WorldWideScience

Sample records for cyclin d1 gene

  1. Cyclin D1 Gene Expression in Oral Mucosa of Tobacco Chewers”–An Immunohistochemical Study

    OpenAIRE

    Basnaker, Maharudrappa; SP, Srikala; BNVS, Satish

    2014-01-01

    Objective: The objective of the present study was to evaluate the expression of cyclin D1 in normal oral mucosa of both non tobacco habituated and tobacco habituated individuals histologically and also compare and correlate cyclin D1 expression with histopathologically confirmed cases of oral squamous cell carcinomas.

  2. Cyclin D1 Gene Silencing by siRNA in Ex Vivo Human Tissue Cultures.

    Science.gov (United States)

    Piazza, Ornella; Russo, Ilaria; Bochicchio, Sabrina; Barba, Anna Angela; Lamberti, Gaetano; Zeppa, Pio; Crescenzo, Vincenzo Di; Carrizzo, Albino; Vecchione, Carmine; Ciacci, Carolina

    2017-01-01

    Short interfering RNAs (siRNAs) are double-stranded RNA molecules able to specifically targeting genes products responsible for human diseases. Cyclin D1 (CyD1) is a cell cycleregulatory molecule, up-regulated at sites of inflammation in several tissues. CyD1 is a very interesting potential target in lung and colon inflammatory diseases. The aim of this paper was testing CyD1 expression in human lung and colon tissues after the application of an inflammatory stimulus, and verifying its gene silencing by using siRNA for CyD1 (siCyD1). Colon and pulmonary biopsies were treated with siCyD1 by using two different transfection carriers: a) invivofectamine and b) ad hoc produced nanoliposomes. After 24 hours of incubation with nanoliposomes encapsulating siRNA or invivofectamine-CyD1siRNA, in presence or absence of ECLPS, we analysed the protein expression of CyD1 through Western-Blotting. After EC-LPS treatment, in both colon and pulmonary biopsies, an overexpression of CyD1was found (about 64% and 40% respectively). Invivofectamine-CyD1 siRNA reduced the expression of CyD1 approximately by 46% compared to the basal condition, and by around 65% compared to EC-LPS treated colon samples. In lung, following in vivo fectamine siRNA silencing in the presence of EC-LPS, no reduction was observed. Ad hoc nanoliposomes were able to enter colon and lung tissues, but CyD1 silencing was reported in 2 colon samples out of 4 and no efficacy was demonstrated in the only lung sample we studied. The silencing of Cyclin D1 expression in vitro "organ culture" model is possible. Our preliminary results encourage further investigations, using different siRNA concentrations delivered by nanoliposomes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Phosphorylation-Dependent Regulation of Cyclin D1 and Cyclin A Gene Transcription by TFIID Subunits TAF1 and TAF7

    Science.gov (United States)

    Kloet, Susan L.; Whiting, Jennifer L.; Gafken, Phil; Ranish, Jeff

    2012-01-01

    The largest transcription factor IID (TFIID) subunit, TBP-associated factor 1 (TAF1), possesses protein kinase and histone acetyltransferase (HAT) activities. Both enzymatic activities are essential for transcription from a subset of genes and G1 progression in mammalian cells. TAF7, another TFIID subunit, binds TAF1 and inhibits TAF1 HAT activity. Here we present data demonstrating that disruption of the TAF1/TAF7 interaction within TFIID by protein phosphorylation leads to activation of TAF1 HAT activity and stimulation of cyclin D1 and cyclin A gene transcription. Overexpression and small interfering RNA knockdown experiments confirmed that TAF7 functions as a transcriptional repressor at these promoters. Release of TAF7 from TFIID by TAF1 phosphorylation of TAF7 increased TAF1 HAT activity and elevated histone H3 acetylation levels at the cyclin D1 and cyclin A promoters. Serine-264 of TAF7 was identified as a substrate for TAF1 kinase activity. Using TAF7 S264A and S264D phosphomutants, we determined that the phosphorylation state of TAF7 at S264 influences the levels of cyclin D1 and cyclin A gene transcription and promoter histone H3 acetylation. Our studies have uncovered a novel function for the TFIID subunit TAF7 as a phosphorylation-dependent regulator of TAF1-catalyzed histone H3 acetylation at the cyclin D1 and cyclin A promoters. PMID:22711989

  4. Cyclin d1 gene expression in oral mucosa of tobacco chewers"-an immunohistochemical study.

    Science.gov (United States)

    Basnaker, Maharudrappa; Sp, Srikala; Bnvs, Satish

    2014-05-01

    The objective of the present study was to evaluate the expression of cyclin D1 in normal oral mucosa of both non tobacco habituated and tobacco habituated individuals histologically and also compare and correlate cyclin D1 expression with histopathologically confirmed cases of oral squamous cell carcinomas. The present study involved 20 cases of tobacco habituated individuals with normal oral mucosal tissue and 20 histopathologically confirmed cases of squamous cells carcinomas. Twelve cases of non tobacco habituated individuals served as control group. Chi-square analysis was used to determine statistical significance. Fifty percent of control cases, 70% of squamous cell carcinoma cases and 80% of tobacco habituated individuals of clinically normal mucosa showed cyclin D1 positivity. Thirteen cases with tobacco chewing habit, with clinically normal mucosa, showed dysplasia, out of which seven were mildly dysplastic and six were moderately dysplastic. A larger percentage of cyclin D1 expression was observed in lower grade dysplasias (53.8%) than higher grade dysplasias (46.1%). However statistical analysis showed no significant association between groups. Chi-square value was normal mucosa indicates that the mutation of cyclin D1 occurs early, even before clinical changes are apparent. This finding appears to be previously unreported. The presence of dysplasia in the same group and cyclin D1 expression in 84.6% of dysplastic cases show that the patients are susceptible for further changes, including progression to higher grades of dysplasia and development of carcinoma. Relatively lower expression of cyclin D1 positivity (70%), in oral cancer patients, when compared with tobacco users with clinically normal mucosa (80%) is indicative of increased traverse of the cell through the cell cycle, which may occur early in tumor progression. Cyclin D1 immunoreactivity was detected in all the three study groups.

  5. Amplification of EGFR and cyclin D1 genes associated with human papillomavirus infection in oral squamous cell carcinoma.

    Science.gov (United States)

    Chuerduangphui, Jureeporn; Pientong, Chamsai; Patarapadungkit, Natcha; Chotiyano, Apinya; Vatanasapt, Patravoot; Kongyingyoes, Bunkerd; Promthet, Supannee; Swangphon, Piyawut; Bumrungthai, Sureewan; Pimson, Charinya; Ekalaksananan, Tipaya

    2017-09-01

    Human papillomavirus (HPV) infection is associated with several genetic alterations including oncogene amplification, leading to increased aggression of tumors. Recently, a relationship between HPV infection and oncogene amplification has been reported, but this finding remains controversial. This study therefore investigated relationships between HPV infection and amplification of genes in the epidermal growth factor receptor (EGFR) signaling cascade in oral squamous cell carcinoma (OSCC). Extracted DNA from 142 formalin-fixed paraffin-embedded (FFPE) OSCC tissues was performed to investigate the copy number of EGFR, KRAS, c-myc and cyclin D1 genes using real-time polymerase chain reaction (RT-PCR) and compared with calibrators. A tissue microarray of OSCC tissues was used for detection of c-Myc expression and HPV infection by immunohistochemistry and HPV E6/E7 RNA in situ hybridization, respectively. HPV infection was also investigated using PCR and RT-PCR. Of the 142 OSCC samples, 81 (57%) were HPV-infected cases. The most frequently amplified gene was c-myc (55.6%), followed by cyclin D1 (26.1%), EGFR (23.9%) and KRAS (19.7%). Amplification of c-myc was significantly associated with levels of its protein product. EGFR amplification was also significantly associated with amplification of genes in the signaling cascade: KRAS (50.0%), c-myc (34.2%) and cyclin D1 (46.0%). Interestingly, HPV infection was significantly associated with amplification of both EGFR (76.5%) and cyclin D1 (73.0%). Only cyclin D1 amplification was significantly associated with severity of OSCC histopathology. HPV infection may play an important synergistic role in amplification of genes in the EGFR signaling cascade, leading to increased aggression in oral malignancies.

  6. Cooperative activation of cyclin D1 and progesterone receptor gene expression by the SRC-3 coactivator and SMRT corepressor.

    Science.gov (United States)

    Karmakar, Sudipan; Gao, Tong; Pace, Margaret C; Oesterreich, Steffi; Smith, Carolyn L

    2010-06-01

    Although the ability of coactivators to enhance the expression of estrogen receptor-alpha (ERalpha) target genes is well established, the role of corepressors in regulating 17beta-estradiol (E2)-induced gene expression is poorly understood. Previous studies revealed that the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor is required for full ERalpha transcriptional activity in MCF-7 breast cancer cells, and we report herein the E2-dependent recruitment of SMRT to the regulatory regions of the progesterone receptor (PR) and cyclin D1 genes. Individual depletion of SMRT or steroid receptor coactivator (SRC)-3 modestly decreased E2-induced PR and cyclin D1 expression; however, simultaneous depletion revealed a cooperative effect of this coactivator and corepressor on the expression of these genes. SMRT and SRC-3 bind directly in an ERalpha-independent manner, and this interaction promotes E2-dependent SRC-3 binding to ERalpha measured by co-IP and SRC-3 recruitment to the cyclin D1 gene as measured by chromatin IP assays. Moreover, SMRT stimulates the intrinsic transcriptional activity of all of the SRC family (p160) coactivators. Our data link the SMRT corepressor directly with SRC family coactivators in positive regulation of ERalpha-dependent gene expression and, taken with the positive correlation found for SMRT and SRC-3 in human breast tumors, suggest that SMRT can promote ERalpha- and SRC-3-dependent gene expression in breast cancer.

  7. Transcriptional activities of histone H3, cyclin D1 and claudin 7 encoding genes in laryngeal cancer.

    Science.gov (United States)

    Kapral, Malgorzata; Strzalka-Mrozik, Barbara; Kowalczyk, Malgorzata; Paluch, Jaroslaw; Gola, Joanna; Gierek, Tatiana; Weglarz, Ludmila

    2011-05-01

    Uncontrolled proliferation and a decrease in cell-cell adhesion are one of the most important characteristics of malignancy. Determination of replication-dependent histone H3 can be applied as a proliferative marker. Cyclin D1 (CCND1) regulates the cell cycle by participating in the control of the G1/S phase transition. Claudins (CLDN) are components of tight junctions and may play an essential role in the loss of tissue cohesion. The aim of the study was to assess the mRNA expression of histone H3, cyclin D1, and claudin 7 genes in laryngeal squamous cell carcinoma (LSCC) and adjacent nonneoplastic tissues. The study group consisted of 32 patients with LSCC. Adjacent nonneoplastic tissues of incision lines were used as controls. Quantification of H3, CCND1 and CLDN7 mRNAs was performed by the use of real-time QRT-PCR assay. Molecular analysis showed a significantly higher expression of CCND1 (P = 0.0001; Wilcoxon test) and H3 (P = 0.0141) genes in tumor tissues than in surrounding nonneoplastic tissues. On the contrary, transcriptional activity of claudin 7 gene was higher in histologically normal tissues; however, this difference was not statistically significant (P = 0.1499). The data obtained indicate that laryngeal cancer is characterized by high proliferative potential mediated by increase in cyclin D1 and H3 mRNAs expression. © Springer-Verlag 2010

  8. Cyclin D1 expression in prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, R.A.; Ravinal, R.C.; Costa, R.S.; Lima, M.S. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Tucci, S. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Divisão de Urologia, Ribeirão Preto, SP, Brasil, Divisão de Urologia, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Muglia, V.F. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Medicina Interna (Centro de Ciência da Imagem), Ribeirão Preto, SP, Brasil, Departamento de Medicina Interna (Centro de Ciência da Imagem), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Reis, R.B. Dos [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Divisão de Urologia, Ribeirão Preto, SP, Brasil, Divisão de Urologia, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, G.E.B. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-05-09

    The purpose of this study was to investigate the relationship between cyclin D1 expression and clinicopathological parameters in patients with prostate carcinoma. We assessed cyclin D1 expression by conventional immunohistochemistry in 85 patients who underwent radical prostatectomy for prostate carcinoma and 10 normal prostate tissue samples retrieved from autopsies. We measured nuclear immunostaining in the entire tumor area and based the results on the percentage of positive tumor cells. The preoperative prostate-specific antigen (PSA) level was 8.68±5.16 ng/mL (mean±SD). Cyclin D1 staining was positive (cyclin D1 expression in >5% of tumor cells) in 64 cases (75.4%) and negative (cyclin D1 expression in ≤5% of tumor cells) in 21 cases (including 15 cases with no immunostaining). Normal prostate tissues were negative for cyclin D1. Among patients with a high-grade Gleason score (≥7), 86% of patients demonstrated cyclin D1 immunostaining of >5% (P<0.05). In the crude analysis of cyclin D1 expression, the high-grade Gleason score group showed a mean expression of 39.6%, compared to 26.9% in the low-grade Gleason score group (P<0.05). Perineural invasion tended to be associated with cyclin D1 expression (P=0.07), whereas cyclin D1 expression was not associated with PSA levels or other parameters. Our results suggest that high cyclin D1 expression could be a potential marker for tumor aggressiveness.

  9. Cyclin A and cyclin D1 as significant prognostic markers in colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    Mahmoud Moustafa

    2004-09-01

    Full Text Available Abstract Background Colorectal cancer is a common cancer all over the world. Aberrations in the cell cycle checkpoints have been shown to be of prognostic significance in colorectal cancer. Methods The expression of cyclin D1, cyclin A, histone H3 and Ki-67 was examined in 60 colorectal cancer cases for co-regulation and impact on overall survival using immunohistochemistry, southern blot and in situ hybridization techniques. Immunoreactivity was evaluated semi quantitatively by determining the staining index of the studied proteins. Results There was a significant correlation between cyclin D1 gene amplification and protein overexpression (concordance = 63.6% and between Ki-67 and the other studied proteins. The staining index for Ki-67, cyclin A and D1 was higher in large, poorly differentiated tumors. The staining index of cyclin D1 was significantly higher in cases with deeply invasive tumors and nodal metastasis. Overexpression of cyclin A and D1 and amplification of cyclin D1 were associated with reduced overall survival. Multivariate analysis shows that cyclin D1 and A are two independent prognostic factors in colorectal cancer patients. Conclusions Loss of cell cycle checkpoints control is common in colorectal cancer. Cyclin A and D1 are superior independent indicators of poor prognosis in colorectal cancer patients. Therefore, they may help in predicting the clinical outcome of those patients on an individual basis and could be considered important therapeutic targets.

  10. Cyclin D1 genotype and expression in sporadic hemangioblastomas.

    NARCIS (Netherlands)

    Gijtenbeek, J.M.M.; Sprenger, S.H.E.; Franke, B.; Wesseling, P.; Jeuken, J.W.M.

    2005-01-01

    Central nervous system (CNS) hemangioblastomas are highly-vascularized tumors occurring in sporadic form or as a manifestation of von Hippel-Lindau disease (VHL). The VHL protein (pVHL) regulates various target genes, one of which is the CCND1 gene, encoding cyclin D1, a protein that plays a

  11. Cyclin d1 expression in odontogenic cysts.

    Science.gov (United States)

    Taghavi, Nasim; Modabbernia, Shirin; Akbarzadeh, Alireza; Sajjadi, Samad

    2013-01-01

    In the present study expression of cyclin D1 in the epithelial lining of odontogenic keratocyst, radicular cyst, dentigerous cyst and glandular odontogenic cyst was investigated to compare proliferative activity in these lesions. Immunohistochemical staining of cyclin D1 on formalin-fixed, paraffin-embedded tissue sections of odontogenic keratocysts (n=23), dentigerous cysts (n=20), radicular cysts (n=20) and glandular odontogenic cysts (n=5) was performed by standard EnVision method. Then, slides were studied to evaluate the following parameters in epithelial lining of cysts: expression, expression pattern, staining intensity and localization of expression. The data analysis showed statistically significant difference in cyclin D1 expression in studied groups (p cysts were frequently confined in parabasal layer, different from radicular cysts and glandular odontogenic cysts. The difference was statistically significant (p cysts comparing to dentigerous cysts and radicular cysts, implying the possible role of G1-S cell cycle phase disturbances in the aggressiveness of odontogenic keratocyst and glandular odontogenic cyst.

  12. Paradoxical roles of cyclin D1 in DNA stability.

    Science.gov (United States)

    Jirawatnotai, Siwanon; Sittithumcharee, Gunya

    2016-06-01

    Maintenance of DNA integrity is vital for all of the living organisms. Consequence of DNA damaging ranges from, introducing harmless synonymous mutations, to causing disease-associated mutations, genome instability, and cell death. A cell cycle protein cyclin D1 is an established cancer-driving protein. However, contribution of cyclin D1 to cancer formation and cancer survival is not entirely known. In cancer tissues, overexpression of cyclin D1 is associated with both cancer genome instability, and resistance to DNA-damaging cancer drugs. Emerging evidence indicated that cyclin D1 may play novel direct roles in regulating DNA repair. Here we provide an insight how cyclin D1 expression may contribute to DNA repair and chromosome instability, and how these functions may facilitate cancer formation, and drug resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α.

    Science.gov (United States)

    Bhalla, Kavita; Liu, Wan-Ju; Thompson, Keyata; Anders, Lars; Devarakonda, Srikripa; Dewi, Ruby; Buckley, Stephanie; Hwang, Bor-Jang; Polster, Brian; Dorsey, Susan G; Sun, Yezhou; Sicinski, Piotr; Girnun, Geoffrey D

    2014-10-01

    Hepatic gluconeogenesis is crucial to maintain normal blood glucose during periods of nutrient deprivation. Gluconeogenesis is controlled at multiple levels by a variety of signal transduction and transcriptional pathways. However, dysregulation of these pathways leads to hyperglycemia and type 2 diabetes. While the effects of various signaling pathways on gluconeogenesis are well established, the downstream signaling events repressing gluconeogenic gene expression are not as well understood. The cell-cycle regulator cyclin D1 is expressed in the liver, despite the liver being a quiescent tissue. The most well-studied function of cyclin D1 is activation of cyclin-dependent kinase 4 (CDK4), promoting progression of the cell cycle. We show here a novel role for cyclin D1 as a regulator of gluconeogenic and oxidative phosphorylation (OxPhos) gene expression. In mice, fasting decreases liver cyclin D1 expression, while refeeding induces cyclin D1 expression. Inhibition of CDK4 enhances the gluconeogenic gene expression, whereas cyclin D1-mediated activation of CDK4 represses the gluconeogenic gene-expression program in vitro and in vivo. Importantly, we show that cyclin D1 represses gluconeogenesis and OxPhos in part via inhibition of peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) activity in a CDK4-dependent manner. Indeed, we demonstrate that PGC1α is novel cyclin D1/CDK4 substrate. These studies reveal a novel role for cyclin D1 on metabolism via PGC1α and reveal a potential link between cell-cycle regulation and metabolic control of glucose homeostasis. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  14. Cyclin D1 overexpression and poor clinical outcomes in Taiwanese oral cavity squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Huang Shiang-Fu

    2012-02-01

    Full Text Available Abstract Background Cyclin D1 gene regulates cell cycle and plays an important role in the tumorigenesis of human cancers. The association between cyclin D1, clinicopathologic parameters and prognosis in oral cavity squamous cell carcinoma (OSCC is inconclusive. Methods A total of 264 male OSCCs were examined for cyclin D1 protein expression using immunohistochemistry (IHC. The expression levels of cyclin D1 were defined as overexpression when more than 10% of tumor cells displayed nuclear staining with moderate to strong intensity. Results Overexpression of cyclin D1 was found in 97 (36.7% OSCCs. Cyclin D1 protein overexpression was significantly associated with lymph node metastasis (P = 0.002, tumor cell differentiation (P = 0.031 and tumor stage (P = 0.051, but not associated with age onset, cigarette smoking, alcohol drinking, or areca quid chewing. Overexpression of cyclin D1 was also significantly associated with poor clinical outcomes in terms of disease-free survival (DFS, P = 0.002 and overall survival (OS, P Conclusion Cyclin D1 protein worked as an independent prognostic factor and can be as a biomarker for the aggressiveness of OSCC.

  15. Association Between Polymorphism rs678653 in Human Cyclin D1 Gene (CCND1) and Susceptibility to Cancer: A Meta-Analysis.

    Science.gov (United States)

    Dai, Xichao; Zhang, Xizhi; Wang, Buhai; Wang, Chaomin; Jiang, Jingting; Wu, Changping

    2016-03-16

    To assess the association between polymorphism rs678653 in human Cyclin D1 gene (CCND1) and the risk of cancer. Multiple biomedical databases were systematically searched. Pooled odds ratios (OR) and 95% confidence intervals (95% CIs) were calculated in the appropriate model. In total, 17 case-control studies from 14 articles were included. When combing all available data, no significant association of rs678653 with cancer risk was observed under different genetic models. Stratification by ethnicity also indicated that rs678653 was not correlated with cancer risk in Taiwanese or Indian populations. When stratified by cancer type, no significant association was found between polymorphism rs678653 and digestive tract cancer, head and neck cancer, and gynecological cancer risk. Our comprehensive meta-analysis suggests that the polymorphism rs678653 in CCND1 has no association with cancer risk in different population and disease contexts, indicating that CCND1 rs678653 does not serve a significant biological function in predicting cancer risk.

  16. Histone deacetylase inhibitor, Trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Charles Coombes R

    2006-02-01

    Full Text Available Abstract Background Cyclin D1 is an important regulator of G1-S phase cell cycle transition and has been shown to be important for breast cancer development. GSK3β phosphorylates cyclin D1 on Thr-286, resulting in enhanced ubiquitylation, nuclear export and degradation of the cyclin in the cytoplasm. Recent findings suggest that the development of small-molecule cyclin D1 ablative agents is of clinical relevance. We have previously shown that the histone deacetylase inhibitor trichostatin A (TSA induces the rapid ubiquitin-dependent degradation of cyclin D1 in MCF-7 breast cancer cells prior to repression of cyclin D1 gene (CCND1 transcription. TSA treatment also resulted in accumulation of polyubiquitylated GFP-cyclin D1 species and reduced levels of the recombinant protein within the nucleus. Results Here we provide further evidence for TSA-induced ubiquitin-dependent degradation of cyclin D1 and demonstrate that GSK3β-mediated nuclear export facilitates this activity. Our observations suggest that TSA treatment results in enhanced cyclin D1 degradation via the GSK3β/CRM1-dependent nuclear export/26S proteasomal degradation pathway in MCF-7 cells. Conclusion We have demonstrated that rapid TSA-induced cyclin D1 degradation in MCF-7 cells requires GSK3β-mediated Thr-286 phosphorylation and the ubiquitin-dependent 26S proteasome pathway. Drug induced cyclin D1 repression contributes to the inhibition of breast cancer cell proliferation and can sensitize cells to CDK and Akt inhibitors. In addition, anti-cyclin D1 therapy may be highly specific for treating human breast cancer. The development of potent and effective cyclin D1 ablative agents is therefore of clinical relevance. Our findings suggest that HDAC inhibitors may have therapeutic potential as small-molecule cyclin D1 ablative agents.

  17. Cyclin D1 expression and polysomy in lymphocyte-predominant cells of nodular lymphocyte-predominant Hodgkin lymphoma.

    Science.gov (United States)

    Cho, Benjamin B; Kelting, Sarah M; Gru, Alejandro A; LeGallo, Robin D; Pramoonjago, Patcharin; Goldin, Teresa A; Heitz, Christopher T; Aguilera, Nadine S

    2017-02-01

    Cyclin D1 protein expression in lymphocytes is classically associated with mantle cell lymphoma. Although increasingly recognized in other lymphoproliferative disorders, cyclin D1 expression and CCND1 gene abnormalities have not been well studied in nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL). Using a double stain for CD20/cyclin D1, we quantified cyclin D1 expression in 10 cases of NLPHL and correlated those findings with SOX11 expression, CCND1 gene abnormalities, and clinical data. For comparison, we examined 5 cases of T cell-/histiocyte-rich large B-cell lymphoma (THRLBCL). All cases of NLPHL stained for cyclin D1 showed at least rare positivity in lymphocyte-predominant (LP) cells. In 4 cases, at least 20% of LP cells were positive for CD20/cyclin D1. Neither SOX11 expression nor CCND1 gene rearrangement was found in any of the cases, but fluorescence in situ hybridization showed a proportion of the large cells with 3 to 4 copies of nonfused IGH and CCND1 signals or 3 intact CCND1 break-apart signals. Further study with CCND1/CEP11 showed polysomy in 6 of 9 cases with cyclin D1 expression and 5 of 16 NLPHL not examined for cyclin D1. Two of 5 cases of THRLBCL showed rare positive staining for CD20/cyclin D1; 1 case showed polysomy with CCND1/CEP11. Results show that cyclin D1 may be expressed in LP cells without SOX11 expression or CCND1 translocation. Polysomy with increased copies of CCND1 may account for cyclin D1 expression in some cases. Cyclin D1 expression is not useful for distinguishing NLPHL from THRLBCL and has no apparent clinical significance in NLPHL. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Prevalence and clinical implications of cyclin D1 expression in diffuse large B-cell lymphoma (DLBCL) treated with immunochemotherapy

    DEFF Research Database (Denmark)

    Ok, Chi Young; Xu-Monette, Zijun Y; Tzankov, Alexandar

    2014-01-01

    patients who were diagnosed with DLBCL as part of the International DLBCL rituximab with cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone (R-CHOP) Consortium Program and performed clinical, immunohistochemical, and genetic analyses with a focus on cyclin D1. All patients who were cyclin D......BACKGROUND: Cyclin D1 expression has been reported in a subset of patients with diffuse large B-cell leukemia (DLBCL), but studies have been few and generally small, and they have demonstrated no obvious clinical implications attributable to cyclin D1 expression. METHODS: The authors reviewed 1435......1-positive according to immunohistochemistry were also assessed for rearrangements of the cyclin D1 gene (CCND1) using fluorescence in situ hybridization. Gene expression profiling was performed to compare patients who had DLBCL with and without cyclin D1 expression. RESULTS: In total, 30 patients...

  19. Cyclin D1 gene polymorphism as a risk factor for squamous cell carcinoma of the upper aerodigestive system in non-alcoholics

    DEFF Research Database (Denmark)

    Nishimoto, Ines Nobuko; Pinheiro, Nidia Alice; Rogatto, Silvia Regina

    2004-01-01

    Squamous cell carcinoma of the upper aerodigestive tract (UADT) is associated with environmental factors, especially tobacco and alcohol consumption. Genetic factors, including cyclin D1 (CCND1) polymorphism have been suggested to play an important role in tumorigenesis and progression of UADT...... cancer. To investigate the relationship between CCND1 polymorphism on susceptibility for UADT cancers, 147 cancer and 135 non-cancer subjects were included in this study. CCND1 genotype at codon 242(G870A) in exon 4 was undertaken using denaturing high performance liquid chromatography (DHPLC) and DNA...... in non-alcoholics. However, further epidemiological studies are needed to establish the exact role of CCND1 polymorphism and the development of UADT cancers....

  20. Age Dependent Switching Role of Cyclin D1 in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Carmela Rinaldi

    2012-01-01

    Full Text Available Background: Cyclin D1 gene (CCND1 plays pivotal roles in the development of several human cancers, including breast cancer, functioning as an oncogene. The aim of this study was to better understand the molecular dynamics of ductal carcinomas with regard to proliferation and the ageing process.

  1. The effect of the ginger on the apoptosis of hippochampal cells according to the expression of BAX and Cyclin D1 genes and histological characteristics of brain in streptozotocin male diabetic rats.

    Science.gov (United States)

    Molahosseini, A; Taghavi, M M; Taghipour, Z; Shabanizadeh, A; Fatehi, F; Kazemi Arababadi, M; Eftekhar Vaghefe, S H

    2016-10-31

    Diabetes is the most common endocrine disorder in humans with multiple complications including nervous system damages. The aim of the present study was to determine the effect of ginger extract on apoptosis of the neurons of hippocampus, via evaluation of BAX and Cyclin D1 and also histological analysis, in male diabetic rats. In this experimental study, 60 Wistar rats (220 ± 30gr) were conducted in 5 groups as follow: diabetic group treated with saline (group 1), normal group treated with saline (group 2), diabetic group treated with ginger (group 3), diabetic group treated with ginger-insulin (group 4), diabetic group treated with insulin (group 5). STZ (60 mg/kg) was intraperitoneally used to induce the diabetes. Expression levels of BAX and Cyclin D1 were examined using Real-Time PCR technique and the normality of neurons was evaluated using H&E staining method. The results showed that blood glucose level significantly decreased in group 4 when compared to group 1. In molecular analysis, there was no significant difference between groups regarding the expression of BAX gens, while, the expression of Cyclin D1 were significantly decreased in group 4 compared with group 1. Histological analysis revealed that pathological symptoms were lower in group 4 than the other diabetic groups. The results of present study showed that the ginger in addition to lowering blood sugar level, changes the expression of Cyclin D1 gene and histological characteristics in a positive manner. This means that the ginger may protects neurons of the hippocampus from apoptosis in diabetic patients.

  2. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype

    Science.gov (United States)

    Mozos, Ana; Royo, Cristina; Hartmann, Elena; De Jong, Daphne; Baró, Cristina; Valera, Alexandra; Fu, Kai; Weisenburger, Dennis D.; Delabie, Jan; Chuang, Shih-Sung; Jaffe, Elaine S.; Ruiz-Marcellan, Carmen; Dave, Sandeep; Rimsza, Lisa; Braziel, Rita; Gascoyne, Randy D.; Solé, Francisco; López-Guillermo, Armando; Colomer, Dolors; Staudt, Louis M.; Rosenwald, Andreas; Ott, German; Jares, Pedro; Campo, Elias

    2009-01-01

    Background Cyclin D1-negative mantle cell lymphoma is difficult to distinguish from other small B-cell lymphomas. The clinical and pathological characteristics of patients with this form of lymphoma have not been well defined. Overexpression of the transcription factor SOX11 has been observed in conventional mantle cell lymphoma. The aim of this study was to determine whether this gene is expressed in cyclin D1-negative mantle cell lymphoma and whether its detection may be useful to identify these tumors. Design and Methods The microarray database of 238 mature B-cell neoplasms was re-examined. SOX11 protein expression was investigated immunohistochemically in 12 cases of cyclin D1-negative mantle cell lymphoma, 54 cases of conventional mantle cell lymphoma, and 209 additional lymphoid neoplasms. Results SOX11 mRNA was highly expressed in conventional and cyclin D1-negative mantle cell lymphoma and in 33% of the cases of Burkitt’s lymphoma but not in any other mature lymphoid neoplasm. SOX11 nuclear protein was detected in 50 cases (93%) of conventional mantle cell lymphoma and also in the 12 cyclin D1-negative cases of mantle cell lymphoma, the six cases of lymphoblastic lymphomas, in two of eight cases of Burkitt’s lymphoma, and in two of three T-prolymphocytic leukemias but was negative in the remaining lymphoid neoplasms. Cyclin D2 and D3 mRNA levels were significantly higher in cyclin D1-negative mantle cell lymphoma than in conventional mantle cell lymphoma but the protein expression was not discriminative. The clinico-pathological features and outcomes of the patients with cyclin D1-negative mantle cell lymphoma identified by SOX11 expression were similar to those of patients with conventional mantle cell lymphoma. Conclusions SOX11 mRNA and nuclear protein expression is a highly specific marker for both cyclin D1-positive and negative mantle cell lymphoma. PMID:19880778

  3. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States); Lee, Seong-Ho, E-mail: slee2000@umd.edu [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. Black-Right-Pointing-Pointer PCA enhanced transcriptional downregulation of cyclin D1 gene. Black-Right-Pointing-Pointer PCA suppressed HDAC2 expression and activity. Black-Right-Pointing-Pointer These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  4. Primary hyperparathyroidism caused by parathyroid-targeted overexpression of cyclin D1 in transgenic mice

    OpenAIRE

    Imanishi, Yasuo; Hosokawa, Yoshitaka; Yoshimoto, Katsuhiko; Schipani, Ernestina; Mallya, Sanjay; Papanikolaou, Alexandros; Kifor, Olga; Tokura, Takehiko; Sablosky, Marilyn; Ledgard, Felicia; Gronowicz, Gloria; Wang, Timothy C.; Schmidt, Emmett V.; Hall, Charles; Brown, Edward M.

    2001-01-01

    The relationship between abnormal cell proliferation and aberrant control of hormonal secretion is a fundamental and poorly understood issue in endocrine cell neoplasia. Transgenic mice with parathyroid-targeted overexpression of the cyclin D1 oncogene, modeling a gene rearrangement found in human tumors, were created to determine whether a primary defect in this cell-cycle regulator can cause an abnormal relationship between serum calcium and parathyroid hormone response, as is typical of hu...

  5. Therapeutically targeting cyclin D1 in primary tumors arising from loss of Ini1

    Science.gov (United States)

    Smith, Melissa E.; Cimica, Velasco; Chinni, Srinivasa; Jana, Suman; Koba, Wade; Yang, Zhixia; Fine, Eugene; Zagzag, David; Montagna, Cristina; Kalpana, Ganjam V.

    2011-01-01

    Rhabdoid tumors (RTs) are rare, highly aggressive pediatric malignancies with poor prognosis and with no standard or effective treatment strategies. RTs are characterized by biallelic inactivation of the INI1 tumor suppressor gene. INI1 directly represses CCND1 and activates cyclin-dependent kinase (cdk) inhibitors p16Ink4a and p21CIP. RTs are exquisitely dependent on cyclin D1 for genesis and survival. To facilitate translation of unique therapeutic strategies, we have used genetically engineered, Ini1+/− mice for therapeutic testing. We found that PET can be used to noninvasively and accurately detect primary tumors in Ini1+/− mice. In a PET-guided longitudinal study, we found that treating Ini1+/− mice bearing primary tumors with the pan-cdk inhibitor flavopiridol resulted in complete and stable regression of some tumors. Other tumors showed resistance to flavopiridol, and one of the resistant tumors overexpressed cyclin D1, more than flavopiridol-sensitive cells. The concentration of flavopiridol used was not sufficient to down-modulate the high level of cyclin D1 and failed to induce cell death in the resistant cells. Furthermore, FISH and PCR analyses indicated that there is aneuploidy and increased CCND1 copy number in resistant cells. These studies indicate that resistance to flavopiridol may be correlated to elevated cyclin D1 levels. Our studies also indicate that Ini1+/− mice are valuable tools for testing unique therapeutic strategies and for understanding mechanisms of drug resistance in tumors that arise owing to loss of Ini1, which is essential for developing effective treatment strategies against these aggressive tumors. PMID:21173237

  6. Survivin and cycline D1 expressions are associated with malignant potential in mucinous ovarian neoplasms.

    Science.gov (United States)

    Kanter, Mehmet; Turan, Gulay; Usta, Ceyda; Usta, Akin; Esen, H Hasan; Tavlı, Lema; Celik, Cetin; Demirkol, Yusuf; Kanter, Betül

    2016-04-01

    The most prevalent malignant ovarian neoplasms are epithelial ovarian cancers which is the most common cause of death among all gynecologic malignancies and a result of complex interaction of multiple oncogenes and tumor suppressor genes. The aim of this study was to evaluate expression of survivin and cycline D1 biomarkers in mucinous ovarian neoplasms and their correlations with clinicopathological variables in mucinous ovarian cancers. We analyzed pathological specimens of 98 patients with benign (n = 34), borderline (n = 22) and malignant (n = 42) mucinous ovarian neoplasms. Immunohistochemical analysis was performed on formalin-fixed paraffin-embedded specimens. Immunohistochemical analysis revealed that survivin and cyclin D1 expressions were located primarily in the nucleus of ovarian tumor cells and relatively weaker cytoplasmic staining. Survivin expression was significantly higher in malignant tumors (88.1 %) than those found in borderline (18.2 %) and benign tumors (8.8 %) (p neoplasms.

  7. Peripheral T-cell Lymphoma with Cyclin D1 overexpression: a case report

    Directory of Open Access Journals (Sweden)

    Aquino Gabriella

    2012-07-01

    Full Text Available Abstract Peripheral T-cell lymphomas not otherwise specified are generally considered aggressive non-Hodgkin lymphomas, because of poor natural outcome and response to therapy. They show a complex karyotype without any specific genetic hallmark. We report a case of peripheral T-cell lymphoma not otherwise specified with heterogeneous nuclear Cyclin D1 immunohistochemical overexpression, due to gene copy gain, a phenomenon similar to that observed in Mantle Cell Lymphoma characterized by t(11;14(q13;q32. In this case report we underline the diagnostic pitfall rapresented by Cyclin D1 immunoistochemical overexpression in a T-cell lymphoma. Several pitfalls could lead to misinterpretation of diagnosis, therefore, we underlined the need to integrate the classical histology and immunohistochemistry with molecular tests as clonality or Fluorescence in situ hybridization. Virtual slide The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1117747619703769

  8. Peripheral T-cell Lymphoma with Cyclin D1 overexpression: a case report.

    Science.gov (United States)

    Aquino, Gabriella; Franco, Renato; Ronconi, Fioravante; Anniciello, Annamaria; Russo, Luigi; De Chiara, Annarosaria; Panico, Luigi

    2012-07-06

    Peripheral T-cell lymphomas not otherwise specified are generally considered aggressive non-Hodgkin lymphomas, because of poor natural outcome and response to therapy. They show a complex karyotype without any specific genetic hallmark. We report a case of peripheral T-cell lymphoma not otherwise specified with heterogeneous nuclear cyclin D1 immunohistochemical overexpression, due to gene copy gain, a phenomenon similar to that observed in mantle cell lymphoma characterized by t(11;14)(q13;q32). In this case report we underline the diagnostic pitfall represented by cyclin D1 immunohistochemical overexpression in a T-cell lymphoma. Several pitfalls could lead to misinterpretation of diagnosis, therefore, we underlined the need to integrate the classical histology and immunohistochemistry with molecular tests as clonality or fluorescence in situ hybridization. The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1117747619703769.

  9. Age Dependent Switching Role of Cyclin D1 in Breast Cancer

    Science.gov (United States)

    Rinaldi, Carmela; Malara, Natalia Maria; D’Angelo, Rosalia; Sidoti, Antonina; Leotta, Attilio; Lio, Santo; Caparello, Basilio; Ruggeri, Alessia; Mollace, Vincenzo; Amato, Aldo

    2012-01-01

    Background: Cyclin D1 gene (CCND1) plays pivotal roles in the development of several human cancers, including breast cancer, functioning as an oncogene. The aim of this study was to better understand the molecular dynamics of ductal carcinomas with regard to proliferation and the ageing process. Methods: 130 cases of ductal breast cancer in postmenopausal women, aged 52–96 in 3 age classes were selected. Tumoral tissues preserved in formaldehyde solution and subsequently embedded in paraffin were subjected to analysis Fluorescence in situ Hybridization (FISH), Reverse Transcription-Polymerase Chain Reaction (RT- PCR) and immuno-histochemical tests. The molecular variables studied were estimated in relation to the patients’ age. Results: The results obtained suggest that the increment of the levels of cyclin D1 in intra-ductal breast tumors in older woman that we have examined is significantly associated with a lower proliferation rate. Conclusion: Cyclin D1, which characterizes tumor in young women as molecular director involved in strengthening tumoral proliferation mechanisms, may be seen as a potential blocking molecular switch in corresponding tumours in old women. PMID:22231956

  10. Galectin-3 and cyclin D1 expression in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Gołecki Marcin

    2011-10-01

    Full Text Available Abstract Introduction Lung cancer is a major cause of mortality and morbidity worldwide. Galectin-3 is multifunctional protein, which is involved in regulation of cell growth, cell adhesion, cell proliferation, angiogenesis and apoptosis. Cyclin D1 together with other cyclin plays an important role in cell cycle control. Cyclin D1 regulates the G1-to-S phase transition. The aim of this study was the evaluation of correlations between clinicopathological findings and cyclin D1 and galectin-3 expression in non-small cell lung cancer (NSCLC. We wanted also to analyze the prognostic value of cyclin D1 and galectin-3 expression. Moreover we tried to evaluate the correlations between galectin-3 and cyclin D1 expression in tumor tissue. Materials and methods We used the immunochemistry method to investigate the expression of galectin-3 and cyclin D1 in the paraffin-embedded tumor tissue of 47 patients (32 men and 15 women; mean age 59.34 ± 8.90. years. We used monoclonal antibodies to cyclin D1 (NCL-L-cyclin D1-GM clone P2D11F11 NOVO CASTRA and to galectin-3 (mouse monoclonal antibody NCL-GAL3 NOVO CASTRA. Results Galectin-3 expression was positive in 18 cases (38.29% and cyclin D1 in 39 (82.97%. We showed only weak trend, that galectin-3 expression was lower in patients without lymph node involvement (p = 0.07 and cyclin D1 expression was higher in this group (p = 0.080. We didn't reveal differences in cyclin D1 and galectin-3 expression in SCC and adenocarcinoma patients. We didn't demonstrated also differences in galectin-3 and cyclin D1 expression depending on disease stage. Moreover we analyzed the prognostic value of cyclin D1 expression and galectin-3 in all examinated patients and separately in SCC and in adenocarcinoma and in all stages, but we didn't find any statistical differences. We demonstrated that in galectin-3 positive tumors cyclin D1 expression was higher (96.55% vs 61.11%, Chi2 Yatesa 7.53, p = 0.0061 and we revealed negative

  11. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-Dong [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Xu, Liang [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Tang, Kan-Kai [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Sun, Ren-Hua, E-mail: jqin168@hotmail.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Mo, Shi-Jing, E-mail: msj860307@163.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China)

    2016-09-10

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  12. Mini review: Multifaceted role played by cyclin D1 in tumor behavior

    Directory of Open Access Journals (Sweden)

    Reena Rachel John

    2017-01-01

    Full Text Available The objective of this paper is to discuss and put forward the various diversified roles of cyclin D1 in cancer. Neoplasia is defined by abnormal regulation of the cell cycle. Cyclin D1 could be a protein derived from the PRAD1, CCND1, or bcl-1 sequence on body 11q13 that is concerned in each traditional regulation of the cell cycle and pathologic process. Within the G1 (resting part of the cell cycle, cyclin D1 in conjunction with its cyclin-dependent enzyme (cyclin-dependent kinase partner is accountable for transition to the S (DNA synthesis part by phosphorylating the merchandise of the metastatic tumor sequence (protein retinoblastoma that then releases transcription factors vital within the initiation of DNA replication. Amplification of the sequence or overexpression of the cyclin D1 releases a cell from its traditional controls and causes transformation to a malignant composition. Analysis of those changes provides vital diagnostic information in oral carcinogenesis and is of prognostic value in several cancers. Data of cyclin D1's role in malignancy at the assorted sites provide a basis on which future treatment directed against this molecule will proceed.

  13. Kinase Independent Functions of Cyclin D1 Which Contribute to its Oncogenic Potential In Vivo

    National Research Council Canada - National Science Library

    Landis, Mark

    2002-01-01

    .... Upon phosphorylation, pRb is inactivated, and cells pass from G1 into S phase. We and others have demonstrated that cyclin D1 has other functions, many of which are independent of kinase activity in vino...

  14. MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1.

    Directory of Open Access Journals (Sweden)

    Wang Hui

    Full Text Available Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb and proliferating cell nuclear antigen (PCNA in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3'-untranslated regions (3'-UTR of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.

  15. Inorganic polyphosphate promotes cyclin D1 synthesis through activation of mTOR/Wnt/β-catenin signaling in endothelial cells.

    Science.gov (United States)

    Hassanian, S M; Ardeshirylajimi, A; Dinarvand, P; Rezaie, A R

    2016-11-01

    Essentials Polyphosphate (polyP) activates mTOR but its role in Wnt/β-catenin signaling is not known. PolyP-mediated cyclin D1 expression (β-catenin target gene) was monitored in endothelial cells. PolyP and boiled platelet-releasates induced the expression of cyclin D1 by similar mechanisms. PolyP establishes crosstalk between mTOR and Wnt/β-catenin signaling in endothelial cells. Background Inorganic polyphosphate (polyP) elicits intracellular signaling responses in endothelial cells through activation of mTOR complexes 1 and 2. Glycogen synthase kinase 3 (GSK-3) is known to be a negative regulator of mTOR and Wnt/β-catenin signaling pathways. Objective The objective of this study was to investigate the effect of polyP on the expression, degradation and subcellular localization of the Wnt/β-catenin target gene, cyclin D1, in endothelial cells. Methods Regulation of cyclin D1 expression, phosphorylation and subcellular localization by polyP or platelet releasates was monitored in the absence and presence of pharmacological inhibitors and/or siRNA for specific molecules of the upstream mTOR/Wnt/β-catenin signaling network by established methods. Results Both synthetic polyP and boiled-platelet releasates induced the phosphorylation-dependent inactivation of GSK-3, thereby increasing the expression and nuclear localization, but inhibiting the degradation of cyclin D1. Inhibitors of mTORC1 (PI3K, AKT, PLC, PKC), rapamycin and siRNA for raptor (mTORC1-specific component) and β-catenin, all inhibited polyP-mediated regulation of cyclin D1 expression, phosphorylation and subcellular localization in endothelial cells. The signaling effect of polyP was effectively inhibited by the recombinant extracellular domain of the receptor for advanced glycation end products (RAGE) and/or by the RAGE siRNA. Specific pharmacological inhibitors and siRNA knockdown of ERK1/2 and NF-κB pathways indicated that polyP-mediated cyclin D1 expression and nuclear localization are IKK

  16. A novel role for the cell cycle regulatory complex cyclin D1?CDK4 in gluconeogenesis

    OpenAIRE

    Hosooka, Tetsuya; Ogawa, Wataru

    2015-01-01

    Dysregulation of gluconeogenesis is a key pathological feature of type 2 diabetes. However, the molecular mechanisms underlying the regulation of gluconeogenesis remain unclear. Bhalla et?al. recently reported that cyclin D1 suppresses hepatic gluconeogenesis through CDK4?dependent phosphorylation of PGC1alpha and consequent inhibition of its activity. The cyclin D1?CDK4 might thus serve as an important link between the cell cycle and control of energy metabolism through modulation of PGC1alp...

  17. A novel role for the cell cycle regulatory complex cyclin D1-CDK4 in gluconeogenesis.

    Science.gov (United States)

    Hosooka, Tetsuya; Ogawa, Wataru

    2016-01-01

    Dysregulation of gluconeogenesis is a key pathological feature of type 2 diabetes. However, the molecular mechanisms underlying the regulation of gluconeogenesis remain unclear. Bhalla et al. recently reported that cyclin D1 suppresses hepatic gluconeogenesis through CDK4-dependent phosphorylation of PGC1alpha and consequent inhibition of its activity. The cyclin D1-CDK4 might thus serve as an important link between the cell cycle and control of energy metabolism through modulation of PGC1alpha activity.

  18. Immunohistochemical evaluation of p63 and cyclin D1 in oral squamous cell carcinoma and leukoplakia.

    Science.gov (United States)

    Patel, Sunit B; Manjunatha, Bhari S; Shah, Vandana; Soni, Nishit; Sutariya, Rakesh

    2017-10-01

    There are only a limited number of studies on cyclin D1 and p63 expression in oral squamous cell carcinoma (OSCC) and leukoplakia. This study compared cyclin D1 and p63 expression in leukoplakia and OSCC to investigate the possible correlation of both markers with grade of dysplasia and histological grade of OSCC. The study included a total of 60 cases, of which 30 were diagnosed with OSCC and 30 with leukoplakia, that were evaluated immunohistochemically for p63 and cyclin D1 expression. Protein expression was correlated based on grades of dysplasia and OSCC. Out of 30 cases of OSCC, 23 cases (76.7%) were cyclin D1 positive and 30 cases (100%) were p63 positive. Out of 30 cases of leukoplakia, 21 cases (70.0%) were cyclin D1 positive and 30 (100%) were p63 positive (Pleukoplakia. Based on these results cyclin D1 and p63 products can be a useful tool for improved leukoplakia prognosis.

  19. Cyclin D1 Expression and Its Correlation with Histopathological Differentiation in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Swati Saawarn

    2012-01-01

    Full Text Available Background. Cyclin D1 regulates the G1 to S transition of cell cycle. Its deregulation or overexpression may lead to disturbance in the normal cell cycle control and tumour formation. Overexpression of cyclin D1 has been reported in various tumors of diverse histogenesis. This case control retrospective study was carried out to study the immunohistochemical reactivity and expression of cyclin D1 and its association with site, clinical staging, and histopathological differentiation of oral squamous cell carcinoma (OSCC. Methods. Forty formalin-fixed paraffin-embedded tissue blocks of biopsy specimens of oral squamous cell carcinoma were immunohistochemically evaluated for expression of cyclin D1. Results. Cyclin D1 expression was seen in 45% cases of OSCC. It did not correlate with site and clinical staging. Highest expression was seen in well-differentiated, followed by moderately differentiated, and poorly differentiated squamous cell carcinomas, with a statistically significant correlation. Conclusion. Cyclin D1 expression significantly increases with increase in differentiation.

  20. Association of familial colorectal cancer with variants in the E-cadherin (CDH1) and cyclin D1 (CCND1) genes.

    Science.gov (United States)

    Grünhage, Frank; Jungck, Matthias; Lamberti, Christoph; Berg, Christine; Becker, Ursula; Schulte-Witte, Hildegard; Plassmann, Dominik; Rahner, Nils; Aretz, Stefan; Friedrichs, Nicolaus; Buettner, Reinhard; Sauerbruch, Tilman; Lammert, Frank

    2008-02-01

    About 20% of colorectal cancer (CRC) patients show some kind of familiarity, which might be caused by yet unknown combinations of low penetrance susceptibility genes. We aimed to identify genetic factors for familial CRC (fCRC) in a unique study design that includes phenotypic extremes as represented by fCRC cases and 'hyper-normal' controls without CRC history and no adenomatous polyps on colonoscopy. Candidate gene variants were determined by allele-specific amplification (SLC10A2 c.169C>T and c.171G>T) and restriction fragment length polymorphism assays (CCND1 c.870A>G; CDH1 -160C>A; TP53 R72P; VDR T2M). In total, 98 patients with fCRC, 96 patients with sporadic CRC, and 220 hyper-normal controls were included. The minor allele of the CDH1 -160C>A polymorphism occurred significantly more often in controls compared to fCRC cases (OR = 0.664; p = 0.042). Homozygosity of the minor allele was significantly associated with affiliation to the control group (OR = 0.577; p = 0.029), indicating that both heterozygous and homozygous carriers of the common allele are at-risk for CRC. With respect to the CCND1 c.870A>G mutation, comparison of fCRC and sporadic CRC cases showed that A/A homozygosity was more common than G/G homozygosity among fCRC patients compared to controls (OR = 2.119; p = 0.045). However, no differences in allele or genotype frequencies were detected between sporadic CRC cases and controls, and no associations were observed for SLC10A2, TP53, and VDR polymorphisms. We report a potential association of variants in the CCND1 and CDH1 genes with fCRC using a unique study design with phenotypic extremes.

  1. Antisense inhibition of cyclin D1 expression is equivalent to flavopiridol for radiosensitization of zebrafish embryos.

    Science.gov (United States)

    McAleer, Mary Frances; Duffy, Kevin T; Davidson, William R; Kari, Gabor; Dicker, Adam P; Rodeck, Ulrich; Wickstrom, Eric

    2006-10-01

    Flavopiridol, a small molecule pan-cyclin inhibitor, has been shown to enhance the radiation response of tumor cells both in vitro and in vivo. The clinical utility of flavopiridol, however, is limited by toxicity, previously attributed to pleiotropic inhibitory effects on several targets affecting multiple signal transduction pathways. Here we used zebrafish embryos to investigate radiosensitizing effects of flavopiridol in normal tissues. Zebrafish embryos at the 1- to 4-cell stage were treated with 500 nM flavopiridol or injected with 0.5 pmol antisense hydroxylprolyl-phosphono nucleic acid oligomers to reduce cyclin D1 expression, then subjected to ionizing radiation (IR) or no radiation. Flavopiridol-treated embryos demonstrated a twofold increase in mortality after exposure to 40 Gy by 96 hpf and developed distinct radiation-induced defects in midline development (designated as the "curly up" phenotype) at higher rates when compared with embryos receiving IR only. Cyclin D1-deficient embryos had virtually identical IR sensitivity profiles when compared with embryos treated with flavopiridol. This was particularly evident for the IR-induced curly up phenotype, which was greatly exacerbated by both flavopriridol and cyclin D1 downregulation. Treatment of zebrafish embryos with flavopiridol enhanced radiation sensitivity of zebrafish embryos to a degree that was very similar to that associated with downregulation of cyclin D1 expression. These results are consistent with the hypothesis that inhibition of cyclin D1 is sufficient to account for the radiosensitizing action of flavopiridol in the zebrafish embryo vertebrate model.

  2. Identification of ASF/SF2 as a critical, allele-specific effector of the cyclin D1b oncogene.

    Science.gov (United States)

    Olshavsky, Nicholas A; Comstock, Clay E S; Schiewer, Matthew J; Augello, Michael A; Hyslop, Terry; Sette, Claudio; Zhang, Jinsong; Parysek, Linda M; Knudsen, Karen E

    2010-05-15

    The cyclin D1b oncogene arises from alternative splicing of the CCND1 transcript, and harbors markedly enhanced oncogenic functions not shared by full-length cyclin D1 (cyclin D1a). Recent studies showed that cyclin D1b is selectively induced in a subset of tissues as a function of tumorigenesis; however, the underlying mechanism(s) that control tumor-specific cyclin D1b induction remain unsolved. Here, we identify the RNA-binding protein ASF/SF2 as a critical, allele-specific, disease-relevant effector of cyclin D1b production. Initially, it was observed that SF2 associates with cyclin D1b mRNA (transcript-b) in minigene analyses and with endogenous transcript in prostate cancer (PCa) cells. SF2 association was altered by the CCND1 G/A870 polymorphism, which resides in the splice donor site controlling transcript-b production. This finding was significant, as the A870 allele promotes cyclin D1b in benign prostate tissue, but in primary PCa, cyclin D1b production is independent of A870 status. Data herein provide a basis for this disparity, as tumor-associated induction of SF2 predominantly results in binding to and accumulation of G870-derived transcript-b. Finally, the relevance of SF2 function was established, as SF2 strongly correlated with cyclin D1b (but not cyclin D1a) in human PCa. Together, these studies identify a novel mechanism by which cyclin D1b is induced in cancer, and reveal significant evidence of a factor that cooperates with a risk-associated polymorphism to alter cyclin D1 isoform production. Identification of SF2 as a disease-relevant effector of cyclin D1b provides a basis for future studies designed to suppress the oncogenic alternative splicing event. (c)2010 AACR.

  3. HIV-1 expression induces cyclin D1 expression and pRb phosphorylation in infected podocytes: cell-cycle mechanisms contributing to the proliferative phenotype in HIV-associated nephropathy

    Directory of Open Access Journals (Sweden)

    Husain Mohammad

    2002-09-01

    Full Text Available Abstract Background The aberrant cell-cycle progression of HIV-1-infected kidney cells plays a major role in the pathogenesis of HIV-associated nephropathy, however the mechanisms whereby HIV-1 induces infected glomerular podocytes or infected tubular epithelium to exit quiescence are largely unknown. Here, we ask whether the expression of HIV-1 genes in infected podocytes induces cyclin D1 and phospho-pRb (Ser780 expression, hallmarks of cyclin D1-mediated G1 → S phase progression. Results We assessed cyclin D1 and phospho-pRb (Ser780 expression in two well-characterized models of HIV-associated nephropathy pathogenesis: HIV-1 infection of cultured podocytes and HIV-1 transgenic mice (Tg26. Compared to controls, cultured podocytes expressing HIV-1 genes, and podocytes and tubular epithelium from hyperplastic nephrons in Tg26 kidneys, had increased levels of phospho-pRb (Ser780, a target of active cyclin D1/cyclin-dependent kinase-4/6 known to promote G1 → S phase progression. HIV-1-infected podocytes showed markedly elevated cyclin D1 mRNA and cyclin D1 protein, the latter of which did not down-regulate during cell-cell contact or differentiation, suggesting post-transcriptional stabilization of cyclin D1 protein levels by HIV-1. The selective suppression of HIV-1 transcription by the cyclin-dependent kinase inhibitor, flavopiridol, abrogated cyclin D1 expression, underlying the requirement for HIV-1 encoded products to induce cyclin D1. Indeed, HIV-1 virus deleted of nef failed to induce cyclin D1 mRNA to the level of other single gene mutant viruses. Conclusions HIV-1 expression induces cyclin D1 and phospho-pRb (Ser780 expression in infected podocytes, suggesting that HIV-1 activates cyclin D1-dependent cell-cycle mechanisms to promote proliferation of infected renal epithelium.

  4. CyclinD1, CDK4, and P21 expression by IEC-6 cells in response to NiTi alloy and polymeric biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhanhui; Yan, Jun; Zheng, Qi, E-mail: greatzhengqi@gmail.com; Wang, Zhigang

    2012-12-01

    In order to investigate how cells recognize biomaterials, mRNA that was expressed in attached Intestinal epithelial cells (IEC-6) on various suture substrates was evaluated. The expressed cell cycle regulators (cyclin D1, CDK4 and p21) mRNA were then isolated and detected using the real time- polymerase chain reaction (PCR) method. As a result, cyclin D1 gene expression was affected by cell-polymer adhesion and was associated with cell proliferation. In addition, CDK4 gene expression was affected by cell proliferation rather than by cell-biomaterial interaction. The p21 mRNA gene expression was higher in cells on more hydrophilic surfaces than on hydrophobic surfaces. Further, the cyclin D1, CDK4 and p21 gene expression were also influenced by the surface chemistry of suture materials. We concluded that the expression of cyclin D1, CDK4 and p21 mRNA was a powerful method for studying cell-biomaterial interactions or the evaluation of the carcinogenic activity of biomaterials. - Highlights: Black-Right-Pointing-Pointer We evaluated the effects of biomaterials on the cyclin D1, CDK4 and p21 expression. Black-Right-Pointing-Pointer Cell-polymer adhesion and cell proliferation affected cyclin D1 and CDK4 expression. Black-Right-Pointing-Pointer The p21 expression was higher on more hydrophilic surfaces than on hydrophobic. Black-Right-Pointing-Pointer They were also influenced by surface chemistry of biomaterials.

  5. Cyclin D1 Expression and the Inhibitory Effect of Celecoxib on Ovarian Tumor Growth in Vivo

    Directory of Open Access Journals (Sweden)

    Ling-Yun Zhai

    2010-10-01

    Full Text Available The report aims to investigate the relationship between the expression of cyclin D1 and Cyclooxgenase-2 (COX-2, thus to explore the molecular mechanisms of the antitumor efficacy of Celecoxib, a COX-2 inhibitor. Human ovarian SKOV-3 carcinoma cell xenograft-bearing mice were treated with Celecoxib by infusing gaster (i.g. twice/day for 21 days. The mRNA levels of COX-2 and cyclin D1 were determined by RT-PCR. The expression of cyclin D1 at the protein level was detected by immunohistochemistry, while COX-2 protein expression was determined by Western blot. A high-dose of Celecoxib (100 mg/kg significantly inhibited tumor growth (P < 0.05, and the expression of cyclin D1 was reduced by 61%. Celecoxib decreased the proliferation cell index by 40% (P < 0.001 and increased apoptotic index by 52% (P < 0.05 in high-dose Celecoxib treated group. Our results suggest that the antitumor efficacy of Celecoxib against ovarian cancer in mice may in part be mediated through suppression of cyclin D1, which may contribute to its ability to suppress proliferation.

  6. A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation.

    Directory of Open Access Journals (Sweden)

    Hiroshi Okabe

    2006-12-01

    Full Text Available Cyclin D1 regulates G1 progression. Its transcriptional regulation is well understood. However, the mechanism underlying cyclin D1 ubiquitination and its subsequent degradation is not yet clear. We report that cyclin D1 undergoes increased degradation in the cytoplasm during S phase in a variety of cancer cells. This is mediated by phosphorylation at Thr286 through the activity of the Ras/Raf/MEK/ERK cascade and the F-box protein FBXW8, which is an E3 ligase. The majority of FBXW8 is expressed in the cytoplasm during G1 and S phase. In contrast, cyclin D1 accumulates in the nucleus during G1 phase and exits into the cytoplasm in S phase. Increased cyclin D1 degradation is linked to association with FBXW8 in the cytoplasm, and enhanced phosphorylation of cyclin D1 through sustained ERK1/2 signaling. Depletion of FBXW8 caused a significant accumulation of cyclin D1, as well as sequestration of CDK1 in the cytoplasm. This resulted in a severe reduction of cell proliferation. These effects could be rescued by constitutive nuclear expression of cyclin D1-T286A. Thus, FBXW8 plays an essential role in cancer cell proliferation through proteolysis of cyclin D1. It may present new opportunities to develop therapies targeting destruction of cyclin D1 or its regulator E3 ligase selectively.

  7. The pleiotropic regulation of cyclin D1 by newly identified sesaminol-binding protein ANT2.

    Science.gov (United States)

    Watanabe, M; Iizumi, Y; Sukeno, M; Iizuka-Ohashi, M; Sowa, Y; Sakai, T

    2017-04-03

    The expression of cyclin D1 is upregulated in various cancer cells by diverse mechanisms, such as increases in mRNA levels, the promotion of the translation by mammalian target of rapamycin complex 1 (mTORC1) signaling and the protein stabilization. We here show that sesaminol, a sesame lignan, reduces the expression of cyclin D1 with decreasing mRNA expression levels, inhibiting mTORC1 signaling and promoting proteasomal degradation. We subsequently generated sesaminol-immobilized FG beads to newly identify sesaminol-binding proteins. As a consequence, we found that adenine nucleotide translocase 2 (ANT2), the inner mitochondrial membrane protein, directly bound to sesaminol. Consistent with the effects of sesaminol, the depletion of ANT2 caused a reduction in cyclin D1 with decreases in its mRNA levels, mTORC1 inhibition and the proteasomal degradation of its protein, suggesting that sesaminol negatively regulates the function of ANT2. Furthermore, we screened other ANT2-binding compounds and found that the proliferator-activated receptor-γ agonist troglitazone also reduced cyclin D1 expression in a multifaceted manner, analogous to that of the sesaminol treatment and ANT2 depletion. Therefore, the chemical biology approach using magnetic FG beads employed in the present study revealed that sesaminol bound to ANT2, which may pleiotropically upregulate cyclin D1 expression at the mRNA level and protein level with mTORC1 activation and protein stabilization. These results suggest the potential of ANT2 as a target against cyclin D1-overexpressing cancers.

  8. Alternative splicing variants of human Fbx4 disturb cyclin D1 proteolysis in human cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Xiufeng; Zhang, Ting; Wang, Jie; Li, Meng; Zhang, Xiaolei; Tu, Jing [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Sun, Shiqin [College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319 (China); Chen, Xiangmei, E-mail: xm_chen6176@bjmu.edu.cn [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Lu, Fengmin [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China)

    2014-04-25

    Highlights: • The expression of Fbx4 was significantly lower in HCC tissues. • Novel splicing variants of Fbx4 were identified. • These novel variants are much more abundant in human cancer tissues and cells. • The novel Fbx4 isoforms could promote cell proliferation and migration in vitro. • These isoforms showed less capability for cyclin D1 binding and degradation. - Abstract: Fbx4 is a specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination and subsequent degradation of cyclin D1 and Trx1. Two isoforms of human Fbx4 protein, the full length Fbx4α and the C-terminal truncated Fbx4β have been identified, but their functions remain elusive. In this study, we demonstrated that the mRNA level of Fbx4 was significantly lower in hepatocellular carcinoma tissues than that in the corresponding non-tumor tissues. More importantly, we identified three novel splicing variants of Fbx4: Fbx4γ (missing 168–245nt of exon1), Fbx4δ (missing exon6) and a N-terminal reading frame shift variant (missing exon2). Using cloning sequencing and RT-PCR, we demonstrated these novel splice variants are much more abundant in human cancer tissues and cell lines than that in normal tissues. When expressed in Sk-Hep1 and NIH3T3 cell lines, Fbx4β, Fbx4γ and Fbx4δ could promote cell proliferation and migration in vitro. Concordantly, these isoforms could disrupt cyclin D1 degradation and therefore increase cyclin D1 expression. Moreover, unlike the full-length isoform Fbx4α that mainly exists in cytoplasm, Fbx4β, Fbx4γ, and Fbx4δ locate in both cytoplasm and nucleus. Since cyclin D1 degradation takes place in cytoplasm, the nuclear distribution of these Fbx4 isoforms may not be involved in the down-regulation of cytoplasmic cyclin D1. These results define the impact of alternative splicing on Fbx4 function, and suggest that the attenuated cyclin D1 degradation by these novel Fbx4 isoforms provides a new insight for aberrant

  9. The pleiotropic regulation of cyclin D1 by newly identified sesaminol-binding protein ANT2

    OpenAIRE

    Watanabe, M.; Iizumi, Y; Sukeno, M; Iizuka-Ohashi, M; Sowa, Y; Sakai, T

    2017-01-01

    The expression of cyclin D1 is upregulated in various cancer cells by diverse mechanisms, such as increases in mRNA levels, the promotion of the translation by mammalian target of rapamycin complex 1 (mTORC1) signaling and the protein stabilization. We here show that sesaminol, a sesame lignan, reduces the expression of cyclin D1 with decreasing mRNA expression levels, inhibiting mTORC1 signaling and promoting proteasomal degradation. We subsequently generated sesaminol-immobilized FG beads t...

  10. Survivin, cyclin D1, and p21hras in keratocystic odontogenic tumors before and after decompression.

    Science.gov (United States)

    Brajić, I; Škodrić, S; Milenković, S; Tepavčević, Z; Soldatović, I; Čolić, S; Milašin, J; Andrić, M

    2016-04-01

    The aim of this study was to investigate survivin, cyclin D1, and p21hras expression in keratocystic odontogenic tumors before and after decompression, as well as in pericoronal follicles. A potential correlation between the expression levels of these proteins was also investigated. We analyzed eighteen keratocystic tumors treated by decompression and subsequent enucleation along with seven pericoronal follicles using immunohistochemistry. Keratocystic tumor samples, both before and after decompression, were positive for each of the investigated proteins. In pericoronal follicles, survivin exhibited cytoplasmic staining in contrast to nuclear staining in keratocystic tumors. Cyclin D1 expression was negative in pericoronal follicles, and p21hras expression was similar in both groups. Survivin showed significantly higher expression after decompression, while cyclin D1 and p21hras remained unchanged (P = 0.039, P = 0.255, P = 0.913, respectively). There was no correlation between these proteins neither before nor after decompression. Within the limits of the study, we can conclude that following decompression, keratocystic odontogenic tumors preserve distinct immunohistochemical profiles of cyclin D1 and p21hras expression, despite substantial reduction in size of the lesions. Significant increase of survivin expression after decompression might be attributed to higher level of epithelial proliferation caused by this procedure. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Cyclin D1 is significantly associated with stage of tumor and predicts poor survival in endometrial carcinoma patients.

    Science.gov (United States)

    Khabaz, Mohamad Nidal; Abdelrahman, Amer Shafie; Butt, Nadeem Shafique; Al-Maghrabi, Basim; Al-Maghrabi, Jaudah

    2017-10-01

    Cyclin D1 overexpression has been described to have oncogenic role and association with diagnosis, prognosis and survival in various tumors. This study will describe the immunohistochemical phenotype of cyclin D1, and investigate the correlation between these patterns of expression and clinicopathological parameters of endometrial carcinomas, to conclude the clinical relevance of cyclin D1 expression in the evolution of endometrial neoplasms. This study employed 101 endometrial tissue samples which include 71 endometrial carcinomas and thirty normal and benign endometrium cases. All these tissue samples were used in the assembly of tissue microarrays which have been utilized afterward in immunohistochemistry staining to detect cyclin D1 expression. Forty (56.3%) cases of endometrial carcinomas showed brown nuclear expression of cyclin D1 including 36 (61%) cases of endometrioid carcinomas, and 3 (33.3%) cases of serous carcinomas. Twenty three (76.6%) cases of control group demonstrated nuclear expression. High score cyclin D1 immunohistochemical staining has been significantly linked with patient age (P=0.0001). Large proportion of high score cyclin D1 immunohistochemical staining was observed in females who are endometrial tissues in comparison with carcinomas. The distribution pattern of cyclin D1 immunoexpression suggests poor prognoses in endometrial carcinoma patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuesong; Gong, Xuhai [Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001 (China); Chen, Jing [Department of Neurology, Daqing Longnan Hospital, Daqing, Heilongjiang, 163001 China (China); Zhang, Jinghui [Department of Cardiology, The Fourth Hospital of Harbin City, Harbin, Heilongjiang 150026 (China); Sun, Jiahang [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China); Guo, Mian, E-mail: guomian_hyd@163.com [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China)

    2015-05-08

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.

  13. Resibufogenin Induces G1-Phase Arrest through the Proteasomal Degradation of Cyclin D1 in Human Malignant Tumor Cells.

    Directory of Open Access Journals (Sweden)

    Masami Ichikawa

    Full Text Available Huachansu, a traditional Chinese medicine prepared from the dried toad skin, has been used in clinical studies for various cancers in China. Resibufogenin is a component of huachansu and classified as bufadienolides. Resibufogenin has been shown to exhibit the anti-proliferative effect against cancer cells. However, the molecular mechanism of resibufogenin remains unknown. Here we report that resibufogenin induces G1-phase arrest with hypophosphorylation of retinoblastoma (RB protein and down-regulation of cyclin D1 expression in human colon cancer HT-29 cells. Since the down-regulation of cyclin D1 was completely blocked by a proteasome inhibitor MG132, the suppression of cyclin D1 expression by resibufogenin was considered to be in a proteasome-dependent manner. It is known that glycogen synthase kinase-3β (GSK-3β induces the proteasomal degradation of cyclin D1. The addition of GSK-3β inhibitor SB216763 inhibited the reduction of cyclin D1 caused by resibufogenin. These effects on cyclin D1 by resibufogenin were also observed in human lung cancer A549 cells. These findings suggest that the anti-proliferative effect of resibufogenin may be attributed to the degradation of cyclin D1 caused by the activation of GSK-3β.

  14. Immunohistochemical Analysis of Cyclin D1 Shows Deregulated Expression in Multiple Myeloma with the t(11;14)

    OpenAIRE

    Pruneri, Giancarlo; Fabris, Sonia; Baldini, Luca; Carboni, Nadia; Zagano, Savina; Colombi, Maria Angela; Ciceri, Gabriella; Lombardi, Luigia; Rocchi, Mariano; Buffa, Roberto; Maiolo, Anna Teresa; Neri, Antonino

    2000-01-01

    The t(11;14)(q13;q32) chromosomal translocation, the hallmark of mantle cell lymphoma (MCL), is recurrently found in multiple myelomas (MM) by means of conventional cytogenetics. Unlike MCL, recent molecular studies of MM-derived cell lines with t(11;14) have indicated that the breakpoints are highly dispersed over the 11q13 region; however, the fact that cyclin D1 is generally overexpressed in these cell lines suggests that this gene is the target of the translocation. To evaluate further th...

  15. Differences in protein expression and gene amplification of cyclins between colon and rectal adenocarcinomas.

    Science.gov (United States)

    Aamodt, Rolf; Jonsdottir, Kristin; Andersen, Solveig Norheim; Bondi, Johan; Bukholm, Geir; Bukholm, Ida R K

    2009-01-01

    Adenocarcinomas of rectum and colon may be different with regard to the cellular biological basis for cancer development. A material of 246 rectal cancers removed surgically at Akershus University Hospital in the years 1992-2000 was investigated and was compared to a material of 219 colon cancers operated on at Akershus University Hospital during the years 1988, 1990 and 1997-2000. There were highly significant differences between the rectal and the colon cancers in the protein expression of cyclin D1, cyclin D3, cyclin E, nuclear beta-catenin, and c-Myc and in gene amplification of cyclin A2, cyclin B1, cyclin D1, and cyclin E. Gene amplification and protein expression in the rectal cancers correlated significantly for the cyclins B1, D3, and E. A statistically significant relation was observed between overexpression of cyclin A2 and local relapse of rectal carcinomas, as higher expression of cyclin A2 was associated with lower local recurrence rate.

  16. Differences in Protein Expression and Gene Amplification of Cyclins between Colon and Rectal Adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Rolf Aamodt

    2009-01-01

    Full Text Available Adenocarcinomas of rectum and colon may be different with regard to the cellular biological basis for cancer development. A material of 246 rectal cancers removed surgically at Akershus University Hospital in the years 1992–2000 was investigated and was compared to a material of 219 colon cancers operated on at Akershus University Hospital during the years 1988, 1990 and 1997–2000. There were highly significant differences between the rectal and the colon cancers in the protein expression of cyclin D1, cyclin D3, cyclin E, nuclear β-catenin, and c-Myc and in gene amplification of cyclin A2, cyclin B1, cyclin D1, and cyclin E. Gene amplification and protein expression in the rectal cancers correlated significantly for the cyclins B1, D3, and E. A statistically significant relation was observed between overexpression of cyclin A2 and local relapse of rectal carcinomas, as higher expression of cyclin A2 was associated with lower local recurrence rate.

  17. Glycogen synthase kinase 3 has a limited role in cell cycle regulation of cyclin D1 levels

    Directory of Open Access Journals (Sweden)

    Hitomi Masahiro

    2006-08-01

    Full Text Available Abstract Background The expression level of cyclin D1 plays a vital role in the control of proliferation. This protein is reported to be degraded following phosphorylation by glycogen synthase kinase 3 (GSK3 on Thr-286. We recently showed that phosphorylation of Thr-286 is responsible for a decline in cyclin D1 levels during S phase, an event required for efficient DNA synthesis. These studies were undertaken to test the possibility that phosphorylation by GSK3 is responsible for the S phase specific decline in cyclin D1 levels, and that this event is regulated by the phosphatidylinositol 3-kinase (PI3K/AKT signaling pathway which controls GSK3. Results We found, however, that neither PI3K, AKT, GSK3, nor proliferative signaling activity in general is responsible for the S phase decline in cyclin D1 levels. In fact, the activity of these signaling kinases does not vary through the cell cycle of proliferating cells. Moreover, we found that GSK3 activity has little influence over cyclin D1 expression levels during any cell cycle phase. Inhibition of GSK3 activity by siRNA, LiCl, or other chemical inhibitors failed to influence cyclin D1 phosphorylation on Thr-286, even though LiCl efficiently blocked phosphorylation of β-catenin, a known substrate of GSK3. Likewise, the expression of a constitutively active GSK3 mutant protein failed to influence cyclin D1 phosphorylation or total protein expression level. Conclusion Because we were unable to identify any proliferative signaling molecule or pathway which is regulated through the cell cycle, or which is able to influence cyclin D1 levels, we conclude that the suppression of cyclin D1 levels during S phase is regulated by cell cycle position rather than signaling activity. We propose that this mechanism guarantees the decline in cyclin D1 levels during each S phase; and that in so doing it reduces the likelihood that simple over expression of cyclin D1 can lead to uncontrolled cell growth.

  18. RhoA promotes epidermal stem cell proliferation via PKN1-cyclin D1 signaling.

    Directory of Open Access Journals (Sweden)

    Fan Wang

    Full Text Available Epidermal stem cells (ESCs play a critical role in wound healing, but the mechanism underlying ESC proliferation is not well defined. Here, we explore the effects of RhoA on ESC proliferation and the possible underlying mechanism.Human ESCs were enriched by rapid adhesion to collagen IV. RhoA(+/+(G14V, RhoA(-/-(T19N and pGFP control plasmids were transfected into human ESCs. The effect of RhoA on cell proliferation was detected by cell proliferation and DNA synthesis assays. Induction of PKN1 activity by RhoA was determined by immunoblot analysis, and the effects of PKN1 on RhoA in terms of inducing cell proliferation and cyclin D1 expression were detected using specific siRNA targeting PKN1. The effects of U-46619 (a RhoA agonist and C3 transferase (a RhoA antagonist on ESC proliferation were observed in vivo.RhoA had a positive effect on ESC proliferation, and PKN1 activity was up-regulated by the active RhoA mutant (G14V and suppressed by RhoA T19N. Moreover, the ability of RhoA to promote ESC proliferation and DNA synthesis was interrupted by PKN1 siRNA. Additionally, cyclin D1 protein and mRNA expression levels were up-regulated by RhoA G14V, and these effects were inhibited by siRNA-mediated knock-down of PKN1. RhoA also promoted ESC proliferation via PKN in vivo.This study shows that the effect of RhoA on ESC proliferation is mediated by activation of the PKN1-cyclin D1 pathway in vitro, suggesting that RhoA may serve as a new therapeutic target for wound healing.

  19. Detection of cyclin D1 mRNA by hybridization sensitive NIC-oligonucleotide probe.

    Science.gov (United States)

    Kovaliov, Marina; Segal, Meirav; Kafri, Pinhas; Yavin, Eylon; Shav-Tal, Yaron; Fischer, Bilha

    2014-05-01

    A large group of fluorescent hybridization probes, includes intercalating dyes for example thiazole orange (TO). Usually TO is coupled to nucleic acids post-synthetically which severely limits its use. Here, we have developed a phosphoramidite monomer, 10, and prepared a 2'-OMe-RNA probe, labeled with 5-(trans-N-hexen-1-yl-)-TO-2'-deoxy-uridine nucleoside, dU(TO), (Nucleoside bearing an Inter-Calating moiety, NIC), for selective mRNA detection. We investigated a series of 15-mer 2'-OMe-RNA probes, targeting the cyclin D1 mRNA, containing one or several dU(TO) at various positions. dU(TO)-2'-OMe-RNA exhibited up to 7-fold enhancement of TO emission intensity upon hybridization with the complementary RNA versus that of the oligomer alone. This NIC-probe was applied for the specific detection of a very small amount of a breast cancer marker, cyclin D1 mRNA, in total RNA extract from cancerous cells (250 ng/μl). Furthermore, this NIC-probe was found to be superior to our related NIF (Nucleoside with Intrinsic Fluorescence)-probe which could detect cyclin D1 mRNA target only at high concentrations (1840 ng/μl). Additionally, dU(T) can be used as a monomer in solid-phase oligonucleotide synthesis, thus avoiding the need for post-synthetic modification of oligonucleotide probes. Hence, we propose dU(TO) oligonucleotides, as hybridization probes for the detection of specific RNA in homogeneous solutions and for the diagnosis of breast cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The Role of Cyclin D1 in the Chemoresistance of Mantle Cell Lymphoma

    Science.gov (United States)

    2016-09-01

    lysates were sep- arated by 4–15% SDS–PAGE and immobilized on the nitrocellulose membranes for immunoblotting. Viability and apoptosis measurements Cell ...UPN-1 cells were induced with Dox for four days and sequentially pulse-labeled with IdU and CIdU, as illustrated in the diagram (A). (B) DNA fibers...AWARD NUMBER: W81XWH-15-1-0297 TITLE: The Role of Cyclin D1 in the Chemoresistance of Mantle Cell Lymphoma PRINCIPAL INVESTIGATOR: Vu Ngo

  1. [The expression and significance of Pin1 and CyclinD1 in adult papilloma of larynx].

    Science.gov (United States)

    Fan, Guoliang; Wang, Dali; Fan, Xinlong; Wang, Tie

    2009-12-01

    To study the expression and relationship of Pin1 and CyclinD1 in adult papilloma of larynx, and the effect of both in laryngeal papilloma's canceration. Ninety-two cases of paraffin section with immunoperoxidase (SP) staining method was used to detect the distribution of Pin1 and CyclinD1 in 10 cases of laryngeal normal epithelial tissue, 39 cases of laryngeal papilloma, 27 cases of laryngeal papilloma with middle, severe atypical hyperplasia and 16 cases of laryngeal carcinoma. The distribution of Pin1 and CyclinD1 increased gradually from laryngeal normal epithelial tissue to laryngeal carcinoma (Plaryngeal papilloma and laryngeal papilloma with middle, severe atypical hyperplasia (P>0.0125), but there had significant difference of the expression of Pin1 and CyclinD1 among the rest groups; There was significantly direct correlation between the expression of Pin1 and CyclinD1 (Plaryngeal papilloma's malignant change. Pin1 up-regulating the expressions of cyclinD1 possibly participate in its malignant change.

  2. Clinicopathological significance of p16, cyclin D1, Rb and MIB-1 levels in skull base chordoma and chondrosarcoma

    Directory of Open Access Journals (Sweden)

    Jun-qi Liu

    2015-09-01

    Full Text Available Objective: To investigate the expression of p16, cyclin D1, retinoblastoma tumor suppressor protein (Rb and MIB-1 in skull base chordoma and chondrosarcoma tissues, and to determine the clinicopathological significance of the above indexes in these diseases. Methods: A total of 100 skull base chordoma, 30 chondrosarcoma, and 20 normal cartilage tissue samples were analyzed by immunohistochemistry. The expression levels of p16, cyclinD1, Rb and MIB-1 proteins were assessed for potential correlation with the clinicopathological features. Results: As compared to normal cartilage specimen (control, there was decreased expression of p16, and increased expression of cyclin D1, Rb and MIB-1 proteins, in both skull base chordoma and chondrosarcoma specimens. MIB-1 LI levels were significantly increased in skull base chordoma specimens with negative expression of p16, and positive expression of cyclin D1 and Rb (P  0.05. However, p16 and MIB-1 levels correlated with the intradural invasion, and expression of p16, Rb and MIB-1 correlated with the number of tumor foci (P < 0.05. Further, the expression of p16 and MIB-1 appeared to correlate with the prognosis of patients with skull base chordoma. Conclusions: The abnormal expression of p16, cyclin D1 and Rb proteins might be associated with the tumorigenesis of skull base chordoma and chondrosarcoma. Keywords: p16, Cyclin D1, Rb, MIB-1, Skull base chordoma, Skull base chondrosarcoma

  3. Prevalence and clinical implications of cyclin D1 expression in diffuse large B-cell lymphoma (DLBCL) treated with immunochemotherapy: a report from the International DLBCL Rituximab-CHOP Consortium Program.

    Science.gov (United States)

    Ok, Chi Young; Xu-Monette, Zijun Y; Tzankov, Alexandar; O'Malley, Dennis P; Montes-Moreno, Santiago; Visco, Carlo; Møller, Michael B; Dybkaer, Karen; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L; Hsi, Eric D; Han van Krieken, J; Ponzoni, Maurilio; Farnen, John P; Piris, Miguel A; Winter, Jane N; Medeiros, L Jeffrey; Young, Ken H

    2014-06-15

    Cyclin D1 expression has been reported in a subset of patients with diffuse large B-cell leukemia (DLBCL), but studies have been few and generally small, and they have demonstrated no obvious clinical implications attributable to cyclin D1 expression. The authors reviewed 1435 patients who were diagnosed with DLBCL as part of the International DLBCL rituximab with cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone (R-CHOP) Consortium Program and performed clinical, immunohistochemical, and genetic analyses with a focus on cyclin D1. All patients who were cyclin D1-positive according to immunohistochemistry were also assessed for rearrangements of the cyclin D1 gene (CCND1) using fluorescence in situ hybridization. Gene expression profiling was performed to compare patients who had DLBCL with and without cyclin D1 expression. In total, 30 patients (2.1%) who had DLBCL that expressed cyclin D1 and lacked CCND1 gene rearrangements were identified. Patients with cyclin D1-positive DLBCL had a median age of 57 years (range, 16.0-82.6 years). There were 23 males and 7 females. Twelve patients (40%) had bulky disease. None of them expressed CD5. Two patients expressed cyclin D2. Gene expression profiling indicated that 17 tumors were of the germinal center type, and 13 were of the activated B-cell type. Genetic aberrations of B-cell leukemia/lymphoma 2 (BCL2), BCL6, v-myc avian myelocytomatosis viral oncogene homolog (MYC), mouse double minute 2 oncogene E3 ubiquitin protein ligase (MDM2), MDM4, and tumor protein 53 (TP53) were rare or absent. Gene expression profiling did not reveal any striking differences with respect to cyclin D1 in DLBCL. Compared with patients who had cyclin D1-negative DLBCL, men were more commonly affected with cyclin D1-positive DLBCL, and they were significantly younger. There were no other significant differences in clinical presentation, pathologic features, overall survival, or progression-free survival between these two

  4. Automated image analysis of cyclin D1 protein expression in invasive lobular breast carcinoma provides independent prognostic information.

    Science.gov (United States)

    Tobin, Nicholas P; Lundgren, Katja L; Conway, Catherine; Anagnostaki, Lola; Costello, Sean; Landberg, Göran

    2012-11-01

    The emergence of automated image analysis algorithms has aided the enumeration, quantification, and immunohistochemical analyses of tumor cells in both whole section and tissue microarray samples. To date, the focus of such algorithms in the breast cancer setting has been on traditional markers in the common invasive ductal carcinoma subtype. Here, we aimed to optimize and validate an automated analysis of the cell cycle regulator cyclin D1 in a large collection of invasive lobular carcinoma and relate its expression to clinicopathologic data. The image analysis algorithm was trained to optimally match manual scoring of cyclin D1 protein expression in a subset of invasive lobular carcinoma tissue microarray cores. The algorithm was capable of distinguishing cyclin D1-positive cells and illustrated high correlation with traditional manual scoring (κ=0.63). It was then applied to our entire cohort of 483 patients, with subsequent statistical comparisons to clinical data. We found no correlation between cyclin D1 expression and tumor size, grade, and lymph node status. However, overexpression of the protein was associated with reduced recurrence-free survival (P=.029), as was positive nodal status (Pinvasive lobular carcinoma. Finally, high cyclin D1 expression was associated with increased hazard ratio in multivariate analysis (hazard ratio, 1.75; 95% confidence interval, 1.05-2.89). In conclusion, we describe an image analysis algorithm capable of reliably analyzing cyclin D1 staining in invasive lobular carcinoma and have linked overexpression of the protein to increased recurrence risk. Our findings support the use of cyclin D1 as a clinically informative biomarker for invasive lobular breast cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. RhoA signaling modulates cyclin D1 expression in human lung fibroblasts; implications for idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Hoban PR

    2006-06-01

    Full Text Available Abstract Background Idiopathic Pulmonary Fibrosis (IPF is a debilitating disease characterized by exaggerated extracellular matrix deposition and aggressive lung structural remodeling. Disease pathogenesis is driven by fibroblastic foci formation, consequent on growth factor overexpression and myofibroblast proliferation. We have previously shown that both CTGF overexpression and myofibroblast formation in IPF cell lines are dependent on RhoA signaling. As RhoA-mediated regulation is also involved in cell cycle progression, we hypothesise that this pathway is key to lung fibroblast turnover through modulation of cyclin D1 kinetic expression. Methods Cyclin D1 expression was compared in primary IPF patient-derived fibroblasts and equivalent normal control cells. Quantitative real time PCR was employed to examine relative expression levels of cyclin D1 mRNA; protein expression was confirmed by western blotting. Effects of Rho signaling were investigated using transient transfection of constitutively active and dominant negative RhoA constructs as well as pharmacological inhibitors. Cellular proliferation of lung fibroblasts was determined by BrdU incorporation ELISA. To further explore RhoA regulation of cyclin D1 in lung fibroblasts and associated cell cycle progression, an established Rho inhibitor, Simvastatin, was incorporated in our studies. Results Cyclin D1 expression was upregulated in IPF compared to normal lung fibroblasts under exponential growth conditions (p Conclusion These findings report for the first time that cyclin D1 expression is deregulated in IPF through a RhoA dependent mechanism that influences lung fibroblast proliferation. This potentially unravels new molecular targets for future anti-IPF strategies; accordingly, Simvastatin inhibition of Rho-mediated cyclin D1 expression in IPF fibroblasts merits further exploitation.

  6. Metformin induces degradation of cyclin D1 via AMPK/GSK3β axis in ovarian cancer.

    Science.gov (United States)

    Gwak, HyeRan; Kim, Youngmin; An, Haein; Dhanasekaran, Danny N; Song, Yong Sang

    2017-02-01

    Metformin, which is widely used as an anti-diabetic drug, reduces cancer related morbidity and mortality. However, the role of metformin in cancer is not fully understood. Here, we first describe that the anti-cancer effect of metformin is mediated by cyclin D1 deregulation via AMPK/GSK3β axis in ovarian cancer cells. Metformin promoted cytotoxic effects only in the cancer cells irrespective of the p53 status and not in the normal primary-cultured cells. Metformin induced the G1 cell cycle arrest, in parallel with a decrease in the protein expressions of cyclin D1 without affecting its transcriptional levels. Using a proteasomal inhibitor, we could address that metformin-induced decrease in cyclin D1 through the ubiquitin/proteasome process. Cyclin D1 degradation by metformin requires the activation of GSK3β, as determined based on the treatment with GSK3β inhibitors. The activation of GSK3β correlated with the inhibitory phosphorylation by Akt as well as p70S6K through AMPK activation in response to metformin. These findings suggested that the anticancer effects of metformin was induced due to cyclin D1 degradation via AMPK/GSK3β signaling axis that involved the ubiquitin/proteasome pathway specifically in ovarian cancer cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Statin-induced anti-proliferative effects via cyclin D1 and p27 in a window-of-opportunity breast cancer trial.

    Science.gov (United States)

    Feldt, Maria; Bjarnadottir, Olöf; Kimbung, Siker; Jirström, Karin; Bendahl, Pär-Ola; Veerla, Srinivas; Grabau, Dorthe; Hedenfalk, Ingrid; Borgquist, Signe

    2015-04-29

    Cholesterol lowering statins have been demonstrated to exert anti-tumoral effects on breast cancer by decreasing proliferation as measured by Ki67. The biological mechanisms behind the anti-proliferative effects remain elusive. The aim of this study was to investigate potential statin-induced effects on the central cell cycle regulators cyclin D1 and p27. This phase II window-of-opportunity trial (Trial registration: ClinicalTrials.gov NCT00816244 , NIH) included 50 patients with primary invasive breast cancer. High-dose atorvastatin (80 mg/day) was prescribed to patients for two weeks prior to surgery. Paired paraffin embedded pre- and post-statin treatment tumor samples were analyzed using immunohistochemistry for the expression of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and the cell cycle regulators cyclin D1 and p27. Corresponding frozen tumor sample pairs were analyzed for expression of the genes coding for cyclin D1 and p27, CCND1 and CDKN1B, respectively. Forty-two patients completed all study parts, and immunohistochemical evaluation of ER and PR was achievable in 30 tumor pairs, HER2 in 29 tumor pairs, cyclin D1 in 30 tumor pairs and p27 in 33 tumor pairs. The expression of ER, PR and HER2 did not change significantly following atorvastatin treatment. Cyclin D1 expression in terms of nuclear intensity was significantly decreased (P = 0.008) after statin treatment in paired tumor samples. The protein expression of the tumor suppressor p27, evaluated either as the fraction of stained tumor cells or as cytoplasmic intensity, increased significantly (P = 0.03 and P = 0.02, respectively). At the transcriptional level, no significant differences in mRNA expression were detected for cyclin D1 (CCND1) and p27 (CDKN1B). However, CCND1 expression was lower in tumors responding to atorvastatin treatment with a decrease in proliferation although not significantly (P = 0.08). We have

  8. ETV4 Facilitates Cell-Cycle Progression in Pancreatic Cells through Transcriptional Regulation of Cyclin D1.

    Science.gov (United States)

    Tyagi, Nikhil; Deshmukh, Sachin K; Srivastava, Sanjeev K; Azim, Shafquat; Ahmad, Aamir; Al-Ghadhban, Ahmed; Singh, Ajay P; Carter, James E; Wang, Bin; Singh, Seema

    2017-11-08

    The ETS family transcription factor ETV4 is aberrantly expressed in a variety of human tumors and plays an important role in carcinogenesis through upregulation of relevant target gene expression. Here, it is demonstrated that ETV4 is overexpressed in pancreatic cancer tissues as compared with the normal pancreas, and is associated with enhanced growth and rapid cell-cycle progression of pancreatic cancer cells. ETV4 expression was silenced through stable expression of a specific short hairpin RNA (shRNA) in two pancreatic cancer cell lines (ASPC1 and Colo357), while it was ectopically expressed in BXPC3 cells. Silencing of ETV4 in ASPC1 and Colo357 cells reduced the growth by 55.3% and 38.9%, respectively, while forced expression of ETV4 in BXPC3 cells increased the growth by 46.8% in comparison with respective control cells. Furthermore, ETV4-induced cell growth was facilitated by rapid transition of cells from G1- to S-phase of the cell cycle. Mechanistic studies revealed that ETV4 directly regulates the expression of Cyclin D1 CCND1, a protein crucial for cell-cycle progression from G1- to S-phase. These effects on the growth and cell cycle were reversed by the forced expression of Cyclin D1 in ETV4-silenced pancreatic cancer cells. Altogether, these data provide the first experimental evidence for a functional role of ETV4 in pancreatic cancer growth and cell-cycle progression.Implications: The functional and mechanistic data presented here regarding ETV4 in pancreatic cancer growth and cell-cycle progression suggest that ETV4 could serve as a potential biomarker and novel target for pancreatic cancer therapy. Mol Cancer Res; 1-10. ©2017 AACR. ©2017 American Association for Cancer Research.

  9. Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy

    Science.gov (United States)

    Huang, Shuai; Zou, Xiao; Zhu, Jie-Ning; Fu, Yong-Heng; Lin, Qiu-Xiong; Liang, Ye-You; Deng, Chun-Yu; Kuang, Su-Juan; Zhang, Meng-Zhen; Liao, Yu-Lin; Zheng, Xi-Long; Yu, Xi-Yong; Shan, Zhi-Xin

    2015-01-01

    Cyclins/retinoblastoma protein (pRb) pathway participates in cardiomyocyte hypertrophy. MicroRNAs (miRNAs), the endogenous small non-coding RNAs, were recognized to play significant roles in cardiac hypertrophy. But, it remains unknown whether cyclin/Rb pathway is modulated by miRNAs during cardiac hypertrophy. This study investigates the potential role of microRNA-16 (miR-16) in modulating cyclin/Rb pathway during cardiomyocyte hypertrophy. An animal model of hypertrophy was established in a rat with abdominal aortic constriction (AAC), and in a mouse with transverse aortic constriction (TAC) and in a mouse with subcutaneous injection of phenylephrine (PE) respectively. In addition, a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocyte and based on Ang-II-induced neonatal mouse ventricular cardiomyocyte respectively. We demonstrated that miR-16 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes in rats and mice. Overexpression of miR-16 suppressed rat cardiac hypertrophy and hypertrophic phenotype of cultured cardiomyocytes, and inhibition of miR-16 induced a hypertrophic phenotype in cardiomyocytes. Expressions of cyclins D1, D2 and E1, and the phosphorylated pRb were increased in hypertrophic myocardium and hypertrophic cardiomyocytes, but could be reversed by enforced expression of miR-16. Cyclins D1, D2 and E1, not pRb, were further validated to be modulated post-transcriptionally by miR-16. In addition, the signal transducer and activator of transcription-3 and c-Myc were activated during myocardial hypertrophy, and inhibitions of them prevented miR-16 attenuation. Therefore, attenuation of miR-16 provoke cardiomyocyte hypertrophy via derepressing the cyclins D1, D2 and E1, and activating cyclin/Rb pathway, revealing that miR-16 might be a target to manage cardiac hypertrophy. PMID:25583328

  10. The cyclin D1-CDK4 oncogenic interactome enables identification of potential novel oncogenes and clinical prognosis.

    Science.gov (United States)

    Jirawatnotai, Siwanon; Sharma, Samanta; Michowski, Wojciech; Suktitipat, Bhoom; Geng, Yan; Quackenbush, John; Elias, Joshua E; Gygi, Steven P; Wang, Yaoyu E; Sicinski, Piotr

    2014-01-01

    Overexpression of cyclin D1 and its catalytic partner, CDK4, is frequently seen in human cancers. We constructed cyclin D1 and CDK4 protein interaction network in a human breast cancer cell line MCF7, and identified novel CDK4 protein partners. Among CDK4 interactors we observed several proteins functioning in protein folding and in complex assembly. One of the novel partners of CDK4 is FKBP5, which we found to be required to maintain CDK4 levels in cancer cells. An integrative analysis of the extended cyclin D1 cancer interactome and somatic copy number alterations in human cancers identified BAIAPL21 as a potential novel human oncogene. We observed that in several human tumor types BAIAPL21 is expressed at higher levels as compared to normal tissue. Forced overexpression of BAIAPL21 augmented anchorage independent growth, increased colony formation by cancer cells and strongly enhanced the ability of cells to form tumors in vivo. Lastly, we derived an Aggregate Expression Score (AES), which quantifies the expression of all cyclin D1 interactors in a given tumor. We observed that AES has a prognostic value among patients with ER-positive breast cancers. These studies illustrate the utility of analyzing the interactomes of proteins involved in cancer to uncover potential oncogenes, or to allow better cancer prognosis.

  11. Frequent upregulation of cyclin D1 and p16 expression with low Ki-67 scores in multinucleated giant cells.

    Science.gov (United States)

    Choi, Jung-Woo; Lee, Ju-Han; Kim, Young-Sik

    2011-01-01

    Multinucleated giant cells are formed from the fusion of macrophages and are classified into foreign body-type giant cells (FBGCs), osteoclast-type giant cells (OCGCs) and Langhans-type giant cells (LHGCs). OCGCs display upregulated cyclin D1 expression with low Ki-67 activity. However, little is known about the expression of cell cycle regulators in the other types of multinucleated giant cells. We aimed to investigate the cell cycle status of multinucleated giant cells. The immunohistochemical expressions of cyclin D1, p16(INK4a) and Ki-67 were analyzed in a total of 127 cases showing multinucleated giant cells. Cyclin D1 was overexpressed in 45 (88%) of 51 FBGC cases, 25 (86%) of 29 OCGC cases and 22 (47%) of 47 LHGC cases. p16(INK4a) showed diffuse nuclear and/or cytoplasmic overexpression in 45 (88%) of 51 FBGC cases, 27 (93%) of 29 OCGC cases and 24 (51%) of 47 LHGC cases. Ki-67 immunostaining was negative in almost all FBGC, OCGC and LHGC cases. This study demonstrates that FBGCs and OCGCs frequently show upregulation of cyclin D1 and p16(INK4a) expression with low Ki-67 scores. This suggests that multinucleated giant cells are arrested in the G1/S cell cycle transition. Copyright © 2011 S. Karger AG, Basel.

  12. Anticancer activity of calyx of Diospyros kaki Thunb. through downregulation of cyclin D1 via inducing proteasomal degradation and transcriptional inhibition in human colorectal cancer cells.

    Science.gov (United States)

    Park, Su Bin; Park, Gwang Hun; Song, Hun Min; Son, Ho-Jun; Um, Yurry; Kim, Hyun-Seok; Jeong, Jin Boo

    2017-09-05

    Although it has been reported to contain high polyphenols, the pharmacological studies of the calyx of Diospyros kaki Thunb (DKC) have not been elucidated in detail. In this study, we elucidated anti-cancer activity and potential molecular mechanism of DKC against human colorectal cancer cells. Anti-cell proliferative effect of 70% ethanol extracts from the calyx of Diospyros kaki (DKC-E70) was evaluated by MTT assay. The effect of DKC-E70 on the expression of cyclin D1 in the protein and mRNA level was evaluated by Western blot and RT-PCR, respectively. DKC-E70 suppressed the proliferation of human colorectal cancer cell lines such as HCT116, SW480, LoVo and HT-29. Although DKC-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by DKC-E70 occurred at the earlier time than that of cyclin D1 mRNA, which indicates that DKC-E70-mediated downregulation of cyclin D1 protein may be a consequence of the induction of degradation and transcriptional inhibition of cyclin D1. In cyclin D1 degradation, we found that cyclin D1 downregulation by DKC-E70 was attenuated in presence of MG132. In addition, DKC-E70 phosphorylated threonine-286 (T286) of cyclin D1 and T286A abolished cyclin D1 downregulation by DKC-E70. We also observed that DKC-E70-mediated T286 phosphorylation and subsequent cyclin D1 degradation was blocked in presence of the inhibitors of ERK1/2, p38 or GSK3β. In cyclin D1 transcriptional inhibition, DKC-E70 inhibited the expression of β-catenin and TCF4, and β-catenin/TCF-dependent luciferase activity. Our results suggest that DKC-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through cyclin D1 degradation by T286 phosphorylation dependent on ERK1/2, p38 or GSK3β, and cyclin D1 transcriptional inhibition through Wnt signaling. From these findings, DKC-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

  13. Cyclin D1 localizes in the cytoplasm of keratinocytes during skin differentiation and regulates cell–matrix adhesion

    Science.gov (United States)

    Fernández-Hernández, Rita; Rafel, Marta; Fusté, Noel P; Aguayo, Rafael S; Casanova, Josep M; Egea, Joaquim; Ferrezuelo, Francisco; Garí, Eloi

    2013-01-01

    The function of Cyclin D1 (CycD1) has been widely studied in the cell nucleus as a regulatory subunit of the cyclin-dependent kinases Cdk4/6 involved in the control of proliferation and development in mammals. CycD1 has been also localized in the cytoplasm, where its function nevertheless is poorly characterized. In this work we have observed that in normal skin as well as in primary cultures of human keratinocytes, cytoplasmic localization of CycD1 correlated with the degree of differentiation of the keratinocyte. In these conditions, CycD1 co-localized in cytoplasmic foci with exocyst components (Sec6) and regulators (RalA), and with β1 integrin, suggesting a role for CycD1 in the regulation of keratinocyte adhesion during differentiation. Consistent with this hypothesis, CycD1 overexpression increased β1 integrin recycling and drastically reduced the ability of keratinocytes to adhere to the extracellular matrix. We propose that localization of CycD1 in the cytoplasm during skin differentiation could be related to the changes in detachment ability of keratinocytes committed to differentiation. PMID:23839032

  14. DYRK1A-mediated Cyclin D1 Degradation in Neural Stem Cells Contributes to the Neurogenic Cortical Defects in Down Syndrome

    Directory of Open Access Journals (Sweden)

    Sònia Najas

    2015-02-01

    Full Text Available Alterations in cerebral cortex connectivity lead to intellectual disability and in Down syndrome, this is associated with a deficit in cortical neurons that arises during prenatal development. However, the pathogenic mechanisms that cause this deficit have not yet been defined. Here we show that the human DYRK1A kinase on chromosome 21 tightly regulates the nuclear levels of Cyclin D1 in embryonic cortical stem (radial glia cells, and that a modest increase in DYRK1A protein in transgenic embryos lengthens the G1 phase in these progenitors. These alterations promote asymmetric proliferative divisions at the expense of neurogenic divisions, producing a deficit in cortical projection neurons that persists in postnatal stages. Moreover, radial glial progenitors in the Ts65Dn mouse model of Down syndrome have less Cyclin D1, and Dyrk1a is the triplicated gene that causes both early cortical neurogenic defects and decreased nuclear Cyclin D1 levels in this model. These data provide insights into the mechanisms that couple cell cycle regulation and neuron production in cortical neural stem cells, emphasizing that the deleterious effect of DYRK1A triplication in the formation of the cerebral cortex begins at the onset of neurogenesis, which is relevant to the search for early therapeutic interventions in Down syndrome.

  15. Overexpression of Aurora-A in primary cells interferes with S-phase entry by diminishing Cyclin D1 dependent activities

    Directory of Open Access Journals (Sweden)

    Mayer Christoph-Erik

    2011-03-01

    Full Text Available Abstract Background Aurora-A is a bona-fide oncogene whose expression is associated with genomic instability and malignant transformation. In several types of cancer, gene amplification and/or increased protein levels of Aurora-A are a common feature. Results In this report, we describe that inhibition of cell proliferation is the main effect observed after transient overexpression of Aurora-A in primary human cells. In addition to the known cell cycle block at the G2/M transition, Aurora-A overexpressing cells fail to overcome the restriction point at the G1/S transition due to diminished RB phosphorylation caused by reduced Cyclin D1 expression. Consequently, overexpression of Cyclin D1 protein is able to override the Aurora-A mediated G1 block. The Aurora-A mediated cell cycle arrest in G2 is not influenced by Cyclin D1 and as a consequence cells accumulate in G2. Upon deactivation of p53 part of the cells evade this premitotic arrest to become aneuploid. Conclusion Our studies describe that an increase of Aurora-A expression levels on its own has a tumor suppressing function, but in combination with the appropriate altered intracellular setting it might exert its oncogenic potential. The presented data indicate that deactivation of the tumor suppressor RB is one of the requirements for overriding a cell cycle checkpoint triggered by increased Aurora-A levels.

  16. The LIM-only protein FHL2 mediates ras-induced transformation through cyclin D1 and p53 pathways.

    Directory of Open Access Journals (Sweden)

    Charlotte Labalette

    Full Text Available BACKGROUND: Four and a half LIM-only protein 2 (FHL2 has been implicated in multiple signaling pathways that regulate cell growth and tissue homeostasis. We reported previously that FHL2 regulates cyclin D1 expression and that immortalized FHL2-null mouse embryo fibroblasts (MEFs display reduced levels of cyclin D1 and low proliferative activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we address the contribution of FHL2 in cell transformation by investigating the effects of oncogenic Ras in FHL2-null context. We show that H-RasV12 provokes cell cycle arrest accompanied by accumulation of p53 and p16(INK4a in immortalized FHL2(-/- MEFs. These features contrast sharply with Ras transforming activity in wild type cell lines. We further show that establishment of FHL2-null cell lines differs from conventional immortalization scheme by retaining functional p19(ARF/p53 checkpoint that is required for cell cycle arrest imposed by Ras. However, after serial passages of Ras-expressing FHL2(-/- cells, dramatic increase in the levels of D-type cyclins and Rb phosphorylation correlates with the onset of cell proliferation and transformation without disrupting the p19(ARF/p53 pathway. Interestingly, primary FHL2-null cells overexpressing cyclin D1 undergo a classical immortalization process leading to loss of the p19(ARF/p53 checkpoint and susceptibility to Ras transformation. CONCLUSIONS/SIGNIFICANCE: Our findings uncover a novel aspect of cellular responses to mitogenic stimulation and illustrate a critical role of FHL2 in the signalling network that implicates Ras, cyclin D1 and p53.

  17. A comparative study of the expression of Wnt-1, WISP-1, survivin and cyclin-D1 in colorectal carcinoma.

    Science.gov (United States)

    Khor, Tin Oo; Gul, Yunus A; Ithnin, Hairuszah; Seow, Heng Fong

    2006-05-01

    It is well accepted that activation of Wnt signalling occurs in colorectal carcinoma (CRC), but the correlation amongst the various proteins involved in primary tumours are still unclear. The expression of the inducer of this pathway, Wnt-1, and the downstream effectors, WISP-1, cyclin-D1 and survivin proteins, was compared in a series of CRC tissues with the apparently normal adjacent tissues to determine the relationship of these proteins. Formalin-fixed, paraffin-embedded tissue samples of 47 CRCs surgically resected at the Kuala Lumpur Hospital (KLH) between 1999 and 2000 were used. Immunohistochemical staining with monoclonal antibodies against cyclin-D1 and survivin and polyclonal antibodies against Wnt-1 and WISP-1 was performed. Results of immunohistochemistry were analysed for correlation between biomolecules and histopathological data of the patients. Of the 47 CRCs, 26 (55.3%), 15 (31.9%), 5 (10.6%) and 28 (59.6%) of the tumours exhibited positivity for Wnt-1, WISP-1, cyclin D1 and survivin, respectively. A lower percentage of the 40 apparently normal adjacent tissues were found to be positive for Wnt-1 (7, 17.5%), WISP-1 (+/-5, 12.5%) and survivin (13, 32.5%), but cyclin D1 was not detected in any of them. Interestingly, the total scores of Wnt-1, WISP-1 and survivin were significantly higher in CRC tissues (p=0.001, 0.034 and 0.044, respectively). Using the Spearman rank correlation test, a positive linear relationship was found between total Wnt-1 score with total WISP-1 score (rho=0.319, p=0.003) and total survivin score (rho=0.609, p=orWISP-1 in the CRC tissues was found to be positively correlated with patients older than 60 years old (p=0.011). In addition, nuclear cyclin-D1 expression was found to be associated with poorly differentiated CRC tissues (pWISP-1 score was associated with well-differentiated CRC tissues (p=0.029). Overexpression and interplay between Wnt-1, WISP-1, survivin and cyclin-D1 may play a role in tumorigenesis, possibly by

  18. PENGARUH EKSTRAK ETHANOL PROPOLIS TERHADAP EKSPRESI PROTEIN Bcl2, CYCLIN D1 DAN INDUKSI APOPTOSIS PADA KULTUR SEL KANKER KOLON

    Directory of Open Access Journals (Sweden)

    Haryono Yuniarto

    2017-06-01

    Full Text Available Kanker kolorektal menempati urutan kejadian kanker ketiga di seluruh dunia, dengan lebih dari 1 juta angka kejadian tiap tahunnya. Berbagai strategi terapi pengobatan kanker kolorektal tetapi relatif belum optimal. Oleh karena itu, terdapat kebutuhan mengembangkan terapi alternatif sebagai pendamping. Propolis menunjukkan aktivitas proapoptosis pada berbagai jenis sel kanker. Mengetahui pengaruh pemberian propolis yang berasal dari Kerjo, Karanganyar, Indonesia terhadap induksi proses apoptosis dan aktivitas antiproliferasi, terutama terkait dengan penekanan ekspresi protein Bcl 2 dan cyclin D1 pada kultur sel WiDr (cell line kanker kolon. Penelitian eksperimental laboratorik menggunakan post test with control group design. Penelitian dilakukan pada kultur sel WiDr (sel kanker kolon dengan pemberian propolis. Pengamatan ekspresi protein Cyclin D1 dan Bcl2 dilakukan dengan metode imunositokimia, sedangkan pengamatan induksi apoptosis dilakukan dengan flowcytometry. Analisis statistik dengan uji Kruskal-Wallis, signifikan bila p <0,05. Rata-rata ekspresi Bcl2 pada kelima kelompok yaitu kontrol 83.40 ± 0.69 μg/ml, EEP 1/2 IC50 60.63 ± 0.40, EEP IC50 33.77 ± 1.08 μg/ml, EEP 2 IC50 24.28 ± 1.91 μg/ml, 5fluorouracil 12.74 ± 2.19 μg/ml. Terdapat perbedaan bermakna ekspresi Bcl2 antara kelompok uji dibandingkan kelompok kontrol (p < 0,001. Rata-rata ekspresi cyclin D1 pada kelima kelompok yaitu kontrol 83.77 ± 0.39 μg/ml, EEP 1/2 IC50 61.44 ± 0.41, EEP IC50 36.67 ± 1.18 μg/ml, EEP 2 IC50 24.50 ± 0.38 μg/ml, 5fluorouracil 13.42 ± 1.04μg/ml. Terdapat perbedaan bermakna ekspresi cyclin D1 antara kelompok uji dibandingkan kelompok kontrol (p < 0,001. Pemberian ekstrak etanol propolis mempunyai pengaruh menekan ekspresi Bcl2, cyclin D1, dan menginduksi apoptosis pada kultur sel kanker kolon (WiDr Cell Line.   Kata Kunci: Ekstrak Ethanol Propolis, Bcl2, cyclin D1, Sel WiDr

  19. PAC exhibits potent anti-colon cancer properties through targeting cyclin D1 and suppressing epithelial-to-mesenchymal transition.

    Science.gov (United States)

    Al-Qasem, Abeer; Al-Howail, Huda A; Al-Swailem, Mashael; Al-Mazrou, Amer; Al-Otaibi, Basem; Al-Jammaz, Ibrahim; Al-Khalaf, Huda H; Aboussekhra, Abdelilah

    2016-03-01

    Colorectal cancer (CRC) is a major cause of cancer morbidity and mortality worldwide. Although response rates and overall survival have been improved in recent years, resistance to multiple drug combinations is inevitable. Therefore, the development of more efficient drugs, with fewer side effects is urgently needed. To this end, we have investigated in the present report the effect of PAC, a novel cucumin analogue, on CRC cells both in vitro and in vivo. We have shown that PAC induces apoptosis, mainly via the internal mitochondrial route, and inhibits cell proliferation through delaying the cell cycle at G2/M phase. Interestingly, the pro-apoptotic effect was mediated through STAT3-dependent down-regulation of cyclin D1 and its downstream target survivin. Indeed, change in the expression level of cyclin D1 modulated the expression of survivin and the response of CRC cells to PAC. Furthermore, using the ChIP assay, we have shown PAC-dependent reduction in the binding of STAT3 to the cyclin D1 promoter in vivo. Additionally, PAC suppressed the epithelial-to-mesenchymal process through down-regulating the mesenchymal markers (N-cadherin, vimentin and Twist1) and inhibiting the invasion/migration abilities of the CRC cells via repressing the pro-migration/invasion protein kinases AKT and ERK1/2. In addition, PAC inhibited tumor growth and repressed the JAK2/STAT3, AKT/mTOR and MEK/ERK pathways as well as their common downstream effectors cyclin D1 and survivin in humanized CRC xenografts. Collectively, these results indicate that PAC has potent anti-CRC effects, and therefore could constitute an effective alternative chemotherapeutic agent, which may consolidate the adjuvant treatment of colon cancer. © 2015 Wiley Periodicals, Inc.

  20. Resveratrol Suppresses Growth and Migration of Myelodysplastic Cells by Inhibiting the Expression of Elevated Cyclin D1 (CCND1).

    Science.gov (United States)

    Zhou, Wei; Xu, Shilin; Ying, Yi; Zhou, Ruiqing; Chen, Xiaowei

    2017-11-01

    Myelodysplastic syndromes (MDS) are a group of heterogeneous diseases characterized by poorly formed blood cells. We wanted to elucidate the underlying molecular mechanism to better determine pathogenesis, prognosis, diagnosis, and treatment for patients with MDS. We compared gene expression levels between normal and MDS tissue samples by immunohistochemical analysis. We studied the proliferation, survival, and migration of MDS cells using the EDU assay, colony formation, and transwell assays. We assessed the apoptotic rate and cell cycle status using flow cytometry and Hoechst staining. Finally, we evaluated RNA and protein expressions using polymerase chain reaction and Western blots, respectively. We found that resveratrol suppressed SKM-1 (an advanced MDS cell line) proliferation in a dose-dependent manner. Consistent with this finding, the EDU and colony formation assays also showed that resveratrol inhibited SKM-1 growth. Moreover, flow cytometry and Hoechst 33258 staining demonstrated that resveratrol induced apoptosis and a change in cell cycle status in SKM-1 cells, while the transwell assay showed that resveratrol reduced the migratory ability of SKM-1 cells. Resveratrol also decreased the expression of CCND1 (a gene that encodes the cyclin D1 protein) and increased expressions of KMT2A [lysine (K)-specific methyltransferase 2A] and caspase-3, suggesting that resveratrol exerts its effect by regulating CCND1 in SKM-1 cells. In addition, a combination of resveratrol and the PI3K/AKT inhibitor LY294002 exhibited a stronger inhibitory effect on the SKM-1 cells, compared with resveratrol alone. Our study proved that resveratrol suppresses SKM-1 growth and migration by inhibiting CCND1 expression. This finding provides novel insights into the pathogenesis of MDS and might help develop new diagnosis and treatment for patients with MDS.

  1. Transgenic mice with mammary gland targeted expression of human cortactin do not develop (pre-malignant) breast tumors : studies in MMTV-cortactin and MMTV-cortactin/-cyclin D1 bitransgenic mice

    NARCIS (Netherlands)

    van Rossum, AGSH; van Bragt, MPA; Scholtes, ES; van der Ploeg, JCM; van Krieken, JHJM; Kluin, PM; Schuuring, E

    2006-01-01

    Background: In human breast cancers, amplification of chromosome 11q13 correlates with lymph node metastasis and increased mortality. To date, two genes located within this amplicon, CCND1 and EMS1, were considered to act as oncogenes, because overexpression of both proteins, respectively cyclin D1

  2. Isolation of Proteins Interacting with the Cyclin D1-CDK6 Complex from Normal and Tumorigenic Human Breast Cells Using a Novel Yeast Three-Hybrid System

    National Research Council Canada - National Science Library

    Nichols, Michael

    1998-01-01

    ...% of human breast cancer cases. Cyclin D1, through its association with the catalytic subunit CDK6 and CDK4, controls G1 cell cycle progression, presumably by phosphorylating a substrate protein...

  3. Investigating the Role of Cyclin D1 in the Promotion of Genomic Instability and Breast Cancer

    Science.gov (United States)

    2011-09-01

    allele with a normal 4 karyotype were injected in B6 blastocysts by the University of Pennsylvania core facility for 5 generation of chimeric mice...identified by Southern hybridization (Fig. 1B). ES cell clones 9 harboring a correctly targeted allele with a normal karyotype were injected in C57BL/6...B. Gusterson, and J. Bartek. 1995. 22 Abnormal patterns of D-type cyclin expression and G1 regulation in human head and neck 23 cancer. Cancer Res

  4. NFκB-mediated cyclin D1 expression by microRNA-21 influences renal cancer cell proliferation.

    Science.gov (United States)

    Bera, Amit; Ghosh-Choudhury, Nandini; Dey, Nirmalya; Das, Falguni; Kasinath, Balakuntalam S; Abboud, Hanna E; Choudhury, Goutam Ghosh

    2013-12-01

    MicroRNAs regulate post-transcriptomic landscape in many tumors including renal cell carcinoma. We have recently shown significantly increased expression of miR-21 in renal tumors and that this miRNA contributes to the proliferation of renal cancer cells in culture. However, the mechanism by which miR-21 regulates renal cancer cell proliferation is poorly understood. Addiction to constitutive NFκB activity is hallmark of many cancers including renal cancer. Using miR-21 Sponge in renal cancer cells to block endogenous function of miR-21, we show inhibition of phosphorylation of p65 subunit of NFκB, IKKβ and IκB, which results in attenuation of NFκB transcriptional activity. Subtle reduction in the tumor suppressor PTEN has been linked to various malignancies. We showed previously that miR-21 targeted PTEN in renal cancer cells. Inhibition of PTEN by siRNAs restored miR-21 Sponge-induced suppression of phosphorylation of p65, IKKβ, IκB and NFκB transcriptional activity along with reversal of miR-21 Sponge-reduced phosphorylation of Akt. Expression of constitutively active Akt protected against miR-21 Sponge- and PTEN-mediated decrease in p65/IKKβ/IκB phosphorylation and NFκB transcriptional activity. Furthermore, IKKβ and p65 were required for miR-21-induced renal cancer cell proliferation. Interestingly, miR-21 controlled the expression of cyclin D1 through NFκB-dependent transcription. Finally, we demonstrate that miR-21-regulated renal cancer cell proliferation is mediated by cyclin D1 and CDK4. Together, our results establish a molecular order of a phosphatase-kinase couple involving PTEN/Akt/IKKβ and NFκB-dependent cyclin D1 expression for renal carcinoma cell proliferation by increased miR-21 levels. © 2013.

  5. The p-ERK–p-c-Jun–cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjia [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Song, Ting [Nursing Department of Orthopedics 3rd Ward, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Ni, Leng; Yang, Genhuan; Song, Xitao; Wu, Lifei [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Liu, Bao, E-mail: liubao72@yahoo.com.cn [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Liu, Changwei, E-mail: liucw@vip.sina.com [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China)

    2014-10-24

    Highlights: • Smooth muscle cells proliferated after exposure to cigarette smoke extract. • The p-ERK, p-c-Jun, and cyclinD1 expressions increased in the process. • The p-ERK inhibitor, U0126, can reverse these effects. • The p-ERK → p-c-Jun → cyclinD1 pathway is involved in the process. - Abstract: An epidemiological survey has shown that smoking is closely related to atherosclerosis, in which excessive proliferation of vascular smooth muscle cells (SMCs) plays a key role. To investigate the mechanism underlying this unusual smoking-induced proliferation, cigarette smoke extract (CSE), prepared as smoke-bubbled phosphate-buffered saline (PBS), was used to induce effects mimicking those exerted by smoking on SMCs. As assessed by Cell Counting Kit-8 detection (an improved MTT assay), SMC viability increased significantly after exposure to CSE. Western blot analysis demonstrated that p-ERK, p-c-Jun, and cyclinD1 expression increased. When p-ERK was inhibited using U0126 (inhibitor of p-ERK), cell viability decreased and the expression of p-c-Jun and cyclinD1 was reduced accordingly, suggesting that p-ERK functions upstream of p-c-Jun and cyclinD1. When a c-Jun over-expression plasmid was transfected into SMCs, the level of cyclinD1 in these cells increased. Moreover, when c-Jun was knocked down by siRNA, cyclinD1 levels decreased. In conclusion, our findings indicate that the p-ERK–p-c-Jun–cyclinD1 pathway is involved in the excessive proliferation of SMCs exposed to CSE.

  6. The ATM and ATR inhibitors CGK733 and caffeine suppress cyclin D1 levels and inhibit cell proliferation

    Directory of Open Access Journals (Sweden)

    Sunnerhagen Per

    2009-11-01

    Full Text Available Abstract The ataxia telangiectasia mutated (ATM and the ATM- related (ATR kinases play a central role in facilitating the resistance of cancer cells to genotoxic treatment regimens. The components of the ATM and ATR regulated signaling pathways thus provide attractive pharmacological targets, since their inhibition enhances cellular sensitivity to chemo- and radiotherapy. Caffeine as well as more specific inhibitors of ATM (KU55933 or ATM and ATR (CGK733 have recently been shown to induce cell death in drug-induced senescent tumor cells. Addition of these agents to cancer cells previously rendered senescent by exposure to genotoxins suppressed the ATM mediated p21 expression required for the survival of these cells. The precise molecular pharmacology of these agents however, is not well characterized. Herein, we report that caffeine, CGK733, and to a lesser extent KU55933, inhibit the proliferation of otherwise untreated human cancer and non-transformed mouse fibroblast cell lines. Exposure of human cancer cell lines to caffeine and CGK733 was associated with a rapid decline in cyclin D1 protein levels and a reduction in the levels of both phosphorylated and total retinoblastoma protein (RB. Our studies suggest that observations based on the effects of these compounds on cell proliferation and survival must be interpreted with caution. The differential effects of caffeine/CGK733 and KU55933 on cyclin D1 protein levels suggest that these agents will exhibit dissimilar molecular pharmacological profiles.

  7. SUMO modification of Stra13 is required for repression of cyclin D1 expression and cellular growth arrest.

    Directory of Open Access Journals (Sweden)

    Yaju Wang

    Full Text Available Stra13, a basic helix-loop-helix (bHLH transcription factor is involved in myriad biological functions including cellular growth arrest, differentiation and senescence. However, the mechanisms by which its transcriptional activity and function are regulated remain unclear. In this study, we provide evidence that post-translational modification of Stra13 by Small Ubiquitin-like Modifier (SUMO dramatically potentiates its ability to transcriptionally repress cyclin D1 and mediate G(1 cell cycle arrest in fibroblast cells. Mutation of SUMO acceptor lysines 159 and 279 located in the C-terminal repression domain has no impact on nuclear localization; however, it abrogates association with the co-repressor histone deacetylase 1 (HDAC1, attenuates repression of cyclin D1, and prevents Stra13-mediated growth suppression. HDAC1, which promotes cellular proliferation and cell cycle progression, antagonizes Stra13 sumoylation-dependent growth arrest. Our results uncover an unidentified regulatory axis between Stra13 and HDAC1 in progression through the G(1/S phase of the cell cycle, and provide new mechanistic insights into regulation of Stra13-mediated transcriptional repression by sumoylation.

  8. Genome-Wide Analysis of the Cyclin Gene Family in Tomato

    Directory of Open Access Journals (Sweden)

    Tingyan Zhang

    2013-12-01

    Full Text Available Cyclins play important roles in cell division and cell expansion. They also interact with cyclin-dependent kinases to control cell cycle progression in plants. Our genome-wide analysis identified 52 expressed cyclin genes in tomato. Phylogenetic analysis of the deduced amino sequences of tomato and Arabidopsis cyclin genes divided them into 10 types, A-, B-, C-, D-, H-, L-, T-, U-, SDS- and J18. Pfam analysis indicated that most tomato cyclins contain a cyclin-N domain. C-, H- and J18 types only contain a cyclin-C domain, and U-type cyclins contain another potential cyclin domain. All of the cyclin genes are distributed throughout the tomato genome except for chromosome 8, and 30 of them were found to be segmentally duplicated; they are found on the duplicate segments of chromosome 1, 2, 3, 4, 5, 6, 10, 11 and 12, suggesting that tomato cyclin genes experienced a mass of segmental duplication. Quantitative real-time polymerase chain reaction analysis indicates that the expression patterns of tomato cyclin genes were significantly different in vegetative and reproductive stages. Transcription of most cyclin genes can be enhanced or repressed by exogenous application of gibberellin, which implies that gibberellin maybe a direct regulator of cyclin genes. The study presented here may be useful as a guide for further functional research on tomato cyclins.

  9. Hepatitis C virus core+1/ARFP modulates Cyclin D1/pRb pathway and promotes carcinogenesis.

    Science.gov (United States)

    Moustafa, Savvina; Karakasiliotis, Ioannis; Mavromara, Penelope

    2018-02-14

    Viruses often encompass overlapping reading frames and unconventional translation mechanisms in order to maximize the output from a minimum genome and to orchestrate timely their gene expression. HCV possesses such an unconventional open reading frame (ORF) within the core-coding region, encoding an additional protein designated initially as ARFP or F or core+1. Two predominant isoforms of core+1/ARFP have been reported, core+1/L initiating from codon 26 and core+1/S initiating from codons 85/87 of the polyprotein coding region, respectively. The biological significance of core+1/ARFP expression remains elusive. The aim of the present study was to gain insight into the functional and pathological properties of core+1/ARFP through its interaction with the host cell combining in vitro and in vivo approaches. Our data provide strong evidence that the core+1/ARFP of HCV-1a stimulates cell proliferation in Huh7-based cell lines expressing either core+1/S or core+1/L isoforms and in transgenic liver disease mouse models expressing core+1/S protein in a liver-specific manner. Both isoforms of core+1/ARFP increase the levels of cyclin D1 and phosphorylated Rb, thus promoting the cell cycle. In addition, core+1/S was found to enhance liver regeneration and oncogenesis in transgenic mice. The induction of the cell cycle together with increased mRNA levels of cell proliferation-related oncogenes in cells expressing the core+1/ARFP proteins argue for an oncogenic potential of these proteins and an important role in HCV-associated pathogenesis. IMPORTANCE This study sheds light on the biological importance of a unique HCV protein. We show here that core+1/ARFP of HCV-1a interacts with the host machinery leading to acceleration of cell cycle and enhancement of liver carcinogenesis. This pathological mechanism(s) may complement the action of other viral proteins with oncogenic properties leading to the development of hepatocellular carcinoma. In addition, given that immunological

  10. p14ARF post-transcriptional regulation of nuclear cyclin D1 in MCF-7 breast cancer cells: discrimination between a good and bad prognosis?

    Directory of Open Access Journals (Sweden)

    Eileen M McGowan

    Full Text Available As part of a cell's inherent protection against carcinogenesis, p14ARF is upregulated in response to hyperproliferative signalling to induce cell cycle arrest. This property makes p14ARF a leading candidate for cancer therapy. This study explores the consequences of reactivating p14ARF in breast cancer and the potential of targeting p14ARF in breast cancer treatment. Our results show that activation of the p14ARF-p53-p21-Rb pathway in the estrogen sensitive MCF-7 breast cancer cells induces many hallmarks of senescence including a large flat cell morphology, multinucleation, senescence-associated-β-gal staining, and rapid G1 and G2/M phase cell cycle arrest. P14ARF also induces the expression of the proto-oncogene cyclin D1, which is most often associated with a transition from G1-S phase and is highly expressed in breast cancers with poor clinical prognosis. In this study, siRNA knockdown of cyclin D1, p21 and p53 show p21 plays a pivotal role in the maintenance of high cyclin D1 expression, cell cycle and growth arrest post-p14ARF induction. High p53 and p14ARF expression and low p21/cyclin D1 did not cause cell-cycle arrest. Knockdown of cyclin D1 stops proliferation but does not reverse senescence-associated cell growth. Furthermore, cyclin D1 accumulation in the nucleus post-p14ARF activation correlated with a rapid loss of nucleolar Ki-67 protein and inhibition of DNA synthesis. Latent effects of the p14ARF-induced cellular processes resulting from high nuclear cyclin D1 accumulation included a redistribution of Ki-67 into the nucleoli, aberrant nuclear growth (multinucleation, and cell proliferation. Lastly, downregulation of cyclin D1 through inhibition of ER abrogated latent recurrence. The mediation of these latent effects by continuous expression of p14ARF further suggests a novel mechanism whereby dysregulation of cyclin D1 could have a double-edged effect. Our results suggest that p14ARF induced-senescence is related to late

  11. Cyclin D1-positive diffuse large B-cell lymphoma with IGH-CCND1 translocation and BCL6 rearrangement: a report of two cases.

    Science.gov (United States)

    Al-Kawaaz, Mustafa; Mathew, Susan; Liu, Yifang; Gomez, Maria L; Chaviano, Felicia; Knowles, Daniel M; Orazi, Attilio; Tam, Wayne

    2015-02-01

    To demonstrate and confirm the existence of cyclin D1-positive diffuse large B-cell lymphoma (DLBCL) with IGH-CCND1 rearrangement and discuss the rationale of differentiating this entity from blastoid and pleomorphic variants of mantle cell lymphoma (MCL). Two cyclin D1-positive lymphomas with morphologic features of DLBCL and IGH-CCND1 translocations were characterized with respect to clinical features, as well as morphologic, immunophenotypic, cytogenetic, and molecular findings. The large tumor cells were CD20+, CD5-, CD10-, BCL6+, MUM1+, and cyclin D1+ in both cases. SOX11 was negative. Epstein-Barr virus-encoded RNA in situ hybridization demonstrated diffuse positivity in case 1. BCL6 and IGH-CCND1 rearrangements were identified by fluorescence in situ hybridization in both cases. Specifically, the diagnosis of a relapsed DLBCL with acquisition of IGH-CCND1 was rendered for case 1, molecularly confirmed by the detection of identical monoclonal IGH rearrangements between the initial diagnostic DLBCL and relapse lymphoma. Our study demonstrates convincingly that IGH-CCND1 rearrangement leading to cyclin D1 overexpression can occur in DLBCL and pose a potential diagnostic pitfall, requiring thorough knowledge of the clinicopathologic findings to allow accurate discrimination from a blastoid or pleomorphic MCL. The coexistence of IGH-CCND1 and IGH-BCL6 rearrangements suggest that BCL6 and cyclin D1 may cooperate in the pathogenesis of DLBCL. Copyright© by the American Society for Clinical Pathology.

  12. Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways

    DEFF Research Database (Denmark)

    Friedrichsen, Birgitte N; Neubauer, Nicole; Lee, Ying C

    2006-01-01

    . The stimulatory effect of GLP-1 and GIP was efficiently mimicked by the adenylate cyclase activator, forskolin, at 10 nM (approximately 90% increase) and was additive (approximately 170-250% increase) with the growth response to human growth hormone (hGH), indicating the use of distinct intracellular signalling......The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), have been suggested to act as beta-cell growth factors and may therefore be of critical importance for the maintenance of a proper beta-cell mass. We have investigated the molecular mechanism...... transcriptional induction of cyclin D1. GLP-1, GIP and liraglutide may have the potential to increase beta-cell replication in humans which would have significant impact on long-term diabetes treatment....

  13. Changes of protein kinase Calpha and cyclin D1 expressions in pulmonary arteries from smokers with and without chronic obstructive pulmonary disease.

    Science.gov (United States)

    Xaing, Min; Liu, Xiansheng; Zeng, Daxiong; Wang, Ran; Xu, Yongjian

    2010-04-01

    The purpose of this study was to investigate the changes of protein kinase Calpha (PKCalpha) and cyclin D1 expressions in pulmonary arteries from smokers with normal lung function and smokers with mild to moderate chronic obstructive pulmonary disease (COPD). The peripheral lung tissues were obtained from 10 non-smokers with normal lung function (non-smoker group), 14 smokers with normal lung function (smoker group), 11 smokers with mild to moderate COPD (COPD group). The morphological changes of pulmonary arteries were observed by HE-staining. The expressions of alpha-smooth muscle actin (alpha-SMA), proliferating cell nuclear antigen (PCNA), PKCalpha and cyclin D1 proteins in pulmonary artery smooth muscle cells (PASMCs) were immunohistochemically determined. The percentages of PCNA-positive cells were taken as the smooth muscle cells proliferation index (PI). The mRNA expressions of PKCalpha and cyclin D1 in PASMCs were evaluated by real-time fluorescence PCR. Morphometrical analysis showed that the ratio of pulmonary artery wall area to total area (WA%) in smoker group and COPD group was significantly greater than that in non-smoker group (P<0.01). The PASMCs proliferation index in smoker group and COPD group was significantly higher than that in nonsmoker group (P<0.01). The protein levels of PKCalpha and cyclin D1 in PASMCs were significantly increased in smoker group and COPD group as compared with non-smoker group (P<0.01). The mRNA expressions of PKCalpha and cyclin D1 in PASMCs were significantly elevated in smoker group and COPD group as compared with non-smoker group (P<0.01). Significant correlations were found between PKCalpha protein and WA% or PI (P<0.01). Correlations between cyclin D1 protein and WA% or PI also existed (P<0.01). The expression of PKCalpha was positively correlated with the expression of cyclin D1 at both protein and mRNA levels (P<0.01). In conclusion, increased expressions of PKCalpha and cyclin D1 might be involved in the

  14. GM-CSF Induces Cyclin D1 Expression and Proliferation of Endothelial Progenitor Cells via PI3K and MAPK Signaling

    Directory of Open Access Journals (Sweden)

    Chaolin Qiu

    2014-03-01

    Full Text Available Background/Aims: Endothelial progenitor cells (EPCs, which can be isolated from the bone marrow or the peripheral blood, have generated interest because of their capacity to migrate to sites of vascularization and endothelialization and differentiate into endothelial cells in a process termed neovasculogenesis. EPCs are therefore possible regenerative tools for the treatment of vascular diseases and potential targets for the inhibition of angiogenesis during tumor development. Here, we investigated the mechanisms underlying the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF on the acceleration of EPC proliferation and colony formation. Methods: EPCs were isolated, identified and cultured in the presence of GM-CSF. The effect of GM-CSF on endothelial cell colony formation and proliferation was examine by colony formation assay and MTT assay, separately. Cell cycle was analyzed by flow cytometry. The expression of cyclin D1 and cyclin E were detected by western bloting. JAK/Stat, PI3K/Akt and MAPK signaling were analyzed. Results: GM-CSF accelerated the G1/S phase transition in EPCs by upregulating the expression of cyclins D1 and E. The GM-CSF induced increase in the levels of cyclin D1 and the subsequent phosphorylation of the retinoblastoma (Rb protein activated E2F-1, resulting in the upregulation of the transcription of cyclin E. Furthermore, the induction of cyclin D1 expression and cell cycle progression by GM-CSF was mediated by the PI3K/Akt, JNK and ERK signaling pathways through the phosphorylation of GSK3β or the activation of AP-1 transcription factors. Conclusion: Our findings shed light on the mechanisms underlying the effect of GM-CSF on the modulation of cell cycle progression in EPCs, which is important considering their role in vascular repair and their therapeutic potential in several diseases.

  15. The effect of miR-338-3p on HBx deletion-mutant (HBx-d382 mediated liver-cell proliferation through CyclinD1 regulation.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Fu

    Full Text Available Hepatitis B Virus (HBV DNA integration and HBV X (HBx deletion mutation occurs in HBV-positive liver cancer patients, and C-terminal deletion in HBx gene mutants are highly associated with hepatocarcinogenesis. Our previous study found that the HBx-d382 deletion mutant (deleted at nt 382-400 can down-regulate miR-338-3p expression in HBx-expressing cells. The aim of the present study is to examine the role of miR-338-3p in the HBx-d382-mediated liver-cell proliferation.We established HBx-expressing LO2 cells by Lipofectamine 2000 transfection. A miR-338-3p mimics or inhibitor was transfected into LO2/HBx-d382 and LO2/HBx cells using miR-NC as a control miRNA. In silico analysis of potential miR-338-3p targets revealed that miR-338-3p could target the cell cycle regulatory protein CyclinD1. To confirm that CyclinD1 is negatively regulated by miR-338-3p, we constructed luciferase reporters with wild-type and mutated CyclinD1-3'UTR target sites for miR-338-3p binding. We examined the CyclinD1 expression by real-time PCR and western blot, and proliferation activity by flow cytometric cell cycle analysis, Edu incorporation, and soft agar colony.HBx-d382 exhibited enhanced proliferation and CyclinD1 expression in LO2 cells. miR-338-3p expression inhibited cell proliferation in LO2/HBx-d382 cells (and LO2/HBx cells, and also negatively regulated CyclinD1 protein expression. Of the two putative miR-338-3p binding sites in the CyclinD1-3'UTR region, the effect of miR-338-3p on the second binding site (nt 2397-2403 was required for the inhibition.miR-338-3p can directly regulate CyclinD1 expression through binding to the CyclinD1-3'UTR region, mainly at nt 2397-2403. Down-regulation of miR-338-3p expression is required for liver cell proliferation in both LO2/HBx and LO2/HBx-d382 mutant cells, although the effect is more pronounced in LO2/HBx-d382 cells. Our study elucidated a novel mechanism, from a new miRNA-regulation perspective, underlying the

  16. Insulin Promotes the Proliferation of Human Umbilical Cord Matrix-Derived Mesenchymal Stem Cells by Activating the Akt-Cyclin D1 Axis

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available Background. The functions of insulin in mesenchymal stem cells (MSC remain poorly understood. Methods. MSC from human umbilical cord matrix (UCM cultured in serum-free media (SFM with or without insulin were subjected to various molecular biological analyses to determine their proliferation and growth states, expression levels of Akt-cyclin D1 signaling molecules, and in vitro differentiation capacities. Results. Insulin accelerated the G1-S cell cycle progression of UCM-MSC and significantly stimulated their proliferation and growth in SFM. The pro-proliferative action of insulin was associated with augmented cyclin D1 and phosphorylated Akt expression levels. Akt inactivation remarkably abrogated insulin-induced increases in cyclin D1 expression and cell proliferation, indicating that insulin enhances the proliferation of UCM-MSC via acceleration of the G1-S transition mediated by the Akt-cyclin D1 pathway. Additionally, the UCM-MSC propagated in SFM supplemented with insulin exhibited similar specific surface antigen profiles and differentiation capacities as those generated in conventional media containing fetal bovine serum. Conclusions. These findings suggest that insulin acts solely to promote UCM-MSC proliferation without affecting their immunophenotype and differentiation potentials and thus have important implications for utilizing insulin to expand clinical-grade MSC in vitro.

  17. Cyclin D1, p16(INK) (4A) and p27(Kip1) in pancreatic adenocarcinoma: assessing prognostic implications through quantitative image analysis.

    Science.gov (United States)

    Georgiadou, Despoina; Sergentanis, Theodoros N; Sakellariou, Stratigoula; Filippakis, George M; Zagouri, Flora; Vlachodimitropoulos, Dimitris; Psaltopoulou, Theodora; Lazaris, Andreas C; Patsouris, Efstratios; Zografos, George C

    2014-12-01

    The prognostic significance of cyclin D1, p16(INK) (4A) and p27(Kip1) expression has been documented in several human malignancies; however, their prognostic potential in pancreatic adenocarcinoma is still unclear. This study aimed to assess the correlation of the aforementioned molecules with clinicopathological parameters and prognosis. Sixty patients with pancreatic ductal adenocarcinoma underwent surgical resection at a single institution; immunohistochemical staining of the studied markers was quantified by Ιmage analysis system. Cyclin D1 overexpression was positively associated with grade, neural infiltration and vascular invasion, whereas p27 positively correlated with age. Higher cyclin D1 expression indicated poorer survival (adjusted HR = 9.75, 95%CI: 1.48-64.31, p = 0.018, increment: one unit in H-score), whereas a marginal trend toward an association between p16 positivity and improved survival was observed (adjusted HR = 0.58, 95%CI: 0.32-1.05, p = 0.072 regarding positive vs negative cases). No significant association with overall survival was noted regarding p27. In conclusion, cyclin D1 overexpression and possibly p16 loss of expression in pancreatic adenocarcinoma seem to be adverse prognostic factors, whereas p27 expression did not seem to possess such prognostic properties. Further validation of the present findings in studies encompassing larger samples seems to be needed. © 2014 APMIS. Published by John Wiley & Sons Ltd.

  18. Transcriptional and post-transcriptional down-regulation of cyclin D1 contributes to C6 glioma cell differentiation induced by forskolin.

    Science.gov (United States)

    He, Songmin; Zhu, Wenbo; Zhou, Yuxi; Huang, Yijun; Ou, Yanqiu; Li, Yan; Yan, Guangmei

    2011-09-01

    Malignant gliomas are the most common and lethal intracranial tumors, and differentiation therapy shows great potential to be a promising candidate for their treatment. Here, we have elaborated that a PKA activator, forskolin, represses cell growth via cell cycle arrest in the G0/G1 phase and induces cell differentiation characteristic with elongated processes and restoration of GFAP expression. In mechanisms, we verified that forskolin significantly diminishes the mRNA and protein level of a key cell cycle regulator cyclin D1, and maintenance of low cyclin D1 expression level was required for forskolin-induced proliferation inhibition and differentiation by gain and loss of function approaches. In addition, that forskolin down-regulated the cyclin D1 by proteolytic (post-transcriptional) mechanisms was dependent on GSK-3β activation at Ser9. The pro-differentiation activity of forskolin and related molecular mechanisms imply that forskolin can be developed into a candidate for the future in differentiation therapy of glioma, and cyclin D1 is a promising target for pro-differentiation strategy. Copyright © 2011 Wiley-Liss, Inc.

  19. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin, E-mail: yhcheng@mail.cmu.edu.tw [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Hung, Chein-Hui [Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Puizi City, Chiayi 613, Taiwan, ROC (China); Chang, Nai Wen [Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, ROC (China); Lin, Chingju [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China)

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  20. A novel cyclin gene (CCNF) in the region of the polycystic kidney disease gene (PKD1)

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, B.; Pohlschmidt, M.; Leung, L.S. [Imperial Cancer Research Fund, London (United Kingdom)] [and others

    1994-11-01

    The major locus for autosomal dominant polycystic kidney disease (PKD1) is located in a gene-rich region on chromosome 16p13.3. Recently the identification of the gene responsible for PKD1 has been described. While searching for candidate genes in this region, the authors isolated a new member of the cyclin family. They have characterized the transcript by sequencing, determination of the exon intron boundaries, and Northern blot analysis. Cyclin F is related to A- and B-type cyclins by sequence, but its function is unknown.

  1. Cyclin D1 overexpression is associated with poor clinicopathological outcome and survival in oral squamous cell carcinoma in Asian populations: insights from a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yanhui Zhao

    Full Text Available The clinicopathological significance of cyclin D1 overexpression and prognosis of oral squamous cell carcinoma has not been fully quantified. We performed a comprehensive meta-analysis for evaluation of cyclin D1 overexpression in oral squamous cell carcinoma to determine the strength of this association.Using both medical subheadings and free terms, we searched PubMed, Embase and the Institute for Scientific Information Web of Science for all eligible studies published before Nov. 2013. We retrieved 1674 citations, determining that 15 met the selection criteria. We used the odds ratio (OR and hazard ratio (HR as the common measures of association to quantitatively determine the correlation between cyclin D1 overexpression and outcomes of oral cancer. We performed a meta-analysis and heterogeneity, sensitivity, and subgroup analyses to clarify and validate the pooled results.The pooled results provided compelling evidence that cyclin D1 overexpression was significantly correlated with increased tumor size (OR = 1.617, 95% confidence interval [CI] = 1.046-2.498, p = 0.031, lymphoid node metastasis (OR = 2.035, 95% CI = 1.572-2.635, p<0.001, tumor differentiation (OR = 1.976, 95% CI = 1.363-2.866, p<0.001, and advancement of clinical stages (OR = 1.516, 95% CI = 1.140-2.015, p = 0.004, and adversely influenced overall survival of OSCC patients (HR = 1.897, 95% CI = 1.577-2.282, p<0.001. The strength of association varied in different oral cavity subsites.Our findings indicated that cyclin D1 expression correlates with detrimental clinicopathological outcome and poor prognosis in oral squamous cell carcinoma. Our results may be useful in the management of oral cancer.

  2. Potential gene regulatory role for cyclin D3 in muscle cells

    Indian Academy of Sciences (India)

    Cyclin D3 is important for muscle development and regeneration, and is involved in post-mitotic arrest of muscle cells. Cyclin D3 also has cell-cycle-independent functions such as regulation of specific genes in other tissues. Ectopic expression of cyclin D3 in myoblasts, where it is normally undetectable, promotes muscle ...

  3. Role of immunoexpression of cyclin D1, D3, retinoblastoma (Rb mutant and clinical risk factors on complete mole as risk factors of persistent mole

    Directory of Open Access Journals (Sweden)

    Yudi M Hidayat

    2015-10-01

    Full Text Available Introduction: Changes in complete hydatidiform mole (CHM that become persistent are difficult to handle because the malignant pathogenesis of CHM is still unclear. The growth of abnormal cells in CHM is thought to be caused by cell cycle abnormalities. Some components that play a role in this phase include cyclin D and retinoblastoma (Rb. The aim of our study was to determine the role of clinical risk factors, as well as cyclin D1, cyclin D3 and Rb-protein, in the occurrence of persistent moles. Materials and Method: This study involves 68 CHM cases at Dr. Hasan Sadikin Hospital from 2007–2011. The protein expression of cyclin D1, cyclin D3, and Rb were determined by immunohistochemistry. The results were analyzed by comparing the two groups of CHM that became persistent to those that returned to normal, as determined by a Mochizuki regression curve assessment. Results: 20 cases (29% of CHM became persistent and that 48 cases (71% returned to normal. Significant clinical variables were age (p 0.05. Conclusion: There is a strong relationship between clinical risk factors of age, excessive proliferation histopathology, serum βhCG levels ≥100,000 mU/mL, cyclin D1 and Rb mutations with the incidence of persistent moles after the evacuation of the CHM. We proposed a model to predict the risks of persistent moles with a cut-off point of 2.384, which can be used as a reference for patients with CHM.

  4. Cinacalcet HCl suppresses Cyclin D1 oncogene-derived parathyroid cell proliferation in a murine model for primary hyperparathyroidism.

    Science.gov (United States)

    Imanishi, Yasuo; Kawata, Takehisa; Kenko, Takao; Wada, Michihito; Nagano, Nobuo; Miki, Takami; Arnold, Andrew; Inaba, Masaaki

    2011-07-01

    Cinacalcet HCl (cinacalcet) is a calcimimetic compound, which suppresses parathyroid (PTH) hormone secretion from parathyroid glands in both primary hyperparathyroidism (PHPT) and secondary hyperparathyroidism (SHPT). We previously reported the suppressive effect of cinacalcet on PTH secretion in vivo in a PHPT model mouse, in which parathyroid-targeted overexpression of the cyclin D1 oncogene caused chronic biochemical hyperparathyroidism and parathyroid cell hyperplasia. Although cinacalcet suppressed parathyroid cell proliferation in SHPT in 5/6-nephrectomized uremic rats, its effect on PHPT has not yet been determined. In this study, the effect of cinacalcet on parathyroid cell proliferation was analyzed in PHPT mice. Cinacalcet (1 mg/g) was mixed into the rodent diet and orally administrated to 80-week-old PHPT mice for 10 days before death. 5-Bromo-2'-deoxyuridine (BrdU, 6 mg/day) was infused by an osmotic pump for 5 days before death, followed by immunostaining of the thyroid-parathyroid complex using an anti-BrdU antibody to estimate parathyroid cell proliferation. Compared to untreated PHPT mice, cinacalcet significantly suppressed both serum calcium and PTH. The proportion of BrdU-positive cells to the total cell number in the parathyroid glands increased considerably in untreated PHPT mice (9.5 ± 3.1%) compared to wild-type mice (0.7 ± 0.1%) and was significantly suppressed by cinacalcet (1.2 ± 0.2%). Cinacalcet did not affect apoptosis in the parathyroid cells of PHPT mice. These data suggest that cinacalcet suppressed both serum PTH levels and parathyroid cell proliferation in vivo in PHPT.

  5. The N-terminal domain of y-box binding protein-1 induces cell cycle arrest in g2/m phase by binding to cyclin d1.

    Science.gov (United States)

    Khandelwal, Payal; Padala, Mythili K; Cox, John; Guntaka, Ramareddy V

    2009-01-01

    Y-box binding protein YB-1 is a multifunctional protein involved in cell proliferation, regulation of transcription and translation. Our previous study indicated that disruption of one allele of Chk-YB-1b gene in DT-40 cells resulted in major defects in the cell cycle. The abnormalities seen in heterozygous mutants could be attributed to a dominant negative effect exerted by the disrupted YB-1 allele product. To test this hypothesis the N-terminal sequence of the YB-1 was fused with the third helix of antennapedia and the green fluorescent protein. These purified fusion proteins were introduced into rat hepatoma cells and their effect on cell proliferation was studied. Results indicate that the N-terminal 77 amino acid domain of the YB-1 protein induced the cells to arrest in G2/M phase of the cell cycle and undergo apoptosis. Additional deletion analysis indicated that as few as 26 amino acids of the N-terminus of YB-1 can cause these phenotypic changes. We further demonstrated that this N-terminal 77 amino acid domain of YB-1 sequesters cyclin D1 in the cytoplasm of cells at G2/M phase of cell cycle. We conclude that the N-terminal domain of YB-1 plays a major role in cell cycle progression through G2/M phase of cell cycle.

  6. The N-Terminal Domain of Y-Box Binding Protein-1 Induces Cell Cycle Arrest in G2/M Phase by Binding to Cyclin D1

    Directory of Open Access Journals (Sweden)

    Payal Khandelwal

    2009-01-01

    Full Text Available Y-box binding protein YB-1 is a multifunctional protein involved in cell proliferation, regulation of transcription and translation. Our previous study indicated that disruption of one allele of Chk-YB-1b gene in DT-40 cells resulted in major defects in the cell cycle. The abnormalities seen in heterozygous mutants could be attributed to a dominant negative effect exerted by the disrupted YB-1 allele product. To test this hypothesis the N-terminal sequence of the YB-1 was fused with the third helix of antennapedia and the green fluorescent protein. These purified fusion proteins were introduced into rat hepatoma cells and their effect on cell proliferation was studied. Results indicate that the N-terminal 77 amino acid domain of the YB-1 protein induced the cells to arrest in G2/M phase of the cell cycle and undergo apoptosis. Additional deletion analysis indicated that as few as 26 amino acids of the N-terminus of YB-1 can cause these phenotypic changes. We further demonstrated that this N-terminal 77 amino acid domain of YB-1 sequesters cyclin D1 in the cytoplasm of cells at G2/M phase of cell cycle. We conclude that the N-terminal domain of YB-1 plays a major role in cell cycle progression through G2/M phase of cell cycle.

  7. Effects of Cyclooxygenase Inhibitors in Combination with Taxol on Expression of Cyclin D1 and Ki-67 in a Xenograft Model of Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    Liang Wan

    2012-08-01

    Full Text Available The present study was designed to investigate the effects of cyclooxygenase (COX inhibitors in combination with taxol on the expression of cyclin D1 and Ki-67 in human ovarian SKOV-3 carcinoma cells xenograft-bearing mice. The animals were treated with 100 mg/kg celecoxib (a COX-2 selective inhibitor alone, 3 mg/kg SC-560 (a COX-1 selective inhibitor alone by gavage twice a day, 20 mg/kg taxol alone by intraperitoneally (i.p. once a week, or celecoxib/taxol, SC-560/celecoxib, SC-560/taxol or SC-560/celecoxib/taxol, for three weeks. To test the mechanism of the combination treatment, the index of cell proliferation and expression of cyclin D1 in tumor tissues were determined by immunohistochemistry. The mean tumor volume in the treated groups was significantly lower than control (p < 0.05, and in the three-drug combination group, tumor volume was reduced by 58.27% (p < 0.01; downregulated cell proliferation and cyclin D1 expression were statistically significant compared with those of the control group (both p < 0.01. This study suggests that the effects of COX selective inhibitors on the growth of tumors and decreased cell proliferation in a SKOV-3 cells mouse xenograft model were similar to taxol. The three-drug combination showing a better decreasing tendency in growth-inhibitory effect during the experiment may have been caused by suppressing cyclin D1 expression.

  8. HMGB1 mediates IFN-γ-induced cell proliferation in MMC cells through regulation of cyclin D1/CDK4/p16 pathway.

    Science.gov (United States)

    Feng, Xiaojuan; Hao, Jun; Liu, Qingjuan; Yang, Lin; Lv, Xin; Zhang, Yujun; Xing, Lingling; Xu, Ning; Liu, Shuxia

    2012-06-01

    Previous studies have revealed the elevated serum levels of High-mobility group box-1(HMGB1) and the interferon-γ (IFN-γ)-induced proliferation of renal mesangial cells in patients or experimental animals with systemic lupus erythematosus (SLE). However, it is still not elucidated whether HMGB1 involves in the pathogenesis of lupus nephritis (LN) and mediates IFN-γ-induced mesangial cell proliferation. Therefore, in the present study we demonstrated HMGB1 mRNA and protein levels were increased in the glomeruli of LN patients and BXSB mice. HMGB1 increased the proliferation index of mouse mesangial cells (MMC) that was accompanied with the up-regulation of cyclin D1, CDK4 and the down-regulation of p16, subsequently promoting the transition from the G0/G1 to S stage. Inhibition of HMGB1 by a specific short hairpin RNA vector prevented cyclin D1/CDK4/p16 up-regulation and attenuated IFN-γ-induced MMC cell proliferation and PCNA (proliferating cell nuclear antigen, PCNA) expression. These findings indicate that HMGB1 mediates IFN-γ-induced cell proliferation in MMC cells through regulation of cyclin D1/CDK4/p16 pathway and promoting the cell cycle transition from G1 to S stage. Copyright © 2012 Wiley Periodicals, Inc.

  9. Ophiobolin O Isolated from Aspergillus ustus Induces G1 Arrest of MCF-7 Cells through Interaction with AKT/GSK3β/Cyclin D1 Signaling

    Directory of Open Access Journals (Sweden)

    Cuiting Lv

    2015-01-01

    Full Text Available Ophiobolin O is a member of ophiobolin family, which has been proved to be a potent anti-tumor drug candidate for human breast cancer. However, the anti-tumor effect and the mechanism of ophiobolin O remain unclear. In this study, we further verified ophiobolin O-induced G1 phase arrest in human breast cancer MCF-7 cells, and found that ophiobolin O reduced the phosphorylation level of AKT and GSK3β, and induced down-regulation of cyclin D1. The inverse docking (INVDOCK analysis indicated that ophiobolin O could bind to GSK3β, and GSK3β knockdown abolished cyclin D1 degradation and G1 phase arrest. Pre-treatment with phosphatase inhibitor sodium or thovanadate halted dephosphorylation of AKT and GSK3β, and blocked ophiobolin O-induced G1 phase arrest. These data suggest that ophiobolin O may induce G1 arrest in MCF-7 cells through interaction with AKT/GSK3β/cyclin D1 signaling. In vivo, ophiobolin O suppressed tumor growth and showed little toxicity in mouse xenograft models. Overall, these findings provide theoretical basis for the therapeutic use of ophiobolin O.

  10. Decreased MiR-17 in glioma cells increased cell viability and migration by increasing the expression of Cyclin D1, p-Akt and Akt.

    Directory of Open Access Journals (Sweden)

    Guangwei Sun

    Full Text Available The activating mutations of micro RNA (miR-17 have been revealed in tumors such as human non-Hodgkin's lymphoma and T cell leukemia. However, it is unclear about the role of miR-17 in glioma cells. The current study aimed to investigate effects of miR-17 mimics or inhibitor on the viability and migration of rat glioma C6 cells, and explore possible mechanisms.The expression of miR-17 in rat glioma C6 cells and normal brain tissue was detected by quantitative PCR. Protein expression of Cyclin D1 in rat glioma C6 cells and normal brain tissue was measured by Western Blot. Glioma C6 cells were transfected with MiR-17 mimics or inhibitor. Cells that were not transfected (Lipofectamine only and cells that were transfected with nonsense RNA negative control served as control. MTT assay was utilized to detect cell viability, and cell wound scratch assay was utilized to examine the migration index. In addition, protein expression of Cyclin D1, p-Akt and Akt in MiR-17 mimics or inhibitor-transfected glioma C6 cells was detected by Western Blot. This study had been approved by the Medical Ethics Committee of the First Affiliated Hospital of Soochow University. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.The expression of miR-17 was significantly lower, whereas the expression of Cyclin D1 was significantly higher in glioma C6 cells compared to normal brain tissue. MiR-17 mimics decreased the viability and migration of glioma C6 cells markedly at 48 h. In addition, MiR-17 inhibitor increased the viability and migration of glioma C6 cells at 24 and 48 h. The protein expression of Cyclin D1, p-Akt and Akt in glioma C6 cells decreased after transfection with miR-17 mimics for 72 h, and increased after transfection with miR-17 inhibitor for 72 h.The reduced miR-17 levels in glioma cells increased cell viability and migration, which correlates with increased expression of Cyclin D1, p

  11. Potential gene regulatory role for cyclin D3 in muscle cells

    Indian Academy of Sciences (India)

    2015-06-27

    Jun 27, 2015 ... In the present study, we investigated the mechanistic role of cyclin D3 in muscle gene regulation. We initially ... Our results have implications for a regulatory role for cyclin D3 in muscle-specific gene activation. [Athar F and Parnaik VK 2015 .... Statistical significance was calculated using the Student's t-test.

  12. A DNA enzyme targeting Egr-1 inhibits rat vascular smooth muscle cell proliferation by down-regulation of cyclin D1 and TGF-β1

    Directory of Open Access Journals (Sweden)

    Y. Wu

    2010-01-01

    Full Text Available We have demonstrated that a synthetic DNA enzyme targeting early growth response factor-1 (Egr-1 can inhibit neointimal hyperplasia following vascular injury. However, the detailed mechanism of this inhibition is not known. Thus, the objective of the present study was to further investigate potential inhibitory mechanisms. Catalytic DNA (ED5 and scrambled control DNA enzyme (ED5SCR were synthesized and transfected into primary cultures of rat vascular smooth muscle cells (VSMCs. VSMC proliferation and DNA synthesis were analyzed by the MTT method and BrdU staining, respectively. Egr-1, TGF-β1, p53, p21, Bax, and cyclin D1 expression was detected by RT-PCR and Western blot. Apoptosis and cell cycle assays were performed by FACS. Green fluorescence could be seen localized in the cytoplasm of 70.6 ± 1.52 and 72 ± 2.73% VSMCs 24 h after transfection of FITC-labeled ED5 and ED5SCR, respectively. We found that transfection with ED5 significantly inhibited cultured VSMC proliferation in vitro after 24, 48, and 72 h of serum stimulation, and also effectively decreased the uptake of BrdU by VSMC. ED5 specifically reduced serum-induced Egr-1 expression in VSMCs, further down-regulated the expression of cyclin D1 and TGF-β1, and arrested the cells at G0/G1, inhibiting entry into the S phase. FACS analysis indicated that there was no significant difference in the rate of apoptosis between ED5- and ED5SCR-transfected cells. Thus, ED5 can specifically inhibit Egr-1 expression, and probably inhibits VSMC proliferation by down-regulating the expressions of cyclin D1 and TGF-β1. However, ED5 has no effect on VSMC apoptosis.

  13. DIF-1 inhibits tumor growth in vivo reducing phosphorylation of GSK-3β and expressions of cyclin D1 and TCF7L2 in cancer model mice.

    Science.gov (United States)

    Takahashi-Yanaga, Fumi; Yoshihara, Tatsuya; Jingushi, Kentaro; Igawa, Kazuhiro; Tomooka, Katsuhiko; Watanabe, Yutaka; Morimoto, Sachio; Nakatsu, Yoshimichi; Tsuzuki, Teruhisa; Nakabeppu, Yusaku; Sasaguri, Toshiyuki

    2014-06-01

    We reported that differentiation-inducing factor-1 (DIF-1), synthesized by Dictyostelium discoideum, inhibited proliferation of various tumor cell lines in vitro by suppressing the Wnt/β-catenin signaling pathway. However, it remained unexplored whether DIF-1 also inhibits tumor growth in vivo. In the present study, therefore, we examined in-vivo effects of DIF-1 using three cancer models: Mutyh-deficient mice with oxidative stress-induced intestinal tumors and nude mice xenografted with the human colon cancer cell line HCT-116 and cervical cancer cell line HeLa. In exploration for an appropriate route of administration, we found that orally administered DIF-1 was absorbed through the digestive tract to elevate its blood concentration to levels enough to suppress tumor cell proliferation. Repeated oral administration of DIF-1 markedly reduced the number and size of intestinal tumors that developed in Mutyh-deficient mice, reducing the phosphorylation level of GSK-3β Ser(9) and the expression levels of early growth response-1 (Egr-1), transcription factor 7-like 2 (TCF7L2) and cyclin D1. DIF-1 also inhibited the growth of HCT-116- and HeLa-xenograft tumors together with decreasing phosphorylation level of GSK-3β Ser(9), although it was not statistically significant in HeLa-xenograft tumors. DIF-1 also suppressed the expressions of Egr-1, TCF7L2 and cyclin D1 in HCT-116-xenograft tumors and those of β-catenin, TCF7L2 and cyclin D1 in HeLa-xenograft tumors. This is the first report to show that DIF-1 inhibits tumor growth in vivo, consistent with its in-vitro action, suggesting that this compound may have potential as a novel anti-tumor agent. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Knocking-down of CREPT prohibits the progression of oral squamous cell carcinoma and suppresses cyclin D1 and c-Myc expression.

    Directory of Open Access Journals (Sweden)

    Juntao Ma

    Full Text Available As a regulator essential for many cell cycle-related proteins, the robust expression of Cell cycle-Related and Expression-elevated Protein in Tumor (CREPT implicates a poor diagnosis of endoderm and mesoderm-derived tumors. Whether CREPT plays the same role in the tumorigenesis derived from ectodermal tissues remains elusive.To explore the role of CREPT in ectoderm-derived tumors, cells from 7oral squamous cell carcinoma (OSCC lines and 84clinical OSCC samples were exploited in this study. Quantitative PCR, Western blot assay and immunohistochemistry were applied in the evaluation of CREPT, cyclin D1 and c-Myc expression. Knocking-down of CREPT was performed by lentivirus delivering specific shRNA of CREPT. The effects of CREPT on OSCC were examined by cell proliferation, colony formation, apoptosis, cell migration and xenograft implantation experiments.Compared with human normal oral keratinocytes, OSCC cell lines showed a significantly elevated expression of CREPT in both mRNA and protein levels. Consistently, samples from OSCC patients also exhibited a noticeably stronger CREPT expression than the noncancerous samples. In contrast, knocking down of CREPT in OSCC cell lines significantly reduced proliferation, colony formation and migration as well as the expression of cyclin D1 and c-Myc, but promoted apoptosis. Statistical analysis also suggested that CREPT expression was significantly correlated with the T and N classification of OSCC. Furthermore, CAL27 mouse xenograft model confirmed that down-regulation of CREPT prohibited cyclin D1 and c-Myc expression, through which decreased the in vivo tumor growth, but increased the survival ratio of hosts.In OSCC cell lines, up-regulated CREPT expression enhanced cell proliferation, migration and cell cycle as well as promoted cyclin D1 and c-Myc expression as it did in endoderm and mesoderm-origin tumors. Our study strongly suggests that CREPT could be used as a marker for the OSCC prognosis and

  15. The dual role of cyclin C connects stress regulated gene expression to mitochondrial dynamics

    Directory of Open Access Journals (Sweden)

    Randy Strich

    2014-09-01

    Full Text Available Following exposure to cytotoxic agents, cellular damage is first recognized by a variety of sensor mechanisms. Thenceforth, the damage signal is transduced to the nucleus to install the correct gene expression program including the induction of genes whose products either detoxify destructive compounds or repair the damage they cause. Next, the stress signal is disseminated throughout the cell to effect the appropriate changes at organelles including the mitochondria. The mitochondria represent an important signaling platform for the stress response. An initial stress response of the mitochondria is extensive fragmentation. If the damage is prodigious, the mitochondria fragment (fission and lose their outer membrane integrity leading to the release of pro-apoptotic factors necessary for programmed cell death (PCD execution. As this complex biological process contains many moving parts, it must be exquisitely coordinated as the ultimate decision is life or death. The conserved C-type cyclin plays an important role in executing this molecular Rubicon by coupling changes in gene expression to mitochondrial fission and PCD. Cyclin C, along with its cyclin dependent kinase partner Cdk8, associates with the RNA polymerase holoenzyme to regulate transcription. In particular, cyclin C-Cdk8 repress many stress responsive genes. To relieve this repression, cyclin C is destroyed in cells exposed to pro-oxidants and other stressors. However, prior to its destruction, cyclin C, but not Cdk8, is released from its nuclear anchor (Med13, translocates from the nucleus to the cytoplasm where it interacts with the fission machinery and is both necessary and sufficient to induce extensive mitochondria fragmentation. Furthermore, cytoplasmic cyclin C promotes PCD indicating that it mediates both mitochondrial fission and cell death pathways. This review will summarize the role cyclin C plays in regulating stress-responsive transcription. In addition, we will detail

  16. Study of possible changes in genes expression of mitotic cyclin under clinorotation.

    Science.gov (United States)

    Artemenko, Olga

    Cell cycle is regulated by cyclins, destruction and accumulation of which is the main process in cell cycle progress. In previous studies we have shown that slow horizontal clinorotation (2rpm) affects proliferative activity and cell cycle stages in inducted to grow 2-4 day old Pisum sativum seedlings. In the first cell cycle, delay in cell transition to S stage and delay in mitosis occur due to the prolongation of pre-synthetic stage. This observation is supported by accumulation of 2c DNA cells and transcripts of 3 cyclin in meristem cells. 3 cyclins are "plant" version of cyclin D, they regulate pre-synthetic stage of cell cycle. Cyclins A and B, regulated by cyclin-dependent kinases, control the beginning of S-stage and are necessary for prevention of certain delay in cell cycle progression. We suggest that delay in mitosis, observed under clinorotation, may take place not only due to prolongation of pre-synthetic stage but also due to change of cyclin genes expression under above condition. Further investigations will be aimed on establishing the level of cyclin genes expression under clinorotation.

  17. Dobesilate inhibits the activation of signal transducer and activator of transcription 3, and the expression of cyclin D1 and bcl-XL in glioma cells.

    Science.gov (United States)

    Cuevas, P; Díaz-González, D; Sánchez, I; Lozano, R M; Giménez-Gallego, G; Dujovny, M

    2006-03-01

    Because fibroblast growth factor (FGF) causes the intracellular accumulation of activated signal transducer and activator of transcription 3 (STAT3), we assessed whether dobesilate, a synthetic FGF inhibitor that has been reported to show antiproliferative and proapoptotic activities in glioma cell cultures, down-regulates the STAT3 signaling pathway in growing cultures of those cells. Because STAT3 signaling pathway plays pleiotropic roles in tumor proliferation, maintenance of STAT3 in its inactive state may prevent glioma growth and spreading. Rat glioma C6 cells were treated with dobesilate and cultures were evaluated immunocytochemically for STAT3 activation and enhancement of the expression rate of cyclin D1 and bcl-XL. Dobesilate abrogates the accumulation of activated STAT3 in glioma cells. The decrease in the intracellular levels of activated STAT3 by the dobesilate treatment runs parallel with a significant attenuation of cyclin D1 and bcl-XL expression. Treatment with inhibitors of FGF down-regulates the STAT3 signaling pathway. These alterations could be correlated to the already observed inhibition of cell proliferation and promotion of apoptosis in glioma cell cultures by dobesilate. The reported results may open new avenues for developing new treatments against these tumors.

  18. Nerve growth factor-induced accumulation of PC12 cells expressing cyclin D1: evidence for a G1 phase block.

    Science.gov (United States)

    van Grunsven, L A; Thomas, A; Urdiales, J L; Machenaud, S; Choler, P; Durand, I; Rudkin, B B

    1996-02-15

    The anti-proliferative effect of nerve growth factor (NGF) on the rat pheochromocytoma cell line PC12 has been previously shown to be accompanied by the accumulation of cells in either the G1 phase with a 2c DNA content, or with a 4c DNA content characteristic for G2/M, as evidenced by flow cytometric analysis of DNA distribution using propidium iodide. Herein, these apparently conflicting results are clarified. The present studies indicate that a simple DNA distribution profile obtained by this technique can confound interpretation of the biological effects of NGF on cell-cycle distribution due to the presence of tetraploid cells. Using cyclin D1 and incorporation of bromodeoxyuridine as markers of respectively, G1 and S phase, we show that PC12 cultures can have a considerable amount of tetraploid cells which, when in the G1 phase, have a 4c DNA content and express cyclin D1. During exposure to NGF, this population increases, reflecting the accumulation of cells in the G1 phase of the cell cycle. The data presented, support the possibility that events affecting the expression or action of G1 regulatory proteins may be involved in the molecular mechanism of the anti-mitogenic effect of NGF.

  19. Dexamethasone Induces Cardiomyocyte Terminal Differentiation via Epigenetic Repression of Cyclin D2 Gene

    National Research Council Canada - National Science Library

    Gay, Maresha S; Dasgupta, Chiranjib; Li, Yong; Kanna, Angela; Zhang, Lubo

    2016-01-01

    .... Yet mechanisms remain undetermined. The present study tested the hypothesis that the direct effect of glucocorticoid receptor-mediated epigenetic repression of cyclin D2 gene in the cardiomyocyte plays a key role in the dexamethasone...

  20. Down-regulation of hTERT and Cyclin D1 transcription via PI3K/Akt and TGF-β pathways in MCF-7 Cancer cells with PX-866 and Raloxifene

    Energy Technology Data Exchange (ETDEWEB)

    Peek, Gregory W. [Department of Biology, University of Alabama at Birmingham, Birmingham, AL (United States); Tollefsbol, Trygve O., E-mail: trygve@uab.edu [Department of Biology, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL (United States); Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2016-05-15

    Human telomerase reverse transcriptase (hTERT) is the catalytic and limiting component of telomerase and also a transcription factor. It is critical to the integrity of the ends of linear chromosomes and to the regulation, extent and rate of cell cycle progression in multicellular eukaryotes. The level of hTERT expression is essential to a wide range of bodily functions and to avoidance of disease conditions, such as cancer, that are mediated in part by aberrant level and regulation of cell cycle proliferation. Value of a gene in regulation depends on its ability to both receive input from multiple sources and transmit signals to multiple effectors. The expression of hTERT and the progression of the cell cycle have been shown to be regulated by an extensive network of gene products and signaling pathways, including the PI3K/Akt and TGF-β pathways. The PI3K inhibitor PX-866 and the competitive estrogen receptor ligand raloxifene have been shown to modify progression of those pathways and, in combination, to decrease proliferation of estrogen receptor positive (ER+) MCF-7 breast cancer cells. We found that combinations of modulators of those pathways decreased not only hTERT transcription but also transcription of additional essential cell cycle regulators such as Cyclin D1. By evaluating known expression profile signatures for TGF-β pathway diversions, we confirmed additional genes such as heparin-binding epidermal growth factor-like growth factor (HB EGF) by which those pathways and their perturbations may also modify cell cycle progression. - Highlights: • PX-866 and raloxifene affect the PI3K/Akt and TGF-β pathways. • PX-866 and raloxifene down-regulate genes up-regulated in cancer. • PX-866 and raloxifene decrease transcription of hTERT and Cyclin D1. • Pathological transcription signatures can identify new defense mechanisms.

  1. Helicobacter pylori Induced Phosphatidylinositol-3-OH Kinase/mTOR Activation Increases Hypoxia Inducible Factor-1α to Promote Loss of Cyclin D1 and G0/G1 Cell Cycle Arrest in Human Gastric Cells.

    Science.gov (United States)

    Canales, Jimena; Valenzuela, Manuel; Bravo, Jimena; Cerda-Opazo, Paulina; Jorquera, Carla; Toledo, Héctor; Bravo, Denisse; Quest, Andrew F G

    2017-01-01

    Helicobacter pylori (H. pylori) is a human gastric pathogen that has been linked to the development of several gastric pathologies, such as gastritis, peptic ulcer, and gastric cancer. In the gastric epithelium, the bacterium modifies many signaling pathways, resulting in contradictory responses that favor both proliferation and apoptosis. Consistent with such observations, H. pylori activates routes associated with cell cycle progression and cell cycle arrest. H. pylori infection also induces the hypoxia-induced factor HIF-1α, a transcription factor known to promote expression of genes that permit metabolic adaptation to the hypoxic environment in tumors and angiogenesis. Recently, however, also roles for HIF-1α in the repair of damaged DNA and inhibition of gene expression were described. Here, we investigated signaling pathways induced by H. pylori in gastric cells that favor HIF-1α expression and the consequences thereof in infected cells. Our results revealed that H. pylori promoted PI3K/mTOR-dependent HIF-1α induction, HIF-1α translocation to the nucleus, and activity as a transcription factor as evidenced using a reporter assay. Surprisingly, however, transcription of known HIF-1α effector genes evaluated by qPCR analysis, revealed either no change (LDHA and GAPDH), statistically insignificant increases SLC2A1 (GLUT-1) or greatly enhance transcription (VEGFA), but in an HIF-1α-independent manner, as quantified by PCR analysis in cells with shRNA-mediated silencing of HIF-1α. Instead, HIF-1α knockdown facilitated G1/S progression and increased Cyclin D1 protein half-life, via a post-translational pathway. Taken together, these findings link H. pylori-induced PI3K-mTOR activation to HIF-1α induced G0/G1 cell cycle arrest by a Cyclin D1-dependent mechanism. Thus, HIF-1α is identified here as a mediator between survival and cell cycle arrest signaling activated by H. pylori infection.

  2. Toll-Like Receptor 1/2 and 5 Ligands Enhance the Expression of Cyclin D1 and D3 and Induce Proliferation in Mantle Cell Lymphoma.

    Directory of Open Access Journals (Sweden)

    Katy Mastorci

    Full Text Available Mantle cell lymphoma (MCL is an aggressive B-cell non-Hodgkin's lymphoma with a still undefined etiology. Several lines of evidence are consistent with the possible involvement of peculiar microenvironmental stimuli sustaining tumor cell growth and survival, as the activation of Toll-like receptors (TLR 4 and 9. However, little is known about the contribution of other TLRs of pathogenic relevance in the development of MCL. This study reports evidence that MCL cell lines and primary MCL cells express different levels of TLR2 and TLR5, and that their triggering is able to further activate the Akt, MAPK, and NF-κB signaling cascades, known to be altered in MCL cells. This leads to the enhancement of cyclin D1 and D3 over-expression, occurring at post-translational level through a mechanism that likely involves the Akt/GSK-3α/β pathway. Interestingly, in primary B cells, TLR1/2 or TLR5 ligands increase protein level of cyclin D1, which is not usually expressed in normal B cells, and cyclin D3 when associated with CD40 ligand (CD40L, IL-4, and anti-human-IgM co-stimulus. Finally, the activation of TLR1/2 and TLR5 results in an increased proliferation of MCL cell lines and, in the presence of co-stimulation with CD40L, IL-4, and anti-human-IgM also of primary MCL cells and normal B lymphocytes. These effects befall together with an enhanced IL-6 production in primary cultures. Overall, our findings suggest that ligands for TLR1/2 or TLR5 may provide critical stimuli able to sustain the growth and the malignant phenotype of MCL cells. Further studies aimed at identifying the natural source of these TLR ligands and their possible pathogenic association with MCL are warranted in order to better understand MCL development, but also to define new therapeutic targets for counteracting the tumor promoting effects of lymphoma microenvironment.

  3. Mesenchymal stem cells promote liver regeneration and prolong survival in small-for-size liver grafts: involvement of C-Jun N-terminal kinase, cyclin D1, and NF-κB.

    Directory of Open Access Journals (Sweden)

    Weijie Wang

    Full Text Available BACKGROUND: The therapeutic potential of mesenchymal stem cells (MSCs has been highlighted recently for treatment of acute or chronic liver injury, by possibly differentiating into hepatocyte-like cells, reducing inflammation, and enhancing tissue repair. Despite recent progress, exact mechanisms of action are not clearly elucidated. In this study, we attempted to explore whether and how MSCs protected hepatocytes and stimulated allograft regeneration in small-for-size liver transplantation (SFSLT. METHODS: SFSLT model was established with a 30% partial liver transplantation (30PLT in rats. The differentiation potential and characteristics of bone marrow derived MSCs were explored in vitro. MSCs were infused transvenously immediately after graft implantation in therapy group. Expressions of apoptosis-, inflammatory-, anti-inflammatory-, and growth factor-related genes were measured by RT-PCR, activities of transcription factors AP-1 and NF-κB were analyzed by EMSA, and proliferative responses of the hepatic graft were evaluated by immunohistochemistry and western blot. RESULTS: MSCs were successfully induced into hepatocyte-like cells, osteoblasts and adipocytes in vitro. MSCs therapy could not only alleviate ischemia reperfusion injury and acute inflammation to promote liver regeneration, but also profoundly improve one week survival rate. It markedly up-regulated the mRNA expressions of HGF, Bcl-2, Bcl-XL, IL-6, IL-10, IP-10, and CXCR2, however, down-regulated TNF-α. Increased activities of AP-1 and NF-κB, as well as elevated expressions of p-c-Jun, cyclin D1, and proliferating cell nuclear antigen (PCNA, were also found in MSCs therapy group. CONCLUSION: These data suggest that MSCs therapy promotes hepatocyte proliferation and prolongs survival in SFSLT by reducing ischemia reperfusion injury and acute inflammation, and sustaining early increased expressions of c-Jun N-terminal Kinase, Cyclin D1, and NF-κB.

  4. Effect of human papillomavirus on cell cycle-related proteins p16INK4A, p21waf1/cip1, p53 and cyclin D1 in sinonasal inverted papilloma and laryngeal carcinoma. An in situ hybridization study

    Directory of Open Access Journals (Sweden)

    Olga Stasikowska-Kanicka

    2011-04-01

    Full Text Available Human papillomavirus (HPV infection is implicated as an important risk factor in the developmentof head and neck cancers. Many studies focusing on the relationships between HPV infection and cell cycleproteins immunoexpression in laryngeal lesions have provided contradictory results. The aim of this study was toevaluate the relationships between HPV DNA presence and p16INK4a, p21waf1/cip1, p53 and cyclin D1 immunoexpressionin heterogenous HPV-positive and HPV-negative groups of laryngeal cancers and inverted papillomas.The HPV DNA expression was detected using an in situ hybridization method and immunoexpression ofp16INK4a, p21waf1/cip1, p53 and cyclin D1 using immunohistochemistry. The immunoexpression of p21waf1//cip1 and p53 proteins was lower in the HPV-positive group compared to the HPV-negative group, althoughonly the difference of p53 staining was statistically significant. The immunoexpression of p16INK4a and cyclinD1 was significantly increased in the HPV-positive group compared to the HPV-negative group. The increasedimmunoexpression of p16INK4a and cyclin D1, and the lower immunoexpression of p21waf1/cip1 and p53 inthe HPV-positive group compared to the HPV-negative group, supports the hypothesis that HPV may play animportant role in cell cycle dysregulation.

  5. Plasma cell neoplasms presenting with masses: a study on morphology, expression of CD56 and cyclin D1, and presence of Epstein-Barr virus in 39 Thai patients in SiriraJ Hospital.

    Science.gov (United States)

    Pipatsakulroj, Wiriya; Pradniwat, Kanapon; Treetipsatit, Jitsupa

    2013-12-01

    Plasma cell neoplasms (PCNs) presenting with masses are not common. Variable morphology, expression of CD56 and cyclin D1, and Epstein-Barr virus (EBV)-encoded small RNA (EBER) status have been described with a promising diagnostic role. There is no data of these findings in Thai patients. To study morphology, CD56 and cyclin D1 expression and EBER status in PCNs presenting with masses. Thirty-nine mass-forming PCNs with available materials between 2006 and 2010 were identified from Siriraj Hospital pathology database. H&E slides were reviewed for morphologic grade according to Bartl grading system. Immunohistochemistryfor CD56 and cyclin D1 and EBER in situ hybridization were analyzed on tissue microarray sections of the included cases. Of 39 cases, it comprised 31 (79.5%) plasma cell myelomas (PCMs), five (12.8%) osseous plasmacytomas (OPs), and three (7.7%) extramedullary plasmacytomas (EMPs). Intermediate-grade morphology was common to all types of PCNs. CD56 and cyclin D1 positivity were more often in PCMs comparing with OPs and EMPs; however differences in expression of these markers among different types of PCNs were insignificant (p > 0.05). An EBER-positive EMP was identified. The majority of mass-forming plasma cell tumors in the studied population are PCM-related. Intermediate-grade morphology is common in all types of PCNs. A value of CD56 and cyclin D1 immunostains in discrimination between types of PCNs cannot be confirmed in the current study. Identification of the EBER-positive EMP suggests that EBV association in plasma cell tumor can be encountered in Thais.

  6. Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site

    DEFF Research Database (Denmark)

    Schulze, A; Zerfass, K; Spitkovsky, D

    1995-01-01

    Cyclin A is involved in the control of S phase and mitosis in mammalian cells. Expression of the cyclin A gene in nontransformed cells is characterized by repression of its promoter during the G1 phase of the cell cycle and its induction at S-phase entry. We show that this mode of regulation...

  7. KPT-330, a potent and selective exportin-1 (XPO-1) inhibitor, shows antitumor effects modulating the expression of cyclin D1 and survivin [corrected] in prostate cancer models.

    Science.gov (United States)

    Gravina, Giovanni Luca; Mancini, Andrea; Sanita, Patrizia; Vitale, Flora; Marampon, Francesco; Ventura, Luca; Landesman, Yosef; McCauley, Dilara; Kauffman, Michael; Shacham, Sharon; Festuccia, Claudio

    2015-12-01

    Increased expression of Chromosome Region Maintenance (CRM-1)/exportin-1 (XPO-1) has been correlated with poor prognosis in several aggressive tumors, making it an interesting therapeutic target. Selective Inhibitor of Nuclear Export (SINE) compounds bind to XPO-1 and block its ability to export cargo proteins. Here, we investigated the effects of a new class of SINE compounds in models of prostate cancer. We evaluated the expression of XPO-1 in human prostate cancer tissues and cell lines. Next, six SINE (KPT-127, KPT-185, KPT-205, KPT-225, KPT-251 and KPT-330) compounds having different potency with broad-spectrum, tumor-selective cytotoxicity, tolerability and pharmacokinetic profiles were tested in a panel of prostate cancer cells representing distinct differentiation/progression states of disease and genotypes. Two SINE candidates for clinical trials (KPT-251 and KPT-330) were also tested in vivo in three cell models of aggressive prostate cancer engrafted in male nude mice. XPO-1 is overexpressed in prostate cancer compared to normal or hyperplastic tissues. Increased XPO-1 expression, mainly in the nuclear compartment, was associated with increased Gleason score and bone metastatic potential supporting the use of SINEs in advanced prostate cancer. SINE compounds inhibited proliferation and promoted apoptosis of tumor cells, but did not affect immortalized non-transformed prostate epithelial cells. Nuclei from SINE treated cells showed increased protein localization of XPO-1, survivin and cyclin D1 followed by degradation of these proteins leading to cell cycle arrest and apoptosis. Oral administration of KPT-251 and KPT-330 in PC3, DU145 and 22rv1 tumor-bearing nude mice reduced tumor cell proliferation, angiogenesis and induced apoptosis. Our results provide supportive evidence for the therapeutic use of SINE compounds in advanced/castration resistant prostate cancers and warrants further clinical investigation.

  8. Combination of atorvastatin with sulindac or naproxen profoundly inhibits colonic adenocarcinomas by suppressing the p65/β-catenin/cyclin D1 signaling pathway in rats.

    Science.gov (United States)

    Suh, Nanjoo; Reddy, Bandaru S; DeCastro, Andrew; Paul, Shiby; Lee, Hong Jin; Smolarek, Amanda K; So, Jae Young; Simi, Barbara; Wang, Chung Xiou; Janakiram, Naveena B; Steele, Vernon; Rao, Chinthalapally V

    2011-11-01

    Evidence supports the protective role of nonsteroidal anti-inflammatory drugs (NSAID) and statins against colon cancer. Experiments were designed to evaluate the efficacies atorvastatin and NSAIDs administered individually and in combination against colon tumor formation. F344 rats were fed AIN-76A diet, and colon tumors were induced with azoxymethane. One week after the second azoxymethane treatment, groups of rats were fed diets containing atorvastatin (200 ppm), sulindac (100 ppm), naproxen (150 ppm), or their combinations with low-dose atorvastatin (100 ppm) for 45 weeks. Administration of atorvastatin at 200 ppm significantly suppressed both adenocarcinoma incidence (52% reduction, P = 0.005) and multiplicity (58% reduction, P = 0.008). Most importantly, colon tumor multiplicities were profoundly decreased (80%-85% reduction, P < 0.0001) when given low-dose atorvastatin with either sulindac or naproxen. Also, a significant inhibition of colon tumor incidence was observed when given a low-dose atorvastatin with either sulindac (P = 0.001) or naproxen (P = 0.0005). Proliferation markers, proliferating cell nuclear antigen, cyclin D1, and β-catenin in tumors of rats exposed to sulindac, naproxen, atorvastatin, and/or combinations showed a significant suppression. Importantly, colon adenocarcinomas from atorvastatin and NSAIDs fed animals showed reduced key inflammatory markers, inducible nitric oxide synthase and COX-2, phospho-p65, as well as inflammatory cytokines, TNF-α, interleukin (IL)-1β, and IL-4. Overall, this is the first report on the combination treatment using low-dose atorvastatin with either low-dose sulindac or naproxen, which greatly suppress the colon adenocarcinoma incidence and multiplicity. Our results suggest that low-dose atorvastatin with sulindac or naproxen might potentially be useful combinations for colon cancer prevention in humans.

  9. Restriction landmark genomic scanning of mouse liver tumors for gene amplification: overexpression of cyclin A2.

    Science.gov (United States)

    Haddad, R; Morrow, A D; Plass, C; Held, W A

    2000-07-21

    SV40 T/t antigen-induced liver tumors from transgenic mice were analyzed by Restriction Landmark Genomic Scanning (RLGS). Using NotI as the restriction landmark, RLGS targets CpG islands found in gene-rich regions of the genome. Since many RLGS landmarks are mapped, the candidate gene approach can be used to help determine which genes are altered in tumors. RLGS analysis revealed one tumor-specific amplification mapping close to CcnA2 (cyclin A2) and Fgf2 (fibroblast growth factor 2). Southern analysis confirmed that both oncogenes are amplified in this tumor and in a second, independent liver tumor. Whereas Fgf2 RNA is undetectable in tumors, CcnA2 RNA and cyclin A2 protein was overexpressed in 25 and 50% of tumors, respectively. Combining RLGS with the candidate gene approach indicates that cyclin A2 amplification and overexpression is a likely selected event in transgenic mouse liver tumors. Our results also indicate that our mouse model for liver tumorigenesis in mice accurately recapitulates events observed in human hepatocellular carcinoma. Copyright 2000 Academic Press.

  10. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry.

    Science.gov (United States)

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Lee, Marietta Y W T; Lee, Ernest Y C; Zhang, Zhongtao

    2015-05-20

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21(WAF1), DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21(WAF1) and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21(WAF1), Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value.

  11. Investigation of cyclin D1 rs9344 G>A polymorphism in colorectal cancer: a meta-analysis involving 13,642 subjects

    Directory of Open Access Journals (Sweden)

    Qiu H

    2016-10-01

    Full Text Available Hao Qiu,1,* Chengguo Cheng,2,* Yafeng Wang,3 Mingqiang Kang,4 Weifeng Tang,4,5 Shuchen Chen,4 Haiyong Gu,6 Chao Liu,5 Yu Chen7,8 1Department of Immunology, School of Medicine, Jiangsu University, 2Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 3Department of Cardiology, The People’s Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, 4Department of Thoracic Surgery, Affiliated Union Hospital, Fujian Medical University, Fuzhou, 5Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 6Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 7Department of Medical Oncology, Fujian Provincial Cancer Hospital, Fujian Medical University Cancer Hospital, 8Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: The relationship between cyclin D1 (CCND1 rs9344 G>A polymorphism and colorectal cancer (CRC risk is still ambiguous. To obtain a precise estimation of the relationship, we performed an extensive meta-analysis based on the eligible studies. Crude odds ratios with their 95% confidence intervals were harnessed to determine the strength of correlation between CCND1 rs9344 G>A polymorphism and CRC risk under the allele, the homozygote, the dominant, and the recessive genetic models, respectively (28 studies with 5,784 CRC cases and 7,858 controls. Our results indicated evidence of the association between CCND1 rs9344 G>A polymorphism and the increased risk of CRC in four genetic models: A vs G, AA vs GG, AA+GA vs GG, and AA vs GA+GG. In a stratified analysis by cancer type of CRC, there was an increased risk of sporadic CRC found in three genetic models: A vs G, AA vs GG, and AA+GA vs GG. In a stratified analysis by ethnicity, there was an increased CRC risk found among Asians in allele comparison

  12. Novel SNPs polymorphism of bovine CACNA2D1 gene and their ...

    African Journals Online (AJOL)

    Mastitis is a major cause of economic loss in dairy cattle. In this study, the bovine CACNA2D1 gene was taken as a candidate gene for mastitis resistance. The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the bovine CACNA2D1 gene and evaluate the association of these SNPs with ...

  13. Novel SNPs polymorphism of bovine CACNA2D1 gene and their ...

    African Journals Online (AJOL)

    user

    2011-03-07

    Mar 7, 2011 ... Mastitis is a major cause of economic loss in dairy cattle. In this study, the bovine CACNA2D1 gene was taken as a candidate gene for mastitis resistance. The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the bovine CACNA2D1 gene and evaluate the association of these.

  14. Molecular analysis of Bcl-2 and cyclin D1 expression in differentially expressing estrogen receptor breast cancer MCF7, T47D and MDA-MB-468 cell lines treated with adriamycin

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background and purpose of the study: Bcl-2 and Cyclin D1 (CCND1 are key elements in cancer development and progression. Bcl-2 acts as a cell death suppressor and is involved in apoptosis regulation. Cyclin D1 is an important regulator of G1/S phase of the cell cycle progression. In addition, estrogen receptor (ER is an important prognostic factor in breast cancer cells. Therefore it is important to determine the Bcl-2 and CCND1 expression in MCF7, T47D and MDA-MB-468 breast cancer cell lines with different ER status following Adriamycin (ADR treatment. Methods: Cytotoxicity of ADR (250 and 500nM after 1-5 days exposure of the cell lines was evaluated by MTT assay. The mRNA and protein levels of Bcl-2 and cyclin D1 in tested cell lines were also analyzed by RT-PCR and immunocytochemistry (ICC methods. Results: ADR cytotoxicity was highest in MDA-MB-468 and lowest in MCF7 cells in a time-dependent manner. Bcl-2 mRNA increased in MCF7 and decreased in MDA-MB-468 after exposure to ADR but it was less detectable in T47D cells. The expression of CCND1 in MCF7 with high level of ER expression was higher than the other two cell lines in untreated conditions. However, CCND1 mRNA did not show significant changes after ADR treatment. Immunocytochemical analysis did not show significant differences between Bcl-2 protein expression in the presence or absence of ADR in MDA-MB-468 cell line while in T47D and MCF7 cells its expression decreased after exposure to ADR. In addition to nuclear expression of cyclin D1 in all cell lines, strong cytoplasmic expression of cyclin D1 protein was observed only in MCF7 and T47D cells. Conclusion: The tested cell lines with different levels of ER expression showed differential molecular responses to ADR that is important in tumor-targeted cancer therapy.

  15. [Effect of electroporation-mediated gene transfect on the expression of cyclins during mandible distraction in rabbit].

    Science.gov (United States)

    Wu, Guo-Ping; Li, Shao-Lan; Hu, Chun-Bing; Liu, Zhen; Gao, Zhi-Dan; He, Xiao-Chuan; Yin, Kang; Guo, Li

    2011-09-01

    To investigate the effect of electroporation-mediated gene transfect on the expression of cyclins during mandible distraction in rabbit. Bilateral mandibular osteotomy was performed in 45 New-Zeland rabbits. After a latency of 3 days, the mandibles were elongated using distractors with a rate of 0.8 mm/day for 7 days. After the completion of distraction, the rabbits were randomly divided into 5 groups. 2 microg (0.1 microg/microl) of pIRES-hVEGF165-hBMP2, recombinant plasmid pIRES-hBMP2, recombinant plasmid pIRES-hVEGF165, pIRES and the same volume of normal saline (NS) was injected into the distraction area in each group, respectively. After injection, electroporation was performed in every group. Three animals in each group were sacrificed at 7, 14, and 28 days after completion of distraction, respectively. The lengthened mandibles were harvested and processed for immunohistochemical examinations. The expression of cyclins A, D1 ,E in positive cells were measured by CMIAS-2001A computerized image analyzer. The data were analyzed with the single factor analysis of variance and q test. Cyclins A, D1, E staining was mainly located in inflammatory cells, granulation tissue monocyte, fibroblast, osteoblasts, osteocyte and the connective tissues around the new bone. The expression reached to the peak at 7th day of consolidation, and decreased at 14th day, and weak at 28th day. Image analysis results showed that, at 7th day, the expression absorbance A in group C (0.59 +/- 0.14) was the strongest, compared to group A (0.41 +/- 0.13), B (0.38 +/- 0.14), D (0.34 +/- 0.12) and E (0.31 +/- 0.10), showing a significant difference (P 0.05), but the difference between group A/B and group D/E (P 0.05), but there was significant difference between group A/B/C and group D (0.19 +/- 0.12) or E (0.14 +/- 0.04) (P new bone formation in distraction gap.

  16. DOG1, cyclin D1, CK7, CD117 and vimentin are useful immunohistochemical markers in distinguishing chromophobe renal cell carcinoma from clear cell renal cell carcinoma and renal oncocytoma.

    Science.gov (United States)

    Zhao, Wei; Tian, Bo; Wu, Chao; Peng, Yan; Wang, Hui; Gu, Wen-Li; Gao, Feng-Hou

    2015-04-01

    The distinction between chromophobe renal cell carcinoma (ChRCC), clear cell renal cell carcinoma (CRCC) and renal oncocytoma may cause a diagnostic dilemma. The usefulness of DOG1, cyclin D1, CK7, CD117 and vimentin in the differential diagnosis of these renal epithelial tumors was investigated. DOG1 was positive in ChRCC (32 of 32, 100%) and in renal oncocytoma (21 of 21, 100%). In contrast, DOG1 was absent in all CRCC (0 of 30). Cyclin D1 was positive in renal oncocytomas (17 of 21, 81%) but negative in the ChRCC (0/23) and CRCC (0 of 30). CK7 was positive in ChRCC (30 of 32, 94%), but was negative in oncocytoma (only scattered single positive cells), and was only focal positive in two cases of CRCC. CD117 was expressed in 88% of ChRCC (28 of 32), 86% of renal oncocytoma (18 of 21), and was negative in all CRCC (0 of 30). Twenty-six of the 30 cases of CRCC were positive (87%) for vimentin with prominent membrane staining patterns. All 23 chromophobe carcinomas were negative for vimentin and 15 of 21 oncocytomas demonstrated focal vimentin positivity, but less than 10%. The above results demonstrate that: (1) DOG1 was very sensitive and specific marker for distinguish ChRCC from CRCC; (2) Cyclin D1 was a useful marker to discriminate between ChRCC and renal oncocytoma; (3) CK7 and CD117 were useful markers to distinguish ChRCC from renal oncocytoma and CRCC. (4) Vimentin was helpful for distinguishing clear cell RCC from chromophobe and oncocytoma (87% of clear cell RCC positive, negative in chromophobe, only focally positive in oncocytoma). (5) CK8/18, CK19, CD10, β-catenin and E-cadherin could not be used to distinguish ChRCC from renal oncocytoma and CRCC. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Loss of the Intellectual Disability and Autism Gene Cc2d1a and Its Homolog Cc2d1b Differentially Affect Spatial Memory, Anxiety, and Hyperactivity

    Directory of Open Access Journals (Sweden)

    Marta Zamarbide

    2018-03-01

    Full Text Available Hundreds of genes are mutated in non-syndromic intellectual disability (ID and autism spectrum disorder (ASD, with each gene often involved in only a handful of cases. Such heterogeneity can be daunting, but rare recessive loss of function (LOF mutations can be a good starting point to provide insight into the mechanisms of neurodevelopmental disease. Biallelic LOF mutations in the signaling scaffold CC2D1A cause a rare form of autosomal recessive ID, sometimes associated with ASD and seizures. In parallel, we recently reported that Cc2d1a-deficient mice present with cognitive and social deficits, hyperactivity and anxiety. In Drosophila, loss of the only ortholog of Cc2d1a, lgd, is embryonically lethal, while in vertebrates, Cc2d1a has a homolog Cc2d1b which appears to be compensating, indicating that Cc2d1a and Cc2d1b have a redundant function in humans and mice. Here, we generate an allelic series of Cc2d1a and Cc2d1b LOF to determine the relative role of these genes during behavioral development. We generated Cc2d1b knockout (KO, Cc2d1a/1b double heterozygous and double KO mice, then performed behavioral studies to analyze learning and memory, social interactions, anxiety, and hyperactivity. We found that Cc2d1a and Cc2d1b have partially overlapping roles. Overall, loss of Cc2d1b is less severe than loss of Cc2d1a, only leading to cognitive deficits, while Cc2d1a/1b double heterozygous animals are similar to Cc2d1a-deficient mice. These results will help us better understand the deficits in individuals with CC2D1A mutations, suggesting that recessive CC2D1B mutations and trans-heterozygous CC2D1A and CC2D1B mutations could also contribute to the genetics of ID.

  18. Expression of proteins FGFR3, PI3K, AKT, p21Waf1/Cip1 and cyclins D1 and D3 in patients with T1 bladder tumours: clinical implications and prognostic significance.

    Science.gov (United States)

    Blanca Pedregosa, A M; Sánchez-González, Á; Carrasco Valiente, J; Ruiz García, J M; Gómez Gómez, E; López Beltrán, A; Requena Tapia, M J

    2017-04-01

    To determine the differential protein expression of biomarkers FGFR3, PI3K (subunits PI3Kp110α, PI3KClassIII, PI3Kp85), AKT, p21Waf1/Cip1 and cyclins D1 and D3 in T1 bladder cancer versus healthy tissue and to study their potential role as early recurrence markers. This is a prospective study that employed a total of 67 tissue samples (55 cases of T1 bladder tumours that underwent transurethral resection and 12 cases of adjacent healthy mucosa). The protein expression levels were assessed using Western blot, and the means and percentages were compared using Student's t-test and the chi-squared test. The survival analysis was conducted using the Kaplan-Meier method and the log-rank test. Greater protein expression was detected for FGFR3, PI3Kp110α, PI3KClassIII, cyclins D1 and D3 and p21Waf1/Cip1 in the tumour tissue than in the healthy mucosa. However, these differences were not significant for PI3Kp85 and AKT. We observed statistically significant correlations between early recurrence and PI3Kp110α, PI3KClassIII, PI3Kp85 and AKT (P=.003, P=.045, P=.050 and P=.028, respectively), between the tumour type (primary vs. recurrence) and cyclin D3 (P=.001), between the tumour size and FGFR3 (P=.035) and between multifocality and cyclin D1 (P=.039). The survival analysis selected FGFR3 (P=.024), PI3Kp110α (P=.014), PI3KClassIII (P=.042) and AKT (P=.008) as markers of early-recurrence-free survival. There is an increase in protein expression levels in bladder tumour tissue. The overexpression of FGFR3, PI3Kp110α, PI3KClassIII and AKT is associated with increased early-recurrence-free survival for patients with T1 bladder tumours. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. NeuroD1: developmental expression and regulated genes in the rodent pineal gland

    DEFF Research Database (Denmark)

    Muñoz, Estela M; Bailey, Michael J; Rath, Martin F

    2007-01-01

    -regulated (>twofold, p 5C ( approximately 100-fold) and the most dramatically up-regulated gene is glutamic acid decarboxylase 1 ( approximately fourfold). Other impacted transcripts encode proteins involved...... development. Pineal NeuroD1 levels are similar during the day and night, and do not appear to be influenced by sympathetic neural input. Gene expression analysis of the pineal glands from neonatal NeuroD1 knockout mice identifies 127 transcripts that are down-regulated (>twofold, p

  20. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum).

    Science.gov (United States)

    Zikhali, Meluleki; Wingen, Luzie U; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A (m) 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A (m) 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. High level expression of p27kip1 and cyclin D1 in some human breast cancer cells: Inverse correlation between the expression of p27kip1 and degree of malignancy in human breast and colorectal cancers

    Science.gov (United States)

    Fredersdorf, Steffen; Burns, Jorges; Milne, Alistair M.; Packham, Graham; Fallis, Lynn; Gillett, Cheryl E.; Royds, Janice A.; Peston, David; Hall, Peter A.; Hanby, Andrew M.; Barnes, Diana M.; Shousha, Sami; O’Hare, Mike J.; Lu, Xin

    1997-01-01

    The expression of cyclin-dependent kinase inhibitor p27kip1 in human tumors and normal tissues was investigated using a panel of novel anti-p27kip1 mAbs. An inverse correlation between expression of p27kip1 and cell proliferation was generally observed after analyzing its expression in 25 different normal human tissues. In some highly proliferative human breast cancer cells, however, high level p27kip1 expression was seen, indicating the existence of a mechanism by which some growing tumor cells may tolerate this inhibitor of cell cycle progression. Detailed studies demonstrated a correlation between the high level expression of p27kip1 and cyclin D1 in human breast cancer cells. There was also an inverse correlation between the expression of p27kip1 and the degree of tumor malignancy in human breast and colorectal cancers, indicating that p27kip1 may be a useful prognostic marker in these cancers. PMID:9177226

  2. Adenocarcinoma of the esophagogastric junction: relationship between clinicopathological data and p53, cyclin D1 and Bcl-2 immunoexpressions Adenocarcinoma da junção esôfago-gástrica: relação entre os dados cllnipatológicos e a imunoexpressão de p53, ciclina D1 e Bcl-2

    Directory of Open Access Journals (Sweden)

    Dárcio Matenhauer Lehrbach

    2009-12-01

    Full Text Available CONTEXT: Esophagogastric junction adenocarcinoma has an aggressive behavior, and TNM (UICC staging is not always accurate enough to categorize patient's outcome. OBJECTIVES: To evaluated p53, cyclin D1 and Bcl-2 immunoexpressions in esophagogastric junction adenocarcinoma patients, without Barrett's esophagus, and to compared to clinicopathological characteristics and survival rate. METHODS: Tissue sections from 75 esophagogastric junction adenocarcinomas resected from 1991 to 2003 were analyzed by immunohistochemistry for p53, cyclin D1 and Bcl-2 using streptavidin-biotin-peroxidase method. The mean follow-up time was 60 months SD = 61.5 (varying from 4 to 273 months. RESULTS: Fifty (66.7% of the tumors were intestinal type and 25 (33.3% were diffuse. Vascular, lymph node and perineural infiltration were verified in 16%, 80% and 68% of the patients, respectively. The patients were distributed according to the TNM staging in IA in 4 (5.3%, IB in 10 (13.3%, II in 15 (20%, IIA in 15 (20%, IIIB in 15 (20% and IV in 16 (21.3%. Immunohistochemical analysis was positive for p53, cyclin D1 and bcl-2 in 68%, 18.7% and 100%, respectively. There was no association between immunoexpression and vascular and/or perineural invasions, clinicopathological characteristics and patients' survival rate. CONCLUSION: In this selected population, there was no association between the immunomarkers, p53, cyclin D1 and bcl-2 and clinicopathological data and/or overall survival.CONTEXTO: O adenocarcinoma da junção esôfago-gástrica tem um comportamento agressivo e o estádio TNM não é sempre suficiente para categorizar o paciente de acordo com a evolução do mesmo. OBJETIVO: Avaliar a imunoexpressão do p53, ciclina D1 e Bcl-2 em pacientes com adenocarcinoma da junção esôfago-gástrica sem esôfago de Barrett e comparar com as características clínicas e sobrevida. MÉTODOS: Cortes histológicos de 75 adenocarcinomas da esôfago-gástrica ressecados de 1991 a

  3. Haplotype variation of Green Revolution gene Rht-D1 during wheat domestication and improvement.

    Science.gov (United States)

    Zhang, Chihong; Gao, Lifeng; Sun, Jiaqiang; Jia, Jizeng; Ren, Zhenglong

    2014-08-01

    Green Revolution made a substantial contribution to wheat yields worldwide in the 1960s and 1970s. It is of great importance to analyze the haplotype variation of Rht-D1, the Green Revolution gene, during wheat (Triticum aestivum L.) domestication and breeding to understand its evolution and function in wheat breeding history. In this study, the Rht-D1 and its flanking regions were sequenced and single nucleotide polymorphisms were detected based on a panel of 45 accessions of Aegilops tauschii, 51 accessions of landraces and 80 accessions of commercial varieties. Genetic diversity in the wild accessions was much higher than that in the varieties and higher than that reported previously. Seven haplotypes (Hapl I to Hapl VII) of Rht-D1 were identified and their evolutionary relationships were proposed. In addition to the well-known Green Revolution allele Rht-D1b, Hapl VII (an allele Rht-D1k) was identified in early breeding varieties, which reduced plant height by 16%. The results suggested that Rht-D1k had been used in breeding before the Green Revolution and made a great contribution to wheat production worldwide. Based on the breeding history and molecular evidence, we proposed that the wheat Green Revolution in China and International Maize and Wheat Improvement Center (CIMMYT) occurred independently. © 2014 Institute of Botany, Chinese Academy of Sciences.

  4. Investigation of associations between NR1D1, RORA and RORB genes and bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Yin-Chieh Lai

    Full Text Available Several genes that are involved in the regulation of circadian rhythms are implicated in the susceptibility to bipolar disorder (BD. The current study aimed to investigate the relationships between genetic variants in NR1D1 RORA, and RORB genes and BD in the Han Chinese population. We conducted a case-control genetic association study with two samples of BD patients and healthy controls. Sample I consisted of 280 BD patients and 200 controls. Sample II consisted of 448 BD patients and 1770 healthy controls. 27 single nucleotide polymorphisms in the NR1D1, RORA, and RORB genes were genotyped using GoldenGate VeraCode assays in sample I, and 492 markers in the three genes were genotyped using Affymetrix Genome-Wide CHB Array in sample II. Single marker and gene-based association analyses were performed using PLINK. A combined p-value for the joining effects of all markers within a gene was calculated using the rank truncated product method. Multifactor dimensionality reduction (MDR method was also applied to test gene-gene interactions in sample I. All markers were in Hardy-Weinberg equilibrium (P>0.001. In sample I, the associations with BD were observed for rs4774388 in RORA (OR = 1.53, empirical p-value, P = 0.024, and rs1327836 in RORB (OR = 1.75, P = 0.003. In Sample II, there were 45 SNPs showed associations with BD, and the most significant marker in RORA was rs11639084 (OR = 0.69, P = 0.002, and in RORB was rs17611535 (OR = 3.15, P = 0.027. A combined p-value of 1.6×10-6, 0.7, and 1.0 was obtained for RORA, RORB and NR1D1, respectively, indicting a strong association for RORA with the risk of developing BD. A four way interaction was found among markers in NR1D1, RORA, and RORB with the testing accuracy 53.25% and a cross-validation consistency of 8 out of 10. In sample II, 45 markers had empirical p-values less than 0.05. The most significant markers in RORA and RORB genes were rs11639084 (OR = 0.69, P = 0.002, and rs17611535 (OR = 3

  5. The tuberous sclerosis genes and regulation of the cyclin-dependent kinase inhibitor p27.

    Science.gov (United States)

    Rosner, Margit; Freilinger, Angelika; Hengstschläger, Markus

    2006-09-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant tumor syndrome that affects approximately 1 in 6000 individuals. It is characterized by the development of tumors, named hamartomas, in the kidneys, heart, skin and brain. The latter often cause seizures, mental retardation, and a variety of developmental disorders, including autism. This disease is caused by mutations within the tumor suppressor gene TSC1 on chromosome 9q34 encoding hamartin or within TSC2 on chromosome 16p13.3 encoding tuberin. TSC patients carry a mutant TSC1 or TSC2 gene in each of their somatic cells, and loss of heterozygosity has been documented in a wide variety of TSC tumors. Recent data suggest that functional inactivation of TSC proteins might also be involved in the development of other diseases not associated with TSC, such as sporadic bladder cancer, breast cancer, ovarian carcinoma, gall bladder carcinoma, non-small-cell carcinoma of the lung, and Alzheimer's disease. Tuberin and hamartin form a heterodimer, suggesting they might affect the same processes. Tuberin is assumed to be the functional component of the complex and has been implicated in the regulation of different cellular functions. The TSC proteins regulate cell size control due to their involvement in the insulin signalling pathway. Furthermore, they are potent positive regulators of the cyclin-dependent kinase inhibitor p27, a major regulator of the mammalian cell cycle. Here we review the current knowledge on how mutations within the TSC genes could trigger deregulation of stability and localization of the tumor suppressor p27.

  6. Characterization of TcCYC6 from Trypanosoma cruzi, a gene with homology to mitotic cyclins.

    Science.gov (United States)

    Di Renzo, María Agostina; Laverrière, Marc; Schenkman, Sergio; Wehrendt, Diana Patricia; Tellez-Iñón, María Teresa; Potenza, Mariana

    2016-06-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is a protozoan parasite with a life cycle that alternates between replicative and non-replicative forms, but the components and mechanisms that regulate its cell cycle are poorly described. In higher eukaryotes, cyclins are proteins that activate cyclin-dependent kinases (CDKs), by associating with them along the different stages of the cell cycle. These cyclin-CDK complexes exert their role as major modulators of the cell cycle by phosphorylating specific substrates. For the correct progression of the cell cycle, the mechanisms that regulate the activity of cyclins and their associated CDKs are diverse and must be controlled precisely. Different types of cyclins are involved in specific phases of the eukaryotic cell cycle, preferentially activating certain CDKs. In this work, we characterized TcCYC6, a putative coding sequence of T. cruzi which encodes a protein with homology to mitotic cyclins. The overexpression of this sequence, fused to a tag of nine amino acids from influenza virus hemagglutinin (TcCYC6-HA), showed to be detrimental for the proliferation of epimastigotes in axenic culture and affected the cell cycle progression. In silico analysis revealed an N-terminal segment similar to the consensus sequence of the destruction box, a hallmark for the degradation of several mitotic cyclins. We experimentally determined that the TcCYC6-HA turnover decreased in the presence of proteasome inhibitors, suggesting that TcCYC6 degradation occurs via ubiquitin-proteasome pathway. The results obtained in this study provide first evidence that TcCYC6 expression and degradation are finely regulated in T. cruzi. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Automated Quantitative Analysis of p53, Cyclin D1, Ki67 and pERK Expression in Breast Carcinoma Does Not Differ from Expert Pathologist Scoring and Correlates with Clinico-Pathological Characteristics.

    Science.gov (United States)

    Cass, Jamaica D; Varma, Sonal; Day, Andrew G; Sangrar, Waheed; Rajput, Ashish B; Raptis, Leda H; Squire, Jeremy; Madarnas, Yolanda; Sengupta, Sandip K; Elliott, Bruce E

    2012-07-18

    There is critical need for improved biomarker assessment platforms which integrate traditional pathological parameters (TNM stage, grade and ER/PR/HER2 status) with molecular profiling, to better define prognostic subgroups or systemic treatment response. One roadblock is the lack of semi-quantitative methods which reliably measure biomarker expression. Our study assesses reliability of automated immunohistochemistry (IHC) scoring compared to manual scoring of five selected biomarkers in a tissue microarray (TMA) of 63 human breast cancer cases, and correlates these markers with clinico-pathological data. TMA slides were scanned into an Ariol Imaging System, and histologic (H) scores (% positive tumor area x staining intensity 0-3) were calculated using trained algorithms. H scores for all five biomarkers concurred with pathologists' scores, based on Pearson correlation coefficients (0.80-0.90) for continuous data and Kappa statistics (0.55-0.92) for positive vs. negative stain. Using continuous data, significant association of pERK expression with absence of LVI (p = 0.005) and lymph node negativity (p = 0.002) was observed. p53 over-expression, characteristic of dysfunctional p53 in cancer, and Ki67 were associated with high grade (p = 0.032 and 0.0007, respectively). Cyclin D1 correlated inversely with ER/PR/HER2-ve (triple negative) tumors (p = 0.0002). Thus automated quantitation of immunostaining concurs with pathologists' scoring, and provides meaningful associations with clinico-pathological data.

  8. Signal transducer and activator of transcription 5 activation is sufficient to drive transcriptional induction of cyclin D2 gene and proliferation of rat pancreatic beta-cells

    DEFF Research Database (Denmark)

    Friedrichsen, Birgitte N; Richter, Henrijette E; Hansen, Johnny A

    2003-01-01

    Signal transducer and activator of transcription 5 (STAT5) activation plays a central role in GH- and prolactin-mediated signal transduction in the pancreatic beta-cells. In previous experiments we demonstrated that STAT5 activation is necessary for human (h)GH-stimulated proliferation of INS-1...... cells and hGH-induced increase of mRNA-levels of the cell cycle regulator cyclin D2. In this study we have further characterized the role of STAT5 in the regulation of cyclin D expression and beta-cell proliferation by hGH. Cyclin D2 mRNA and protein levels (but not cyclin D1 and D3) were induced...... in a time-dependent manner by hGH in INS-1 cells. Inhibition of protein synthesis by coincubation with cycloheximide did not affect the hGH-induced increase of cyclin D2 mRNA levels at 4 h. Expression of a dominant negative STAT5 mutant, STAT5aDelta749, partially inhibited cyclin D2 protein levels. INS-1...

  9. Assessment of allelic diversity in intron-containing Mal d 1 genes and their association to apple allergenicity

    Directory of Open Access Journals (Sweden)

    Bolhaar Suzanne THP

    2008-11-01

    Full Text Available Abstract Background Mal d 1 is a major apple allergen causing food allergic symptoms of the oral allergy syndrome (OAS in birch-pollen sensitised patients. The Mal d 1 gene family is known to have at least 7 intron-containing and 11 intronless members that have been mapped in clusters on three linkage groups. In this study, the allelic diversity of the seven intron-containing Mal d 1 genes was assessed among a set of apple cultivars by sequencing or indirectly through pedigree genotyping. Protein variant constitutions were subsequently compared with Skin Prick Test (SPT responses to study the association of deduced protein variants with allergenicity in a set of 14 cultivars. Results From the seven intron-containing Mal d 1 genes investigated, Mal d 1.01 and Mal d 1.02 were highly conserved, as nine out of ten cultivars coded for the same protein variant, while only one cultivar coded for a second variant. Mal d 1.04, Mal d 1.05 and Mal d 1.06 A, B and C were more variable, coding for three to six different protein variants. Comparison of Mal d 1 allelic composition between the high-allergenic cultivar Golden Delicious and the low-allergenic cultivars Santana and Priscilla, which are linked in pedigree, showed an association between the protein variants coded by the Mal d 1.04 and -1.06A genes (both located on linkage group 16 with allergenicity. This association was confirmed in 10 other cultivars. In addition, Mal d 1.06A allele dosage effects associated with the degree of allergenicity based on prick to prick testing. Conversely, no associations were observed for the protein variants coded by the Mal d 1.01 (on linkage group 13, -1.02, -1.06B, -1.06C genes (all on linkage group 16, nor by the Mal d 1.05 gene (on linkage group 6. Conclusion Protein variant compositions of Mal d 1.04 and -1.06A and, in case of Mal d 1.06A, allele doses are associated with the differences in allergenicity among fourteen apple cultivars. This information

  10. Enhanced expression of cyclins and cyclin-dependent kinases in aniline-induced cell proliferation in rat spleen

    Science.gov (United States)

    Wang, Jianling; Wang, Gangduo; Ma, Huaxian; Khan, M. Firoze

    2010-01-01

    Aniline exposure is associated with toxicity to the spleen leading to splenomegaly, hyperplasia, fibrosis and a variety of sarcomas of the spleen on chronic exposure. In earlier studies, we have shown that aniline exposure leads to iron overload, oxidative stress and activation of redox-sensitive transcription factors, which could regulate various genes leading to a tumorigenic response in the spleen. However, molecular mechanisms leading to aniline-induced cellular proliferation in the spleen remain largely unknown. This study was, therefore, undertaken on the regulation of G1 phase cell cycle proteins (cyclins), expression of cyclin-dependent kinases (CDKs), phosphorylation of retinoblastoma protein (pRB) and cell proliferation in the spleen, in an experimental condition preceding a tumorigenic response. Male SD rats were treated with aniline (0.5 mmol/kg/day via drinking water) for 30 days (controls received drinking water only), and splenocyte proliferation, protein expression of G1 phase cyclins, CDKs and pRB were measured. Aniline treatment resulted in significant increases in splenocyte proliferation, based on cell counts, cell proliferation markers including proliferating cell nuclear antigen (PCNA), nuclear Ki67 protein (Ki67) and minichromosome maintenance (MCM), MTT assay and flow cytometric analysis. Western blot analysis of splenocyte proteins from aniline-treated rats showed significantly increased expression of cyclins D1, D2, D3 and cyclin E, as compared to the controls. Similarly, real-time PCR analysis showed significantly increased mRNA expression for cyclins D1, D2, D3 and E in the spleens of aniline-treated rats. The overexpression of these cyclins was associated with increases in the expression of CDK4, CDK6, CDK2 as well as phosphorylation of pRB protein. Our data suggest that increased expression of cyclins, CDKs and phosphorylation of pRB protein could be critical in cell proliferation, and may contribute to aniline-induced tumorigenic

  11. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA

    2016-05-01

    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  12. Automated Quantitative Analysis of p53, Cyclin D1, Ki67 and pERK Expression in Breast Carcinoma Does Not Differ from Expert Pathologist Scoring and Correlates with Clinico-Pathological Characteristics

    Directory of Open Access Journals (Sweden)

    Yolanda Madarnas

    2012-07-01

    Full Text Available There is critical need for improved biomarker assessment platforms which integrate traditional pathological parameters (TNM stage, grade and ER/PR/HER2 status with molecular profiling, to better define prognostic subgroups or systemic treatment response. One roadblock is the lack of semi-quantitative methods which reliably measure biomarker expression. Our study assesses reliability of automated immunohistochemistry (IHC scoring compared to manual scoring of five selected biomarkers in a tissue microarray (TMA of 63 human breast cancer cases, and correlates these markers with clinico-pathological data. TMA slides were scanned into an Ariol Imaging System, and histologic (H scores (% positive tumor area x staining intensity 0–3 were calculated using trained algorithms. H scores for all five biomarkers concurred with pathologists’ scores, based on Pearson correlation coefficients (0.80–0.90 for continuous data and Kappa statistics (0.55–0.92 for positive vs. negative stain. Using continuous data, significant association of pERK expression with absence of LVI (p = 0.005 and lymph node negativity (p = 0.002 was observed. p53 over-expression, characteristic of dysfunctional p53 in cancer, and Ki67 were associated with high grade (p = 0.032 and 0.0007, respectively. Cyclin D1 correlated inversely with ER/PR/HER2-ve (triple negative tumors (p = 0.0002. Thus automated quantitation of immunostaining concurs with pathologists’ scoring, and provides meaningful associations with clinico-pathological data.

  13. Assessment of allelic diversity in intron-containing Mal d 1 genes and their association to apple allergenicity

    NARCIS (Netherlands)

    Gao, Z.S.; Weg, van de W.E.; Matos, C.; Arens, P.F.P.; Bolhaar, S.T.H.P.; Knulst, A.C.; Li, Y.; Hoffmann-Sommergruber, K.; Gilissen, L.J.W.J.

    2008-01-01

    Background Mal d 1 is a major apple allergen causing food allergic symptoms of the oral allergy syndrome (OAS) in birch-pollen sensitised patients. The Mal d 1 gene family is known to have at least 7 intron-containing and 11 intronless members that have been mapped in clusters on three linkage

  14. Effect of human papillomavirus on cell cycle-related proteins p16INK4A, p21waf1/cip1, p53 and cyclin D1 in sinonasal inverted papilloma and laryngeal carcinoma. An in situ hybridization study

    Directory of Open Access Journals (Sweden)

    Marian Danilewicz

    2011-04-01

    Full Text Available Human papillomavirus (HPV infection is implicated as an important risk factor in the development of head and neck cancers. Many studies focusing on the relationships between HPV infection and cell cycle proteins immunoexpression in laryngeal lesions have provided contradictory results. The aim of this study was to evaluate the relationships between HPV DNA presence and p16INK4a, p21waf1/cip1, p53 and cyclin D1 immunoexpression in heterogenous HPV-positive and HPV-negative groups of laryngeal cancers and inverted papillomas. The HPV DNA expression was detected using an in situ hybridization method and immunoexpression of p16INK4a, p21waf1/cip1, p53 and cyclin D1 using immunohistochemistry. The immunoexpression of p21waf1/ /cip1 and p53 proteins was lower in the HPV-positive group compared to the HPV-negative group, although only the difference of p53 staining was statistically significant. The immunoexpression of p16INK4a and cyclin D1 was significantly increased in the HPV-positive group compared to the HPV-negative group. The increased immunoexpression of p16INK4a and cyclin D1, and the lower immunoexpression of p21waf1/cip1 and p53 in the HPV-positive group compared to the HPV-negative group, supports the hypothesis that HPV may play an important role in cell cycle dysregulation. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 1, pp. 34–40

  15. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation.

    Science.gov (United States)

    Li, Yiyuan; Xiao, Jianhui; Wu, Jiajie; Duan, Jialei; Liu, Yue; Ye, Xingguo; Zhang, Xin; Guo, Xiuping; Gu, Yongqiang; Zhang, Lichao; Jia, Jizeng; Kong, Xiuying

    2012-10-01

    • Rht-D1c (Rht10) carried by Chinese wheat (Triticum aestivum) line Aibian 1 is an allele at the Rht-D1 locus. Among the Rht-1 alleles, little is known about Rht-D1c although it determines an extreme dwarf phenotype in wheat. • Here, we cloned and functionally characterized Rht-D1c using a combination of Southern blotting, target region sequencing, gene expression analysis and transgenic experiments. • We found that the Rht-D1c allele was generated through a tandem segmental duplication (TSD) of a > 1 Mb region, resulting in two copies of the Rht-D1b. Two copies of Rht-D1b in the TSD were three-fold more effective in reducing plant height than a single copy, and transformation with a segment containing the tandemly duplicated copy of Rht-D1b resulted in the same level of reduction of plant height as the original copy in Aibian 1. • Our results suggest that changes in gene copy number are one of the important sources of genetic diversity and some of these changes could be directly associated with important traits in crops. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  16. Role of cyclins in neuronal differentiation of immortalized hippocampal cells.

    OpenAIRE

    Xiong, W; Pestell, R; Rosner, M R

    1997-01-01

    The proto-oncogene cyclin D1 and the neuron-specific cyclins p35 and p39 are expressed during brain maturation. To investigate the role of these cyclins in neuronal differentiation, we used a conditionally immortalized rat hippocampal cell line, H19-7, that expresses cyclin-dependent kinases 4 and 5 (cdk4 and -5). Cyclin D1, which activates cdk4 and binds but does not activate cdk5, was increased upon differentiation of the H19-7 cells. However, microinjection of either sense or antisense cyc...

  17. Effects of prostratin on Cyclin T1/P-TEFb function and the gene expression profile in primary resting CD4+ T cells

    Directory of Open Access Journals (Sweden)

    Rice Andrew P

    2006-10-01

    Full Text Available Abstract Background The latent reservoir of human immunodeficiency virus type 1 (HIV-1 in resting CD4+ T cells is a major obstacle to the clearance of infection by highly active antiretroviral therapy (HAART. Recent studies have focused on searches for adjuvant therapies to activate this reservoir under conditions of HAART. Prostratin, a non tumor-promoting phorbol ester, is a candidate for such a strategy. Prostratin has been shown to reactivate latent HIV-1 and Tat-mediated transactivation may play an important role in this process. We examined resting CD4+ T cells from healthy donors to determine if prostratin induces Cyclin T1/P-TEFb, a cellular kinase composed of Cyclin T1 and Cyclin-dependent kinase-9 (CDK9 that mediates Tat function. We also examined effects of prostratin on Cyclin T2a, an alternative regulatory subunit for CDK9, and 7SK snRNA and the HEXIM1 protein, two factors that associate with P-TEFb and repress its kinase activity. Results Prostratin up-regulated Cyclin T1 protein expression, modestly induced CDK9 protein expression, and did not affect Cyclin T2a protein expression. Although the kinase activity of CDK9 in vitro was up-regulated by prostratin, we observed a large increase in the association of 7SK snRNA and the HEXIM1 protein with CDK9. Using HIV-1 reporter viruses with and without a functional Tat protein, we found that prostratin stimulation of HIV-1 gene expression appears to require a functional Tat protein. Microarray analyses were performed and several genes related to HIV biology, including APOBEC3B, DEFA1, and S100 calcium-binding protein genes, were found to be regulated by prostratin. Conclusion Prostratin induces Cyclin T1 expression and P-TEFb function and this is likely to be involved in prostratin reactivation of latent HIV-1 proviruses. The large increase in association of 7SK and HEXIM1 with P-TEFb following prostratin treatment may reflect a requirement in CD4+ T cells for a precise balance between

  18. Basaloid Squamous Cell Carcinoma of the Head and Neck: Subclassification into Basal, Ductal, and Mixed Subtypes Based on Comparison of Clinico-pathologic Features and Expression of p53, Cyclin D1, Epidermal Growth Factor Receptor, p16, and Human Papillomavirus

    Directory of Open Access Journals (Sweden)

    Kyung-Ja Cho

    2017-07-01

    Full Text Available Background Basaloid squamous cell carcinoma (BSCC is a rare variant of squamous cell carcinoma with distinct pathologic characteristics. The histogenesis of BSCC is not fully understood, and the cancer has been suggested to originate from a totipotent primitive cell in the basal cell layer of the surface epithelium or in the proximal duct of secretory glands. Methods Twenty-six cases of head and neck BSCC from Asan Medical Center, Seoul, Korea, reported during a 14-year-period were subclassified into basal, ductal, and mixed subtypes according to the expression of basal (cytokeratin [CK] 5/6, p63 or ductal markers (CK7, CK8/18. The cases were also subject to immunohistochemical study for CK19, p53, cyclin D1, epidermal growth factor receptor (EGFR, and p16 and to in situ hybridization for human papillomavirus (HPV, and the results were clinico-pathologically compared. Results Mixed subtype (12 cases was the most common, and these cases showed hypopharyngeal predilection, older age, and higher expression of CK19, p53, and EGFR than other subtypes. The basal subtype (nine cases showed frequent comedo-necrosis and high expression of cyclin D1. The ductal subtype (five cases showed the lowest expression of p53, cyclin D1, and EGFR. A small number of p16- and/or HPV-positive cases were not restricted to one subtype. BSCC was the cause of death in 19 patients, and the average follow-up period for all patients was 79.5 months. Overall survival among the three subtypes was not significantly different. Conclusions The results of this study suggest a heterogeneous pathogenesis of head and neck BSCC. Each subtype showed variable histology and immunoprofiles, although the clinical implication of heterogeneity was not determined in this study.

  19. An insulator element located at the cyclin B1 interacting protein 1 gene locus is highly conserved among mammalian species.

    Science.gov (United States)

    Yoshida, Wataru; Tomikawa, Junko; Inaki, Makoto; Kimura, Hiroshi; Onodera, Masafumi; Hata, Kenichiro; Nakabayashi, Kazuhiko

    2015-01-01

    Insulators are cis-elements that control the direction of enhancer and silencer activities (enhancer-blocking) and protect genes from silencing by heterochromatinization (barrier activity). Understanding insulators is critical to elucidate gene regulatory mechanisms at chromosomal domain levels. Here, we focused on a genomic region upstream of the mouse Ccnb1ip1 (cyclin B1 interacting protein 1) gene that was methylated in E9.5 embryos of the C57BL/6 strain, but unmethylated in those of the 129X1/SvJ and JF1/Ms strains. We hypothesized the existence of an insulator-type element that prevents the spread of DNA methylation within the 1.8 kbp segment, and actually identified a 242-bp and a 185-bp fragments that were located adjacent to each other and showed insulator and enhancer activities, respectively, in reporter assays. We designated these genomic regions as the Ccnb1ip1 insulator and the Ccnb1ip1 enhancer. The Ccnb1ip1 insulator showed enhancer-blocking activity in the luciferase assays and barrier activity in the colony formation assays. Further examination of the Ccnb1ip1 locus in other mammalian species revealed that the insulator and enhancer are highly conserved among a wide variety of species, and are located immediately upstream of the transcriptional start site of Ccnb1ip1. These newly identified cis-elements may be involved in transcriptional regulation of Ccnb1ip1, which is important in meiotic crossing-over and G2/M transition of the mitotic cell cycle.

  20. An Insulator Element Located at the Cyclin B1 Interacting Protein 1 Gene Locus Is Highly Conserved among Mammalian Species

    Science.gov (United States)

    Yoshida, Wataru; Tomikawa, Junko; Inaki, Makoto; Kimura, Hiroshi; Onodera, Masafumi; Hata, Kenichiro; Nakabayashi, Kazuhiko

    2015-01-01

    Insulators are cis-elements that control the direction of enhancer and silencer activities (enhancer-blocking) and protect genes from silencing by heterochromatinization (barrier activity). Understanding insulators is critical to elucidate gene regulatory mechanisms at chromosomal domain levels. Here, we focused on a genomic region upstream of the mouse Ccnb1ip1 (cyclin B1 interacting protein 1) gene that was methylated in E9.5 embryos of the C57BL/6 strain, but unmethylated in those of the 129X1/SvJ and JF1/Ms strains. We hypothesized the existence of an insulator-type element that prevents the spread of DNA methylation within the 1.8 kbp segment, and actually identified a 242-bp and a 185-bp fragments that were located adjacent to each other and showed insulator and enhancer activities, respectively, in reporter assays. We designated these genomic regions as the Ccnb1ip1 insulator and the Ccnb1ip1 enhancer. The Ccnb1ip1 insulator showed enhancer-blocking activity in the luciferase assays and barrier activity in the colony formation assays. Further examination of the Ccnb1ip1 locus in other mammalian species revealed that the insulator and enhancer are highly conserved among a wide variety of species, and are located immediately upstream of the transcriptional start site of Ccnb1ip1. These newly identified cis-elements may be involved in transcriptional regulation of Ccnb1ip1, which is important in meiotic crossing-over and G2/M transition of the mitotic cell cycle. PMID:26110280

  1. The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum

    NARCIS (Netherlands)

    Zhoua, X.; Heyera, C.; Choia, Y.E.; Mehrabi, R.; Xu, J.R.

    2010-01-01

    Head blight or scab caused by Fusarium graminearum is a destructive disease of wheat and barley. The pathogen can cause severe yield losses and contaminates infested kernels with harmful mycotoxins. In this study, we characterized the CID1 gene in F. graminearum that is an ortholog of the Fusarium

  2. Enhancement of cell proliferation in various mammalian cell lines by gene insertion of a cyclin-dependent kinase homolog

    Directory of Open Access Journals (Sweden)

    Konstantopoulos Konstantinos

    2007-10-01

    Full Text Available Abstract Background Genomics tools, particularly DNA microarrays, have found application in a number of areas including gene discovery and disease characterization. Despite the vast utility of these tools, little work has been done to explore the basis of distinct cellular properties, especially those important to biotechnology such as growth. And so, with the intent of engineering cell lines by manipulating the expression of these genes, anchorage-independent and anchorage-dependent HeLa cells, displaying markedly different growth characteristics, were analyzed using DNA microarrays. Results Two genes, cyclin-dependent kinase like 3 (cdkl3 and cytochrome c oxidase subunit (cox15, were up-regulated in the faster growing, anchorage-independent (suspension HeLa cells relative to the slower growing, anchorage-dependent (attached HeLa cells. Enhanced expression of either gene in the attached HeLa cells resulted in elevated cell proliferation, though insertion of cdkl3 had a greater impact than that of cox15. Moreover, flow cytometric analysis indicated that cells with an insert of cdkl3 were able to transition from the G0/G1 phases to the S phase faster than control cells. In turn, expression of cox15 was seen to increase the maximum viable cell numbers achieved relative to the control, and to a greater extent than cdkl3. Quantitatively similar results were obtained with two Human Embryonic Kidney-293 (HEK-293 cell lines and a Chinese Hamster Ovary (CHO cell line. Additionally, HEK-293 cells secreting adipocyte complement-related protein of 30 kDa (acrp30 exhibited a slight increase in specific protein production and higher total protein production in response to the insertion of either cdkl3 or cox15. Conclusion These results are consistent with previous studies on the functionalities of cdkl3 and cox15. For instance, the effect of cdkl3 on cell growth is consistent with its homology to the cdk3 gene which is involved in G1 to S phase transition

  3. Involvement of the D-type cyclins in germ cell proliferation and differentiation in the mouse

    NARCIS (Netherlands)

    Beumer, T. L.; Roepers-Gajadien, H. L.; Gademan, I. S.; Kal, H. B.; de rooij, D. G.

    2000-01-01

    Using immunohistochemistry, the expression of the D-type cyclin proteins was studied in the developing and adult mouse testis. Both during testicular development and in adult testis, cyclin D(1) is expressed only in proliferating gonocytes and spermatogonia, indicating a role for cyclin D(1) in

  4. The mitotic Clb cyclins are required to alleviate HIR-mediated repression of the yeast histone genes at the G1/S transition.

    Science.gov (United States)

    Amin, Amit Dipak; Dimova, Dessislava K; Ferreira, Monica E; Vishnoi, Nidhi; Hancock, Leandria C; Osley, Mary Ann; Prochasson, Philippe

    2012-01-01

    The histone genes are an important group of cell cycle regulated genes whose transcription is activated during the G1/S transition and repressed in early G1, late S, and G2/M. The HIR complex, comprised of Hir1, Hir2, Hir3 and Hpc2, regulates three of the four histone gene loci. While relief of repression at the G1/S boundary involves the HIR complex, as well as other cofactors, the mechanism by which this derepression occurs remains unknown. To better understand how transcriptional repression contributes to periodic expression in the cell cycle, we sought to identify the cell cycle signals required to alleviate HIR-mediated repression of the histone genes. By measuring histone gene transcription in strains with various combinations of clb mutations, we found that the mitotic Clb1/Clb2 cyclins are required to alleviate Hir-mediated repression during the G1/S transition and that Clb2 physically interacts with the HIR complex. While the HIR complex regulates histone gene transcription in combination with two other histone H3/H4 chaperones, Asf1 and Rtt106, our data demonstrate that the mitotic Clb cyclins are necessary to specifically alleviate the repressive action of the HIR complex itself in order to allow proper expression of the histone genes in late G1/early S phase. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Targeting Cyclin-Dependent Kinases in Synovial Sarcoma : Palbociclib as a Potential Treatment for Synovial Sarcoma Patients

    NARCIS (Netherlands)

    Vlenterie, Myrella; Hillebrandt-Roeffen, Melissa H S; Schaars, Esther W M; Flucke, Uta E.; Fleuren, Emmy D G; Navis, Anna C.; Leenders, William P J; Versleijen-Jonkers, Yvonne M H; van der Graaf, Winette T A

    2016-01-01

    Background: In synovial sarcomas alterations in the cyclin D1-CDK4/6-Rb axis have been described. Also, β-catenin, a cyclin D1 regulator, is often overexpressed. Additionally, studies have shown that the t(X;18) translocation influences tumor behavior partly through cyclin D1 activation. We

  6. Targeting Cyclin-Dependent Kinases in Synovial Sarcoma: Palbociclib as a Potential Treatment for Synovial Sarcoma Patients

    NARCIS (Netherlands)

    Vlenterie, M.; Hillebrandt-Roeffen, M.H.; Schaars, E.W.; Flucke, U.E.; Fleuren, E.D.G.; Navis, A.C.; Leenders, W.P.J.; Versleijen-Jonkers, Y.M.H.; Graaf, W.T.A. van der

    2016-01-01

    BACKGROUND: In synovial sarcomas alterations in the cyclin D1-CDK4/6-Rb axis have been described. Also, beta-catenin, a cyclin D1 regulator, is often overexpressed. Additionally, studies have shown that the t(X;18) translocation influences tumor behavior partly through cyclin D1 activation. We

  7. Novel vitamin D 1α-hydroxylase gene mutations in a Chinese ...

    Indian Academy of Sciences (India)

    hydroxylase gene mutations in a Chinese vitamin-D-dependent rickets type I patient. Lihua Cao Fang Liu Yu Wang Jian Ma Shusen Wang Libo Wang Yang Zhang Chen Chen Yang Luo Hongwei Ma. Research Note Volume 90 Issue 2 August ...

  8. Novel vitamin D 1α-hydroxylase gene mutations in a Chinese ...

    Indian Academy of Sciences (India)

    2011-08-19

    hydroxylase gene mutations in a Chinese vitamin-D-dependent rickets type I patient. LIHUA CAO1, FANG LIU2, YU WANG1, JIAN MA2, SHUSEN WANG1, LIBO WANG2, YANG ZHANG1,. CHEN CHEN1, YANG LUO1∗ and HONGWEI ...

  9. Identification of a Lifespan Extending Mutation in the Schizosaccharomyces pombe Cyclin Gene clg1+ by Direct Selection of Long-Lived Mutants

    Science.gov (United States)

    Chen, Bo-Ruei; Li, Yanhui; Eisenstatt, Jessica R.; Runge, Kurt W.

    2013-01-01

    Model organisms such as budding yeast, worms and flies have proven instrumental in the discovery of genetic determinants of aging, and the fission yeast Schizosaccharomyces pombe is a promising new system for these studies. We devised an approach to directly select for long-lived S. pombe mutants from a random DNA insertion library. Each insertion mutation bears a unique sequence tag called a bar code that allows one to determine the proportion of an individual mutant in a culture containing thousands of different mutants. Aging these mutants in culture allowed identification of a long-lived mutant bearing an insertion mutation in the cyclin gene clg1+. Clg1p, like Pas1p, physically associates with the cyclin-dependent kinase Pef1p. We identified a third Pef1p cyclin, Psl1p, and found that only loss of Clg1p or Pef1p extended lifespan. Genetic and co-immunoprecipitation results indicate that Pef1p controls lifespan through the downstream protein kinase Cek1p. While Pef1p is conserved as Pho85p in Saccharomyces cerevisiae, and as cdk5 in humans, genome-wide searches for lifespan regulators in S. cerevisiae have never identified Pho85p. Thus, the S. pombe system can be used to identify novel, evolutionarily conserved lifespan extending mutations, and our results suggest a potential role for mammalian cdk5 as a lifespan regulator. PMID:23874875

  10. The tomato B-type cyclin gene, SlCycB2, plays key roles in reproductive organ development, trichome initiation, terpenoids biosynthesis and Prodenia litura defense.

    Science.gov (United States)

    Gao, Shenghua; Gao, Yanna; Xiong, Cheng; Yu, Gang; Chang, Jiang; Yang, Qihong; Yang, Changxian; Ye, Zhibiao

    2017-09-01

    Cyclins exist extensively in various plant species. Among them, B-type cyclins play important roles in the transition of G2-to-M. However, few B-type cyclins have been reported to participate in reproductive organ development and trichome formation. In this study, transgene analysis showed that SlCycB2 overexpression caused abnormal flower with the unclosed stamen, shortened style and aberrant pollen. In addition, nearly all non-glandular trichomes, as well as the glandular ones were disappeared. On the contrary, suppression of SlCycB2 could promote type III and type V trichomes formation. Detection of secondary metabolites indicated that the production of monoterpene and sesquiterpene were significantly decreased in SlCycB2-OE plants, which thus resulted in the reduction of the defense against Prodenia litura. Transcriptome profile demonstrated that the differentially expressed genes mainly participate in the biosynthesis of terpenes, cutin, suberine and wax. Furthermore, we identified several homologs of SlCycB2, SlCycB3, NtCycB2, AtCycB2, which have similar regulatory functions in trichome formation. These results indicate that SlCycB2 plays a critical role in reproductive organ development, multicellular trichome initiation, secondary metabolite biosynthesis and Prodenia litura defense in tomato. The similar roles of its homologs in multicellular trichome formation suggest that Solanaceous species may share common regulatory pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dopamine D1 receptor gene variation modulates opioid dependence risk by affecting transition to addiction.

    Directory of Open Access Journals (Sweden)

    Feng Zhu

    Full Text Available Dopamine D1 receptor (DRD1 modulates opioid reinforcement, reward, and opioid-induced neuroadaptation. We propose that DRD1 polymorphism affects susceptibility to opioid dependence (OD, the efficiency of transition to OD, and opioid-induced pleasure response. We analyzed potential association between seven DRD1 polymorphisms with the following traits: duration of transition from the first use to dependence (DTFUD, subjective pleasure responses to opioid on first use and post-dependence use, and OD risk in 425 Chinese with OD and 514 healthy controls. DTFUD and level of pleasure responses were examined using a semi-structured interview. The DTFUD of opioid addicts ranged from 5 days to 11 years. Most addicts (64.0% reported non-comfortable response upon first opioid use, while after dependence, most addicts (53.0% felt strong opioid-induced pleasure. Survival analysis revealed a correlation of prolonged DTFUD with the minor allele-carrying genotypes of DRD1 rs4532 (hazard ratios (HR = 0.694; p = 0.001 and rs686 (HR = 0.681, p = 0.0003. Binary logistic regression indicated that rs10063995 GT genotype (vs. GG+TT, OR = 0.261 could predict decreased pleasure response to first-time use and the minor alleles of rs686 (OR = 0.535 and rs4532 (OR = 0.537 could predict decreased post-dependence pleasure. Moreover, rs686 minor allele was associated with a decreased risk for rapid transition from initial use to dependence (DTFUD≤30 days; OR = 0.603 or post-dependence euphoria (OR = 0.603 relative to major allele. In conclusion, DRD1 rs686 minor allele decreases the OD risk by prolonging the transition to dependence and attenuating opioid-induced pleasure in Chinese.

  12. Dopamine D1 receptor gene variation modulates opioid dependence risk by affecting transition to addiction.

    Science.gov (United States)

    Zhu, Feng; Yan, Chun-xia; Wen, Yi-chong; Wang, Jiayin; Bi, Jinbo; Zhao, Ya-ling; Wei, Lai; Gao, Cheng-ge; Jia, Wei; Li, Sheng-bin

    2013-01-01

    Dopamine D1 receptor (DRD1) modulates opioid reinforcement, reward, and opioid-induced neuroadaptation. We propose that DRD1 polymorphism affects susceptibility to opioid dependence (OD), the efficiency of transition to OD, and opioid-induced pleasure response. We analyzed potential association between seven DRD1 polymorphisms with the following traits: duration of transition from the first use to dependence (DTFUD), subjective pleasure responses to opioid on first use and post-dependence use, and OD risk in 425 Chinese with OD and 514 healthy controls. DTFUD and level of pleasure responses were examined using a semi-structured interview. The DTFUD of opioid addicts ranged from 5 days to 11 years. Most addicts (64.0%) reported non-comfortable response upon first opioid use, while after dependence, most addicts (53.0%) felt strong opioid-induced pleasure. Survival analysis revealed a correlation of prolonged DTFUD with the minor allele-carrying genotypes of DRD1 rs4532 (hazard ratios (HR) = 0.694; p = 0.001) and rs686 (HR = 0.681, p = 0.0003). Binary logistic regression indicated that rs10063995 GT genotype (vs. GG+TT, OR = 0.261) could predict decreased pleasure response to first-time use and the minor alleles of rs686 (OR = 0.535) and rs4532 (OR = 0.537) could predict decreased post-dependence pleasure. Moreover, rs686 minor allele was associated with a decreased risk for rapid transition from initial use to dependence (DTFUD≤30 days; OR = 0.603) or post-dependence euphoria (OR = 0.603) relative to major allele. In conclusion, DRD1 rs686 minor allele decreases the OD risk by prolonging the transition to dependence and attenuating opioid-induced pleasure in Chinese.

  13. Identification and Association of SNPs in TBC1D1 Gene with Growth Traits in Two Rabbit Breeds.

    Science.gov (United States)

    Yang, Zhi-Juan; Fu, Lu; Zhang, Gong-Wei; Yang, Yu; Chen, Shi-Yi; Wang, Jie; Lai, Song-Jia

    2013-11-01

    The TBC1D1 plays a key role in body energy homeostasis by regulating the insulin-stimulated glucose uptake in skeletal muscle. The present study aimed to identify the association between genetic polymorphisms of TBC1D1 and body weight (BW) in rabbits. Among the total of 12 SNPs detected in all 20 exons, only one SNP was non-synonymous (c.214G>A. p.G72R) located in exon 1. c.214G>A was subsequently genotyped among 491 individuals from two rabbit breeds by the high-resolution melting method. Allele A was the predominant allele with frequencies of 0.7780 and 0.6678 in European white rabbit (EWR, n = 205) and New Zealand White rabbit (NZW, n = 286), respectively. The moderate polymorphism information content (0.25EWR (p0.05). Our results implied that the c.214G>A of TBC1D1 gene might be one of the candidate loci affecting the trait of 35 d BW in the rabbit.

  14. Cyclin E-induced S phase without activation of the pRb/E2F pathway

    DEFF Research Database (Denmark)

    Lukas, J; Herzinger, T; Hansen, Klaus

    1997-01-01

    In cells of higher eukaryotes, cyclin D-dependent kinases Cdk4 and Cdk6 and, possibly, cyclin E-dependent Cdk2 positively regulate the G1- to S-phase transition, by phosphorylating the retinoblastoma protein (pRb), thereby releasing E2F transcription factors that control S-phase genes. Here we...... performed microinjection and transfection experiments using rat R12 fibroblasts, their derivatives conditionally overexpressing cyclins D1 or E, and human U-2-OS cells, to explore the action of G1 cyclins and the relationship of E2F and cyclin E in S-phase induction. We demonstrate that ectopic expression...... that the cyclin E-induced S phase and completion of the cell division cycle can occur in the absence of E2F-mediated transactivation. Together with the ability of cyclin E to overcome a G1 block induced by expression of dominant-negative mutant DP-1, a heterodimeric partner of E2Fs, these results provide evidence...

  15. Isolated cerebellar variant of adrenoleukodystrophy with a de novo adenosine triphosphate-binding cassette D1 (ABCD1) gene mutation.

    Science.gov (United States)

    Kang, Joon Won; Lee, Sang Mi; Koo, Kyo Yeon; Lee, Young-Mock; Nam, Hyo Suk; Quan, Zhejiu; Kang, Hoon-Chul

    2014-07-01

    X-linked adrenoleukodystrophy (X-ALD) shows a wide range of phenotypic expression, but clinical presentation as an isolated lesion of the cerebellar white matter and dentate nuclei has not been reported. We report an unusual presentation of X-ALD only with an isolated lesion of the cerebellar white matter and dentate nuclei. The proband, a 37-year-old man presented with bladder incontinence, slurred speech, dysmetria in all limbs, difficulties in balancing, and gait ataxia. Brain magnetic resonance imaging showed an isolated signal change of white matter around the dentate nucleus in cerebellum. With high level of very long chain fatty acid, gene study showed a de novo mutation in exon 1 at nucleotide position c.277_296dup20 (p.Ala100Cysfs*10) of the adenosine triphosphate-binding cassette D1 gene. It is advised to consider X-ALD as a differential diagnosis in patients with isolated cerebellar degeneration symptoms.

  16. Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression

    Directory of Open Access Journals (Sweden)

    Colquhoun Alison

    2009-03-01

    Full Text Available Abstract Background Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results GLA caused a significant decrease in tumour size (75 ± 8.8% and reduced MVD by 44 ± 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF (71 ± 16% and the VEGF receptor Flt1 (57 ± 5.8% but not Flk1. Expression of ERK1/2 was also reduced by 27 ± 7.7% and 31 ± 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2 was reduced by 35 ± 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 ± 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 ± 18% while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 ± 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 ± 7.3% while p21 remained unchanged. The expression of p53 was increased (44 ± 16% by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 ± 11% of BrdU incorporation into the tumour in vivo. Conclusion Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein

  17. Production of Cyclin D1 specific siRNAs by double strand processing for gene therapy of esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Negar Mottaghi-Dastjerdi

    2013-02-01

    Conclusion: dsRNA digestion method includes several steps which the product of each step is used as the precursor for the next step. So optimization and increasing the specificity and product yield should be in the most important goals of the study, because the yield of each step has a direct relationship with the final product yield which is siRNA. Optimizing and increasing the yield, dsRNA digestion method could be a rapid, available and profitable method for siRNA generation, providing large amounts of siRNA.

  18. Crystal Structure of Human Cyclin K, A Positive Regulator of Cyclin-Dependent Kinase 9

    Energy Technology Data Exchange (ETDEWEB)

    Baek,K.; Brown, R.; Birrane, G.; Ladias, J.

    2007-01-01

    K and the closely related cyclins T1, T2a, and T2b interact with cyclin-dependent kinase 9 (CDK9) forming multiple nuclear complexes, referred to collectively as positive transcription elongation factor b (P-TEFb). Through phosphorylation of the C-terminal domain of the RNA polymerase II largest subunit, distinct P-TEFb species regulate the transcriptional elongation of specific genes that play central roles in human physiology and disease development, including cardiac hypertrophy and human immunodeficiency virus-1 pathogenesis. We have determined the crystal structure of human cyclin K (residues 11-267) at 1.5 {angstrom} resolution, which represents the first atomic structure of a P-TEFb subunit. The cyclin K fold comprises two typical cyclin boxes with two short helices preceding the N-terminal box. A prominent feature of cyclin K is an additional helix (H4a) in the first cyclin box that obstructs the binding pocket for the cell-cycle inhibitor p27{sup Kip1}. Modeling of CDK9 bound to cyclin K provides insights into the structural determinants underlying the formation and regulation of this complex. A homology model of human cyclin T1 generated using the cyclin K structure as a template reveals that the two proteins have similar structures, as expected from their high level of sequence identity. Nevertheless, their CDK9-interacting surfaces display significant structural differences, which could potentially be exploited for the design of cyclin-targeted inhibitors of the CDK9-cyclin K and CDK9-cyclin T1 complexes.

  19. Cyclin-dependent Kinase 8 Module Expression Profiling Reveals Requirement of Mediator Subunits 12 and 13 for Transcription of Serpent-dependent Innate Immunity Genes in Drosophila*

    Science.gov (United States)

    Kuuluvainen, Emilia; Hakala, Heini; Havula, Essi; Sahal Estimé, Michelle; Rämet, Mika; Hietakangas, Ville; Mäkelä, Tomi P.

    2014-01-01

    The Cdk8 (cyclin-dependent kinase 8) module of Mediator integrates regulatory cues from transcription factors to RNA polymerase II. It consists of four subunits where Med12 and Med13 link Cdk8 and cyclin C (CycC) to core Mediator. Here we have investigated the contributions of the Cdk8 module subunits to transcriptional regulation using RNA interference in Drosophila cells. Genome-wide expression profiling demonstrated separation of Cdk8-CycC and Med12-Med13 profiles. However, transcriptional regulation by Cdk8-CycC was dependent on Med12-Med13. This observation also revealed that Cdk8-CycC and Med12-Med13 often have opposite transcriptional effects. Interestingly, Med12 and Med13 profiles overlapped significantly with that of the GATA factor Serpent. Accordingly, mutational analyses indicated that GATA sites are required for Med12-Med13 regulation of Serpent-dependent genes. Med12 and Med13 were also found to be required for Serpent-activated innate immunity genes in defense to bacterial infection. The results reveal a novel role for the Cdk8 module in Serpent-dependent transcription and innate immunity. PMID:24778181

  20. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene.

    Science.gov (United States)

    Hadjighassem, Mahmoud R; Galaraga, Kimberly; Albert, Paul R

    2011-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. A Cyclin Dependent Kinase Regulatory Subunit (CKS) Gene of Pigeonpea Imparts Abiotic Stress Tolerance and Regulates Plant Growth and Development in Arabidopsis

    Science.gov (United States)

    Tamirisa, Srinath; Vudem, Dashavantha R.; Khareedu, Venkateswara R.

    2017-01-01

    Frequent climatic changes in conjunction with other extreme environmental factors are known to affect growth, development and productivity of diverse crop plants. Pigeonpea, a major grain legume of the semiarid tropics, endowed with an excellent deep-root system, is known as one of the important drought tolerant crop plants. Cyclin dependent kinases (CDKs) are core cell cycle regulators and play important role in different aspects of plant growth and development. The cyclin-dependent kinase regulatory subunit gene (CKS) was isolated from the cDNA library of pigeonpea plants subjected to drought stress. Pigeonpea CKS (CcCKS) gene expression was detected in both the root and leaf tissues of pigeonpea and was upregulated by polyethylene glycol (PEG), mannitol, NaCl and abscisic acid (ABA) treatments. The overexpression of CcCKS gene in Arabidopsis significantly enhanced tolerance of transgenics to drought and salt stresses as evidenced by different physiological parameters. Under stress conditions, transgenics showed higher biomass, decreased rate of water loss, decreased MDA levels, higher free proline contents, and glutathione levels. Moreover, under stress conditions transgenics exhibited lower stomatal conductance, lower transpiration, and higher photosynthetic rates. However, under normal conditions, CcCKS-transgenics displayed decreased plant growth rate, increased cell size and decreased stomatal number compared to those of wild-type plants. Real-time polymerase chain reaction revealed that CcCKS could regulate the expression of both ABA-dependent and ABA-independent genes associated with abiotic stress tolerance as well as plant growth and development. As such, the CcCKS seems promising and might serve as a potential candidate gene for enhancing the abiotic stress tolerance of crop plants. PMID:28239388

  2. A Cyclin Dependent Kinase Regulatory Subunit (CKS) Gene of Pigeonpea Imparts Abiotic Stress Tolerance and Regulates Plant Growth and Development in Arabidopsis.

    Science.gov (United States)

    Tamirisa, Srinath; Vudem, Dashavantha R; Khareedu, Venkateswara R

    2017-01-01

    Frequent climatic changes in conjunction with other extreme environmental factors are known to affect growth, development and productivity of diverse crop plants. Pigeonpea, a major grain legume of the semiarid tropics, endowed with an excellent deep-root system, is known as one of the important drought tolerant crop plants. Cyclin dependent kinases (CDKs) are core cell cycle regulators and play important role in different aspects of plant growth and development. The cyclin-dependent kinase regulatory subunit gene (CKS) was isolated from the cDNA library of pigeonpea plants subjected to drought stress. Pigeonpea CKS (CcCKS) gene expression was detected in both the root and leaf tissues of pigeonpea and was upregulated by polyethylene glycol (PEG), mannitol, NaCl and abscisic acid (ABA) treatments. The overexpression of CcCKS gene in Arabidopsis significantly enhanced tolerance of transgenics to drought and salt stresses as evidenced by different physiological parameters. Under stress conditions, transgenics showed higher biomass, decreased rate of water loss, decreased MDA levels, higher free proline contents, and glutathione levels. Moreover, under stress conditions transgenics exhibited lower stomatal conductance, lower transpiration, and higher photosynthetic rates. However, under normal conditions, CcCKS-transgenics displayed decreased plant growth rate, increased cell size and decreased stomatal number compared to those of wild-type plants. Real-time polymerase chain reaction revealed that CcCKS could regulate the expression of both ABA-dependent and ABA-independent genes associated with abiotic stress tolerance as well as plant growth and development. As such, the CcCKS seems promising and might serve as a potential candidate gene for enhancing the abiotic stress tolerance of crop plants.

  3. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing.

    Science.gov (United States)

    Liang, Kaiwei; Gao, Xin; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Smith, Edwin; Shilatifard, Ali

    2015-03-01

    Cyclin-dependent kinase 9 (CDK9) and CDK12 have each been demonstrated to phosphorylate the RNA polymerase II C-terminal domain (CTD) at serine 2 of the heptad repeat, both in vitro and in vivo. CDK9, as part of P-TEFb and the super elongation complex (SEC), is by far the best characterized of CDK9, CDK12, and CDK13. We employed both in vitro and in vivo assays to further investigate the molecular properties of CDK12 and its paralog CDK13. We isolated Flag-tagged CDK12 and CDK13 and found that they associate with numerous RNA processing factors. Although knockdown of CDK12, CDK13, or their cyclin partner CCNK did not affect the bulk CTD phosphorylation levels in HCT116 cells, transcriptome sequencing (RNA-seq) analysis revealed that CDK12 and CDK13 losses in HCT116 cells preferentially affect expression of DNA damage response and snoRNA genes, respectively. CDK12 and CDK13 depletion also leads to a loss of expression of RNA processing factors and to defects in RNA processing. These findings suggest that in addition to implementing CTD phosphorylation, CDK12 and CDK13 may affect RNA processing through direct physical interactions with RNA processing factors and by regulating their expression. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits

    Directory of Open Access Journals (Sweden)

    Zeng Hua

    2010-03-01

    Full Text Available Abstract Background The elevation of egg production and the inhibition of incubation behavior are the aims of modern poultry production. Prolactin (PRL gene is confirmed to be critical for the onset and maintenance of these reproductive behaviors in birds. Through PRL, dopamine D1 receptor (DRD1 was also involved in the regulation of chicken reproductive behavior. However, the genetic effects of this gene on chicken egg production and broodiness have not been studied extensively. The objective of this research was to evaluate the genetic effects of the DRD1 gene on chicken egg production and broodiness traits. Results In this study, the chicken DRD1 gene was screened for the polymorphisms by cloning and sequencing and 29 variations were identified in 3,342 bp length of this gene. Seven single nucleotide polymorphism (SNPs among these variations, including a non-synonymous mutation (A+505G, Ser169Gly, were located in the coding region and were chosen to analyze their association with chicken egg production and broodiness traits in 644 Ningdu Sanhuang individuals. Two SNPs, G+123A and C+1107T, were significantly associated with chicken broody frequency (P DRD1 mRNA was observed and the expression difference was compared between broodiness and non-broodiness chickens. The DRD1 mRNA was predominantly expressed in subcutaneous fat and abdominal fat of non-broodiness chicken, and then in heart, kidney, oviduct, glandular stomach, hypothalamus, and pituitary. In subcutaneous fat and abdominal fat, the level of non-broodiness was 26 to 28 times higher than that of broodiness. In pituitary, it was 5-fold higher. In heart, oviduct, and kidney, a 2-3 times decrease from non-broodiness to broodiness was displayed. In glandular stomach and hypothalamus, the level seen in non-broodiness and broodiness was almost the same. Conclusion The polymorphisms of the DRD1 gene and their haplotypes were associated with chicken broody frequency and some egg production

  5. Accelerated Stem Growth Rates and Improved Fiber Properties of Loblolly Pine: Functional Analysis Of CyclinD from Pinus taeda

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John Cairney, School of Biology and Institute of Paper Science and Technology @ Georgia Tech, Georgia Institute of Technology; Dr. Gary Peter, University of Florida; Dr. Ulrika Egertsdotter, Dept. of Forestry, Virgina Tech; Dr. Armin Wagner, New Zealand Forest Research Institute Ltd. (Scion Research.)

    2005-11-30

    A sustained supply of low-cost, high quality raw materials is essential for the future success of the U.S. forest products industry. To maximize stem (trunk) growth, a fundamental understanding of the molecular mechanisms that regulate cell divisions within the cambial meristem is essential. We hypothesize that auxin levels within the cambial meristem regulate cyclin gene expression and this in turn controls cell cycle progression as occurs in all eukaryotic cells. Work with model plant species has shown that ectopic overexpression of cyclins promotes cell division thereby increasing root growth > five times. We intended to test whether ectopic overexpression of cambial cyclins in the cambial zone of loblolly pine also promotes cell division rates that enhance stem growth rates. Results generated in model annual angiosperm systems cannot be reliably extrapolated to perennial gymnosperms, thus while the generation and development of transgenic pine is time consuming, this is the necessary approach for meaningful data. We succeeded in isolating a cyclin D gene and Clustal analysis to the Arabidopsis cyclin D gene family indicates that it is more closely related to cyclin D2 than D1 or D3 Using this gene as a probe we observed a small stimulation of cyclin D expression in somatic embryo culture upon addition of auxin. We hypothesized that trees with more cells in the vascular cambial and expansion zones will have higher cyclin mRNA levels. We demonstrated that in trees under compressive stress where the rates of cambial divisions are increased on the underside of the stem relative to the top or opposite side, there was a 20 fold increase in the level of PtcyclinD1 mRNA on the compressed side of the stem relative to the opposite. This suggests that higher secondary growth rates correlate with PtcyclinD1 expression. We showed that larger diameter trees show more growth during each year and that the increased growth in loblolly pine trees correlates with more cell

  6. Gene encoding a c-type cyclin in Mycosphaerella graminicola is involved in aerial mycelium formation, filamentous growth, hyphal swelling, melanin biosynthesis, stress response, and pathogenicity.

    Science.gov (United States)

    Choi, Yoon-E; Goodwin, Stephen B

    2011-04-01

    Mycosphaerella graminicola is an important wheat pathogen causing Septoria tritici blotch. To date, an efficient strategy to control M. graminicola has not been developed. More significantly, we have a limited understanding of the molecular mechanisms of M. graminicola pathogenicity. In this study, we attempted to characterize an MCC1-encoding c-type cyclin, a gene homologous to FCC1 in Fusarium verticillioides. Four independent MCC1 knock-out mutants were generated via Agrobacterium tumefaciens-mediated transformation. All of the MCC1 mutants showed consistent multiple phenotypes. Significant reductions in radial growth on potato dextrose agar (PDA) were observed in all of the MCC1 mutants. In addition, MCC1 gene-deletion mutants produced less aerial mycelium on PDA, showed delayed filamentous growth, had unusual hyphal swellings, produced more melanin, showed an increase in their stress tolerance response, and were reduced significantly in pathogenicity. These results indicate that the MCC1 gene is involved in multiple signaling pathways, including those involved in pathogenicity in M. graminicola.

  7. X-Linked Lymphoproliferative Syndrome and Common Variable Immunodeficiency May Not Be Differentiated by SH2D1A and XIAP/BIRC4 Genes Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Nesrin Gulez

    2011-01-01

    Full Text Available The X-linked lymphoproliferative syndrome (XLP is a rare, inherited immunodeficiency characterized by recurrent episodes of hemophagocytic lymphohistiocytosis, hypogammaglobulinemia, and/or lymphomas. Recently, X-linked inhibitor of apoptosis (XIAP/BIRC4 gene defects, in families with XLP but without SH2D1A gene defects, has been defined. The distinction from primary immunodeficiencies with a defined genetic cause is mandatory. A six-year-old male patient was admitted with the complaints of persistent general lymphadenopathy, for two years had fever, bilateral cervical multiple microlymphadenopathy, hepatic/splenic enlargement with laboratory findings as decreased serum immunoglobulins, negative EBV VCA IgM (viral capsid antigen and anti-EBV EA (antibody to early D antigen, positive EBV VCA IgG (viral capsid antigen and EBV EBNA (antibody to nuclear antigen. SH2D1A gene analysis was negative. XIAP/BIRC4 sequencing revealed two novel single nucleotide variants (exon 7, 1978G > A, and 1996T > A in the 3′UTR of the gene in both patient and mother which were not disease causing. XIAP protein expression was found to be normal. The clinical and laboratory resemblance, no gene mutations, and normal XIAP protein expression led us to think that there may be another responsible gene for XLP. The patient will to be followed up as CVID until he presents new diagnostic signs or until the identification of a new gene.

  8. Disruption of zebrafish cyclin G-associated kinase (GAK function impairs the expression of Notch-dependent genes during neurogenesis and causes defects in neuronal development

    Directory of Open Access Journals (Sweden)

    Szeto Daniel P

    2010-01-01

    Full Text Available Abstract Background The J-domain-containing protein auxilin, a critical regulator in clathrin-mediated transport, has been implicated in Drosophila Notch signaling. To ask if this role of auxilin is conserved and whether auxilin has additional roles in development, we have investigated the functions of auxilin orthologs in zebrafish. Results Like mammals, zebrafish has two distinct auxilin-like molecules, auxilin and cyclin G-associated kinase (GAK, differing in their domain structures and expression patterns. Both zebrafish auxilin and GAK can functionally substitute for the Drosophila auxilin, suggesting that they have overlapping molecular functions. Still, they are not completely redundant, as morpholino-mediated knockdown of the ubiquitously expressed GAK alone can increase the specification of neuronal cells, a known Notch-dependent process, and decrease the expression of Her4, a Notch target gene. Furthermore, inhibition of GAK function caused an elevated level of apoptosis in neural tissues, resulting in severe degeneration of neural structures. Conclusion In support of the notion that endocytosis plays important roles in Notch signaling, inhibition of zebrafish GAK function affects embryonic neuronal cell specification and Her4 expression. In addition, our analysis suggests that zebrafish GAK has at least two functions during the development of neural tissues: an early Notch-dependent role in neuronal patterning and a late role in maintaining the survival of neural cells.

  9. Expression of δ-cyclins of Brassica rapa L. embryos by clinorotation

    Science.gov (United States)

    Artemenko, O. A.

    Cyclins is one of the important regulators of cell cycle. There are several types of cyclins exists. They are responding for different phases of cycle and have high homology in plant's and mammalian's cells. δ -cyclins are specific for plants and controlling the presynthetic phase events. These cyclins likes to mammalian D-cyclins and have similar functions. This class consist three types of cyclins -- δ 1, δ 2 and δ 3. Cyclin δ 1 is responding for events in cell, which take place before exiting from stage of quiet (G0). Cyclin δ 1 is responding for entering and outputting from G0, and cyclin δ 3 -- for events, which happen in cell after stage of quiet, by entering to S-phase (phase of DNA's synthesis). In present research was used δ 1- and δ 3-cyclins. For determination of δ -cyclins gene's expression level was excreted RNA from embryos: 3-days (spherical stage), 6-days (heart-shaped stage) and 9-days (generated stage) seedlings of Brassica rapa L. in control and under clinorotation. For definition the cyclins gene's expression level applied Northern Blot Analysis. Obtained data testify about difference in level of gene's expression of cyclin δ 1 between control and clinorotation variants. After three days by pollination the expression of this gene in embryos was observed in control only. By clinorotation the gene's expression was detected on 6 days later, but it level was lower than in control variant. On 9 days it was gently expressed by clinorotation, where as by control it was not detected absolutely. Cyclin δ 3 gene's expression was observed during all time of the experiment. These data also confirm known one about expression δ 1- cyclin, which expressed on beginning of cell cycle only. And δ 3 --cyclin that express during whole presinthetic phase of cell cycle (Sony et al., 1995, Murray, 1994, Inze et al, 1999, Umeda, 2000).

  10. [The phylogenetic analysis of 15 Geotrichum strains based on 26S rRNA gene D1/D2 region sequencing].

    Science.gov (United States)

    Ma, Kai; Liu, Guang-quan; Li, Jin-xia; Yao, Su; Cheng, Chi

    2007-04-01

    The 26S rRNA gene D1/D2 domain sequences of 15 strains originally identified as Galactomyces geotrichum from the Chinese Industry Culture Collection (CICC) were determined. The results indicated that these strains differed from the type strain of Galactomyces geotrichum and other species of the genus remarkably. Two groups were recognized from the 15 strains which possibly represent 2 novel species of Galactomyces. Further molecular study is needed to confirm their taxonomic status.

  11. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene.

    Science.gov (United States)

    Cheedipudi, Sirisha; Puri, Deepika; Saleh, Amena; Gala, Hardik P; Rumman, Mohammed; Pillai, Malini S; Sreenivas, Prethish; Arora, Reety; Sellathurai, Jeeva; Schrøder, Henrik Daa; Mishra, Rakesh K; Dhawan, Jyotsna

    2015-07-27

    Adult stem cell quiescence is critical to ensure regeneration while minimizing tumorigenesis. Epigenetic regulation contributes to cell cycle control and differentiation, but few regulators of the chromatin state in quiescent cells are known. Here we report that the tumor suppressor PRDM2/RIZ, an H3K9 methyltransferase, is enriched in quiescent muscle stem cells in vivo and controls reversible quiescence in cultured myoblasts. We find that PRDM2 associates with >4400 promoters in G0 myoblasts, 55% of which are also marked with H3K9me2 and enriched for myogenic, cell cycle and developmental regulators. Knockdown of PRDM2 alters histone methylation at key promoters such as Myogenin and CyclinA2 (CCNA2), and subverts the quiescence program via global de-repression of myogenesis, and hyper-repression of the cell cycle. Further, PRDM2 acts upstream of the repressive PRC2 complex in G0. We identify a novel G0-specific bivalent chromatin domain in the CCNA2 locus. PRDM2 protein interacts with the PRC2 protein EZH2 and regulates its association with the bivalent domain in the CCNA2 gene. Our results suggest that induction of PRDM2 in G0 ensures that two antagonistic programs-myogenesis and the cell cycle-while stalled, are poised for reactivation. Together, these results indicate that epigenetic regulation by PRDM2 preserves key functions of the quiescent state, with implications for stem cell self-renewal. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Dopamine receptor D1 and postsynaptic density gene variants associate with opiate abuse and striatal expression levels.

    Science.gov (United States)

    Jacobs, M M; Ökvist, A; Horvath, M; Keller, E; Bannon, M J; Morgello, S; Hurd, Y L

    2013-11-01

    Opioid drugs are highly addictive and their abuse has a strong genetic load. Dopamine-glutamate interactions are hypothesized to be important for regulating neural systems central for addiction vulnerability. Balanced dopamine-glutamate interaction is mediated through several functional associations, including a physical link between discs, large homolog 4 (Drosophila) (DLG4, PSD-95) and dopamine receptor 1 (DRD1) within the postsynaptic density to regulate DRD1 trafficking. To address whether genetic associations with heroin abuse exist in relation to dopamine and glutamate and their potential interactions, we evaluated single-nucleotide polymorphisms of key genes within these systems in three populations of opiate abusers and controls, totaling 489 individuals from Europe and the United States. Despite significant differences in racial makeup of the separate samples, polymorphisms of DRD1 and DLG4 were found to be associated with opiate abuse. In addition, a strong gene-gene interaction between homer 1 homolog (Drosophila) (HOMER1) and DRD1 was predicted to occur in Caucasian subjects. This interaction was further analyzed by evaluating DRD1 genotype in relation to HOMER1b/c protein expression in postmortem tissue from a subset of Caucasian subjects. DRD1 rs265973 genotype correlated with HOMER1b/c levels in the striatum, but not cortex or amygdala; the correlation was inversed in opiate abusers as compared with controls. Cumulatively, these results support the hypothesis that there may be significant, genetically influenced interactions between glutamatergic and dopaminergic pathways in opiate abusers.

  13. Cyclin A2 regulates erythrocyte morphology and numbers.

    Science.gov (United States)

    Jayapal, Senthil Raja; Ang, Heather Yin-Kuan; Wang, Chelsia Qiuxia; Bisteau, Xavier; Caldez, Matias J; Xuan, Gan Xiao; Yu, Weimiao; Tergaonkar, Vinay; Osato, Motomi; Lim, Bing; Kaldis, Philipp

    2016-11-16

    Cyclin A2 is an essential gene for development and in haematopoietic stem cells and therefore its functions in definitive erythropoiesis have not been investigated. We have ablated cyclin A2 in committed erythroid progenitors in vivo using erythropoietin receptor promoter-driven Cre, which revealed its critical role in regulating erythrocyte morphology and numbers. Erythroid-specific cyclin A2 knockout mice are viable but displayed increased mean erythrocyte volume and reduced erythrocyte counts, as well as increased frequency of erythrocytes containing Howell-Jolly bodies. Erythroblasts lacking cyclin A2 displayed defective enucleation, resulting in reduced production of enucleated erythrocytes and increased frequencies of erythrocytes containing nuclear remnants. Deletion of the Cdk inhibitor p27 Kip1 but not Cdk2, ameliorated the erythroid defects resulting from deficiency of cyclin A2, confirming the critical role of cyclin A2/Cdk activity in erythroid development. Loss of cyclin A2 in bone marrow cells in semisolid culture prevented the formation of BFU-E but not CFU-E colonies, uncovering its essential role in BFU-E function. Our data unveils the critical functions of cyclin A2 in regulating mammalian erythropoiesis.

  14. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response

    Directory of Open Access Journals (Sweden)

    Nathália Villa dos Santos

    2015-01-01

    Full Text Available The toxicologic effects of copper (Cu on tumor cells have been studied during the past decades, and it is suggested that Cu ion may trigger antiproliferative effects in vitro. However, in normal cells the toxicologic effects of high exposures of free Cu are not well understood. In this work, Cu uptake, the expression of genes associated with cell cycle regulation, and the levels of ROS production and related oxidative processes were evaluated in Cu-treated mammary epithelial MCF10A nontumoral cells. We have shown that the Cu additive is associated with the activation of cyclin D1 and cyclin B1, as well as cyclin-dependent kinase 2 (CDK2. These nontumor cells respond to Cu-induced changes in the oxidative balance by increase of the levels of reduced intracellular glutathione (GSH, decrease of reactive oxygen species (ROS generation, and accumulation during progression of the cell cycle, thus preventing the cell abnormal proliferation or death. Taken together, our findings revealed an effect that contributes to prevent a possible damage of normal cells exposed to chemotherapeutic effects of drugs containing the Cu ion.

  15. Cyclin F/FBXO1 Interacts with HIV-1 Viral Infectivity Factor (Vif) and Restricts Progeny Virion Infectivity by Ubiquitination and Proteasomal Degradation of Vif Protein through SCF(cyclin F) E3 Ligase Machinery.

    Science.gov (United States)

    Augustine, Tracy; Chaudhary, Priyanka; Gupta, Kailash; Islam, Sehbanul; Ghosh, Payel; Santra, Manas Kumar; Mitra, Debashis

    2017-03-31

    Cyclin F protein, also known as FBXO1, is the largest among all cyclins and oscillates in the cell cycle like other cyclins. Apart from being a G2/M cyclin, cyclin F functions as the substrate-binding subunit of SCF(cyclin F) E3 ubiquitin ligase. In a gene expression analysis performed to identify novel gene modulations associated with cell cycle dysregulation during HIV-1 infection in CD4(+) T cells, we observed down-regulation of the cyclin F gene (CCNF). Later, using gene overexpression and knockdown studies, we identified cyclin F as negatively influencing HIV-1 viral infectivity without any significant impact on virus production. Subsequently, we found that cyclin F negatively regulates the expression of viral protein Vif (viral infectivity factor) at the protein level. We also identified a novel host-pathogen interaction between cyclin F and Vif protein in T cells during HIV-1 infection. Mutational analysis of a cyclin F-specific amino acid motif in the C-terminal region of Vif indicated rescue of the protein from cyclin F-mediated down-regulation. Subsequently, we showed that Vif is a novel substrate of the SCF(cyclin F) E3 ligase, where cyclin F mediates the ubiquitination and proteasomal degradation of Vif through physical interaction. Finally, we showed that cyclin F augments APOBEC3G expression through degradation of Vif to regulate infectivity of progeny virions. Taken together, our results demonstrate that cyclin F is a novel F-box protein that functions as an intrinsic cellular regulator of HIV-1 Vif and has a negative regulatory effect on the maintenance of viral infectivity by restoring APOBEC3G expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Studies of variations of the cyclin-dependent kinase inhibitor 1C and the cyclin-dependent kinase 4 genes in relation to type 2 diabetes mellitus and related quantitative traits

    DEFF Research Database (Denmark)

    Nielsen, Eva-Maria D; Hansen, Lars; Stissing, Trine

    2005-01-01

    in the pathogenesis of the Beckwith-Wiedemann syndrome, a disorder characterized by neonatal hyperinsulinaemic hypoglycaemia and pre- and post-natal overgrowth. The aim of this study was to investigate if variations in the proximal promoter and the coding region of the CDKN1C and CDK4 genes are associated with type 2...... glucose-tolerant subjects the most frequent variants did not show any difference in allele frequencies between the type 2 diabetic patients and the control subjects. However, in two genotype-quantitative trait correlation studies involving 206 glucose-tolerant offspring of type 2 diabetic patients and 359....... In conclusion, variants in CDKN1C may contribute to the inter-individual variation in birth weight....

  17. Function of the A-type cyclins during gametogenesis and early embryogenesis.

    Science.gov (United States)

    Wolgemuth, Debra J

    2011-01-01

    The cyclins and their cyclin-dependent kinase partners, the Cdks, are the basic components of the machinery that regulates the passage of cells through the cell cycle. Among the cyclins, those known as the A-type cyclins are unique in that in somatic cells, they appear to function at two stages of the cell cycle, at the G1-S transition and again as the cells prepare to enter M-phase. Higher vertebrate organisms have two A-type cyclins, cyclin A1 and cyclin A2, both of which are expressed in the germ line and/or early embryo, following highly specialized patterns that suggest functions in both mitosis and meiosis. Insight into their in vivo functions has been obtained from gene targeting experiments in the mouse model. Loss of cyclin A1 results in disruption of spermatogenesis and male sterility due to cell arrest in the late diplotene stage of the meiotic cell cycle. In contrast, cyclin A2-deficiency is marked by early embryonic lethality; thus, understanding the function of cyclin A2 in the adult germ line awaits conditional mutagenesis or other approaches to knock down its expression.

  18. DACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21{sup Cip1}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Woong; Kim, Hyeng-Soo; Kim, Seonggon; Hwang, Junmo; Kim, Young Hun; Lim, Ga Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Sohn, Wern-Joo [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Yoon, Suk-Ran [Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Jae-Young [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Park, Tae Sung [Department of Laboratory Medicine, Kyung Hee University School of Medicine, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-702 (Korea, Republic of); Park, Kwon Moo [Department of Anatomy, Kyungpook National University School of Medicine, Daegu 700-422 (Korea, Republic of); Ryoo, Zae Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Sanggyu, E-mail: slee@knu.ac.kr [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer DACH1 increases cyclin D, F and Cdk 1, 4, 6 in mouse myeloid progenitor cells. Black-Right-Pointing-Pointer The knockdown of DACH1 blocked the cell cycle progression of HL-60 cells. Black-Right-Pointing-Pointer The novel effect of DACH1 related with cell cycle regulation and leukemogenesis. -- Abstract: The cell-fate determination factor Dachshund, a component of the Retinal Determination Gene Network (RDGN), has a role in breast tumor proliferation through the repression of cyclin D1 and several key regulators of embryonic stem cell function, such as Nanog and Sox2. However, little is known about the role of DACH1 in a myeloid lineage as a cell cycle regulator. Here, we identified the differential expression levels of extensive cell cycle regulators controlled by DACH1 in myeloid progenitor cells. The forced expression of DACH1 induced p27{sup Kip1} and repressed p21{sup Cip1}, which is a pivotal characteristic of the myeloid progenitor. Furthermore, DACH1 significantly increased the expression of cyclin D1, D3, F, and Cdk 1, 4, and 6 in myeloid progenitor cells. The knockdown of DACH1 blocked the cell cycle progression of HL-60 promyeloblastic cells through the decrease of cyclin D1, D3, F, and Cdk 1, 4, and 6 and increase in p21{sup Cip1}, which in turn decreased the phosphorylation of the Rb protein. The expression of Sox2, Oct4, and Klf4 was significantly up-regulated by the forced expression of DACH1 in mouse myeloid progenitor cells.

  19. Cyclin K as a Direct Transcriptional Target of the p53 Tumor Suppressor

    OpenAIRE

    Toshiki Mori; Yoshio Anazawa; Kuniko Matsui; Seisuke Fukuda; Yusuke Nakamura; Hirofumi Arakawa

    2002-01-01

    Cyclin K, a newly recognized member of the “transcription” cyclin family, may play a dual role by regulating CDK and transcription. Using cDNA microarray technology, we found that cyclin K mRNA was dramatically increased in U373MG, a glioblastoma cell line deficient in wild-type p53, in the presence of exogenous p53. An electrophoretic mobility-shift assay showed that a potential p53-binding site (p53BS) in intron 1 of the cyclin K gene could indeed bind to p53 protein. Moreover, a heterologo...

  20. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Hsu Anna

    2011-10-01

    Full Text Available Abstract Sulforaphane (SFN, an isothiocyanate derived from cruciferous vegetables, induces potent anti-proliferative effects in prostate cancer cells. One mechanism that may contribute to the anti-proliferative effects of SFN is the modulation of epigenetic marks, such as inhibition of histone deacetylase (HDAC enzymes. However, the effects of SFN on other common epigenetic marks such as DNA methylation are understudied. Promoter hyper-methylation of cyclin D2, a major regulator of cell cycle, is correlated with prostate cancer progression, and restoration of cyclin D2 expression exerts anti-proliferative effects on LnCap prostate cancer cells. Our study aimed to investigate the effects of SFN on DNA methylation status of cyclin D2 promoter, and how alteration in promoter methylation impacts cyclin D2 gene expression in LnCap cells. We found that SFN significantly decreased the expression of DNA methyltransferases (DNMTs, especially DNMT1 and DNMT3b. Furthermore, SFN significantly decreased methylation in cyclin D2 promoter regions containing c-Myc and multiple Sp1 binding sites. Reduced methlyation of cyclin D2 promoter corresponded to an increase in cyclin D2 transcript levels, suggesting that SFN may de-repress methylation-silenced cyclin D2 by impacting epigenetic pathways. Our results demonstrated the ability of SFN to epigenetically modulate cyclin D2 expression, and provide novel insights into the mechanisms by which SFN may regulate gene expression as a prostate cancer chemopreventive agent.

  1. Regulation of the retinoblastoma protein-related p107 by G1 cyclin complexes

    NARCIS (Netherlands)

    Beijersbergen, R.L.; Carlée, L.; Kerkhoven, R.M.; Bernards, R.A.

    1995-01-01

    The orderly progression through the cell cycle is mediated by the sequential activation of several cyclin/cyclin-dependent kinase (cdk) complexes. These kinases phosphorylate a number of cellular substrates, among which is the product of the retinoblastoma gene, pRb. Phosphorylation of pRb in late

  2. Cyclin A1 is a transcriptional target of PITX2 and overexpressed in papillary thyroid carcinoma.

    Science.gov (United States)

    Liu, Yan; Huang, Yue; Zhu, Guo-Zhang

    2013-12-01

    Physiological expression of cyclin A1, a unique cell cycle regulator essential for spermatogenesis, is predominantly restricted in male germ cells. Outstandingly, previous studies have also demonstrated the abnormal expression of cyclin A1 in various human tumors. How male germ cell-specific cyclin A1 is transcriptionally activated in tumor cells, however, is elusive. To begin to understand the molecular mechanisms governing the ectopic expression of cyclin A1, we searched for transcription factors and cis-regulatory DNA elements. We found that overexpression of PITX2, a paired-like homeodomain transcription factor and a downstream effector of Wnt/β-catenin signaling, resulted in upregulation of cyclin A1 in HEK293 cells and TPC-1 thyroid cancer cells. On the other hand, PITX2 knockdown in TPC-1 cells caused reduced cyclin A1. Promoter reporter assays with a series of deletion constructs determined that the DNA element from -102 to -96 bp of the cyclin A1 promoter is responsible for PITX2-induced gene expression. The result of chromatin immunoprecipitation revealed the occupancy of PITX2 on the cyclin A1 promoter. Taken together, these findings demonstrate that cyclin A1 is a transcriptional target of PITX2. Consistently, our immunohistochemistry result showed up-regulation of cyclin A1 in human papillary thyroid carcinoma, where overexpressed PITX2 has been endorsed in our recent report. Thus, our study provides new evidence on the regulation of cyclin A1 gene expression and offers a PITX2-cycin A1 pathway for cell cycle regulation.

  3. The Rho GTPase Effector ROCK Regulates Cyclin A, Cyclin D1, and p27Kip1 Levels by Distinct Mechanisms

    OpenAIRE

    Croft, Daniel R.; Olson, Michael F.

    2006-01-01

    The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. H...

  4. Functional characterization of a rare germline mutation in the gene encoding the cyclin-dependent kinase inhibitor p27Kip1 (CDKN1B) in a Spanish patient with multiple endocrine neoplasia-like phenotype.

    Science.gov (United States)

    Malanga, Donatella; De Gisi, Silvia; Riccardi, Miriam; Scrima, Marianna; De Marco, Carmela; Robledo, Mercedes; Viglietto, Giuseppe

    2012-03-01

    The aim of this study was to investigate the presence of germline mutations in the CDKN1B gene that encodes the cyclin-dependent kinase (Cdk) inhibitor p27 in multiple endocrine neoplasia 1 (MEN1)-like Spanish index patients. The CDKN1B gene has recently been identified as a tumor susceptibility gene for MEN4, with six germline mutations reported so far in patients with a MEN-like phenotype but negative for MEN1 mutations. Fifteen Spanish index cases with MEN-like symptoms were screened for mutations in the CDKN1B gene and the mutant variant was studied functionally by transcription/translation assays in vitro and in transiently transfected HeLa cells. We report the identification of a heterozygous GAGA deletion in the 5'-UTR of CDKN1B, NM_004064.3:c.-32_-29del, in a patient affected by gastric carcinoid tumor and hyperparathyroidism. This deletion falls inside the region that is responsible for CDKN1B transcription and is predicted to destroy a secondary stem and loop structure that includes the GAGAGA element responsible for ribosome recruitment. Accordingly, in vitro studies of coupled transcription/translation assays and transient transfection in HeLa cells showed that the GAGA deletion in the CDKN1B 5'-UTR significantly impairs the transcription of downstream reporter luciferase (of ∼40-60%) and, possibly, the translation of the corresponding mRNA. This mutation was associated with a significant reduction in the amount of CDKN1B mRNA in peripheral blood leukocytes from the patient, as demonstrated by quantitative real-time PCR. Our results confirm that germline CDKN1B mutations may predispose to a human MEN4 condition and add novel evidence that alteration in the transcription/translation rate of CDKN1B mRNA might be the mechanism implicated in tumor susceptibility.

  5. Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells

    Science.gov (United States)

    Jiménez-Palomares, Margarita; López-Acosta, José Francisco; Villa-Pérez, Pablo; Moreno-Amador, José Luis; Muñoz-Barrera, Jennifer; Fernández-Luis, Sara; Heras-Pozas, Blanca; Perdomo, Germán; Bernal-Mizrachi, Ernesto

    2015-01-01

    Activation of pancreatic β-cell proliferation has been proposed as an approach to replace reduced functional β-cell mass in diabetes. Quiescent fibroblasts exit from G0 (quiescence) to G1 through pRb phosphorylation mediated by cyclin C/cdk3 complexes. Overexpression of cyclin D1, D2, D3, or cyclin E induces pancreatic β-cell proliferation. We hypothesized that cyclin C overexpression would induce β-cell proliferation through G0 exit, thus being a potential therapeutic target to recover functional β-cell mass. We used isolated rat and human islets transduced with adenovirus expressing cyclin C. We measured multiple markers of proliferation: [3H]thymidine incorporation, BrdU incorporation and staining, and Ki67 staining. Furthermore, we detected β-cell death by TUNEL, β-cell differentiation by RT-PCR, and β-cell function by glucose-stimulated insulin secretion. Interestingly, we have found that cyclin C increases rat and human β-cell proliferation. This augmented proliferation did not induce β-cell death, dedifferentiation, or dysfunction in rat or human islets. Our results indicate that cyclin C is a potential target for inducing β-cell regeneration. PMID:25564474

  6. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2.

    Science.gov (United States)

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Reiter, Michael; Tsaur, Igor; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A

    2014-01-01

    Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR) related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.

  7. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2.

    Directory of Open Access Journals (Sweden)

    Jasmina Makarević

    Full Text Available Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP. Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.

  8. Sanguinarine causes cell cycle blockade and apoptosis of human prostate carcinoma cells via modulation of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery.

    Science.gov (United States)

    Adhami, Vaqar Mustafa; Aziz, Moammir Hasan; Reagan-Shaw, Shannon R; Nihal, Minakshi; Mukhtar, Hasan; Ahmad, Nihal

    2004-08-01

    Prostate cancer is the second leading cause of cancer-related deaths in males in the United States. This warrants the development of novel mechanism-based strategies for the prevention and/or treatment of prostate cancer. Several studies have shown that plant-derived alkaloids possess remarkable anticancer effects. Sanguinarine, an alkaloid derived from the bloodroot plant Sanguinaria canadensis, has been shown to possess antimicrobial, anti-inflammatory, and antioxidant properties. Previously, we have shown that sanguinarine possesses strong antiproliferative and proapoptotic properties against human epidermoid carcinoma A431 cells and immortalized human HaCaT keratinocytes. Here, employing androgen-responsive human prostate carcinoma LNCaP cells and androgen-unresponsive human prostate carcinoma DU145 cells, we studied the antiproliferative properties of sanguinarine against prostate cancer. Sanguinarine (0.1-2 micromol/L) treatment of LNCaP and DU145 cells for 24 hours resulted in dose-dependent (1) inhibition of cell growth [as evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay], (2) arrest of cells in G0-G1 phase of the cell cycle (as assessed by DNA cell cycle analysis), and (3) induction of apoptosis (as evaluated by DNA ladder formation and flow cytometry). To define the mechanism of antiproliferative effects of sanguinarine against prostate cancer, we studied the effect of sanguinarine on critical molecular events known to regulate the cell cycle and the apoptotic machinery. Immunoblot analysis showed that sanguinarine treatment of both LNCaP and DU145 cells resulted in significant (1) induction of cyclin kinase inhibitors p21/WAF1 and p27/KIP1; (2) down-regulation of cyclin E, D1, and D2; and (3) down-regulation of cyclin-dependent kinase 2, 4, and 6. A highlight of this study was the fact that sanguinarine induced growth inhibitory and antiproliferative effects in human prostate carcinoma cells irrespective of their androgen

  9. Patterns of cyclin A and B1 immunostaining in papillary thyroid carcinoma.

    Science.gov (United States)

    Cyniak-Magierska, Anna; Stasiak, Magdalena; Naze, Maciej; Dedecjus, Marek; Brzeziński, Jan; Lewiński, Andrzej

    2015-01-01

    Cyclin A, encoded by CCNA (cyclin A) gene with locus in chromosome 4q27, and cyclin B1, encoded by CCNB1 (cyclin B1) gene with locus in chromosome 5q12, are proteins that play a key role in the passage through the restriction point in G2 phase of the cell cycle. The aim of the study was to analyse immunohistochemically the expression of cyclins A and B1 in different variants of papillary thyroid carcinoma (PTC). The immunostaining patterns of the proteins in question in the tissue of 40 resected PTC (20 cases of classic variant of PTC, 9 cases of PTC follicular variant and 11 cases of other non-classic variants of PTC) were investigated. On analyzing cyclin A and B1 expression, positive staining in 90% cases of PTC were observed. The study revealed a significant difference in expression of cyclins A and B1 between classic and non-classic variants of PTC. The expression of both examined cyclins was weaker in the classic variant of PTC. In the group of follicular variant of PTC, the expression of cyclins was of medium intensity and in the group of other non-classic variants of PTC, the expression was clearly higher. The results of the presented study suggest that cyclins A and B1 expression may have a characteristic pattern of immunostaining for particular variants of PTC. If the obtained results are confirmed in a larger group of patients, the diagnostic panel constructed of the antibodies against these proteins may increase the diagnostic accuracy in PTC cases.

  10. Repression of c-Myc responsive genes in cycling cells causes G1 arrest through reduction of cyclin E/CDK2 kinase activity

    NARCIS (Netherlands)

    Berns, K.; Hijmans, E.M.; Bernards, R.A.

    1997-01-01

    The c-myc gene encodes a sequence-specific DNA binding protein involved in proliferation and oncogenesis. Activation of c-myc expression in quiescent cells is sufficient to mediate cell cycle entry, whereas inhibition of c-myc expression causes cycling cells to withdraw from the cell cycle. To

  11. Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies

    Science.gov (United States)

    Weinstein, Shiri; Toker, Itai A.; Emmanuel, Rafi; Ramishetti, Srinivas; Hazan-Halevy, Inbal; Rosenblum, Daniel; Goldsmith, Meir; Abraham, Avigdor; Benjamini, Ohad; Bairey, Osnat; Raanani, Pia; Nagler, Arnon; Lieberman, Judy

    2016-01-01

    Despite progress in systemic small interfering RNA (siRNA) delivery to the liver and to solid tumors, systemic siRNA delivery to leukocytes remains challenging. The ability to silence gene expression in leukocytes has great potential for identifying drug targets and for RNAi-based therapy for leukocyte diseases. However, both normal and malignant leukocytes are among the most difficult targets for siRNA delivery as they are resistant to conventional transfection reagents and are dispersed in the body. We used mantle cell lymphoma (MCL) as a prototypic blood cancer for validating a novel siRNA delivery strategy. MCL is an aggressive B-cell lymphoma that overexpresses cyclin D1 with relatively poor prognosis. Down-regulation of cyclin D1 using RNA interference (RNAi) is a potential therapeutic approach to this malignancy. Here, we designed lipid-based nanoparticles (LNPs) coated with anti-CD38 monoclonal antibodies that are specifically taken up by human MCL cells in the bone marrow of xenografted mice. When loaded with siRNAs against cyclin D1, CD38-targeted LNPs induced gene silencing in MCL cells and prolonged survival of tumor-bearing mice with no observed adverse effects. These results highlight the therapeutic potential of cyclin D1 therapy in MCL and present a novel RNAi delivery system that opens new therapeutic opportunities for treating MCL and other B-cell malignancies. PMID:26699502

  12. Cyc17, a meiosis-specific cyclin, is essential for anaphase initiation and chromosome segregation in Tetrahymena thermophila.

    Science.gov (United States)

    Yan, Guan-Xiong; Dang, Huai; Tian, Miao; Zhang, Jing; Shodhan, Anura; Ning, Ying-Zhi; Xiong, Jie; Miao, Wei

    2016-07-17

    Although the role of cyclins in controlling nuclear division is well established, their function in ciliate meiosis remains unknown. In ciliates, the cyclin family has undergone massive expansion which suggests that diverse cell cycle systems exist, and this warrants further investigation. A screen for cyclins in the model ciliate Tetrahymena thermophila showed that there are 34 cyclins in this organism. Only 1 cyclin, Cyc17, contains the complete cyclin core and is specifically expressed during meiosis. Deletion of CYC17 led to meiotic arrest at the diakinesis-like metaphase I stage. Expression of genes involved in DNA metabolism and chromosome organization (chromatin remodeling and basic chromosomal structure) was repressed in cyc17 knockout matings. Further investigation suggested that Cyc17 is involved in regulating spindle pole attachment, and is thus essential for chromosome segregation at meiosis. These findings suggest a simple model in which chromosome segregation is influenced by Cyc17.

  13. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    KAUST Repository

    Roques, Magali

    2015-11-13

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  14. The Cyclin-Dependent Kinase Ortholog pUL97 of Human Cytomegalovirus Interacts with Cyclins

    Directory of Open Access Journals (Sweden)

    Laura Graf

    2013-12-01

    Full Text Available The human cytomegalovirus (HCMV-encoded protein kinase, pUL97, is considered a cyclin-dependent kinase (CDK ortholog, due to shared structural and functional characteristics. The primary mechanism of CDK activation is binding to corresponding cyclins, including cyclin T1, which is the usual regulatory cofactor of CDK9. This study provides evidence of direct interaction between pUL97 and cyclin T1 using yeast two-hybrid and co-immunoprecipitation analyses. Confocal immunofluorescence revealed partial colocalization of pUL97 with cyclin T1 in subnuclear compartments, most pronounced in viral replication centres. The distribution patterns of pUL97 and cyclin T1 were independent of HCMV strain and host cell type. The sequence domain of pUL97 responsible for the interaction with cyclin T1 was between amino acids 231–280. Additional co-immunoprecipitation analyses showed cyclin B1 and cyclin A as further pUL97 interaction partners. Investigation of the pUL97-cyclin T1 interaction in an ATP consumption assay strongly suggested phosphorylation of pUL97 by the CDK9/cyclin T1 complex in a substrate concentration-dependent manner. This is the first demonstration of interaction between a herpesviral CDK ortholog and cellular cyclins.

  15. The δ-cyclin expression at early stages of embryogenesis of Brassica rapa L. under clinorotation

    Science.gov (United States)

    Artemenko, O. A.; Popova, A. F.

    We present some results of comparison studying of Brassica embryo development and the δ-cyclin genes expression under slow horizontal clinorotation and in the laboratory control. Some backlog of the δ1-cyclin genes expression at early stages of embryogenesis under clinorotation was revealed in comparison with the laboratory control. The similar level of the δ3-cyclin expression at all stages of embryo formation (from one to nine days) in both variants is shown. Some delays in the rate of Brassica rapa embryo development under clinorotation in comparison with the laboratory control can be a result of decrease of a level and some backlog of the δ1-cyclin expression at early stages of embryogenesis.

  16. Adenoviral gene transfer of PLD1-D4 enhances insulin sensitivity in mice by disrupting phospholipase D1 interaction with PED/PEA-15.

    Directory of Open Access Journals (Sweden)

    Angela Cassese

    Full Text Available Over-expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15 causes insulin resistance by interacting with the D4 domain of phospholipase D1 (PLD1. Indeed, the disruption of this association restores insulin sensitivity in cultured cells over-expressing PED/PEA-15. Whether the displacement of PLD1 from PED/PEA-15 improves insulin sensitivity in vivo has not been explored yet. In this work we show that treatment with a recombinant adenoviral vector containing the human D4 cDNA (Ad-D4 restores normal glucose homeostasis in transgenic mice overexpressing PED/PEA-15 (Tg ped/pea-15 by improving both insulin sensitivity and secretion. In skeletal muscle of these mice, D4 over-expression inhibited PED/PEA-15-PLD1 interaction, decreased Protein Kinase C alpha activation and restored insulin induced Protein Kinase C zeta activation, leading to amelioration of insulin-dependent glucose uptake. Interestingly, Ad-D4 administration improved insulin sensitivity also in high-fat diet treated obese C57Bl/6 mice. We conclude that PED/PEA-15-PLD1 interaction may represent a novel target for interventions aiming at improving glucose tolerance.

  17. Effect of Quercetin on Cell Cycle and Cyclin Expression in Ovarian Carcinoma and Osteosarcoma Cell Lines.

    Science.gov (United States)

    Catanzaro, Daniela; Ragazzi, Eugenio; Vianello, Caterina; Caparrotta, Laura; Montopoli, Monica

    2015-08-01

    Resistance to chemotherapeutic drugs is a major problem in cancer treatment. The search for new interventions able to overcome this resistance may involve compounds of natural origin, such as flavonoids, ubiquitously present in many foods. In the present study, the cytotoxic effects and cell cycle modulation of the flavonoid quercetin were investigated in ovarian carcinoma (SKOV3) and osteosarcoma (U2OS) human cell lines and in their cisplatin (CDDP)-resistant counterparts (SKOV3/CDDP and U2OSPt cells, respectively). Quercetin (10-50 μM) caused evident changes in the distribution of cell cycle phases in the CDDP-resistant SKOV3/CDDP ovarian cell line. The levels of cyclin D1 and cyclin B1 were determined by means of Western blot in all cell lines incubated with quercetin (50 μM) for 48 hours. The cyclin D1 expression was significantly decreased following the treatment with quercetin in SKOV3 and U2OSPt cells, but not in SKOV3/CDDP and U2OS cells. The reduction of cyclin D1 level could be linked to the G1/S phase alteration found in quercetin-treated cells. Although cyclin B1 is required for G2/M phase, and despite our observation that quercetin influenced the G2/M phase of cell cycle, the flavonoid did not affect cyclin B1 levels in all cell lines, indicating the involvement of other possible mechanisms. These results suggest that quercetin, exceeding the resistance to CDDP, might become an interesting tool to evaluate cytotoxic activity in combination with chemotherapy drugs.

  18. Caenorhabditis elegans cyclin D/CDK4 and cyclin E/CDK2 induce distinct cell cycle re-entry programs in differentiated muscle cells.

    Directory of Open Access Journals (Sweden)

    Jerome Korzelius

    2011-11-01

    Full Text Available Cell proliferation and differentiation are regulated in a highly coordinated and inverse manner during development and tissue homeostasis. Terminal differentiation usually coincides with cell cycle exit and is thought to engage stable transcriptional repression of cell cycle genes. Here, we examine the robustness of the post-mitotic state, using Caenorhabditis elegans muscle cells as a model. We found that expression of a G1 Cyclin and CDK initiates cell cycle re-entry in muscle cells without interfering with the differentiated state. Cyclin D/CDK4 (CYD-1/CDK-4 expression was sufficient to induce DNA synthesis in muscle cells, in contrast to Cyclin E/CDK2 (CYE-1/CDK-2, which triggered mitotic events. Tissue-specific gene-expression profiling and single molecule FISH experiments revealed that Cyclin D and E kinases activate an extensive and overlapping set of cell cycle genes in muscle, yet failed to induce some key activators of G1/S progression. Surprisingly, CYD-1/CDK-4 also induced an additional set of genes primarily associated with growth and metabolism, which were not activated by CYE-1/CDK-2. Moreover, CYD-1/CDK-4 expression also down-regulated a large number of genes enriched for catabolic functions. These results highlight distinct functions for the two G1 Cyclin/CDK complexes and reveal a previously unknown activity of Cyclin D/CDK-4 in regulating metabolic gene expression. Furthermore, our data demonstrate that many cell cycle genes can still be transcriptionally induced in post-mitotic muscle cells, while maintenance of the post-mitotic state might depend on stable repression of a limited number of critical cell cycle regulators.

  19. The Chromatin-Remodeling Protein Osa Interacts With CyclinE in Drosophila Eye Imaginal Discs

    Science.gov (United States)

    Baig, Jawaid; Chanut, Francoise; Kornberg, Thomas B.; Klebes, Ansgar

    2010-01-01

    Coordinating cell proliferation and differentiation is essential during organogenesis. In Drosophila, the photoreceptor, pigment, and support cells of the eye are specified in an orchestrated wave as the morphogenetic furrow passes across the eye imaginal disc. Cells anterior of the furrow are not yet differentiated and remain mitotically active, while most cells in the furrow arrest at G1 and adopt specific ommatidial fates. We used microarray expression analysis to monitor changes in transcription at the furrow and identified genes whose expression correlates with either proliferation or fate specification. Some of these are members of the Polycomb and Trithorax families that encode epigenetic regulators. Osa is one; it associates with components of the Drosophila SWI/SNF chromatin-remodeling complex. Our studies of this Trithorax factor in eye development implicate Osa as a regulator of the cell cycle: Osa overexpression caused a small-eye phenotype, a reduced number of M- and S-phase cells in eye imaginal discs, and a delay in morphogenetic furrow progression. In addition, we present evidence that Osa interacts genetically and biochemically with CyclinE. Our results suggest a dual mechanism of Osa function in transcriptional regulation and cell cycle control. PMID:20008573

  20. Casein kinase II phosphorylation of cyclin F at serine 621 regulates the Lys48-ubiquitylation E3 ligase activity of the SCF((cyclin F)) complex.

    Science.gov (United States)

    Lee, Albert; Rayner, Stephanie L; De Luca, Alana; Gwee, Serene S L; Morsch, Marco; Sundaramoorthy, Vinod; Shahheydari, Hamideh; Ragagnin, Audrey; Shi, Bingyang; Yang, Shu; Williams, Kelly L; Don, Emily K; Walker, Adam K; Zhang, Katharine Y; Yerbury, Justin J; Cole, Nicholas J; Atkin, Julie D; Blair, Ian P; Molloy, Mark P; Chung, Roger S

    2017-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that is characterized by progressive weakness, paralysis and muscle loss often resulting in patient death within 3-5 years of diagnosis. Recently, we identified disease-linked mutations in the CCNF gene, which encodes the cyclin F protein, in cohorts of patients with familial and sporadic ALS and frontotemporal dementia (FTD) (Williams KL et al 2016 Nat. Commun.7, 11253. (doi:10.1038/ncomms11253)). Cyclin F is a part of a Skp1-Cul-F-box (SCF) E3 ubiquitin-protein ligase complex and is responsible for ubiquitylating proteins for degradation by the proteasome. In this study, we investigated the phosphorylation status of cyclin F and the effect of the serine to glycine substitution at site 621 (S621G) on E3 ligase activity. This specific mutation (S621G) was found in a multi-generational Australian family with ALS/FTD. We identified seven phosphorylation sites on cyclin F, of which five are newly reported including Ser621. These phosphorylation sites were mostly identified within the PEST (proline, glutamic acid, serine and threonine) sequence located at the C-terminus of cyclin F. Additionally, we determined that casein kinase II (CK2) can phosphorylate Ser621 and thereby regulate the E3 ligase activity of the SCF((cyclin F)) complex. Furthermore, the S621G mutation in cyclin F prevents phosphorylation by CK2 and confers elevated Lys48-ubiquitylation activity, a hallmark of ALS/FTD pathology. These findings highlight the importance of phosphorylation in regulating the activity of the SCF((cyclin F)) E3 ligase complex that can affect downstream processes and may lead to defective motor neuron development, neuron degeneration and ultimately ALS and FTD. © 2017 The Authors.

  1. Cyclin D1-AR Crosstalk: Potential Implications for Therapeutic Response in Prostate Cancer

    Science.gov (United States)

    2013-06-01

    Training program Task1: Didactic coursework and laboratory research A. Didactic coursework->completed B. Laboratory research (months 1-36)->completed...phase II clinical trials of flavopiridol were disappointing, due largely to off- target effects and toxicity.11 Recently, a clinical grade, orally active...MD, USA; NOD.SCID/NCr, 01N31). Tumors were measured with calipers and matched for an average size of 700 mm3, oral gavage was initiated (day 0) with PD

  2. The Role of Cyclin D1 in the Chemoresistance of Mantle Cell Lymphoma

    Science.gov (United States)

    2017-09-01

    then relapsed have also been reported, including recurrent mutations of the enzyme active site in BTK (C481S) or its substrate phospholipase C...prompted us to evaluate the interaction of the T286 phosphorylating enzyme GSK3B with WT and mutant CCND1 using the co-immunoprecipitation (co-IP...Gary Nolan) at XhoI and NotI restriction sites. CCND1-HA PCR products were generated using the following primer pairs: 5′ TAGTAGctcgagGCCG

  3. Co-expression of cyclin D1 and phosphorylated ribosomal S6 proteins in hemimegalencephaly

    NARCIS (Netherlands)

    Aronica, Eleonora; Boer, Karin; Baybis, Marianna; Yu, Jia; Crino, Peter

    2007-01-01

    Hemimegalencephaly (HMEG) is a developmental brain malformation highly associated with epilepsy. Balloon cells (BCs) and cytomegalic neurons (CNs) are frequently observed in HMEG specimens. Cytomegaly in developmental brain malformations may reflect in aberrant activation of the mTOR and

  4. Regulation of the Alternative Splicing and Function of Cyclin T1 by the Serine-Arginine-Rich Protein ASF/SF2.

    Science.gov (United States)

    Zhou, Jieqiong; Gao, Guozhen; Hou, Panpan; Li, Chun-Mei; Guo, Deyin

    2017-11-01

    Positive transcription elongation factor-b (P-TEFb) is required for the release of RNA polymerase II (RNAPII) from its pause near the gene promoters and thus for efficient proceeding to the transcription elongation. It consists of two core subunits-CDK9 and one of T-typed or K-typed cyclin, of which, cyclin T1/CDK9 is the major and most studied combination. We have previously identified a novel splice variant of cyclin T1, cyclin T1b, which negatively regulates the transcription elongation of HIV-1 genes as well as several host genes. In this study, we revealed the serine-arginine-rich protein, ASF/SF2, as a regulatory factor of the alternative splicing of cyclin T1 gene. ASF/SF2 promotes the production of cyclin T1b versus cyclin T1a and regulates the expression of cyclin T1-depedent genes at the transcription level. We further found that a cis-element on exon 8 is responsible for the skipping of exon 7 mediated by ASF/SF2. Collectively, ASF/SF2 is identified as a splicing regulator of cyclin T1, which contributes to the control of the subsequent transcription events. J. Cell. Biochem. 118: 4020-4032, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Cyclin G2 suppresses estrogen-mediated osteogenesis through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Jinlan Gao

    Full Text Available Estrogen plays an important role in the maintenance of bone formation, and deficiency in the production of estrogen is directly linked to postmenopausal osteoporosis. To date, the underlying mechanisms of estrogen-mediated osteogenic differentiation are not well understood. In this study, a pluripotent mesenchymal precursor cell line C2C12 was used to induce osteogenic differentiation and subjected to detection of gene expressions or to manipulation of cyclin G2 expressions. C57BL/6 mice were used to generate bilateral ovariectomized and sham-operated mice for analysis of bone mineral density and protein expression. We identified cyclin G2, an unconventional member of cyclin, is involved in osteoblast differentiation regulated by estrogen in vivo and in vitro. In addition, the data showed that ectopic expression of cyclin G2 suppressed expression of osteoblast transcription factor Runx2 and osteogenic differentiation marker genes, as well as ALP activity and in vitro extracellular matrix mineralization. Mechanistically, Wnt/β-catenin signaling pathway is essential for cyclin G2 to inhibit osteogenic differentiation. To the best of our knowledge, the current study presents the first evidence that cyclin G2 serves as a negative regulator of both osteogenesis and Wnt/β-catenin signaling. Most importantly, the basal and 17β-estradiol-induced osteogenic differentiation was restored by overexpression of cyclin G2. These results taken together suggest that cyclin G2 may function as an endogenous suppressor of estrogen-induced osteogenic differentiation through inhibition of Wnt/β-catenin signaling.

  6. O( d+1 , d+1) enhanced double field theory

    Science.gov (United States)

    Hohm, Olaf; Musaev, Edvard T.; Samtleben, Henning

    2017-10-01

    Double field theory yields a formulation of the low-energy effective action of bosonic string theory and half-maximal supergravities that is covariant under the T-duality group O( d, d) emerging on a torus T d . Upon reduction to three spacetime dimensions and dualisation of vector fields into scalars, the symmetry group is enhanced to O( d+1 , d+1). We construct an enhanced double field theory with internal coordinates in the adjoint representation of O( d + 1 , d + 1). Its section constraints admit two inequivalent solutions, encoding in particular the embedding of D = 6 chiral and non-chiral theories, respectively. As an application we define consistent generalized Scherk-Schwarz reductions using a novel notion of generalized parallelization. This allows us to prove the consistency of the truncations of D = 6, N=(1,1) and D = 6, N=(2,0) supergravity on {AdS}_3× S^3.

  7. miR-18a promotes cell proliferation of esophageal squamous cell carcinoma cells by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiguo, E-mail: weiguozhangHU@gmail.com; Lei, Caipeng; Fan, Junli; Wang, Jing

    2016-08-12

    Esophageal squamous cell carcinoma (ESCC) is one of the lethal cancers with a high incidence rate in Asia. Cyclin D1 is overexpressed and plays an important role in the carcinogenesis of ESCC; however the mechanism of the deregulation of Cyclin D1 in ESCC remains to be determined. In the study, we found that miR-18a promotes the expression Cyclin D1 by targeting PTEN in eophageal squamous cell carcinoma TE13 and Eca109 cells. Transfection of miR-18a mimetics increased cyclin D1, while transfection of miR-18a antagomir decreased D1. Moreover, miR-18a-mediated upregulation of cyclin D1 was accompanied with downregulation of PTEN, which is a direct target of miR-18a, and increase of the phosphorylation of AKT and S6K1. In addition, pharmacologic inhibition of AKT or mTOR kinases abolished the increase of cyclinD1 by miR-18a, which was accompanied with decreased phosphorylation of Rb−S780 and inhibition of cell proliferation. Our results demonstrated the upregulation of miR-18a promoted cell proliferation by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis, suggesting that small molecule inhibitors of AKT-mTOR signaling are potential agents for the treatment of ESCC patients with upregulation of miR-17-92 cluster. - Highlights: • miR-18a promotes the proliferation of ESCC cells. • miR-18a increase cyclin D1 expression in ESCC cells. • miR-18a directly targets PTEN in ESCC cells. • Inhibition of AKT-mTOR prevents miR-18a-induced cyclin D1 in ESCC cells. • miR-18a antagomir sensitizes ESCC cells to cisplatin.

  8. Targeting Cyclin-Dependent Kinases in Synovial Sarcoma: Palbociclib as a Potential Treatment for Synovial Sarcoma Patients.

    Science.gov (United States)

    Vlenterie, Myrella; Hillebrandt-Roeffen, Melissa H S; Schaars, Esther W M; Flucke, Uta E; Fleuren, Emmy D G; Navis, Anna C; Leenders, William P J; Versleijen-Jonkers, Yvonne M H; van der Graaf, Winette T A

    2016-09-01

    In synovial sarcomas alterations in the cyclin D1-CDK4/6-Rb axis have been described. Also, β-catenin, a cyclin D1 regulator, is often overexpressed. Additionally, studies have shown that the t(X;18) translocation influences tumor behavior partly through cyclin D1 activation. We investigated how alterations in the cyclin D1-CDK4/6-Rb axis impact prognosis and studied effects of targeting this axis with the CDK4/6 inhibitor palbociclib. Synovial sarcoma samples (n = 43) were immunohistochemically stained for β-catenin, cyclin D1, p16, p21, p27, Rb, and phospho-Rb. Fluorescent in situ hybridization (FISH) was performed to detect CCND1 amplification or translocation. In 4 synovial sarcoma cell lines sensitivity to palbociclib was investigated using cell viability assays, and effects on the sensitive cell lines were evaluated on protein level and by cell cycle arrest. Expression of nuclear phospho-Rb and nuclear β-catenin in the patient samples was associated with poor survival. FISH showed a sporadic translocation of CCND1 in a subset of tumors. An 8-fold CCND1 amplification was found in 1 cell line, but not in the patient samples investigated. Palbociclib effectively inhibited Rb-phosphorylation in 3 cell lines, resulting in an induction of a G1 arrest and proliferation block. In this series nuclear phospho-Rb and nuclear β-catenin expression were negative prognostic factors. In vitro data suggest that palbociclib may be a potential treatment for a subset of synovial sarcoma patients. Whether this effect can be enhanced by combination treatment deserves further preclinical investigations.

  9. The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina.

    Science.gov (United States)

    Sen, Gulseren; Eryilmaz, Isil Ezgi; Ozakca, Dilek

    2014-02-01

    In this study, the effects of short-term aluminium toxicity and the application of spermidine on the lichen Xanthoria parietina were investigated at the physiological and transcriptional levels. Our results suggest that aluminium stress leads to physiological processes in a dose-dependent manner through differences in lipid peroxidation rate, chlorophyll content and glutathione reductase (EC 1.6.4.2) activity in aluminium and spermidine treated samples. The expression of the photosystem II D1 protein (psbA) gene was quantified using semi-quantitative RT-PCR. Increased glutathione reductase activity and psbA mRNA transcript levels were observed in the X. parietina thalli that were treated with spermidine before aluminium-stress. The results showed that the application of spermidine could mitigate aluminium-induced lipid peroxidation and chlorophyll degradation on lichen X. parietina thalli through an increase in psbA transcript levels and activity of glutathione reductase (GR) enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Localization of two mammalian cyclin dependent kinases during mammalian meiosis

    NARCIS (Netherlands)

    Ashley, T.; Walpita, D.; de rooij, D. G.

    2001-01-01

    Mammalian meiotic progression, like mitotic cell cycle progression, is regulated by cyclins and cyclin dependent kinases (CDKs). However, the unique requirements of meiosis (homologous synapsis, reciprocal recombination and the dual divisions that segregate first homologues, then sister chromatids)

  11. Membrane topology and intracellular processing of cyclin M2 (CNNM2).

    NARCIS (Netherlands)

    Baaij, J.H.F. de; Stuiver, M.; Meij, I.C.; Lainez, S.; Kopplin, K.; Venselaar, H.; Muller, D.; Bindels, R.J.M.; Hoenderop, J.G.J.

    2012-01-01

    Recently, mutations in the cyclin M2 (CNNM2) gene were identified to be causative for severe hypomagnesemia. In kidney, CNNM2 is a basolaterally expressed protein with predominant expression in the distal convoluted tubule. Transcellular magnesium (Mg(2+)) reabsorption in the distal convoluted

  12. Copy Number Defects of G1-Cell Cycle Genes in Neuroblastoma are Frequent and Correlate with High Expression of E2F Target Genes and a Poor Prognosis

    NARCIS (Netherlands)

    Molenaar, Jan J.; Koster, Jan; Ebus, Marli E.; van Sluis, Peter; Westerhout, Ellen M.; de Preter, Katleen; Gisselsson, David; Øra, Ingrid; Speleman, Frank; Caron, Huib N.; Versteeg, Rogier

    2012-01-01

    The tightly controlled network of cell cycle genes consists of a core of cyclin dependent kinases (CDKs) that are activated by periodically expressed cyclins. The activity of the cyclin-CDK complexes is regulated by cyclin dependent kinase inhibitors (CDKIs) and multiple signal transduction routes

  13. Cyclin A correlates with YB1, progression and resistance to chemotherapy in human epithelial ovarian cancer.

    Science.gov (United States)

    Cybulski, Marek; Jarosz, Bożena; Nowakowski, Andrzej; Jeleniewicz, Witold; Kutarska, Elżbieta; Bednarek, Wiesława; Stepulak, Andrzej

    2015-03-01

    Cyclin A is a cell-cycle regulatory gene and its overexpression promotes tumor cell growth. Y-Box-binding protein 1 (YB1) is a transcription/translation factor involved in tumor growth, invasion, and drug resistance. We investigated whether an association exists between protein products of these genes in epithelial ovarian cancer (EOC) specimens and clinicopathological parameters, patient response and EOC sensitivity to platinum-based first-line chemotherapy. Cyclin A and YB1 expression were analyzed by immunohistochemistry in 54 human primary EOC tissues. Immunolabeling of both proteins was graded according to their staining intensity (scale 0-3) and the proportion of immunostained cancer cells (scale 0-4) to obtain a staining index (SI; value=0-12). Significantly higher cyclin A immunostaining (SI≥4) in EOC specimens was discovered in patients with advanced (International Federation of Gynaecology and Obstetrics (FIGO) III and IV, p=0.003), poorly differentiated (G3, p1 cm (p=0.001). YB1 immunostaining was significantly higher in EOCs from patients with suboptimal debulking (p=0.025). Over-expression of cyclin A (SI≥9) in EOCs was significantly linked with poorer patient response (p=0.001) and higher resistance of tumors to platinum-based first-line chemotherapy (p=0.007), while immunolabeling of YB1 in EOCs was not significantly associated with either of these variables (p>0.05). Cyclin A expression was significantly and positively correlated with that of YB1 (R=0.588, p<0.001). Increased cyclin A expression in EOC is related to a more aggressive tumor behavior and predicts the response of patients to first-line platinum-based chemotherapy. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo.

    Science.gov (United States)

    Rashidian, Juliet; Iyirhiaro, Grace; Aleyasin, Hossein; Rios, Mario; Vincent, Inez; Callaghan, Steven; Bland, Ross J; Slack, Ruth S; During, Matthew J; Park, David S

    2005-09-27

    The mechanisms involving neuronal death after ischemic/hypoxic insult are complex, involving both rapid (excitotoxic) and delayed (apoptotic-like) processes. Recent evidence suggests that cell cycle regulators such as cyclin-dependent kinases are abnormally activated in neuropathological conditions, including stroke. However, the function of this activation is unclear. Here, we provide evidence that inhibition of the cell cycle regulator, Cdk4, and its activator, cyclinD1, plays critical roles in the delayed death component of ischemic/hypoxic stress by regulating the tumor suppressor retinoblastoma protein. In contrast, the excitotoxic component of ischemia/hypoxia is predominately regulated by Cdk5 and its activator p35, components of a cyclin-dependent kinase complex associated with neuronal development. Hence, our data both characterize the functional significance of the cell cycle Cdk4 and neuronal Cdk5 signals as well as define the pathways and circumstances by which they act to control ischemic/hypoxic damage.

  15. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs.

    Science.gov (United States)

    Roskoski, Robert

    2016-05-01

    Cyclins and cyclin-dependent protein kinases (CDKs) are important regulatory components that are required for cell cycle progression. The levels of the cell cycle CDKs are generally constant and their activities are controlled by cyclins, proteins whose levels oscillate during each cell cycle. Additional CDK family members were subsequently discovered that play significant roles in a wide range of activities including the control of gene transcription, metabolism, and neuronal function. In response to mitogenic stimuli, cells in the G1 phase of the cell cycle produce cyclins of the D type that activate CDK4/6. These activated enzymes catalyze the monophosphorylation of the retinoblastoma protein. Then CDK2-cyclin E catalyzes the hyperphosphorylation of Rb that promotes the release and activation of the E2F transcription factors, which in turn lead to the generation of several proteins required for cell cycle progression. As a result, cells pass through the G1-restriction point and are committed to complete cell division. CDK2-cyclin A, CDK1-cyclin A, and CDK1-cyclin B are required for S, G2, and M-phase progression. Increased cyclin or CDK expression or decreased levels of endogenous CDK inhibitors such as INK4 or CIP/KIP have been observed in various cancers. In contrast to the mutational activation of EGFR, Kit, or B-Raf in the pathogenesis of malignancies, mutations in the CDKs that cause cancers are rare. Owing to their role in cell proliferation, CDKs represent natural targets for anticancer therapies. Abemaciclib (LY2835219), ribociclib (Lee011), and palbociclib (Ibrance(®) or PD0332991) target CDK4/6 with IC50 values in the low nanomolar range. Palbociclib and other CDK inhibitors bind in the cleft between the small and large lobes of the CDKs and inhibit the binding of ATP. Like ATP, palbociclib forms hydrogen bonds with residues in the hinge segment of the cleft. Like the adenine base of ATP, palbociclib interacts with catalytic spine residues CS6 and CS7

  16. Molecular evolution of cyclin proteins in animals and fungi

    Directory of Open Access Journals (Sweden)

    Afonnikov Dmitry A

    2011-07-01

    Full Text Available Abstract Background The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. Results We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. Conclusions The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events.

  17. miR-379 regulates cyclin B1 expression and is decreased in breast cancer.

    Directory of Open Access Journals (Sweden)

    Sonja Khan

    Full Text Available MicroRNAs are small non-coding RNA molecules that control gene expression post-transcriptionally, and are known to be altered in many diseases including breast cancer. The aim of this study was to determine the relevance of miR-379 in breast cancer. miR-379 expression was quantified in clinical samples including tissues from breast cancer patients (n=103, healthy controls (n=30 and patients with benign breast disease (n=35. The level of miR-379 and its putative target Cyclin B1 were investigated on all breast tissue specimens by RQ-PCR. Potential relationships with gene expression and patient clinicopathological details were also determined. The effect of miR-379 on Cyclin B1 protein expression and function was investigated using western blot, immunohistochemistry and proliferation assays respectively. Finally, the levels of circulating miR-379 were determined in whole blood from patients with breast cancer (n=40 and healthy controls (n=34. The level of miR-379 expression was significantly decreased in breast cancer (Mean(SEM 1.9 (0.09 Log10 Relative Quantity (RQ compared to normal breast tissues (2.6 (0.16 Log10 RQ, p<0.01. miR-379 was also found to decrease significantly with increasing tumour stage. A significant negative correlation was determined between miR-379 and Cyclin B1 (r=-0.31, p<0.001. Functional assays revealed reduced proliferation (p<0.05 and decreased Cyclin B1 protein levels following transfection of breast cancer cells with miR-379. Circulating miR-379 was not significantly dysregulated in patients with breast cancer compared to healthy controls (p=0.42. This data presents miR-379 as a novel regulator of Cyclin B1 expression, with significant loss of the miRNA observed in breast tumours.

  18. Sodium butyrate down-regulates tristetraprolin-mediated cyclin B1 expression independent of the formation of processing bodies.

    Science.gov (United States)

    Zheng, Xiang-Tao; Xiao, Xiao-Qiang; Dai, Ju-Ji

    2015-12-01

    Butyrate regulates multiple host cellular events including the cell cycle; however, little is known about the molecular mechanism by which butyrate induces a global down-regulation of the expression of genes associated with the cell cycle. Here, we demonstrate that treating HEK293T cells and the non-small-cell lung cancer cell line A549 with a high concentration of sodium butyrate reduces cyclin B1 expression. The underlying mechanism is related to the destabilization of its mRNA by tristetraprolin, which is up-regulated in response to sodium butyrate. Specifically, the sodium butyrate stimulation reduces the mRNA and protein expression of cyclin B1 and, conversely, upregulates tristetraprolin expression. Importantly, the overexpression of tristetraprolin in HEK293T decreases the mRNA and protein expression of cyclin B1; in contrast, knockdown of tristetraprolin mediated by small interfering RNA increases its expression in response to sodium butyrate treatment for both HEK293T and A549 cells. Furthermore, results from luciferase reporter assays and RNA immunoprecipitation indicate that sodium butyrate accelerates 3' UTR-dependent cyclin B1 decay by enhancing the binding of tristetraprolin to the 3' untranslated region of cyclin B1. Surprisingly, the overexpression of tristetraprolin prevents the formation of processing bodies, and the siRNA-mediated silencing of EDC4 does not restore the sodium butyrate-induced reduction of cyclin B1 expression. Thus, we confirm that NaBu regulates ZFP36-mediated cyclin B1 expression in a manner that is independent of the formation of P-bodies. The above findings disclose a novel mechanism of sodium butyrate-mediated gene expression regulation and might benefit its application in tumor treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Reduced hepatic tumor incidence in cyclin G1-deficient mice

    DEFF Research Database (Denmark)

    Jensen, Michael Rugaard; Factor, Valentina M; Fantozzi, Anna

    2003-01-01

    Cyclin G1 is a transcriptional target of the tumor suppressor p53, and its expression is increased after DNA damage. Recent data show that cyclin G1 can regulate the levels of p53 by a mechanism that involves dephosphorylation of Mdm2 by protein phosphatase 2A. To understand the biologic role...

  20. Stabilization of cyclin E and cdk2 mRNAs at G1/S transition in Rat-1A cells emerging from the G0 state.

    Science.gov (United States)

    Oda, S; Nishida, J; Nakabeppu, Y; Sekiguchi, M

    1995-04-06

    mRNAs for cyclin E and Cdk2 have a role in the commitment to DNA replication in the cell cycle, and are induced in Rat-1A cells by serum stimulation. Cyclin E and cdk2 genes are transcribed in quiescent cells, but their transcripts rapidly turn over and levels are kept low. The rate of transcription of the cdk2 gene is slightly increased after serum stimulation, while that of cyclin E is fairly constant. At the G1/S transition of serum-stimulated cells, transient stabilization of the two types of mRNAs occurs, an event which may lead to induction of each mRNA. Artificial expression of an immediate-early protein delta FosB results in proliferation of quiescent Rat-1A cells, and this is accompanied by an efficient induction of cyclin E and cdk2 mRNAs. In delta FosB-expressing cells, two types of mRNAs are stabilized to the same extent seen in serum-stimulated cells. The expression of cyclin E and cdk2 genes is upregulated by stabilization of their transcripts, at least in part. We propose that delta FosB may have a role in regulation of progression of the cell cycle in serum-stimulated Rat-1A cells by triggering stabilization of mRNAs for cyclin E and Cdk2.

  1. Lidocaine inhibits NIH-3T3 cell multiplication by increasing the expression of cyclin-dependent kinase inhibitor 1A (p21).

    Science.gov (United States)

    Desai, Sukumar P; Kojima, Koji; Vacanti, Charles A; Kodama, Shohta

    2008-11-01

    We explored molecular mechanisms by which lidocaine inhibits growth in the murine embryonic fibroblast cell line NIH-3T3. Local anesthetics can adversely affect cell growth in vitro. Their effects on wound healing are controversial. We examined the effects and novel mechanisms by which lidocaine affects in vitro multiplication of the murine fibroblast cell line NIH-3T3. NIH-3T3 cells were grown in culture with lidocaine [0, 0.05, 0.5, 1, 2, and 5 mM]. Cell multiplication was assessed by determining cell counts on subsequent days, while mechanisms by which inhibition occurred were evaluated by bromodeoxyuridine uptake, gene expression using polymerase chain reaction array, and Western blot analysis to verify increased levels of affected proteins. Lidocaine caused dose-dependent inhibition of multiplication of NIH-3T3 cells. Effects ranged from no inhibition [0.05 and 0.5 mM] and mild inhibition [1 mM], to severe inhibition [2 and 5 mM] [P = 0.006]. Lidocaine 2 mM inhibited bromodeoxyuridine uptake at day 3.5 [P = 0.02 versus control, and P = 0.0495 vs 1 mM lidocaine]. On day 1.5, lidocaine upregulated expression of cyclin-D1 and cyclin-dependent kinase inhibitor 1A [p21]. On day 2.5, lidocaine increased the levels of p21 protein. Low concentrations of lidocaine, as would be seen in plasma after spinal, epidural, or plexus anesthesia, do not significantly affect multiplication of fibroblasts. Higher doses of lidocaine arrest cell multiplication at the S-phase of the growth cycle by upregulation of p21, an extremely potent inhibitor of cell multiplication. Higher concentrations, as would be seen after tissue infiltration, severely inhibit fibroblast multiplication and thus may impair wound healing.

  2. Characterization of cyclin-dependent kinases and Cdc2/Cdc28 kinase subunits in Trichomonas vaginalis.

    Science.gov (United States)

    Amador, Erick; López-Pacheco, Karla; Morales, Nataly; Coria, Roberto; López-Villaseñor, Imelda

    2017-04-01

    Cyclin-dependent kinases (CDKs) have important roles in regulating key checkpoints between stages of the cell cycle. Their activity is tightly regulated through a variety of mechanisms, including through binding with cyclin proteins and the Cdc2/Cdc28 kinase subunit (CKS), and their phosphorylation at specific amino acids. Studies of the components involved in cell cycle control in parasitic protozoa are limited. Trichomonas vaginalis is the causative agent of trichomoniasis in humans and is therefore important in public health; however, some of the basic biological processes used by this organism have not been defined. Here, we characterized proteins potentially involved in cell cycle regulation in T. vaginalis. Three genes encoding protein kinases were identified in the T. vaginalis genome, and the corresponding recombinant proteins (TvCRK1, TvCRK2, TvCRK5) were studied. These proteins displayed similar sequence features to CDKs. Two genes encoding CKSs were also identified, and the corresponding recombinant proteins were found to interact with TvCRK1 and TvCRK2 by a yeast two-hybrid system. One putative cyclin B protein from T. vaginalis was found to bind to and activate the kinase activities of TvCRK1 and TvCRK5, but not TvCRK2. This work is the first characterization of proteins involved in cell cycle control in T. vaginalis.

  3. Rising cyclin-CDK levels order cell cycle events.

    Directory of Open Access Journals (Sweden)

    Catherine Oikonomou

    Full Text Available Diverse mitotic events can be triggered in the correct order and time by a single cyclin-CDK. A single regulator could confer order and timing on multiple events if later events require higher cyclin-CDK than earlier events, so that gradually rising cyclin-CDK levels can sequentially trigger responsive events: the "quantitative model" of ordering.This 'quantitative model' makes predictions for the effect of locking cyclin at fixed levels for a protracted period: at low cyclin levels, early events should occur rapidly, while late events should be slow, defective, or highly variable (depending on threshold mechanism. We titrated the budding yeast mitotic cyclin Clb2 within its endogenous expression range to a stable, fixed level and measured time to occurrence of three mitotic events: growth depolarization, spindle formation, and spindle elongation, as a function of fixed Clb2 level. These events require increasingly more Clb2 according to their normal order of occurrence. Events occur efficiently and with low variability at fixed Clb2 levels similar to those observed when the events normally occur. A second prediction of the model is that increasing the rate of cyclin accumulation should globally advance timing of all events. Moderate (<2-fold overexpression of Clb2 accelerates all events of mitosis, resulting in consistently rapid sequential cell cycles. However, this moderate overexpression also causes a significant frequency of premature mitoses leading to inviability, suggesting that Clb2 expression level is optimized to balance the fitness costs of variability and catastrophe.We conclude that mitotic events are regulated by discrete cyclin-CDK thresholds. These thresholds are sequentially triggered as cyclin increases, yielding reliable order and timing. In many biological processes a graded input must be translated into discrete outputs. In such systems, expression of the central regulator is likely to be tuned to an optimum level, as we

  4. Oncogenic RAS alters the global and gene-specific histone modification pattern during epithelial-mesenchymal transition in colorectal carcinoma cells.

    Science.gov (United States)

    Peláez, Ignacio Mazón; Kalogeropoulou, Margarita; Ferraro, Angelo; Voulgari, Angeliki; Pankotai, Tibor; Boros, Imre; Pintzas, Alexander

    2010-06-01

    The presence of different forms of histone covalent modifications, such as phosphorylation, acetylation and methylation in localized promoter regions are markers for chromatin packing and transcription. Activation of RAS signalling pathways through oncogenic RAS mutations is a hallmark of colorectal cancer. Overexpression of Harvey-Ras oncogene induces epithelial-mesenchymal transition (EMT) in Caco-2 cells. We focused on the role of epigenetic modifications of histone H3 and its dependence on RAS signal transduction pathways and oncogenic transformation. Using cell lines stably overexpressing oncogenic Harvey-RAS with EMT phenotype, we studied the acquired changes in the H3 histone modification patterns. Two genes show inverse protein expression patterns after Ha-RAS overexpression: Cyclin D1, a cell cycle-related gene, and the EMT marker-gene E-cadherin. We report that these two genes demonstrate matching inverse histone repression patterns on their promoter, while histone markers associated with an active state of genes were affected by the RAS-activated signalling pathway MEK-ERK-MSK1. Furthermore, we show that though the level of methyltransferases enzymes was increased, the status of H3 three-methylation at lysine 27 (H3K27me(3)), associated with gene repression on the promoter of Cyclin D1, was lower. Together, these results suggest that histone covalent modifications can be affected by oncogenic RAS pathways to regulate the expression of target genes like Cyclin D1 or E-cadherin and that the dynamic balance of opposing histone-modifying enzymes is critical for the regulation of cell proliferation. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Sp1 phosphorylation by cyclin-dependent kinase 1/cyclin B1 represses its DNA-binding activity during mitosis in cancer cells.

    Science.gov (United States)

    Chuang, J-Y; Wang, S-A; Yang, W-B; Yang, H-C; Hung, C-Y; Su, T-P; Chang, W-C; Hung, J-J

    2012-11-22

    Sp1 is important for the transcription of many genes. Our previous studies have shown that Sp1 is degraded in normal cell, but it is preserved in cancer cells during mitosis and exists a priori in the daughter cells, ready to engage in gene transcription and thereby contributes to the proliferation and survival of cancer cells. The mechanism by which Sp1 is preserved in cancer cells during mitosis remains unknown. In this study, we observed that Sp1 strongly colocalized with cyclin-dependent kinase 1 (CDK1)/cyclin B1 during mitosis. Moreover, we showed that Sp1 is a novel mitotic substrate of CDK1/cyclin B1 and is phosphorylated by it at Thr 739 before the onset of mitosis. Phospho-Sp1 reduced its DNA-binding ability and facilitated the chromatin condensation process during mitosis. Mutation of Thr739 to alanine resulted in Sp1 remaining in the chromosomes, delayed cell-cycle progression, and eventually led to apoptosis. Screening of Sp1-associated proteins during mitosis by using liquid chromatography/mass spectrometry indicated the tethering of Sp1 to myosin/F-actin. Furthermore, phospho-Sp1 and myosin/F-actin appeared to exist as a congregated ring at the periphery of the chromosome. However, at the end of mitosis and the beginning of interphase, Sp1 was dephosphorylated by PP2A and returned to the chromatin. These results indicate that cancer cells use CDK1 and PP2A to regulate the movement of Sp1 in and out of the chromosomes during cell-cycle progression, which may benefit cancer-cell proliferation.

  6. Mutation analysis of the negative regulator cyclin G2 in gastric cancer

    African Journals Online (AJOL)

    Cyclin G2 is an unconventional cyclin which might have a potential negative role in carcinogenesis. In this study, the effect of cyclin G2 overexpression on gastric cell proliferation and expression levels of cyclin G2 in normal gastric cells and gastric cancer cells were investigated. Moreover, mutation analysis was performed ...

  7. Zinc fingers and homeoboxes 2 inhibits hepatocellular carcinoma cell proliferation and represses expression of Cyclins A and E.

    Science.gov (United States)

    Yue, Xuetian; Zhang, Zhenyu; Liang, Xiaohong; Gao, Lifen; Zhang, Xiaoning; Zhao, Di; Liu, Xiao; Ma, Hongxin; Guo, Min; Spear, Brett T; Gong, Yaoqin; Ma, Chunhong

    2012-06-01

    Zinc-fingers and homeoboxes 2 (ZHX2) represses transcription of several genes associated with liver cancer. However, little is known about the role of ZHX2 in the development of hepatocellular carcinoma (HCC). We investigated the mechanisms by which ZHX2 might affect proliferation of HCC cells. We overexpressed and knocked down ZHX2 in HCC cells and analyzed the effects on proliferation, colony formation, and the cell cycle. We also analyzed the effects of ZHX2 overexpression in growth of HepG2.2.15 tumor xenografts in nude mice. Chromatin immunoprecipitation and luciferase reporter assays were used to measure binding of ZHX2 target promoters. Levels of ZHX2 in HCC samples were evaluated by immunohistochemistry. ZHX2 overexpression significantly reduced proliferation of HCC cells and growth of tumor xenografts in mice; it led to G1 arrest and reduced levels of Cyclins A and E in HCC cell lines. ZHX2 bound to promoter regions of CCNA2 (which encodes Cyclin A) and CCNE1 (which encodes Cyclin E) and inhibited their transcription. Knockdown of Cyclin A or Cyclin E reduced the increased proliferation mediated by ZHX2 knockdown. Nuclear localization of ZHX2 was required for it to inhibit proliferation of HCC cells in culture and in mice. Nuclear localization of ZHX2 was reduced in human HCC samples, even in small tumors (diameter, <5 cm), compared with adjacent nontumor tissues. Moreover, reduced nuclear levels of ZHX2 correlated with reduced survival times of patients, high levels of tumor microvascularization, and hepatocyte proliferation. ZHX2 inhibits HCC cell proliferation by preventing expression of Cyclins A and E, and reduces growth of xenograft tumors in mice. Loss of nuclear ZHX2 might be an early step in the development of HCC. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. The 19q12 bladder cancer GWAS signal: association with cyclin E function and aggressive disease

    Science.gov (United States)

    Fu, Yi-Ping; Kohaar, Indu; Moore, Lee E.; Lenz, Petra; Figueroa, Jonine D.; Tang, Wei; Porter-Gill, Patricia; Chatterjee, Nilanjan; Scott-Johnson, Alexandra; Garcia-Closas, Montserrat; Muchmore, Brian; Baris, Dalsu; Paquin, Ashley; Ylaya, Kris; Schwenn, Molly; Apolo, Andrea B.; Karagas, Margaret R.; Tarway, McAnthony; Johnson, Alison; Mumy, Adam; Schned, Alan; Guedez, Liliana; Jones, Michael A.; Kida, Masatoshi; Monawar Hosain, GM; Malats, Nuria; Kogevinas, Manolis; Tardon, Adonina; Serra, Consol; Carrato, Alfredo; Garcia-Closas, Reina; Lloreta, Josep; Wu, Xifeng; Purdue, Mark; Andriole, Gerald L.; Grubb, Robert L.; Black, Amanda; Landi, Maria T.; Caporaso, Neil E.; Vineis, Paolo; Siddiq, Afshan; Bueno-de-Mesquita, H. Bas; Trichopoulos, Dimitrios; Ljungberg, Börje; Severi, Gianluca; Weiderpass, Elisabete; Krogh, Vittorio; Dorronsoro, Miren; Travis, Ruth C.; Tjønneland, Anne; Brennan, Paul; Chang-Claude, Jenny; Riboli, Elio; Prescott, Jennifer; Chen, Constance; De Vivo, Immaculata; Govannucci, Edward; Hunter, David; Kraft, Peter; Lindstrom, Sara; Gapstur, Susan M.; Jacobs, Eric J.; Diver, W. Ryan; Albanes, Demetrius; Weinstein, Stephanie J.; Virtamo, Jarmo; Kooperberg, Charles; Hohensee, Chancellor; Rodabough, Rebecca J.; Cortessis, Victoria K.; Conti, David V.; Gago-Dominguez, Manuela; Stern, Mariana C.; Pike, Malcolm C.; Van Den Berg, David; Yuan, Jian-Min; Haiman, Christopher A.; Cussenot, Olivier; Cancel-Tassin, Geraldine; Roupret, Morgan; Comperat, Eva; Porru, Stefano; Carta, Angela; Pavanello, Sofia; Arici, Cecilia; Mastrangelo, Giuseppe; Grossman, H. Barton; Wang, Zhaoming; Deng, Xiang; Chung, Charles C.; Hutchinson, Amy; Burdette, Laurie; Wheeler, William; Fraumeni, Joseph; Chanock, Stephen J.; Hewitt, Stephen M.; Silverman, Debra T.; Rothman, Nathaniel; Prokunina-Olsson, Ludmila

    2014-01-01

    A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell cycle protein. We performed genetic fine mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r2≥0.7) associated with increased bladder cancer risk. From this group we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWAS, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele odds ratio (OR) =1.18 (95%CI=1.09-1.27, p=4.67×10−5 vs. OR =1.01 (95%CI=0.93-1.10, p=0.79) for non-aggressive disease, with p=0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (p=0.013) and, independently, with each rs7257330-A risk allele (ptrend=0.024). Over-expression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E over-expression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models. PMID:25320178

  9. Cyclin-like F-box protein plays a role in growth and development of the three model species Medicago truncatula, Lotus japonicus, and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Boycheva I

    2015-08-01

    Full Text Available Irina Boycheva,1 Valya Vassileva,2 Miglena Revalska,1 Grigor Zehirov,2 Anelia Iantcheva1 1Department of Functional Genetics Legumes, 2AgroBioInstitute, Department of Plant Stress Molecular Biology, Institute of Plant Physiology and Genetics, Sofia, Bulgaria Abstract: In eukaryotes, F-box proteins are one of the main components of the SCF complex that belongs to the family of ubiquitin E3 ligases, which catalyze protein ubiquitination and maintain the balance between protein synthesis and degradation. In the present study, we clarified the role and function of the gene encoding cyclin-like F-box protein from Medicago truncatula using transgenic plants of the model species M. truncatula, Lotus japonicas, and Arabidopsis thaliana generated by Agrobacterium-mediated transformation. Morphological and transcriptional analyses combined with flow cytometry and histochemistry demonstrated the participation of this protein in many aspects of plant growth and development, including processes of indirect somatic embryogenesis and symbiotic nodulation. The cyclin-like F-box gene showed expression in all plant organs and tissues comprised of actively dividing cells. The observed variations in root and hypocotyl growth, leaf and silique development, ploidy levels, and leaf parameters in the obtained transgenic lines demonstrated the effects of this gene on organ development. Furthermore, knockdown of cyclin-like F-box led to accumulation of higher levels of the G2/M transition-specific gene cyclin B1:1 (CYCB1:1, suggesting its possible role in cell cycle control. Together, the collected data suggest a similar role of the cyclin-like F-box protein in the three model species, providing evidence for the functional conservation of the studied gene. Keywords: cyclin-like F-box, model legumes, Arabidopsis thaliana, plant growth, plant development, cell cycle

  10. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice.

    Science.gov (United States)

    Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal

    2017-03-23

    It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.

  11. Active Component of Danshen (Salvia miltiorrhiza Bunge, Tanshinone I, Attenuates Lung Tumorigenesis via Inhibitions of VEGF, Cyclin A, and Cyclin B Expressions

    Directory of Open Access Journals (Sweden)

    Yu-Tang Tung

    2013-01-01

    Full Text Available Tanshinone I (T1 and tanshinone II (T2 are the major diterpenes isolated from Danshen (Salvia miltiorrhiza Bunge. Three human lung adenocarcinoma cell lines, A549, CL1-0, and CL1-5, were treated with T1 and T2 for the in vitro antitumor test. Results showed that T1 was more effective than T2 in inhibiting the growth of lung cancer cells via suppressing the expression of VEGF, Cyclin A, and Cyclin B proteins in a dose-dependent manner. Moreover, a transgenic mice model of the human vascular endothelial growth factor-A165 (hVEGF-A165 gene-induced pulmonary tumor was further treated with T1 for the in vivo lung cancer therapy test. T1 significantly attenuated hVEGF-A165 overexpression to normal levels of the transgenic mice (Tg that were pretreated with human monocytic leukemia THP-1 cell-derived conditioned medium (CM. It also suppressed the formation of lung adenocarcinoma tumors (16.7% compared with two placebo groups (50% for Tg/Placebo and 83.3% for Tg/CM/Placebo; P<0.01. This antitumor effect is likely to slow the progression of cells through the S and G2/M phases of the cell cycle. Blocking of the tumor-activated cell cycle pathway may be a critical mechanism for the observed antitumorigenic effects of T1 treatment on vasculogenesis and angiogenesis.

  12. NeoPalAna: Neoadjuvant Palbociclib, a Cyclin-Dependent Kinase 4/6 Inhibitor, and Anastrozole for Clinical Stage 2 or 3 Estrogen Receptor-Positive Breast Cancer.

    Science.gov (United States)

    Ma, Cynthia X; Gao, Feng; Luo, Jingqin; Northfelt, Donald W; Goetz, Matthew; Forero, Andres; Hoog, Jeremy; Naughton, Michael; Ademuyiwa, Foluso; Suresh, Rama; Anderson, Karen S; Margenthaler, Julie; Aft, Rebecca; Hobday, Timothy; Moynihan, Timothy; Gillanders, William; Cyr, Amy; Eberlein, Timothy J; Hieken, Tina; Krontiras, Helen; Guo, Zhanfang; Lee, Michelle V; Spies, Nicholas C; Skidmore, Zachary L; Griffith, Obi L; Griffith, Malachi; Thomas, Shana; Bumb, Caroline; Vij, Kiran; Bartlett, Cynthia Huang; Koehler, Maria; Al-Kateb, Hussam; Sanati, Souzan; Ellis, Matthew J

    2017-08-01

    Purpose: Cyclin-dependent kinase (CDK) 4/6 drives cell proliferation in estrogen receptor-positive (ER(+)) breast cancer. This single-arm phase II neoadjuvant trial (NeoPalAna) assessed the antiproliferative activity of the CDK4/6 inhibitor palbociclib in primary breast cancer as a prelude to adjuvant studies.Experimental Design: Eligible patients with clinical stage II/III ER(+)/HER2(-) breast cancer received anastrozole 1 mg daily for 4 weeks (cycle 0; with goserelin if premenopausal), followed by adding palbociclib (125 mg daily on days 1-21) on cycle 1 day 1 (C1D1) for four 28-day cycles unless C1D15 Ki67 > 10%, in which case patients went off study due to inadequate response. Anastrozole was continued until surgery, which occurred 3 to 5 weeks after palbociclib exposure. Later patients received additional 10 to 12 days of palbociclib (Cycle 5) immediately before surgery. Serial biopsies at baseline, C1D1, C1D15, and surgery were analyzed for Ki67, gene expression, and mutation profiles. The primary endpoint was complete cell cycle arrest (CCCA: central Ki67 ≤ 2.7%).Results: Fifty patients enrolled. The CCCA rate was significantly higher after adding palbociclib to anastrozole (C1D15 87% vs. C1D1 26%, P Palbociclib enhanced cell-cycle control over anastrozole monotherapy regardless of luminal subtype (A vs. B) and PIK3CA status with activity observed across a broad range of clinicopathologic and mutation profiles. Ki67 recovery at surgery following palbociclib washout was suppressed by cycle 5 palbociclib. Resistance was associated with nonluminal subtypes and persistent E2F-target gene expression.Conclusions: Palbociclib is an active antiproliferative agent for early-stage breast cancer resistant to anastrozole; however, prolonged administration may be necessary to maintain its effect. Clin Cancer Res; 23(15); 4055-65. ©2017 AACR. ©2017 American Association for Cancer Research.

  13. The 3' untranslated region of the cyclin B mRNA is not sufficient to enhance the synthesis of cyclin B during a mitotic block in human cells.

    Directory of Open Access Journals (Sweden)

    Dominik Schnerch

    Full Text Available Antimitotic agents are frequently used to treat solid tumors and hematologic malignancies. However, one major limitation of antimitotic approaches is mitotic slippage, which is driven by slow degradation of cyclin B during a mitotic block. The extent to which cyclin B levels decline is proposed to be governed by an equilibrium between cyclin B synthesis and degradation. It was recently shown that the 3' untranslated region (UTR of the murine cyclin B mRNA contributes to the synthesis of cyclin B during mitosis in murine cells. Using a novel live-cell imaging-based technique allowing us to study synthesis and degradation of cyclin B simultaneously at the single cell level, we tested here the role of the human cyclin B 3'UTR in regulating cyclin B synthesis during mitosis in human cells. We observed that the cyclin B 3'UTR was not sufficient to enhance cyclin B synthesis in human U2Os, HeLa or hTERT RPE-1 cells. A better understanding of how the equilibrium of cyclin B is regulated in mitosis may contribute to the development of improved therapeutic approaches to prevent mitotic slippage in cancer cells treated with antimitotic agents.

  14. Structural and Functional Analysis of the Cdk13/Cyclin K Complex

    Directory of Open Access Journals (Sweden)

    Ann Katrin Greifenberg

    2016-01-01

    Full Text Available Cyclin-dependent kinases regulate the cell cycle and transcription in higher eukaryotes. We have determined the crystal structure of the transcription kinase Cdk13 and its Cyclin K subunit at 2.0 Å resolution. Cdk13 contains a C-terminal extension helix composed of a polybasic cluster and a DCHEL motif that interacts with the bound ATP. Cdk13/CycK phosphorylates both Ser5 and Ser2 of the RNA polymerase II C-terminal domain (CTD with a preference for Ser7 pre-phosphorylations at a C-terminal position. The peptidyl-prolyl isomerase Pin1 does not change the phosphorylation specificities of Cdk9, Cdk12, and Cdk13 but interacts with the phosphorylated CTD through its WW domain. Using recombinant proteins, we find that flavopiridol inhibits Cdk7 more potently than it does Cdk13. Gene expression changes after knockdown of Cdk13 or Cdk12 are markedly different, with enrichment of growth signaling pathways for Cdk13-dependent genes. Together, our results provide insights into the structure, function, and activity of human Cdk13/CycK.

  15. Cyclin A2 promotes DNA repair in the brain during both development and aging

    OpenAIRE

    Gygli, Patrick E.; Chang, Joshua C.; Gokozan, Hamza N.; Catacutan, Fay P.; Schmidt, Theresa A.; Kaya, Behiye; Goksel, Mustafa; Baig, Faisal S.; Chen, Shannon; Griveau, Amelie; Michowski, Wojciech; Wong, Michael; Palanichamy, Kamalakannan; Sicinski, Piotr; Nelson, Randy J.

    2016-01-01

    Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss resu...

  16. Distinct and Overlapping Requirements for Cyclins A, B, and B3 in Drosophila Female Meiosis

    Directory of Open Access Journals (Sweden)

    Mohammed Bourouh

    2016-11-01

    Full Text Available Meiosis, like mitosis, depends on the activity of the cyclin dependent kinase Cdk1 and its cyclin partners. Here, we examine the specific requirements for the three mitotic cyclins, A, B, and B3 in meiosis of Drosophila melanogaster. We find that all three cyclins contribute redundantly to nuclear envelope breakdown, though cyclin A appears to make the most important individual contribution. Cyclin A is also required for biorientation of homologs in meiosis I. Cyclin B3, as previously reported, is required for anaphase progression in meiosis I and in meiosis II. We find that it also plays a redundant role, with cyclin A, in preventing DNA replication during meiosis. Cyclin B is required for maintenance of the metaphase I arrest in mature oocytes, for spindle organization, and for timely progression through the second meiotic division. It is also essential for polar body formation at the completion of meiosis. With the exception of its redundant role in meiotic maturation, cyclin B appears to function independently of cyclins A and B3 through most of meiosis. We conclude that the three mitotic cyclin-Cdk complexes have distinct and overlapping functions in Drosophila female meiosis.

  17. Evolutionarily conserved transcription factor Apontic controls the G1/S progression by inducing cyclin e during eye development

    KAUST Repository

    Liu, Qingxin

    2014-06-16

    During Drosophila eye development, differentiation initiates in the posterior region of the eye disk and progresses anteriorly as a wave marked by the morphogenetic furrow (MF), which demarcates the boundary between anterior undifferentiated cells and posterior differentiated photoreceptors. However, the mechanism underlying the regulation of gene expression immediately before the onset of differentiation remains unclear. Here, we show that Apontic (Apt), which is an evolutionarily conserved transcription factor, is expressed in the differentiating cells posterior to the MF. Moreover, it directly induces the expression of cyclin E and is also required for the G1-to-S phase transition, which is known to be essential for the initiation of cell differentiation at the MF. These observations identify a pathway crucial for eye development, governed by a mechanism in which Cyclin E promotes the G1-to-S phase transition when regulated by Apt.

  18. Hypoxia Upregulates Mitotic Cyclins Which Contribute to the Multipotency of Human Mesenchymal Stem Cells by Expanding Proliferation Lifespan.

    Science.gov (United States)

    Lee, Janet; Kim, Hyun-Soo; Kim, Su-Min; Kim, Dong-Ik; Lee, Chang-Woo

    2018-02-21

    Hypoxic culture is widely recognized as a method to efficiently expand human mesenchymal stem cells (MSCs) without loss of stem cell properties. However, the molecular basis of how hypoxia priming benefits MSC expansion remains unclear. In this report, our systemic quantitative proteomic and RT-PCR analyses revealed the involvement of hypoxic conditioning activated genes in the signaling process of the mitotic cell cycle. Introduction of screened two mitotic cyclins, CCNA2 and CCNB1, significantly extended the proliferation lifespan of MSCs in normoxic condition. Our results provide important molecular evidence that multipotency of human MSCs by hypoxic conditioning is determined by the mitotic cell cycle duration. Thus, the activation of mitotic cyclins could be a potential strategy to the application of stem cell therapy.

  19. Overexpression of PRL7D1 in Leydig Cells Causes Male Reproductive Dysfunction in Mice.

    Science.gov (United States)

    Liu, Yaping; Su, Xingyu; Hao, Jie; Chen, Maoxin; Liu, Weijia; Liao, Xiaogang; Li, Gang

    2016-01-13

    Prolactin family 7, subfamily d, member 1 (PRL7D1) is found in mouse placenta. Our recent work showed that PRL7D1 is also present in mouse testis Leydig cells, and the expression of PRL7D1 in the testis exhibits an age-related increase. In the present study, we generated transgenic mice with Leydig cell-specific PRL7D1 overexpression to explore its function during male reproduction. Prl7d1 male mice exhibited subfertility as reflected by reduced sperm counts and litter sizes. The testes from Prl7d1 transgenic mice appeared histologically normal, but the frequency of apoptotic germ cells was increased. Prl7d1 transgenic mice also had lower testosterone concentrations than wild-type mice. Mechanistic studies revealed that Prl7d1 transgenic mice have defects in the testicular expression of steroidogenic acute regulatory protein (STAR) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase cluster (HSD3B). Further studies revealed that PRL7D1 overexpression affected the expression of transferrin (TF) in Sertoli cells. These results suggest that PRL7D1 overexpression could lead to increased germ cell apoptosis and exert an inhibitory effect on testosterone production in Leydig cells by reducing the expression of certain steroidogenic-related genes. In addition, PRL7D1 appears to have important roles in the function of Sertoli cells, which, in turn, affects male fertility. We conclude that the expression level of PRL7D1 is associated with the reproductive function of male mice.

  20. Improved tumor control through circadian clock induction by Seliciclib, a cyclin-dependent kinase inhibitor.

    Science.gov (United States)

    Iurisci, Ida; Filipski, Elisabeth; Reinhardt, Jens; Bach, Stéphane; Gianella-Borradori, Athos; Iacobelli, Stefano; Meijer, Laurent; Lévi, Francis

    2006-11-15

    The circadian timing system and the cell division cycle are frequently deregulated in cancer. The therapeutic relevance of the reciprocal interactions between both biological rhythms was investigated using Seliciclib, a cyclin-dependent kinase (CDK) inhibitor (CDKI). Mice bearing Glasgow osteosarcoma received Seliciclib (300 mg/kg/d orally) or vehicle for 5 days at Zeitgeber time (ZT) 3, 11, or 19. On day 6, tumor mRNA 24-hour expression patterns were determined for clock genes (Per2, Rev-erbalpha, and Bmal1) and clock-controlled cell cycle genes (c-Myc, Wee1, cyclin B1, and CDK1) with quantitative reverse transcription-PCR. Affinity chromatography on immobilized Seliciclib identified CDK1/CDK2 and extracellular signal-regulated kinase (ERK) 1/ERK2, CDK7/CDK9, and casein kinase CK1epsilon as Seliciclib targets, which respectively regulate cell cycle, transcription, and circadian clock in Glasgow osteosarcoma. Seliciclib reduced tumor growth by 55% following dosing at ZT3 or ZT11 and by 35% at ZT19 compared with controls (P clock gene expression patterns with physiologic phase relations only after ZT3 dosing. c-Myc and Wee1 mRNAs displayed synchronous circadian rhythms in the tumors of control mice receiving vehicle only but not in those of mice given the drug. Seliciclib further enhanced Wee1 expression irrespective of dosing time, an effect that reinforced G(2)-M gating. Seliciclib also inhibited CK1epsilon, which determines circadian period length. The coordination of clock gene expression patterns in tumor cells was associated with best antitumor activity of Seliciclib. The circadian clock and its upstream regulators represent relevant targets for CDKIs.

  1. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control

    DEFF Research Database (Denmark)

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K

    2015-01-01

    an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme...... that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein...

  2. Characteristics of stably expressed human dopamine D1a and D1b receptors: atypical behavior of the dopamine D1b receptor

    DEFF Research Database (Denmark)

    Pedersen, U B; Norby, B; Jensen, Anders A.

    1994-01-01

    Human dopamine D1a and D1b receptors were stably expressed in Baby Hamster Kidney (BHK) or Chinese Hamster Ovary (CHO) cells. [3H]SCH23390 saturation experiments indicated the presence of only a single binding site in the D1a expressing cell line with a Kd of 0.5 nM. In D1b expressing cell lines...

  3. Hepatitis C virus non-structural 5B protein interacts with cyclin A2 and regulates viral propagation

    DEFF Research Database (Denmark)

    Pham, Long; Ngo, HT; Lim, YS

    2012-01-01

    Background & Aims Hepatitis C virus (HCV) requires host cellular proteins for its own propagation. To identify the cellular factors necessary for HCV propagation, we have recently screened the small interfering RNA (siRNA) library targeting cell cycle genes using cell culture grown HCV (HCVcc......)-infected cells. In the current study, we have selected and characterized the gene encoding Cyclin A2 (CycA2). Deregulation of CycA2 has been implicated in many types of cancers, including hepatocellular carcinoma. Methods The effects of CycA2 on HCV propagation were investigated by siRNA-mediated knockdown assay...

  4. Diabetes tipo II e resolvinas D1

    OpenAIRE

    Silva, Isabel Alexandra Marques Batista da

    2015-01-01

    Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz A diabetes é um problema de saúde pública crescente com o envelhecimento da população, os maus hábitos alimentares e o sedentarismo. A obesidade poderá ser causa ou consequência da diabetes tipo II, sendo também um problema crescente de saúde pública. Esta monografia tem como objetivo estudar, com base no conhecimento atual, se as resolvinas D1 são uma alternativa viável na terapêutica da diab...

  5. Therapeutic Strategies against Cyclin E1-Amplified Ovarian Cancers

    Science.gov (United States)

    2016-10-01

    resistance to platinum, management of CCNE1-amplified ovarian cancers is challenging. In this research, we evaluate three novel strategies against...AWARD NUMBER: W81XWH-15-1-0564 TITLE: Therapeutic Strategies against Cyclin E1-Amplified Ovarian Cancers PRINCIPAL INVESTIGATOR: Panagiotis A...Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including

  6. The Phospholipase D1 Pathway Modulates Macroautophagy

    Science.gov (United States)

    Dall’Armi, Claudia; Hurtado-Lorenzo, Andres; Tian, Huasong; Morel, Etienne; Nezu, Akiko; Chan, Robin B.; Yu, W. Haung; Robinson, Kimberly S.; Yeku, Oladapo; Small, Scott A.; Duff, Karen; Frohman, Michael A.; Wenk, Markus R.; Yamamoto, Akitsugu; Di Paolo, Gilbert

    2012-01-01

    While macroautophagy is known to be an essential degradative process whereby autophagosomes mediate the engulfment and delivery of cytoplasmic components into lysosomes, the lipid changes underlying autophagosomal membrane dynamics are undetermined. Here we show that phospholipase D1 (PLD1), which is primarily associated with the endosomal system, partially relocalizes to the outer membrane of autophagosome-like structures upon nutrient starvation. The localization of PLD1, as well as the starvation-induced increase in PLD activity, are altered by wortmannin, a phosphatidylinositol 3-kinase inhibitor, suggesting PLD1 may act downstream of Vps34. Pharmacological inhibition of PLD and genetic ablation of PLD1 in the mouse decrease the starvation-induced expansion of LC3-positive compartments, consistent with a role of PLD1 in the regulation of autophagy. Furthermore, inhibition of PLD results in higher levels of tau and p62 aggregates in organotypic brain slices. Our in vitro and in vivo findings establish a novel role for PLD1 in autophagy. PMID:21266992

  7. [Eucaryotic expression and bioactivity analysis of the recombinant HSV-gD1].

    Science.gov (United States)

    Wang, Zhengmao; Li, Lin; Guan, Wenyan; Li, Yuexi

    2010-05-01

    Envelope proteins of herpes simplex virus (HSV) plays a vital role not only in the infection process of adsorption and invasion but also in the stimulation to the organism that gives rise to immune response. Among the envelope proteins, glycoprotein D (gD), which can induce specific immune response, are the primary targets of humoral and cellular immunity of the host. In order to analyze the antigenicity and immunogenicity of HSV-gD1, we chemically synthesized the extracellular domain fragment gene of gD1, cloned it into eucaryotic expression vector pCEP4, and transfected the HEK293 cells with the recombinant vector. Then we identified the recombinant protein by Western blotting, and detected antigenicity of the protein by ELISA. Finally, we used the purified gD1 protein to immunize Kunming mice in 1, 3, 5 weeks, and collected antiserum in 3, 5 and 7 weeks. We titrated the sera for the detection of anti gD1 using an ELISA assay. Gene sequencing analysis demonstrated that the recombinant plasmid pCEP4-gD1 was constructed successfully. Western blotting analysis indicated one major protein band, which molecular weights is approximate 46 kDa corresponding to the truncated forms of gD1 protein, was observed. ELISA assay showed that the expressed recombinant protein gD1 had good antigenicity. After the third immunization, antibody titer of the mouse anti-gD1 was at least 5 x10(3). The successful expression of the recombinant protein gD1, which can induce humoral immune response, lays a foundation for serological diagnosis and vaccine study of HSV.

  8. p53 Dimers associate with a head-to-tail response element to repress cyclin B transcription.

    Directory of Open Access Journals (Sweden)

    Robert Lipski

    Full Text Available DNA damage induced by the topoisomerase I inhibitor SN38 activates cell cycle checkpoints which promote cell cycle arrest. This arrest can be abrogated in p53-defective cells by the Chk1 inhibitor 7-hydroxystaurosporine (UCN-01. Previously, we compared p53 wild-type MCF10A cells with derivatives whose p53 function was inhibited by over-expression of the tetramerization domain (MCF10A/OD or expression of shRNA against p53 (MCF10A/Δp53. Treatment of SN38-arrested MCF10A/OD cells with UCN-01 abrogated S, but not G2 arrest, while the MCF10A/Δp53 cells abrogated both S and G2 arrest. The MCF10A/OD cells had reduced levels of cyclin B, suggesting that tetramerization of p53 is not required for repression of cyclin B gene expression. In the present study, we analyzed p53 oligomerization status using glutaraldehyde cross-linking. Following SN38 treatment, MCF10A cells contained oligomeric forms of p53 with molecular weights approximating monomers, dimers, trimers, and tetramers. However, MCF10A/OD cells possessed only monomers and dimers suggesting that these complexes may be involved in repression of cyclin B. While genes transcriptionally activated by p53 contain a consensus sequence with elements repeated in a head-to-head orientation, the cyclin B promoter contains similar elements oriented head-to-tail. Chromatin immunoprecipitation (ChIP assays revealed that p53 associates with this head-to-tail element in both MCF10A and MCF10A/OD. Electrophoretic mobility shift assays (EMSA using a biotin-labeled probe containing the head-to-tail element showed a shift in mobility consistent with the molecular weight of tetramers and dimers in MCF10A nuclear extract, but only the dimer in MCF10A/OD nuclear extract. Taken together, these results suggest a novel mechanism whereby p53 dimers associate with the head-to-tail element to repress cyclin B transcription.

  9. A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton.

    Science.gov (United States)

    Bu, Bingwu; Qiu, Dewen; Zeng, Hongmei; Guo, Lihua; Yuan, Jingjing; Yang, Xiufen

    2014-03-01

    We found that the elicitor PevD1 triggered innate immunity in cotton, which plays an important role in future cotton wilt disease control. Elicitors can induce defense responses in plants and improve pathogen resistance. PevD1 is a secreted protein from Verticillium dahliae and activates the hypersensitive response and systemic acquired resistance to tobacco mosaic virus in tobacco plants. To investigate the PevD1-induced disease resistance mechanisms in cotton (Gossypium hirsutum), we report that Escherichia coli expressing PevD1 enhanced cotton resistance and the defense response to the fungal pathogen V. dahliae. The results showed that recombinant PevD1 improved cotton resistance when infiltrated at a concentration as low as 4 μg ml(-1), and the highest disease reduction was 38.16 % on the 15th day post V. dahliae inoculation. This protein was able to systemically induce hydrogen peroxide production, nitric oxide generation, lignin deposition, vessel reinforcement and defense enzymes, including phenylalanine ammonia-lyase, peroxidase, and polyphenol oxidase. PevD1 also enhanced the expression of three pathogenesis-related genes, namely, β-1,3-glucanase, chitinase, and cadinene synthase, and three key genes, PAL, C4H1, and 4CL, from the cotton defense phenylpropanoid metabolism pathway. Our results demonstrated that PevD1 acted as an effector in cotton and V. dahliae interactions and triggered innate immunity in cotton, resulting in the upregulation of defense-related genes, metabolic substance deposition and cell wall modifications. PevD1 is a candidate plant defense activator for cotton wilt disease control.

  10. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number.

    Science.gov (United States)

    Sankaran, Vijay G; Ludwig, Leif S; Sicinska, Ewa; Xu, Jian; Bauer, Daniel E; Eng, Jennifer C; Patterson, Heide Christine; Metcalf, Ryan A; Natkunam, Yasodha; Orkin, Stuart H; Sicinski, Piotr; Lander, Eric S; Lodish, Harvey F

    2012-09-15

    Genome-wide association studies (GWASs) have identified a genetic variant of moderate effect size at 6p21.1 associated with erythrocyte traits in humans. We show that this variant affects an erythroid-specific enhancer of CCND3. A Ccnd3 knockout mouse phenocopies these erythroid phenotypes, with a dramatic increase in erythrocyte size and a concomitant decrease in erythrocyte number. By examining human and mouse primary erythroid cells, we demonstrate that the CCND3 gene product cyclin D3 regulates the number of cell divisions that erythroid precursors undergo during terminal differentiation, thereby controlling erythrocyte size and number. We illustrate how cell type-specific specialization can occur for general cell cycle components-a finding resulting from the biological follow-up of unbiased human genetic studies.

  11. Cyclin D expression in plutonium-induced lung tumors in F344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, F.F.; Kelly, G. [SouthWest Scientific Resources, Inc., Albuquerque, NM (United States)

    1995-12-01

    The genetic mechanisms responsible for {alpha}-radiation-induced lung cancer in rats following inhalation of {sup 239}Pu is an ongoing area of research in our laboratory. Previous studies have examined the status of the p53 gene by immunohistochemistry. Only two tumors (2/26 squamous cell carcinomas) exhibited detectable levels of p53 products. Both were the result of mutations in codons 280 and 283. More recent studies of X-ray-induced lung tumors in rats showed a similar lack of involvement of p53. In conclusion, we found that {alpha}-radiation-induced rat lung tumors have a high incidence (31 of 39) of cyclin D{sub 1} overexpression.

  12. Microsatellite-based fine mapping of the Van der Woude syndrome locus to an interval of 4.1 cM between D1S245 and D1S414

    Energy Technology Data Exchange (ETDEWEB)

    Sander, A.; Schmelzle, R. [Univ. of Hamburg (Germany); Murray, J.C. [Univ. of Iowa, Iowa City, IA (United States); Scherpbier-Heddema, T.; Buetow, K.H. [Fox Chase Center, Philadelphia, PA (United States); Weissenbach, J. [Institut Pasteur, Paris (France); Ludwig, K.; Zingg, M.

    1995-01-01

    Van der Woude syndrome (VWS) is an autosomal dominant craniofacial disorder characterized by lip pits, clefting of the primary or secondary palate, and hypodontia. The gene has been localized, by RFLP-based linkage studies, to region 1q32-41 between D1S65-REN and D1S65-TGFB2. In this study we report the linkage analysis of 15 VWS families, using 18 microsatellite markers. Multipoint linkage analysis places the gene, with significant odds of 2,344:1, in a 4.1-cM interval flanked by D1S245 and D1S414. Two-point linkage analysis demonstrates close linkage of VWS with D1S205 (lod score [Z] = 24.41 at {theta} = .00) and with D1S491 (Z = 21.23 at {theta} = .00). The results revise the previous assignment of the VWS locus and show in an integrated map of the region 1q32-42 that the VWS gene resides more distally than previously suggested. When information about heterozygosity of the closely linked marker D1S491 in the affected members of the VWS family with a microdeletion is taken into account, the VWS critical region can be further narrowed, to the 3.6-cM interval between D1S491 and D1S414. 38 refs., 3 figs., 2 tabs.

  13. Role of NeuroD1 on the negative regulation of Pomc expression by glucocorticoid.

    Directory of Open Access Journals (Sweden)

    Rehana Parvin

    Full Text Available The mechanism of the negative regulation of proopiomelanocortin gene (Pomc by glucocorticoids (Gcs is still unclear in many points. Here, we demonstrated the involvement of neurogenic differentiation factor 1 (NeuroD1 in the Gc-mediated negative regulation of Pomc. Murine pituitary adrenocorticotropic hormone (ACTH producing corticotroph tumor-derived AtT20 cells were treated with dexamethasone (DEX (1-100 nM and cultured for 24 hrs. Thereafter, Pomc mRNA expression was studied by quantitative real-time PCR and rat Pomc promoter (-703/+58 activity was examined by luciferase assay. Both Pomc mRNA expression and Pomc promoter activity were inhibited by DEX in a dose-dependent manner. Deletion and point mutant analyses of Pomc promoter suggested that the DEX-mediated transcriptional repression was mediated via E-box that exists at -376/-371 in the promoter. Since NeuroD1 is known to bind to and activate E-box of the Pomc promoter, we next examined the effect of DEX on NeuroD1 expression. Interestingly, DEX dose-dependently inhibited NeuroD1 mRNA expression, mouse NeuroD1 promoter (-2.2-kb activity, and NeuroD1 protein expression in AtT20 cells. In addition, we confirmed the inhibitory effect of DEX on the interaction of NeuroD1 and E-box on Pomc promoter by chromatin immunoprecipitation (ChIP assay. Finally, overexpression of mouse NeuroD1 could rescue the DEX-mediated inhibition of Pomc mRNA expression and Pomc promoter activity. Taken together, it is suggested that the suppression of NeuroD1 expression and the inhibition of NeuroD1/E-box interaction may play an important role in the Gc-mediated negative regulation of Pomc.

  14. Cyclin-dependent kinase activity controls the onset of the HCMV lytic cycle.

    Directory of Open Access Journals (Sweden)

    Martin Zydek

    Full Text Available The onset of human cytomegalovirus (HCMV lytic infection is strictly synchronized with the host cell cycle. Infected G0/G1 cells support viral immediate early (IE gene expression and proceed to the G1/S boundary where they finally arrest. In contrast, S/G2 cells can be infected but effectively block IE gene expression and this inhibition is not relieved until host cells have divided and reentered G1. During latent infection IE gene expression is also inhibited, and for reactivation to occur this block to IE gene expression must be overcome. It is only poorly understood which viral and/or cellular activities maintain the block to cell cycle or latency-associated viral IE gene repression and whether the two mechanisms may be linked. Here, we show that the block to IE gene expression during S and G2 phase can be overcome by both genotoxic stress and chemical inhibitors of cellular DNA replication, pointing to the involvement of checkpoint-dependent signaling pathways in controlling IE gene repression. Checkpoint-dependent rescue of IE expression strictly requires p53 and in the absence of checkpoint activation is mimicked by proteasomal inhibition in a p53 dependent manner. Requirement for the cyclin dependent kinase (CDK inhibitor p21 downstream of p53 suggests a pivotal role for CDKs in controlling IE gene repression in S/G2 and treatment of S/G2 cells with the CDK inhibitor roscovitine alleviates IE repression independently of p53. Importantly, CDK inhibiton also overcomes the block to IE expression during quiescent infection of NTera2 (NT2 cells. Thus, a timely block to CDK activity not only secures phase specificity of the cell cycle dependent HCMV IE gene expression program, but in addition plays a hitherto unrecognized role in preventing the establishment of a latent-like state.

  15. 26 CFR 31.3231(d)-1 - Service.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Service. 31.3231(d)-1 Section 31.3231(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) EMPLOYMENT TAXES AND... Retirement Tax Act (Chapter 22, Internal Revenue Code of 1954) General Provisions § 31.3231(d)-1 Service. See...

  16. ARTD1 regulates cyclin E expression and consequently cell-cycle re-entry and G1/S progression in T24 bladder carcinoma cells

    Science.gov (United States)

    Léger, Karolin; Hopp, Ann-Katrin; Fey, Monika; Hottiger, Michael O.

    2016-01-01

    ABSTRACT ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G1/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of cyclin E during cell cycle re-entry and G1/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27Kip1 protein levels increased in G1 upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G1/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G1/S progression via cyclin E expression and p27Kip1 stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism. PMID:27295004

  17. ARTD1 regulates cyclin E expression and consequently cell-cycle re-entry and G1/S progression in T24 bladder carcinoma cells.

    Science.gov (United States)

    Léger, Karolin; Hopp, Ann-Katrin; Fey, Monika; Hottiger, Michael O

    2016-08-02

    ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G1/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of cyclin E during cell cycle re-entry and G1/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27(Kip 1) protein levels increased in G1 upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G1/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G1/S progression via cyclin E expression and p27(Kip 1) stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism.

  18. Phosphorylation of HOX11/TLX1 on Threonine-247 during mitosis modulates expression of cyclin B1

    Directory of Open Access Journals (Sweden)

    Chesney Alden

    2010-09-01

    Full Text Available Abstract Background The HOX11/TLX1 (hereafter referred to as HOX11 homeobox gene was originally identified at a t(10;14(q24;q11 translocation breakpoint, a chromosomal abnormality observed in 5-7% of T cell acute lymphoblastic leukemias (T-ALLs. We previously reported a predisposition to aberrant spindle assembly checkpoint arrest and heightened incidences of chromosome missegregation in HOX11-overexpressing B lymphocytes following exposure to spindle poisons. The purpose of the current study was to evaluate cell cycle specific expression of HOX11. Results Cell cycle specific expression studies revealed a phosphorylated form of HOX11 detectable only in the mitotic fraction of cells after treatment with inhibitors to arrest cells at different stages of the cell cycle. Mutational analyses revealed phosphorylation on threonine-247 (Thr247, a conserved amino acid that defines the HOX11 gene family and is integral for the association with DNA binding elements. The effect of HOX11 phosphorylation on its ability to modulate expression of the downstream target, cyclin B1, was tested. A HOX11 mutant in which Thr247 was substituted with glutamic acid (HOX11 T247E, thereby mimicking a constitutively phosphorylated HOX11 isoform, was unable to bind the cyclin B1 promoter or enhance levels of the cyclin B1 protein. Expression of the wildtype HOX11 was associated with accelerated progression through the G2/M phase of the cell cycle, impaired synchronization in prometaphase and reduced apoptosis whereas expression of the HOX11 T247E mutant restored cell cycle kinetics, the spindle checkpoint and apoptosis. Conclusions Our results demonstrate that the transcriptional activity of HOX11 is regulated by phosphorylation of Thr247 in a cell cycle-specific manner and that this phosphorylation modulates the expression of the target gene, cyclin B1. Since it is likely that Thr247 phosphorylation regulates DNA binding activity to multiple HOX11 target sequences, it is

  19. Limited prognostic value of tissue protein expression levels of cyclin E in Danish ovarian cancer patients

    DEFF Research Database (Denmark)

    Heeran, Mel C; Høgdall, Claus K; Kjaer, Susanne K

    2012-01-01

    tissue arrays (TA), we analysed the cyclin E expression levels in tissues from 168 women with borderline ovarian tumours (BOT) (147 stage I, 4 stage II, 17 stage III) and 493 Ovarian cancer (OC) patients (127 stage I, 45 stage II, 276 stage III, 45 stage IV). Using a 10% cut-off level for cyclin E......The primary objective of this study was to assess the expression of cyclin E in tumour tissues from 661 patients with epithelial ovarian tumours. The second was to evaluate whether cyclin E tissue expression levels correlate with clinico-pathological parameters and prognosis of the disease. Using...

  20. Localization and Dynamics of Cdc2-Cyclin B during Meiotic Reinitiation in Starfish OocytesV⃞

    Science.gov (United States)

    Terasaki, Mark; Okumura, Ei-ichi; Hinkle, Beth; Kishimoto, Takeo

    2003-01-01

    The Cdc2-cyclin B kinase has a central role in regulating the onset of M phase. In starfish oocytes, Cdc2-cyclin B begins to be activated ∼10 min after application of maturation hormone, followed by accumulation in the nucleus then nuclear envelope breakdown. By immunofluorescence and by expressing a green fluorescent (GFP) chimera of cyclin B, we find that cyclin B is present in aggregates in the cytoplasm of immature oocytes. The aggregates disperse at ∼10 min, suggesting that the dispersal is closely related to the activation of the kinase. Using cyclin B-GFP, the dispersion begins from the region containing the centrosomes. Extractability of Cdc2-cyclin B changes with similar kinetics during maturation. Active Cdc25 phosphatase released Cdc2-cyclin B from the detergent-insoluble fraction independently of its phosphatase activity. Live cell imaging also showed that Cdc2-cyclin B begins to accumulate in the nucleus before changes in nuclear pore permeability, consistent with Cdc2-cyclin B-induced disassembly of the pores. PMID:14551249

  1. Characteristics of stably expressed human dopamine D1a and D1b receptors: atypical behavior of the dopamine D1b receptor

    DEFF Research Database (Denmark)

    Pedersen, U B; Norby, B; Jensen, Anders A.

    1994-01-01

    Human dopamine D1a and D1b receptors were stably expressed in Baby Hamster Kidney (BHK) or Chinese Hamster Ovary (CHO) cells. [3H]SCH23390 saturation experiments indicated the presence of only a single binding site in the D1a expressing cell line with a Kd of 0.5 nM. In D1b expressing cell lines...... for these receptors. Besides SCH 23390, only NNC 112, fluphenazine and bulbocapnine were able to discriminate between the two states of the D1b receptor. In case of the D1a receptor, the Ki values obtained in binding experiments were very similar to Ki values obtained from inhibition of dopamine stimulated adenylyl...... cyclase. In the D1b expressing cell line, the Ki values obtained from inhibition of the dopamine stimulated adenylyl cyclase indicated a significantly better correlation with the state of the D1b receptor showing high affinity for antagonists. In agreement with observations from binding experiments...

  2. Induction of cyclins E and A in response to mitogen removal: a basic alteration associated with the arrest of differentiation of C2 myoblasts transformed by simian virus 40 large T antigen.

    Science.gov (United States)

    Tedesco, D; Baron, L; Fischer-Fantuzzi, L; Vesco, C

    1997-03-01

    We previously showed that C2 myoblasts transformed by simian virus 40 large T antigen (SVLT) stop the myogenic process after the induction of myogenin and of high Rb levels; the induced Rb, however, becomes notably phosphorylated. We have analyzed the protein levels and activities of cyclin-dependent kinases (cdks) in untransformed C2 cells and in transformants of either SVLT or the cytoplasmic mutant NKT1 (which permits differentiation) upon a shift from growth medium (GM) to mitogen-poor differentiation medium (DM). After the shift, cdk4 levels remained constant and cdk6 levels decreased in all cell types; cdk2 minimally increased only in SVLT cells. Cyclin D1 was downregulated in DM in all cell types, and cyclin D3 was upregulated (albeit less strongly in SVLT cells than in the others). In contrast, a dramatic difference between SVLT cells and the other cells was observed for cyclins E and A, which essentially disappeared (as protein and RNA) in normal C2 and NKT1 cells upon the shift from GM to DM, whereas they increased in SVLT cells. Concurrently, cdk2 activity ceased in C2 and NKT1 cells in DM, whereas it persisted at 20% of the GM level in SVLT cells. cdk4 activity was detectable in all cells only in GM. Cyclin E and A induction thus appeared to sustain enough Rb phosphorylation to interfere with tissue-specific expression, with cdk activity not high enough to activate cyclin self-regulation. In DM, cdk2 complexed to D3 was underphosphorylated in all cells, and SVLT allowed strong inductions of p21 and p27 without affecting their complexes with cdks.

  3. Induction of cell proliferation and survival genes by estradiol-repressed microRNAs in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Yu Xinfeng

    2012-01-01

    Full Text Available Abstract Background In estrogen responsive MCF-7 cells, estradiol (E2 binding to ERα leads to transcriptional regulation of genes involved in the control of cell proliferation and survival. MicroRNAs (miRNAs have emerged as key post-transcriptional regulators of gene expression. The aim of this study was to explore whether miRNAs were involved in hormonally regulated expression of estrogen responsive genes. Methods Western blot and QPCR were used to determine the expression of estrogen responsive genes and miRNAs respectively. Target gene expression regulated by miRNAs was validated by luciferase reporter assays and transfection of miRNA mimics or inhibitors. Cell proliferation was evaluated by MTS assay. Results E2 significantly induced bcl-2, cyclin D1 and survivin expression by suppressing the levels of a panel of miRNAs (miR-16, miR-143, miR-203 in MCF-7 cells. MiRNA transfection and luciferase assay confirmed that bcl-2 was regulated by miR-16 and miR-143, cyclinD1 was modulated by miR-16. Importantly, survivin was found to be targeted by miR-16, miR-143, miR-203. The regulatory effect of E2 can be either abrogated by anti-estrogen ICI 182, 780 and raloxifene pretreatment, or impaired by ERα siRNA, indicating the regulation is dependent on ERα. In order to investigate the functional significance of these miRNAs in estrogen responsive cells, miRNAs mimics were transfected into MCF-7 cells. It revealed that overexpression of these miRNAs significantly inhibited E2-induced cell proliferation. Further study of the expression of the miRNAs indicated that miR-16, miR-143 and miR-203 were highly expressed in triple positive breast cancer tissues, suggesting a potential tumor suppressing effect of these miRNAs in ER positive breast cancer. Conclusions These results demonstrate that E2 induces bcl-2, cyclin D1 and survivin by orchestrating the coordinate downregulation of a panel of miRNAs. In turn, the miRNAs manifest growth suppressive effects

  4. BAFF induces spleen CD4{sup +} T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Fang; Chen, Rongjing [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Liu, Baojun [Laboratory of Lung, Inflammation and Cancers, Huashan Hospital, Fudan University, Shanghai (China); Zhang, Xiaoping [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Han, Junli; Wang, Haining [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Shen, Gang [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Tao, Jiang, E-mail: taojiang2012@yahoo.cn [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.

  5. Human VRK1 is an early response gene and its loss causes a block in cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Alberto Valbuena

    Full Text Available BACKGROUND: In mammalian cells regulatory proteins controlling the cell cycle are necessary due to the requirements of living in a heterogeneous environment of cell-interactions and growth factors. VRK1 is a novel serine-threonine kinase that phosphorylates several transcription factors and is associated with proliferation phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: In this report VRK1 has been identified as regulated in the cell cycle. VRK1 gene expression is activated by the addition of serum to starved cells, indicating it is required for the exit of G0 phase and entry in G1; a response that parallels the re-expression of MYC, FOS and CCND1 (cyclin D1 genes, suggesting that VRK1 is an early-response gene. VRK1 gene expression is also shutdown by serum withdrawal. The human VRK1 gene promoter cloned in a luciferase reporter responds similarly to serum. In response to serum, the level of VRK1 protein expression has a positive correlation with cell proliferation markers such as phosphorylated-Rb or PCNA, and is inversely correlated with cell cycle inhibitors such as p27. The elimination of VRK1 by siRNA results in a G1 block in cell division, and in loss of phosphorylated-Rb, cyclin D1, and other proliferation markers. Elimination of VRK1 by siRNA induces a reduction of cell proliferation. VRK1 colocalizes with p63 in proliferating areas of squamous epithelium, and identifies a subpopulation in the basal layer. CONCLUSIONS/SIGNIFICANCE: VRK1 is an immediate early response gene required for entry in G1, and due to its implication in normal cell proliferation and division, might be a new target for development of inhibitors of cellular proliferation.

  6. Prediction of cyclin-dependent kinase phosphorylation substrates.

    Directory of Open Access Journals (Sweden)

    Emmanuel J Chang

    2007-08-01

    Full Text Available Protein phosphorylation, mediated by a family of enzymes called cyclin-dependent kinases (Cdks, plays a central role in the cell-division cycle of eukaryotes. Phosphorylation by Cdks directs the cell cycle by modifying the function of regulators of key processes such as DNA replication and mitotic progression. Here, we present a novel computational procedure to predict substrates of the cyclin-dependent kinase Cdc28 (Cdk1 in the Saccharomyces cerevisiae. Currently, most computational phosphorylation site prediction procedures focus solely on local sequence characteristics. In the present procedure, we model Cdk substrates based on both local and global characteristics of the substrates. Thus, we define the local sequence motifs that represent the Cdc28 phosphorylation sites and subsequently model clustering of these motifs within the protein sequences. This restraint reflects the observation that many known Cdk substrates contain multiple clustered phosphorylation sites. The present strategy defines a subset of the proteome that is highly enriched for Cdk substrates, as validated by comparing it to a set of bona fide, published, experimentally characterized Cdk substrates which was to our knowledge, comprehensive at the time of writing. To corroborate our model, we compared its predictions with three experimentally independent Cdk proteomic datasets and found significant overlap. Finally, we directly detected in vivo phosphorylation at Cdk motifs for selected putative substrates using mass spectrometry.

  7. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    Science.gov (United States)

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  8. Positive feedback of G1 cyclins ensures coherent cell cycle entry.

    Science.gov (United States)

    Skotheim, Jan M; Di Talia, Stefano; Siggia, Eric D; Cross, Frederick R

    2008-07-17

    In budding yeast, Saccharomyces cerevisiae, the Start checkpoint integrates multiple internal and external signals into an all-or-none decision to enter the cell cycle. Here we show that Start behaves like a switch due to systems-level feedback in the regulatory network. In contrast to current models proposing a linear cascade of Start activation, transcriptional positive feedback of the G1 cyclins Cln1 and Cln2 induces the near-simultaneous expression of the approximately 200-gene G1/S regulon. Nuclear Cln2 drives coherent regulon expression, whereas cytoplasmic Cln2 drives efficient budding. Cells with the CLN1 and CLN2 genes deleted frequently arrest as unbudded cells, incurring a large fluctuation-induced fitness penalty due to both the lack of cytoplasmic Cln2 and insufficient G1/S regulon expression. Thus, positive-feedback-amplified expression of Cln1 and Cln2 simultaneously drives robust budding and rapid, coherent regulon expression. A similar G1/S regulatory network in mammalian cells, comprised of non-orthologous genes, suggests either conservation of regulatory architecture or convergent evolution.

  9. E-type cyclins modulate telomere integrity in mammalian male meiosis.

    Science.gov (United States)

    Manterola, Marcia; Sicinski, Piotr; Wolgemuth, Debra J

    2016-06-01

    We have shown that E-type cyclins are key regulators of mammalian male meiosis. Depletion of cyclin E2 reduced fertility in male mice due to meiotic defects, involving abnormal pairing and synapsis, unrepaired DNA, and loss of telomere structure. These defects were exacerbated by additional loss of cyclin E1, and complete absence of both E-type cyclins produces a meiotic catastrophe. Here, we investigated the involvement of E-type cyclins in maintaining telomere integrity in male meiosis. Spermatocytes lacking cyclin E2 and one E1 allele (E1+/-E2-/-) displayed a high rate of telomere abnormalities but can progress to pachytene and diplotene stages. We show that their telomeres exhibited an aberrant DNA damage repair response during pachynema and that the shelterin complex proteins TRF2 and RAP2 were significantly decreased in the proximal telomeres. Moreover, the insufficient level of these proteins correlated with an increase of γ-H2AX foci in the affected telomeres and resulted in telomere associations involving TRF1 and telomere detachment in later prophase-I stages. These results suggest that E-type cyclins are key modulators of telomere integrity during meiosis by, at least in part, maintaining the balance of shelterin complex proteins, and uncover a novel role of E-type cyclins in regulating chromosome structure during male meiosis.

  10. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells

    Energy Technology Data Exchange (ETDEWEB)

    Marzinke, Mark A. [Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544 (United States); Clagett-Dame, Margaret, E-mail: dame@biochem.wisc.edu [Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544 (United States); Pharmaceutical Science Division, University of Wisconsin-Madison, Madison, WI 53705-2222 (United States)

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21{sup Cip1}, a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G{sub 1}/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer Calmin is a retinoic acid-responsive gene. Black-Right-Pointing-Pointer Calmin promotes cell cycle exit in N2A cells. Black-Right-Pointing-Pointer Calmin overexpression increases p21Cip1 and decreases cyclin D1. Black-Right-Pointing-Pointer Calmin is required for RA-induced growth inhibition and neurite outgrowth.

  11. Stromal and Epithelial Caveolin-1 Both Confer a Protective Effect Against Mammary Hyperplasia and Tumorigenesis : Caveolin-1 Antagonizes Cyclin D1 Function in Mammary Epithelial Cells

    OpenAIRE

    Williams, Terence M.; Sotgia, Federica; Lee, Hyangkyu; Hassan, Ghada; Di Vizio, Dolores; Bonuccelli, Gloria; Capozza, Franco; Mercier, Isabelle; Rui, Hallgeir; Pestell, Richard G.; Lisanti, Michael P.

    2006-01-01

    Here, we investigate the role of caveolin-1 (Cav-1) in breast cancer onset and progression, with a focus on epithelial-stromal interactions, ie, the tumor microenvironment. Cav-1 is highly expressed in adipocytes and is abundant in mammary fat pads (stroma), but it remains unknown whether loss of Cav-1 within mammary stromal cells affects the differentiated state of mammary epithelia via paracrine signaling. To address this issue, we characterized the development of the mammary ductal system ...

  12. Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers

    DEFF Research Database (Denmark)

    French, Juliet D; Ghoussaini, Maya; Edwards, Stacey L

    2013-01-01

    Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causativ...

  13. A role for Drosophila Cyclin J in oogenesis revealed by genetic interactions with the piRNA pathway.

    Science.gov (United States)

    Atikukke, Govindaraja; Albosta, Paul; Zhang, Huamei; Finley, Russell L

    2014-08-01

    Cyclin J (CycJ) is a poorly characterized member of the Cyclin superfamily of cyclin-dependent kinase regulators, many of which regulate the cell cycle or transcription. Although CycJ is conserved in metazoans its cellular function has not been identified and no mutant defects have been described. In Drosophila, CycJ transcript is present primarily in ovaries and very early embryos, suggesting a role in one or both of these tissues. The CycJ gene (CycJ) lies immediately downstream of armitage (armi), a gene involved in the Piwi-associated RNA (piRNA) pathways that are required for silencing transposons in the germline and adjacent somatic cells. Mutations in armi result in oogenesis defects but a role for CycJ in oogenesis has not been defined. Here we assessed oogenesis in CycJ mutants in the presence or absence of mutations in armi or other piRNA pathway genes. CycJ null ovaries appeared normal, indicating that CycJ is not essential for oogenesis under normal conditions. In contrast, armi null ovaries produced only two egg chambers per ovariole and the eggs had severe axis specification defects, as observed previously for armi and other piRNA pathway mutants. Surprisingly, the CycJ armi double mutant failed to produce any mature eggs. The double null ovaries generally had only one egg chamber per ovariole and the egg chambers frequently contained an overabundance of differentiated germline cells. Production of these compound egg chambers could be suppressed with CycJ transgenes but not with mutations in the checkpoint gene mnk, which suppress oogenesis defects in armi mutants. The CycJ null showed similar genetic interactions with the germline and somatic piRNA pathway gene piwi, and to a lesser extent with aubergine (aub), a member of the germline-specific piRNA pathway. The strong genetic interactions between CycJ and piRNA pathway genes reveal a role for CycJ in early oogenesis. Our results suggest that CycJ is required to regulate egg chamber production or

  14. Cyclin I correlates with VEGFR-2 and cell proliferation in human epithelial ovarian cancer.

    Science.gov (United States)

    Cybulski, Marek; Jarosz, Bożena; Nowakowski, Andrzej; Jeleniewicz, Witold; Seroczyński, Przemysław; Mazurek-Kociubowska, Magdalena

    2012-10-01

    Ovarian cancer is the most lethal of all gynecologic malignancies. It is characterized by the spread of intraperitoneal tumors, accumulation of ascites, and formation of tumor blood vessels. Cyclin I has been linked with angiogenesis-related proteins, like vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR-2), in human breast cancer. We examined whether an association exists between expression of cyclin I, VEGFR-2, clinicopathologic parameters and survival of patients with epithelial ovarian cancer (EOC). Cyclin I and VEGFR-2 expressions were analyzed by immunohistochemistry in 55 human primary EOC tissue specimens. Cyclin I immunoreactivity was significantly correlated with VEGFR-2 (R=0.4587, P=0.0004), and immunolabeling of cyclin I and VEGFR-2 significantly correlated with cancer cells' proliferative activity evaluated using cyclin A labeling index as a marker (R=0.3107, P=0.0209 and R=0.4183, P=0.0015, respectively). VEGFR-2 immunostaining was significantly higher in advanced, poorly differentiated, and suboptimally resected EOCs compared to their counterparts (P<0.05). Finally, higher VEGFR-2 expression was significantly associated with shorter disease-free survival (P=0.0437). Our results indicate that elevated expression of cyclin I and VEGFR-2 is likely to provide a proliferative advantage to the EOC cells, and that cyclin I may be linked with angiogenesis in EOC. Higher expression of VEGFR-2 is associated with more advanced disease. Further investigation of cyclin I in ovarian cancer is needed to evaluate if cyclin I may become a novel target for an anticancer therapy. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Squamous epithelial proliferation induced by walleye dermal sarcoma retrovirus cyclin in transgenic mice

    Science.gov (United States)

    Lairmore, Michael D.; Stanley, James R.; Weber, Stacy A.; Holzschu, Donald L.

    2000-01-01

    Walleye dermal sarcoma (WDS) is a common disease of walleye fish in the United States and Canada. These proliferative lesions are present autumn through winter and regress in the spring. Walleye dermal sarcoma virus (WDSV), a retrovirus distantly related to other members of the family Retroviridae, has been etiologically linked to the development of WDS. We have reported that the D-cyclin homologue [retroviral (rv) cyclin] encoded by WDSV rescues yeast conditionally deficient for cyclin synthesis from growth arrest and that WDSV-cyclin mRNA is present in developing tumors. These data strongly suggest that the rv-cyclin plays a central role in the development of WDS. To test the ability of the WDSV rv-cyclin to induce cell proliferation, we have generated transgenic mice expressing the rv-cyclin in squamous epithelia from the bovine keratin-5 promoter. The transgenic animals were smaller than littermates, had reduced numbers of hair follicles, and transgenic females did not lactate properly. Following injury the transgenic animals developed severe squamous epithelial hyperplasia and dysplasia with ultrastructural characteristics of neoplastic squamous epithelium. Immunocytochemistry studies demonstrated that the hyperplastic epithelium stained positive for cytokeratin and were abnormally differentiated. Furthermore, the rv-cyclin protein was detected in the thickened basal cell layers of the proliferating lesions. These data are the first to indicate that the highly divergent WDSV rv-cyclin is a very potent stimulator of eukaryotic cell proliferation and to demonstrate the potential of a cyclin homologue encoded by a retrovirus to induce hyperplastic skin lesions. PMID:10811912

  16. The enhancer of trithorax and polycomb corto interacts with cyclin G in Drosophila.

    Directory of Open Access Journals (Sweden)

    Juliette Salvaing

    2008-02-01

    Full Text Available Polycomb (PcG and trithorax (trxG genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE. A third class of proteins, so-called "Enhancers of Trithorax and Polycomb" (ETP, interacts with either complexes, behaving sometimes as repressors and sometimes as activators. The role of ETP proteins is largely unknown.In a two-hybrid screen, we identified Cyclin G (CycG as a partner of the Drosophila ETP Corto. Inactivation of CycG by RNA interference highlights its essential role during development. We show here that Corto and CycG directly interact and bind to each other in embryos and S2 cells. Moreover, CycG is targeted to polytene chromosomes where it co-localizes at multiple sites with Corto and with the PcG factor Polyhomeotic (PH. We observed that corto is involved in maintaining Abd-B repression outside its normal expression domain in embryos. This could be achieved by association between Corto and CycG since both proteins bind the regulatory element iab-7 PRE and the promoter of the Abd-B gene.Our results suggest that CycG could regulate the activity of Corto at chromatin and thus be involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG.

  17. Cyclin-dependent kinase 9 activity regulates neutrophil spontaneous apoptosis.

    Directory of Open Access Journals (Sweden)

    Keqing Wang

    Full Text Available Neutrophils are the most abundant leukocyte and play a central role in the immune defense against rapidly dividing bacteria. However, they are also the shortest lived cell in the blood with a lifespan in the circulation of 5.4 days. The mechanisms underlying their short lifespan and spontaneous entry into apoptosis are poorly understood. Recently, the broad range cyclin-dependent kinase (CDK inhibitor R-roscovitine was shown to increase neutrophil apoptosis, implicating CDKs in the regulation of neutrophil lifespan. To determine which CDKs were involved in regulating neutrophil lifespan we first examined CDK expression in human neutrophils and found that only three CDKs: CDK5, CDK7 and CDK9 were expressed in these cells. The use of CDK inhibitors with differing selectivity towards the various CDKs suggested that CDK9 activity regulates neutrophil lifespan. Furthermore CDK9 activity and the expression of its activating partner cyclin T1 both declined as neutrophils aged and entered apoptosis spontaneously. CDK9 is a component of the P-TEFb complex involved in transcriptional regulation and its inhibition will preferentially affect proteins with short half-lives. Treatment of neutrophils with flavopiridol, a potent CDK9 inhibitor, increased apoptosis and caused a rapid decline in the level of the anti-apoptotic protein Mcl-1, whilst Bcl2A was unaffected. We propose that CDK9 activity is a key regulator of neutrophil lifespan, preventing apoptosis by maintaining levels of short lived anti-apoptotic proteins such as Mcl-1. Furthermore, as inappropriate inhibition of neutrophil apoptosis contributes to chronic inflammatory diseases such as Rheumatoid Arthritis, CDK9 represents a novel therapeutic target in such diseases.

  18. Cyclin-Dependent Kinase 9 Activity Regulates Neutrophil Spontaneous Apoptosis

    Science.gov (United States)

    Hazeldine, Jon; Krystof, Vladimir; Strnad, Miroslav; Pechan, Paul; M., Janet

    2012-01-01

    Neutrophils are the most abundant leukocyte and play a central role in the immune defense against rapidly dividing bacteria. However, they are also the shortest lived cell in the blood with a lifespan in the circulation of 5.4 days. The mechanisms underlying their short lifespan and spontaneous entry into apoptosis are poorly understood. Recently, the broad range cyclin-dependent kinase (CDK) inhibitor R-roscovitine was shown to increase neutrophil apoptosis, implicating CDKs in the regulation of neutrophil lifespan. To determine which CDKs were involved in regulating neutrophil lifespan we first examined CDK expression in human neutrophils and found that only three CDKs: CDK5, CDK7 and CDK9 were expressed in these cells. The use of CDK inhibitors with differing selectivity towards the various CDKs suggested that CDK9 activity regulates neutrophil lifespan. Furthermore CDK9 activity and the expression of its activating partner cyclin T1 both declined as neutrophils aged and entered apoptosis spontaneously. CDK9 is a component of the P-TEFb complex involved in transcriptional regulation and its inhibition will preferentially affect proteins with short half-lives. Treatment of neutrophils with flavopiridol, a potent CDK9 inhibitor, increased apoptosis and caused a rapid decline in the level of the anti-apoptotic protein Mcl-1, whilst Bcl2A was unaffected. We propose that CDK9 activity is a key regulator of neutrophil lifespan, preventing apoptosis by maintaining levels of short lived anti-apoptotic proteins such as Mcl-1. Furthermore, as inappropriate inhibition of neutrophil apoptosis contributes to chronic inflammatory diseases such as Rheumatoid Arthritis, CDK9 represents a novel therapeutic target in such diseases. PMID:22276149

  19. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells.

    Science.gov (United States)

    Bhattacharya, Sujoy; Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco-2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco-2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF-α/CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner.

  20. High expression of cyclin B1 predicts a favorable outcome in patients with follicular lymphoma.

    Science.gov (United States)

    Björck, Erik; Ek, Sara; Landgren, Ola; Jerkeman, Mats; Ehinger, Mats; Björkholm, Magnus; Borrebaeck, Carl A K; Porwit-MacDonald, Anna; Nordenskjöld, Magnus

    2005-04-01

    Substantial research has been dedicated to the study of the relationship between genetic mechanisms regulating cell functions in tumors and how those tumors respond to various treatment regimens. Because these mechanisms are still not well understood, we have chosen to study the genetic makeup of 57 tumor samples from patients with follicular lymphoma (FL). Our goal was to develop a prognostic tool, which can be used as an aid in determining FL patients with tumors genetically predisposed to a successful treatment with the CHOP (cyclophosphamide, vincristine, doxorubicin, prednisone) regimen. To select relevant genes, high-density oligonucleotide arrays were used. There were 14 genes highly expressed in FL patients that responded well to CHOP chemotherapy, and 11 of these were involved in G2/M transition of the cell cycle, in mitosis, or in DNA modulation. A high expression of CCNB1 (cyclin B1), CDC2, CDKN3A, CKS1B, ANP32E, and KIAA0101, but not of the proliferation-related antigen Ki-67, was associated with better survival rate in a univariate analysis. CCNB1 expression had an independent prognostic value when included in a multivariate analysis together with the 5 parameters of the follicular lymphoma international prognostic index.

  1. Waiting time distribution in M/D/1 queueing systems

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk; Staalhagen, Lars

    1999-01-01

    The well-known formula for the waiting time distribution of M/D/1 queueing systems is numerically unsuitable when the load is close to 1.0 and/or the results for a large waiting time are required. An algorithm for any load and waiting time is presented, based on the state probabilities of M/D/1...

  2. 26 CFR 1.509(d)-1 - Definition of support

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Definition of support 1.509(d)-1 Section 1.509(d... (CONTINUED) INCOME TAXES (CONTINUED) Private Foundations § 1.509(d)-1 Definition of support For purposes of section 509(a)(2), the term support does not include amounts received in repayment of the principal of a...

  3. Sulforaphane, a Dietary Isothiocyanate, Induces G2/M Arrest in Cervical Cancer Cells through CyclinB1 Downregulation and GADD45β/CDC2 Association

    Directory of Open Access Journals (Sweden)

    Ya-Min Cheng

    2016-09-01

    Full Text Available Globally, cervical cancer is the most common malignancy affecting women. The main treatment methods for this type of cancer include conization or hysterectomy procedures. Sulforaphane (SFN is a natural, compound-based drug derived from dietary isothiocyanates which has previously been shown to possess potent anti-tumor and chemopreventive effects against several types of cancer. The present study investigated the effects of SFN on anti-proliferation and G2/M phase cell cycle arrest in cervical cancer cell lines (Cx, CxWJ, and HeLa. We found that cytotoxicity is associated with an accumulation of cells in the G2/M phases of the cell-cycle. Treatment with SFN led to cell cycle arrest as well as the down-regulation of Cyclin B1 expression, but not of CDC2 expression. In addition, the effects of GADD45β gene activation in cell cycle arrest increase proportionally with the dose of SFN; however, mitotic delay and the inhibition of proliferation both depend on the dosage of SFN used to treat cancer cells. These results indicate that SFN may delay the development of cancer by arresting cell growth in the G2/M phase via down-regulation of Cyclin B1 gene expression, dissociation of the cyclin B1/CDC2 complex, and up-regulation of GADD45β proteins.

  4. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shang-Hui Jin

    Full Text Available Auxin is one type of phytohormones that plays important roles in nearly all aspects of plant growth and developmental processes. The glycosylation of auxins is considered to be an essential mechanism to control the level of active auxins. Thus, the identification of auxin glycosyltransferases is of great significance for further understanding the auxin regulation. In this study, we biochemically screened the group L of Arabidopsis thaliana glycosyltransferase superfamily for enzymatic activity toward auxins. UGT74D1 was identified to be a novel auxin glycosyltransferase. Through HPLC and LC-MS analysis of reaction products in vitro by testing eight substrates including auxins and other compounds, we found that UGT74D1 had a strong glucosylating activity toward indole-3-butyric acid [IBA], indole-3-propionic acid [IPA], indole-3-acetic acid [IAA] and naphthaleneacetic acid [NAA], catalyzing them to form corresponding glucose esters. Biochemical characterization showed that this enzyme had a maximum activity in HEPES buffer at pH 6.0 and 37°C. In addition, the enzymatic activity analysis of crude protein and the IBA metabolite analysis from transgenic Arabidopsis plants overexpressing UGT74D1 gene were also carried out. Experimental results indicated that over-production of the UGT74D1 in plants indeed led to increased level of the glucose conjugate of IBA. Moreover, UGT74D1 overexpression lines displayed curling leaf phenotype, suggesting a physiological role of UGT74D1 in affecting the activity of auxins. Our current data provide a new target gene for further genetic studies to understand the auxin regulation by glycosylation in plants.

  5. Identification of cyclin B1 and Sec62 as biomarkers for recurrence in patients with HBV-related hepatocellular carcinoma after surgical resection

    Directory of Open Access Journals (Sweden)

    Weng Li

    2012-06-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is the fifth most common cancer worldwide. Frequent tumor recurrence after surgery is related to its poor prognosis. Although gene expression signatures have been associated with outcome, the molecular basis of HCC recurrence is not fully understood, and there is no method to predict recurrence using peripheral blood mononuclear cells (PBMCs, which can be easily obtained for recurrence prediction in the clinical setting. Methods According to the microarray analysis results, we constructed a co-expression network using the k-core algorithm to determine which genes play pivotal roles in the recurrence of HCC associated with the hepatitis B virus (HBV infection. Furthermore, we evaluated the mRNA and protein expressions in the PBMCs from 80 patients with or without recurrence and 30 healthy subjects. The stability of the signatures was determined in HCC tissues from the same 80 patients. Data analysis included ROC analysis, correlation analysis, log-lank tests, and Cox modeling to identify independent predictors of tumor recurrence. Results The tumor-associated proteins cyclin B1, Sec62, and Birc3 were highly expressed in a subset of samples of recurrent HCC; cyclin B1, Sec62, and Birc3 positivity was observed in 80%, 65.7%, and 54.2% of the samples, respectively. The Kaplan-Meier analysis revealed that high expression levels of these proteins was associated with significantly reduced recurrence-free survival. Cox proportional hazards model analysis revealed that cyclin B1 (hazard ratio [HR], 4.762; p = 0.002 and Sec62 (HR, 2.674; p = 0.018 were independent predictors of HCC recurrence. Conclusion These results revealed that cyclin B1 and Sec62 may be candidate biomarkers and potential therapeutic targets for HBV-related HCC recurrence after surgery.

  6. Altered expression of cyclin A 1 in muscle of patients with facioscapulohumeral muscle dystrophy (FSHD-1.

    Directory of Open Access Journals (Sweden)

    Anna Pakula

    Full Text Available OBJECTIVES: Cyclin A1 regulates cell cycle activity and proliferation in somatic and germ-line cells. Its expression increases in G1/S phase and reaches a maximum in G2 and M phases. Altered cyclin A1 expression might contribute to clinical symptoms in facioscapulohumeral muscular dystrophy (FSHD. METHODS: Muscle biopsies were taken from the Vastus lateralis muscle for cDNA microarray, RT-PCR, immunohistochemistry and Western blot analyses to assess RNA and protein expression of cyclin A1 in human muscle cell lines and muscle tissue. Muscle fibers diameter was calculated on cryosections to test for hypertrophy. RESULTS: cDNA microarray data showed specifically elevated cyclin A1 levels in FSHD vs. other muscular disorders such as caveolinopathy, dysferlinopathy, four and a half LIM domains protein 1 deficiency and healthy controls. Data could be confirmed with RT-PCR and Western blot analysis showing up-regulated cyclin A1 levels also at protein level. We found also clear signs of hypertrophy within the Vastus lateralis muscle in FSHD-1 patients. CONCLUSIONS: In most somatic human cell lines, cyclin A1 levels are low. Overexpression of cyclin A1 in FSHD indicates cell cycle dysregulation in FSHD and might contribute to clinical symptoms of this disease.

  7. Cyclin A2 promotes DNA repair in the brain during both development and aging.

    Science.gov (United States)

    Gygli, Patrick E; Chang, Joshua C; Gokozan, Hamza N; Catacutan, Fay P; Schmidt, Theresa A; Kaya, Behiye; Goksel, Mustafa; Baig, Faisal S; Chen, Shannon; Griveau, Amelie; Michowski, Wojciech; Wong, Michael; Palanichamy, Kamalakannan; Sicinski, Piotr; Nelson, Randy J; Czeisler, Catherine; Otero, José J

    2016-07-01

    Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss results in compensatory forebrain growth during late embryonic development. Using unbiased measurements of the forebrain stem cell niche, we parameterized a mathematical model whereby logistic growth instructs progenitor cells as to the cell-types of their progeny. Our data was consistent with prior findings that progenitors proliferate along an auto-inhibitory growth curve. The growth retardation inCCNA2-null brains corresponded to cell cycle lengthening, imposing a developmental delay. We hypothesized that Cyclin A2 regulates DNA repair and that CCNA2-null progenitors thus experienced lengthened cell cycle. We demonstrate that CCNA2-null progenitors suffer abnormal DNA repair, and implicate Cyclin A2 in double-strand break repair. Cyclin A2's DNA repair functions are conserved among cell lines, neural progenitors, and hippocampal neurons. We further demonstrate that neuronal CCNA2 ablation results in learning and memory deficits in aged mice.

  8. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos

    Science.gov (United States)

    Boulben, Sandrine; Glippa, Virginie; Morales, Julia; Cormier, Patrick

    2016-01-01

    The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism. PMID:26962866

  9. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Marta; Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland); Smital, Tvrtko, E-mail: smital@irb.hr [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia)

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  10. Cyclin D3 expression in non-Hodgkin lymphoma. Correlation with other cell cycle regulators and clinical features

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Nielsen, O; Pedersen, Niels Tinggaard

    2001-01-01

    analyzed immunohistochemically for cyclin D3 expression. In 43 lymphomas (21.7%), cyclin D3 was overexpressed. T-cell lymphomas more frequently overexpressed cyclin D3 than B-cell lymphomas. Furthermore, cyclin D3-overexpressing indolent lymphomas were associated with higher proliferation rate, higher p21......Waf1 expression, lower p27Kip1 expression, and altered p53. Cyclin D3 overexpression identified a subgroup of patients with indolent B-cell lymphoma with adverse clinical features: patients were older, more frequently had "B" symptoms and extranodal involvement, and were more frequently in the high...

  11. Identification and Functional Characterisation of CRK12:CYC9, a Novel Cyclin-Dependent Kinase (CDK-Cyclin Complex in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Séverine Monnerat

    Full Text Available The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively.

  12. Cyclin A2 Is Required for Sister Chromatid Segregation, But Not Separase Control, in Mouse Oocyte Meiosis

    Directory of Open Access Journals (Sweden)

    Sandra A. Touati

    2012-11-01

    Full Text Available In meiosis, two specialized cell divisions allow the separation of paired chromosomes first, then of sister chromatids. Separase removes the cohesin complex holding sister chromatids together in a stepwise manner from chromosome arms in meiosis I, then from the centromere region in meiosis II. Using mouse oocytes, our study reveals that cyclin A2 promotes entry into meiosis, as well as an additional unexpected role; namely, its requirement for separase-dependent sister chromatid separation in meiosis II. Untimely cyclin A2-associated kinase activity in meiosis I leads to precocious sister separation, whereas inhibition of cyclin A2 in meiosis II prevents it. Accordingly, endogenous cyclin A is localized to kinetochores throughout meiosis II, but not in anaphase I. Additionally, we found that cyclin B1, but not cyclin A2, inhibits separase in meiosis I. These findings indicate that separase-dependent cohesin removal is differentially regulated by cyclin B1 and A2 in mammalian meiosis.

  13. Adolescent Maturation of Dopamine D1 and D2 Receptor Function and Interactions in Rodents

    Science.gov (United States)

    Dwyer, Jennifer B.; Leslie, Frances M.

    2016-01-01

    Adolescence is a developmental period characterized by heightened vulnerability to illicit drug use and the onset of neuropsychiatric disorders. These clinical phenomena likely share common neurobiological substrates, as mesocorticolimbic dopamine systems actively mature during this period. Whereas prior studies have examined age-dependent changes in dopamine receptor binding, there have been fewer functional analyses. The aim of the present study was therefore to determine whether the functional consequences of D1 and D2-like activation are age-dependent. Adolescent and adult rats were given direct D1 and D2 agonists, alone and in combination. Locomotor and stereotypic behaviors were measured, and brains were collected for analysis of mRNA expression for the immediate early genes (IEGs), cfos and arc. Adolescents showed enhanced D2-like receptor control of locomotor and repetitive behaviors, which transitioned to dominant D1-like mechanisms in adulthood. When low doses of agonists were co-administered, adults showed supra-additive behavioral responses to D1/D2 combinations, whereas adolescents did not, which may suggest age differences in D1/D2 synergy. D1/D2-stimulated IEG expression was particularly prominent in the bed nucleus of the stria terminalis (BNST). Given the BNST’s function as an integrator of corticostriatal, hippocampal, and stress-related circuitry, and the importance of neural network dynamics in producing behavior, an exploratory functional network analysis of regional IEG expression was performed. This data-driven analysis demonstrated similar developmental trajectories as those described in humans and suggested that dopaminergic drugs alter forebrain coordinated gene expression age dependently. D1/D2 recruitment of stress nuclei into functional networks was associated with low behavioral output in adolescents. Network analysis presents a novel tool to assess pharmacological action, and highlights critical developmental changes in functional

  14. Resolvin D1 and Aspirin-Triggered Resolvin D1 Regulate Histamine-stimulated Conjunctival Goblet Cell Secretion

    Science.gov (United States)

    Li, Dayu; Hodges, Robin R.; Jiao, Jianwei; Carozza, Richard B.; Shatos, Marie A.; Chiang, Nan; Serhan, Charles N.; Dartt, Darlene A.

    2013-01-01

    Resolution of inflammation is an active process mediated by pro-resolution lipid mediators. Since resolvin (Rv) D1 is produced in the cornea, pro-resolution mediators could be effective in regulating inflammatory responses to histamine in allergic conjunctivitis. Two key mediators of resolution are the D-series resolvins RvD1 or aspirin-triggered RvD1 (AT-RvD1). We used cultured conjunctival goblet cells to determine whether histamine actions can be terminated during allergic responses. We found cross-talk between two types of G protein-coupled receptors, as RvD1 interacts with its receptor GPR32 to block histamine-stimulated H1 receptor increases in intracellular [Ca2+] ([Ca2+]i) preventing H1 receptor-mediated responses. In human and rat conjunctival goblet cells RvD1 and AT-RvD1 each block histamine-stimulated secretion by preventing its increase in [Ca2+]i and activation of extracellular regulated protein kinase (ERK)1/2. We suggest that D-series resolvins regulate histamine responses in the eye and offer new treatment approaches for allergic conjunctivitis or other histamine-dependent pathologies. PMID:23462912

  15. Resolvin D1 and aspirin-triggered resolvin D1 regulate histamine-stimulated conjunctival goblet cell secretion.

    Science.gov (United States)

    Li, D; Hodges, R R; Jiao, J; Carozza, R B; Shatos, M A; Chiang, N; Serhan, C N; Dartt, D A

    2013-11-01

    Resolution of inflammation is an active process mediated by pro-resolution lipid mediators. As resolvin (Rv) D1 is produced in the cornea, pro-resolution mediators could be effective in regulating inflammatory responses to histamine in allergic conjunctivitis. Two key mediators of resolution are the D-series resolvins RvD1 or aspirin-triggered RvD1 (AT-RvD1). We used cultured conjunctival goblet cells to determine whether histamine actions can be terminated during allergic responses. We found cross-talk between two types of G protein-coupled receptors (GPRs), as RvD1 interacts with its receptor GPR32 to block histamine-stimulated H1 receptor increases in intracellular [Ca(2+)] ([Ca(2+)]i) preventing H1 receptor-mediated responses. In human and rat conjunctival goblet cells, RvD1 and AT-RvD1 each block histamine-stimulated secretion by preventing its increase in [Ca(2+)]i and activation of extracellular regulated-protein kinase (ERK)1/2. We suggest that D-series resolvins regulate histamine responses in the eye and offer new treatment approaches for allergic conjunctivitis or other histamine-dependent pathologies.

  16. Human pluripotent embryonal carcinoma NTERA2 cl.D1 cells maintain their typical morphology in an angiomyogenic medium

    Directory of Open Access Journals (Sweden)

    Ramos Teresa

    2007-04-01

    Full Text Available Abstract Background Pluripotent embryonal carcinomas are good potential models, to study, "in vitro," the mechanisms that control differentiation during embryogenesis. The NTERA2cl.D1 (NT2/D1 cell line is a well known system of ectodermal differentiation. Retinoic acid (RA induces a dorsal pattern of differentiation (essentially neurons and bone morphogenetic protein (BMP or hexamethylenebisacetamide (HMBA induces a more ventral (epidermal pattern of differentiation. However, whether these human cells could give rise to mesoderm derivatives as their counterpart in mouse remained elusive. We analyzed the morphological characteristics and transcriptional activation of genes pertinent in cardiac muscle and endothelium differentiation, during the growth of NT2/D1 cells in an inductive angiomyogenic medium with or without Bone Morphogenetic Protein 2 (BMP2. Results Our experiments showed that NT2/D1 maintains their typical actin organization in angiomyogenic medium. Although the beta myosin heavy chain gene was never detected, all the other 15 genes analyzed maintained their expression throughout the time course of the experiment. Among them were early and late cardiac, endothelial, neuronal and teratocarcinoma genes. Conclusion Our results suggest that despite the NT2/D1 cells natural tendency to differentiate into neuroectodermal lineages, they can activate genes of mesodermal lineages. Therefore, we believe that these pluripotent cells might still be a good model to study biological development of mesodermal derivatives, provided the right culture conditions are met.

  17. The D$_1$ enigma and its physical origin

    CERN Document Server

    Stenflo, J O

    2016-01-01

    The D$_1$ enigma is an anomaly, which was first observed on the Sun as a symmetric polarization peak centered in the core of the sodium D$_1$ line that is expected to be intrinsically unpolarizable. To resolve this problem the underlying physics was later explored in the laboratory for D$_1$ scattering at potassium vapor. The experiment showed that the scattering phase matrix element $P_{21}$ is positive while $P_{22}$ is negative, although standard quantum scattering theory predicts that both should be zero. This experimental contradiction is currently the main manifestation of the D$_1$ enigma. Subsequent theoretical studies showed that such polarization effects may arise if scattering theory is extended to allow for interference effects due to level splittings of the ground state, in contrast to standard scattering theory, which only allows for interferences from level splittings of the intermediate state. Previous attempts to implement this idea had to rely on heuristic arguments to allow modeling of the ...

  18. Dopamine D1 signaling organizes network dynamics underlying working memory.

    Science.gov (United States)

    Roffman, Joshua L; Tanner, Alexandra S; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J; Ho, New Fei; Nitenson, Adam Z; Chonde, Daniel B; Greve, Douglas N; Abi-Dargham, Anissa; Buckner, Randy L; Manoach, Dara S; Rosen, Bruce R; Hooker, Jacob M; Catana, Ciprian

    2016-06-01

    Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography-magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory-emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits.

  19. 26 CFR 1.1402(d)-1 - Employee and wages.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 12 2010-04-01 2010-04-01 false Employee and wages. 1.1402(d)-1 Section 1.1402... (CONTINUED) INCOME TAXES Tax on Self-Employment Income § 1.1402(d)-1 Employee and wages. For the purpose of the tax on self-employment income, the term “employee” and the term “wages” shall have the same...

  20. Underground storage tank 291-D1U1: Closure plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

  1. FGFR3 and Cyclin D3 as urine biomarkers of bladder cancer recurrence.

    Science.gov (United States)

    Blanca, Ana; Requena, Maria J; Alvarez, Jose; Cheng, Liang; Montironi, Rodolfo; Raspollini, Maria R; Reymundo, Carlos; Lopez-Beltran, Antonio

    2016-01-01

    To assess the diagnostic performance of FGFR3 and Cyclin D3 urinary protein levels in detecting bladder cancer recurrence. Urine of 321 patients in follow-up for bladder cancer and 150 non-neoplastic urine controls was included. Cytology, cystoscopy and FGFR3 and Cyclin D3 expression by western blot were performed. One hundred ten (34.3%) patients had evidence of tumor recurrence. The sensitivity and specificity of cytology/cystoscopy was 80 and 84%, and for FGFR3/Cyclin D3 was of 73 and 90%. Combined urinary FGFR3/Cyclin D3 expression shows improved detection rates for bladder cancer recurrence with high specificity and sensitivity, and within the same range of detection shown by cystoscopy, therefore supporting its potential use as noninvasive diagnostic biomarker for bladder cancer recurrence.

  2. D-type cyclins in adult human testis and testicular cancer

    DEFF Research Database (Denmark)

    Bartkova, J; Rajpert-de Meyts, E; Skakkebaek, N E

    1999-01-01

    D-type cyclins are proto-oncogenic components of the 'RB pathway', a G1/S regulatory mechanism centred around the retinoblastoma tumour suppressor (pRB) implicated in key cellular decisions that control cell proliferation, cell-cycle arrest, quiescence, and differentiation. This study focused...... of proliferation and oncogenic aberrations in human tissues and tumours, this study may inspire further research into the emerging role of the cyclin D proteins in the establishment and/or maintenance of the differentiated phenotypes....

  3. Involvement of Cyclin K Posttranscriptional Regulation in the Formation of Artemia Diapause Cysts

    Science.gov (United States)

    Zhao, Yang; Ding, Xia; Ye, Xiang; Dai, Zhong-Min; Yang, Jin-Shu; Yang, Wei-Jun

    2012-01-01

    Background Artemia eggs tend to develop ovoviviparously to yield nauplius larvae in good rearing conditions; while under adverse situations, they tend to develop oviparously and encysted diapause embryos are formed instead. However, the intrinsic mechanisms regulating this process are not well understood. Principal Finding This study has characterized the function of cyclin K, a regulatory subunit of the positive transcription elongation factor b (P-TEFb) in the two different developmental pathways of Artemia. In the diapause-destined embryo, Western blots showed that the cyclin K protein was down-regulated as the embryo entered dormancy and reverted to relatively high levels of expression once development resumed, consistent with the fluctuations in phosphorylation of position 2 serines (Ser2) in the C-terminal domain (CTD) of the largest subunit (Rpb1) of RNA polymerase II (RNAP II). Interestingly, the cyclin K transcript levels remained constant during this process. In vitro translation data indicated that the template activity of cyclin K mRNA stored in the postdiapause cyst was repressed. In addition, in vivo knockdown of cyclin K in developing embryos by RNA interference eliminated phosphorylation of the CTD Ser2 of RNAP II and induced apoptosis by inhibiting the extracellular signal-regulated kinase (ERK) survival signaling pathway. Conclusions/Significance Taken together, these findings reveal a role for cyclin K in regulating RNAP II activity during diapause embryo development, which involves the post-transcriptional regulation of cyclin K. In addition, a further role was identified for cyclin K in regulating the control of cell survival during embryogenesis through ERK signaling pathways. PMID:22363807

  4. Involvement of cyclin K posttranscriptional regulation in the formation of Artemia diapause cysts.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available BACKGROUND: Artemia eggs tend to develop ovoviviparously to yield nauplius larvae in good rearing conditions; while under adverse situations, they tend to develop oviparously and encysted diapause embryos are formed instead. However, the intrinsic mechanisms regulating this process are not well understood. PRINCIPAL FINDING: This study has characterized the function of cyclin K, a regulatory subunit of the positive transcription elongation factor b (P-TEFb in the two different developmental pathways of Artemia. In the diapause-destined embryo, Western blots showed that the cyclin K protein was down-regulated as the embryo entered dormancy and reverted to relatively high levels of expression once development resumed, consistent with the fluctuations in phosphorylation of position 2 serines (Ser2 in the C-terminal domain (CTD of the largest subunit (Rpb1 of RNA polymerase II (RNAP II. Interestingly, the cyclin K transcript levels remained constant during this process. In vitro translation data indicated that the template activity of cyclin K mRNA stored in the postdiapause cyst was repressed. In addition, in vivo knockdown of cyclin K in developing embryos by RNA interference eliminated phosphorylation of the CTD Ser2 of RNAP II and induced apoptosis by inhibiting the extracellular signal-regulated kinase (ERK survival signaling pathway. CONCLUSIONS/SIGNIFICANCE: Taken together, these findings reveal a role for cyclin K in regulating RNAP II activity during diapause embryo development, which involves the post-transcriptional regulation of cyclin K. In addition, a further role was identified for cyclin K in regulating the control of cell survival during embryogenesis through ERK signaling pathways.

  5. Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization

    DEFF Research Database (Denmark)

    Petersen, B O; Lukas, J; Sørensen, Claus Storgaard

    1999-01-01

    Cyclin-dependent kinases (CDKs) are essential for regulating key transitions in the cell cycle, including initiation of DNA replication, mitosis and prevention of re-replication. Here we demonstrate that mammalian CDC6, an essential regulator of initiation of DNA replication, is phosphorylated...... by CDKs. CDC6 interacts specifically with the active Cyclin A/CDK2 complex in vitro and in vivo, but not with Cyclin E or Cyclin B kinase complexes. The cyclin binding domain of CDC6 was mapped to an N-terminal Cy-motif that is similar to the cyclin binding regions in p21(WAF1/SDI1) and E2F-1. The in vivo...... phosphorylation of CDC6 was dependent on three N-terminal CDK consensus sites, and the phosphorylation of these sites was shown to regulate the subcellular localization of CDC6. Consistent with this notion, we found that the subcellular localization of CDC6 is cell cycle regulated. In G1, CDC6 is nuclear...

  6. Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe in prostate cancer.

    Science.gov (United States)

    Schecher, Sabrina; Walter, Britta; Falkenstein, Michael; Macher-Goeppinger, Stephan; Stenzel, Philipp; Krümpelmann, Kristina; Hadaschik, Boris; Perner, Sven; Kristiansen, Glen; Duensing, Stefan; Roth, Wilfried; Tagscherer, Katrin E

    2017-10-15

    Cyclin K plays a critical role in transcriptional regulation as well as cell development. However, the role of Cyclin K in prostate cancer is unknown. Here, we describe the impact of Cyclin K on prostate cancer cells and examine the clinical relevance of Cyclin K as a biomarker for patients with prostate cancer. We show that Cyclin K depletion in prostate cancer cells induces apoptosis and inhibits proliferation accompanied by an accumulation of cells in the G2/M phase. Moreover, knockdown of Cyclin K causes mitotic catastrophe displayed by multinucleation and spindle multipolarity. Furthermore, we demonstrate a Cyclin K dependent regulation of the mitotic kinase Aurora B and provide evidence for an Aurora B dependent induction of mitotic catastrophe. In addition, we show that Cyclin K expression is associated with poor biochemical recurrence-free survival in patients with prostate cancer treated with an adjuvant therapy. In conclusion, targeting Cyclin K represents a novel, promising anti-cancer strategy to induce cell cycle arrest and apoptotic cell death through induction of mitotic catastrophe in prostate cancer cells. Moreover, our results indicate that Cyclin K is a putative predictive biomarker for clinical outcome and therapy response for patients with prostate cancer. © 2017 UICC.

  7. Quantum information metric on ℝ × S d - 1

    Science.gov (United States)

    Bak, Dongsu; Trivella, Andrea

    2017-09-01

    We present a formula for the information metric on ℝ × S d - 1 for a scalar primary operator of integral dimension Δ (>d+1/2) . This formula is checked for various space-time dimensions d and Δ in the field theory side. We check the formula in the gravity side using the holographic setup. We clarify the regularization and renormalization involved in these computations. We also show that the quantum information metric of an exactly marginal operator agrees with the leading order of the interface free energy of the conformal Janus on Euclidean S d , which is checked for d = 2 , 3.

  8. Characteristics of Cyclin B and its potential role in regulating oogenesis in the red claw crayfish (Cherax quadricarinatus).

    Science.gov (United States)

    Wang, L M; Lv, W W; Zuo, D; Dong, Z J; Zhao, Y L

    2015-09-09

    Cyclin B is a regulatory subunit of maturation-promoting factor (MPF), which has a key role in the induction of meiotic maturation of oocytes. MPF has been studied in a wide variety of animal species; however, its expression in crustaceans is poorly characterized. In this study, the complete cDNA sequence of Cyclin B was cloned from the red claw crayfish, Cherax quadricarinatus, and its spatiotemporal expression profiles were analyzed. Cyclin B cDNA (1779 bp) encoded a 401 amino acid protein with a calculated molecular weight of 45.1 kDa. Quantitative real-time PCR demonstrated that Cyclin B mRNA was expressed mainly in the ovarian tissue and that the expression decreased as the ovaries developed. Immunofluorescence analysis revealed that the Cyclin B protein relocated from the cytoplasm to the nucleus during oogenesis. These findings suggest that Cyclin B plays an important role in gametogenesis and gonad development in C. quadricarinatus.

  9. Draft Genome Sequence of the Plant Growth–Promoting Pseudomonas punonensis Strain D1-6 Isolated from the Desert Plant Erodium hirtum in Jordan

    KAUST Repository

    Lafi, Feras Fawzi

    2017-01-13

    Pseudomonas punonensis strain D1-6 was isolated from roots of the desert plant Erodium hirtum, near the Dead Sea in Jordan. The genome of strain D1-6 reveals several key plant growth-promoting and herbicide-resistance genes, indicating a possible specialized role for this endophyte.

  10. Cell Cycle-independent Role of Cyclin D3 in Host Restriction of Influenza Virus Infection

    Science.gov (United States)

    Fan, Ying; Mok, Chris Ka-Pun; Chan, Michael Chi Wai; Zhang, Yang; Nal, Béatrice; Kien, François; Bruzzone, Roberto; Sanyal, Sumana

    2017-01-01

    To identify new host factors that modulate the replication of influenza A virus, we performed a yeast two-hybrid screen using the cytoplasmic tail of matrix protein 2 from the highly pathogenic H5N1 strain. The screen revealed a high-score interaction with cyclin D3, a key regulator of cell cycle early G1 phase. M2-cyclin D3 interaction was validated through GST pull-down and recapitulated in influenza A/WSN/33-infected cells. Knockdown of Ccnd3 by small interfering RNA significantly enhanced virus progeny titers in cell culture supernatants. Interestingly, the increase in virus production was due to cyclin D3 deficiency per se and not merely a consequence of cell cycle deregulation. A combined knockdown of Ccnd3 and Rb1, which rescued cell cycle progression into S phase, failed to normalize virus production. Infection by influenza A virus triggered redistribution of cyclin D3 from the nucleus to the cytoplasm, followed by its proteasomal degradation. When overexpressed in HEK 293T cells, cyclin D3 impaired binding of M2 with M1, which is essential for proper assembly of progeny virions, lending further support to its role as a putative restriction factor. Our study describes the identification and characterization of cyclin D3 as a novel interactor of influenza A virus M2 protein. We hypothesize that competitive inhibition of M1-M2 interaction by cyclin D3 impairs infectious virion formation and results in attenuated virus production. In addition, we provide mechanistic insights into the dynamic interplay of influenza virus with the host cell cycle machinery during infection. PMID:28130444

  11. Expression of cyclins A and E in melanocytic skin lesions and its correlation with some clinicopathologic features

    Directory of Open Access Journals (Sweden)

    Ana Alekseenko

    2012-07-01

    Full Text Available Cyclins play a fundamental role in the cell cycle. Recent studies have focused on their role in the development of various malignancies. The objective of this study was to evaluate and compare the expression of cyclins A and E in common nevi, dysplastic nevi and malignant melanomas, and to investigate the relationship between cyclin expression and some pathological parameters such as tumor thickness, ulceration, regression, and mitotic rate, as well as several clinical and phenotypic parameters such as skin phototype, hair and eye color, number of nevi, personal or family melanoma history, and personal history of nonmelanoma skin cancer (NMSC. A total of 102 melanocytic skin lesions, including 30 common nevi, 38 dysplastic nevi and 34 melanomas, were examined. Expression of cyclins was detected by immunohistochemistry and quantified as a percentage of immunostained cell nuclei in each sample. Significant differences in expression of both cyclins were found between all lesion types: the median percentage of cyclin A-positive nuclei was 8.2% in melanomas, 3.4% in dysplastic nevi, and 0.95% in common nevi (p < 0.001. The corresponding percentages for cyclin E were 9.5%, 4.25% and 1.44% (p < 0.001. Expression of both cyclins was significantly higher among patients with a personal history of NMSC. Cyclin A was also significantly overexpressed in patients with a high total nevus count (TNC compared to moderate and low TNC. Expression of cyclins did not significantly correlate with the other clinicopathologic features investigated. These findings indicate the possible involvement of cyclins A and E in the pathogenesis of malignant melanoma. Our results also show a potential diagnostic significance of these cyclins as markers allowing discrimination between dysplastic nevi and melanoma.

  12. 17 CFR 270.35d-1 - Investment company names.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Investment company names. 270... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.35d-1 Investment company names. (a... registered investment company and any series of the investment company. (2) Assets means net assets, plus the...

  13. D1.5 WEKIT Framework and Training Methodology

    NARCIS (Netherlands)

    Limbu, Bibeg

    2017-01-01

    The document reports on the status of the WEKIT framework. Building up on the methodologies described in D1.3, it outlines the work done and progress made so far in the Task 1.3. The WEKIT framework was drafted to guide and support the development and implementation of the project. It aims to

  14. Centaur D1-A systems in a nutshell

    Science.gov (United States)

    Gordan, Andrew L.

    1987-01-01

    This report identifies the unique aspects of the Centaur D1-A systems and subsystems. Centaur performance is described in terms of optimality (propellant usage), flexibility, and airborne computer requirements. Major systems are described narratively with some numerical data given where it may be useful.

  15. Soy milk digestion extract inhibits progression of prostate cancer cell growth via regulation of prostate cancer‑specific antigen and cell cycle-regulatory genes in human LNCaP cancer cells.

    Science.gov (United States)

    Kang, Nam-Hee; Shin, Hee-Chang; Oh, Seunghyun; Lee, Kyun-Hee; Lee, Yoon-Bok; Choi, Kyung-Chul

    2016-08-01

    Soy milk, which is produced from whole soybeans, contains a variety of biologically active components. Isoflavones are a class of soy-derived phytoestrogens with beneficial effects, among which genistein (GEN) has been previously indicated to reduce the risk of prostate cancer. The present study evaluated the effects of soy milk digestion extract (SMD) on the progression of prostate cancer via the estrogen receptor (ER)β in human LNCaP prostate cancer cells. To evaluate the effects of SMD (daizein, 1.988 mg/100g, glycitein, 23.537 mg/100 g and GEN, 0.685 mg/100g) on cell proliferation, LNCaP cells were cultured in media containing vehicle (0.1% dimethyl sulfoxide), 17β‑estradiol (E2; 2.7x10‑7 mg/ml), GEN (2.7x10-2 mg/ml) of SMD (total aglycon concentration, 0.79 mg/ml), after which the cell viability was examined using an MTT assay. The cell viability was significantly elevated by E2 (by 45±0.18%), while it was markedly reduced by GEN (73.2±0.03%) or SMD (74.8±0.09%). Semi‑quantitative reverse transcription polymerase chain reaction analysis was performed to assess the mRNA expression levels of target genes, including ERβ, prostate cancer‑specific antigen (PSA) and cell cycle regulators p21, Cyclin D1 and cyclin-dependent kinase (CDK)4. The expression of ERβ was almost completely diminished by E2, whereas it was significantly elevated by SMD. In addition, the expression levels of PSA were considerably reduced by SMD. The expression of p21 was significantly elevated by SMD, while it was markedly reduced by E2. Of note, the expression levels of Cyclin D1 and CDK4 were considerably elevated by E2, while being significantly reduced by GEN and SMD. All of these results indicated that SMD may inhibit the proliferation of human prostate cancer cells via regulating the expression of ERβ, PSA, p21, Cyclin D1 and CDK4 in an ER-dependent manner.

  16. Glucose Regulates Cyclin D2 Expression in Quiescent and Replicating Pancreatic β-Cells Through Glycolysis and Calcium Channels

    Science.gov (United States)

    Salpeter, Seth J.; Klochendler, Agnes; Weinberg-Corem, Noa; Porat, Shay; Granot, Zvi; Shapiro, A. M. James; Magnuson, Mark A.; Eden, Amir; Grimsby, Joseph; Glaser, Benjamin

    2011-01-01

    Understanding the molecular triggers of pancreatic β-cell proliferation may facilitate the development of regenerative therapies for diabetes. Genetic studies have demonstrated an important role for cyclin D2 in β-cell proliferation and mass homeostasis, but its specific function in β-cell division and mechanism of regulation remain unclear. Here, we report that cyclin D2 is present at high levels in the nucleus of quiescent β-cells in vivo. The major regulator of cyclin D2 expression is glucose, acting via glycolysis and calcium channels in the β-cell to control cyclin D2 mRNA levels. Furthermore, cyclin D2 mRNA is down-regulated during S-G2-M phases of each β-cell division, via a mechanism that is also affected by glucose metabolism. Thus, glucose metabolism maintains high levels of nuclear cyclin D2 in quiescent β-cells and modulates the down-regulation of cyclin D2 in replicating β-cells. These data challenge the standard model for regulation of cyclin D2 during the cell division cycle and suggest cyclin D2 as a molecular link between glucose levels and β-cell replication. PMID:21521747

  17. Cyclin D2 is a critical mediator of exercise-induced cardiac hypertrophy.

    Science.gov (United States)

    Luckey, Stephen W; Haines, Chris D; Konhilas, John P; Luczak, Elizabeth D; Messmer-Kratzsch, Antke; Leinwand, Leslie A

    2017-12-01

    A number of signaling pathways underlying pathological cardiac hypertrophy have been identified. However, few studies have probed the functional significance of these signaling pathways in the context of exercise or physiological pathways. Exercise studies were performed on females from six different genetic mouse models that have been shown to exhibit alterations in pathological cardiac adaptation and hypertrophy. These include mice expressing constitutively active glycogen synthase kinase-3β (GSK-3βS9A), an inhibitor of CaMK II (AC3-I), both GSK-3βS9A and AC3-I (GSK-3βS9A/AC3-I), constitutively active Akt (myrAkt), mice deficient in MAPK/ERK kinase kinase-1 (MEKK1 -/- ), and mice deficient in cyclin D2 (cyclin D2 -/- ). Voluntary wheel running performance was similar to NTG littermates for five of the mouse lines. Exercise induced significant cardiac growth in all mouse models except the cyclin D2 -/- mice. Cardiac function was not impacted in the cyclin D2 -/- mice and studies using a phospho-antibody array identified six proteins with increased phosphorylation (greater than 150%) and nine proteins with decreased phosphorylation (greater than 33% decrease) in the hearts of exercised cyclin D2 -/- mice compared to exercised NTG littermate controls. Our results demonstrate that unlike the other hypertrophic signaling molecules tested here, cyclin D2 is an important regulator of both pathologic and physiological hypertrophy. Impact statement This research is relevant as the hypertrophic signaling pathways tested here have only been characterized for their role in pathological hypertrophy, and not in the context of exercise or physiological hypertrophy. By using the same transgenic mouse lines utilized in previous studies, our findings provide a novel and important understanding for the role of these signaling pathways in physiological hypertrophy. We found that alterations in the signaling pathways tested here had no impact on exercise performance. Exercise

  18. First successful reduction of clinical allergenicity of food by genetic modification: Mal d 1-silenced apples cause fewer allergy symptoms than the wild-type cultivar

    DEFF Research Database (Denmark)

    Dubois, A. E. J.; Pagliarani, G.; Brouwer, R. M.

    2015-01-01

    BACKGROUND: Genetic modification of allergenic foods such as apple has the potential to reduce their clinical allergenicity, but this has never been studied by oral challenges in allergic individuals. METHODS: We performed oral food challenges in 21 apple-allergic individuals with Elstar apples...... which had undergone gene silencing of the major allergen of apple, Mal d 1, by RNA interference. Downregulation of Mal d 1 gene expression in the apples was verified by qRT-PCR. Clinical responses to the genetically modified apples were compared to those seen with the wild-type Elstar using a visual...... analogue scale (VAS). RESULTS: Gene silencing produced two genetically modified apple lines expressing Mal d 1.02 and other Mal d 1 gene mRNA levels which were extensively downregulated, that is only 0.1-16.4% (e-DR1) and 0.2-9.9% (e-DR2) of those of the wild-type Elstar, respectively. Challenges...

  19. Global gene expression profile of normal and regenerating liver in young and old mice.

    Science.gov (United States)

    Pibiri, Monica; Sulas, Pia; Leoni, Vera Piera; Perra, Andrea; Kowalik, Marta Anna; Cordella, Angela; Saggese, Pasquale; Nassa, Giovanni; Ravo, Maria

    2015-06-01

    The ability of the liver to regenerate and adjust its size after two/third partial hepatectomy (PH) is impaired in old rodents and humans. Here, we investigated by microarray analysis the expression pattern of hepatic genes in young and old untreated mice and the differences in gene expression profile following PH. Of the 10,237 messenger RNAs that had detectable expression, only 108 displayed a greater than 2-fold modification in gene expression levels between the two groups. These genes were involved in inflammatory and immune response, xenobiotics, and lipid and glucose metabolism. To identify the genes responsible for the different regenerative response, 10-week and 18-month-old mice subjected to PH were sacrificed at different time intervals after surgery. The results showed that 2463 transcripts had significantly different expression post PH between the two groups. However, in spite of impaired liver regeneration in old mice, cell cycle genes were similarly modified in both groups, the only exception being cyclin D1 gene which was up-regulated soon after PH in young mice, but mostly down-regulated in aged animals. Surprisingly, while in young hepatectomized mice, Yap messenger RNA (mRNA) expression was not significantly enhanced and protein expression essentially reflected the progression into cell cycle, its mRNA and protein levels were robustly increased in the liver of aged animals. Furthermore, a significant change of the age-related expression of the size regulator Yes-associated protein (YAP) was observed. Unexpectedly, while in young hepatectomized mice, Yap mRNA expression was not significantly enhanced and protein expression essentially reflected the progression into cell cycle, its mRNA and protein levels were robustly increased in the liver of aged animals. Moreover, when PH was performed on mitogen-induced enlarged livers, the earlier restoration of the original liver mass compared to animals subjected to PH only led to YAP down

  20. Early activation of rat skeletal muscle IL-6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy.

    Directory of Open Access Journals (Sweden)

    Gwénaëlle Begue

    Full Text Available Cytokine interleukin-6 (IL-6 is an essential regulator of satellite cell-mediated hypertrophic muscle growth through the transcription factor signal transducer and activator of transcription 3 (STAT3. The importance of this pathway linked to the modulation of myogenic regulatory factors expression in rat skeletal muscle undergoing hypertrophy following resistance exercise, has not been investigated. In this study, the phosphorylation and nuclear localization of STAT3, together with IL-6/STAT3-responsive gene expression, were measured after both a single bout of resistance exercise and 10 weeks of training. Flexor Digitorum Profundus muscle samples from Wistar rats were obtained 2 and 6 hours after a single bout of resistance exercise and 72 h after the last bout of either 2, 4, or 10 weeks of resistance training. We observed an increase in IL-6 and SOCS3 mRNAs concomitant with phosphorylation of STAT1 and STAT3 after 2 and 6 hours of a single bout of exercise (p<0.05. STAT3-dependent early responsive genes such as CyclinD1 and cMyc were also upregulated whereas MyoD and Myf5 mRNAs were downregulated (p<0.05. BrdU-positive satellite cells increased at 2 and 6 hours after exercise (p<0.05. Muscle fiber hypertrophy reached up to 100% after 10 weeks of training and the mRNA expression of Myf5, c-Myc and Cyclin-D1 decreased, whereas IL-6 mRNA remained upregulated. We conclude that the IL-6/STAT1/STAT3 signaling pathway and its responsive genes after a single bout of resistance exercise are an important event regulating the SC pool and behavior involved in muscle hypertrophy after ten weeks of training in rat skeletal muscle.

  1. Phosphorylation of AIB1 at Mitosis Is Regulated by CDK1/CYCLIN B

    Science.gov (United States)

    Ferrero, Macarena; Ferragud, Juan; Orlando, Leonardo; Valero, Luz; Sánchez del Pino, Manuel; Farràs, Rosa; Font de Mora, Jaime

    2011-01-01

    Background Although the AIB1 oncogene has an important role during the early phase of the cell cycle as a coactivator of E2F1, little is known about its function during mitosis. Methodology/Principal Findings Mitotic cells isolated by nocodazole treatment as well as by shake-off revealed a post-translational modification occurring in AIB1 specifically during mitosis. This modification was sensitive to the treatment with phosphatase, suggesting its modification by phosphorylation. Using specific inhibitors and in vitro kinase assays we demonstrate that AIB1 is phosphorylated on Ser728 and Ser867 by Cdk1/cyclin B at the onset of mitosis and remains phosphorylated until exit from M phase. Differences in the sensitivity to phosphatase inhibitors suggest that PP1 mediates dephosphorylation of AIB1 at the end of mitosis. The phosphorylation of AIB1 during mitosis was not associated with ubiquitylation or degradation, as confirmed by western blotting and flow cytometry analysis. In addition, luciferase reporter assays showed that this phosphorylation did not alter the transcriptional properties of AIB1. Importantly, fluorescence microscopy and sub-cellular fractionation showed that AIB1 phosphorylation correlated with the exclusion from the condensed chromatin, thus preventing access to the promoters of AIB1-dependent genes. Phospho-specific antibodies developed against Ser728 further demonstrated the presence of phosphorylated AIB1 only in mitotic cells where it was localized preferentially in the periphery of the cell. Conclusions Collectively, our results describe a new mechanism for the regulation of AIB1 during mitosis, whereby phosphorylation of AIB1 by Cdk1 correlates with the subcellular redistribution of AIB1 from a chromatin-associated state in interphase to a more peripheral localization during mitosis. At the exit of mitosis, AIB1 is dephosphorylated, presumably by PP1. This exclusion from chromatin during mitosis may represent a mechanism for governing the

  2. Locomotor conditioning by amphetamine requires cyclin-dependent kinase 5 signaling in the nucleus accumbens.

    Science.gov (United States)

    Singer, Bryan F; Neugebauer, Nichole M; Forneris, Justin; Rodvelt, Kelli R; Li, Dongdong; Bubula, Nancy; Vezina, Paul

    2014-10-01

    Intermittent systemic exposure to psychostimulants leads to several forms of long-lasting behavioral plasticity including nonassociative sensitization and associative conditioning. In the nucleus accumbens (NAcc), the protein serine/threonine kinase cyclin-dependent kinase 5 (Cdk5) and its phosphorylation target, the guanine-nucleotide exchange factor kalirin-7 (Kal7), may contribute to the neuroadaptations underlying the formation of conditioned associations. Pharmacological inhibition of Cdk5 in the NAcc prevents the increases in dendritic spine density normally observed in this site following repeated cocaine. Mice lacking the Kal7 gene display similar effects. As increases in spine density may relate to the formation of associative memories and both Cdk5 and Kal7 regulate the generation of spines following repeated drug exposure, we hypothesized that either inhibiting Cdk5 or preventing its phosphorylation of Kal7 in the NAcc may prevent the induction of drug conditioning. In the present experiments, blockade in rats of NAcc Cdk5 activity with roscovitine (40 nmol/0.5 μl/side) prior to each of 4 injections of amphetamine (1.5 mg/kg; i.p.) prevented the accrual of contextual locomotor conditioning but spared the induction of locomotor sensitization as revealed on tests conducted one week later. Similarly, transient viral expression in the NAcc exclusively during amphetamine exposure of a threonine-alanine mutant form of Kal7 [mKal7(T1590A)] that is not phosphorylated by Cdk5 also prevented the accrual of contextual conditioning and spared the induction of sensitization. These results indicate that signaling via Cdk5 and Kal7 in the NAcc is necessary for the formation of context-drug associations, potentially through the modulation of dendritic spine dynamics in this site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Dual regulation by pairs of cyclin-dependent protein kinases and histone deacetylases controls G1 transcription in budding yeast.

    Directory of Open Access Journals (Sweden)

    Dongqing Huang

    2009-09-01

    Full Text Available START-dependent transcription in Saccharomyces cerevisiae is regulated by two transcription factors SBF and MBF, whose activity is controlled by the binding of the repressor Whi5. Phosphorylation and removal of Whi5 by the cyclin-dependent kinase (CDK Cln3-Cdc28 alleviates the Whi5-dependent repression on SBF and MBF, initiating entry into a new cell cycle. This Whi5-SBF/MBF transcriptional circuit is analogous to the regulatory pathway in mammalian cells that features the E2F family of G1 transcription factors and the retinoblastoma tumor suppressor protein (Rb. Here we describe genetic and biochemical evidence for the involvement of another CDK, Pcl-Pho85, in regulating G1 transcription, via phosphorylation and inhibition of Whi5. We show that a strain deleted for both PHO85 and CLN3 has a slow growth phenotype, a G1 delay, and is severely compromised for SBF-dependent reporter gene expression, yet all of these defects are alleviated by deletion of WHI5. Our biochemical and genetic tests suggest Whi5 mediates repression in part through interaction with two histone deacetylases (HDACs, Hos3 and Rpd3. In a manner analogous to cyclin D/CDK4/6, which phosphorylates Rb in mammalian cells disrupting its association with HDACs, phosphorylation by the early G1 CDKs Cln3-Cdc28 and Pcl9-Pho85 inhibits association of Whi5 with the HDACs. Contributions from multiple CDKs may provide the precision and accuracy necessary to activate G1 transcription when both internal and external cues are optimal.

  4. Plant Cyclin-Dependent Kinase Inhibitors of the KRP Family: Potent Inhibitors of Root-Knot Nematode Feeding Sites in Plant Roots

    Directory of Open Access Journals (Sweden)

    Paulo Vieira

    2017-09-01

    Full Text Available Root-knot nematodes (RKN, Meloidogyne spp., are distributed worldwide and impose severe economic damage to many agronomically important crops. The plant cell cycle machinery is considered one of the pivotal components for the formation of nematode feeding sites (NFSs or galls. These feeding sites contain five to nine hypertrophied giant cells (GC resulting from developmental reprogramming of host root cells by this pathogen. GC undergo synchronous waves of mitotic activity uncoupled from cytokinesis giving rise to large multinucleate cells. As development of the NFS progresses, multiple rounds of DNA synthesis occur in the nuclei of GC, coupled with nuclear and cellular expansion. These cells are highly metabolically active and provide the nematode with nutrients necessary for its development and completion of its life cycle. In Arabidopsis seven cyclin dependent kinase inhibitors (CKIs belonging to the interactors/inhibitors of the cyclin dependent kinases (ICK family, also referred as Kip-Related Proteins (KRPs have been identified. Interactions of KRPs with CDK/Cyclin complexes decrease CDK activity, affecting both cell cycle progression and DNA content in a concentration-dependent manner. We performed the functional analysis of all Arabidopsis KRP gene members during RKN interaction in Arabidopsis to obtain more insight into their role during gall development. We demonstrated that three members of this family (KRP2, KRP5, and KRP6 were highly expressed in galls and were important for cell cycle regulation during NFS development as shown by their different modes of action. We also pointed out that cell cycle inhibition through overexpression of all members of the KRP family can affect NFS development and consequently compromise the nematode’s life cycle. In this review we summarized our recent understanding of the KRP family of genes, and their role in controlling cell cycle progression at the RKN feeding site.

  5. ASPM regulates symmetric stem cell division by tuning Cyclin E ubiquitination.

    Science.gov (United States)

    Capecchi, Mario R; Pozner, Amir

    2015-11-19

    We generate a mouse model for the human microcephaly syndrome by mutating the ASPM locus, and demonstrate a premature exhaustion of the neuronal progenitor pool due to dysfunctional self-renewal processes. Earlier studies have linked ASPM mutant progenitor excessive cell cycle exit to a mitotic orientation defect. Here, we demonstrate a mitotic orientation-independent effect of ASPM on cell cycle duration. We pinpoint the cell fate-determining factor to the length of time spent in early G1 before traversing the restriction point. Characterization of the molecular mechanism reveals an interaction between ASPM and the Cdk2/Cyclin E complex, regulating the Cyclin activity by modulating its ubiquitination, phosphorylation and localization into the nucleus, before the cell is fated to transverse the restriction point. Thus, we reveal a novel function of ASPM in mediating the tightly coordinated Ubiquitin- Cyclin E- Retinoblastoma- E2F bistable-signalling pathway controlling restriction point progression and stem cell maintenance.

  6. Dimethylfumarate inhibits melanoma cell proliferation via p21 and p53 induction and bcl-2 and cyclin B1 downregulation.

    Science.gov (United States)

    Kaluzki, Irina; Hrgovic, Igor; Hailemariam-Jahn, Tsige; Doll, Monika; Kleemann, Johannes; Valesky, Eva Maria; Kippenberger, Stefan; Kaufmann, Roland; Zoeller, Nadja; Meissner, Markus

    2016-10-01

    Recent evidence suggests that dimethylfumarate (DMF), known as a highly potent anti-psoriatic agent, might have anti-tumorigenic properties in melanoma. It has recently been demonstrated that DMF inhibits melanoma proliferation by apoptosis and cell cycle inhibition and therefore inhibits melanoma metastasis. Nonetheless, the underlying mechanisms remain to be evaluated. To elucidate the effects of DMF on melanoma cell lines (A375, SK-Mel), we first performed cytotoxicity assays. No significant lactatedehydogenase (LDH) release could be found. In further analysis, we showed that DMF suppresses melanoma cell proliferation in a concentration-dependent manner. To examine whether these effects are conveyed by apoptotic mechanisms, we studied the amount of apoptotic nucleosomes and caspase 3/7 activity using ELISA analysis. Significant apoptosis was induced by DMF in both cell lines, and this could be paralleled with bcl-2 downregulation and PARP-1 cleavage. We also performed cell cycle analysis and found that DMF induced concentration-dependent arrests of G0/G1 as well as G2/M. To examine the underlying mechanisms of cell cycle arrest, we analyzed the expression profiles of important cell cycle regulator proteins such as p53, p21, cyclins A, B1, and D1, and CDKs 3, 4, and 6. Interestingly, DMF induced p53 and p21 yet inhibited cyclin B1 expression in a concentration-dependent manner. Other cell cycle regulators were not influenced by DMF. The knockdown of DMF induced p53 via siRNA led to significantly reduced apoptosis but had no influence on cell cycle arrest. We examined the adhesion of melanoma cells on lymphendothelial cells during DMF treatment and found a significant reduction in interaction. These data provide evidence that DMF inhibits melanoma proliferation by reinduction of important cell cycle inhibitors leading to a concentration-dependent G0/G1 or G2/M cell cycle arrest and induction of apoptosis via downregulation of bcl-2 and induction of p53 and PARP-1

  7. Underground storage tank 431-D1U1, Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.

    1993-09-01

    This document contains information about the decommissioning of Tank 431-D1U1. This tank was installed in 1965 for diesel fuel storage. This tank will remain in active usage until closure procedures begin. Soils and ground water around the tank will be sampled to check for leakage. Appendices include; proof of proper training for workers, health and safety briefing record, task hazard analysis summary, and emergency plans.

  8. Cyclin H expression is increased in GIST with very-high risk of malignancy

    Directory of Open Access Journals (Sweden)

    Henne-Bruns Doris

    2010-07-01

    Full Text Available Abstract Background Risk estimation of gastrointestinal stromal tumours (GIST is based on tumour size and mitotic rate according to the National Institutes of Health consensus classification. The indication for adjuvant treatment of patients with high risk GIST after R0 resection with small molecule inhibitors is still a controversial issue, since these patients represent a highly heterogeneous population. Therefore, additional prognostic indicators are needed. Here, we evaluated the prognostic value of cyclin H expression in GIST. Methods In order to identify prognostic factors of GIST we evaluated a single centre cohort of ninety-five GIST patients. First, GISTs were classified with regard to tumour size, mitotic rate and localisation according to the NIH consensus and to three additional suggested risk classifications. Second, Cyclin H expression was analysed. Results Of ninety-five patients with GIST (53 female/42 male; median age: 66.78a; range 17-94a risk classification revealed: 42% high risk, 20% intermediate risk, 23% low risk and 15% very low risk GIST. In patients with high risk GIST, the expression of cyclin H was highly predictive for reduced disease-specific survival (p = 0.038. A combination of cyclin H expression level and high risk classification yielded the strongest prognostic indicator for disease-specific and disease-free survival (p ≤ 0.001. Moreover, in patients with tumour recurrence and/or metastases, cyclin H positivity was significantly associated with reduced disease-specific survival (p = 0.016 regardless of risk-classification. Conclusion Our data suggest that, in addition to high risk classification, cyclin H expression might be an indicator for "very-high risk" GIST.

  9. Cdc2/cyclin B1 regulates centrosomal Nlp proteolysis and subcellular localization.

    Science.gov (United States)

    Zhao, Xuelian; Jin, Shunqian; Song, Yongmei; Zhan, Qimin

    2010-11-01

    The formation of proper mitotic spindles is required for appropriate chromosome segregation during cell division. Aberrant spindle formation often causes aneuploidy and results in tumorigenesis. However, the underlying mechanism of regulating spindle formation and chromosome separation remains to be further defined. Centrosomal Nlp (ninein-like protein) is a recently characterized BRCA1-regulated centrosomal protein and plays an important role in centrosome maturation and spindle formation. In this study, we show that Nlp can be phosphorylated by cell cycle protein kinase Cdc2/cyclin B1. The phosphorylation sites of Nlp are mapped at Ser185 and Ser589. Interestingly, the Cdc2/cyclin B1 phosphorylation site Ser185 of Nlp is required for its recognition by PLK1, which enable Nlp depart from centrosomes to allow the establishment of a mitotic scaffold at the onset of mitosis . PLK1 fails to dissociate the Nlp mutant lacking Ser185 from centrosome, suggesting that Cdc2/cyclin B1 might serve as a primary kinase of PLK1 in regulating Nlp subcellular localization. However, the phosphorylation at the site Ser589 by Cdc2/cyclin B1 plays an important role in Nlp protein stability probably due to its effect on protein degradation. Furthermore, we show that deregulated expression or subcellular localization of Nlp lead to multinuclei in cells, indicating that scheduled levels of Nlp and proper subcellular localization of Nlp are critical for successful completion of normal cell mitosis, These findings demonstrate that Cdc2/cyclin B1 is a key regulator in maintaining appropriate degradation and subcellular localization of Nlp, providing novel insights into understanding on the role of Cdc2/cyclin B1 in mitotic progression.

  10. D1FHS, the type strain of the ammonia-oxidizing bacterium Nitrosococcus wardiae spec. nov.: Enrichment, isolation, phylogenetic and growth physiological characterization

    OpenAIRE

    Lin eWang; Chee Kent Lim; Hongyue eDang; Hanson, Thomas E.; Klotz, Martin G

    2016-01-01

    An ammonia-oxidizing bacterium, strain D1FHS, was enriched into pure culture from a sediment sample retrieved in Jiaozhou Bay, a hyper-eutrophic semi-closed water body hosting the metropolitan area of Qingdao, China. Based on initial 16S rRNA gene sequence analysis, strain D1FHS was classified in the genus Nitrosococcus, family Chromatiaceae, order Chromatiales, class Gammaproteobacteria; the 16S rRNA gene sequence with highest level of identity to that of D1FHS was obtained from Nitrosococcu...

  11. CC2D1A Regulates Human Intellectual and Social Function as well as NF-κB Signaling Homeostasis

    Directory of Open Access Journals (Sweden)

    M. Chiara Manzini

    2014-08-01

    Full Text Available Autism spectrum disorder (ASD and intellectual disability (ID are often comorbid, but the extent to which they share common genetic causes remains controversial. Here, we present two autosomal-recessive “founder” mutations in the CC2D1A gene causing fully penetrant cognitive phenotypes, including mild-to-severe ID, ASD, as well as seizures, suggesting shared developmental mechanisms. CC2D1A regulates multiple intracellular signaling pathways, and we found its strongest effect to be on the transcription factor nuclear factor κB (NF-κB. Cc2d1a gain and loss of function both increase activation of NF-κB, revealing a critical role of Cc2d1a in homeostatic control of intracellular signaling. Cc2d1a knockdown in neurons reduces dendritic complexity and increases NF-κB activity, and the effects of Cc2d1a depletion can be rescued by inhibiting NF-κB activity. Homeostatic regulation of neuronal signaling pathways provides a mechanism whereby common founder mutations could manifest diverse symptoms in different patients.

  12. Effects of Chronic REM Sleep Restriction on D1 Receptor and Related Signal Pathways in Rat Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Yan Han

    2015-01-01

    Full Text Available The prefrontal cortex (PFC mediates cognitive function that is sensitive to disruption by sleep loss, and molecular mechanisms regulating neural dysfunction induced by chronic sleep restriction (CSR, particularly in the PFC, have yet to be completely understood. The aim of the present study was to investigate the effect of chronic REM sleep restriction (REM-CSR on the D1 receptor (D1R and key molecules in D1R’ signal pathways in PFC. We employed the modified multiple platform method to create the REM-CSR rat model. The ultrastructure of PFC was observed by electron microscopy. HPLC was performed to measure the DA level in PFC. The expressions of genes and proteins of related molecules were assayed by real-time PCR and Western blot, respectively. The general state and morphology of PFC in rats were changed by CSR, and DA level and the expression of D1R in PFC were markedly decreased (P<0.01, P<0.05; the expression of phosphor-PKAcα was significantly lowered in CSR rats (P<0.05. The present results suggested that the alteration of neuropathology and D1R expression in PFC may be associated with CSR induced cognitive dysfunction, and the PKA pathway of D1R may play an important role in the impairment of advanced neural function.

  13. Cyclin D2-cyclin-dependent kinase 4/6 is required for efficient proliferation and tumorigenesis following Apc loss

    NARCIS (Netherlands)

    Cole, A.M.; Myant, K.; Reed, K.R.; Ridgway, R.A.; Athineos, D.; van den Brink, G.R.; Muncan, V.; Clevers, H.; Clarke, A.R.; Sicinski, P.; Sansom, O.J.

    2010-01-01

    Inactivation of the Apc gene is recognized as the key early event in the development of sporadic colorectal cancer (CRC), where its loss leads to constitutive activation of beta-catenin/T-cell factor 4 signaling and hence transcription of Wnt target genes such as c-Myc. Our and other previous

  14. Molecular basis of the functional distinction between Cln1 and Cln2 cyclins

    OpenAIRE

    Quilis, Inma; Igual, Juan Carlos

    2012-01-01

    Cln1 and Cln2 are very similar but not identical cyclins. In this work, we tried to describe the molecular basis of the functional distinction between Cln1 and Cln2. We constructed chimeric cyclins containing different fragments of Cln1 and Cln2 and performed several functional analysis that make it possible to distinguish between Cln1 or Cln2. We identified that region between amino acids 225 and 299 of Cln2 is not only necessary but also sufficient to confer Cln2 specific functionality comp...

  15. A comparative study of the degradation of yeast cyclins Cln1 and Cln2

    OpenAIRE

    Quilis, Inma; Igual, J. Carlos

    2016-01-01

    The yeast cyclins Cln1 and Cln2 are very similar in both sequence and function, but some differences in their functionality and localization have been recently described. The control of Cln1 and Cln2 cellular levels is crucial for proper cell cycle initiation. In this work, we analyzed the degradation patterns of Cln1 and Cln2 in order to further investigate the possible differences between them. Both cyclins show the same half?life but, while Cln2 degradation depends on ubiquitin ligases SCF...

  16. Induction of cyclin-dependent kinase 5 in the hippocampus by chronic electroconvulsive seizures: role of [Delta]FosB.

    Science.gov (United States)

    Chen, J; Zhang, Y; Kelz, M B; Steffen, C; Ang, E S; Zeng, L; Nestler, E J

    2000-12-15

    The transcription factor DeltaFosB is induced in the hippocampus and other brain regions by repeated electroconvulsive seizures (ECS), an effective antidepressant treatment. The unusually high stability of this protein makes it an attractive candidate to mediate some of the long-lasting changes in the brain caused by ECS treatment. To understand how DeltaFosB might alter brain function, we examined the gene expression profiles in the hippocampus of inducible transgenic mice that express DeltaFosB in this brain region by the use of cDNA expression arrays that contain 588 genes. Of the 430 genes detected, 20 genes were consistently upregulated, and 14 genes were downregulated, by >50%. One of the upregulated genes is cyclin-dependent kinase 5 (cdk5). On the basis of its purported role in regulating neuronal structure, we studied directly whether cdk5 is a true target for DeltaFosB. Upregulation of cdk5 immunoreactivity in the hippocampus was confirmed by Western blotting in the DeltaFosB-expressing transgenic mice as well as in rats treated chronically with ECS. Chronic ECS treatment also increased, in the hippocampus, the phosphorylation state of tau, a microtubule-associated protein that is a known substrate for cdk5. A 1.6 kb fragment of the cdk5 promoter was cloned, and activity of the promoter was found to be increased after overexpression of DeltaFosB in cell culture. Moreover, mutation of the single consensus activator protein-1 site contained within the cdk5 promoter fragment completely abolished activation of the promoter by DeltaFosB. Together, these results suggest that cdk5 is one target by which DeltaFosB produces some of its physiological effects in the hippocampus and thereby mediates certain long-term consequences of chronic ECS treatment.

  17. The autophagy machinery restrains iNKT cell activation through CD1D1 internalization.

    Science.gov (United States)

    Keller, Christian W; Loi, Monica; Ewert, Svenja; Quast, Isaak; Theiler, Romina; Gannagé, Monique; Münz, Christian; De Libero, Gennaro; Freigang, Stefan; Lünemann, Jan D

    2017-06-03

    Invariant natural killer T (iNKT) cells are innate T cells with powerful immune regulatory functions that recognize glycolipid antigens presented by the CD1D protein. While iNKT cell-activating glycolipids are currently being explored for their efficacy to improve immunotherapy against infectious diseases and cancer, little is known about the mechanisms that control CD1D antigen presentation and iNKT cell activation in vivo. CD1D molecules survey endocytic pathways to bind lipid antigens in MHC class II-containing compartments (MIICs) before recycling to the plasma membrane. Autophagosomes intersect with MIICs and autophagy-related proteins are known to support antigen loading for increased CD4+ T cell immunity. Here, we report that mice with dendritic cell (DC)-specific deletion of the essential autophagy gene Atg5 showed better CD1D1-restricted glycolipid presentation in vivo. These effects led to enhanced iNKT cell cytokine production upon antigen recognition and lower bacterial loads during Sphingomonas paucimobilis infection. Enhanced iNKT cell activation was independent of receptor-mediated glycolipid uptake or costimulatory signals. Instead, loss of Atg5 in DCs impaired clathrin-dependent internalization of CD1D1 molecules via the adaptor protein complex 2 (AP2) and, thus, increased surface expression of stimulatory CD1D1-glycolipid complexes. These findings indicate that the autophagic machinery assists in the recruitment of AP2 to CD1D1 molecules resulting in attenuated iNKT cell activation, in contrast to the supporting role of macroautophagy in CD4+ T cell stimulation.

  18. CYCLIN-DEPENDENT KINASE8 Differentially Regulates Plant Immunity to Fungal Pathogens through Kinase-Dependent and -Independent Functions in Arabidopsis[C][W

    Science.gov (United States)

    Zhu, Yingfang; Schluttenhoffer, Craig M.; Wang, Pengcheng; Fu, Fuyou; Thimmapuram, Jyothi; Zhu, Jian-Kang; Lee, Sang Yeol; Yun, Dae-Jin; Mengiste, Tesfaye

    2014-01-01

    CYCLIN-DEPENDENT KINASE8 (CDK8) is a widely studied component of eukaryotic Mediator complexes. However, the biological and molecular functions of plant CDK8 are not well understood. Here, we provide evidence for regulatory functions of Arabidopsis thaliana CDK8 in defense and demonstrate its functional and molecular interactions with other Mediator and non-Mediator subunits. The cdk8 mutant exhibits enhanced resistance to Botrytis cinerea but susceptibility to Alternaria brassicicola. The contributions of CDK8 to the transcriptional activation of defensin gene PDF1.2 and its interaction with MEDIATOR COMPLEX SUBUNIT25 (MED25) implicate CDK8 in jasmonate-mediated defense. Moreover, CDK8 associates with the promoter of AGMATINE COUMAROYLTRANSFERASE to promote its transcription and regulate the biosynthesis of the defense-active secondary metabolites hydroxycinnamic acid amides. CDK8 also interacts with the transcription factor WAX INDUCER1, implying its additional role in cuticle development. In addition, overlapping functions of CDK8 with MED12 and MED13 and interactions between CDK8 and C-type cyclins suggest the conserved configuration of the plant Mediator kinase module. In summary, while CDK8’s positive transcriptional regulation of target genes and its phosphorylation activities underpin its defense functions, the impaired defense responses in the mutant are masked by its altered cuticle, resulting in specific resistance to B. cinerea. PMID:25281690

  19. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis.

    Science.gov (United States)

    Zhu, Yingfang; Schluttenhoffer, Craig M; Wang, Pengcheng; Fu, Fuyou; Thimmapuram, Jyothi; Zhu, Jian-Kang; Lee, Sang Yeol; Yun, Dae-Jin; Mengiste, Tesfaye

    2014-10-01

    CYCLIN-DEPENDENT KINASE8 (CDK8) is a widely studied component of eukaryotic Mediator complexes. However, the biological and molecular functions of plant CDK8 are not well understood. Here, we provide evidence for regulatory functions of Arabidopsis thaliana CDK8 in defense and demonstrate its functional and molecular interactions with other Mediator and non-Mediator subunits. The cdk8 mutant exhibits enhanced resistance to Botrytis cinerea but susceptibility to Alternaria brassicicola. The contributions of CDK8 to the transcriptional activation of defensin gene PDF1.2 and its interaction with MEDIATOR COMPLEX SUBUNIT25 (MED25) implicate CDK8 in jasmonate-mediated defense. Moreover, CDK8 associates with the promoter of AGMATINE COUMAROYLTRANSFERASE to promote its transcription and regulate the biosynthesis of the defense-active secondary metabolites hydroxycinnamic acid amides. CDK8 also interacts with the transcription factor WAX INDUCER1, implying its additional role in cuticle development. In addition, overlapping functions of CDK8 with MED12 and MED13 and interactions between CDK8 and C-type cyclins suggest the conserved configuration of the plant Mediator kinase module. In summary, while CDK8's positive transcriptional regulation of target genes and its phosphorylation activities underpin its defense functions, the impaired defense responses in the mutant are masked by its altered cuticle, resulting in specific resistance to B. cinerea. © 2014 American Society of Plant Biologists. All rights reserved.

  20. MINA controls proliferation and tumorigenesis of glioblastoma by epigenetically regulating cyclins and CDKs via H3K9me3 demethylation.

    Science.gov (United States)

    Huang, M-Y; Xuan, F; Liu, W; Cui, H-J

    2017-01-19

    It is generally known that histone demethylases regulate gene transcription by altering the methylate status on histones, but their roles in cancers and the underlying molecular mechanisms still remain unclear. MYC-induced nuclear antigen (MINA) is reported to be a histone demethylase and highly expressed in many cancers. Here, for the first time, we show that MINA is involved in glioblastoma carcinogenesis and reveal the probable mechanisms of it in cell-cycle control. Kaplan-Meier analysis of progression-free survival showed that high MINA expression was strongly correlated with poor outcome and advancing tumor stage. MINA knockdown significantly repressed the cell proliferation and tumorigenesis abilities of glioblastoma cells in vitro and in vivo that were rescued by overexpressing the full-length MINA afterwards. Microarray analysis after knockdown of MINA revealed that MINA probably regulated glioblastoma carcinogenesis through the predominant cell-cycle pathways. Further investigation showed that MINA deficiency led to a cell-cycle arrest in G1 and G2 phases. And among the downstream genes, we found that cyclins and cyclin-dependent kinases were directly activated by MINA via the demethylation of H3K9me3.

  1. Gene expression signature of DMBA-induced hamster buccal pouch carcinomas: modulation by chlorophyllin and ellagic acid.

    Directory of Open Access Journals (Sweden)

    Ramamurthi Vidya Priyadarsini

    Full Text Available Chlorophyllin (CHL, a water-soluble, semi-synthetic derivative of chlorophyll and ellagic acid (EA, a naturally occurring polyphenolic compound in berries, grapes, and nuts have been reported to exert anticancer effects in various human cancer cell lines and in animal tumour models. The present study was undertaken to examine the mechanism underlying chemoprevention and changes in gene expression pattern induced by dietary supplementation of chlorophyllin and ellagic acid in the 7,12-dimethylbenz[a]anthracene (DMBA-induced hamster buccal pouch (HBP carcinogenesis model by whole genome profiling using pangenomic microarrays. In hamsters painted with DMBA, the expression of 1,700 genes was found to be altered significantly relative to control. Dietary supplementation of chlorophyllin and ellagic acid modulated the expression profiles of 104 and 37 genes respectively. Microarray analysis also revealed changes in the expression of TGFβ receptors, NF-κB, cyclin D1, and matrix metalloproteinases (MMPs that may play a crucial role in the transformation of the normal buccal pouch to a malignant phenotype. This gene expression signature was altered on treatment with chlorophyllin and ellagic acid. Our study has also revealed patterns of gene expression signature specific for chlorophyllin and ellagic acid exposure. Thus dietary chlorophyllin and ellagic acid that can reverse gene expression signature associated with carcinogenesis are novel candidates for cancer prevention and therapy.

  2. Cyclin F: A component of an E3 ubiquitin ligase complex with roles in neurodegeneration and cancer.

    Science.gov (United States)

    Galper, Jasmin; Rayner, Stephanie L; Hogan, Alison L; Fifita, Jennifer A; Lee, Albert; Chung, Roger S; Blair, Ian P; Yang, Shu

    2017-08-01

    Cyclin F, encoded by CCNF, is the substrate recognition component of the Skp1-Cul1-F-box E3 ubiquitin ligase complex, SCF(cyclin F). E3 ubiquitin ligases play a key role in ubiquitin-proteasome mediated protein degradation, an essential component of protein homeostatic mechanisms within the cell. By recognising and regulating the availability of several protein substrates, SCF(cyclin F) plays a role in regulating various cellular processes including replication and repair of DNA and cell cycle checkpoint control. Cyclin F dysfunction has been implicated in various forms of cancer and CCNF mutations were recently linked to familial and sporadic amyotrophic lateral sclerosis and frontotemporal dementia, offering a new lead to understanding the pathogenic mechanisms underlying neurodegeneration. In this review, we evaluate the current literature on the function of cyclin F with an emphasis on its roles in cancer and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function.

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Xiong

    2015-08-01

    Full Text Available microRNAs (miRNAs are a class of endogenous regulatory RNAs that play a key role in myriad biological processes. Upon transcription, primary miRNA transcripts are sequentially processed by Drosha and Dicer ribonucleases into ~22-24 nt miRNAs. Subsequently, miRNAs are incorporated into the RNA-induced silencing complexes (RISCs that contain Argonaute (AGO family proteins and guide RISC to target RNAs via complementary base pairing, leading to post-transcriptional gene silencing by a combination of translation inhibition and mRNA destabilization. Select pre-mRNA splicing factors have been implicated in small RNA-mediated gene silencing pathways in fission yeast, worms, flies and mammals, but the underlying molecular mechanisms are not well understood. Here, we show that SmD1, a core component of the Drosophila small nuclear ribonucleoprotein particle (snRNP implicated in splicing, is required for miRNA biogenesis and function. SmD1 interacts with both the microprocessor component Pasha and pri-miRNAs, and is indispensable for optimal miRNA biogenesis. Depletion of SmD1 impairs the assembly and function of the miRISC without significantly affecting the expression of major canonical miRNA pathway components. Moreover, SmD1 physically and functionally associates with components of the miRISC, including AGO1 and GW182. Notably, miRNA defects resulting from SmD1 silencing can be uncoupled from defects in pre-mRNA splicing, and the miRNA and splicing machineries are physically and functionally distinct entities. Finally, photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP analysis identifies numerous SmD1-binding events across the transcriptome and reveals direct SmD1-miRNA interactions. Our study suggests that SmD1 plays a direct role in miRNA-mediated gene silencing independently of its pre-mRNA splicing activity and indicates that the dual roles of splicing factors in post-transcriptional gene regulation may be

  4. Activation of mRNA translation by phage protein and low temperature: the case of Lactococcus lactis abortive infection system AbiD1

    Directory of Open Access Journals (Sweden)

    Ehrlich S Dusko

    2009-01-01

    Full Text Available Abstract Background Abortive infection (Abi mechanisms comprise numerous strategies developed by bacteria to avoid being killed by bacteriophage (phage. Escherichia coli Abis are considered as mediators of programmed cell death, which is induced by infecting phage. Abis were also proposed to be stress response elements, but no environmental activation signals have yet been identified. Abis are widespread in Lactococcus lactis, but regulation of their expression remains an open question. We previously showed that development of AbiD1 abortive infection against phage bIL66 depends on orf1, which is expressed in mid-infection. However, molecular basis for this activation remains unclear. Results In non-infected AbiD1+ cells, specific abiD1 mRNA is unstable and present in low amounts. It does not increase during abortive infection of sensitive phage. Protein synthesis directed by the abiD1 translation initiation region is also inefficient. The presence of the phage orf1 gene, but not its mutant AbiD1R allele, strongly increases abiD1 translation efficiency. Interestingly, cell growth at low temperature also activates translation of abiD1 mRNA and consequently the AbiD1 phenotype, and occurs independently of phage infection. There is no synergism between the two abiD1 inducers. Purified Orf1 protein binds mRNAs containing a secondary structure motif, identified within the translation initiation regions of abiD1, the mid-infection phage bIL66 M-operon, and the L. lactis osmC gene. Conclusion Expression of the abiD1 gene and consequently AbiD1 phenotype is specifically translationally activated by the phage Orf1 protein. The loss of ability to activate translation of abiD1 mRNA determines the molecular basis for phage resistance to AbiD1. We show for the first time that temperature downshift also activates abortive infection by activation of abiD1 mRNA translation.

  5. Activation of mRNA translation by phage protein and low temperature: the case of Lactococcus lactis abortive infection system AbiD1.

    Science.gov (United States)

    Bidnenko, Elena; Chopin, Alain; Ehrlich, S Dusko; Chopin, Marie-Christine

    2009-01-27

    Abortive infection (Abi) mechanisms comprise numerous strategies developed by bacteria to avoid being killed by bacteriophage (phage). Escherichia coli Abis are considered as mediators of programmed cell death, which is induced by infecting phage. Abis were also proposed to be stress response elements, but no environmental activation signals have yet been identified. Abis are widespread in Lactococcus lactis, but regulation of their expression remains an open question. We previously showed that development of AbiD1 abortive infection against phage bIL66 depends on orf1, which is expressed in mid-infection. However, molecular basis for this activation remains unclear. In non-infected AbiD1+ cells, specific abiD1 mRNA is unstable and present in low amounts. It does not increase during abortive infection of sensitive phage. Protein synthesis directed by the abiD1 translation initiation region is also inefficient. The presence of the phage orf1 gene, but not its mutant AbiD1R allele, strongly increases abiD1 translation efficiency. Interestingly, cell growth at low temperature also activates translation of abiD1 mRNA and consequently the AbiD1 phenotype, and occurs independently of phage infection. There is no synergism between the two abiD1 inducers. Purified Orf1 protein binds mRNAs containing a secondary structure motif, identified within the translation initiation regions of abiD1, the mid-infection phage bIL66 M-operon, and the L. lactis osmC gene. Expression of the abiD1 gene and consequently AbiD1 phenotype is specifically translationally activated by the phage Orf1 protein. The loss of ability to activate translation of abiD1 mRNA determines the molecular basis for phage resistance to AbiD1. We show for the first time that temperature downshift also activates abortive infection by activation of abiD1 mRNA translation.

  6. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila

    Science.gov (United States)

    Xie, Xiao-Jun; Hsu, Fu-Ning; Gao, Xinsheng; Xu, Wu; Ni, Jian-Quan; Xing, Yue; Huang, Liying; Hsiao, Hao-Ching; Zheng, Haiyan; Wang, Chenguang; Zheng, Yani; Xiaoli, Alus M.; Yang, Fajun; Bondos, Sarah E.; Ji, Jun-Yuan

    2015-01-01

    The steroid hormone ecdysone and its receptor (EcR) play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC), and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP) heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval–pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP), the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval–pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity) and fat metabolism (SREBP activity) during the larval–pupal transition. PMID:26222308

  7. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila.

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Xie

    2015-07-01

    Full Text Available The steroid hormone ecdysone and its receptor (EcR play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC, and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval-pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP, the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval-pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity and fat metabolism (SREBP activity during the larval-pupal transition.

  8. The Mitochondrion-Located Protein OsB12D1 Enhances Flooding Tolerance during Seed Germination and Early Seedling Growth in Rice

    Directory of Open Access Journals (Sweden)

    Dongli He

    2014-07-01

    Full Text Available B12D belongs to a function unknown subgroup of the Balem (Barley aleurone and embryo proteins. In our previous work on rice seed germination, we identified a B12D-like protein encoded by LOC_Os7g41350 (named OsB12D1. OsB12D1 pertains to an ancient protein family with an amino acid sequence highly conserved from moss to angiosperms. Among the six OsB12Ds, OsB12D1 is one of the major transcripts and is primarily expressed in germinating seed and root. Bioinformatics analyses indicated that OsB12D1 is an anoxic or submergence resistance-related gene. RT-PCR results showed OsB12D1 is induced remarkably in the coleoptiles or roots by flooding during seed germination and early seedling growth. The OsB12D1-overexpressed rice seeds could protrude radicles in 8 cm deep water, further exhibiting significant flooding tolerance compared to the wild type. Moreover, this tolerance was not affected by the gibberellin biosynthesis inhibitor paclobutrazol. OsB12D1 was identified in the mitochondrion by subcellular localization analysis and possibly enhances electron transport through mediating Fe and oxygen availability under flooded conditions. This work indicated that OsB12D1 is a promising gene that can help to enhance rice seedling establishment in farming practices, especially for direct seeding.

  9. The regulation of SKF38393 on the signaling pathway of dopamine D1 receptor in hippocampus during chronic sleep deprivation.

    Science.gov (United States)

    Chen, Si; Wen, Xiaosa; Liang, Han; Li, Yuxiang; Chen, Xinmin; Zhang, Dong; Shi, Rengfei; Ma, Wenling

    2017-07-27

    Hippocampal functions are sensitive to sleep deficiency. Dopamine D1 receptor (D1R) in hippocampus can regulate the expression of cAMP response element binding protein (CREB) through PKA, MAPK and phosphoinositide pathway, but which pathway plays the major role in hippocampus during Chronic sleep deprivation (CSD) is unclear. The CSD model was created, SKF rats were administered the D1R agonist (SKF38363), and hippocampus from each animal was dissected for following molecular detection. The gene and protein levels of CREB and key molecules in D1R pathways were measured by real-time PCR and western blotting, respectively. Both the gene and protein expression of CREB in hippocampus decreased by CSD and improved significantly by SKF38393 (p<0.05). Both the gene and protein expression of PKA in hippocampus decreased by CSD and improved significantly by SKF38393 (p<0.05). SKF38393 just significantly improved the gene level of CaMK IV and the protein level of p-CaMK IV (p<0.05) in CSD rats, but it cannot improve the protein expression of ERK1/2 and p-ERK1/2. CSD significantly decreased the expression of CREB in hippocampus. As the key molecules, PKA and CaMK IV play an important role during the improvement of hippocampus by the activation of D1R, and this process might be improved during CSD through the PKA and phosphoinositide pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cdc20 hypomorphic mice fail to counteract de novo synthesis of cyclin B1 in mitosis.

    NARCIS (Netherlands)

    Malureanu, L.; Jeganathan, K.B.; Jin, F.; Baker, D.J.; Ree, J.H.; Gullon, O.; Chen, Z.; Henley, J.R.; Deursen, J.M.A. van

    2010-01-01

    Cdc20 is an activator of the anaphase-promoting complex/cyclosome that initiates anaphase onset by ordering the destruction of cyclin B1 and securin in metaphase. To study the physiological significance of Cdc20 in higher eukaryotes, we generated hypomorphic mice that express small amounts of this

  11. Acetylation of cyclin-dependent kinase 5 is mediated by GCN5

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhyung; Yun, Nuri; Kim, Chiho [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of); Song, Min-Young; Park, Kang-Sik [Department of Physiology and Biomedical Science Institute, Kyung Hee University School of Medicine, Seoul 130-701 (Korea, Republic of); Oh, Young J., E-mail: yjoh@yonsei.ac.kr [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of)

    2014-04-25

    Highlights: • Cyclin-dependent kinase 5 (CDK5) is present as an acetylated form. • CDK5 is acetylated by GCN5. • CDK5’s acetylation site is mapped at Lys33. • Its acetylation may affect CDK5’s kinase activity. - Abstract: Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.

  12. Problem-Solving Test: Analysis of the Role of Cyclin B

    Science.gov (United States)

    Szeberenyi, Jozsef

    2011-01-01

    An experiment is described in this test that was designed to study the role of the cyclin B protein in a cell-free system. The work was performed in the lab of Tim Hunt who, together with Hartwell and Nurse, received the Nobel Prize in Physiology or Medicine in 2001 "for their discoveries of key chemicals that regulate the cell division cycle." It…

  13. p21/Cyclin E pathway modulates anticlastogenic function of Bmi-1 in cancer cells

    Science.gov (United States)

    Deng, Wen; Zhou, Yuan; Tiwari, Agnes FY; Su, Hang; Yang, Jie; Zhu, Dandan; Lau, Victoria Ming Yi; Hau, Pok Man; Yip, Yim Ling; Cheung, Annie LM; Guan, Xin-Yuan; Tsao, Sai Wah

    2015-01-01

    Apart from regulating stem cell self-renewal, embryonic development and proliferation, Bmi-1 has been recently reported to be critical in the maintenance of genome integrity. In searching for novel mechanisms underlying the anticlastogenic function of Bmi-1, we observed, for the first time, that Bmi-1 positively regulates p21 expression. We extended the finding that Bmi-1 deficiency induced chromosome breaks in multiple cancer cell models. Interestingly, we further demonstrated that knockdown of cyclin E or ectopic overexpression of p21 rescued Bmi-1 deficiency-induced chromosome breaks. We therefore conclude that p21/cyclin E pathway is crucial in modulating the anticlastogenic function of Bmi-1. As it is well established that the overexpression of cyclin E potently induces genome instability and p21 suppresses the function of cyclin E, the novel and important implication from our findings is that Bmi-1 plays an important role in limiting genomic instability in cylin E-overexpressing cancer cells by positive regulation of p21. PMID:25131797

  14. Cannabinoids Regulate Bcl-2 and Cyclin D2 Expression in Pancreatic β Cells.

    Directory of Open Access Journals (Sweden)

    Jihye Kim

    Full Text Available Recent reports have shown that cannabinoid 1 receptors (CB1Rs are expressed in pancreatic β cells, where they induce cell death and cell cycle arrest by directly inhibiting insulin receptor activation. Here, we report that CB1Rs regulate the expression of the anti-apoptotic protein Bcl-2 and cell cycle regulator cyclin D2 in pancreatic β cells. Treatment of MIN6 and βTC6 cells with a synthetic CB1R agonist, WIN55,212-2, led to a decrease in the expression of Bcl-2 and cyclin D2, in turn inducing cell cycle arrest in G0/G1 phase and caspase-3-dependent apoptosis. Additionally, genetic deletion and pharmacological blockade of CB1Rs after injury in mice led to increased levels of Bcl-2 and cyclin D2 in pancreatic β cells. These findings provide evidence for the involvement of Bcl-2 and cyclin D2 mediated by CB1Rs in the regulation of β-cell survival and growth, and will serve as a basis for developing new therapeutic interventions to enhance β-cell function and growth in diabetes.

  15. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A

    NARCIS (Netherlands)

    Wolthuis, Rob; Clay-Farrace, Lori; van Zon, Wouter; Yekezare, Mona; Koop, Lars; Ogink, Janneke; Medema, Rene; Pines, Jonathon

    2008-01-01

    Successful mitosis requires the right protein be degraded at the right time. Central to this is the spindle checkpoint that prevents the destruction of securin and cyclin 131 when there are improperly attached chromosomes. The principal target of the checkpoint is Cdc20, which activates the

  16. Structural basis of divergent cyclin-dependent kinase activation by Spy1/RINGO proteins

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Denise A.; Fifield, Bre-Anne; Marceau, Aimee H.; Tripathi, Sarvind; Porter, Lisa A.; Rubin, Seth M. (UCSC); (Windsor)

    2017-06-30

    Cyclin-dependent kinases (Cdks) are principal drivers of cell division and are an important therapeutic target to inhibit aberrant proliferation. Cdk enzymatic activity is tightly controlled through cyclin interactions, posttranslational modifications, and binding of inhibitors such as the p27 tumor suppressor protein. Spy1/RINGO (Spy1) proteins bind and activate Cdk but are resistant to canonical regulatory mechanisms that establish cell-cycle checkpoints. Cancer cells exploit Spy1 to stimulate proliferation through inappropriate activation of Cdks, yet the mechanism is unknown. We have determined crystal structures of the Cdk2-Spy1 and p27-Cdk2-Spy1 complexes that reveal how Spy1 activates Cdk. We find that Spy1 confers structural changes to Cdk2 that obviate the requirement of Cdk activation loop phosphorylation. Spy1 lacks the cyclin-binding site that mediates p27 and substrate affinity, explaining why Cdk-Spy1 is poorly inhibited by p27 and lacks specificity for substrates with cyclin-docking sites. We identify mutations in Spy1 that ablate its ability to activate Cdk2 and to proliferate cells. Our structural description of Spy1 provides important mechanistic insights that may be utilized for targeting upregulated Spy1 in cancer.

  17. S-Phase Cyclin-Dependent Kinases Promote Sister Chromatid Cohesion in Budding Yeast ▿

    Science.gov (United States)

    Hsu, W.-S.; Erickson, S. L.; Tsai, H.-J.; Andrews, C. A.; Vas, A. C.; Clarke, D. J.

    2011-01-01

    Genome stability depends on faithful chromosome segregation, which relies on maintenance of chromatid cohesion during S phase. In eukaryotes, Pds1/securin is the only known inhibitor that can prevent loss of cohesion. However, pds1Δ yeast cells and securin-null mice are viable. We sought to identify redundant mechanisms that promote cohesion within S phase in the absence of Pds1 and found that cells lacking the S-phase cyclins Clb5 and Clb6 have a cohesion defect under conditions of replication stress. Similar to the phenotype of pds1Δ cells, loss of cohesion in cells lacking Clb5 and Clb6 is dependent on Esp1. However, Pds1 phosphorylation by Cdk-cyclin is not required for cohesion. Moreover, cells lacking Clb5, Clb6, and Pds1 are inviable and lose cohesion during an unperturbed S phase, indicating that Pds1 and specific B-type cyclins promote cohesion independently of one another. Consistent with this, we find that Mcd1/Scc1 is less abundant on chromosomes in cells lacking Clb5 and Clb6 during replication stress. However, clb5Δ clb6Δ cells do accumulate Mcd1/Scc1 at centromeres upon mitotic arrest, suggesting that the cyclin-dependent mechanism is S phase specific. These data indicate that Clb5 and Clb6 promote cohesion which is then protected by Pds1 and that both mechanisms are required during replication stress. PMID:21518961

  18. ECRH launching scenario in FFHR-d1

    Science.gov (United States)

    Yanagihara, Kota; Kubo, Shin; Shimozuma, Takashi; Yoshimura, Yasuo; Igami, Hiroe; Takahashi, Hiromi; Tsujimura, Tohru; Makino, Ryohhei

    2016-10-01

    ECRH is promising as a principal heating system in a prototype helical reactor FFHR-d1 where the heating power of 80 MW is required to bring the plasma parameter to break even condition. To generate the plasma and bring it to ignition condition in FFHR-d1, it is effective to heat the under/over-dense plasma with normal ECRH or Electron Bernstein Wave (EBW). Normal ECRH is well established but heating via EBW need sophisticated injection control. EBW can be excited via the O(ordinary)-X(extraordinary)-B(EBW) mode conversion process by launching the ordinary wave from the low field side to plasma cut-off layer with optimum injection angle, and the range of injection angle to get high OXB mode conversion rate is called OXB mode conversion window. Since the window position can change as the plasma parameter, it is necessary to optimize the injection angle so as to aim the window in response to the plasma parameters. Candidates of antenna positions are determined by optimum injection points on the plasma facing wall calculated by the injection angle. Given such picked up area, detailed analysis using ray-tracing calculations and engineering antenna design will be performed.

  19. Mutation at the Human D1S80 Minisatellite Locus

    Directory of Open Access Journals (Sweden)

    Kuppareddi Balamurugan

    2012-01-01

    Full Text Available Little is known about the general biology of minisatellites. The purpose of this study is to examine repeat mutations from the D1S80 minisatellite locus by sequence analysis to elucidate the mutational process at this locus. This is a highly polymorphic minisatellite locus, located in the subtelomeric region of chromosome 1. We have analyzed 90,000 human germline transmission events and found seven (7 mutations at this locus. The D1S80 alleles of the parentage trio, the child, mother, and the alleged father were sequenced and the origin of the mutation was determined. Using American Association of Blood Banks (AABB guidelines, we found a male mutation rate of 1.04×10-4 and a female mutation rate of 5.18×10-5 with an overall mutation rate of approximately 7.77×10-5. Also, in this study, we found that the identified mutations are in close proximity to the center of the repeat array rather than at the ends of the repeat array. Several studies have examined the mutational mechanisms of the minisatellites according to infinite allele model (IAM and the one-step stepwise mutation model (SMM. In this study, we found that this locus fits into the one-step mutation model (SMM mechanism in six out of seven instances similar to STR loci.

  20. Differential Control of Growth, Apoptotic Activity, and Gene Expression in Human Breast Cancer Cells by Extracts Derived from Medicinal Herbs Zingiber officinale

    Directory of Open Access Journals (Sweden)

    Ayman I. Elkady

    2012-01-01

    Full Text Available The present study aimed to examine the antiproliferative potentiality of an extract derived from the medicinal plant ginger (Zingiber officinale on growth of breast cancer cells. Ginger treatment suppressed the proliferation and colony formation in breast cancer cell lines, MCF-7 and MDA-MB-231. Meanwhile, it did not significantly affect viability of nontumorigenic normal mammary epithelial cell line (MCF-10A. Treatment of MCF-7 and MDA-MB-231 with ginger resulted in sequences of events marked by apoptosis, accompanied by loss of cell viability, chromatin condensation, DNA fragmentation, activation of caspase 3, and cleavage of poly(ADP-ribose polymerase. At the molecular level, the apoptotic cell death mediated by ginger could be attributed in part to upregulation of Bax and downregulation of Bcl-2 proteins. Ginger treatment downregulated expression of prosurvival genes, such as NF-κB, Bcl-X, Mcl-1, and Survivin, and cell cycle-regulating proteins, including cyclin D1 and cyclin-dependent kinase-4 (CDK-4. On the other hand, it increased expression of CDK inhibitor, p21. It also inhibited the expression of the two prominent molecular targets of cancer, c-Myc and the human telomerase reverse transcriptase (hTERT. These findings suggested that the ginger may be a promising candidate for the treatment of breast carcinomas.

  1. Alterations in TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expression associated with progression in B-CLL

    Directory of Open Access Journals (Sweden)

    Antosz Halina

    2010-04-01

    Full Text Available B-cell chronic lymphocytic leukaemia (B-CLL originates from B lymphocytes that may differ in the activationlevel, maturation state or cellular subgroups in peripheral blood. Tumour progression in CLL B cells seems to result in gradualaccumulation of the clone of resting B lymphocytes in the early phases (G0/G1 of the cell cycle. The G1 phase isimpaired in B-CLL. We investigated the gene expression of five key cell cycle regulators: TP 53, c-Myc, cyclin D2,p21WAF1/CIP1 and p27KIP1, which primarily regulate the G1 phase of the cell cycle, or S-phase entry and ultimately controlthe proliferation and cell growth as well as their role in B-CLL progression. The study was conducted in peripheral bloodCLL lymphocytes of 40 previously untreated patients. Statistical analysis of correlations of TP53, cyclin D2, c-Myc,p21WAF1/CIP1 and p27KIP1 expressions in B-CLL patients with different Rai stages demonstrated that the progression of diseasewas accompanied by increases in p53, cyclin D2 and c-Myc mRNA expression. The expression of p27KIP1 was nearlystatistically significant whereas that of p21 WAF1/CIP1 showed no such correlation. Moreover, high expression levels of TP53and c-Myc genes were found to be closely associated with more aggressive forms of the disease requiring earlier therapy.

  2. Functional expression and activity of the recombinant antifungal defensin PvD1r from Phaseolus vulgaris L. (common bean) seeds

    Science.gov (United States)

    2014-01-01

    Background Defensins are basic, cysteine-rich antimicrobial peptides that are important components of plant defense against pathogens. Previously, we isolated a defensin, PvD1, from Phaseolus vulgaris L. (common bean) seeds. Results The aim of this study was to overexpress PvD1 in a prokaryotic system, verify the biologic function of recombinant PvD1 (PvD1r) by comparing the antimicrobial activity of PvD1r to that of the natural defensin, PvD1, and use a mutant Candida albicans strain that lacks the gene for sphingolipid biosynthesis to unravel the target site of the PvD1r in C. albicans cells. The cDNA encoding PvD1, which was previously obtained, was cloned into the pET-32 EK/LIC vector, and the resulting construct was used to transform bacterial cells (Rosetta Gami 2 (DE3) pLysS) leading to recombinant protein expression. After expression had been induced, PvD1r was purified, cleaved with enterokinase and repurified by chromatographic steps. N-terminal amino acid sequencing showed that the overall process of the recombinant production of PvD1r, including cleavage with the enterokinase, was successful. Additionally, modeling revealed that PvD1r had a structure that was similar to the defensin isolated from plants. Purified PvD1 and PvD1r possessed inhibitory activity against the growth of the wild-type pathogenic yeast strain C. albicans. Both defensins, however, did not present inhibitory activity against the mutant strain of C. albicans. Antifungal assays with the wild-type C. albicans strains showed morphological changes upon observation by light microscopy following growth assays. PvD1r was coupled to FITC, and the subsequent treatment of wild type C. albicans with DAPI revealed that the labeled peptide was intracellularly localized. In the mutant strain, no intracellular labeling was detected. Conclusion Our results indicate that PvD1r retains full biological activity after recombinant production, enterokinase cleavage and purification. Additionally, our

  3. Period-2: a tumor suppressor gene in breast cancer

    Directory of Open Access Journals (Sweden)

    Cheng Qi

    2008-03-01

    Full Text Available Abstract Previous reports have suggested that the ablation of the Period 2 gene (Per 2 leads to enhanced development of lymphoma and leukemia in mice. Employing immunoblot analyses, we have demonstrated that PER 2 is endogenously expressed in human breast epithelial cell lines but is not expressed or is expressed at significantly reduced level in human breast cancer cell lines. Expression of PER 2 in MCF-7 breast cancer cells significantly inhibited the growth of MCF-7 human breast cancer cells, and, when PER 2 was co-expressed with the Crytochrome 2 (Cry 2 gene, an even greater growth-inhibitory effect was observed. The inhibitory effect of PER 2 on breast cancer cells was also demonstrated by its suppression of the anchorage-independent growth of MCF-7 cells as evidenced by the reduced number and size of colonies. A corresponding blockade of MCF-7 cells in the G1 phase of the cell cycle was also observed in response to the expression of PER 2 alone or in combination with CRY 2. Expression of PER 2 also induced apoptosis of MCF-7 breast cancer cells as demonstrated by an increase in PARP [poly (ADP-ribose polymerase] cleavage. Finally, our studies demonstrate that PER 2 expression in MCF-7 breast cancer cells is associated with a significant decrease in the expression of cyclin D1 and an up-regulation of p53 levels.

  4. Prostate Expression Databases: Gene Expression Resources for Comparative Studies of Prostate Carcinogenesis

    Science.gov (United States)

    2008-01-01

    kindly provided by Dr. Dean Tang (The University of Texas M. D. Anderson Cancer Center, Houston, TX). BPH-1C7-cyclin D1, BPH-1C7-D, BPH-1NPF...response to its stromal environment. Prostate 1999;39:205–12. 27. Dalrymple S, Antony L, Xu Y, et al. Role of notch-1 and E-cadherin in the

  5. Casimir interaction between spheres in ( D + 1)-dimensional Minkowski spacetime

    Science.gov (United States)

    Teo, L. P.

    2014-05-01

    We consider the Casimir interaction between two spheres in ( D + 1)-dimensional Minkowski spacetime due to the vacuum fluctuations of scalar fields. We consider combinations of Dirichlet and Neumann boundary conditions. The TGTG formula of the Casimir interaction energy is derived. The computations of the T matrices of the two spheres are straightforward. To compute the two G matrices, known as translation matrices, which relate the hyper-spherical waves in two spherical coordinate frames differ by a translation, we generalize the operator approach employed in [39]. The result is expressed in terms of an integral over Gegenbauer polynomials. In contrast to the D=3 case, we do not re-express the integral in terms of 3 j-symbols and hyper-spherical waves, which in principle, can be done but does not simplify the formula. Using our expression for the Casimir interaction energy, we derive the large separation and small separation asymptotic expansions of the Casimir interaction energy. In the large separation regime, we find that the Casimir interaction energy is of order L -2 D+3, L -2 D+1 and L -2 D-1 respectively for Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann boundary conditions, where L is the center-to-center distance of the two spheres. In the small separation regime, we confirm that the leading term of the Casimir interaction agrees with the proximity force approximation, which is of order , where d is the distance between the two spheres. Another main result of this work is the analytic computations of the next-to-leading order term in the small separation asymptotic expansion. This term is computed using careful order analysis as well as perturbation method. In the case the radius of one of the sphere goes to infinity, we find that the results agree with the one we derive for sphere-plate configuration. When D=3, we also recover previously known results. We find that when D is large, the ratio of the next-to-leading order term to the leading

  6. Spatial Reorganization of the Endoplasmic Reticulum during Mitosis Relies on Mitotic Kinase Cyclin A in the Early Drosophila Embryo

    Science.gov (United States)

    Bergman, Zane J.; Mclaurin, Justin D.; Eritano, Anthony S.; Johnson, Brittany M.; Sims, Amanda Q.; Riggs, Blake

    2015-01-01

    Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope. PMID:25689737

  7. Molecular basis for viral selective replication in cancer cells: activation of CDK2 by adenovirus-induced cyclin E.

    Directory of Open Access Journals (Sweden)

    Pei-Hsin Cheng

    Full Text Available Adenoviruses (Ads with deletion of E1b55K preferentially replicate in cancer cells and have been used in cancer therapies. We have previously shown that Ad E1B55K protein is involved in induction of cyclin E for Ad replication, but this E1B55K function is not required in cancer cells in which deregulation of cyclin E is frequently observed. In this study, we investigated the interaction of cyclin E and CDK2 in Ad-infected cells. Ad infection significantly increased the large form of cyclin E (cyclin EL, promoted cyclin E/CDK2 complex formation and increased CDK2 phosphorylation at the T160 site. Activated CDK2 caused pRb phosphorylation at the S612 site. Repression of CDK2 activity with the chemical inhibitor roscovitine or with specific small interfering RNAs significantly decreased pRb phosphorylation, with concomitant repression of viral replication. Our results suggest that Ad-induced cyclin E activates CDK2 that targets the transcriptional repressor pRb to generate a cellular environment for viral productive replication. This study reveals a new molecular basis for oncolytic replication of E1b-deleted Ads and will aid in the development of new strategies for Ad oncolytic virotherapies.

  8. Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

    Directory of Open Access Journals (Sweden)

    Schwarzenbach Heidi

    2010-06-01

    Full Text Available Abstract Background The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation. Methods In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies. Results Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3 at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR. Conclusions This study is one

  9. δ-Catenin promotes prostate cancer cell growth and progression by altering cell cycle and survival gene profiles

    Directory of Open Access Journals (Sweden)

    Chen Yan-Hua

    2009-03-01

    Full Text Available Abstract Background δ-Catenin is a unique member of β-catenin/armadillo domain superfamily proteins and its primary expression is restricted to the brain. However, δ-catenin is upregulated in human prostatic adenocarcinomas, although the effects of δ-catenin overexpression in prostate cancer are unclear. We hypothesized that δ-catenin plays a direct role in prostate cancer progression by altering gene profiles of cell cycle regulation and cell survival. Results We employed gene transfection and small interfering RNA to demonstrate that increased δ-catenin expression promoted, whereas its knockdown suppressed prostate cancer cell viability. δ-Catenin promoted prostate cancer cell colony formation in soft agar as well as tumor xenograft growth in nude mice. Deletion of either the amino-terminal or carboxyl-terminal sequences outside the armadillo domains abolished the tumor promoting effects of δ-catenin. Quantitative RT2 Profiler™ PCR Arrays demonstrated gene alterations involved in cell cycle and survival regulation. δ-Catenin overexpression upregulated cyclin D1 and cdc34, increased phosphorylated histone-H3, and promoted the entry of mitosis. In addition, δ-catenin overexpression resulted in increased expression of cell survival genes Bcl-2 and survivin while reducing the cell cycle inhibitor p21Cip1. Conclusion Taken together, our studies suggest that at least one consequence of an increased expression of δ-catenin in human prostate cancer is the alteration of cell cycle and survival gene profiles, thereby promoting tumor progression.

  10. Fbw7α and Fbw7γ collaborate to shuttle cyclin E1 into the nucleolus for multiubiquitylation.

    Science.gov (United States)

    Bhaskaran, Nimesh; van Drogen, Frank; Ng, Hwee-Fang; Kumar, Raman; Ekholm-Reed, Susanna; Peter, Matthias; Sangfelt, Olle; Reed, Steven I

    2013-01-01

    Cyclin E1, an activator of cyclin-dependent kinase 2 (Cdk2) that promotes replicative functions, is normally expressed periodically within the mammalian cell cycle, peaking at the G(1)-S-phase transition. This periodicity is achieved by E2F-dependent transcription in late G(1) and early S phases and by ubiquitin-mediated proteolysis. The ubiquitin ligase that targets phosphorylated cyclin E is SCF(Fbw7) (also known as SCF(Cdc4)), a member of the cullin ring ligase (CRL) family. Fbw7, a substrate adaptor subunit, is expressed as three splice-variant isoforms with different subcellular distributions: Fbw7α is nucleoplasmic but excluded from the nucleolus, Fbw7β is cytoplasmic, and Fbw7γ is nucleolar. Degradation of cyclin E in vivo requires SCF complexes containing Fbw7α and Fbw7γ, respectively. In vitro reconstitution showed that the role of SCF(Fbw7α) in cyclin E degradation, rather than ubiquitylation, is to serve as a cofactor of the prolyl cis-trans isomerase Pin1 in the isomerization of a noncanonical proline-proline bond in the cyclin E phosphodegron. This isomerization is required for subsequent binding and ubiquitylation by SCF(Fbw7γ). Here we show that Pin1-mediated isomerization of the cyclin E phosphodegron and subsequent binding to Fbw7γ drive nucleolar localization of cyclin E, where it is ubiquitylated by SCF(Fbw7γ) prior to its degradation by the proteasome. It is possible that this constitutes a mechanism for rapid inactivation of phosphorylated cyclin E by nucleolar sequestration prior to its multiubiquitylation and degradation.

  11. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.

    Science.gov (United States)

    Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E

    2001-10-11

    Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.

  12. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  13. miR-26a Mediates Adipogenesis of Amniotic Fluid Mesenchymal Stem/Stromal Cells via PTEN, Cyclin E1, and CDK6.

    Science.gov (United States)

    Trohatou, Ourania; Zagoura, Dimitra; Orfanos, Nikos K; Pappa, Kalliopi I; Marinos, Evangelos; Anagnou, Nicholas P; Roubelakis, Maria G

    2017-04-01

    Recent findings indicate that microRNAs (miRNAs) are critical for the regulatory network of adipogenesis in human mesenchymal stem/stromal cells (MSCs). Fetal MSCs derived from amniotic fluid (AF-MSCs) represent a population of multipotent stem cells characterized by a wide range of differentiation properties that can be applied in cell-based therapies. In this study, miRNA microarray analysis was performed to assess miRNA expression in terminal differentiated AF-MSCs into adipocyte-like cells (AL cells). MiR-26a was identified in high expression levels in AL cells indicating a critical role in the process of adipogenesis. Overexpression of miR-26a in AF-MSCs led to significant induction of their adipogenic differentiation properties that were altered after miR-26a inhibition. We have demonstrated that miR-26a regulates adipogenesis through direct inhibition of PTEN, which in turn promotes activation of Akt pathway. Also, miR-26a modulates cell cycle during adipogenesis by interacting with Cyclin E1 and CDK6. These results point to the regulatory role of miR-26a and its target genes PTEN, Cyclin E1, and CDK6 in adipogenic differentiation of AF-MSCs, providing a basis for understanding the mechanisms of fat cell development and obesity.

  14. TSA-induced JMJD2B downregulation is associated with cyclin B1-dependent survivin degradation and apoptosis in LNCap cells.

    Science.gov (United States)

    Zhu, Shan; Li, Yueyang; Zhao, Li; Hou, Pingfu; Shangguan, Chenyan; Yao, Ruosi; Zhang, Weina; Zhang, Yu; Tan, Jiang; Huang, Baiqu; Lu, Jun

    2012-07-01

    Histone deacetylase (HDAC) inhibitors are emerging as a novel class of anti-tumor agents and have manifested the ability to induce apoptosis of cancer cells, and a significant number of genes have been identified as potential effectors responsible for HDAC inhibitor-induced apoptosis. However, the mechanistic actions of these HDAC inhibitors in this process remain largely undefined. We here report that the treatment of LNCap prostate cancer cells with HDAC inhibitor trichostatin A (TSA) resulted in downregulation of the Jumonji domain-containing protein 2B (JMJD2B). We also found that the TSA-mediated decrease in survivin expression in LNCap cells was partly attributable to downregulation of JMJD2B expression. This effect was attributable to the promoted degradation of survivin protein through inhibition of Cyclin B1/Cdc2 complex-mediated survivin Thr34 phosphorylation. Consequently, knockdown of JMJD2B enhanced TSA-induced apoptosis by regulating the Cyclin B1-dependent survivin degradation to potentiate the apoptosis pathways. Copyright © 2012 Wiley Periodicals, Inc.

  15. Genetic variants of dopamine D2 receptor impact heterodimerization with dopamine D1 receptor.

    Science.gov (United States)

    Błasiak, Ewa; Łukasiewicz, Sylwia; Szafran-Pilch, Kinga; Dziedzicka-Wasylewska, Marta

    2017-04-01

    The human dopamine D2 receptor gene has three polymorphic variants that alter its amino acid sequence: alanine substitution by valine in position 96 (V96A), proline substitution by serine in position 310 (P310S) and serine substitution by cysteine in position 311 (S311C). Their functional role has never been the object of extensive studies, even though there is some evidence that their occurrence correlates with schizophrenia. The HEK293 cell line was transfected with dopamine D1 and D2 receptors (or genetic variants of the D2 receptor), coupled to fluorescent proteins which allowed us to measure the extent of dimerization of these receptors, using a highly advanced biophysical approach (FLIM-FRET). Additionally, Fluoro-4 AM was used to examine changes in the level of calcium release after ligand stimulation of cells expressing different combinations of dopamine receptors. Using FLIM-FRET experiments we have shown that in HEK 293 expressing dopamine receptors, polymorphic mutations in the D2 receptor play a role in dimmer formation with the dopamine D1 receptor. The association level of dopamine receptors is affected by ligand administration, with variable effects depending on polymorphic variant of the D2 dopamine receptor. We have found that the level of heteromer formation is reflected by calcium ion release after ligand stimulation and have observed variations of this effect dependent on the polymorphic variant and the ligand. The data presented in this paper support the hypothesis on the role of calcium signaling regulated by the D1-D2 heteromer which may be of relevance for schizophrenia etiology. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Comparison of tamoxifen and letrozole response in mammary preneoplasia of ER and aromatase overexpressing mice defines an immune-associated gene signature linked to tamoxifen resistance.

    Science.gov (United States)

    Dabydeen, Sarah A; Kang, Keunsoo; Díaz-Cruz, Edgar S; Alamri, Ahmad; Axelrod, Margaret L; Bouker, Kerrie B; Al-Kharboosh, Rawan; Clarke, Robert; Hennighausen, Lothar; Furth, Priscilla A

    2015-01-01

    Response to breast cancer chemoprevention can depend upon host genetic makeup and initiating events leading up to preneoplasia. Increased expression of aromatase and estrogen receptor (ER) is found in conjunction with breast cancer. To investigate response or resistance to endocrine therapy, mice with targeted overexpression of Esr1 or CYP19A1 to mammary epithelial cells were employed, representing two direct pathophysiological interventions in estrogen pathway signaling. Both Esr1 and CYP19A1 overexpressing mice responded to letrozole with reduced hyperplastic alveolar nodule prevalence and decreased mammary epithelial cell proliferation. CYP19A1 overexpressing mice were tamoxifen sensitive but Esr1 overexpressing mice were tamoxifen resistant. Increased ER expression occurred with tamoxifen resistance but no consistent changes in progesterone receptor, pSTAT3, pSTAT5, cyclin D1 or cyclin E levels in association with response or resistance were found. RNA-sequencing (RNA-seq) was employed to seek a transcriptome predictive of tamoxifen resistance using these models and a second tamoxifen-resistant model, BRCA1 deficient/Trp53 haploinsufficient mice. Sixty-eight genes associated with immune system processing were upregulated in tamoxifen-resistant Esr1- and Brca1-deficient mice, whereas genes related to aromatic compound metabolic process were upregulated in tamoxifen-sensitive CYP19A1 mice. Interferon regulatory factor 7 was identified as a key transcription factor regulating these 68 immune processing genes. Two loci encoding novel transcripts with high homology to human immunoglobulin lambda-like polypeptide 1 were uniquely upregulated in the tamoxifen-resistant models. Letrozole proved to be a successful alternative to tamoxifen. Further study of transcriptional changes associated with tamoxifen resistance including immune-related genes could expand our mechanistic understanding and lead to biomarkers predictive of escape or response to endocrine therapies.

  17. Methamphetamine induces dopamine D1 receptor-dependent endoplasmic reticulum stress-related molecular events in the rat striatum.

    Directory of Open Access Journals (Sweden)

    Subramaniam Jayanthi

    Full Text Available Methamphetamine (METH is an illicit toxic psychostimulant which is widely abused. Its toxic effects depend on the release of excessive levels of dopamine (DA that activates striatal DA receptors. Inhibition of DA-mediated neurotransmission by the DA D1 receptor antagonist, SCH23390, protects against METH-induced neuronal apoptosis. The initial purpose of the present study was to investigate, using microarray analyses, the influence of SCH23390 on transcriptional responses in the rat striatum caused by a single METH injection at 2 and 4 hours after drug administration. We identified 545 out of a total of 22,227 genes as METH-responsive. These include genes which are involved in apoptotic pathways, endoplasmic reticulum (ER stress, and in transcription regulation, among others. Of these, a total of 172 genes showed SCH23390-induced inhibition of METH-mediated changes. Among these SCH23390-responsive genes were several genes that are regulated during ER stress, namely ATF3, HSP27, Hmox1, HSP40, and CHOP/Gadd153. The secondary goal of the study was to investigate the role of DA D1 receptor stimulation on the expression of genes that participate in ER stress-mediated molecular events. We thus used quantitative PCR to confirm changes in the METH-responsive ER genes identified by the microarray analyses. We also measured the expression of these genes and of ATF4, ATF6, BiP/GRP78, and of GADD34 over a more extended time course. SCH23390 attenuated or blocked METH-induced increases in the expression of the majority of these genes. Western blot analysis revealed METH-induced increases in the expression of the antioxidant protein, Hmox1, which lasted for about 24 hours after the METH injection. Additionally, METH caused DA D1 receptor-dependent transit of the Hmox1 regulator protein, Nrf2, from cytosolic into nuclear fractions where the protein exerts its regulatory functions. When taken together, these findings indicate that SCH23390 can provide

  18. Clozapine ameliorates epigenetic and behavioral abnormalities induced by phencyclidine through activation of dopamine D1 receptor.

    Science.gov (United States)

    Aoyama, Yuki; Mouri, Akihiro; Toriumi, Kazuya; Koseki, Takenao; Narusawa, Shiho; Ikawa, Natsumi; Mamiya, Takayoshi; Nagai, Taku; Yamada, Kiyofumi; Nabeshima, Toshitaka

    2014-05-01

    Accumulating evidence suggests that dysregulation of histone modification is involved in the pathogenesis and/or pathophysiology of psychiatric disorders. However, the abnormalities in histone modification in the animal model of schizophrenia and the efficacy of antipsychotics for such abnormalities remain unclear. Here, we investigated the involvement of histone modification in phencyclidine-induced behavioral abnormalities and the effects of antipsychotics on these abnormalities. After repeated phencyclidine (10 mg/kg) treatment for 14 consecutive days, mice were treated with antipsychotics (clozapine or haloperidol) or the histone deacetylase inhibitor sodium butyrate for 7 d. Repeated phencyclidine treatments induced memory impairment and social deficit in the mice. The acetylation of histone H3 at lysine 9 residues decreased in the prefrontal cortex with phencyclidine treatment, whereas the expression level of histone deacetylase 5 increased. In addition, the phosphorylation of Ca²⁺/calmodulin-dependent protein kinase II in the nucleus decreased in the prefrontal cortex of phencyclidine-treated mice. These behavioral and epigenetic changes in phencyclidine-treated mice were attenuated by clozapine and sodium butyrate but not by haloperidol. The dopamine D1 receptor antagonist SCH-23390 blocked the ameliorating effects of clozapine but not of sodium butyrate. Furthermore, clozapine and sodium butyrate attenuated the decrease in expression level of GABAergic system-related genes in the prefrontal cortex of phencyclidine-treated mice. These findings suggest that the antipsychotic effect of clozapine develops, at least in part, through epigenetic modification by activation of the dopamine D1 receptor in the prefrontal cortex.

  19. Flavopiridol, the first cyclin-dependent kinase inhibitor: recent advances in combination chemotherapy.

    Science.gov (United States)

    Wang, L M; Ren, D M

    2010-10-01

    The cell cycle is the series of events necessary for the division and duplication of a cell. The dysregulation of the cell cycle can promote the development of cancer. A group of proteins, cyclin-dependent kinases (CDKs), that control the cell cycle, provide new targets for treating cancer. As a result, cyclin-dependent kinase inhibitors (CDKIs) represent a novel class of chemotherapeutic agents. Of these, flavopiridol, a semisynthetic flavonoidal alkaloid, emerged as the first CDKI to enter clinical trials. Preclinical data indicate that flavopiridol could block the proliferation of neoplastic cells and induce programmed cell death as a single agent. Furthermore, recent emerging data revealed that flavopiridol can potentiate, generally in a dose- and sequence-dependent manner, the anti-tumor effects of many established chemotherapeutic agents. This review is primarily focused on the role of flavopiridol in combination with various therapeutic agents that are in or near clinical development.

  20. Maintenance of motor neuron progenitors in Xenopus requires a novel localized cyclin.

    Science.gov (United States)

    Chen, Jun-An; Chu, Sin-Tak; Amaya, Enrique

    2007-03-01

    The ventral spinal cord contains a pool of motor neuron progenitors (pMNs), which sequentially generate motor neurons and oligodendrocytes in the embryo. The mechanisms responsible for the maintenance of pMNs are not clearly understood. We have identified a novel cyclin, cyclin Dx (ccndx), which is specifically expressed in pMNs in Xenopus. Here, we show that inhibition of ccndx causes paralysis in embryos. Furthermore, we show that maintenance of pMNs requires ccndx function. In addition, inhibition of ccndx results in the specific loss of differentiated motor neurons. However, the expression of interneuron or sensory neuron markers is unaffected in these embryos, suggesting that the role of ccndx is specifically to maintain pMNs. Thus, we have identified, for the first time, a tissue-specific cell-cycle regulator that is essential for the maintenance of a pool of neural progenitors in the vertebrate spinal cord.

  1. Phosphorylation of pRb by cyclin D kinase is necessary for development of cardiac hypertrophy

    DEFF Research Database (Denmark)

    Hinrichsen, R.; Hansen, A.H.; Busk, P.K.

    2008-01-01

    OBJECTIVES: A number of stimuli induce cardiac hypertrophy and may lead to cardiomyopathy and heart failure. It is believed that cardiomyocytes withdraw from the cell cycle shortly after birth and become terminally differentiated. However, cell cycle regulatory proteins take part in the development...... of hypertrophy, and it is important to elucidate the mechanisms of how these proteins are involved in the hypertrophic response in cardiomyocytes. MATERIALS AND METHODS, AND RESULTS: In the present study, by immunohistochemistry with a phosphorylation-specific antibody, we found that cyclin D-cdk4....../6-phosphorylated retinoblastoma protein (pRb) during hypertrophy and expression of an unphosphorylatable pRb mutant impaired hypertrophic growth in cardiomyocytes. Transcription factor E2F was activated by hypertrophic elicitors but activation was impaired by pharmacological inhibition of cyclin D-cdk4...

  2. The RNA-binding protein Spo5 promotes meiosis II by regulating cyclin Cdc13 in fission yeast.

    Science.gov (United States)

    Arata, Mayumi; Sato, Masamitsu; Yamashita, Akira; Yamamoto, Masayuki

    2014-03-01

    Meiosis comprises two consecutive nuclear divisions, meiosis I and II. Despite this unique progression through the cell cycle, little is known about the mechanisms controlling the sequential divisions. In this study, we carried out a genetic screen to identify factors that regulate the initiation of meiosis II in the fission yeast Schizosaccharomyces pombe. We identified mutants deficient in meiosis II progression and repeatedly isolated mutants defective in spo5, which encodes an RNA-binding protein. Using fluorescence microscopy to visualize YFP-tagged protein, we found that spo5 mutant cells precociously lost Cdc13, the major B-type cyclin in fission yeast, before meiosis II. Importantly, the defect in meiosis II was rescued by increasing CDK activity. In wild-type cells, cdc13 transcripts increased during meiosis II, but this increase in cdc13 expression was weaker in spo5 mutants. Thus, Spo5 is a novel regulator of meiosis II that controls the level of cdc13 expression and promotes de novo synthesis of Cdc13. We previously reported that inhibition of Cdc13 degradation is necessary to initiate meiosis II; together with the previous information, the current findings indicate that the dual control of Cdc13 by de novo synthesis and suppression of proteolysis ensures the progression of meiosis II. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  3. Skeletal Muscle Estrogen Receptor Activation in Response to Eccentric Exercise Up-Regulates Myogenic-Related Gene Expression Independent of Differing Serum Estradiol Levels Occurring during the Human Menstrual Cycle

    Directory of Open Access Journals (Sweden)

    Mackenzie Haines, Sarah K. McKinley-Barnard, Thomas L. Andre, Josh J. Gann, Paul S. Hwang, Darryn S. Willoughby

    2018-03-01

    Full Text Available This study sought to determine if the differences in serum estradiol we have previously observed to occur during the mid-follicular (MF and mid-luteal (ML phases of the female menstrual cycle could be attributed to estrogen-induced receptor activation and subsequent effects on myogenic-related genes which may otherwise impact muscle regeneration in response to eccentric exercise. Twenty-two physically-active females (20.9 ± 1.4 years, 63.5 ± 9.0 kg, 1.65 ± 0.08 m underwent an eccentric exercise bout of the knee extensors during the MF and ML phases of their 28-day menstrual cycle. Prior to (PRE, at 6 (6HRPOST, and 24 (24HRPOST hours post-exercise for each session, participants had muscle biopsies obtained. Skeletal muscle estradiol and estrogen receptor-α (ER-α content and ER-DNA binding were determined with ELISA. Real-time PCR was used to assess ER-α, Myo-D, and cyclin D1 mRNA expression. Data were analyzed utilizing a 2 x 3 repeated measures univariate analyses of variance (ANOVA for each criterion variable (p ≤ .05. Skeletal muscle estradiol levels were not significantly impacted by either menstrual phase (p > 0.05; however, both ER-α mRNA and protein were significantly increased during MF (p < 0.05. ER-DNA binding and Myo-D mRNA expression increased significantly in both menstrual phases in response to exercise but were not different from one another; however, cyclin D1 mRNA expression was significantly greater during MF. This study demonstrates that skeletal muscle ER-α activation in response to eccentric exercise up-regulates myogenic-related gene expression independent of serum estradiol levels occurring during the human menstrual cycle.

  4. Targeting CCl4 -induced liver fibrosis by RNA interference-mediated inhibition of cyclin E1 in mice.

    Science.gov (United States)

    Bangen, Jörg-Martin; Hammerich, Linda; Sonntag, Roland; Baues, Maike; Haas, Ute; Lambertz, Daniela; Longerich, Thomas; Lammers, Twan; Tacke, Frank; Trautwein, Christian; Liedtke, Christian

    2017-10-01

    Initiation and progression of liver fibrosis requires proliferation and activation of resting hepatic stellate cells (HSCs). Cyclin E1 (CcnE1) is the regulatory subunit of the cyclin-dependent kinase 2 (Cdk2) and controls cell cycle re-entry. We have recently shown that genetic inactivation of CcnE1 prevents activation, proliferation, and survival of HSCs and protects from liver fibrogenesis. The aim of the present study was to translate these findings into preclinical applications using an RNA interference (RNAi)-based approach. CcnE1-siRNA (small interfering RNA) efficiently inhibited CcnE1 gene expression in murine and human HSC cell lines and in primary HSCs, resulting in diminished proliferation and increased cell death. In C57BL/6 wild-type (WT) mice, delivery of stabilized siRNA using a liposome-based carrier targeted approximately 95% of HSCs, 70% of hepatocytes, and 40% of CD45+ cells after single injection. Acute CCl4 -mediated liver injury in WT mice induced endogenous CcnE1 expression and proliferation of surviving hepatocytes and nonparenchymal cells, including CD45+ leukocytes. Pretreatment with CcnE1-siRNA reverted CcnE1 induction to baseline levels of healthy mice, which was associated with reduced liver injury, diminished proliferation of hepatocytes and leukocytes, and attenuated overall inflammatory response. For induction of liver fibrosis, WT mice were challenged with CCl4 for 4-6 weeks. Co-treatment with CcnE1-siRNA once a week was sufficient to continuously block CcnE1 expression and cell-cycle activity of hepatocytes and nonparenchymal cells, resulting in significantly ameliorated liver fibrosis and inflammation. Importantly, CcnE1-siRNA also prevented progression of liver fibrosis if applied after onset of chronic liver injury. Therapeutic targeting of CcnE1 in vivo using RNAi is feasible and has high antifibrotic activity. (Hepatology 2017;66:1242-1257). © 2017 by the American Association for the Study of Liver Diseases.

  5. Expression of a TGF-{beta} regulated cyclin-dependent kinase inhibitor in normal and immortalized airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, L.A.; Bloomfield, C.; Johnson, N.F. [and others

    1995-12-01

    Tumors arising from epithelial cells, including lung cancers are frequently resistant to factors that regulate growth and differentiation in normal in normal cells. Once such factor is transforming growth factor-{Beta} (TGF-{Beta}). Escape from the growth-inhibitory effects of TGF-{Beta} is thought to be a key step in the transformation of airway epithelial cells. most lung cancer cell lines require serum for growth. In contrast, normal human bronchial epithelial (NHBE) cells are exquisitely sensitive to growth-inhibitory and differentiating effects of TGF-{Beta}. The recent identification of a novel cyclin-dependent kinase inhibitor, p15{sup INK4B}, which is regulated by TGF-{Beta}, suggests a mechanism by which TGF-{Beta} mediates growth arrest in NHBE cells. The purpose of this study was two-fold: (1) to determine if p15{sup INK4B} is induced by TGF-{Beta} in NHBE cells or immortalized bronchial epithelial (R.1) cells and if that induction corresponds to a G1/S cell-cycle arrest; (2) to determine the temporal relationship between p15{sup INK4B} induction, cell-cycle arrest, and the phosphorylation state of the pRB because it is thought that p15{sup INK4B} acts indirectly by preventing phosphorylation of the RB gene product. In this study, expression of p15{sup INK4B} was examined in NHBE cells and R.1 cells at different time intervals following TGF-{Beta} treatment. The expression of this kinase inhibitor and its relationship to the cell and the pRb phosphorylation state were examined in cells that were both sensitive (NHBE) and resistant (R.1) to the effects of TGF-{Beta}. These results suggest that the cyclin-dependent kinase inhibitor, p15{sup INK4B}, is involved in airway epithelial cell differentiation and that loss or reduction of expression plays a role in the resistance of transformed or neoplastic cells to the growth-inhibitory effects of TGF-{Beta}.

  6. CD8 T-cell responses against cyclin B1 in breast cancer patients with tumors overexpressing p53

    DEFF Research Database (Denmark)

    Sørensen, Rikke Baek; Andersen, Rikke Sick; Svane, Inge Marie

    2009-01-01

    CD8 T-cell response against at least one of the peptides; strongest reactivity was detected against the CB9L2 peptide. Because the level of cyclin B1 has been shown to be influenced by the level of p53, which in turn is elevated in cancer cells because of point mutation, we analyzed the level of p53...... protein in biopsies from the patients by immune histochemistry. Combined data showed that anti-cyclin B1 reactivity was predominantly detected in patients with tumors characterized by elevated expression of p53. Interestingly, no reactivity was detected against six peptides derived from the p53 protein....... CONCLUSIONS: Our data support the notion of cyclin B1 as a prominent target for immunologic recognition in cancer patients harboring p53-mutated cancer cells. Because mutation of p53 is one of the most frequent genetic alterations in human cancers, this suggests that immunotherapy based on targeting of cyclin...

  7. Differential Processing of Cyclin E Variants in Normal vs Tumor cells and their Role in Breast Cancer Oncogenesis

    National Research Council Canada - National Science Library

    McGahren, Mollianne

    2003-01-01

    ... and S. This commits the cell to complete one round of cell division. Previous findings by this laboratory have found that overexpression of cyclin E and the presence of lower molecular weight isoforms (LMW...

  8. Differential Processing of Cyclin E Variants in Normal Versus Tumor Cells and Their Role in Breast Cancer Oncogenesis

    National Research Council Canada - National Science Library

    McGahren, Mollianne

    2002-01-01

    ... and S. This commits the cell to complete one round of cell division. Previous findings by this laboratory have found that overexpression of cyclin E and the presence of lower molecular weight isoforms (LMW...

  9. Heterobiaryl purine derivatives as potent antiproliferative agents: inhibitors of cyclin dependent kinases. Part II.

    Science.gov (United States)

    Trova, Michael P; Barnes, Keith D; Alicea, Luis; Benanti, Travis; Bielaska, Mark; Bilotta, Joseph; Bliss, Brian; Duong, Thuy Nguyen; Haydar, Simon; Herr, R Jason; Hui, Yu; Johnson, Matthew; Lehman, John M; Peace, Denise; Rainka, Matthew; Snider, Patricia; Salamone, Susan; Tregay, Steven; Zheng, Xiaozhang; Friedrich, Thomas D

    2009-12-01

    C-6 Biarylmethylamino purine derivatives of roscovitine (1) inhibit cyclin dependent kinases and demonstrate potent antiproliferative activity. Replacement of the aryl rings of the C-6 biarylmethylamino group with heterobiaryl rings has provided compounds with significantly improved activity. In particular, derivatives 18 g and 9 c demonstrated 1000-fold and 1250-fold improvements, respectively, in the growth inhibition of HeLa cells compared to roscovitine (1).

  10. F-box protein specificity for g1 cyclins is dictated by subcellular localization.

    Directory of Open Access Journals (Sweden)

    Benjamin D Landry

    Full Text Available Levels of G1 cyclins fluctuate in response to environmental cues and couple mitotic signaling to cell cycle entry. The G1 cyclin Cln3 is a key regulator of cell size and cell cycle entry in budding yeast. Cln3 degradation is essential for proper cell cycle control; however, the mechanisms that control Cln3 degradation are largely unknown. Here we show that two SCF ubiquitin ligases, SCF(Cdc4 and SCF(Grr1, redundantly target Cln3 for degradation. While the F-box proteins (FBPs Cdc4 and Grr1 were previously thought to target non-overlapping sets of substrates, we find that Cdc4 and Grr1 each bind to all 3 G1 cyclins in cell extracts, yet only Cln3 is redundantly targeted in vivo, due in part to its nuclear localization. The related cyclin Cln2 is cytoplasmic and exclusively targeted by Grr1. However, Cdc4 can interact with Cdk-phosphorylated Cln2 and target it for degradation when cytoplasmic Cdc4 localization is forced in vivo. These findings suggest that Cdc4 and Grr1 may share additional redundant targets and, consistent with this possibility, grr1Δ cdc4-1 cells demonstrate a CLN3-independent synergistic growth defect. Our findings demonstrate that structurally distinct FBPs are capable of interacting with some of the same substrates; however, in vivo specificity is achieved in part by subcellular localization. Additionally, the FBPs Cdc4 and Grr1 are partially redundant for proliferation and viability, likely sharing additional redundant substrates whose degradation is important for cell cycle progression.

  11. Synthesis of the small peptide analogues of cyclin dependent kinase (CDK4) for cancer treatment

    OpenAIRE

    Romsaiyud, Jariya

    2010-01-01

    Cyclin-dependent kinases (CDKs) are a group of enzymes that are involved in cell cycle progression regulation. The CDKs activate host proteins through phosphorylation on serine or threonine using adenosine triphosphate as a phosphate donor. Especially, cyclindependent kinase 4 (CDK4) has attracted much attention as a potential therapeutic target in treating cancer because it is the key player in the control of cell proliferation. Comparison of the best model of CDK4 with the structures of CDK...

  12. New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease.

    Science.gov (United States)

    Kim, Young-Cho; Alberico, Stephanie L; Emmons, Eric; Narayanan, Nandakumar S

    2015-06-01

    The neurotransmitter dopamine acts via two major classes of receptors, D1-type and D2-type. D1 receptors are highly expressed in the striatum and can also be found in the cerebral cortex. Here we review the role of D1 dopamine signaling in two major domains: L-DOPA-induced dyskinesias in Parkinson's disease and cognition in neuropsychiatric disorders. While there are many drugs targeting D2-type receptors, there are no drugs that specifically target D1 receptors. It has been difficult to use selective D1-receptor agonists for clinical applications due to issues with bioavailability, binding affinity, pharmacological kinetics, and side effects. We propose potential therapies that selectively modulate D1 dopamine signaling by targeting second messengers downstream of D1 receptors, allosteric modulators, or by making targeted modifications to D1-receptor machinery. The development of therapies specific to D1-receptor signaling could be a new frontier in the treatment of neurological and psychiatric disorders.

  13. KiSS1/GPR54 and estrogen-related gene expression profiles in primary breast cancer.

    Science.gov (United States)

    Jarząbek, Katarzyna; Kozłowski, Leszek; Milewski, Robert; Wołczyński, Sławomir

    2012-04-01

    The estrogen receptor α (ERα)-mediated pathway plays a critical role in breast cancer development and progression. KiSS1 was previously described as a metastasis suppressor gene in certain carcinomas. However, the role of KiSS1/GPR54 in breast cancer remains controversial. Whether the function of the KiSS1/GPR54 system depends on estrogen signaling in the breast cancer cell remains to be determined. This study aimed to determine the expression profiles of the KiSS1/GPR54, ERα, ERβ, aromatase and cyclin D1 genes in human breast cancer tissues, and to identify a possible link between the expression levels of the studied genes and the selected clinical and pathological features. The study subjects comprised 59 females treated surgically for primary breast cancer. Total RNA was extracted from frozen breast cancer tissues, and expression levels were examined to determine any correlations. We observed strong positive correlations between the expression levels of the studied genes. The expression of ERα correlated positively with progesterone receptors (PRs), and in these tumors we also observed positive correlations between KiSS1, GPR54 and cyclin D1 mRNAs and the ERα protein. ER-positive breast tumors exhibited higher KiSS1 and GPR54 levels than the ER-negative tumors. The expression levels of the ERα and GPR54 transcripts were higher in the moderately differentiated tumors (G2) compared to the poorly differentiated high-grade (G3) cancers. We also found that HER-2/neu status in breast cancer is negatively associated with GPR54 mRNA expression. Decreasing GPR54 mRNA expression levels in HER-2/neu (+) tumors may be associated with the deregulation of the classical estrogen-mediated signaling pathway in breast tumors, and therefore, with promotion of tumor invasiveness. Our findings indicate that genes involved in the KiSS1/GPR54 system, as well as in the estrogen signaling pathway, may be utilizable molecular factors in pathogenesis studies of breast cancer.

  14. [Expressions of cyclinB1, FHIT and Ki-67 in 336 gastric carcinoma patients and their clinicopathologic significance].

    Science.gov (United States)

    Li, Ya-Zhuo; Zhao, Po

    2009-09-08

    To investigate the expressions of cyclinB1, FHIT and Ki-67 in gastric carcinoma and their clinical significance. Immunohistochemistry (PV6000 method) was used to detect the expressions of cyclinB1, FHIT and Ki-67 in paraffin-embedded gastric carcinoma tissues of 336 cases and paracancerous normal mucosa of 60 cases. All cases were successfully followed up. The positive expression rates of cyclinB1, FHIT and Ki-67 in gastric carcinoma were 66.1% (222/336), 39.9% (134/336) and 58.3% (196/336) respectively. CyclinB1 and Ki-67 were all correlated with tumor size, differentiation degree, infiltrative depth, clinical stage, lymphatic invasion and distant metastasis (P < 0.05). And FHIT showed a correlation with differentiation degree, lymphatic invasion and clinical stage (P < 0.05). The 5-year survival rate of patients with positive cyclinB1 and Ki-67 expressions were both lower than those with negative expressions (P < 0.05), whereas FHIT had the opposite pattern (P = 0.025). The cyclinB1 expression in gastric carcinoma was positively correlated with the Ki-67 expression (r = 0.249, P = 0.0001). The expressions of cyclinB1 and Ki-67 in carcinoma were significantly higher than those in normal mucosa tissues (P < 0.05), but FHIT had the opposite pattern. Ki-67 was an independent prognostic indicator for post-operative survival time. CyclinB1, FHIT and Ki-67 may play significant roles in the occurrence and evolution of gastric carcinoma. And they can be used as useful indicators for clinical assessment of tumor biological behaviors and prognosis in patients with gastric carcinoma.

  15. Cyclin D3 is selectively required for proliferative expansion of germinal center B cells.

    Science.gov (United States)

    Cato, Matthew H; Chintalapati, Suresh K; Yau, Irene W; Omori, Sidne A; Rickert, Robert C

    2011-01-01

    The generation of robust T-cell-dependent humoral immune responses requires the formation and expansion of germinal center structures within the follicular regions of the secondary lymphoid tissues. B-cell proliferation in the germinal center drives ongoing antigen-dependent selection and the generation of high-affinity class-switched plasma and memory B cells. However, the mechanisms regulating B-cell proliferation within this microenvironment are largely unknown. Here, we report that cyclin D3 is uniquely required for germinal center progression. Ccnd3(-/-) mice exhibit a B-cell-intrinsic defect in germinal center maturation and fail to generate an affinity-matured IgG response. We determined that the defect resulted from failed proliferative expansion of GL7(+) IgD(-) PNA(+) B cells. Mechanistically, sustained expression of cyclin D3 was found to be regulated at the level of protein stability and controlled by glycogen synthase kinase 3 in a cyclic AMP-protein kinase A-dependent manner. The specific defect in proliferative expansion of GL7(+) IgD(-) PNA(+) B cells in Ccnd3(-/-) mice defines an underappreciated step in germinal center progression and solidifies a role for cyclin D3 in the immune response, and as a potential therapeutic target for germinal center-derived B-cell malignancies.

  16. A quantitative model for cyclin-dependent kinase control of the cell cycle: revisited.

    Science.gov (United States)

    Uhlmann, Frank; Bouchoux, Céline; López-Avilés, Sandra

    2011-12-27

    The eukaryotic cell division cycle encompasses an ordered series of events. Chromosomal DNA is replicated during S phase of the cell cycle before being distributed to daughter cells in mitosis. Both S phase and mitosis in turn consist of an intricately ordered sequence of molecular events. How cell cycle ordering is achieved, to promote healthy cell proliferation and avert insults on genomic integrity, has been a theme of Paul Nurse's research. To explain a key aspect of cell cycle ordering, sequential S phase and mitosis, Stern & Nurse proposed 'A quantitative model for cdc2 control of S phase and mitosis in fission yeast'. In this model, S phase and mitosis are ordered by their dependence on increasing levels of cyclin-dependent kinase (Cdk) activity. Alternative mechanisms for ordering have been proposed that rely on checkpoint controls or on sequential waves of cyclins with distinct substrate specificities. Here, we review these ideas in the light of experimental evidence that has meanwhile accumulated. Quantitative Cdk control emerges as the basis for cell cycle ordering, fine-tuned by cyclin specificity and checkpoints. We propose a molecular explanation for quantitative Cdk control, based on thresholds imposed by Cdk-counteracting phosphatases, and discuss its implications.

  17. Reversible regulation of cell cycle-related genes by epigallocatechin gallate for hibernation of neonatal human tarsal fibroblasts.

    Science.gov (United States)

    Bae, Jung Yoon; Kanamune, Jun; Han, Dong-Wook; Matsumura, Kazuaki; Hyon, Suong-Hyu

    2009-01-01

    We investigated the hibernation effect of epigallocatechin-3-O-gallate (EGCG) on neonatal human tarsal fibroblasts (nHTFs) by analyzing the expression of cell cycle-related genes. EGCG application to culture media moderately inhibited the growth of nHTFs, and the removal of EGCG from culture media led to complete recovery of cell growth. EGCG resulted in a slight decrease in the cell population of the S and G(2)/M phases of cell cycle with concomitant increase in that of the G(0)/G(1) phase, but this cell cycle profile was restored to the initial level after EGCG removal. The expression of cyclin D1 (CCND1), CCNE2, CCN-dependent kinase 6 (CDK6), and CDK2 was restored, whereas that of CCNA, CCNB1, and CDK1 was irreversibly attenuated. The expression of a substantial number of genes analyzed by cDNA microarray was affected by EGCG application, and these affected expression levels were restored to the normal levels after EGCG removal. We also found the incorporation of FITC-EGCG into the cytosol of nHTFs and its further nuclear translocation, which might lead to the regulation of the exogenous signals directed to genes for cellular responses including proliferation and cell cycle progression. These results suggest that EGCG temporarily affects not only genes related to the cell cycle but also various other cellular functions.

  18. Interphase APC/C-Cdc20 inhibition by cyclin A2-Cdk2 ensures efficient mitotic entry

    DEFF Research Database (Denmark)

    Hein, Jamin B; Nilsson, Jakob

    2016-01-01

    Proper cell-cycle progression requires tight temporal control of the Anaphase Promoting Complex/Cyclosome (APC/C), a large ubiquitin ligase that is activated by one of two co-activators, Cdh1 or Cdc20. APC/C and Cdc20 are already present during interphase but APC/C-Cdc20 regulation during...... this window of the cell cycle, if any, is unknown. Here we show that cyclin A2-Cdk2 binds and phosphorylates Cdc20 in interphase and this inhibits APC/C-Cdc20 activity. Preventing Cdc20 phosphorylation results in pre-mature activation of the APC/C-Cdc20 and several substrates, including cyclin B1 and A2......, are destabilized which lengthens G2 and slows mitotic entry. Expressing non-degradable cyclin A2 but not cyclin B1 restores mitotic entry in these cells. We have thus uncovered a novel positive feedback loop centred on cyclin A2-Cdk2 inhibition of interphase APC/C-Cdc20 to allow further cyclin A2 accumulation...

  19. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation

    Science.gov (United States)

    Chen, Bill B.; Glasser, Jennifer R.; Coon, Tiffany A.; Zou, Chunbin; Miller, Hannah L.; Fenton, Moon; McDyer, John F.; Boyiadzis, Michael

    2012-01-01

    Hematologic maligancies exhibit a growth advantage by up-regulation of components within the molecular apparatus involved in cell-cycle progression. The SCF (Skip-Cullin1-F-box protein) E3 ligase family provides homeostatic feedback control of cell division by mediating ubiquitination and degradation of cell-cycle proteins. By screening several previously undescribed E3 ligase components, we describe the behavior of a relatively new SCF subunit, termed FBXL2, that ubiquitinates and destabilizes cyclin D2 protein leading to G0 phase arrest and apoptosis in leukemic and B-lymphoblastoid cell lines. FBXL2 expression was strongly suppressed, and yet cyclin D2 protein levels were robustly expressed in acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) patient samples. Depletion of endogenous FBXL2 stabilized cyclin D2 levels, whereas ectopically expressed FBXL2 decreased cyclin D2 lifespan. FBXL2 did not bind a phosphodegron within its substrate, which is typical of other F-box proteins, but uniquely targeted a calmodulin-binding signature within cyclin D2 to facilitate its polyubiquitination. Calmodulin competes with the F-box protein for access to this motif where it bound and protected cyclin D2 from FBXL2. Calmodulin reversed FBXL2-induced G0 phase arrest and attenuated FBXL2-induced apoptosis of lymphoblastoid cells. These results suggest an antiproliferative effect of SCFFBXL2 in lymphoproliferative malignancies. PMID:22323446

  20. Binding of Losartan to Angiotensin AT1 Receptors Increases Dopamine D1 Receptor Activation

    Science.gov (United States)

    Li, Dong; Scott, Lena; Crambert, Susanne; Zelenin, Sergey; Eklöf, Ann-Christine; Di Ciano, Luis; Ibarra, Fernando

    2012-01-01

    Signaling through both angiotensin AT1 receptors (AT1R) and dopamine D1 receptors (D1R) modulates renal sodium excretion and arterial BP. AT1R and D1R form heterodimers, but whether treatment with AT1R antagonists functionally modifies D1R via allosterism is unknown. In this study, the AT1R antagonist losartan strengthened the interaction between AT1R and D1R and increased expression of D1R on the plasma membrane in vitro. In rat proximal tubule cells that express endogenous AT1R and D1R, losartan increased cAMP generation. Losartan increased cAMP in HEK 293a cells transfected with both AT1R and D1R, but it did not increase cAMP in cells transfected with either receptor alone, suggesting that losartan induces D1R activation. Furthermore, losartan did not increase cAMP in HEK 293a cells expressing AT1R and mutant S397/S398A D1R, which disrupts the physical interaction between AT1R and D1R. In vivo, administration of a D1R antagonist significantly attenuated the antihypertensive effect of losartan in rats with renal hypertension. Taken together, these data imply that losartan might exert its antihypertensive effect both by inhibiting AT1R signaling and by enhancing D1R signaling. PMID:22193384

  1. Plasticity in D1-like receptor expression is associated with different components of cognitive processes.

    Directory of Open Access Journals (Sweden)

    Christina Herold

    Full Text Available Dopamine D1-like receptors consist of D1 (D1A and D5 (D1B receptors and play a key role in working memory. However, their possibly differential contribution to working memory is unclear. We combined a working memory training protocol with a stepwise increase of cognitive subcomponents and real-time RT-PCR analysis of dopamine receptor expression in pigeons to identify molecular changes that accompany training of isolated cognitive subfunctions. In birds, the D1-like receptor family is extended and consists of the D1A, D1B, and D1D receptors. Our data show that D1B receptor plasticity follows a training that includes active mental maintenance of information, whereas D1A and D1D receptor plasticity in addition accompanies learning of stimulus-response associations. Plasticity of D1-like receptors plays no role for processes like response selection and stimulus discrimination. None of the tasks altered D2 receptor expression. Our study shows that different cognitive components of working memory training have distinguishable effects on D1-like receptor expression.

  2. D1FHS, the Type Strain of the Ammonia-Oxidizing Bacterium Nitrosococcus wardiae spec. nov.: Enrichment, Isolation, Phylogenetic, and Growth Physiological Characterization

    Science.gov (United States)

    Wang, Lin; Lim, Chee Kent; Dang, Hongyue; Hanson, Thomas E.; Klotz, Martin G.

    2016-01-01

    An ammonia-oxidizing bacterium, strain D1FHS, was enriched into pure culture from a sediment sample retrieved in Jiaozhou Bay, a hyper-eutrophic semi-closed water body hosting the metropolitan area of Qingdao, China. Based on initial 16S rRNA gene sequence analysis, strain D1FHS was classified in the genus Nitrosococcus, family Chromatiaceae, order Chromatiales, class Gammaproteobacteria; the 16S rRNA gene sequence with highest level of identity to that of D1FHS was obtained from Nitrosococcus halophilus Nc4T. The average nucleotide identity between the genomes of strain D1FHS and N. halophilus strain Nc4 is 89.5%. Known species in the genus Nitrosococcus are obligate aerobic chemolithotrophic ammonia-oxidizing bacteria adapted to and restricted to marine environments. The optimum growth (maximum nitrite production) conditions for D1FHS in a minimal salts medium are: 50 mM ammonium and 700 mM NaCl at pH of 7.5 to 8.0 and at 37°C in dark. Because pertinent conditions for other studied Nitrosococcus spp. are 100–200 mM ammonium and <700 mM NaCl at pH of 7.5 to 8.0 and at 28–32°C, D1FHS is physiologically distinct from other Nitrosococcus spp. in terms of substrate, salt, and thermal tolerance. PMID:27148201

  3. D1FHS, the type strain of the ammonia-oxidizing bacterium Nitrosococcus wardiae spec. nov.: Enrichment, isolation, phylogenetic and growth physiological characterization

    Directory of Open Access Journals (Sweden)

    Lin eWang

    2016-04-01

    Full Text Available An ammonia-oxidizing bacterium, strain D1FHS, was enriched into pure culture from a sediment sample retrieved in Jiaozhou Bay, a hyper-eutrophic semi-closed water body hosting the metropolitan area of Qingdao, China. Based on initial 16S rRNA gene sequence analysis, strain D1FHS was classified in the genus Nitrosococcus, family Chromatiaceae, order Chromatiales, class Gammaproteobacteria; the 16S rRNA gene sequence with highest level of identity to that of D1FHS was obtained from Nitrosococcus halophilus Nc4T. The average nucleotide identity between the genomes of strain D1FHS and Nitrosococcus halophilus strain Nc4 is 89.5%. Known species in the genus Nitrosococcus are obligate aerobic chemolithotrophic ammonia-oxidizing bacteria adapted to and restricted to marine environments. The optimum growth (maximum nitrite production conditions for D1FHS in a minimal salts medium are: 50 mM ammonium and 700 mM NaCl at pH of 7.5 to 8.0 and at 37°C in dark. Because pertinent conditions for other studied Nitrosococcus spp. are 100-200 mM ammonium and <700 mM NaCl at pH of 7.5 to 8.0 and at 28-32°C, D1FHS is physiologically distinct from other Nitrosococcus spp. in terms of substrate, salt and thermal tolerance.

  4. D1FHS, the Type Strain of the Ammonia-Oxidizing Bacterium Nitrosococcus wardiae spec. nov.: Enrichment, Isolation, Phylogenetic, and Growth Physiological Characterization.

    Science.gov (United States)

    Wang, Lin; Lim, Chee Kent; Dang, Hongyue; Hanson, Thomas E; Klotz, Martin G

    2016-01-01

    An ammonia-oxidizing bacterium, strain D1FHS, was enriched into pure culture from a sediment sample retrieved in Jiaozhou Bay, a hyper-eutrophic semi-closed water body hosting the metropolitan area of Qingdao, China. Based on initial 16S rRNA gene sequence analysis, strain D1FHS was classified in the genus Nitrosococcus, family Chromatiaceae, order Chromatiales, class Gammaproteobacteria; the 16S rRNA gene sequence with highest level of identity to that of D1FHS was obtained from Nitrosococcus halophilus Nc4(T). The average nucleotide identity between the genomes of strain D1FHS and N. halophilus strain Nc4 is 89.5%. Known species in the genus Nitrosococcus are obligate aerobic chemolithotrophic ammonia-oxidizing bacteria adapted to and restricted to marine environments. The optimum growth (maximum nitrite production) conditions for D1FHS in a minimal salts medium are: 50 mM ammonium and 700 mM NaCl at pH of 7.5 to 8.0 and at 37°C in dark. Because pertinent conditions for other studied Nitrosococcus spp. are 100-200 mM ammonium and <700 mM NaCl at pH of 7.5 to 8.0 and at 28-32°C, D1FHS is physiologically distinct from other Nitrosococcus spp. in terms of substrate, salt, and thermal tolerance.

  5. Mutational analysis of the extracellular Ca{sup 2+}-sensing receptor gene in human parathyroid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Yoshitaka; Arnold, A. [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Pollak, M.R.; Brown, E.M. [Brigham and Women`s Hospital, Boston, MA (United States)

    1995-10-01

    Despite recent progress, such as the identification of PRAD1/cyclin D1 as a parathyroid oncogene, it is likely that many genes involved in the molecular pathogenesis of parathyroid tumors remain unknown. Individuals heterozygous for inherited mutations in the extracellular Ca{sup 2+}-sensing receptor gene that reduce its biological activity exhibit a disorder termed familial hypocalciuric hypercalcemia or familial benign hypercalcemia, which is characterized by reduced responsiveness of parathyroid and kidney to calcium and by PTH-dependent hypercalcemia. Those who are homozygous for such mutations present with neonatal severe hyperparathyroidism and have marked parathroid hypercellularity. Thus, the Ca{sup 2+}-sensing receptor gene is a candidate parathyroid tumor suppressor gene, with inactivating mutations plausibly explaining set-point abnormalities in the regulation of both parathyroid cellular proliferation and PTH secretion by extracellular Ca{sup 2+} similar to those seen in hyperparathyroidism. Using a ribonuclease A protection assay that has detected multiple mutations in the Ca{sup 2+}-sensing receptor gene in familial hypocalciuric hypercalcemia and covers more than 90% of its coding region, we sought somatic mutations in this gene in a total of 44 human parathyroid tumors (23 adenomas, 4 carcinomas, 5 primary hyperplasias, and 12 secondary hyperplasias). No such mutations were detected in these 44 tumors. Thus, our studies suggest that somatic mutation of the Ca{sup 2+}-sensing receptor gene does not commonly contribute to the pathogenesis of sporadic parathyroid tumors. As such, PTH set-point dysfunction in parathroid tumors may well be secondary to other clonal proliferative defects and/or mutations in other components of the extracellular Ca{sup 2+}-sensing pathway. 29 refs., 2 figs.

  6. Identification of Wnt responsive genes using a murine mammary epithelial cell line model system

    Directory of Open Access Journals (Sweden)

    Pennica Diane

    2004-05-01

    Full Text Available Abstract Background The Wnt/Wg pathway plays an important role in the developmental program of many cells and tissues in a variety of organisms. In addition, many Wnts and components of their downstream signaling pathways, such as β-catenin and APC, have been implicated in tumorigenesis. Over the past years, several genes have been identified as Wnt responsive, including c-myc, siamois, and cyclin D1. Results In order to identify additional genes responsive to Wnt signaling that contribute to the transformed phenotype, we performed a cDNA subtractive hybridization screen between a mouse mammary epithelial cell line that overexpresses Wnt-1 (C57MG/Wnt-1 and the parental cell line (C57MG. The screen identified a total of 67 genes to be up-regulated in response to Wnt signaling. Of these 67 genes, the up-regulation of 62 was subsequently confirmed by Northern and dot blot analyses (and, for a subset, semi-quantitative PCR of RNA isolated from C57MG cells subjected to (1 an independent Wnt-1 retroviral infection, and (2 co-culture with Wnt-1 expressing cells. Among the confirmed Wnt-1 responsive genes, we further characterized a mouse homolog of the human transcription factor Basic Transcription Element Binding protein 2 (BTEB2, Wnt-1 Responsive Cdc42 homolog (Wrch-1, and Wnt-1 Induced Secreted Protein (WISP-1. Conclusion Several novel genes were identified in this screen, as well as others that have been shown previously to be regulated by Wnt signaling, such as connexin43. The results indicate that cDNA subtractive hybridization is a useful method for identifying genes involved in the process of Wnt-1-induced transformation.

  7. Dominance effects estimation of TLR4 and CACNA2D1genes for ...

    Indian Academy of Sciences (India)

    MASOUMEH BAGHERI

    2017-12-08

    Dec 8, 2017 ... Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural. Research ... Knowledge of nonadditive variance and genetic effects can be helpful in explaining the total genetic variation for most of ..... ance components and inbreeding depression.

  8. Dominance effects estimation of TLR4 and CACNA2D1 genes for ...

    Indian Academy of Sciences (India)

    2017-12-08

    Dec 8, 2017 ... Records of 305 days lactation were obtained for production traits and CMR. Animals were selected based on extreme values for CMR from mixed model analyses. Samples were genotyped for four SNP-single genotypes and their associations with production traits (breeding values forprotein and fat yield, ...

  9. 26 CFR 1.167(d)-1 - Agreement as to useful life and rates of depreciation.

    Science.gov (United States)

    2010-04-01

    ... depreciation. 1.167(d)-1 Section 1.167(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... and Corporations § 1.167(d)-1 Agreement as to useful life and rates of depreciation. After August 16... respect to the estimated useful life, method and rate of depreciation and treatment of salvage of any...

  10. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism

    DEFF Research Database (Denmark)

    Szekeres, Ferenc; Chadt, Alexandra; Tom, Robby Z

    2012-01-01

    The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJ...

  11. 26 CFR 1.642(d)-1 - Net operating loss deduction.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Net operating loss deduction. 1.642(d)-1 Section 1.642(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Estates, Trusts, and Beneficiaries § 1.642(d)-1 Net operating loss...

  12. Perfusion of veins at arterial pressure increases the expression of KLF5 and cell cycle genes in smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Amirak, Emre [Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ (United Kingdom); Zakkar, Mustafa; Evans, Paul C. [Cardiovascular Sciences, Bywaters Center for Vascular Inflammation, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London W12 ONN (United Kingdom); Kemp, Paul R., E-mail: p.kemp@imperial.ac.uk [Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-01-01

    Vascular smooth muscle cell (VSMC) proliferation remains a major cause of veno-arterial graft failure. We hypothesised that exposure of venous SMCs to arterial pressure would increase KLF5 expression and that of cell cycle genes. Porcine jugular veins were perfused at arterial or venous pressure in the absence of growth factors. The KLF5, c-myc, cyclin-D and cyclin-E expression were elevated within 24 h of perfusion at arterial pressure but not at venous pressure. Arterial pressure also reduced the decline in SM-myosin heavy chain expression. These data suggest a role for KLF5 in initiating venous SMCs proliferation in response to arterial pressure.

  13. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification

    Directory of Open Access Journals (Sweden)

    Tautz Diethard

    2007-02-01

    Full Text Available Abstract Background Identification of species via DNA sequences is the basis for DNA taxonomy and DNA barcoding. Currently there is a strong focus on using a mitochondrial marker for this purpose, in particular a fragment from the cytochrome oxidase I gene (COI. While there is ample evidence that this marker is indeed suitable across a broad taxonomic range to delineate species, it has also become clear that a complementation by a nuclear marker system could be advantageous. Ribosomal RNA genes could be suitable for this purpose, because of their global occurrence and the possibility to design universal primers. However, it has so far been assumed that these genes are too highly conserved to allow resolution at, or even beyond the species level. On the other hand, it is known that ribosomal gene regions harbour also highly divergent parts. We explore here the information content of two adjacent divergence regions of the large subunit ribosomal gene, the D1-D2 region. Results Universal primers were designed to amplify the D1-D2 region from all metazoa. We show that amplification products in the size between 800–1300 bp can be obtained across a broad range of animal taxa, provided some optimizations of the PCR procedure are implemented. Although the ribosomal genes occur in multiple copies in the genomes, we find generally very little intra-individual polymorphism (Cottus and genus Aphyosemion show that the D1-D2 LSU sequence can resolve even very closely related species with the same fidelity as COI sequences. In one case we can even show that a mitochondrial transfer must have occurred, since the nuclear sequence confirms the taxonomic assignment, while the mitochondrial sequence would have led to the wrong classification. We have further explored whether hybrids between species can be detected with the nuclear sequence and we show for a test case of natural hybrids among cyprinid fish species (Alburnus alburnus and Rutilus rutilus that this

  14. Value of cyclin A immunohistochemistry for cancer risk stratification in Barrett esophagus surveillance: A multicenter case-control study.

    Science.gov (United States)

    van Olphen, Sophie H; Ten Kate, Fiebo J C; Doukas, Michail; Kastelein, Florine; Steyerberg, Ewout W; Stoop, Hans A; Spaander, Manon C; Looijenga, Leendert H J; Bruno, Marco J; Biermann, Katharina

    2016-11-01

    The value of endoscopic Barrett esophagus (BE) surveillance based on histological diagnosis of low-grade dysplasia (LGD) remains debated given the lack of adequate risk stratification. The aim of this study was to evaluate the predictive value of cyclin A expression and to combine these results with our previously reported immunohistochemical p53, AMACR, and SOX2 data, to identify a panel of biomarkers predicting neoplastic progression in BE.We conducted a case-control study within a prospective cohort of 720 BE patients. BE patients who progressed to high-grade dysplasia (HGD, n = 37) or esophageal adenocarcinoma (EAC, n = 13), defined as neoplastic progression, were classified as cases and patients without neoplastic progression were classified as controls (n = 575). Cyclin A expression was determined by immunohistochemistry in all 625 patients; these results were combined with the histological diagnosis and our previous p53, AMACR, and SOX2 data in loglinear regression models. Differences in discriminatory ability were quantified as changes in area under the ROC curve (AUC) for predicting neoplastic progression.Cyclin A surface positivity significantly increased throughout the metaplasia-dysplasia-carcinoma sequences and was seen in 10% (107/1050) of biopsy series without dysplasia, 33% (109/335) in LGD, and 69% (34/50) in HGD/EAC. Positive