    Photosystem II (PSII) is a multiprotein complex that functions as a light-driven water:plastoquinone oxidoreductase in photosynthesis. Assembly of PSII proceeds through a number of distinct intermediate states and requires auxiliary proteins. The photosynthesis affected mutant 68 (pam68) of Arabidopsis thaliana displays drastically altered chlorophyll fluorescence and abnormally low levels of the PSII core subunits D1, D2, CP43, and CP47. We show that these phenotypes result from a specific decrease in the stability and maturation of D1. This is associated with a marked increase in the synthesis of RC (the PSII reaction center-like assembly complex) at the expense of PSII dimers and supercomplexes. PAM68 is a conserved integral membrane protein found in cyanobacterial and eukaryotic thylakoids and interacts in split-ubiquitin assays with several PSII core proteins and known PSII assembly factors. Biochemical analyses of thylakoids from Arabidopsis and Synechocystis sp PCC 6803 suggest that, during PSII assembly, PAM68 proteins associate with an early intermediate complex that might contain D1 and the assembly factor LPA1. Inactivation of cyanobacterial PAM68 destabilizes RC but does not affect larger PSII assembly complexes. Our data imply that PAM68 proteins promote early steps in PSII biogenesis in cyanobacteria and plants, but their inactivation is differently compensated for in the two classes of organisms. PMID:20923938

  7. The Arabidopsis thylakoid protein PAM68 is required for efficient D1 biogenesis and photosystem II assembly.

    Science.gov (United States)

    Armbruster, Ute; Zühlke, Jessica; Rengstl, Birgit; Kreller, Renate; Makarenko, Elina; Rühle, Thilo; Schünemann, Danja; Jahns, Peter; Weisshaar, Bernd; Nickelsen, Jörg; Leister, Dario

    2010-10-01

    Photosystem II (PSII) is a multiprotein complex that functions as a light-driven water:plastoquinone oxidoreductase in photosynthesis. Assembly of PSII proceeds through a number of distinct intermediate states and requires auxiliary proteins. The photosynthesis affected mutant 68 (pam68) of Arabidopsis thaliana displays drastically altered chlorophyll fluorescence and abnormally low levels of the PSII core subunits D1, D2, CP43, and CP47. We show that these phenotypes result from a specific decrease in the stability and maturation of D1. This is associated with a marked increase in the synthesis of RC (the PSII reaction center-like assembly complex) at the expense of PSII dimers and supercomplexes. PAM68 is a conserved integral membrane protein found in cyanobacterial and eukaryotic thylakoids and interacts in split-ubiquitin assays with several PSII core proteins and known PSII assembly factors. Biochemical analyses of thylakoids from Arabidopsis and Synechocystis sp PCC 6803 suggest that, during PSII assembly, PAM68 proteins associate with an early intermediate complex that might contain D1 and the assembly factor LPA1. Inactivation of cyanobacterial PAM68 destabilizes RC but does not affect larger PSII assembly complexes. Our data imply that PAM68 proteins promote early steps in PSII biogenesis in cyanobacteria and plants, but their inactivation is differently compensated for in the two classes of organisms.

  8. Limited redundancy in genes regulated by Cyclin T2 and Cyclin T1

    Directory of Open Access Journals (Sweden)

    Yu Wendong

    2011-07-01

    Full Text Available Abstract Background The elongation phase, like other steps of transcription by RNA Polymerase II, is subject to regulation. The positive transcription elongation factor b (P-TEFb complex allows for the transition of mRNA synthesis to the productive elongation phase. P-TEFb contains Cdk9 (Cyclin-dependent kinase 9 as its catalytic subunit and is regulated by its Cyclin partners, Cyclin T1 and Cyclin T2. The HIV-1 Tat transactivator protein enhances viral gene expression by exclusively recruiting the Cdk9-Cyclin T1 P-TEFb complex to a RNA element in nascent viral transcripts called TAR. The expression patterns of Cyclin T1 and Cyclin T2 in primary monocytes and CD4+ T cells suggests that Cyclin T2 may be generally involved in expression of constitutively expressed genes in quiescent cells, while Cyclin T1 may be involved in expression of genes up-regulated during macrophage differentiation, T cell activation, and conditions of increased metabolic activity To investigate this issue, we wished to identify the sets of genes whose levels are regulated by either Cyclin T2 or Cyclin T1. Findings We used shRNA lentiviral vectors to stably deplete either Cyclin T2 or Cyclin T1 in HeLa cells. Total RNA extracted from these cells was subjected to cDNA microarray analysis. We found that 292 genes were down- regulated by depletion of Cyclin T2 and 631 genes were down-regulated by depletion of Cyclin T1 compared to cells transduced with a control lentivirus. Expression of 100 genes was commonly reduced in either knockdown. Additionally, 111 and 287 genes were up-regulated when either Cyclin T2 or Cyclin T1 was depleted, respectively, with 45 genes in common. Conclusions These results suggest that there is limited redundancy in genes regulated by Cyclin T1 or Cyclin T2.

  9. Hepatitis C virus non-structural 5B protein interacts with cyclin A2 and regulates viral propagation

    DEFF Research Database (Denmark)

    Pham, Long; Ngo, HT; Lim, YS

    2012-01-01

    Background & Aims Hepatitis C virus (HCV) requires host cellular proteins for its own propagation. To identify the cellular factors necessary for HCV propagation, we have recently screened the small interfering RNA (siRNA) library targeting cell cycle genes using cell culture grown HCV (HCVcc......, in vitro and in vivo protein binding assays, luciferase reporter gene assay, and immunoblot assay. Results We showed that siRNA-mediated depletion of CycA2 significantly inhibited HCV replication in both HCV subgenomic replicon cells and HCVcc-infected cells. Furthermore, HCV non-structural 5B (NS5B......) specifically interacted with CycA2 in vitro and in vivo. Protein interaction was mediated through the cyclin box of CycA2 and the palm domain of NS5B. We further showed that R/HxL motif in the palm domain of HCV NS5B mediated protein interaction with CycA2 and this interaction was necessary for HCV replication...

  10. Palbociclib can overcome mutations in cyclin dependent kinase 6 that break hydrogen bonds between the drug and the protein.

    Science.gov (United States)

    Hernandez Maganhi, Stella; Jensen, Patrizia; Caracelli, Ignez; Zukerman Schpector, Julio; Fröhling, Stefan; Friedman, Ran

    2017-04-01

    Inhibition of cyclin dependent kinases (CDKs) 4 and 6 prevent cells from entering the synthesis phase of the cell cycle. CDK4 and 6 are therefore important drug targets in various cancers. The selective CDK4/6 inhibitor palbociclib is approved for the treatment of breast cancer and has shown activity in a cellular model of mixed lineage leukaemia (MLL)-rearranged acute myeloid leukaemia (AML). We studied the interactions of palbociclib and CDK6 using molecular dynamics simulations. Analysis of the simulations suggested several interactions that stabilized the drug in its binding site and that were not observed in the crystal structure of the protein-drug complex. These included a hydrogen bond to His 100 that was hitherto not reported and several hydrophobic contacts. Evolutionary-based bioinformatic analysis was used to suggest two mutants, D163G and H100L that would potentially yield drug resistance, as they lead to loss of important protein-drug interactions without hindering the viability of the protein. One of the mutants involved a change in the glycine of the well-conserved DFG motif of the kinase. Interestingly, CDK6-dependent human AML cells stably expressing either mutant retained sensitivity to palbociclib, indicating that the protein-drug interactions are not affected by these. Furthermore, the cells were proliferative in the absence of palbociclib, indicating that the Asp to Gly mutation in the DFG motif did not interfere with the catalytic activity of the protein. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  11. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2.

    Science.gov (United States)

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Reiter, Michael; Tsaur, Igor; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A

    2014-01-01

    Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR) related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.

  12. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2.

    Directory of Open Access Journals (Sweden)

    Jasmina Makarević

    Full Text Available Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP. Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.

  13. The human I-mfa domain-containing protein, HIC, interacts with cyclin T1 and modulates P-TEFb-dependent transcription.

    Science.gov (United States)

    Young, Tara M; Wang, Qi; Pe'ery, Tsafi; Mathews, Michael B

    2003-09-01

    Positive transcription elongation factor b (P-TEFb) hyperphosphorylates the carboxy-terminal domain of RNA polymerase II, permitting productive transcriptional elongation. The cyclin T1 subunit of P-TEFb engages cellular transcription factors as well as the human immunodeficiency virus type 1 (HIV-1) transactivator Tat. To identify potential P-TEFb regulators, we conducted a yeast two-hybrid screen with cyclin T1 as bait. Among the proteins isolated was the human I-mfa domain-containing protein (HIC). HIC has been reported to modulate expression from both cellular and viral promoters via its C-terminal cysteine-rich domain, which is similar to the inhibitor of MyoD family a (I-mfa) protein. We show that HIC binds cyclin T1 in yeast and mammalian cells and that it interacts with intact P-TEFb in mammalian cell extracts. The interaction involves the I-mfa domain of HIC and the regulatory histidine-rich region of cyclin T1. HIC also binds Tat via its I-mfa domain, although the sequence requirements are different. HIC colocalizes with cyclin T1 in nuclear speckle regions and with Tat in the nucleolus. Expression of the HIC cDNA modulates Tat transactivation of the HIV-1 long terminal repeat (LTR) in a cell type-specific fashion. It is mildly inhibitory in CEM cells but stimulates gene expression in HeLa, COS, and NIH 3T3 cells. The isolated I-mfa domain acts as a dominant negative inhibitor. Activation of the HIV-1 LTR by HIC in NIH 3T3 cells occurs at the RNA level and is mediated by direct interactions with P-TEFb.

  14. Mutations of photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas reinhardtii under extreme environment in space.

    Science.gov (United States)

    Giardi, Maria Teresa; Rea, Giuseppina; Lambreva, Maya D; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Johanningmeier, Udo; Mattoo, Autar K

    2013-01-01

    Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA (-) state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space.

  15. Mutations of photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas reinhardtii under extreme environment in space.

    Directory of Open Access Journals (Sweden)

    Maria Teresa Giardi

    Full Text Available Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA (- state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space.

  16. EFFECT OF SODIUM TANSHINONE Ⅱ-A SULFONATE ON HUMAN RENAL INTERSTITIAL FIBROCYTES OF UUO AND THE EXPRESSION OF CYCLIND1%丹参酮ⅡA磺酸钠对单侧输尿管梗阻病人肾间质成纤维细胞Cyclin D1蛋白表达的影响及意义

    Institute of Scientific and Technical Information of China (English)

    张兴旺; 曹灵; 于国华; 张弦; 郭庆喜; 郭勇

    2007-01-01

    目的:研究丹参酮ⅡA磺酸钠(sodium tanshinone Ⅱ-A sulfonate,DS-201)对单侧输尿管梗阻(UUO)病人肾间质纤维化来源的成纤维细胞(hRIFs)体外增殖及细胞周期素D1(cyclin D1)蛋白表达的影响,探讨该药治疗肾间质纤维化的作用机制.方法:体外培养鉴定hRIFs;用四甲基偶氮唑(MTT)法检测对照组与不同DS-201浓度组hRIFs的增殖活性;用免疫细胞化学SABC法和图像分析技术检测对照组与不同DS-201浓度组hRIFs cyclin D1基因的表达.结果:随药物浓度的升高和作用时间的延长,抑制率逐渐升高,抑制作用逐渐增强,呈剂量依赖性和时间依赖性;用药组阳性细胞的光密度值在第3、5、7、9天显著低于对照组(P<0.05,P<0.01),第1天各组之间无统计学差异(P>0.05).结论:①DS-201对UUO病人hRIFs体外增殖有显著抑制作用,可能是其治疗肾间质纤维化的机制之一;②DS-201抑制UUO病人hRIFs体外增殖可能是通过抑制细胞中cyclin D1基因表达,延长细胞周期实现的.

  17. The RNA-binding protein Spo5 promotes meiosis II by regulating cyclin Cdc13 in fission yeast.

    Science.gov (United States)

    Arata, Mayumi; Sato, Masamitsu; Yamashita, Akira; Yamamoto, Masayuki

    2014-03-01

    Meiosis comprises two consecutive nuclear divisions, meiosis I and II. Despite this unique progression through the cell cycle, little is known about the mechanisms controlling the sequential divisions. In this study, we carried out a genetic screen to identify factors that regulate the initiation of meiosis II in the fission yeast Schizosaccharomyces pombe. We identified mutants deficient in meiosis II progression and repeatedly isolated mutants defective in spo5, which encodes an RNA-binding protein. Using fluorescence microscopy to visualize YFP-tagged protein, we found that spo5 mutant cells precociously lost Cdc13, the major B-type cyclin in fission yeast, before meiosis II. Importantly, the defect in meiosis II was rescued by increasing CDK activity. In wild-type cells, cdc13 transcripts increased during meiosis II, but this increase in cdc13 expression was weaker in spo5 mutants. Thus, Spo5 is a novel regulator of meiosis II that controls the level of cdc13 expression and promotes de novo synthesis of Cdc13. We previously reported that inhibition of Cdc13 degradation is necessary to initiate meiosis II; together with the previous information, the current findings indicate that the dual control of Cdc13 by de novo synthesis and suppression of proteolysis ensures the progression of meiosis II. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  18. Basic Tilted Helix Bundle – A new protein fold in human FKBP25/FKBP3 and HectD1

    Energy Technology Data Exchange (ETDEWEB)

    Helander, Sara; Montecchio, Meri [Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping (Sweden); Lemak, Alexander [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Northeast Structural Genomics Consortium, Toronto, Ontario (Canada); Farès, Christophe [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Almlöf, Jonas [Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping (Sweden); Li, Yanjun [Structural Genomics Consortium, University of Toronto, 101 College St, Toronto, Ontario M5G 1L7 (Canada); Yee, Adelinda [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Northeast Structural Genomics Consortium, Toronto, Ontario (Canada); Arrowsmith, Cheryl H. [Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Northeast Structural Genomics Consortium, Toronto, Ontario (Canada); Structural Genomics Consortium, University of Toronto, 101 College St, Toronto, Ontario M5G 1L7 (Canada); Dhe-Paganon, Sirano [Structural Genomics Consortium, University of Toronto, 101 College St, Toronto, Ontario M5G 1L7 (Canada); Sunnerhagen, Maria, E-mail: maria.sunnerhagen@liu.se [Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping (Sweden)

    2014-04-25

    Highlights: • We describe the structure of a novel fold in FKBP25 and HectD. • The new fold is named the Basic Tilted Helix Bundle (BTHB) domain. • A conserved basic surface patch is presented, suggesting a functional role. - Abstract: In this paper, we describe the structure of a N-terminal domain motif in nuclear-localized FKBP25{sub 1–73}, a member of the FKBP family, together with the structure of a sequence-related subdomain of the E3 ubiquitin ligase HectD1 that we show belongs to the same fold. This motif adopts a compact 5-helix bundle which we name the Basic Tilted Helix Bundle (BTHB) domain. A positively charged surface patch, structurally centered around the tilted helix H4, is present in both FKBP25 and HectD1 and is conserved in both proteins, suggesting a conserved functional role. We provide detailed comparative analysis of the structures of the two proteins and their sequence similarities, and analysis of the interaction of the proposed FKBP25 binding protein YY1. We suggest that the basic motif in BTHB is involved in the observed DNA binding of FKBP25, and that the function of this domain can be affected by regulatory YY1 binding and/or interactions with adjacent domains.

  19. Expression of Cyclin E and Its Related Proteins in Gestational Trophoblastic Disease%滋养细胞疾病中Cyclin E及其相关蛋白的表达

    Institute of Scientific and Technical Information of China (English)

    李娜; 曲芃芃

    2014-01-01

    目的:探讨细胞周期蛋白E(Cyclin E)、细胞周期蛋白依赖激酶2(CDK-2)、P27KIP1和P21WAF1/CIP1在正常胎盘组织、葡萄胎和滋养细胞肿瘤(gestational trophoblastic neoplasia,GTN)组织中的表达,研究上述指标表达水平的相关性以及与妊娠滋养细胞疾病(gestational trophoblastic disease,GTD)的关系。方法:采用链霉素-过氧化物酶免疫组化方法检测30例正常胎盘组织、38例葡萄胎组织和9例GTN组织(侵蚀性葡萄胎8例,绒癌1例)中Cyclin E、CDK-2、P27KIP1和P21WAF1/CIP1的表达,分析其与GTD发生发展及预后的关系。结果:①Cyclin E、CDK-2在葡萄胎和GTN组织中的表达高于正常胎盘组织(P<0.01);P27KIP1和P21WAF1/CIP1在GTN组织中的表达低于葡萄胎和正常胎盘组织(P<0.05), P27KIP1和P21WAF1/CIP1在发生恶性转变的葡萄胎组织中的表达低于未发生恶变者(P<0.05)。②Cyclin E与P27KIP1、P21WAF1/CIP1的表达呈负相关(P<0.05);Cyclin E与CDK-2的表达呈正相关(P<0.05);P27KIP1与P21WAF1/CIP1的表达呈正相关(P<0.05)。CDK-2表达随P27KIP1和P21WAF1/CIP1的表达降低呈增高趋势,但差异无统计学意义(P>0.05)。结论:Cyclin E/CDK-2复合物及其抑制蛋白P27KIP1和P21WAF1/CIP1的异常表达参与了GTN的发生发展;P27KIP1和P21WAF1/CIP1可能成为预测葡萄胎恶变的有效标记物。%Objective: To investigate the expression of Cyclin E,CDK-2 and their inhibitors P27KIP1 and P21WAF1/CIP1 in gestational trophoblastic disease (GTD). Methods:Expression of the above indexes were determined immunohistochemically by specific antibodies for these proteins on formalin-fixed paraffin sections of 30 of normal placenta tissues ,38 of hydatidiform moles and 9 of gestational trophoblastic neoplasms (GTN), including 8 invasive moles and 1 choriocarcinoma. Results:①The expression of Cyclin E and CDK-2 in GTD was significantly

  20. Inter- and intrachromosomal asynchrony of cell division cycle events in root meristem cells of Allium cepa: possible connection with gradient of cyclin B-like proteins.

    Science.gov (United States)

    Zabka, Aneta; Polit, Justyna Teresa; Maszewski, Janusz

    2010-08-01

    Alternate treatments of Allium cepa root meristems with hydroxyurea (HU) and caffeine give rise to extremely large and highly elongated cells with atypical images of mitotic divisions, including internuclear asynchrony and an unknown type of interchromosomal asynchrony observed during metaphase-to-anaphase transition. Another type of asynchrony that cannot depend solely on the increased length of cells was observed following long-term incubation of roots with HU. This kind of treatment revealed both cell nuclei entering premature mitosis and, for the first time, an uncommon form of mitotic abnormality manifested in a gradual condensation of chromatin (spanning from interphase to prometaphase). Immunocytochemical study of polykaryotic cells using anti-beta tubulin antibodies revealed severe perturbations in the microtubular organization of preprophase bands. Quantitative immunofluorescence measurements of the control cells indicate that the level of cyclin B-like proteins reaches the maximum at the G2 to metaphase transition and then becomes reduced during later stages of mitosis. After long-term incubation with low doses of HU, the amount of cyclin B-like proteins considerably increases, and a significant number of elongated cells show gradients of these proteins spread along successive regions of the perinuclear cytoplasm. It is suggested that there may be a direct link between the effects of HU-mediated deceleration of S- and G2-phases and an enhanced concentration of cyclin B-like proteins. In consequence, the activation of cyclin B-CDK complexes gives rise to an abnormal pattern of premature mitotic chromosome condensation with biphasic nuclear structures having one part of chromatin decondensed, and the other part condensed.

  1. The Cyclin-Dependent Kinase Ortholog pUL97 of Human Cytomegalovirus Interacts with Cyclins

    Directory of Open Access Journals (Sweden)

    Laura Graf

    2013-12-01

    Full Text Available The human cytomegalovirus (HCMV-encoded protein kinase, pUL97, is considered a cyclin-dependent kinase (CDK ortholog, due to shared structural and functional characteristics. The primary mechanism of CDK activation is binding to corresponding cyclins, including cyclin T1, which is the usual regulatory cofactor of CDK9. This study provides evidence of direct interaction between pUL97 and cyclin T1 using yeast two-hybrid and co-immunoprecipitation analyses. Confocal immunofluorescence revealed partial colocalization of pUL97 with cyclin T1 in subnuclear compartments, most pronounced in viral replication centres. The distribution patterns of pUL97 and cyclin T1 were independent of HCMV strain and host cell type. The sequence domain of pUL97 responsible for the interaction with cyclin T1 was between amino acids 231–280. Additional co-immunoprecipitation analyses showed cyclin B1 and cyclin A as further pUL97 interaction partners. Investigation of the pUL97-cyclin T1 interaction in an ATP consumption assay strongly suggested phosphorylation of pUL97 by the CDK9/cyclin T1 complex in a substrate concentration-dependent manner. This is the first demonstration of interaction between a herpesviral CDK ortholog and cellular cyclins.

  2. AP-2-Associated Protein Kinase 1 and Cyclin G-Associated Kinase Regulate Hepatitis C Virus Entry and Are Potential Drug Targets

    OpenAIRE

    Neveu, Gregory; Ziv-Av, Amotz; Barouch-Bentov, Rina; Berkerman, Elena; Mulholland, Jon; Einav, Shirit

    2015-01-01

    Hepatitis C virus (HCV) enters its target cell via clathrin-mediated endocytosis. AP-2-associated protein kinase 1 (AAK1) and cyclin G-associated kinase (GAK) are host kinases that regulate clathrin adaptor protein (AP)-mediated trafficking in the endocytic and secretory pathways. We previously reported that AAK1 and GAK regulate HCV assembly by stimulating binding of the μ subunit of AP-2, AP2M1, to HCV core protein. We also discovered that AAK1 and GAK inhibitors, including the approved ant...

  3. Study of the Mn-binding sites in photosystem II using antibodies raised against lumenal regions of the D1 and D2 reaction center proteins

    Energy Technology Data Exchange (ETDEWEB)

    Dalmasso, Enrique Agustin [Univ. of California, Berkeley, CA (United States)

    1992-04-01

    The experiments discussed in this thesis focus on identifying the protein segments or specific amino acids which provide ligands to the Mn cluster of photosystem II (PS II). This Mn cluster plays a central role in the oxygen-evolving complex (OEC) of PS II. The Mn cluster is thought to be bound by lumenal regions of the PS II reaction center proteins known as D1 and D2. First, several peptides were synthesized which correspond to specific lumenal segments of the D1 and D2 proteins. Next, polyclonal antibodies were successfully elicited using three of these peptides. The peptides recognized by these antibodies correspond to protein segments of the spinach reaction center proteins: Ile-321 to Ala-344 of D1 (D1-a), Asp-319 to Arg-334 of D1 (D1-b), and Val-300 to Asn-319 of D2 (D2-a). These antibodies were then used in assays which were developed to structurally or functionally probe the potential Mn-binding regions of the D1 and D2 proteins.

  4. Study of the Mn-binding sites in photosystem II using antibodies raised against lumenal regions of the D1 and D2 reaction center proteins

    Energy Technology Data Exchange (ETDEWEB)

    Dalmasso, E.A.

    1992-04-01

    The experiments discussed in this thesis focus on identifying the protein segments or specific amino acids which provide ligands to the Mn cluster of photosystem II (PS II). This Mn cluster plays a central role in the oxygen-evolving complex (OEC) of PS II. The Mn cluster is thought to be bound by lumenal regions of the PS II reaction center proteins known as D1 and D2. First, several peptides were synthesized which correspond to specific lumenal segments of the D1 and D2 proteins. Next, polyclonal antibodies were successfully elicited using three of these peptides. The peptides recognized by these antibodies correspond to protein segments of the spinach reaction center proteins: Ile-321 to Ala-344 of D1 (D1-a), Asp-319 to Arg-334 of D1 (D1-b), and Val-300 to Asn-319 of D2 (D2-a). These antibodies were then used in assays which were developed to structurally or functionally probe the potential Mn-binding regions of the D1 and D2 proteins.

  5. Expression of cyclin-dependent protein kinase 5 in the hippocampus of vascular dementia mice after cerebral ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    Tianjun Wang; Peiyuan Lü; Hezhen Zhang; Hebo Wang; Wei Jin; Zongcheng Guo; Changlin Liu

    2009-01-01

    BACKGROUND: The p25-activated cyclin-dependent protein kinase 5 (Cdk5) may induce neuronal cell death and cause the development of dementia following cerebral ischemia and reperfusion. OBJECTIVE: To observe changes in the expression of Cdk5 and p25 in hippocampal tissue of vascular dementia mice at different time points following cerebral ischemia and reperfusion. DESIGN, TIME AND SETTING: A randomized, controlled animal experiment was performed in the clinical trial center of Hebei Provincial People's Hospital between September 2007 and October 2008.MATERIALS: Cdk5 rabbit anti-mouse polyclonal antibody, p35 rabbit anti-mouse polyclonal antibody, and β-actin mouse monoclonal antibody were purchased from Santa Cruz Biotechnology, Inc., USA; horseradish peroxidase-labeled goat anti-rabbit IgG and horseradish peroxidase-labeled goat anti-mice IgG were offered by Beijing Zhongshan Goldenbridye Biotechnology Co.,Ltd., China; the protein quantitative kit was produced by Applygen Gene Technology Corp., Beijing, China; cDNA reverse transcription and PCR amplification reagents were products of TianGen&Biotech (Beijing) Co.,Ltd., China.METHODS: One hundred and sixty male Kunming mice were randomly divided into two groups: a sham-operated group (n=65) and a model group (n=95). Vascular dementia was induced with three periods of transient ischemia and reperfusion of the bilateral common carotid arteries. In the sham-operated group, the bilateral common carotid arteries were not blocked.MAIN OUTCOME MEASURES: Behavioral tests were done at four and six weeks post surgery. Pathological changes in the hippocampal CA1 region were observed with hematoxylin-eosin staining. Cdk5 mRNA expression was examined by RT-PCR, and Western blots were used to evaluate Cdk5 and p25 expression. Learning and memory performance were assayed using the Morris water maze. RESULTS: Vascular dementia reduced learning and memory performance at 4 and 6 weeks post surgery. Vascular dementia also caused

  6. The mitochondrion-located protein OsB12D1 enhances flooding tolerance during seed germination and early seedling growth in rice.

    Science.gov (United States)

    He, Dongli; Zhang, Hui; Yang, Pingfang

    2014-07-31

    B12D belongs to a function unknown subgroup of the Balem (Barley aleurone and embryo) proteins. In our previous work on rice seed germination, we identified a B12D-like protein encoded by LOC_Os7g41350 (named OsB12D1). OsB12D1 pertains to an ancient protein family with an amino acid sequence highly conserved from moss to angiosperms. Among the six OsB12Ds, OsB12D1 is one of the major transcripts and is primarily expressed in germinating seed and root. Bioinformatics analyses indicated that OsB12D1 is an anoxic or submergence resistance-related gene. RT-PCR results showed OsB12D1 is induced remarkably in the coleoptiles or roots by flooding during seed germination and early seedling growth. The OsB12D1-overexpressed rice seeds could protrude radicles in 8 cm deep water, further exhibiting significant flooding tolerance compared to the wild type. Moreover, this tolerance was not affected by the gibberellin biosynthesis inhibitor paclobutrazol. OsB12D1 was identified in the mitochondrion by subcellular localization analysis and possibly enhances electron transport through mediating Fe and oxygen availability under flooded conditions. This work indicated that OsB12D1 is a promising gene that can help to enhance rice seedling establishment in farming practices, especially for direct seeding.

  7. The Mitochondrion-Located Protein OsB12D1 Enhances Flooding Tolerance during Seed Germination and Early Seedling Growth in Rice

    Directory of Open Access Journals (Sweden)

    Dongli He

    2014-07-01

    Full Text Available B12D belongs to a function unknown subgroup of the Balem (Barley aleurone and embryo proteins. In our previous work on rice seed germination, we identified a B12D-like protein encoded by LOC_Os7g41350 (named OsB12D1. OsB12D1 pertains to an ancient protein family with an amino acid sequence highly conserved from moss to angiosperms. Among the six OsB12Ds, OsB12D1 is one of the major transcripts and is primarily expressed in germinating seed and root. Bioinformatics analyses indicated that OsB12D1 is an anoxic or submergence resistance-related gene. RT-PCR results showed OsB12D1 is induced remarkably in the coleoptiles or roots by flooding during seed germination and early seedling growth. The OsB12D1-overexpressed rice seeds could protrude radicles in 8 cm deep water, further exhibiting significant flooding tolerance compared to the wild type. Moreover, this tolerance was not affected by the gibberellin biosynthesis inhibitor paclobutrazol. OsB12D1 was identified in the mitochondrion by subcellular localization analysis and possibly enhances electron transport through mediating Fe and oxygen availability under flooded conditions. This work indicated that OsB12D1 is a promising gene that can help to enhance rice seedling establishment in farming practices, especially for direct seeding.

  8. Exercise-induced TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle

    DEFF Research Database (Denmark)

    Frøsig, Christian; Pehmøller, Christian; Birk, Jesper Bratz

    2010-01-01

    TBC1D1 is a Rab-GTPase activating protein involved in regulation of GLUT4 translocation in skeletal muscle. We here evaluated exercise-induced regulation of TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle. In separate experiments healthy men performed all......-out cycle exercise lasting either 30 sec, 2 min or 20 min. After all exercise protocols, TBC1D1 Ser237 phosphorylation increased (~70 - 230%, Pprotein showed a similar pattern of regulation...... increasing 60 - 250% (Pprotein kinase (AMPK) induced both Ser237 phosphorylation and 14-3-3 binding properties on human TBC1D1 when evaluated in vitro. To further characterize the role of AMPK as an upstream kinase regulating TBC1D1, extensor digitorum longus...

  9. Human Papillomavirus Type 16 Mutant E7 Protein Induces Oncogenic Transformation via Up-regulation of Cyclin A and cdc25A

    Institute of Scientific and Technical Information of China (English)

    Jin-hua LIU; Yu-liang ZHANG; Li-qin ZHU; Yin-yu XU; Min ZHAO; Xin-xing WU

    2008-01-01

    A new mutant human papiUomavirus type 16 E7 gene, termed HPV16 HBE7, was isolated from cervical carcinoma biopsy samples from patients in an area with high incidence of cervical cancer (Hubei province, China). A previous study showed that the HPVI6 HBE7 protein was primarily cytoplasmic while wild-type HPV16 E7 protein, termed HPV16 WET, was concentrated in the nucleus. With the aim of studying the biological functions of HPV16 HBE7, the transforming potential of HPV16 HBE7 in NIH/3T3 cells was detected through observation of cell morphology, cell proliferation assay and anchorage-independent growth assay. The effect of HPVI6 HBE7 on cell cycle was examined by flow cytometry. Dual-luciferase reporter assay and RT-PCR were used to investigate the influence of HPVI6 HBE7 protein on the expression of regulation factors associated with GI/S checkpoint. The results showed that HPV16 HBE7 protein, as well as HPV16 WE7 protein, held transformation activity. NIH/3T3 cells expressing HPV16 HBE7 could easily transition from G1 phase into S phase and expressed high level of cyclin A and cdc25A. These results indicated HPV16 mutant E7 protein, located in the cytoplasm, induces oncogenic transformation of NIH/3T3 cells via up-regulation of cyclin A and cdc25A.

  10. Cyclin E-induced S phase without activation of the pRb/E2F pathway

    DEFF Research Database (Denmark)

    Lukas, J; Herzinger, T; Hansen, Klaus

    1997-01-01

    In cells of higher eukaryotes, cyclin D-dependent kinases Cdk4 and Cdk6 and, possibly, cyclin E-dependent Cdk2 positively regulate the G1- to S-phase transition, by phosphorylating the retinoblastoma protein (pRb), thereby releasing E2F transcription factors that control S-phase genes. Here we...... performed microinjection and transfection experiments using rat R12 fibroblasts, their derivatives conditionally overexpressing cyclins D1 or E, and human U-2-OS cells, to explore the action of G1 cyclins and the relationship of E2F and cyclin E in S-phase induction. We demonstrate that ectopic expression...... that the cyclin E-induced S phase and completion of the cell division cycle can occur in the absence of E2F-mediated transactivation. Together with the ability of cyclin E to overcome a G1 block induced by expression of dominant-negative mutant DP-1, a heterodimeric partner of E2Fs, these results provide evidence...

  11. Oxidative stress causes renal dopamine D1 receptor dysfunction and hypertension via mechanisms that involve nuclear factor-kappaB and protein kinase C.

    Science.gov (United States)

    Banday, Anees Ahmad; Fazili, Fatima Rizwan; Lokhandwala, Mustafa F

    2007-05-01

    Renal dopamine, via activation of D1 receptors, plays a role in maintaining sodium homeostasis and BP. There exists a defect in renal D1 receptor function in hypertension, diabetes, and aging, conditions that are associated with oxidative stress. However, the exact underlying mechanism of the oxidative stress-mediated impaired D1 receptor signaling and hypertension is not known. The effect of oxidative stress on renal D1 receptor function was investigated in healthy animals. Male Sprague-Dawley rats received tap water (vehicle) and 30 mM L-buthionine sulfoximine (BSO), an oxidant, with and without 1 mM tempol for 2 wk. Compared with vehicle, BSO treatment caused oxidative stress and increase in BP, which was accompanied by defective D1 receptor G-protein coupling and loss of natriuretic response to SKF38393. BSO treatment also increased NF-kappaB nuclear translocation, protein kinase C (PKC) activity and expression, G-protein-coupled receptor kinase-2 (GRK-2) membranous translocation, and D1 receptor serine phosphorylation. In BSO-treated rats' supplementation of tempol decreased oxidative stress, normalized BP, and restored D1 receptor G-protein coupling and natriuretic response to SKF38393. Tempol also normalized NF-kappaB translocation, PKC activity and expression, GRK-2 sequestration, and D1 receptor serine phosphorylation. In conclusion, these results show that oxidative stress activates NF-kappaB, causing an increase in PKC activity, which leads to GRK-2 translocation and subsequent D1 receptor hyper-serine phosphorylation and uncoupling. The functional consequence of this phenomenon was the inability of SKF38393 to inhibit Na/K-ATPase activity and promote sodium excretion, which may have contributed to increase in BP. Tempol reduced oxidative stress and thereby restored D1 receptor function and normalized BP.

  12. Activation of mRNA translation by phage protein and low temperature: the case of Lactococcus lactis abortive infection system AbiD1

    Directory of Open Access Journals (Sweden)

    Ehrlich S Dusko

    2009-01-01

    Full Text Available Abstract Background Abortive infection (Abi mechanisms comprise numerous strategies developed by bacteria to avoid being killed by bacteriophage (phage. Escherichia coli Abis are considered as mediators of programmed cell death, which is induced by infecting phage. Abis were also proposed to be stress response elements, but no environmental activation signals have yet been identified. Abis are widespread in Lactococcus lactis, but regulation of their expression remains an open question. We previously showed that development of AbiD1 abortive infection against phage bIL66 depends on orf1, which is expressed in mid-infection. However, molecular basis for this activation remains unclear. Results In non-infected AbiD1+ cells, specific abiD1 mRNA is unstable and present in low amounts. It does not increase during abortive infection of sensitive phage. Protein synthesis directed by the abiD1 translation initiation region is also inefficient. The presence of the phage orf1 gene, but not its mutant AbiD1R allele, strongly increases abiD1 translation efficiency. Interestingly, cell growth at low temperature also activates translation of abiD1 mRNA and consequently the AbiD1 phenotype, and occurs independently of phage infection. There is no synergism between the two abiD1 inducers. Purified Orf1 protein binds mRNAs containing a secondary structure motif, identified within the translation initiation regions of abiD1, the mid-infection phage bIL66 M-operon, and the L. lactis osmC gene. Conclusion Expression of the abiD1 gene and consequently AbiD1 phenotype is specifically translationally activated by the phage Orf1 protein. The loss of ability to activate translation of abiD1 mRNA determines the molecular basis for phage resistance to AbiD1. We show for the first time that temperature downshift also activates abortive infection by activation of abiD1 mRNA translation.

  13. The prognostic significance of p53, Bax, Bcl-2 and cyclin E protein overexpression in colon cancer - an immunohistochemical study using the tissue microarray technique.

    Science.gov (United States)

    Melincovici, Carmen Stanca; Mihu, Carmen Mihaela; Mărginean, Mariana; Boşca, Adina Bianca; Coneac, Andrei; Moldovan, Ioana; Crişan, Maria

    2016-01-01

    In colon cancer, biological markers continue to have a limited prognostic value, the results being controversial. Studies of cell-cycle regulatory proteins and anti-apoptotic proteins aim to identify groups of patients that develop more aggressive tumors and might benefit from an individualized therapy management. The present study evaluates the prognostic role of the p53, Bax, Bcl-2 and cyclin E immunoexpression in colon cancer, using the tissue microarray (TMA) method. Tissue samples were obtained from 31 patients operated for colon cancer, embedded in TMA paraffin blocks and immunohistochemically stained for p53, Bax, Bcl-2 and cyclin E. We evaluated the relationship between the overexpression of these proteins and the clinico-pathological parameters, as well as the effect of these molecular markers on the survival rate. 65.22% of the patients were p53 positive, 39.13% Bcl-2 positive, 78.26% Bax positive and 34.78% cyclin E positive. Bcl-2(+) patients had significantly better differentiated tumors (p=0.043). Significantly poorly differentiated tumors were: Bax(+) patients (p=0.031), Bcl-2(-)÷p53(-) patients (p=0.042), Bcl-2(-)÷Bax(+) patients (p=0.029), and Bcl-2(-)÷p53(-)÷Bax(+) patients (p=0.016). The individual expression of the studied proteins did not influence the survival rate. A significantly lower survival rate was found in the following groups of patients: Bcl-2(-)÷p53(-) (40% vs. 83.3%, p=0.027), p53(-)÷Bax(+) (40% vs. 83.3%, p=0.027), Bcl-2(-)÷p53(-)÷Bax(+) (25% vs. 84.2%, p=0.003). The current study identified groups of patients with a significantly lower survival rate, which consequently are at an increased risk to develop tumors with a more aggressive biological behavior.

  14. Constitutive over-expression of rice ClpD1 protein enhances tolerance to salt and desiccation stresses in transgenic Arabidopsis plants.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Richa; Grover, Anil

    2016-09-01

    Caseinolytic proteases (Clps) perform the important role of removing protein aggregates from cells, which can otherwise prove to be highly toxic. ClpD system is a two-component protease complex composed of a regulatory ATPase module ClpD and a proteolytic component ClpP. Under desiccation stress condition, rice ClpD1 (OsClpD1) gene encoding for the regulatory subunit, was represented by four variant transcripts differing mainly in the expanse of their N-terminal amino acids. These transcripts were expressed in a differential manner in response to salt, mannitol and polyethylene glycol stresses in rice. Purified OsClpD1.3 protein exhibited intrinsic chaperone activity, shown using citrate synthase as substrate. Arabidopsis (Col-0) plants over-expressing OsClpD1.3 open reading frame downstream to CaMV35S promoter (ClpD1.3 plants) showed higher tolerance to salt and desiccation stresses as compared to wild type plants. ClpD1.3 seedlings also showed enhanced growth during the early stages of seed germination under unstressed, control conditions. The free proline levels and starch breakdown activities were higher in the ClpD1.3 seedlings as compared to the wild type Arabidopsis seedlings. It thus emerges that increasing the potential of ClpD1 chaperoning activity may be of advantage in protection against abiotic stresses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Technetium-99m radiolabeling of a recombinant dermonecrotic protein (recLiD1) from the Loxosceles venom for biodistribution study

    Energy Technology Data Exchange (ETDEWEB)

    Valadares, D.; Felicori, L.; Olortegui, C.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia; Simal, C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Medicina; Gouvea dos Santos, R. [Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN-MG, Belo Horizonte, MG (Brazil). Lab. de Radiobiologia]. E-mail: santosr@cdtn.br

    2007-07-01

    In the present study the recombinant form (recLiD1) of a dermonecrotic protein present in the Brazilian brown spider Loxosceles intermedia venom was labeled with technetium-99m using stannous chloride and sodium borohydride as reducing agents. 99mTc-recLiD 1 kept its biological activity evoking dermonecrotic activity in rabbits. In vivo biodistribution in mice with the radiolabeled recLiD 1 showed high kidney uptake followed by stomach and liver uptakes. Also, we can see that 20% of toxin remaining in the skin after 120 min and once absorbed, 99mTc-recLiD 1 is rapidly cleared from the blood with long-lasting. We also observed one displacement of 99mTc-recLiD 1 by one monoclonal antibody raised against L. intermedia venom that indicates specific interaction with kidney tissue. (author)

  16. Signal transducer and activator of transcription 5 activation is sufficient to drive transcriptional induction of cyclin D2 gene and proliferation of rat pancreatic beta-cells

    DEFF Research Database (Denmark)

    Friedrichsen, Birgitte N; Richter, Henrijette E; Hansen, Johnny A

    2003-01-01

    in a time-dependent manner by hGH in INS-1 cells. Inhibition of protein synthesis by coincubation with cycloheximide did not affect the hGH-induced increase of cyclin D2 mRNA levels at 4 h. Expression of a dominant negative STAT5 mutant, STAT5aDelta749, partially inhibited cyclin D2 protein levels. INS-1...... cells and hGH-induced increase of mRNA-levels of the cell cycle regulator cyclin D2. In this study we have further characterized the role of STAT5 in the regulation of cyclin D expression and beta-cell proliferation by hGH. Cyclin D2 mRNA and protein levels (but not cyclin D1 and D3) were induced......-STAT5b stimulated transcriptional activation of the cyclin D2 promoter and induced hGH-independent proliferation in these cells. In primary beta-cells, adenovirus-mediated expression of CA-STAT5b profoundly stimulated DNA-synthesis (5.3-fold over control) in the absence of hGH. Our studies indicate...

  17. D1 protein turnover is involved in protection of Photosystem II against UV-B induced damage in the cyanobacterium Arthrospira (Spirulina) platensis.

    Science.gov (United States)

    Wu, Hongyan; Abasova, Leyla; Cheregi, Otilia; Deák, Zsuzsanna; Gao, Kunshan; Vass, Imre

    2011-01-01

    By using two strains of Arthrospira (Spirulina)platensis, an economically important filamentous cyanobacterium, we compared the impairment of PSII activity and loss of D1 protein content under UV-B radiation. Our study showed that UV-B radiation induced a gradual loss of the oxygen-evolving activity to about 56% after 180 min UV-B irradiation both in strains 439 and D-0083, which have been kept under indoor and an outdoor culturing conditions, respectively for a prolonged period of time. The loss of oxygen evolution was accelerated in both strains in the presence of lincomycin, an inhibitor of protein synthesis, and the amount of D1 protein showed a decrease comparable to that of oxygen evolution during the UV-B exposure. However, the UV-B induced loss of oxygen-evolving activity and D1 protein amount was largely prevented when A. platensis cells were exposed to UV-B irradiance supplemented with visible light. Comparison of the two strains also showed a smaller extent of D1 protein synthesis dependent PSII repair in the indoor strain. Our results show that turnover of the D1 protein is an important defense mechanism to counteract the UV-B induced damage of PSII in A. platensis, and also that visible light plays an important role in maintaining the function of PSII under simultaneous exposure to UV-B and visible light.

  18. Distribution of D1 and D2-dopamine receptors in calcium-binding-protein expressing interneurons in rat anterior cingulate cortex.

    Science.gov (United States)

    Xu, Lei; Zhang, Xue-Han

    2015-04-25

    Dopamine plays an important role in cognitive functions including decision making, attention, learning and memory in the anterior cingulate cortex (ACC). However, little is known about dopamine receptors (DAR) expression patterns in ACC neurons, especially GABAergic interneurons. The aim of the present study was to investigate the expression of the most abundant DAR subtypes, D1 receptors (D1Rs) and D2 receptors (D2Rs), in major types of GABAergic interneurons in rat ACC, including parvalbumin (PV)-, calretinin (CR)-, and calbindin D-28k (CB)-containing interneurons. Double immunofluorescence staining and confocal scanning were used to detect protein expression in rat brain sections. The results showed a high proportion of PV-containing interneurons express D1Rs and D2Rs, while a low proportion of CR-positive interneurons express D1Rs and D2Rs. D1R- and D2R-expressing PV interneurons are more prevalently distributed in deep layers than superficial layers of ACC. Moreover, we found the proportion of D2Rs expressed in CR cells is much greater than that of D1Rs. These regional and interneuron type-specific differences of D1Rs and D2Rs indicate functionally distinct roles for dopamine in modulating ACC activities via stimulating D1Rs and D2Rs.

  19. Modulation of Cyclins, p53 and Mitogen-Activated Protein Kinases Signaling in Breast Cancer Cell Lines by 4-(3,4,5-Trimethoxyphenoxybenzoic Acid

    Directory of Open Access Journals (Sweden)

    Kuan-Han Lee

    2014-01-01

    Full Text Available Despite the advances in cancer therapy and early detection, breast cancer remains a leading cause of cancer-related deaths among females worldwide. The aim of the current study was to investigate the antitumor activity of a novel compound, 4-(3,4,5-trimethoxyphenoxybenzoic acid (TMPBA and its mechanism of action, in breast cancer. Results indicated the relatively high sensitivity of human breast cancer cell-7 and MDA-468 cells towards TMPBA with IC50 values of 5.9 and 7.9 µM, respectively compared to hepatocarcinoma cell line Huh-7, hepatocarcinoma cell line HepG2, and cervical cancer cell line Hela cells. Mechanistically, TMPBA induced apoptotic cell death in MCF-7 cells as indicated by 4',6-diamidino-2-phenylindole (DAPI nuclear staining, cell cycle analysis and the activation of caspase-3. Western blot analysis revealed the ability of TMPBA to target pathways mediated by mitogen-activated protein (MAP kinases, 5' adenosine monophosphate-activated protein kinase (AMPK, and p53, of which the concerted action underlined its antitumor efficacy. In addition, TMPBA induced alteration of cyclin proteins’ expression and consequently modulated the cell cycle. Taken together, the current study underscores evidence that TMPBA induces apoptosis in breast cancer cells via the modulation of cyclins and p53 expression as well as the modulation of AMPK and mitogen-activated protein kinases (MAPK signaling. These findings support TMPBA’s clinical promise as a potential candidate for breast cancer therapy.

  20. Meiotic failure in cyclin A1-deficient mouse spermatocytes triggers apoptosis through intrinsic and extrinsic signaling pathways and 14-3-3 proteins

    Science.gov (United States)

    Panigrahi, Sunil K.; Manterola, Marcia; Wolgemuth, Debra J.

    2017-01-01

    Cyclin A1 (Ccna1), a member of the mammalian A type cyclins, is most abundantly expressed in spermatocytes and is essential for spermatogenesis in the mouse. Ccna1- deficient spermatocytes arrest at late meiotic prophase and undergo apoptosis. To further delineate the mechanisms and key factors involved in this process, we have examined changes in expression of genes involved in both intrinsic and extrinsic signaling pathways that trigger apoptosis in the mutant spermatocytes. Our results show that both pathways are involved, and that the factors involved in the intrinsic pathway were expressed earlier than those involved in the extrinsic pathway. We have also begun to identify in vivo Ccna1-interacting proteins, using an unbiased biochemical approach, and identified 14-3-3, a key regulator of apoptosis, as a Ccna1-interacting protein. Expression levels of 14-3-3 proteins remain unchanged between wild type and mutant testes but there were differences in the subcellular distribution. In wild type control, 14-3-3 is detected in both cytosolic and nuclear fractions whereas it is restricted to the cytoplasm in mutant testes. This differential distribution of 14-3-3 may contribute to the induction of apoptosis in Ccna1-deficient spermatocytes. These results provide insight into the apoptotic mechanisms and pathways that are triggered when progression through the meiotic cell cycle is defective in male gametogenesis. PMID:28301569

  1. A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor protein

    Science.gov (United States)

    Ratner, N.; Bloom, G. S.; Brady, S. T.

    1998-01-01

    Proteins that interact with both cytoskeletal and membrane components are candidates to modulate membrane trafficking. The tumor suppressor proteins neurofibromin (NF1) and adenomatous polyposis coli (APC) both bind to microtubules and interact with membrane-associated proteins. The effects of recombinant NF1 and APC fragments on vesicle motility were evaluated by measuring fast axonal transport along microtubules in axoplasm from squid giant axons. APC4 (amino acids 1034-2844) reduced only anterograde movements, whereas APC2 (aa 1034-2130) or APC3 (aa 2130-2844) reduced both anterograde and retrograde transport. NF1 had no effect on organelle movement in either direction. Because APC contains multiple cyclin-dependent kinase (CDK) consensus phosphorylation motifs, the kinase inhibitor olomoucine was examined. At concentrations in which olomoucine is specific for cyclin-dependent kinases (5 microM), it reduced only anterograde transport, whereas anterograde and retrograde movement were both affected at concentrations at which other kinases are inhibited as well (50 microM). Both anterograde and retrograde transport also were inhibited by histone H1 and KSPXK peptides, substrates for proline-directed kinases, including CDKs. Our data suggest that CDK-like axonal kinases modulate fast anterograde transport and that other axonal kinases may be involved in modulating retrograde transport. The specific effect of APC4 on anterograde transport suggests a model in which the binding of APC to microtubules may limit the activity of axonal CDK kinase or kinases in restricted domains, thereby affecting organelle transport.

  2. Degradation and de novo synthesis of D1 protein and psbA transcript in reinhardtii during UV-B inactivation of photosynthesis

    Indian Academy of Sciences (India)

    Ratnesh Haturvedi; Adhey Hyam

    2000-03-01

    UV-B induces intensity and time dependent inhibition of photosynthetic O evolution and PS II electron transport Chlamydomonas reinhardtii chloroplast membranes are rapidly and essential for the repair of damaged PS II as chloramphenicol accelerated UV-B inactivation of photosynthesis and psb for the D1 protein. Cells showing 72% inhibition of PS II protein. This shows that synthesis of D1 protein is not the only component involved in the recovery process. Our events, which in turn may limit the repair of damaged PS II.

  3. Crystal Structure of Human Cyclin K, A Positive Regulator of Cyclin-Dependent Kinase 9

    Energy Technology Data Exchange (ETDEWEB)

    Baek,K.; Brown, R.; Birrane, G.; Ladias, J.

    2007-01-01

    K and the closely related cyclins T1, T2a, and T2b interact with cyclin-dependent kinase 9 (CDK9) forming multiple nuclear complexes, referred to collectively as positive transcription elongation factor b (P-TEFb). Through phosphorylation of the C-terminal domain of the RNA polymerase II largest subunit, distinct P-TEFb species regulate the transcriptional elongation of specific genes that play central roles in human physiology and disease development, including cardiac hypertrophy and human immunodeficiency virus-1 pathogenesis. We have determined the crystal structure of human cyclin K (residues 11-267) at 1.5 {angstrom} resolution, which represents the first atomic structure of a P-TEFb subunit. The cyclin K fold comprises two typical cyclin boxes with two short helices preceding the N-terminal box. A prominent feature of cyclin K is an additional helix (H4a) in the first cyclin box that obstructs the binding pocket for the cell-cycle inhibitor p27{sup Kip1}. Modeling of CDK9 bound to cyclin K provides insights into the structural determinants underlying the formation and regulation of this complex. A homology model of human cyclin T1 generated using the cyclin K structure as a template reveals that the two proteins have similar structures, as expected from their high level of sequence identity. Nevertheless, their CDK9-interacting surfaces display significant structural differences, which could potentially be exploited for the design of cyclin-targeted inhibitors of the CDK9-cyclin K and CDK9-cyclin T1 complexes.

  4. NirN Protein from Pseudomonas aeruginosa is a Novel Electron-bifurcating Dehydrogenase Catalyzing the Last Step of Heme d1 Biosynthesis*

    Science.gov (United States)

    Adamczack, Julia; Hoffmann, Martin; Papke, Ulrich; Haufschildt, Kristin; Nicke, Tristan; Bröring, Martin; Sezer, Murat; Weimar, Rebecca; Kuhlmann, Uwe; Hildebrandt, Peter; Layer, Gunhild

    2014-01-01

    Heme d1 plays an important role in denitrification as the essential cofactor of the cytochrome cd1 nitrite reductase NirS. At present, the biosynthesis of heme d1 is only partially understood. The last step of heme d1 biosynthesis requires a so far unknown enzyme that catalyzes the introduction of a double bond into one of the propionate side chains of the tetrapyrrole yielding the corresponding acrylate side chain. In this study, we show that a Pseudomonas aeruginosa PAO1 strain lacking the NirN protein does not produce heme d1. Instead, the NirS purified from this strain contains the heme d1 precursor dihydro-heme d1 lacking the acrylic double bond, as indicated by UV-visible absorption spectroscopy and resonance Raman spectroscopy. Furthermore, the dihydro-heme d1 was extracted from purified NirS and characterized by UV-visible absorption spectroscopy and finally identified by high-resolution electrospray ionization mass spectrometry. Moreover, we show that purified NirN from P. aeruginosa binds the dihydro-heme d1 and catalyzes the introduction of the acrylic double bond in vitro. Strikingly, NirN uses an electron bifurcation mechanism for the two-electron oxidation reaction, during which one electron ends up on its heme c cofactor and the second electron reduces the substrate/product from the ferric to the ferrous state. On the basis of our results, we propose novel roles for the proteins NirN and NirF during the biosynthesis of heme d1. PMID:25204657

  5. Effects of specific small interfering RNA-mediated cyclinD1 gene silencing on the growth of human keloid fibroblasts%瘢痕疙瘩成纤维细胞生长与小干扰RNA分子抑制细胞周期蛋白D1表达的影响

    Institute of Scientific and Technical Information of China (English)

    梁大宁; 高建华; 鲁峰

    2008-01-01

    目的:细胞周期蛋白是细胞周期调控的决定性因子,RNA干涉是一种高效特异的基因沉默技术,能诱使细胞表现出特定基因缺失表型.通过RNA干扰阻断细胞周期蛋白D1基因表达,观察瘢痕疙瘩成纤维细胞增殖和细胞周期的影响.方法:实验于2006-07/2007-05在南方医科大学基因工程研究所(BSL-2级)完成.①实验材料:小干扰性RNA设计采用软件是ambion公司的在线软件siRNA target finder,合成采用化学合成法,委托上海吉凯基因有限公司合成,再经过变性退火处理后得到双链小干扰性RNA;瘢痕疙瘩成纤维细胞标本取自南方医院整形外科瘢痕疙瘩患者(均获得患者或其家属同意).②实验过程及分组:将瘢痕疙瘩成纤维细胞应用脂质体法将针对细胞周期蛋白D1基因的小干扰RNA分子转染为实验组,细胞用等量脂质体处理为脂质体组,未处理组作为对照.③实验评估:于转染后24,48,72 h,光学显微镜观察细胞形态变化;流式细胞术分析细胞周期;MTT法检测成纤维细胞的活性并绘制细胞生长曲线.结果:①转染特异性小干扰RNA后,细胞形态发生了异常改变,细胞由正常的长梭形变为圆形或椭圆形,提示可能是凋亡或坏死细胞.②转染后细胞周期G1期延长,S期缩短.转染特异性小干扰RNA 24,48,72 h后G1期细胞高于未处理组(依次为60.13%,66.22%,67.53%,54.53%);S期细胞低于未处理组(依次为18.25%,17.11%,11.15%,22.31%),表明细胞阻滞在G1期,进入S期细胞减少.③小干扰RNA-细胞周期蛋白D1转染后MTT法检测瘢痕疙瘩成纤维细胞增值明显受到抑制,细胞生长曲线图表明,转染特异性小干扰RNA组细胞生长明显减缓.结论:特异性小干扰RNA分子能够抑制细胞周期蛋白D1基因的表达,使细胞阻滞于G1期,并诱导细胞凋亡.

  6. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    Directory of Open Access Journals (Sweden)

    Khursheed A Wani

    Full Text Available Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1 required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.

  7. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    Science.gov (United States)

    Wani, Khursheed A; Catanese, Mary; Normantowicz, Robyn; Herd, Muriel; Maher, Kathryn N; Chase, Daniel L

    2012-01-01

    Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.

  8. Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

    Directory of Open Access Journals (Sweden)

    Schwarzenbach Heidi

    2010-06-01

    Full Text Available Abstract Background The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation. Methods In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies. Results Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3 at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR. Conclusions This study is one

  9. Effects of gastrointestinal digestion and heating on the allergenicity of the kiwi allergens Act d 1, actinidin, and Act d 2, a thaumatin-like protein

    NARCIS (Netherlands)

    Bublin, Merima; Radauer, Christian; Knulst, Andre; Wagner, Stefan; Scheiner, Otto; Mackie, Alan R.; Mills, E. N. Clare; Breiteneder, Heimo

    2008-01-01

    Kiwifruit is a significant elicitor of allergy both in children and adults. Digestibility of two kiwifruit allergens, actinidin (Act d 1) and thaumatin-like protein (Act d 2), was assessed using an in vitro digestion system that approximates physiological conditions with respect to the passage of fo

  10. Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: possible role in dopamine-mediated inositol phosphate formation.

    Science.gov (United States)

    Wang, H Y; Undie, A S; Friedman, E

    1995-12-01

    The role of G proteins in mediating the coupling of D1 dopamine receptors to inositol phosphate formation was investigated in rat brain striatum. Pertussis toxin-activated ADP-ribosylation ( > or = 95%) did not affect the ability of the D1 agonist SKF38393 to stimulate the generation of inositol phosphates in striatal slices. Stimulation of striatal membranes with dopamine in the presence of [35S]GTP gamma S or [alpha-32P]GTP increased guanine nucleotide binding to G alpha s, G alpha i, and G alpha q in a concentration-dependent fashion. The activation of G alpha s and G alpha q was mimicked by the D1 agonist SKF38393 and blocked by the D1 antagonist SCH23390. In contrast, the D2/3 dopamine receptor agonist quinpirole stimulated guanine nucleotide binding to G alpha i, and dopamine-stimulated activation of G alpha i was attenuated by the D2 antagonist I-sulpiride. Furthermore, antisera directed against G alpha s or G alpha q but not G alpha i, G alpha o, or G alpha z precipitated specific D1-like binding sites labeled with [3H]SCH23390. The D1-like receptors that coprecipitated with G alpha s-but not with G alpha q can be recognized by a specific D1 dopamine receptor antibody. The data provide evidence to suggest that in addition to coupling to Gs/adenylyl cyclase, D1-like dopamine sites that couple to Gq may mediate dopamine-stimulated formation of inositol phosphates in the rat striatum.

  11. Preparation and application of polyclonal antibodiesagainst KSHV v-cyclin.

    Science.gov (United States)

    Xue, Min; Guo, Yuanyuan; Yan, Qin; Qin, Di; Lu, Chun

    2013-09-01

    We prepared rabbit polyclonal antibodies against Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded v-cyclin (ORF 72) and detected the natural viral protein using these polyclonal antibodies. Three antigenic polypeptides of v-cyclin were designed and synthesized. A fragment of the v-cyclin gene was cloned into a eukaryotic expression vector pEF-MCS-Flag-IRES/Puro to construct a recombinant vector, pEF v-cyclin. Then, pEF v-cyclin was transfected into 293T and EA.hy926 cells to obtain v-cyclin-Flag fusion proteins. Six New Zealand white rabbits were immunized with KLH-conjugated peptides to generate polyclonal antibodies against v-cyclin. The polyclonal antibodies were then characterized by ELISA and Western blotting assays. Finally, the polyclonal antibodies against v-cyclin were used to detect natural viral protein expressed in BCBL-1, BC-3, and JSC-1 cells. The results showed that using the Flag antibody, v-cyclin-Flag fusion protein was detected in 293T and EA.hy926 cells transfected with pEF-v-cyclin. Furthermore, ELISA showed that the titer of the induced polyclonal rabbit anti-v-cyclin antibodies was higher than 1:8,000. In Western blotting assays, the antibodies reacted specifically with the v-cyclin-Flag fusion protein as well as the natural viral protein. The recombinant expression vector pEF-v-cyclin was constructed successfully, and the polyclonal antibodies prepared can be used for various biological tests including ELISA and Western blotting assays.

  12. Regulation of proliferation in developing human tooth germs by MSX muscle segment homeodomain proteins and cyclin-dependent kinase inhibitor p19(INK4d).

    Science.gov (United States)

    Kero, Darko; Vukojevic, Katarina; Stazic, Petra; Sundov, Danijela; Brakus, Snjezana Mardesic; Saraga-Babic, Mirna

    2017-09-21

    Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19(INK4d). p19(INK4d) induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19(INK4d) by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19(INK4d) in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19(INK4d) throughout the investigated period indicates that p19(INK4d) plays active role during human tooth development. Furthermore, comparison of expression domains of p19(INK4d) with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.

  13. 细胞周期蛋白在喉癌组织中的表达及意义%Expression and Significance of Cyclins in Laryngeal Carcinomas

    Institute of Scientific and Technical Information of China (English)

    刘馨莲; 殷舞; 李淑蓉; 孙静

    2011-01-01

    目的 探讨喉癌组织中细胞周期蛋白(Cyclin D1Cyclin A、Cyclin B1、Cyclin E)的表达规律及其与喉癌临床病理参数的关系.方法 采用免疫组化技术,检测Cyclin D1Cyclin A、Cyclin B1、Cyclin E在67例喉癌组织和32例癌旁正常组织中的表达情况.结果 Cyclin D1Cyclin A、Cyclin B1、Cyclin E在癌旁正常组织中呈低表达.随着喉癌分化程度的降低,Cyclin D1Cyclin A、Cyclin B1、Cyclin E表达阳性率明显升高,高分化者、中分化者与低分化者比较有显著性差异(P<0.05).结论 通过免疫组织化学法分析细胞周期的数据,有利于肿瘤分级,且细胞周期数据与预后相关.%Objective To investigate the expression and significance of Cyclin Dl ,Cyclin A,Cyclin B1 and Cyclin E in laryngeal carcinomas, and study the correlation between parameters and clinicopathological features. Methods Expression of Cyclin Dl,Cyclin A,Cyclin Bl and Cyclin E were analyzed by immunohistochemistry staining in 67 cases of laryngeal carcinomas and 32 peri-cancer normal larynx tissues. Results Cyclin Dl, Cyclin A, Cyclin Bl and Cyclin E were low Expressed in pericancer normal larynx tissues. With the decreasing of pathological classification, the expression of Cyclin Dl、Cyclin A、Cyclin Bl  and Cyclin E in laryngeal carcinomas increased accordingly. The difference between group highly-differentiated、moderately-differentiated and poorly-differentiated were significant (P < 0. 05 ). Conclusion Cell cycle phase can be analyzed by immunohistochemical stain,and it is beneficial for tumor classification and helpful to predict the prognosis.

  14. Involvement of DEG5 and DEG8 proteases in the turnover of the photosystem II reaction center D1 protein under heat stress in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    SUN XuWu; WANG LiYuan; ZHANG LiXin

    2007-01-01

    Deg5,deg8 and the double mutant,deg5deg8 of Arabidopsis thaliana were used to study the physiological role of the DEG proteases in the repair cycle of photosystem II (PSII) under heat stress. PSII activity in deg mutants showed increased sensitivity to heat stress,and the extent of this effect was greater in the double mutant,deg5deg8,than in the single mutants,deg5 and deg8. Degradation of the D1 protein was slower in the mutants than in the WT plants. Furthermore,the levels of other PSII reaction center proteins tested remained relatively stable in the mutant and WT plants following high-temperature treatment. Thus,our results indicate that DEG5 and DEG8 may have synergistic function in degradation of D1 protein under heat stress.

  15. Targeting Vascular Endothelial Growth Factor Receptor 2 and Protein Kinase D1 Related Pathways by a Multiple Kinase Inhibitor in Angiogenesis and Inflammation Related Processes In Vitro

    OpenAIRE

    Attila Varga; Pál Gyulavári; Zoltán Greff; Krisztina Futosi; Tamás Németh; Laura Simon-Szabó; Krisztina Kerekes; Csaba Szántai-Kis; Diána Brauswetter; Márton Kokas; Gábor Borbély; Anna Erdei; Attila Mócsai; György Kéri; Tibor Vántus

    2015-01-01

    Emerging evidence suggests that the vascular endothelial growth factor receptor 2 (VEGFR2) and protein kinase D1 (PKD1) signaling axis plays a critical role in normal and pathological angiogenesis and inflammation related processes. Despite all efforts, the currently available therapeutic interventions are limited. Prior studies have also proved that a multiple target inhibitor can be more efficient compared to a single target one. Therefore, development of novel inflammatory pathway-specific...

  16. Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription.

    Science.gov (United States)

    Cartier, Jessy; Berthelet, Jean; Marivin, Arthur; Gemble, Simon; Edmond, Valérie; Plenchette, Stéphanie; Lagrange, Brice; Hammann, Arlette; Dupoux, Alban; Delva, Laurent; Eymin, Béatrice; Solary, Eric; Dubrez, Laurence

    2011-07-29

    The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity.

  17. Cyclin D1 and Cyclin E as Markers of Therapeutic Responsiveness in Breast Cancer

    Science.gov (United States)

    2002-05-01

    aromatase inhibitors and progestin . Given that the major source of estrogen in postmenopausal women is the peripheral aromatisation of estrogen and...androgen precursors, the enzyme aromatase has become a major molecular target for endocrine treatment (44- 46). Synthetic progestins are an effective...confirmed by Western blots. Measurement of S- phase fraction up to 72 hours and colony-forming assay up to 3 weeks of treatment with progestin and

  18. The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1.

    Science.gov (United States)

    Ferrero-Serrano, Ángel; Assmann, Sarah M

    2016-05-01

    Essential in the Green Revolution was the development of high-yielding dwarf varieties of rice (Oryza sativa L.), but their selection was not based on responses to water limitation. We studied physiological responses to progressive drought of the dwarf rice mutant, d1, in which the RGA1 gene, which encodes the GTP-binding α-subunit of the heterotrimeric G protein, is non-functional. Wild-type (WT) plants cease net carbon fixation 11 days after water is withheld, while d1 plants maintain net photosynthesis for an additional week. During drought, d1 plants exhibit greater stomatal conductance than the WT, but both genotypes exhibit the same transpirational water loss per unit leaf area. This is explained by a smaller driving force for water loss in d1 owing to its lower leaf temperatures, consistent with its more erect architecture. As drought becomes more severe, WT plants show an accelerated decline in photosynthesis, which may be exacerbated by the higher leaf temperatures in the WT. We thus show how a rice mutant with dwarf and erect leaves has a decreased susceptibility to water stress. Accordingly, it may be useful to incorporate RGA1 mutation in breeding or biotechnological strategies for development of drought-resistant rice.

  19. D-type cyclins in adult human testis and testicular cancer

    DEFF Research Database (Denmark)

    Bartkova, J; Rajpert-de Meyts, E; Skakkebaek, N E

    1999-01-01

    on immunohistochemical and immunochemical analysis of human adult testis and 32 testicular tumours to examine the differential expression and abundance of cyclins D1, D2, and D3 in relation to cell type, proliferation, differentiation, and malignancy. In normal testis, the cell type-restricted expression patterns were...... D2 but not D1 or D3, while the invasive testicular tumours showed variable positivity for cyclins D2 and D3, but rarely D1. An unexpected correlation with differentiation rather than proliferation was found particularly for cyclin D3 in teratomas, a conceptually significant observation confirmed...... by massive up-regulation of cyclin D3 in the human teratocarcinoma cell line NTera2/D1 induced to differentiate along the neuronal lineage. These results suggest a possible involvement of cyclin D2 in the early stages of testicular oncogenesis and the striking examples of proliferation-independent expression...

  20. Beneficial role of spermidine in chlorophyll metabolism and D1 protein content in tomato seedlings under salinity-alkalinity stress.

    Science.gov (United States)

    Hu, Lipan; Xiang, Lixia; Li, Shuting; Zou, Zhirong; Hu, Xiao-Hui

    2016-04-01

    Polyamines are important in protecting plants against various environmental stresses, including protection against photodamage to the photosynthetic apparatus. The molecular mechanism of this latter effect is not completely understood. Here, we have investigated the effects of salinity-alkalinity stress and spermidine (Spd) on tomato seedlings at both physiological and transcriptional levels. Salinity-alkalinity stress decreased leaf area, net photosynthetic rate, maximum net photosynthetic rate, light saturation point, apparent quantum efficiency, total chlorophyll, chlorophyll a and chlorophyll a:chlorophyll b relative to the control. The amount of D1 protein, an important component of photosystem II, was reduced compared with the control, as was the expression of psbA, which codes for D1. Expression of the chlorophyll biosynthesis gene porphobilinogen deaminase (PBGD) was reduced following salinity-alkalinity stress, whereas the expression of Chlase, which codes for chlorophyllase, was increased. These negative physiological effects of salinity-alkalinity stress were alleviated by exogenous Spd. Expression of PBGD and psbA were enhanced, whereas the expression of Chlase was reduced, when exogenous Spd was included in the stress treatment compared with when it was not. The protective effect of Spd on chlorophyll and D1 protein content during stress may maintain the photosynthetic apparatus, permitting continued photosynthesis and growth of tomato seedlings (Solanum lycopersicum cv. Jinpengchaoguan) under salinity-alkalinity stress.

  1. Tripartite Motif-Containing Protein 22 Interacts with Class II Transactivator and Orchestrates Its Recruitment in Nuclear Bodies Containing TRIM19/PML and Cyclin T1

    Directory of Open Access Journals (Sweden)

    Greta Forlani

    2017-05-01

    Full Text Available Among interferon (IFN inducible antiviral factors both tripartite motif-containing protein 22 (TRIM22 and class II transactivator (CIITA share the capacity of repressing human immunodeficiency virus type 1 (HIV-1 proviral transcription. TRIM22 is constitutively expressed in a subset of U937 cell clones poorly permissive to HIV-1 replication, whereas CIITA has been shown to inhibit virus multiplication in both T lymphocytic and myeloid cells, including poorly HIV-1 permissive U937 cells, by suppressing Tat-mediated transactivation of HIV-1 transcription. Therefore, we tested whether TRIM22 and CIITA could form a nuclear complex potentially endowed with HIV-1 repressive functions. Indeed, we observed that TRIM22, independent of its E3 ubiquitin ligase domain, interacts with CIITA and promotes its recruitment into nuclear bodies. Importantly, TRIM19/promyelocytic leukemia (PML protein, another repressor of HIV-1 transcription also acting before proviral integration, colocalize in these nuclear bodies upon TRIM22 expression induced by IFN-γ. Finally, tTRIM22 nuclear bodies also contained CyclinT1, a crucial elongation factor of HIV-1 primary transcripts. These findings show that TRIM22 nuclear bodies are a site of recruitment of factors crucial for the regulation of HIV-1 transcription and highlight the potential existence of a concerted action between TRIM22, CIITA, and TRIM19/PML to maintain a state of proviral latency, at least in myeloid cells.

  2. Effect of resveratrol on cell cycle proteins in murine transplantable liver cancer

    Institute of Scientific and Technical Information of China (English)

    Liang Yu; Zhong-Jie Sun; Sheng-Li Wu; Cheng-En Pan

    2003-01-01

    AIM: To study the antitumour activity of resveratrol and its effect on the expression of ceil cycle proteins including cyclin D1, cyclin B1 and p34cdc2 in transplanted liver cancer of murine.METHODS: Murine transplanted hepatoma H22 model was used to evaluate the in vivo antitumor activity of resveratrol.Following abdominal administration of resveratrol, the change in tumour size was recorded and the protein expression of cyclin D1, cyclin B1 and p34cdc2 in the tumor and adjacent noncancerous liver tissues were measured by immunohistochemistry.RESULTS: Following treatment of H22 tumour bearing mice with resveratrol at 10 or 15 mg/kg bodyweight for 10 days,the growth of murine transplantable liver cancer was inhibited by 36.3% or 49.3%, respectively. The inhibitory effect was significant compared to that in control group (P<0.05).The level of expression of cyclin B1 and p34cdc2 protein was decreased in the transplantable murine hepatoma 22treated with resveratrol whereas the expression of cyclin D1 protein did not change.CONCLUSION: Resveratrol exhibits anti-tumour activities on murine hepatoma H22. The underlying anti-tumour mechanism of resveratrol might involve the inhibition of the cell cycle progression by decreasing the expression of cyclinB1 and p34cdc2 protein.

  3. Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32.

    Science.gov (United States)

    Dunah, Anthone W; Sirianni, Ana C; Fienberg, Allen A; Bastia, Elena; Schwarzschild, Michael A; Standaert, David G

    2004-01-01

    Interactions between dopaminergic and glutamatergic systems in the striatum are thought to underlie both the symptoms and adverse effects of treatment of Parkinson's disease. We have previously reported that activation of the dopamine D1 receptor triggers a rapid redistribution of striatal N-methyl-d-aspartate (NMDA) receptors between intracellular and postsynaptic sub-cellular compartments. To unravel the signaling pathways underlying this trafficking, we studied mice with targeted disruptions of either the gene that encodes the dopamine- and cAMP-regulated phosphoprotein (DARPP-32), a potent and selective inhibitor of protein phosphatase-1, or the protein tyrosine kinase Fyn. In striatal tissue from DARPP-32-depleted mice, basal tyrosine and serine phosphorylation of striatal NMDA receptor subunits NR1, NR2A, and NR2B was normal, and activation of dopamine D1 receptors with the agonist SKF-82958 [(+/-)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetra-hydro-1H-benzazepine] produced redistribution of NMDA receptors from vesicular compartments (P3 and LP2) to synaptosomal membranes (LP1). In the Fyn knockout mice, basal tyrosine phosphorylation of NR2A and NR2B was drastically reduced, whereas serine phosphorylation of these NMDA subunits was unchanged. In the Fyn knockout mice, the dopamine D1 receptor agonist failed to induce subcellular redistribution of NMDA receptors. In addition, Fyn-depleted mice lesioned with 6-hydroxydopamine also failed to exhibit l-DOPA-induced behavioral sensitization, but this may be caused, at least in part, by resistance of these mice to the neurotoxic lesion. These findings suggest a novel mechanism for the trafficking of striatal NMDA receptors by signaling pathways that are independent of DARPP-32 but require Fyn protein tyrosine kinase. Strategies that prevent NMDA receptor subcellular redistribution through inhibition of Fyn kinase may prove useful in the treatment of Parkinson's disease.

  4. Reduced hepatic tumor incidence in cyclin G1-deficient mice

    DEFF Research Database (Denmark)

    Jensen, Michael Rugaard; Factor, Valentina M; Fantozzi, Anna

    2003-01-01

    Cyclin G1 is a transcriptional target of the tumor suppressor p53, and its expression is increased after DNA damage. Recent data show that cyclin G1 can regulate the levels of p53 by a mechanism that involves dephosphorylation of Mdm2 by protein phosphatase 2A. To understand the biologic role of ...

  5. Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids.

    Science.gov (United States)

    Ludgate, Laurie; Ning, Xiaojun; Nguyen, David H; Adams, Christina; Mentzer, Laura; Hu, Jianming

    2012-11-01

    Phosphorylation of the hepadnavirus core protein C-terminal domain (CTD) is important for viral RNA packaging, reverse transcription, and subcellular localization. Hepadnavirus capsids also package a cellular kinase. The identity of the host kinase that phosphorylates the core CTD or gets packaged remains to be resolved. In particular, both the human hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) core CTDs harbor several conserved serine/threonine-proline (S/T-P) sites whose phosphorylation state is known to regulate CTD functions. We report here that the endogenous kinase in the HBV capsids was blocked by chemical inhibitors of the cyclin-dependent kinases (CDKs), in particular, CDK2 inhibitors. The kinase phosphorylated the HBV CTD at the serine-proline (S-P) sites. Furthermore, we were able to detect CDK2 in purified HBV capsids by immunoblotting. Purified CDK2 phosphorylated the S/T-P sites of the HBV and DHBV CTD in vitro. Inhibitors of CDKs, of CDK2 in particular, decreased both HBV and DHBV CTD phosphorylation in vivo. Moreover, CDK2 inhibitors blocked DHBV CTD phosphorylation, specifically at the S/T-P sites, in a mammalian cell lysate. These results indicate that cellular CDK2 phosphorylates the functionally critical S/T-P sites of the hepadnavirus core CTD and is incorporated into viral capsids.

  6. Involvement of the Fanconi's anemia protein FAC in a pathway that signals to the cyclin B/cdc2 kinase

    NARCIS (Netherlands)

    Kruyt, FAE; Dijkmans, LM; Arwert, F; Joenje, H

    1997-01-01

    Lymphoblastoid cell lines derived from patients with the chromosomal instability disorder Fauconi's anemia (FA) are hyperresponsive to G(2) delay and apoptosis induced by cross-linking agents such as mitomycin C (MMC), Here, we investiPated whether the protein defective in FA complementation group C

  7. Bryostatin 1 modulates beta-catenin subcellular localization and transcription activity through protein kinase D1 activation.

    Science.gov (United States)

    Jaggi, Meena; Chauhan, Subhash C; Du, Cheng; Balaji, K C

    2008-09-01

    In recent years, the use of natural products for cancer prevention and treatment has received considerable attention. Bryostatin 1 is a natural macrocyclic lactone and a protein kinase D (PKD) modulator with potent antineoplastic properties that has been used to treat human cancers in clinical trials with limited success. Further understanding the mechanistic basis of Bryostatin 1 action may provide opportunities to improve clinical results of treatment with Bryostatin 1. We identified that PKD1, founding member of PKD family of serine/threonine kinases, modulates E-cadherin/beta-catenin activity, which plays an important role in cell integrity, polarity, growth, and morphogenesis. An aberrant expression and localization of E-cadherin/beta-catenin has been strongly associated with cancer progression and metastasis. In this study, we examined the effect of Bryostatin 1 treatment on PKD1 activation, beta-catenin translocation and transcription activity, and malignant phenotype of prostate cancer cells. Initial activation of PKD1 with Bryostatin 1 leads to colocalization of the cytoplasmic pool of beta-catenin with PKD1, trans-Golgi network markers, and proteins involved in vesicular trafficking. Activation of PKD1 by Bryostatin 1 decreases nuclear beta-catenin expression and beta-catenin/TCF transcription activity. Activation of PKD1 alters cellular aggregation and proliferation in prostate cancer cells associated with subcellular redistribution of E-cadherin and beta-catenin. For the first time, we have identified that Bryostatin 1 modulates beta-catenin signaling through PKD1, which identifies a novel mechanism to improve efficacy of Bryostatin 1 in clinical settings.

  8. CD150 association with either the SH2-containing inositol phosphatase or the SH2-containing protein tyrosine phosphatase is regulated by the adaptor protein SH2D1A.

    Science.gov (United States)

    Shlapatska, L M; Mikhalap, S V; Berdova, A G; Zelensky, O M; Yun, T J; Nichols, K E; Clark, E A; Sidorenko, S P

    2001-05-01

    CD150 (SLAM/IPO-3) is a cell surface receptor that, like the B cell receptor, CD40, and CD95, can transmit positive or negative signals. CD150 can associate with the SH2-containing inositol phosphatase (SHIP), the SH2-containing protein tyrosine phosphatase (SHP-2), and the adaptor protein SH2 domain protein 1A (SH2D1A/DSHP/SAP, also called Duncan's disease SH2-protein (DSHP) or SLAM-associated protein (SAP)). Mutations in SH2D1A are found in X-linked lymphoproliferative syndrome and non-Hodgkin's lymphomas. Here we report that SH2D1A is expressed in tonsillar B cells and in some B lymphoblastoid cell lines, where CD150 coprecipitates with SH2D1A and SHIP. However, in SH2D1A-negative B cell lines, including B cell lines from X-linked lymphoproliferative syndrome patients, CD150 associates only with SHP-2. SH2D1A protein levels are up-regulated by CD40 cross-linking and down-regulated by B cell receptor ligation. Using GST-fusion proteins with single replacements of tyrosine at Y269F, Y281F, Y307F, or Y327F in the CD150 cytoplasmic tail, we found that the same phosphorylated Y281 and Y327 are essential for both SHP-2 and SHIP binding. The presence of SH2D1A facilitates binding of SHIP to CD150. Apparently, SH2D1A may function as a regulator of alternative interactions of CD150 with SHP-2 or SHIP via a novel TxYxxV/I motif (immunoreceptor tyrosine-based switch motif (ITSM)). Multiple sequence alignments revealed the presence of this TxYxxV/I motif not only in CD2 subfamily members but also in the cytoplasmic domains of the members of the SHP-2 substrate 1, sialic acid-binding Ig-like lectin, carcinoembryonic Ag, and leukocyte-inhibitory receptor families.

  9. Regulation of cyclin E stability in Xenopus laevis embryos

    Science.gov (United States)

    Brandt-(Webb), Yekaterina

    Cyclin-Cdk complexes positively regulate cell cycle progression. Cyclins are regulatory subunits that bind to and activate cyclin-dependent kinases or Cdks. Cyclin E associates with Cdk2 to mediate G1/S phase transition of the cell cycle. Cyclin E is overexpressed in breast, lung, skin, gastrointestinal, cervical, and ovarian cancers. Its overexpression correlates with poor patient prognosis and is involved in the etiology of breast cancer. We have been studying how this protein is downregulated during development in order to determine if these mechanisms are disrupted during tumorigenesis, leading to its overexpression. Using Xenopus laevis embryos as a model, we have shown previously that during the first 12 embryonic cell cycles Cyclin E levels remain constant yet Cdk2 activity oscillates twice per cell cycle. Cyclin E is abruptly destabilized by an undefined mechanism after the 12th cell cycle, which corresponds to the midblastula transition (MBT). Based on work our work and work by others, we have hypothesized that differential phosphorylation and a change in localization result in Cyclin E degradation by the 26S proteasome at the MBT. To test this, we generated a series of point mutations in conserved threonine/serine residues implicated in degradation of human Cyclin E. Using Western blot analysis, we show that similarly to human Cyclin E, mutation of these residues to unphosphorylatable alanine stabilizes Cyclin E past the MBT when they are expressed in vivo. Cyclin E localization was studied by immunofluorescence analysis of endogenous and exogenous protein in pre-MBT, MBT, and post-MBT embryos. In addition, we developed a novel method of conjugating recombinant His6-tagged Cyclin E to fluorescent (CdSe)ZnS nanoparticles (quantum dots) capped with dihydrolipoic acid. Confocal microscopy was used to visualize His6Cyclin E-quantum dot complexes inside embryo cells in real time. We found that re-localization at the MBT from the cytoplasm to the nucleus

  10. Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress

    Directory of Open Access Journals (Sweden)

    Xiaoting Zhou

    2016-11-01

    Full Text Available Melatonin is important in the protection of plants suffering various forms of abiotic stress. The molecular mechanisms underlying the melatonin-mediated protection of their photosynthetic machinery are not completely resolved. This study investigates the effects of exogenous melatonin applications on salt-induced damage to the light reaction components of the photosynthetic machinery of tomato seedlings. The results show that melatonin pretreatments can help maintain growth and net photosynthetic rate (PN under salt stress conditions. Pretreatment with melatonin increased the effective quantum yield of photosystem II (ΦPSII, the photochemical quenching coefficient (qP and the proportion of PSII centers that are ‘open’ (qL under saline conditions. In this way, damage to the photosynthetic electron transport chain (PET in photosystem II (PSII is mitigated. In addition, melatonin pretreatment facilitated the repair of PSII by maintaining the availability of D1 protein that was otherwise reduced by salinity. The ROS levels and the gene expressions of the chloroplast TRXs and PRXs were also investigated. Salt stress resulted in increased levels of reactive oxygen species (ROS, which were mitigated by melatonin. In tomato leaves under salt stress, the expressions of PRXs and TRXf declined but the expressions of TRXm1/4 and TRXm2 increased. Melatonin pretreatment promoted the expression of TRXf and the abundances of TRXf and TRXm gene products but had no effects on the expressions of PRXs. In summary, melatonin improves the photosynthetic activities of tomato seedlings under salt stress. The mechanism could be that: (1 Melatonin controls ROS levels and prevents damaging elevations of ROS caused by salt stress. (2 Melatonin facilitates the recovery of PET and D1 protein synthesis, thus enhancing the tolerance of photosynthetic activities to salinity. (3 Melatonin induces the expression of TRXf and regulates the abundance of TRXf and TRXm gene

  11. Beneficial Roles of Melatonin on Redox Regulation of Photosynthetic Electron Transport and Synthesis of D1 Protein in Tomato Seedlings under Salt Stress

    Science.gov (United States)

    Zhou, Xiaoting; Zhao, Hailiang; Cao, Kai; Hu, Lipan; Du, Tianhao; Baluška, František; Zou, Zhirong

    2016-01-01

    Melatonin is important in the protection of plants suffering various forms of abiotic stress. The molecular mechanisms underlying the melatonin-mediated protection of their photosynthetic machinery are not completely resolved. This study investigates the effects of exogenous melatonin applications on salt-induced damage to the light reaction components of the photosynthetic machinery of tomato seedlings. The results showed that melatonin pretreatments can help maintain growth and net photosynthetic rate (PN) under salt stress conditions. Pretreatment with melatonin increased the effective quantum yield of photosystem II (ΦPSII), the photochemical quenching coefficient (qP) and the proportion of PSII centers that are “open” (qL) under saline conditions. In this way, damage to the photosynthetic electron transport chain (PET) in photosystem II (PSII) was mitigated. In addition, melatonin pretreatment facilitated the repair of PSII by maintaining the availability of D1 protein that was otherwise reduced by salinity. The ROS levels and the gene expressions of the chloroplast TRXs and PRXs were also investigated. Salt stress resulted in increased levels of reactive oxygen species (ROS), which were mitigated by melatonin. In tomato leaves under salt stress, the expressions of PRXs and TRXf declined but the expressions of TRXm1/4 and TRXm2 increased. Melatonin pretreatment promoted the expression of TRXf and the abundances of TRXf and TRXm gene products but had no effects on the expressions of PRXs. In summary, melatonin improves the photosynthetic activities of tomato seedlings under salt stress. The mechanism could be that: (1) Melatonin controls ROS levels and prevents damaging elevations of ROS caused by salt stress. (2) Melatonin facilitates the recovery of PET and D1 protein synthesis, thus enhancing the tolerance of photosynthetic activities to salinity. (3) Melatonin induces the expression of TRXf and regulates the abundance of TRXf and TRXm gene products

  12. Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells

    OpenAIRE

    2015-01-01

    Activation of pancreatic β-cell proliferation has been proposed as an approach to replace reduced functional β-cell mass in diabetes. Quiescent fibroblasts exit from G0 (quiescence) to G1 through pRb phosphorylation mediated by cyclin C/cdk3 complexes. Overexpression of cyclin D1, D2, D3, or cyclin E induces pancreatic β-cell proliferation. We hypothesized that cyclin C overexpression would induce β-cell proliferation through G0 exit, thus being a potential therapeutic target to recover funct...

  13. Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast.

    Science.gov (United States)

    Su, Wen-Min; Han, Gil-Soo; Casciano, Jessica; Carman, George M

    2012-09-28

    Pah1p, which functions as phosphatidate phosphatase (PAP) in the yeast Saccharomyces cerevisiae, plays a crucial role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate and its product diacylglycerol. The diacylglycerol produced by PAP is used for the synthesis of triacylglycerol as well as for the synthesis of phospholipids via the Kennedy pathway. Pah1p is a highly phosphorylated protein in vivo and has been previously shown to be phosphorylated by the protein kinases Pho85p-Pho80p and Cdc28p-cyclin B. In this work, we showed that Pah1p was a bona fide substrate for protein kinase A, and we identified by mass spectrometry and mutagenesis that Ser-10, Ser-677, Ser-773, Ser-774, and Ser-788 were the target sites of phosphorylation. Protein kinase A-mediated phosphorylation of Pah1p inhibited its PAP activity by decreasing catalytic efficiency, and the inhibitory effect was primarily conferred by phosphorylation at Ser-10. Analysis of the S10A and S10D mutations (mimicking dephosphorylation and phosphorylation, respectively), alone or in combination with the seven alanine (7A) mutations of the sites phosphorylated by Pho85p-Pho80p and Cdc28p-cyclin B, indicated that phosphorylation at Ser-10 stabilized Pah1p abundance and inhibited its association with membranes, PAP activity, and triacylglycerol synthesis. The S10A mutation enhanced the physiological effects imparted by the 7A mutations, whereas the S10D mutations attenuated the effects of the 7A mutations. These data indicated that the protein kinase A-mediated phosphorylation of Ser-10 functions in conjunction with the phosphorylations mediated by Pho85p-Pho80p and Cdc28p-cyclin B and that phospho-Ser-10 should be dephosphorylated for proper PAP function.

  14. Relationship between PSII-D1-protein, xanthophyll cycle and the differences in capacities related to photodamage-resistance of indica and japonica subspecies of rice (O. sativa L.)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ To explore the mechanisms of the differences in capacities related to photodamage-resistance of indica and japonica subspecies, the xanthophyll cycle components, violaxanthin (V), antheraxanthin (A), zeaxanthin (Z), PSⅡ-D1-protein contents, and PSⅡ photochemical efficiency (Fv/Fm) were measured in rice leaves pretreated by streptomycin(SM, a PSⅡ-D1-protein inhibitor) and dithiothreitol (DTT, an xanthophyll cycle inhibitor), respectively.

  15. [Molecular aspects of allergy to plant products. Part II. Pathogenesis-related proteins (PRs), apple allergenicity governed by Mal d 1 gene].

    Science.gov (United States)

    Bokszczanin, Kamila Ł; Przybyła, Andrzej A

    2012-03-01

    Of the plant allergens listed in the Official Allergen Database of the International Union of Immunological Societies, approximately 25% belong to the group of pathogenesis-related proteins (PRs). They have been classified into 17 PR families based on similarities in their amino acid sequence, enzymatic activities, or other functional properties. Plant-derived allergens have been identified with sequence similarities to PR families 2, 3, 4, 5, 8, 10, and 14. The main birch allergen in northern Europe is a class 10 (PR-10) protein from the European white birch (Betula pendula) termed Bet v 1. Pollen of other Fagales species contains PR-10 homologues that share epitopes with Bet v 1, as do several fruits, nuts and vegetables. Among the plant food fruits of the Rosaceae family are the most frequently responsible for allergenic reactions. It is documented, that approximately 2% of European population is allergic to apples. The article presents molecular characterization of PR-10 proteins with regard to their structure and function as well as apple Mal d 1 gene-determined allergenicity.

  16. Phosphate-Activated Cyclin-Dependent Kinase Stabilizes G1 Cyclin To Trigger Cell Cycle Entry

    Science.gov (United States)

    Menoyo, S.; Ricco, N.; Bru, S.; Hernández-Ortega, S.; Escoté, X.; Aldea, M.

    2013-01-01

    G1 cyclins, in association with a cyclin-dependent kinase (CDK), are universal activators of the transcriptional G1-S machinery during entry into the cell cycle. Regulation of cyclin degradation is crucial for coordinating progression through the cell cycle, but the mechanisms that modulate cyclin stability to control cell cycle entry are still unknown. Here, we show that a lack of phosphate downregulates Cln3 cyclin and leads to G1 arrest in Saccharomyces cerevisiae. The stability of Cln3 protein is diminished in strains with low activity of Pho85, a phosphate-sensing CDK. Cln3 is an in vitro substrate of Pho85, and both proteins interact in vivo. More interestingly, cells that carry a CLN3 allele encoding aspartic acid substitutions at the sites of Pho85 phosphorylation maintain high levels of Cln3 independently of Pho85 activity. Moreover, these cells do not properly arrest in G1 in the absence of phosphate and they die prematurely. Finally, the activity of Pho85 is essential for accumulating Cln3 and for reentering the cell cycle after phosphate refeeding. Taken together, our data indicate that Cln3 is a molecular target of the Pho85 kinase that is required to modulate cell cycle entry in response to environmental changes in nutrient availability. PMID:23339867

  17. Protein kinase D1 mediates stimulation of DNA synthesis and proliferation in intestinal epithelial IEC-18 cells and in mouse intestinal crypts.

    Science.gov (United States)

    Sinnett-Smith, James; Rozengurt, Nora; Kui, Robert; Huang, Carlos; Rozengurt, Enrique

    2011-01-07

    We examined whether protein kinase D1 (PKD1), the founding member of a new protein kinase family, plays a critical role in intestinal epithelial cell proliferation. Our results demonstrate that PKD1 activation is sustained, whereas that of PKD2 is transient in intestinal epithelial IEC-18 stimulated with the G(q)-coupled receptor agonists angiotensin II or vasopressin. PKD1 gene silencing utilizing small interfering RNAs dramatically reduced DNA synthesis and cell proliferation in IEC-18 cells stimulated with G(q)-coupled receptor agonists. To clarify the role of PKD1 in intestinal epithelial cell proliferation in vivo, we generated transgenic mice that express elevated PKD1 protein in the intestinal epithelium. Transgenic PKD1 exhibited constitutive catalytic activity and phosphorylation at the activation loop residues Ser(744) and Ser(748) and on the autophosphorylation site, Ser(916). To examine whether PKD1 expression stimulates intestinal cell proliferation, we determined the rate of crypt cell DNA synthesis by detection of 5-bromo-2-deoxyuridine incorporated into the nuclei of crypt cells of the ileum. Our results demonstrate a significant increase (p < 0.005) in DNA-synthesizing cells in the crypts of two independent lines of PKD1 transgenic mice as compared with non-transgenic littermates. Morphometric analysis showed a significant increase in the length and in the total number of cells per crypt in the transgenic PKD1 mice as compared with the non-transgenic littermates (p < 0.01). Thus, transgenic PKD1 signaling increases the number of cells per crypt by stimulating the rate of crypt cell proliferation. Collectively, our results indicate that PKD1 plays a role in promoting cell proliferation in intestinal epithelial cells both in vitro and in vivo.

  18. PI3K Mediates the Effect of Resolvin D1 on the Protein Expression of Epithelial Sodium Channel in A549 Cells Treated with Lipopolysaccharide%PI3K介导消退素D1上调脂多糖刺激的A549细胞钠离子通道

    Institute of Scientific and Technical Information of China (English)

    杨艺; 程杨; 金胜威; 高防

    2013-01-01

    目的 研究促炎症消退介质消退素D1(resolvin D1,RvD1)对脂多糖(lipopolysaccharide,LPS)刺激的肺泡上皮A549细胞钠离子通道α亚基(epithelial sodium channel α-subunit,α-ENaC)和γ亚基(epithelial sodium channel-γ-subunit,γ-ENaC)蛋白表达的影响并探讨其机制.方法 不同时间点和不同剂量的LPS刺激A549细胞建立LPS刺激A549细胞模型.将A549细胞分为:空白对照组;LPS(1μg/ml)组;LPS+RvD1(100nmol/L)组;LPS+LY294002(10μmol/L)组.用Western blot检测A549细胞中α-ENaC和γ-ENaC蛋白表达及磷酸化的磷脂酰肌醇-3-激酶(PI3K)水平.结果 LPS下调A549细胞α-ENaC和γ-ENaC蛋白表达,消退素D1抑制LPS对ENaC的下调作用,抑制LPS刺激的磷酸化PI3K.结论 消退素D1通过下调磷酸化PI3K,抑制LPS对A549细胞α-ENaC和γ-ENaC蛋白表达的下调作用.%Objective To study the effect of resolvin D1 (RvD1) on the protein expression of epithelial sodium channel αt-subunit (αt-ENaC) and epithelial sodium channel γ-subunit (γ-ENaC) in A549 cells treated with lipopolysaccharide (LPS),and to explore the molecular mechanisms of signal pathway in RvD1 actions.Methods To establish the model of LPS-induced injury,A549 cells were treated with different concentrations of LPS and simulated by LPS at different time points.A549 cells were divided into four groups:control group; LPS (LPS,1μg/ml) group; LPS +RvD1 (100nmol/L) group and LPS + LY294002 (10μmoL/L) group.Protein expression of ENaC and phosphorylation of phosphoinositide 3-kinase (PI3K) were detected by western blot.Results Protein expression of α-ENaC and γ-ENaC was found to be markedly decreased in the LPS group as compared with control group.This decrease was significantly reduced by RvD1 and LY294002.RvD1 inhibited phosphorylation of PI3K induced by LPS.Conclusion RvD1 increases the protein expression of α-ENaC and γ-ENaC stimulated by LPS via PI3 K pathway in A549 cells.

  19. Membrane Protein Complex ExbB4-ExbD1-TonB1 from Escherichia coli Demonstrates Conformational Plasticity

    Science.gov (United States)

    Sverzhinsky, Aleksandr; Chung, Jacqueline W.; Deme, Justin C.; Fabre, Lucien; Levey, Kristian T.; Plesa, Maria; Carter, David M.; Lypaczewski, Patrick

    2015-01-01

    ABSTRACT Iron acquisition at the outer membrane (OM) of Gram-negative bacteria is powered by the proton motive force (PMF) of the cytoplasmic membrane (CM), harnessed by the CM-embedded complex of ExbB, ExbD, and TonB. Its stoichiometry, ensemble structural features, and mechanism of action are unknown. By panning combinatorial phage libraries, periplasmic regions of dimerization between ExbD and TonB were predicted. Using overexpression of full-length His6-tagged exbB-exbD and S-tagged tonB, we purified detergent-solubilized complexes of ExbB-ExbD-TonB from Escherichia coli. Protein-detergent complexes of ∼230 kDa with a hydrodynamic radius of ∼6.0 nm were similar to previously purified ExbB4-ExbD2 complexes. Significantly, they differed in electronegativity by native agarose gel electrophoresis. The stoichiometry was determined to be ExbB4-ExbD1-TonB1. Single-particle electron microscopy agrees with this stoichiometry. Two-dimensional averaging supported the phage display predictions, showing two forms of ExbD-TonB periplasmic heterodimerization: extensive and distal. Three-dimensional (3D) particle classification showed three representative conformations of ExbB4-ExbD1-TonB1. Based on our structural data, we propose a model in which ExbD shuttles a proton across the CM via an ExbB interprotein rearrangement. Proton translocation would be coupled to ExbD-mediated collapse of extended TonB in complex with ligand-loaded receptors in the OM, followed by repositioning of TonB through extensive dimerization with ExbD. Here we present the first report for purification of the ExbB-ExbD-TonB complex, molar ratios within the complex (4:1:1), and structural biology that provides insights into 3D organization. IMPORTANCE Receptors in the OM of Gram-negative bacteria allow entry of iron-bound siderophores that are necessary for pathogenicity. Numerous iron-acquisition strategies rely upon a ubiquitous and unique protein for energization: TonB. Complexed with ExbB and Exb

  20. Site-directed mutagenesis of amino acid residues of D1 protein interacting with phosphatidylglycerol affects the function of plastoquinone QB in photosystem II.

    Science.gov (United States)

    Endo, Kaichiro; Mizusawa, Naoki; Shen, Jian-Ren; Yamada, Masato; Tomo, Tatsuya; Komatsu, Hirohisa; Kobayashi, Masami; Kobayashi, Koichi; Wada, Hajime

    2015-12-01

    Recent X-ray crystallographic analysis of photosystem (PS) II at 1.9-Å resolution identified 20 lipid molecules in the complex, five of which are phosphatidylglycerol (PG). In this study, we mutagenized amino acid residues S232 and N234 of D1, which interact with two of the PG molecules (PG664 and PG694), by site-directed mutagenesis in Synechocystis sp. PCC 6803 to investigate the role of the interaction in PSII. The serine and asparagine residues at positions 232 and 234 from the N-terminus were mutagenized to alanine and aspartic acid, respectively, and a mutant carrying both amino acid substitutions was also produced. Although the obtained mutants, S232A, N234D, and S232AN234D, exhibited normal growth, they showed decreased photosynthetic activities and slower electron transport from QA to QB than the control strain. Thermoluminescence analysis suggested that this slower electron transfer in the mutants was caused by more negative redox potential of QB, but not in those of QA and S2. In addition, the levels of extrinsic proteins, PsbV and PsbU, were decreased in PSII monomer purified from the S232AN234D mutant, while that of Psb28 was increased. In the S232AN234D mutant, the content of PG in PSII was slightly decreased, whereas that of monogalactosyldiacylglycerol was increased compared with the control strain. These results suggest that the interactions of S232 and N234 with PG664 and PG694 are important to maintain the function of QB and to stabilize the binding of extrinsic proteins to PSII.

  1. A roller coaster ride with the mitotic cyclins.

    Science.gov (United States)

    Fung, Tsz Kan; Poon, Randy Y C

    2005-06-01

    Cyclins are discovered as proteins that accumulate progressively through interphase and disappear abruptly at mitosis during each cell cycle. In mammalian cells, cyclin A accumulates from late G1 phase and is destroyed before metaphase, and cyclin B is destroyed slightly later at anaphase. The abundance of the mitotic cyclins is mainly regulated at the levels of transcription and proteolysis. Transcription is stimulated and repressed by several transcription factors, including B-MYB, E2F, FOXM1, and NF-Y. Elements in the promoter, including CCRE/CDE and CHR, are in part responsible for the cell cycle oscillation of transcription. Destruction of the mitotic cyclins is carried out by the ubiquitin ligases APC/C(CDC20) and APC/C(CDH1). Central to our knowledge is the understanding of how APC/C is turned on from anaphase to early G1 phase, and turned off from late G1 till the spindle-assembly checkpoint is deactivated in metaphase. Reciprocal actions of cyclin-dependent kinases (CDKs) on APC/C, as well as on the SCF complexes ensure that the mitotic cyclins are destroyed only at the proper time.

  2. Interferon regulatory factor-1 together with reactive oxygen species promotes the acceleration of cell cycle progression by up-regulating the cyclin E and CDK2 genes during high glucose-induced proliferation of vascular smooth muscle cells.

    Science.gov (United States)

    Zhang, Xi; Liu, Long; Chen, Chao; Chi, Ya-Li; Yang, Xiang-Qun; Xu, Yan; Li, Xiao-Tong; Guo, Shi-Lei; Xiong, Shao-Hu; Shen, Man-Ru; Sun, Yu; Zhang, Chuan-Sen; Hu, Kai-Meng

    2013-10-14

    The high glucose-induced proliferation of vascular smooth muscle cells (VSMCs) plays an important role in the development of diabetic vascular diseases. In a previous study, we confirmed that Interferon regulatory factor-1 (Irf-1) is a positive regulator of the high glucose-induced proliferation of VSMCs. However, the mechanisms remain to be determined. The levels of cyclin/CDK expression in two cell models involving Irf-1 knockdown and overexpression were quantified to explore the relationship between Irf-1 and its downstream effectors under normal or high glucose conditions. Subsequently, cells were treated with high glucose/NAC, normal glucose/H₂O₂, high glucose/U0126 or normal glucose/H₂O₂/U0126 during an incubation period. Then proliferation, cyclin/CDK expression and cell cycle distribution assays were performed to determine whether ROS/Erk1/2 signaling pathway was involved in the Irf-1-induced regulation of VSMC growth under high glucose conditions. We found that Irf-1 overexpression led to down-regulation of cyclin D1/CDK4 and inhibited cell cycle progression in VSMCs under normal glucose conditions. In high glucose conditions, Irf-1 overexpression led to an up-regulation of cyclin E/CDK2 and an acceleration of cell cycle progression, whereas silencing of Irf-1 suppressed the expression of both proteins and inhibited the cell cycle during the high glucose-induced proliferation of VSMCs. Treatment of VSMCs with antioxidants prevented the Irf-1 overexpression-induced proliferation of VSMCs, the up-regulation of cyclin E/CDK2 and the acceleration of cell cycle progression in high glucose conditions. In contrast, under normal glucose conditions, H₂O₂ stimulation and Irf-1 overexpression induced cell proliferation, up-regulated cyclin E/CDK2 expression and promoted cell cycle acceleration. In addition, overexpression of Irf-1 promoted the activation of Erk1/2 and when VSMCs overexpressing Irf-1 were treated with U0126, the specific Erk1/2 inhibitor

  3. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control

    DEFF Research Database (Denmark)

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K

    2015-01-01

    Cells respond to DNA damage by activating cell cycle checkpoints to delay proliferation and facilitate DNA repair. Here, to uncover new checkpoint regulators, we perform RNA interference screening targeting genes involved in ubiquitylation processes. We show that the F-box protein cyclin F plays...... an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme...... that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein...

  4. Protein kinase D1 is essential for the pro-inflammatory response induced by hypersensitivity pneumonitis-causing thermophilic actinomycetes Saccharopolyspora rectivirgula

    Science.gov (United States)

    Kim, Young-In; Park, Jeoung-Eun; Brand, David D.; Fitzpatrick, Elizabeth A.; Yi, Ae-Kyung

    2010-01-01

    Hypersensitivity pneumonitis is an interstitial lung disease that results from repeated pulmonary exposure to various organic antigens, including Saccharopolyspora rectivirgula (SR, the causative agent of farmer's lung disease). Although the contributions of pro-inflammatory mediators to the disease pathogenesis are relatively well documented, the mechanism(s) involved in initiation of pro-inflammatory responses against the causative microorganisms, and the contribution of signaling molecules involved in host immune defense have not been fully elucidated. In the present study, we found that SR induces activation of protein kinase D1 (PKD1) in lung cells in vitro and in vivo. Activation of PKD1 by SR was dependent on MyD88. Inhibition of PKD by pharmacological PKD inhibitor Gö6976, and silencing of PKD1 expression by siRNA, revealed that PKD1 is indispensable for SR-mediated activation of MAPKs and NF-κB and expression of various pro-inflammatory cytokines and chemokines. In addition, compared to controls, mice pretreated with Gö6976 showed significantly suppressed alveolitis and neutrophil influx in bronchial alveolar lavage fluid and interstitial lung tissue, and substantially decreased myeloperoxidase activity in the lung after pulmonary exposure to SR. These results demonstrate that PKD1 is essential for SR-mediated pro-inflammatory immune responses and neutrophil influx in the lung. Our findings also imply the possibility that PKD1 might be one of the critical factors that play a regulatory role in development of hypersensitivity pneumonitis caused by microbial antigens, and that inhibition of PKD1 activation could be an effective way to control microbial antigen-induced hypersensitivity pneumonitis. PMID:20142359

  5. The Coffin-Lowry syndrome-associated protein RSK2 regulates neurite outgrowth through phosphorylation of phospholipase D1 (PLD1) and synthesis of phosphatidic acid.

    Science.gov (United States)

    Ammar, Mohamed-Raafet; Humeau, Yann; Hanauer, André; Nieswandt, Bernard; Bader, Marie-France; Vitale, Nicolas

    2013-12-11

    More than 80 human X-linked genes have been associated with mental retardation and deficits in learning and memory. However, most of the identified mutations induce limited morphological alterations in brain organization and the molecular bases underlying neuronal clinical features remain elusive. We show here that neurons cultured from mice lacking ribosomal S6 kinase 2 (Rsk2), a model for the Coffin-Lowry syndrome (CLS), exhibit a significant delay in growth in a similar way to that shown by neurons cultured from phospholipase D1 (Pld1) knock-out mice. We found that gene silencing of Pld1 or Rsk2 as well as acute pharmacological inhibition of PLD1 or RSK2 in PC12 cells strongly impaired neuronal growth factor (NGF)-induced neurite outgrowth. Expression of a phosphomimetic PLD1 mutant rescued the inhibition of neurite outgrowth in PC12 cells silenced for RSK2, revealing that PLD1 is a major target for RSK2 in neurite formation. NGF-triggered RSK2-dependent phosphorylation of PLD1 led to its activation and the synthesis of phosphatidic acid at sites of neurite growth. Additionally, total internal reflection fluorescence microscopy experiments revealed that RSK2 and PLD1 positively control fusion of tetanus neurotoxin insensitive vesicle-associated membrane protein (TiVAMP)/VAMP-7 vesicles at sites of neurite outgrowth. We propose that the loss of function mutations in RSK2 that leads to CLS and neuronal deficits are related to defects in neuronal growth due to impaired RSK2-dependent PLD1 activity resulting in a reduced vesicle fusion rate and membrane supply.

  6. Cyclin B1 is localized to unattached kinetochores and contributes to efficient microtubule attachment and proper chromosome alignment during mitosis

    Institute of Scientific and Technical Information of China (English)

    Qiang Chen; Xiaoyan Zhang; Qing Jiang; Paul R Clarke; Chuanmao Zhang

    2008-01-01

    Cyclin Bl is a key regulatory protein controlling cell cycle progression in vertebrates. Cyclin Bl binds CDK1, a cyclin-dependent kinase catalytic subunit, forming a complex that orchestrates mitosis through phosphorylation of key proteins. Cyclin Bl regulates both the activation of CDK1 and its subcellular localization, which may be critical for substrate selection. Here, we demonstrate that cyclin Bl is concentrated on the outer plate of the kinetochore during prometaphase. This localization requires the cyclin box region of the protein. Cyclin Bl is displaced from individual kinetochores to the spindle poles by microtubule attachment to the kinetochores, and this displacement is dependent on the dynein/dynactin complex. Depletion of cyclin Bl by vector-based siRNA causes inefficient attachment between kinetochores and microtubules, and chromosome alignment defects, and delays the onset of anaphase. We conclude that cyclin Bl accumulates at kinetochores during prometaphase, where it contributes to the correct attachment of microtubules to kinetochores and efficient alignment of the chromosomes, most likely through localized phosphorylation of specific substrates by cyclin B1-CDK1. Cyclin Bl is then transported from each kinetochore as microtubule attachment is completed, and this relocalization may redirect the activity of cyclin B1-CDK1 and contribute to inactivation of the spindle assembly checkpoint.

  7. The L-type cyclin CYL-1 and the heat-shock-factor HSF-1 are required for heat-shock-induced protein expression in Caenorhabditis elegans.

    Science.gov (United States)

    Hajdu-Cronin, Yvonne M; Chen, Wen J; Sternberg, Paul W

    2004-12-01

    In a screen for suppressors of activated GOA-1 (Galpha(o)) under the control of the hsp-16.2 heat-shock promoter, we identified three genetic loci that affected heat-shock-induced GOA-1 expression. The cyl-1 mutants are essentially wild type in appearance, while hsf-1 and sup-45 mutants have egg-laying defects. The hsf-1 mutation also causes a temperature-sensitive developmental arrest, and hsf-1 mutants have decreased life span. Western analysis indicated that mutations in all three loci suppressed the activated GOA-1 transgene by decreasing its expression. Heat-shock-induced expression of hsp-16.2 mRNA was reduced in cyl-1 mutants and virtually eliminated in hsf-1 and sup-45 mutants, as compared to wild-type expression. The mutations could also suppress other transgenes under heat-shock control. cyl-1 and sup-45, but not hsf-1, mutations suppressed a defect caused by a transgene not under heat-shock control, suggesting a role in general transcription or a post-transcriptional aspect of gene expression. hsf-1 encodes the C. elegans homolog of the human heat-shock factor HSF1, and cyl-1 encodes a cyclin most similar to cyclin L. We believe HSF-1 acts in heat-shock-inducible transcription and CYL-1 acts more generally in gene expression.

  8. Vaccination with a Streptococcus pneumoniae trivalent recombinant PcpA, PhtD and PlyD1 protein vaccine candidate protects against lethal pneumonia in an infant murine model.

    Science.gov (United States)

    Verhoeven, David; Xu, Qingfu; Pichichero, Michael E

    2014-05-30

    Streptococcus pneumoniae infections continue to cause significant worldwide morbidity and mortality despite the availability of efficacious serotype-dependent vaccines. The need to incorporate emergent strains expressing additional serotypes into pneumococcal polysaccharide conjugate vaccines has led to an identified need for a pneumococcal protein-based vaccine effective against a broad scope of serotypes. A vaccine consisting of several conserved proteins with different functions during pathogenesis would be preferred. Here, we investigated the efficacy of a trivalent recombinant protein vaccine containing pneumococcal choline-binding protein A (PcpA), pneumococcal histidine triad D (PhtD), and genetically detoxified pneumolysin (PlyD1) in an infant mouse model. We found the trivalent vaccine conferred protection from lethal pneumonia challenges using serotypes 6A and 3. The observed protection with trivalent PcpA, PhtD, and PlyD1 vaccine in infant mice supports the ongoing study of this candidate vaccine in human infant clinical trials.

  9. DACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21{sup Cip1}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Woong; Kim, Hyeng-Soo; Kim, Seonggon; Hwang, Junmo; Kim, Young Hun; Lim, Ga Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Sohn, Wern-Joo [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Yoon, Suk-Ran [Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Jae-Young [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Park, Tae Sung [Department of Laboratory Medicine, Kyung Hee University School of Medicine, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-702 (Korea, Republic of); Park, Kwon Moo [Department of Anatomy, Kyungpook National University School of Medicine, Daegu 700-422 (Korea, Republic of); Ryoo, Zae Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Sanggyu, E-mail: slee@knu.ac.kr [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer DACH1 increases cyclin D, F and Cdk 1, 4, 6 in mouse myeloid progenitor cells. Black-Right-Pointing-Pointer The knockdown of DACH1 blocked the cell cycle progression of HL-60 cells. Black-Right-Pointing-Pointer The novel effect of DACH1 related with cell cycle regulation and leukemogenesis. -- Abstract: The cell-fate determination factor Dachshund, a component of the Retinal Determination Gene Network (RDGN), has a role in breast tumor proliferation through the repression of cyclin D1 and several key regulators of embryonic stem cell function, such as Nanog and Sox2. However, little is known about the role of DACH1 in a myeloid lineage as a cell cycle regulator. Here, we identified the differential expression levels of extensive cell cycle regulators controlled by DACH1 in myeloid progenitor cells. The forced expression of DACH1 induced p27{sup Kip1} and repressed p21{sup Cip1}, which is a pivotal characteristic of the myeloid progenitor. Furthermore, DACH1 significantly increased the expression of cyclin D1, D3, F, and Cdk 1, 4, and 6 in myeloid progenitor cells. The knockdown of DACH1 blocked the cell cycle progression of HL-60 promyeloblastic cells through the decrease of cyclin D1, D3, F, and Cdk 1, 4, and 6 and increase in p21{sup Cip1}, which in turn decreased the phosphorylation of the Rb protein. The expression of Sox2, Oct4, and Klf4 was significantly up-regulated by the forced expression of DACH1 in mouse myeloid progenitor cells.

  10. Cyclin F/FBXO1 interacts with HIV-1 Vif and restricts progeny virion infectivity by ubiquitination and proteasomal degradation of Vif through SCF (Cyclin F) E3 ligase machinery.

    Science.gov (United States)

    Augustine, Tracy; Chaudhary, Priyanka; Gupta, Kailash; Islam, Sehbanul; Ghosh, Payel; Santra, Manas Kumar; Mitra, Debashis

    2017-02-09

    Cyclin F, also known as FBXO1, is the largest among all cyclins which oscillates in the cell cycle like other cyclins. Apart from being a G2/M cyclin, Cyclin F functions as the substrate binding subunit of SCFCyclin F E3 ubiquitin ligase. In a gene expression analysis performed to identify novel gene modulations associated with cell cycle dysregulation during HIV-1 infection in CD4+ T cells, we observed down-regulation of Cyclin F (CCNF) gene. Later, using gene over expression and knockdown studies, we identified that Cyclin F negatively influences HIV-1 viral infectivity without any significant impact on virus production. Subsequently, we found that Cyclin F negatively regulates the expression of viral protein, Vif (Viral infectivity factor), at the protein level. We also identified a novel host-pathogen interaction between Cyclin F and Vif protein in T cells during HIV-1 infection. Mutational analysis of a Cyclin F-specific amino acid motif in the C-terminal region of Vif shows rescue of the protein from Cyclin F-mediated down-regulation. Subsequently, we have shown that Vif is a novel substrate of the SCFCyclin F E3 ligase, where Cyclin F mediates ubiquitination and proteasomal degradation of Vif through physical interaction. Finally, we have shown that Cyclin F augments APOBEC3G expression through degradation of Vif to regulate infectivity of progeny virions. Taken together, our results demonstrate Cyclin F as a novel F-box protein which functions as an intrinsic cellular regulator of HIV-1 Vif and imparts a negative regulatory effect on maintenance of viral infectivity by restoring APOBEC3G expression.

  11. MicroRNA-1 and-16 inhibit cardiomyocyte hypertrophy by targeting cyclins/Rb pathway

    Institute of Scientific and Technical Information of China (English)

    SHAN Zhi-xin; ZHU Jie-ning; TANG Chun-mei; ZHU Wen-si; LIN Qiu-xiong; HU Zhi-qin; FU Yong-heng; ZHANG Meng-zhen

    2016-01-01

    AIM:MicroRNAs ( miRNAs) were recognized to play significant roles in cardiac hypertrophy .But, it remains unknown whether cyclin/Rb pathway is modulated by miRNAs during cardiac hypertrophy .This study investigates the potential roles of microRNA-1 (miR-1) and microRNA-16 (miR-16) in modulating cyclin/Rb pathway during cardiomyocyte hypertrophy .METHODS:An animal model of hypertrophy was established in a rat with abdominal aortic constriction (AAC).In addition, a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocyte .RESULTS:miR-1 and-16 expression were markedly de-creased in hypertrophic myocardium and hypertrophic cardiomyocytes in rats .Overexpression of miR-1 and -16 suppressed rat cardiac hypertrophy and hypertrophic phenotype of cultured cardiomyocytes .Expression of cyclins