WorldWideScience

Sample records for cyclic voltammetry studies

  1. Cyclic voltammetry and reduction mechanistic studies of ...

    African Journals Online (AJOL)

    styrylpyrylium perchlorates have been evaluated using cyclic voltammetry, in comparison to their non-methylated derivatives values. The reduction peak of all studied compounds remained chemically irreversible. The presence of the ...

  2. A Practical Beginner's Guide to Cyclic Voltammetry

    Science.gov (United States)

    Elgrishi, Noémie; Rountree, Kelley J.; McCarthy, Brian D.; Rountree, Eric S.; Eisenhart, Thomas T.; Dempsey, Jillian L.

    2018-01-01

    Despite the growing popularity of cyclic voltammetry, many students do not receive formalized training in this technique as part of their coursework. Confronted with self-instruction, students can be left wondering where to start. Here, a short introduction to cyclic voltammetry is provided to help the reader with data acquisition and…

  3. Cyclic voltammetry and reduction mechanistic studies of styrylpyrylium perchlorates

    Directory of Open Access Journals (Sweden)

    Y. L. Bonzi-Coulibaly

    2013-04-01

    Full Text Available The reduction and oxidation potentials of methylated 4-styrylpyrylium and 6-styrylpyrylium perchlorates have been evaluated using cyclic voltammetry, in comparison to their non-methylated derivatives values. The reduction peak of all studied compounds remained chemically irreversible. The presence of the electron-donating methyl group on pyrylium ring leads to a shift of the styrylpyrylium perchlorates reduction potential towards cathodic values. Kinetic studies on platinum electrodes based on the variation of the peak potential at different scan rates and upon substrate concentrations confirm, in another way, the mechanism of electron transfer.DOI: http://dx.doi.org/10.4314/bcse.v27i1.12

  4. Hairy carbon electrodes studied by cyclic voltammetry and battery discharge testing

    Science.gov (United States)

    Chung, Deborah D. L.; Shui, Xiaoping; Frysz, Christine A.

    1993-01-01

    Hairy carbon is a new material developed by growing submicron carbon filaments on conventional carbon substrates. Typical substrate materials include carbon black, graphite powder, carbon fibers, and glassy carbon. A catalyst is used to initiate hair growth with carbonaceous gases serving as the carbon source. To study the electrochemical behavior of hairy carbons, cyclic voltammetry (CV) and discharge testing were conducted. In both cases, hairy carbon results surpassed those of the substrate material alone.

  5. Steady state oxygen reduction and cyclic voltammetry

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Karlberg, Gustav; Jaramillo, Thomas

    2008-01-01

    The catalytic activity of Pt and Pt3Ni for the oxygen reduction reaction is investigated by applying a Sabatier model based on density functional calculations. We investigate the role of adsorbed OH on the activity, by comparing cyclic voltammetry obtained from theory with previously published ex...

  6. Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite

    Directory of Open Access Journals (Sweden)

    Hoang V. Tran

    2018-05-01

    Full Text Available In this paper, we demonstrate a promising method to fabricate a non-enzymatic stable, highly sensitive and selective hydrogen peroxide sensor based on a chitosan/silver nanoparticles (CS/AgNPs hybrid. Using this composite, we elaborated both electrochemical and colorimetric sensors for hydrogen peroxide detection. The colorimetric sensor is based on a homogenous reaction which fades the color of CS/AgNPs solutions from red-orange to colorless depending on hydrogen peroxide concentration. For the electrochemical sensor, CS/AgNPs were immobilized on glassy carbon electrodes and hydrogen peroxide was measured using cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The response time is less than 10 s and the detection limit is 5 μM. Keywords: Spectrophotometric detection, Electrochemical impedance spectroscopy, Square wave voltammetry, Cyclic voltammetry, Chitosan/silver nanoparticles (CS/AgNPs hybrid, Hydrogen peroxide

  7. Cyclic Voltammetry Simulations with DigiSim Software: An Upper-Level Undergraduate Experiment

    Science.gov (United States)

    Messersmith, Stephania J.

    2014-01-01

    An upper-division undergraduate chemistry experiment is described which utilizes DigiSim software to simulate cyclic voltammetry (CV). Four mechanisms were studied: a reversible electron transfer with no subsequent or proceeding chemical reactions, a reversible electron transfer followed by a reversible chemical reaction, a reversible chemical…

  8. Cyclic Voltammetry of Biopolymer Heparin at PVC Plasticized Liquid Membrane

    Czech Academy of Sciences Publication Activity Database

    Samec, Zdeněk; Trojánek, Antonín; Langmaier, Jan; Samcová, E.

    2003-01-01

    Roč. 5, - (2003), s. 867-870 ISSN 1388-2481 R&D Projects: GA ČR GA203/04/0424 Institutional research plan: CEZ:AV0Z4040901 Keywords : cyclic voltammetry * PVC plasticized liquit membrane * heparin Subject RIV: CG - Electrochemistry Impact factor: 2.300, year: 2003

  9. A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib J. [The Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19" t" h Avenue, Columbus, Ohio 43210 (United States)

    2016-05-15

    In this study, a one-dimensional stochastic model based on the random walk approach is used to simulate cyclic voltammetry. The model takes into account mass transport, kinetics of the redox reactions, adsorption effects and changes in the morphology of the electrode. The model is shown to display the expected behavior. Furthermore, the model shows consistent qualitative agreement with a finite difference solution. This approach allows for an understanding of phenomena on a microscopic level and may be useful for analyzing qualitative features observed in experimentally recorded signals.

  10. A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects

    International Nuclear Information System (INIS)

    Samin, Adib J.

    2016-01-01

    In this study, a one-dimensional stochastic model based on the random walk approach is used to simulate cyclic voltammetry. The model takes into account mass transport, kinetics of the redox reactions, adsorption effects and changes in the morphology of the electrode. The model is shown to display the expected behavior. Furthermore, the model shows consistent qualitative agreement with a finite difference solution. This approach allows for an understanding of phenomena on a microscopic level and may be useful for analyzing qualitative features observed in experimentally recorded signals.

  11. Cyclic voltammetry and RBS study of paint components

    International Nuclear Information System (INIS)

    Bowman, Lynn; Spencer, Dirk; Muntele, Claudiu; Muntele, Iulia; Ila, D.

    2007-01-01

    Heavy metals and metalloid ions are found in environmental matrices. The most toxic are lead, cadmium and mercury. These three heavy metals have no biological function and are toxic at all concentrations. Lead is one of the most insidious heavy metals and is introduced into the environment by many different means. It persists in both urban and rural settings, being found in paint chips, pottery, crystal and pharmaceutical and nutritional products. The analysis of heavy elements such as lead in soil is of particular importance [W.T. Sturges, R.M. Harrison, Sci. Total Environ. 44 (3) (1985) 225; M.L. Lepow, L. Bruckman, M. Gillette, S. Markowitz, R. Robino, J. Kapish, Environ. Res. 10 (3) (1975) 415; A.E. Daniels, J.R. Kominsky, P.J. Clark, J. Hazard. Mater. B 87 (2001) 117; G. Hutter, D. Moshman, J. Hazard. Mater. 40 (1995) 1]. In preparing the methods for lead detection in paint, we have used Rutherford backscattering spectrometry (RBS) in order to study the type and amount of heavy metal content in paint samples collected at various sites in the historic campus at A and M University (AAMU). We will show the results of our study with emphasis on comparison of what we learned about presence of lead in paints using our ion beam methods compared with the analysis of lead in paints using cyclic voltammetry

  12. Oxidation management of white wines using cyclic voltammetry and multivariate process monitoring.

    Science.gov (United States)

    Martins, Rui C; Oliveira, Raquel; Bento, Fatima; Geraldo, Dulce; Lopes, Vitor V; Guedes de Pinho, Paula; Oliveira, Carla M; Silva Ferreira, Antonio C

    2008-12-24

    The development of a fingerprinting strategy capable to evaluate the "oxidation status" of white wines based on cyclic voltammetry is proposed here. It is known that the levels of specific antioxidants and redox mechanisms may be evaluated by cyclic voltammetry. This electrochemical technique was applied on two sets of samples. One group was composed of normal aged white wines and a second group obtained from a white wine forced aging protocol with different oxygen, SO(2), pH, and temperature regimens. A study of antioxidant additions, namely ascorbic acid, was also made in order to establish a statistical link between voltammogram fingerprints and chemical antioxidant substances. It was observed that the oxidation curve presented typical features, which enables sample discrimination according to age, oxygen consumption, and antioxidant additions. In fact, it was possible to place the results into four significant orthogonal directions, compressing 99.8% of nonrandom features. Attempts were made to make voltammogram fingerprinting a tool for monitoring oxidation management. For this purpose, a supervised multivariate control chart was developed using a control sample as reference. When white wines are plotted onto the chart, it is possible to monitor the oxidation status and to diagnose the effects of oxygen regimes and antioxidant activity. Finally, quantification of substances implicated in the oxidation process as reagents (antioxidants) and products (off-flavors) was tried using a supervised algorithmic the partial least square regression analysis. Good correlations (r > 0.93) were observed for ascorbic acid, Folin-Ciocalteu index, total SO(2), methional, and phenylacetaldehyde. These results show that cyclic voltammetry fingerprinting can be used to monitor and diagnose the effects of wine oxidation.

  13. Cyclic Voltammetry of Highly Hydrophilic Ions at a Supported Liquid Membrane

    Czech Academy of Sciences Publication Activity Database

    Ulmeanu, S. M.; Jensen, H.; Samec, Zdeněk; Bouchard, G.; Carrupt, P. A.; Giraut, H. H.

    2002-01-01

    Roč. 530, 1/2 (2002), s. 10-15 ISSN 0022-0728 R&D Projects: GA AV ČR IAA4040902 Institutional research plan: CEZ:AV0Z4040901 Keywords : liquid-liquid interface * membrane * cyclic voltammetry Subject RIV: CG - Electrochemistry Impact factor: 2.027, year: 2002

  14. Boron doped diamond sensor for sensitive determination of metronidazole: Mechanistic and analytical study by cyclic voltammetry and square wave voltammetry

    International Nuclear Information System (INIS)

    Ammar, Hafedh Belhadj; Brahim, Mabrouk Ben; Abdelhédi, Ridha; Samet, Youssef

    2016-01-01

    The performance of boron-doped diamond (BDD) electrode for the detection of metronidazole (MTZ) as the most important drug of the group of 5-nitroimidazole was proven using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. A comparison study between BDD, glassy carbon and silver electrodes on the electrochemical response was carried out. The process is pH-dependent. In neutral and alkaline media, one irreversible reduction peak related to the hydroxylamine derivative formation was registered, involving a total of four electrons. In acidic medium, a prepeak appears probably related to the adsorption affinity of hydroxylamine at the electrode surface. The BDD electrode showed higher sensitivity and reproducibility analytical response, compared with the other electrodes. The higher reduction peak current was registered at pH 11. Under optimal conditions, a linear analytical curve was obtained for the MTZ concentration in the range of 0.2–4.2 μmol L"−"1, with a detection limit of 0.065 μmol L"−"1. - Highlights: • SWV for the determination of MTZ • Boron-doped diamond as a new electrochemical sensor • Simple and rapid detection of MTZ • Efficiency of BDD for sensitive determination of MTZ

  15. Characteristics of curcumin using cyclic voltammetry, UV–vis, fluorescence and thermogravimetric analysis

    International Nuclear Information System (INIS)

    Masek, Anna; Chrzescijanska, Ewa; Zaborski, Marian

    2013-01-01

    Highlights: • Electrooxidation of curcumin was investigated with cyclic voltammetry. • The curcumin is irreversibly oxidized at the platinum electrode in anhydrous media. • Absorbance, fluorescence and thermogravimetric analysis of curcumin was studied. • The HOMO and Mapped Electron Densities were calculated using HyperChem. • Oxidation mechanism for curcumin proposed. -- Abstract: Curcumin, the yellow, primary bioactive component of turmeric, has recently received attention from chemists due its wide range of potential biological applications as an antioxidant, anti-inflammatory, and anti-carcinogenic agent. The electrochemical behaviour of curcumin at a platinum electrode has been studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The oxidation of curcumin is an irreversible process that proceeds in two steps in 0.1 M (C 4 H 9 ) 4 NClO 4 in acetonitrile. The process of oxidation and its kinetics have been investigated. The rate constant, electron transfer coefficient and diffusion coefficients for the electrochemical oxidation of curcumin were determined. A mechanism for the oxidation of curcumin is proposed. The data obtained are consistent with the current literature and suggest that voltammetric studies on mechanically transferred solids may be a convenient method for elucidating the electrochemical oxidation mechanisms of compounds in anhydrous media. Theoretical calculations regarding the optimization of curcumin, electronic properties like highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were calculated using with HyperChem software by AM1 semi-empirical method. The properties of curcumin in a homogeneous environment were investigated using spectroscopic techniques and thermogravimetric analysis

  16. Small-angle neutron scattering and cyclic voltammetry study on electrochemically oxidized and reduced pyrolytic carbon

    International Nuclear Information System (INIS)

    Braun, A.; Kohlbrecher, J.; Baertsch, M.; Schnyder, B.; Koetz, R.; Haas, O.; Wokaun, A.

    2004-01-01

    The electrochemical double layer capacitance and internal surface area of a pyrolytic carbon material after electrochemical oxidation and subsequent reduction was studied with cyclic voltammetry and small-angle neutron scattering. Oxidation yields an enhanced internal surface area (activation), and subsequent reduction causes a decrease of this internal surface area. The change of the Porod constant, as obtained from small-angle neutron scattering, reveals that the decrease in internal surface area is not caused merely by a closing or narrowing of the pores, but by a partial collapse of the pore network

  17. Boron doped diamond sensor for sensitive determination of metronidazole: Mechanistic and analytical study by cyclic voltammetry and square wave voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, Hafedh Belhadj, E-mail: hbelhadjammar@yahoo.fr; Brahim, Mabrouk Ben; Abdelhédi, Ridha; Samet, Youssef

    2016-02-01

    The performance of boron-doped diamond (BDD) electrode for the detection of metronidazole (MTZ) as the most important drug of the group of 5-nitroimidazole was proven using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. A comparison study between BDD, glassy carbon and silver electrodes on the electrochemical response was carried out. The process is pH-dependent. In neutral and alkaline media, one irreversible reduction peak related to the hydroxylamine derivative formation was registered, involving a total of four electrons. In acidic medium, a prepeak appears probably related to the adsorption affinity of hydroxylamine at the electrode surface. The BDD electrode showed higher sensitivity and reproducibility analytical response, compared with the other electrodes. The higher reduction peak current was registered at pH 11. Under optimal conditions, a linear analytical curve was obtained for the MTZ concentration in the range of 0.2–4.2 μmol L{sup −1}, with a detection limit of 0.065 μmol L{sup −1}. - Highlights: • SWV for the determination of MTZ • Boron-doped diamond as a new electrochemical sensor • Simple and rapid detection of MTZ • Efficiency of BDD for sensitive determination of MTZ.

  18. Development of pore interconnectivity/morphology in porous silica films investigated by cyclic voltammetry and slow positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Tang, Xiuqin; Xiong, Bangyun; Li, Qichao; Mao, Wenfeng; Xiao, Wei; Fang, Pengfei; He, Chunqing

    2015-01-01

    Highlights: •Porous silica films were studied by cyclic voltammetry and positron annihilation. •Highly interconnected pores were formed in the film fabricated with more CTAB. •Aligned nanochannels were observed in the porous flim prepared with 25 wt.% CTAB. •I − and Ps diffusion in the films was governed by pore interconnectivity/morphology. •Cyclic voltammetry is feasible to explore pore interconnectivity/morphology. -- Abstract: Cyclic voltammetry and positronium (Ps) 3γ-annihilation spectroscopy were applied to investigate pore interconnectivity/morphology of porous silica films fabricated with various loading of cetyltrimethyl ammonium bromide (CTAB). With increasing the ratio of CTAB up to 15 wt.%, the total charge Q, resulted from I − diffusion across the silica films, increased remarkably, indicative of formation of highly interconnected pores in the films prepared with more porogen. However, it decreased dramatically with further loading CTAB of 25 wt.%. Interestingly, 3γ-annihilation fraction I 3γ due to a triplet-state Ps (ortho-positronium, o-Ps) emission from the silica films showed a similar behavior as a function of CTAB loading. The abnormal decrement in Q and I 3γ in the film fabricated with 25 wt.% CTAB was well explained by formation of long nanochannels aligning parallel to the film surface. The results indicated that the total charge Q and Ps 3γ-annihilation fraction were closely associated with I − and Ps diffusion governed by the pore interconnectivity/morphology of the silica films, which made cyclic voltammetry possible to be a feasible tool to characterize pore interconnectivity/morphology of porous thin films

  19. Study of colored anodized aluminum with calcon in sulfuric acidic solution using cyclic voltammetry and impedance measurement methods

    Energy Technology Data Exchange (ETDEWEB)

    Norouzi, P.; Ganjali, M.R.; Golmohamaddi, M.; Mousavi, S. [Department of Chemistry, Faculty of Science, University of Tehran, Tehran (Iran); Vatankhah, G. [Iranian Organization for Science and Technology (IROST), Isfahan Center, A5 Ghezelbash Avenue, Tohid Street, Isfahan 8173954541 (Iran)

    2003-04-01

    The effect of coloring condition of Al with Calcon (sodium 2,2'-dihydroxy-azonaphthalene-4-sulfonate), on the corrosion resistance of Al in 0.1 M sulfuric acid solution was studied, using cyclic voltammetry and measurement of impedance noise methods. The changes in the corrosion resistance of colored aluminum electrodes were evaluated by measuring the magnitude of impedance and cyclic voltammetric responses of anodized and colored electrodes. An irreversible corrosion response was observed at the cyclic voltammogram of the colored aluminum electrode. The current and threshold potential of corrosion responses strongly depends on the applied conditions during anodizing, coloring and sealing stages. In addition, significant changes in impedance at the ac voltammogram and noise level at some ac frequencies were observed, when the electrodes were colored under various conditions. In this regard, the surface of the electrode was studied by Scanning Electron Microscopy (SEM). Comparison of SEM images of the colored and uncolored aluminum specimens showed that the colored surface contained a significant numbers of pits. The results indicated that coloring aluminum with Calcon could reduce corrosion resistance of aluminum and increase roughness of the oxide film. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Mit Hilfe zyklischer Voltammetrie und Messungen mit Impedanzrauschmethoden wurde der Einfluss der Faerbungsbedingungen von Aluminium mit Calcon (Natrium 2,2'-Dihydroxyazonaphthalen-4-Sulfonat) auf den Korrosionswiderstand von Aluminium in 0,1 M Schwefelsaeure untersucht. Die Veraenderungen des Korrosionswiderstandes von gefaerbten Aluminiumelektroden wurden durch Messungen der Hoehe der Impedanzreaktion bzw. der Reaktion bei der zyklischen Voltammetrie von anodisierten und gefaerbten Elektroden beurteilt. Eine irreversible Korrosionsreaktion wurde beim zyklischen Voltammogramm der gefaerbten Aluminiumelektrode beobachtet. Der Strom und das

  20. Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: An ultra-sensitive hydrazine sensor

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Hamid [Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Gholivand, Mohammad B., E-mail: mbgholivand@razi.ac.ir [Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Abdolmaleki, Abbas [Department of Chemistry, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of)

    2016-09-01

    In this study, Copper (Cu) nanostructures (CuNS) were electrochemically deposited on a film of multiwall carbon nanotubes (MWCNTs) modified pencil graphite electrode (MWCNTs/PGE) by cyclic voltammetry method to fabricate a CuNS–MWCNTs composite sensor (CuNS–MWCNT/PGE) for hydrazine detection. Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) were used for the characterization of CuNS on the MWCNTs matrix. The composite of CuNS-MWCNTs was characterized with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The preliminary studies showed that the proposed sensor have a synergistic electrocatalytic activity for the oxidation of hydrazine in phosphate buffer. The catalytic currents of square wave voltammetry had a linear correlation with the hydrazine concentration in the range of 0.1 to 800 μM with a low detection limit of 70 nM. Moreover, the amperometric oxidation current exhibited a linear correlation with hydrazine concentration in the concentration range of 50–800 μM with the detection limit of 4.3 μM. The proposed electrode was used for the determination of hydrazine in real samples and the results were promising. Empirical results also indicated that the sensor had good reproducibility, long-term stability, and the response of the sensor to hydrazine was free from interferences. Moreover, the proposed sensor benefits from simple preparation, low cost, outstanding sensitivity, selectivity, and reproducibility for hydrazine determination. - Highlights: • The Copper nanostructures (CuNS) were prepared by cyclic voltammetry deposition. • The CuNS-MWCNT/PGE sensor shows high activity toward hydrazine (N{sub 2}H{sub 4}). • The proposed sensor exhibits a wide linear range (0.1 to 800 μM), low detection limit (70 nM), high sensitivity and stability for hydrazine.

  1. SPR imaging combined with cyclic voltammetry for the detection of neural activity

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-03-01

    Full Text Available Surface plasmon resonance (SPR detects changes in refractive index at a metal-dielectric interface. In this study, SPR imaging (SPRi combined with cyclic voltammetry (CV was applied to detect neural activity in isolated bullfrog sciatic nerves. The neural activities induced by chemical and electrical stimulation led to an SPR response, and the activities were recorded in real time. The activities of different parts of the sciatic nerve were recorded and compared. The results demonstrated that SPR imaging combined with CV is a powerful tool for the investigation of neural activity.

  2. Structural transformation during Li/Na insertion and theoretical cyclic voltammetry of the δ-NH4V4O10 electrode: a first-principles study.

    Science.gov (United States)

    Sarkar, Tanmay; Kumar, Parveen; Bharadwaj, Mridula Dixit; Waghmare, Umesh

    2016-04-14

    A double layer δ-NH4V4O10, due to its high energy storage capacity and excellent rate capability, is a very promising cathode material for Li-ion and Na-ion batteries for large-scale renewable energy storage in transportation and smart grids. While it possesses better stability, and higher ionic and electronic conductivity than the most widely explored V2O5, the mechanisms of its cyclability are yet to be understood. Here, we present a theoretical cyclic voltammetry as a tool based on first-principles calculations, and uncover structural transformations that occur during Li(+)/Na(+) insertion (x) into (Lix/Nax)NH4V4O10. Structural distortions associated with single-phase and multi-phase structural changes during the insertion of Li(+)/Na(+), identified through the analysis of voltage profile and theoretical cyclic voltammetry are in agreement with the reported experimental electrochemical measurements on δ-NH4V4O10. We obtain an insight into its electronic structure with a lower band gap that is responsible for the high rate capability of (Lix/Nax) δ-NH4V4O10. The scheme of theoretical cyclic voltammetry presented here will be useful for addressing issues of cyclability and energy rate in other electrode materials.

  3. Analytical solutions of the planar cyclic voltammetry process for two soluble species with equal diffusivities and fast electron transfer using the method of eigenfunction expansions

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Lahti, Erik; Zhang, Jinsuo, E-mail: zhang.3558@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19" t" h Avenue, Columbus, Ohio 43210 (United States)

    2015-08-15

    Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes.

  4. Analytical solutions of the planar cyclic voltammetry process for two soluble species with equal diffusivities and fast electron transfer using the method of eigenfunction expansions

    International Nuclear Information System (INIS)

    th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Samin, Adib; th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Lahti, Erik; th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Zhang, Jinsuo

    2015-01-01

    Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes

  5. Cyclic voltammetry study of PEO processing of porous Ti and resulting coatings

    Science.gov (United States)

    Shbeh, Mohammed; Yerokhin, Aleksey; Goodall, Russell

    2018-05-01

    Ti is one of the most commonly used materials for biomedical applications. However, there are two issues associated with the use of it, namely its bio-inertness and high elastic modulus compared to the elastic modulus of the natural bone. Both of these hurdles could potentially be overcome by introducing a number of pores in the structure of the Ti implant to match the properties of the bone as well as improve the mechanical integration between the bone and implant, and subsequently coating it with a biologically active ceramic coating to promote chemical integration. Hence, in this study we investigated the usage of cyclic voltammetry in PEO treatment of porous Ti parts with different amount of porosity produced by both Metal Injection Moulding (MIM) and MIM in combination with a space holder. It was found that porous samples with higher porosity and open pores develop much thicker surface layers that penetrate through the inner structure of the samples forming a network of surface and subsurface coatings. The results are of potential benefit in producing surface engineered porous samples for biomedical applications which do not only address the stress shielding problem, but also improve the chemical integration.

  6. Electrodeposition of Iridium Oxide by Cyclic Voltammetry: Application of Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kakooei Saeid

    2014-07-01

    Full Text Available The effects of scan rate, temperature, and number of cycles on the coating thickness of IrOX electrodeposited on a stainless steel substrate by cyclic voltammetry were investigated in a statistical system. The central composite design, combined with response surface methodology, was used to study condition of electrodeposition. All fabricated electrodes were characterized using electrochemical methods. Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy were performed for IrOX film characterization. Results showed that scan rate significantly affects the thickness of the electrodeposited layer. Also, the number of cycles has a greater effect than temperature on the IrOX thickness.

  7. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry.

    Science.gov (United States)

    Inamdar, Shaukatali N; Ingole, Pravin P; Haram, Santosh K

    2008-12-01

    Band structure parameters such as the conduction band edge, the valence band edge and the quasi-particle gap of diffusing CdSe quantum dots (Q-dots) of various sizes were determined using cyclic voltammetry. These parameters are strongly dependent on the size of the Q-dots. The results obtained from voltammetric measurements are compared to spectroscopic and theoretical data. The fit obtained to the reported calculations based on the semi-empirical pseudopotential method (SEPM)-especially in the strong size-confinement region, is the best reported so far, according to our knowledge. For the smallest CdSe Q-dots, the difference between the quasi-particle gap and the optical band gap gives the electron-hole Coulombic interaction energy (J(e1,h1)). Interband states seen in the photoluminescence spectra were verified with cyclic voltammetry measurements.

  8. Variation sweep rate cyclic voltammetry on the capacitance electrode activated carbon/PVDF with polymer electrolyte

    Science.gov (United States)

    Rohmawati, L.; Setyarsih, W.; Nurjannah, T.

    2018-03-01

    Sweep rate of the process voltammetry cyclic characterization is very influential towards the electrode capacitance value, especially on activated carbon electrodes/PVDF. A simple method of this research by use a mixing for electrode activated carbon/10 wt. % PVDF and the separator is made of a polymer electrolyte (PVA/H3PO4) by a sol gel method. The prototype supercapacitor is made in the form of a sandwich with a separator placed between two electrodes. Electrodes and separators are arranged in layers at a pressure of 1500 psi, then heated at 50°C for 10 minutes. Next done cyclic voltammetry in a potential range of -1 V to 1 V with a sweep rate of 5 mV/s, 10 mV/s, 20 mV/s, 25 mV/s and 50 mV/s. This results of curves voltammogram is reversible, the most wide curve on the sweep rate of 5 mV/s and most narrow curve on a sweep rate of 50 mV/s. Supercapacitor capacitance values obtained by 86 F/g, 43 F/g, 21 F/g, 16 F/g, and 8 F/g.

  9. Cyclic voltammetry of Monel 400 in lithium hydroxide solution at elevated temperatures

    International Nuclear Information System (INIS)

    MacDonald, D.D.

    1976-01-01

    The electrochemistry of Monel 400 in 1 mole/kg -1 LiOH solution at 25, 125 and 250 0 C has been investigated using the technique of cyclic voltammetry. The general electrochemical behaviour is found to most closely approximate to that of the major component, nickel, although expansion of the current scale reveals anodic and cathodic peaks which probably arise from redox processes involving copper. The general similarity to nickel can be rationalized in terms of either the d electron theory for cupronickel alloys or phase separation, the latter being favoured in the present study. At 25 0 C the majority of charge consumed on sweeping the potential in the positive direction is involved in the formation of an oxide film at potentials close to oxygen evolution. This process is no longer observed at 2500C, due to a sharp reduction in the oxygen evolution overpotential with temperature. The majority of charge consumed on cyclic sweeping at this temperature is attributed to active dissolution of the nickel component of the alloy to form HNiO 2 - (or Ni(OH) 3 - ) at potentials slightly positive to the hydrogen evolution region. (author)

  10. Correlation of the first reduction potential of selected radiosensitizers determined by cyclic voltammetry with theoretical calculations

    Czech Academy of Sciences Publication Activity Database

    Gál, Miroslav; Kolivoška, Viliam; Ambrová, M.; Híveš, J.; Sokolová, Romana

    2011-01-01

    Roč. 76, č. 8 (2011), s. 937-946 ISSN 0010-0765 R&D Projects: GA ČR GP203/09/P502; GA ČR GA203/09/0705; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : cyclic voltammetry * radical ions * radiochemistry Subject RIV: CG - Electrochemistry Impact factor: 1.283, year: 2011

  11. Optimising carbon electrode materials for adsorptive stripping voltammetry

    OpenAIRE

    Chaisiwamongkhol, K; Batchelor-McAuley, C; Sokolov, S; Holter, J; Young, N; Compton, R

    2017-01-01

    Different types of carbon electrode materials for adsorptive stripping voltammetry are studied through the use of cyclic voltammetry. Capsaicin is utilised as a model compound for adsorptive stripping voltammetry using unmodified and modified basal plane pyrolytic graphite (BPPG) electrodes modified with multi-walled carbon nanotubes, carbon black or graphene nanoplatelets, screen printed carbon electrodes (SPE), carbon nanotube modified screen printed electrodes, and carbon paste electrodes....

  12. Electrochemical Study of Delta-9-Tetrahydrocannabinol by Cyclic Voltammetry Using Screen Printed Electrode, Improvements in Forensic Analysis

    Directory of Open Access Journals (Sweden)

    Marco Antonio BALBINO

    2016-12-01

    Full Text Available Rapid screening of seized drugs is a continuing problem for governmental laboratories and customs agents. Recently new and cheaper methods based on electrochemical sensing have been developed for the detection of illicit drugs. Screen printed electrodes are particularly useful in this regard and can provide excellent sensitivity. In this study, a carbon screen printed electrode for the voltammetric analysis of D9-THC was developed. The analysis was performed using cyclic voltammetry with 0.15 mol×L-1 potassium nitrate as a supporting electrolyte. In the analysis, a D9-THC standard solution was added to the surface electrode by a drop coating method. A study of scan rate, time of pre-concentration, and concentration influence parameters showed versatility during the investigation. The high sensitivity, quantitative capability and low limit of detection (1.0 µmol×L-1 demonstrate that this electrochemical method should be an attractive alternative in forensic investigations of seized samples.

  13. Cyclic voltammetry of ion transfer across a room temperature ionic liquid membrane supported by a microporous filter

    Czech Academy of Sciences Publication Activity Database

    Langmaier, Jan; Samec, Zdeněk

    2007-01-01

    Roč. 9, č. 9 (2007), s. 2633-2638 ISSN 1388-2481 R&D Projects: GA AV ČR IAA400400704 Institutional research plan: CEZ:AV0Z40400503 Keywords : room-temperature ionic membrane * cyclic voltammetry * standard Gibbs energy of ion transfer * linear Gibbs energy relationship Subject RIV: CG - Electrochemistry Impact factor: 4.186, year: 2007

  14. Cyclic voltammetry modeling of proton transport effects on redox charge storage in conductive materials: application to a TiO2 mesoporous film.

    Science.gov (United States)

    Kim, Y S; Balland, V; Limoges, B; Costentin, C

    2017-07-21

    Cyclic voltammetry is a particularly useful tool for characterizing charge accumulation in conductive materials. A simple model is presented to evaluate proton transport effects on charge storage in conductive materials associated with a redox process coupled with proton insertion in the bulk material from an aqueous buffered solution, a situation frequently encountered in metal oxide materials. The interplay between proton transport inside and outside the materials is described using a formulation of the problem through introduction of dimensionless variables that allows defining the minimum number of parameters governing the cyclic voltammetry response with consideration of a simple description of the system geometry. This approach is illustrated by analysis of proton insertion in a mesoporous TiO 2 film.

  15. Cyclic Voltammograms from First Principles

    DEFF Research Database (Denmark)

    Karlberg, Gustav; Jaramillo, Thomas; Skulason, Egill

    2007-01-01

    Cyclic voltammetry is a fundamental experimental tool for characterizing electrochemical surfaces. Whereas cyclic voltammetry is widely used within the field of electrochemistry, a way to quantitatively and directly relate the cyclic voltammogram to ab initio calculations has been lacking, even f...

  16. Voltammetry Method Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Pereira, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Willit, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Williamson, M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-29

    The purpose of the ANL MPACT Voltammetry project is to evaluate the suitability of previously developed cyclic voltammetry techniques to provide electroanalytical measurements of actinide concentrations in realistic used fuel processing scenarios. The molten salts in these scenarios are very challenging as they include high concentrations of multiple electrochemically active species, thereby creating a variety of complications. Some of the problems that arise therein include issues related to uncompensated resistance, cylindrical diffusion, and alloying of the electrodeposited metals. Improvements to the existing voltammetry technique to account for these issues have been implemented, resulting in good measurements of actinide concentrations across a wide range of adverse conditions.

  17. Direct electrodeposition of gold nanotube arrays of rough and porous wall by cyclic voltammetry and its applications of simultaneous determination of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Yang Guangming; Li Ling; Jiang Jinhe; Yang Yunhui

    2012-01-01

    Gold nanotube arrays of rough and porous wall has been synthesized by direct electrodeposition with cyclic voltammetry utilizing anodic aluminum oxide template (AAO) and polycarbonate membrane (PC) during short time (only 3 min and 2 min, respectively). The mechanism of the direct electrodeposition of gold nanotube arrays by cyclic voltammetry (CV) has been discussed. The morphological characterizations of the gold nanotube arrays have been investigated by scanning electron microscopy (SEM). A simultaneous determination of ascorbic acid (AA) and uric acid (UA) by differential pulse voltammetry (DPV) was constructed by attaching gold nanotube arrays (using AAO) onto the surface of a glassy carbon electrode (GCE). The electrochemical behavior of AA and UA at this modified electrode has been studied by CV and differential pulse voltammetry (DPV). The sensor offers an excellent response for AA and UA and the linear response range for AA and UA were 1.02 × 10 −7 –5.23 × 10 −4 mol L −1 and 1.43 × 10 −7 –4.64 × 10 −4 mol L −1 , the detection limits were 1.12 × 10 −8 mol L −1 and 2.24 × 10 −8 mol L −1 , respectively. This sensor shows good regeneration, stability and selectivity and has been used for the determination of AA and UA in real human urine and serum samples with satisfied results. - Graphical abstract: The schematic diagram of formation of Au nanotube arrays (a) and the stepwise procedure of the sensor (b). Highlights: ► Gold nanotubes array has been synthesized by cyclic voltammetry. ► The mechanism of deposition of gold nanotube has been discussed. ► A determination of ascorbic acid and uric acid was constructed by gold array. ► A satisfied determination of samples can be obtained by this sensor.

  18. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry

    Science.gov (United States)

    Alatraktchi, Fatima AlZahra’a; Breum Andersen, Sandra; Krogh Johansen, Helle; Molin, Søren; Svendsen, Winnie E.

    2016-01-01

    Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin is a route to directly quantify pyocyanin in real time and in situ in hospitals and clinics. The selective quantification of pyocyanin is, however, limited by other redox-active compounds existing in human fluids and by other metabolites produced by pathogenic bacteria. Here we present a direct selective method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between −1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58–0.82 V that is unaffected by other redox-active interferents. The linear quantification of pyocyanin has an R2 value of 0.991 across the clinically relevant concentration range of 2–100 µM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ± 1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive procedure is suggested for clinical use in monitoring the presence and state of P. aeruginosa infection in patients. PMID:27007376

  19. Facilitated ion transfer of protonated primary organic amines studied by square wave voltammetry and chronoamperometry

    Energy Technology Data Exchange (ETDEWEB)

    Torralba, E. [Departamento de Química Física, Facultad de Química, Universidad de Murcia, Murcia 30100 (Spain); Ortuño, J.A. [Departamento de Química Analítica, Facultad de Química, Universidad de Murcia, Murcia 30100 (Spain); Molina, A., E-mail: amolina@um.es [Departamento de Química Física, Facultad de Química, Universidad de Murcia, Murcia 30100 (Spain); Serna, C. [Departamento de Química Física, Facultad de Química, Universidad de Murcia, Murcia 30100 (Spain); Karimian, F. [Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2014-05-01

    Highlights: • Facilitated ion transfer of organic protonated amines is studied. • Cyclic square wave voltammetry is used as main technique. • Complexation constants and standard ion transfer potentials are determined. • Diffusion coefficients in the organic and aqueous phases are determined. • The goodness of square wave voltammetry as analytical tool is shown. - Abstract: The transfer of the protonated forms of heptylamine, octylamine, decylamine, procaine and procainamide facilitated by dibenzo-18-crown-6 from water to a solvent polymeric membrane has been investigated by using cyclic square wave voltammetry. The experimental voltammograms obtained are in good agreement with theoretical predictions. The values of the standard ion transfer potential, complexation constant and diffusion coefficient in water have been obtained from these experiments, and have been used to draw some conclusions about the lipophilicity of these species and the relative stability of the organic ammonium complexes with dibenzo-18-crown-6. The results have been compared with those provided by linear sweep voltammetry. Calibration graphs were obtained with both techniques. An interesting chronoamperometric method for the determination of the diffusion coefficient of the target ion in the membrane has been developed and applied to all these protonated amines.

  20. Dynamics of Pseudomonas aeruginosa azurin and its Cys3Ser mutant at single crystal gold surfaces investigated by cyclic voltammetry and atomic force microscopy

    DEFF Research Database (Denmark)

    Friis, Esben P.; Andersen, Jens Enevold Thaulov; Madsen, Lars Lithen

    1997-01-01

    Cyclic voltammetry of Pseudomonas aeruginosa azurin on polycrystalline gold is reversible (E0=360mV vs she;50mM ammonium acetate) but the voltammetric signals decay with time constants of about 3x10-3 s-1. No signal is observed for monocrystalline Au(111). Cys3Ser azurin is electrochemically inac...... into the solution, recovering the free Au(111) surface. The cyclic voltammetry and AFM data are consistent with time dependent adsorption of the azurins on gold via the disulphide bridge (wild-type) or free thiol group (Cys3Ser mutant).......Cyclic voltammetry of Pseudomonas aeruginosa azurin on polycrystalline gold is reversible (E0=360mV vs she;50mM ammonium acetate) but the voltammetric signals decay with time constants of about 3x10-3 s-1. No signal is observed for monocrystalline Au(111). Cys3Ser azurin is electrochemically...... inactive on either type of gold electrode but shows a reversible although decaying peak (362mV, 50mM ammonium acetate; decay time constant ~ 2x10-3 s-1) on edge-plane pyrolytic graphite.Ex situ and in situ atomic force microscopy (AFM) of the azurins on Au(111) show initially arrays of protein structures...

  1. Cyclic voltammetry response of an undoped CVD diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fabisiak, K., E-mail: kfab@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University, Powstancow Wielkopolskich 2, 85-090 Bydgoszcz (Poland); Torz-Piotrowska, R. [Faculty of Chemical Technology and Engineering, UTLS Seminaryjna 3, 85-326 Bydgoszcz (Poland); Staryga, E. [Institute of Physics, Technical University of Lodz, Wolczanska 219, 90-924 Lodz (Poland); Szybowicz, M. [Faculty of Technical Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); Paprocki, K.; Popielarski, P.; Bylicki, F. [Institute of Physics, Kazimierz Wielki University, Powstancow Wielkopolskich 2, 85-090 Bydgoszcz (Poland); Wrzyszczynski, A. [Institute of Physics, Technical University of Lodz, Wolczanska 219, 90-924 Lodz (Poland)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Correlation was found between diamond quality and its electrochemical performance. Black-Right-Pointing-Pointer The electrode sensitivity depends on the content of sp{sup 2} carbon phase in diamond layer. Black-Right-Pointing-Pointer The sp{sup 2} carbon phase content has little influence on the CV peak separation ({Delta}E{sub p}). - Abstract: The polycrystalline undoped diamond layers were deposited on tungsten wire substrates by using hot filament chemical vapor deposition (HFCVD) technique. As a working gas the mixture of methanol in excess of hydrogen was used. The morphologies and quality of as-deposited films were monitored by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy respectively. The electrochemical activity of the obtained diamond layers was monitored by using cyclic voltammetry measurements. Analysis of the ferrocyanide-ferricyanide couple at undoped diamond electrode suggests that electrochemical reaction at diamond electrode has a quasireversibile character. The ratio of the anodic and cathodic peak currents was always close to unity. In this work we showed that the amorphous carbon admixture in the CVD diamond layer has a crucial influence on its electrochemical performance.

  2. Direct electrodeposition of gold nanotube arrays of rough and porous wall by cyclic voltammetry and its applications of simultaneous determination of ascorbic acid and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Yang Guangming, E-mail: yangguangmingbs@126.com [Department of Resources and Environment, Baoshan University, Baoshan 678000 (China); Ling, Li [Department of Resources and Environment, Baoshan University, Baoshan 678000 (China); Jinhe, Jiang; Yunhui, Yang [College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092 (China)

    2012-08-01

    Gold nanotube arrays of rough and porous wall has been synthesized by direct electrodeposition with cyclic voltammetry utilizing anodic aluminum oxide template (AAO) and polycarbonate membrane (PC) during short time (only 3 min and 2 min, respectively). The mechanism of the direct electrodeposition of gold nanotube arrays by cyclic voltammetry (CV) has been discussed. The morphological characterizations of the gold nanotube arrays have been investigated by scanning electron microscopy (SEM). A simultaneous determination of ascorbic acid (AA) and uric acid (UA) by differential pulse voltammetry (DPV) was constructed by attaching gold nanotube arrays (using AAO) onto the surface of a glassy carbon electrode (GCE). The electrochemical behavior of AA and UA at this modified electrode has been studied by CV and differential pulse voltammetry (DPV). The sensor offers an excellent response for AA and UA and the linear response range for AA and UA were 1.02 Multiplication-Sign 10{sup -7}-5.23 Multiplication-Sign 10{sup -4} mol L{sup -1} and 1.43 Multiplication-Sign 10{sup -7}-4.64 Multiplication-Sign 10{sup -4} mol L{sup -1}, the detection limits were 1.12 Multiplication-Sign 10{sup -8} mol L{sup -1} and 2.24 Multiplication-Sign 10{sup -8} mol L{sup -1}, respectively. This sensor shows good regeneration, stability and selectivity and has been used for the determination of AA and UA in real human urine and serum samples with satisfied results. - Graphical abstract: The schematic diagram of formation of Au nanotube arrays (a) and the stepwise procedure of the sensor (b). Highlights: Black-Right-Pointing-Pointer Gold nanotubes array has been synthesized by cyclic voltammetry. Black-Right-Pointing-Pointer The mechanism of deposition of gold nanotube has been discussed. Black-Right-Pointing-Pointer A determination of ascorbic acid and uric acid was constructed by gold array. Black-Right-Pointing-Pointer A satisfied determination of samples can be obtained by this sensor.

  3. Mechanistic modeling of cyclic voltammetry: A helpful tool for understanding biosensor principles and supporting design optimization

    DEFF Research Database (Denmark)

    Semenova, Daria; Zubov, Alexandr; Silina, Yuliya E.

    2018-01-01

    Abstract Design, optimization and integration of biosensors hold a great potential for the development of cost-effective screening and point-of-care technologies. However, significant progress in this field can still be obtained on condition that sufficiently accurate mathematical models......, oxidized/reduced forms of the mediator - Prussian Blue/Prussian White). Furthermore, the developed model was applied under various operating conditions as a crucial tool for biosensor design optimization. The obtained qualitative and quantitative dependencies towards amperometric biosensors design...... optimization were independently supported by results of cyclic voltammetry and multi-analytical studies, such as scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Remarkably, a linear...

  4. Kinetics of degradation of ascorbic acid by cyclic voltammetry method

    Directory of Open Access Journals (Sweden)

    Grudić Veselinka V.

    2015-01-01

    Full Text Available Cyclic voltammetry was used to examine the kinetics of degradation of ascorbic acid (AA at different temperatures. It has been shown that the reduction of the concentration of AA in all temperatures follow the kinetics of the first order reaction. The rate constant of the oxidation reaction increases with temperature as follows: 5x10-5; 2x10-4; 1x10-3 and 3x10-3 min-1 at temperatures of 25°C, 35°C, 65°C and 90°C, respectively. The temperature dependence of the rate constant follows Arrhenius equation, and the value of activation energy of the reaction degradation is 48.2 kJ mol-1 . The effect of storage time at a temperature of 90 °C on AA content in fresh juice of green peppers was investigated. It was shown that AA oxidation reaction in the juice is also the first order reaction, while the lower rate constant in relation to the pure AA (5x10-3 min-1 indicates the influence of other substances present in peppers.

  5. Electrochemical dissolution of chalcopyrite studied by voltammetry of immobilized microparticles

    Czech Academy of Sciences Publication Activity Database

    Pikna, L.; Lux, L.; Grygar, Tomáš

    2006-01-01

    Roč. 60, č. 4 (2006), s. 293-296 ISSN 0366-6352 Grant - others:VEGA(SK) No1/1108/04; APVT(SK) No20-009404 Institutional research plan: CEZ:AV0Z40320502 Keywords : chalcopyrite * cyclic voltammetry Subject RIV: CA - Inorganic Chemistry Impact factor: 0.360, year: 2006

  6. Electrocatalytic Oxidation of Hydroxylamine at a Quinizarine Modified Glassy Carbon Electrode: Application to Differential Pulse Voltammetry Detection of Hydroxylamine

    OpenAIRE

    MAZLOUMARDAKANI, Mohammad; KARAMI, Payam EBRAHIMI

    2014-01-01

    The electrocatalytic behavior of hydroxylamine was studied on a glassy carbon electrode modified by electrodeposition of quinizarine, using cyclic voltammetry, chronoamperometry, and rotating disk voltammetry as diagnostic techniques. Cyclic voltammetry showed that the catalytic current of the system depends on the concentration of hydroxylamine. The magnitude of the peak current for quinizarine increased sharply in the presence of hydroxylamine and proportional to hydroxylamine conc...

  7. Theoretical aspects of several successive two-step redox mechanisms in protein-film cyclic staircase voltammetry

    International Nuclear Information System (INIS)

    Gulaboski, Rubin; Kokoškarova, Pavlinka; Mitrev, Saša

    2012-01-01

    Highlights: ► Theoretical models for 2e− successive mechanisms are considered. ► The models are compatible for various metal-containing redox proteins. ► Diagnostic criteria are provided to recognize the particular redox mechanism. - Abstract: Protein-film voltammetry (PFV) is a versatile tool designed to provide insight into the enzymes physiological functions by studying the redox properties of various oxido-reductases with suitable voltammetric technique. The determination of the thermodynamic and kinetic parameters relevant to protein's physiological properties is achieved via methodologies established from theoretical considerations of various mechanisms in PFV. So far, the majority of the mathematical models in PFV have been developed for redox proteins undergoing a single-step electron transfer reactions. However, there are many oxido-reductases containing quinone moieties or polyvalent ions of transition metals like Mo, Mn, W, Fe or Co as redox centers, whose redox chemistry can be described only via mathematical models considering successive two-step electron transformation. In this work we consider theoretically the protein-film redox mechanisms of the EE (Electrochemical–Electrochemical), ECE (Electrochemical–Chemical–Electrochemical), and EECat (Electrochemical–Electrochemical–Catalytic) systems under conditions of cyclic staircase voltammetry. We also propose methodologies to determine the kinetics of electron transfer steps by all considered mechanisms. The experimentalists working with PFV can get large benefits from the simulated voltammograms given in this work.

  8. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, Gabriela V.; Zaitouna, Anita J.; Lai, Rebecca Y., E-mail: rlai2@unl.edu

    2014-01-31

    Graphical abstract: -- Highlights: •An electrochemical Hg(II) sensor based on T–Hg(II)–T sensing motif was fabricated. •A methylene blue-modified DNA probe was used to fabricate the sensor. •Sensor performance was evaluated using ACV, CV, SWV, and DPV. •The sensor behaves as a “signal-off” sensor in ACV and CV. •The sensor behaves as either a “signal-on” or “signal-off” sensor in SWV and DPV. -- Abstract: Here we report the characterization of an electrochemical mercury (Hg{sup 2+}) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a “signal-off” sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a “signal-off” or “signal-on” sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed “signal-on” behavior at low frequencies and “signal-off” behavior at high frequencies. In DPV, the sensor showed “signal-off” behavior at short pulse widths and “signal-on” behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10 nM, with a linear dynamic range between 10 nM and 500 nM. In addition, the sensor responded to Hg{sup 2+} rather rapidly; majority of the signal change occurred in <20 min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg{sup 2+}, which has not been previously reported. More importantly, the observed “switching” behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors.

  9. Supercapacitive evaluation of carbon black/exfoliated graphite/MnO{sub 2} ternary nanocomposite electrode by continuous cyclic voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, Hamid Reza, E-mail: hrnaderi@ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Norouzi, Parviz, E-mail: norouzi@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza, E-mail: ganjali@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-08-01

    A new ternary nanocomposite was prepared by using MnO{sub 2}, carbon black (CB), and exfoliated graphite (EG) through a sonochemical method. In this process, the MnO{sub 2} nanoparticles was anchored on the mixture of CB and EG to maximize the specific capacitances of these materials. Structure and morphology of the CB/EG/MnO{sub 2} nanocomposites were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the CB/EG/MnO{sub 2} nanocomposites with different content of MnO{sub 2} were studied by cyclic voltammetry (CV), fast Fourier transformation continuous cyclic voltammetry (FFTCCV) technique, galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS). The best nanocomposite electrode displayed specific capacitance of 364 F g{sup −1} at the scan rate of 2 mV s{sup −1} in 0.5 M Na{sub 2}SO{sub 4} aqueous solution, which is higher than pure MnO{sub 2} (289 F g{sup −1}). The capacitance stability of the nanocomposite electrode was studied by FFTCCV at the scan rate of 500 mV s{sup −1}. The result shows that after recording 4000 CVs, the specific capacitance of the nanocomposite decline only 5%. Furthermore, the nanocomposite electrode showed higher energy density than MnO{sub 2} electrode. - Highlights: • MnO{sub 2}/exfoliated graphite/Carbon black nanocomposites were synthesized by ultrasonic vibration. • The best nanocomposite electrode exhibits specific capacitance of 364 F g{sup −1} in 2 mV s{sup −1}. • The stability of the nanocomposite electrode was study FFTCCV technique. • The capacitance decreases only 5.2% of initial capacitance after 4000 cycles.

  10. On the Usage of Cyclic Voltammetry and Impedance Spectroscopy for Measuring the Concentration of Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Manuel Fiedler

    2015-02-01

    Full Text Available This article describes sensors for concentration measurement based on the electro- chemical properties of the liquid being measured. Herein two electrical methods, namely cyclic voltammetry and impedance spectroscopy, are being presented. The measurement can be performed quasi simultaneously using the same measurement medium. Further optimization of the combined methods is possible by adapting the geometric design of the electrode structure, the electrode material, the optional passivation and the electric coupling (galvanically or capacitively. In summary, by combining multiple sensory principles on a device it becomes possible to analyze mixtures of substances contained in a solution with respect to their composition.

  11. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry

    International Nuclear Information System (INIS)

    Guerreiro, Gabriela V.; Zaitouna, Anita J.; Lai, Rebecca Y.

    2014-01-01

    Graphical abstract: -- Highlights: •An electrochemical Hg(II) sensor based on T–Hg(II)–T sensing motif was fabricated. •A methylene blue-modified DNA probe was used to fabricate the sensor. •Sensor performance was evaluated using ACV, CV, SWV, and DPV. •The sensor behaves as a “signal-off” sensor in ACV and CV. •The sensor behaves as either a “signal-on” or “signal-off” sensor in SWV and DPV. -- Abstract: Here we report the characterization of an electrochemical mercury (Hg 2+ ) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a “signal-off” sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a “signal-off” or “signal-on” sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed “signal-on” behavior at low frequencies and “signal-off” behavior at high frequencies. In DPV, the sensor showed “signal-off” behavior at short pulse widths and “signal-on” behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10 nM, with a linear dynamic range between 10 nM and 500 nM. In addition, the sensor responded to Hg 2+ rather rapidly; majority of the signal change occurred in 2+ , which has not been previously reported. More importantly, the observed “switching” behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors

  12. Voltammetry study of quinoxaline in aqueous electrolytes

    International Nuclear Information System (INIS)

    Milshtein, Jarrod D.; Su, Liang; Liou, Catherine; Badel, Andres F.; Brushett, Fikile R.

    2015-01-01

    Organic compounds have recently received considerable attention as active materials in redox flow batteries (RFBs) due to their good electrochemical reversibility, high theoretical energy densities, and promise for low cost production. Until now, organic active material candidates for aqueous RFBs have been limited to the quinone family, a set of aromatic-derived organic molecules, distinguished by an even number of ketone (R−C(=O)−R′) groups. This work aims to elucidate and optimize the electrochemical behavior of quinoxaline, an organic molecule consisting of fused benzene and pyrazine rings, in aqueous electrolytes. More than 30 electrolytes are screened by cyclic voltammetry, and the five most promising electrolytes are investigated further using rotating disk voltammetry. Electrochemical behavior of quinoxaline shows pH dependent thermodynamics and reaction mechanisms, while chloride-containing supporting electrolytes greatly enhance solubility. This study sheds light on the promising characteristics of quinoxaline as a low potential compound for aqueous RFBs; quinoxaline has a redox potential of E° ≈ −0.02 V vs. RHE, is soluble up to ∼4.5 M in water, exhibits a two-electron transfer capability, and possesses a low molecular weight (130.15 g mol"−"1), resulting in a theoretical capacity of 410 mAh g"−"1.

  13. Redox equilibrium of U4+/U3+ in molten NaCl-2CsCl by UV-Vis spectrophotometry and cyclic voltammetry

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Uehara, Akihiro; Fujii, Toshiyuki; Shirai, Osamu; Yamana, Hajimu; Sato, Nobuaki

    2005-01-01

    In order to investigate the redox equilibrium of uranium ions in molten NaCl-2CsCl, UV-Vis absorption spectro-photometry measurements were performed for U 4+ and U 3+ in molten NaCl-2CsCl at 923 K under simultaneous electrolytic control of their ratio. Prominent absorption bands at 480 and 570 nm were assigned to U 3+ , and their molar absorptivities were determined to be 1,260±42 and 963±32 mol -1 ·l·cm -1 respectively. From the dependence of the rest potential of the melt on the spectrophotometrically determined ratio of [U 4+ ]/[U 3+ ], the standard redox potential of the couple U 4+ /U 3+ at 923 K was determined to be -1.481±0.004 V vs. Cl 2 /Cl - . Cyclic voltammetry measurements were carried out for the couple U 4+ /U 3+ , and the results agreed well with this standard redox potential value. By the results of cyclic voltammetry, a temperature dependence of the standard redox potential was found to be -2.094+6.639 x 10 -4 T (T=823-923K). (author)

  14. Continuous fast Fourier transforms cyclic voltammetry as a new approach for investigation of skim milk k-casein proteolysis, a comparative study.

    Science.gov (United States)

    Shayeh, Javad Shabani; Sefidbakht, Yahya; Siadat, Seyed Omid Ranaei; Niknam, Kaveh

    2017-10-01

    Cheese production is relied upon the action of Rennet on the casein micelles of milk. Chymosin assay methods are usually time consuming and offline. Herein, we report a new electrochemical technique for studying the proteolysis of K-casein. The interaction of rennet and its substrate was studied by fast Fourier transform continuous cyclic voltammetry (FFTCCV) based on a determination of k-casein in aqueous solution. FFTCCV technique is a very useful method for studying the enzymatic procedures. Fast response, no need of modified electrodes or complex equipment is some of FFTCCV advantages. Various concentrations of enzyme and substrate were selected and the increase in the appearance of charged species in solution as a result of the addition of rennet was studied. Data obtained using FFTCCV technique were also confirmed by turbidity analysis. The results show that rennet proteolysis activity occurs in much shorter time scales compare with its aggregation. Hence, following the appearance of charged segments as a result of proteolysis could be under consideration as a rapid and online method. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cyclic voltammetry on n-alkylphosphonic acid self-assembled monolayer modified large area indium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Habich, Dana Berlinde [Siemens AG, CT T DE HW 3 Organic Electronics, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany); Halik, Marcus [Lehrstuhl fuer Polymerwerkstoffe, Department Werkstoffwissenschaften, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Martensstrasse 7, 91058 Erlangen (Germany); Schmid, Guenter, E-mail: guenter.schmid@siemens.com [Siemens AG, CT T DE HW 3 Organic Electronics, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany)

    2011-09-01

    We show stable bonding of n-alkylphosphonic acid self-assembled monolayers (SAMs) to indium tin oxide electrodes and their direct electrical characterization by cyclic voltammetry (CV). The functional coatings were investigated with regards to the addressability and stability of the electrodes, which are related to small changes in molecular layer thickness. The response of a redox active compound in solution to the faradic current is indirectly proportional to the molecular chain length of the SAMs. We observed a decrease of the electrode sensitivity with enhanced surface protection and slow long term degradation of the SAM under electrochemical stress by CV, and therefore conclude a trade-off optimum for molecules with the C10 chain.

  16. Evaluation of kinetic parameters of 1, 1'-dibenzoylferrocene in non aqueous methanol solution by cyclic voltammetry (abstract)

    International Nuclear Information System (INIS)

    Parveen, R.; Kirmani, M.Z.; Naqvi, I.I.

    2011-01-01

    The electrochemical Kinetic study of 1, 1/sup '/- Dibenzoylferrocene (DBF) at a platinum working electrode in 0.1 mol dm/sup -3/ NaClO/sub 4/ non aqueous medium has been studied by Cyclic voltammetry. The heterogeneous electron transfer rate constants (ks) and the diffusion coefficients (Do) of DBF were estimated at various temperatures (283 - 323 K) and at different scan rates (0.05 - 0.5 V s/sup -1/). A calibration curve, linear over the range of 1 X 10/sup -3/ - 9 X 10/sup -3/ mol dm/sup -3/ ,was plotted at the scan rate of 0.25 Vs/sup -1/. This plot can be used to analyze an unknown sample of the compound. The kinetic data was also used to evaluate the Activation energy (Ea). The thermodynamic parameters such as enthalpy change of activation (delta H/sup */), Entropy change (delta S/sup */) and Gibbs free energy change (delta GH/sup */) were also investigated during the study. (author)

  17. Solid electrolyte gas sensors based on cyclic voltammetry with one active electrode

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, G; Jasinski, P, E-mail: gregor@biomed.eti.pg.gda.pl [Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2011-10-29

    Solid state gas sensors are cost effective, small, rugged and reliable. Typically electrochemical solid state sensors operate in either potentiometric or amperometric mode. However, a lack of selectivity is sometimes a shortcoming of such sensors. It seems that improvements of selectivity can be obtained in case of the electrocatalytic sensors, which operate in cyclic voltammetry mode. Their working principle is based on acquisition of an electric current, while voltage ramp is applied to the sensor. The current-voltage response depends in a unique way on the type and concentration of ambient gas. Most electrocatalytic sensors have symmetrical structure. They are in a form of pellets with two electrodes placed on their opposite sides. Electrochemical reactions occur simultaneously on both electrodes. In this paper results for sensors with only one active electrode exposed to ambient gas are presented. The other electrode was isolated from ambient gas with dielectric sealing. This sensor construction allows application of advanced measuring procedures, which permit sensor regeneration acceleration. Experiments were conducted on Nasicon sensors. Properties of two sensors, one with one active electrode and second with symmetrical structure, used for the detection of mixtures of NO{sub 2} and synthetic air are compared.

  18. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, Shweta; Kant, Rama, E-mail: rkant@chemistry.du.ac.in

    2013-10-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  19. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    International Nuclear Information System (INIS)

    Dhillon, Shweta; Kant, Rama

    2013-01-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  20. Corrosion Cyclic Voltammetry of Two Types of Heat-Affected Zones (HAZs) of API-X100 Steel in Bicarbonate Solutions

    Science.gov (United States)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2014-12-01

    This paper examined the electrochemical corrosion behavior and corrosion products of two types of heat-affected HAZs made from API-X100 steel. Cyclic voltammetry, with different scan rates and potential ranges at 10 cycles, was applied to analyze the interdependent corrosion reactions of cathodic reduction, anodic dissolution, passivation, and transpassivation. The HAZ cooled at 60 K/s, from a peak temperature of 1470 K (1197 °C) that was held for 15 seconds, exhibited better passivation and lower cathodic activity than the HAZ cooled at 10 K/s. Increasing bicarbonate concentration, from 0.05 and 0.2 to 0.6 M, increases the anodic activity and cathodic reduction, but accordingly protects the active surfaces and enhances passivation.

  1. Influence of anode material on the electrochemical oxidation of 2-naphthol Part 1. Cyclic voltammetry and potential step experiments

    International Nuclear Information System (INIS)

    Panizza, M.; Cerisola, G.

    2003-01-01

    The anodic oxidation of 2-naphthol has been studied by cyclic voltammetry and chronoamperometry, using a range of electrode materials such as Ti-Ru-Sn ternary oxide, lead dioxide and boron-doped diamond (BDD) anodes. The results show that polymeric films, which cause electrode fouling, are formed during oxidation in the potential region of supporting electrolyte stability. IR spectroscopy verified the formation of this organic film. While the Ti-Ru-Sn ternary oxide surface cannot be reactivated, PbO 2 and BDD can be restored to their initial activity by simple anodic treatment in the potential region of electrolyte decomposition. In fact, during the polarization in this region, complex oxidation reactions leading to the complete incineration of polymeric materials can take place on these electrodes due to electrogenerated hydroxyl radicals. Moreover, it was found that BDD deactivation was less pronounced and its reactivation was faster than that of the other electrodes

  2. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Rui-Tao, E-mail: Ruitao.Wen@angstrom.uu.se; Granqvist, Claes G.; Niklasson, Gunnar A. [Department of Engineering Sciences, The A°ngström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala (Sweden)

    2014-10-20

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li{sup +} ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO{sub 4} in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 10{sup 4} cycles when the applied voltage was limited to 4.1 V vs Li/Li{sup +}. Our results allow lifetime assessments for one of the essential components in an electrochromic device such as a “smart window” for energy-efficient buildings.

  3. Influence of anode material on the electrochemical oxidation of 2-naphthol Part 1. Cyclic voltammetry and potential step experiments

    Energy Technology Data Exchange (ETDEWEB)

    Panizza, M.; Cerisola, G

    2003-10-15

    The anodic oxidation of 2-naphthol has been studied by cyclic voltammetry and chronoamperometry, using a range of electrode materials such as Ti-Ru-Sn ternary oxide, lead dioxide and boron-doped diamond (BDD) anodes. The results show that polymeric films, which cause electrode fouling, are formed during oxidation in the potential region of supporting electrolyte stability. IR spectroscopy verified the formation of this organic film. While the Ti-Ru-Sn ternary oxide surface cannot be reactivated, PbO{sub 2} and BDD can be restored to their initial activity by simple anodic treatment in the potential region of electrolyte decomposition. In fact, during the polarization in this region, complex oxidation reactions leading to the complete incineration of polymeric materials can take place on these electrodes due to electrogenerated hydroxyl radicals. Moreover, it was found that BDD deactivation was less pronounced and its reactivation was faster than that of the other electrodes.

  4. Voltammetry under a Controlled Temperature Gradient

    Directory of Open Access Journals (Sweden)

    Jan Krejci, Jr.

    2010-07-01

    Full Text Available Electrochemical measurements are generally done under isothermal conditions. Here we report on the application of a controlled temperature gradient between the working electrode surface and the solution. Using electrochemical sensors prepared on ceramic materials with extremely high specific heat conductivity, the temperature gradient between the electrode and solution was applied here as a second driving force. This application of the Soret phenomenon increases the mass transfer in the Nernst layer and enables more accurate control of the electrode response enhancement by a combination of diffusion and thermal diffusion. We have thus studied the effect of Soret phenomenon by cyclic voltammetry measurements in ferro/ferricyanide. The time dependence of sensor response disappears when applying the Soret phenomenon, and the complicated shape of the cyclic voltammogram is replaced by a simple exponential curve. We have derived the Cotrell-Soret equation describing the steady-state response with an applied temperature difference.

  5. Polymyxin-coated Au and carbon nanotube electrodes for stable [NiFe]-hydrogenase film voltammetry.

    NARCIS (Netherlands)

    Hoeben, F.J.M.; Heller, I.; Albracht, S.P.J.; Dekker, C.; Lemay, S.G.; Heering, H.A.

    2008-01-01

    We report on the use of polymyxin (PM), a cyclic cationic lipodecapeptide, as an electrode modifier for studying protein film voltammetry (PFV) on Au and single-walled carbon nanotube (SWNT) electrodes. Pretreating the electrodes with PM allows for the subsequent immobilization of an active

  6. Thorium effect on the oxidation of uranium: Photoelectron spectroscopy (XPS/UPS) and cyclic voltammetry (CV) investigation on (U1 − xThx)O2 (x = 0 to 1) thin films

    NARCIS (Netherlands)

    Cakir, P.; Eloirdi, R; Huber, F.; Konings, R.J.M.; Gouder, T

    2017-01-01

    Thin films of U1− xThxO2 (x = 0 to 1) have been deposited via reactive DC sputter technique and characterized by X-ray/Ultra-violet Photoelectron Spectroscopy (XPS/UPS), X-ray Powder Diffractometer (XRD) and Cyclic Voltammetry (CV) in order to understand the

  7. Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles

    DEFF Research Database (Denmark)

    Karlberg, Gustav; Jaramillo, Thomas; Skulason, Egill

    2007-01-01

    Cyclic voltammetry is a fundamental experimental method for characterizing electrochemical surfaces. Despite its wide use, a way to quantitatively and directly relate cyclic voltammetry to ab initio calculations has been lacking. We derive the cyclic voltammogram for H on Pt(111) and Pt(100), bas...... solely on density functional theory calculations and standard molecular tables. By relating the gas phase adsorption energy to the electrochemical electrode potential, we provide a direct link between surface science and electrochemistry....

  8. Impulse radio ultra wideband wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry.

    Science.gov (United States)

    Ebrazeh, Ali; Bozorgzadeh, Bardia; Mohseni, Pedram

    2015-01-01

    This paper demonstrates the feasibility of utilizing impulse radio ultra wideband (IR-UWB) signaling technique for reliable, wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) to address the problem of elevated data rates in high-channel-count neurochemical monitoring. Utilizing an FSCV-sensing chip fabricated in AMS 0.35μm 2P/4M CMOS, a 3-5-GHz, IR-UWB transceiver (TRX) chip fabricated in TSMC 90nm 1P/9M RF CMOS, and two off-chip, miniature, UWB antennae, wireless transfer of pseudo-random binary sequence (PRBS) data at 50Mbps over a distance of wireless transmission of dopamine concentration levels prerecorded with FSCV at a CFM during flow injection analysis (FIA) is also demonstrated with transmitter (TX) power dissipation of only ~4.4μW from 1.2V, representing two orders of magnitude reduction in TX power consumption compared to that of a conventional frequency-shift-keyed (FSK) link operating at ~433MHz.

  9. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats

    Science.gov (United States)

    Li, Yu-Ting; Wickens, Jeffery R.; Huang, Yi-Ling; Pan, Wynn H. T.; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason

    2013-08-01

    Objective. Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. Approach. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. Main results. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg-1 cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. Significance. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous

  10. Fast-scan cyclic voltammetry (FSCV) detection of endogenous octopamine in Drosophila melanogaster ventral nerve cord

    Science.gov (United States)

    Pyakurel, Poojan; Privman, Eve; Venton, B. Jill

    2016-01-01

    Octopamine is an endogenous biogenic amine neurotransmitter, neurohormone, and neuromodulator in invertebrates, and has functional analogy with norepinephrine in vertebrates. Fast-scan cyclic voltammetry (FSCV) can detect rapid changes in neurotransmitters, but FSCV has not been optimized for octopamine detection in situ. The goal of this study was to characterize octopamine release in the ventral nerve cord of Drosophila larvae for the first time. An FSCV waveform was optimized so that the potential for octopamine oxidation would not be near the switching potential where interferences can occur. Endogenous octopamine release was stimulated by genetically inserting either the ATP sensitive channel, P2X2, or the red-light sensitive channelrhodopsin, CsChrimson, into cells expressing tyrosine decarboxylase (TDC), an octopamine synthesis enzyme. To ensure that release is due to octopamine and not the precursor tyramine, the octopamine synthesis inhibitor disulfiram was applied, and the signal decreased by 80%. Stimulated release was vesicular and a 2 s continuous light stimulation of CsChrimson evoked 0.22 ± 0.03 μM of octopamine release in the larval VNC. Repeated stimulations were stable with 2 or 5 minutes interstimulation times. With pulsed stimulations, the release was dependent on the frequency of applied light pulse. An octopamine transporter has not been identified, and blockers of the dopamine transporter and serotonin transporter had no significant effect on the clearance time of octopamine, suggesting they do not take up octopamine. This study shows that octopamine can be monitored in Drosophila, facilitating future studies of how octopamine release functions in the insect brain. PMID:27326831

  11. Cyclic voltammetry and scanning electrochemical microscopy studies of methylene blue immobilized on the self-assembled monolayer of n-dodecanethiol

    International Nuclear Information System (INIS)

    Salamifar, Seyed Ehsan; Mehrgardi, Masoud Ayatollahi; Kazemi, Sayed Habib; Mousavi, Mir Fazllollah

    2010-01-01

    Electron transfer (ET) kinetics through n-dodecanethiol (C 12 SH) self-assembled monolayer on gold electrode was studied using cyclic voltammetry (CV), scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS). An SECM model for compensating pinhole contribution, was used to measure the ET kinetics of solution-phase probes of ferrocyanide/ferricyanide (Fe(CN) 6 4-/3- ) and ferrocenemethanol/ferrociniummethanol (FMC 0/+ ) through the C 12 SH monolayer yielding standard tunneling rate constant (k ET 0 ) of (4 ± 1) x 10 -11 and (3 ± 1) x 10 -10 cm s -1 for Fe(CN) 6 4-/3- and FMC 0/+ respectively. Decay tunneling constants (β) of 0.97 and 0.96 A -1 for saturated alkane thiol chains were obtained using Fe(CN) 6 4- and FMC respectively. Also, it was found that methylene blue (MB) molecules are effectively immobilized on the C 12 SH monolayer and can mediate the ET between the solution-phase probes and underlying gold substrate. SECM-mediated model was used to simultaneously measure the bimolecular ET between the solution-phase probes and the monolayer-immobilized MB molecules, as well as tunneling ET between the monolayer-immobilized MB molecules and the underlying gold electrode, allowing the measurement of k BI = (5 ± 1) x 10 6 and (4 ± 2) x 10 7 cm 3 mol -1 s -1 for the bimolecular ET and k ET/MB 0 =(1±0.3)x10 -3 and (7 ± 3) x 10 -2 s -1 for the standard tunneling rate constant of ET using Fe(CN) 6 4-/3- and FMC 0/+ probes respectively.

  12. Characterization of the Redox reaction of V(V) in Ammonia Buffers with Square-Wave Voltammetry

    OpenAIRE

    Mirceski, Valentin; Gulaboski, Rubin; Petrovska-Jovanovic, Simka; Stojanova, Kornelija

    2001-01-01

    The redox reaction of V(V) in ammonia buffers solution with pH = 8.60 was studied by means of square-wave and cyclic voltammetry. The redox reaction studied exhibits properties of a surface redox process in which both the reactant and the product of the redox reaction are immobilized on the electrode surface.

  13. Estimation of key physical properties for LaCl_3 in molten eutectic LiCl–KCl by fitting cyclic voltammetry data to a BET-based electrode reaction kinetics model

    International Nuclear Information System (INIS)

    Samin, Adib; Wang, Zhonghang; Lahti, Erik; Simpson, Michael; Zhang, Jinsuo

    2016-01-01

    Understanding the electrochemical properties of rare earth elements is important for developing efficient techniques for separating rare earth elements from actinides recovered during the electrodeposition process. In this study the cyclic voltammetry for lanthanum in molten LiClKCl eutectic was recorded at 773 K for different scan rates and different bulk concentrations. A model accounting for mass transport, kinetics and adsorption was applied to analyze the experimental data via performing a nonlinear least squares fit. The results of the simulation are compared against the results of a conventional analysis of the cyclic voltammograms and against the existing literature. At the scan rates used, the reduction/oxidation process is quasi-reversible. The values of diffusivities derived from simulation were larger than the ones derived commonly using equations for diffusion-limited processes. However, those equations were derived based on an assumption of reversibility. This simulation-based approach may provide a more accurate option for analyzing systems that do not exhibit reversibility.

  14. Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data

    Science.gov (United States)

    2016-01-01

    The neurotransmitter dopamine is heavily implicated in intracranial self-stimulation (ICSS). Many drugs of abuse that affect ICSS behavior target the dopaminergic system, and optogenetic activation of dopamine neurons is sufficient to support self-stimulation. However, the patterns of phasic dopamine release during ICSS remain unclear. Early ICSS studies using fast-scan cyclic voltammetry (FSCV) rarely observed phasic dopamine release, which led to the surprising conclusion that it is dissociated from ICSS. However, several advances in the sensitivity (i.e., the use of waveforms with extended anodic limits) and analysis (i.e., principal component regression) of FSCV measurements have made it possible to detect smaller, yet physiologically relevant, dopamine release events. Therefore, this study revisits phasic dopamine release during ICSS using these tools. It was found that the anodic limit of the voltammetric waveform has a substantial effect on the patterns of dopamine release observed during continuous ICSS. While data collected with low anodic limits (i.e., +1.0 V) support the disappearance of phasic dopamine release observed in previous investigation, the use of high anodic limits (+1.3 V, +1.4 V) allows for continual detection of dopamine release throughout ICSS. However, the +1.4 V waveform lacks the ability to resolve narrowly spaced events, with the best balance of temporal resolution and sensitivity provided by the +1.3 V waveform. Ultimately, it is revealed that the amplitude of phasic dopamine release decays but does not fully disappear during continuous ICSS. PMID:27548680

  15. Cyclic voltammetry and scanning electrochemical microscopy studies of methylene blue immobilized on the self-assembled monolayer of n-dodecanethiol

    Energy Technology Data Exchange (ETDEWEB)

    Salamifar, Seyed Ehsan [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Mehrgardi, Masoud Ayatollahi [Department of Chemistry, University of Isfahan, Isfahan (Iran, Islamic Republic of); Kazemi, Sayed Habib [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan (Iran, Islamic Republic of); Mousavi, Mir Fazllollah, E-mail: mousavim@modares.ac.i [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2010-12-30

    Electron transfer (ET) kinetics through n-dodecanethiol (C{sub 12}SH) self-assembled monolayer on gold electrode was studied using cyclic voltammetry (CV), scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS). An SECM model for compensating pinhole contribution, was used to measure the ET kinetics of solution-phase probes of ferrocyanide/ferricyanide (Fe(CN){sub 6}{sup 4-/3-}) and ferrocenemethanol/ferrociniummethanol (FMC{sup 0/+}) through the C{sub 12}SH monolayer yielding standard tunneling rate constant (k{sub ET}{sup 0}) of (4 {+-} 1) x 10{sup -11} and (3 {+-} 1) x 10{sup -10} cm s{sup -1} for Fe(CN){sub 6}{sup 4-/3-} and FMC{sup 0/+} respectively. Decay tunneling constants ({beta}) of 0.97 and 0.96 A{sup -1} for saturated alkane thiol chains were obtained using Fe(CN){sub 6}{sup 4-} and FMC respectively. Also, it was found that methylene blue (MB) molecules are effectively immobilized on the C{sub 12}SH monolayer and can mediate the ET between the solution-phase probes and underlying gold substrate. SECM-mediated model was used to simultaneously measure the bimolecular ET between the solution-phase probes and the monolayer-immobilized MB molecules, as well as tunneling ET between the monolayer-immobilized MB molecules and the underlying gold electrode, allowing the measurement of k{sub BI} = (5 {+-} 1) x 10{sup 6} and (4 {+-} 2) x 10{sup 7} cm{sup 3} mol{sup -1} s{sup -1} for the bimolecular ET and k{sub ET/MB}{sup 0}=(1{+-}0.3)x10{sup -3} and (7 {+-} 3) x 10{sup -2} s{sup -1} for the standard tunneling rate constant of ET using Fe(CN){sub 6}{sup 4-/3-} and FMC{sup 0/+} probes respectively.

  16. Estimation of key physical properties for LaCl{sub 3} in molten eutectic LiCl–KCl by fitting cyclic voltammetry data to a BET-based electrode reaction kinetics model

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, OH 43210 (United States); Wang, Zhonghang [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, Metallurgical Engineering Department, University of Utah, Salt Lake City, UT 84112 (United States); Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Lahti, Erik [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, OH 43210 (United States); Simpson, Michael [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, Metallurgical Engineering Department, University of Utah, Salt Lake City, UT 84112 (United States); Zhang, Jinsuo, E-mail: zhang.3558@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, OH 43210 (United States)

    2016-07-15

    Understanding the electrochemical properties of rare earth elements is important for developing efficient techniques for separating rare earth elements from actinides recovered during the electrodeposition process. In this study the cyclic voltammetry for lanthanum in molten LiClKCl eutectic was recorded at 773 K for different scan rates and different bulk concentrations. A model accounting for mass transport, kinetics and adsorption was applied to analyze the experimental data via performing a nonlinear least squares fit. The results of the simulation are compared against the results of a conventional analysis of the cyclic voltammograms and against the existing literature. At the scan rates used, the reduction/oxidation process is quasi-reversible. The values of diffusivities derived from simulation were larger than the ones derived commonly using equations for diffusion-limited processes. However, those equations were derived based on an assumption of reversibility. This simulation-based approach may provide a more accurate option for analyzing systems that do not exhibit reversibility.

  17. Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection.

    Science.gov (United States)

    Ji, Daizong; Liu, Lei; Li, Shuang; Chen, Chen; Lu, Yanli; Wu, Jiajia; Liu, Qingjun

    2017-12-15

    Smartphone-based electrochemical devices have such advantages as the low price, miniaturization, and obtaining the real-time data. As a popular electrochemical method, cyclic voltammetry (CV) has shown its great practicability for quantitative detection and electrodes modification. In this study, a smartphone-based CV system with a simple method of electrode modification was constructed to perform electrochemical detections. The system was composed of these main portions: modified electrodes, portable electrochemical detector and smartphone. Among them, the detector was comprised of an energy transformation module applying the stimuli signals, and a low-cost potentiostat module for CV measurements with a Bluetooth module for transmitting data and commands. With an Application (App), the smartphone was used as the controller and displayer of the system. Through controlling of different scan rates, the smartphone-based system could perform CV detections for redox couples with test errors less than 3.8% compared to that of commercial electrochemical workstation. Also, the reduced graphene oxide (rGO) and sensitive substance could be modified by the system on the screen printed electrodes for detections. As a demonstration, 3-amino phenylboronic acid (APBA) was used as the sensitive substance to fabricate a glucose sensor. Finally, the experimental data of the system were shown the linear, sensitive, and specific responses to glucose at different doses, even in blood serum as low as about 0.026mM with 3δ/slope calculation. Thus, the system could show great potentials of detection and modification of electrodes in various fields, such as public health, water monitoring, and food quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Voltammetry and In Situ Scanning Tunneling Microscopy of Cytochrome c Nitrite Reductase on Au(111)-Electrodes

    DEFF Research Database (Denmark)

    Gwyer, James; Zhang, Jingdong; Butt, Julea

    2006-01-01

    of the density and orientational distribution of NrfA molecules are disclosed. The submonolayer coverage resolved by in situ STM is readily reconciled with the failure to detect nonturnover signals in cyclic voltammetry of the NrfA films. The molecular structures show a range of lateral dimensions...... a direct approach to correlate electrocatalytic and molecular properties of the protein layer, a long-standing issue in protein film voltammetry....

  19. Simultaneous measurement and quantitation of 4-hydroxyphenylacetic acid and dopamine with fast-scan cyclic voltammetry.

    Science.gov (United States)

    Shin, Mimi; Kaplan, Sam V; Raider, Kayla D; Johnson, Michael A

    2015-05-07

    Caged compounds have been used extensively to investigate neuronal function in a variety of preparations, including cell culture, ex vivo tissue samples, and in vivo. As a first step toward electrochemically measuring the extent of caged compound photoactivation while also measuring the release of the catecholamine neurotransmitter, dopamine, fast-scan cyclic voltammetry at carbon-fiber microelectrodes (FSCV) was used to electrochemically characterize 4-hydroxyphenylacetic acid (4HPAA) in the absence and presence of dopamine. 4HPAA is a by-product formed during the process of photoactivation of p-hydroxyphenacyl-based caged compounds, such as p-hydroxyphenylglutamate (pHP-Glu). Our data suggest that the oxidation of 4HPAA occurs through the formation of a conjugated species. Moreover, we found that a triangular waveform of -0.4 V to +1.3 V to -0.4 V at 600 V s(-1), repeated every 100 ms, provided an oxidation current of 4HPAA that was enhanced with a limit of detection of 100 nM, while also allowing the detection and quantitation of dopamine within the same scan. Along with quantifying 4HPAA in biological preparations, the results from this work will allow the electrochemical measurement of photoactivation reactions that generate 4HPAA as a by-product as well as provide a framework for measuring the photorelease of electroactive by-products from caged compounds that incorporate other chromophores.

  20. Electrochemical Study of Esculetin Nitration by Digital Simulation of Cyclic Voltammograms

    Directory of Open Access Journals (Sweden)

    Lida Khalafi

    2013-01-01

    Full Text Available The reaction of electrochemically generated o-quinones from oxidation of esculetin as Michael acceptor with nitrite ion as nucleophile has been studied using cyclic voltammetry. The reaction mechanism is believed to be EC, including oxidation of catechol moiety of esculetin followed by Michael addition of nitrite ion. The observed homogeneous rate constants (obs for reactions were estimated by comparing the experimental voltammetric responses with the digitally simulated results based on the proposed mechanism. Also the effects of pH and nucleophile concentration on voltammetric behavior and the rate constants of chemical reactions were described.

  1. Probing the electrochemical properties of TiO{sub 2}/graphene composite by cyclic voltammetry and impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Pankaj [Department of Physics, Marwadi Education Foundation, Rajkot 360003 (India); Pandey, Kavita; Bhatt, Parth [School of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar 382007 (India); Tripathi, Brijesh, E-mail: brijesh.tripathi@sse.pdpu.ac.in [School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007 (India); Pandey, Manoj Kumar; Kumar, Manoj [School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007 (India)

    2016-04-15

    Highlights: • Role of TiO{sub 2}/graphene composite in charge transport within supercapacitors. • DC and AC characterization to investigate voltage dependence of charge transport. • Physical insight into the electrochemistry of electrode–electrolyte interface. - Abstract: This work describes the role of graphene in charge transport and diffusion mechanism at TiO{sub 2}/graphene electrode–electrolyte interface. To explore the mechanism, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used. The CV results depict that TiO{sub 2} and TiO{sub 2}/graphene electrodes behave differently in terms of charge transport and ion adsorption under the steady state conditions. The performance of TiO{sub 2} electrode–electrolyte interface is mainly limited by the charge transport and pseudo-capacitive effects while the response of TiO{sub 2}/graphene electrode–electrolyte interface is mainly dominated by the double layer capacitive effects. The EIS measurement leads to the direct determination of broad range of parameters, i.e. series resistance, charge transport, rate capability and ion diffusion. The experimental results and their analysis will have a significant impact on understanding the role of graphene in the electrochemical response of an electrode–electrolyte interface.

  2. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry.

    Science.gov (United States)

    Allagui, Anis; Freeborn, Todd J; Elwakil, Ahmed S; Maundy, Brent J

    2016-12-09

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal R s C behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics [corrected]. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance R s in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (R s , Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical R s C model. We validate our formulae with the experimental measurements of different EDLCs.

  3. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry

    Science.gov (United States)

    Allagui, Anis; Freeborn, Todd J.; Elwakil, Ahmed S.; Maundy, Brent J.

    2016-12-01

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs.

  4. Differential Pulse Anodic Stripping Voltammetry for Mercury Determination

    OpenAIRE

    Vereștiuc Paul C.; Tucaliuc Oana-Maria; Breabăn Iuliana G.; Crețescu Igor; Nemțoi Gheorghe

    2015-01-01

    In the present work voltammetric investigations have been performed on HgCl2 aqueous solutions prepared from a Cz 9024 reagent. Carbon paste electrode (CPE), eriochrome black T modified carbon paste electrode (MCPE/EBT) and KCl 1M as background electrolyte, were involved within the experimental procedures. Cyclic voltammetry (CV) has been performed in order to compare the behaviour of the two electrodes in both K3[Fe(CN)6] and mercury calibration aqueous solution. Differential pulse anodic st...

  5. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  6. Equilibria in aqueous cadmium-chloroacetate-glycinate systems. A convolution-deconvolution cyclic voltammetric study

    International Nuclear Information System (INIS)

    Abdel-Hamid, R.; Rabia, M.K.M.

    1994-01-01

    Stability constants and composition of cadmium-glycinate binary complexes were determined using cyclic voltammetry. Furthermore, binary and ternary complex equilibria for chloroacetates and glycinate with cadmium in 0.1 M aqueous KNO 3 at pH 10.4 and 298 K were investigated. Cadmium forms binary complexes with chloroacetates of low stability and ternary ones with chloroacetate-glycinate of significant stability. (author)

  7. Surface modification of pyrolyzed carbon fibres by cyclic voltammetry and their characterization with XPS and dye adsorption

    International Nuclear Information System (INIS)

    Georgiou, P.; Walton, J.; Simitzis, J.

    2010-01-01

    Commercial carbon fibres were pyrolyzed up to 1000 deg. C and were then electrochemically treated by cyclic voltammetry in aqueous electrolyte solutions of H 2 SO 4 , in two potential sweep ranges: a narrow region, N, and a wide region, W, avoiding and including water decomposition, respectively. The anodic and cathodic peaks were correlated with oxide formation and their partial reduction, respectively. The nature of oxygen containing groups on the fibre surfaces was determined by XPS. Wide scan spectra and high energy resolution spectra were recorded through the C 1s, O 1s, N 1s and S 2p photoelectron regions. The ability of the fibres to adsorb methylene blue and alizarin yellow dyes from their aqueous solutions indicates the presence of electron acceptor or donor groups on the fibres, respectively. The carbon fibres were classified into two categories. The first includes electrochemically untreated and treated in the N region, and the second those treated in the W region. The high oxygen concentration and effective dye adsorption on the carbon fibres in the second category indicates that their surfaces were effectively modified. The adsorption of dyes on carbon fibres constitutes a complementary method to XPS for an indirect estimation of oxygen and other groups present on the carbon fibre surfaces.

  8. Temperature-programmed reduction and cyclic voltammetry of Pt/carbon-fibre paper catalysts for methanol electrooxidation

    International Nuclear Information System (INIS)

    Attwood, P.A.; McNicol, B.D.; Short, R.T.

    1981-01-01

    Temperature-programmed reduction (TPR) and cyclic voltammetry (CV) studies of platinum catalysts supported on pyrographite-coated carbon-fibre paper, and prepared by either ion exchange or impregnation, clearly demonstrate the nature of the interactions between the platinum species and the support. After drying the above catalysts at 120 0 C, the ion-exchanged preparation exhibits the stronger interaction with the carbon support, as might be expected since a chemical interaction with carbon surface groups is known to occur in such catalysts. The presence of a fraction of bulk Pt(NH 3 ) 4 (OH) 2 impregnating salt in the impregnated catalyst has been detected using TPR. After air activation at 300 0 C, subambient reduction peaks were observed and the strength of binding of Pt in the ion-exchanged catalyst was reflected by its increased difficulty of reduction in comparison with that of the impregnated catalyst. The stoichiometry of reduction in ion-exchanged catalysts corresponds to Pt 2+ → Pt 0 in both dried and activated catalysts, with a small amount of Pt 4+ present in the latter. Upon activation the impregnated catalyst showed the presence of some Pt metal, which was thought to arise from the decomposition of the fraction of bulk Pt(NH 3 ) 4 (OH) 2 in the dried catalyst. Activation of ion-exchanged catalysts at temperatures higher than 300 0 C led to a progressive weakening of the Pt-support interaction and consequent smaller Pt surface areas. Activation at 500 0 C in air produced Pt metal exclusively and very low Pt surface areas. The strong interaction between Pt and the carbon support upon activation of the ion-exchanged catalyst at 300 0 C is thought to be the origin of the large metal surface area and the high catalytic activity for methanol electrooxidation found upon reduction

  9. Microelectrode voltammetry of multi-electron transfers complicated by coupled chemical equilibria: a general theory for the extended square scheme.

    Science.gov (United States)

    Laborda, Eduardo; Gómez-Gil, José María; Molina, Angela

    2017-06-28

    A very general and simple theoretical solution is presented for the current-potential-time response of reversible multi-electron transfer processes complicated by homogeneous chemical equilibria (the so-called extended square scheme). The expressions presented here are applicable regardless of the number of electrons transferred and coupled chemical processes, and they are particularized for a wide variety of microelectrode geometries. The voltammetric response of very different systems presenting multi-electron transfers is considered for the most widely-used techniques (namely, cyclic voltammetry, square wave voltammetry, differential pulse voltammetry and steady state voltammetry), studying the influence of the microelectrode geometry and the number and thermodynamics of the (electro)chemical steps. Most appropriate techniques and procedures for the determination of the 'interaction' between successive transfers are discussed. Special attention is paid to those situations where homogeneous chemical processes, such as protonation, complexation or ion association, affect the electrochemical behaviour of the system by different stabilization of the oxidation states.

  10. Voltammetry of Aluminum Nanoparticles in Aqueous Media with Hanging Mercury Drop Electrode

    Czech Academy of Sciences Publication Activity Database

    Korshunov, A.; Heyrovský, Michael

    2010-01-01

    Roč. 22, 17-18 (2010), s. 1989-1993 ISSN 1040-0397. [International Conference on Modern Electroanalytical Methods. Prague, 09.12.2009-14.12.2009] R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : linear cyclic voltammetry * Hanging mercury drop electrode * Aluminum nanoparticles dispersion Subject RIV: CG - Electrochemistry Impact factor: 2.721, year: 2010

  11. Electrochemical behaviour of carbon paste electrodes enriched with tin oxide nanoparticles using voltammetry and electrochemical impedance spectroscopy.

    Science.gov (United States)

    Muti, Mihrican; Erdem, Arzum; Caliskan, Ayfer; Sınag, Ali; Yumak, Tugrul

    2011-08-01

    The effect of the SnO(2) nanoparticles (SNPs) on the behaviour of voltammetric carbon paste electrodes were studied for possible use of this material in biosensor development. The electrochemical behaviour of SNP modified carbon paste electrodes (CPE) was first investigated by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The performance of the SNP modified electrodes were compared to those of unmodified ones and the parameters affecting the response of the modified electrode were optimized. The SNP modified electrodes were then tested for the electrochemical sensing of DNA purine base adenine to explore their further development in biosensor applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Investigation of using wavelet analysis for classifying pattern of cyclic voltammetry signals

    Science.gov (United States)

    Jityen, Arthit; Juagwon, Teerasak; Jaisuthi, Rawat; Osotchan, Tanakorn

    2017-09-01

    Wavelet analysis is an excellent technique for data processing analysis based on linear vector algebra since it has an ability to perform local analysis and is able to analyze an unspecific localized area of a large signal. In this work, the wavelet analysis of cyclic waveform was investigated in order to find the distinguishable feature from the cyclic data. The analyzed wavelet coefficients were proposed to be used as selected cyclic feature parameters. The cyclic voltammogram (CV) of different electrodes consisting of carbon nanotube (CNT) and several types of metal phthalocyanine (MPc) including CoPc, FePc, ZnPc and MnPc powders was used as several sets of cyclic data for various types of coffee. The mixture powder was embedded in a hollow Teflon rod and used as working electrodes. Electrochemical response of the fabricated electrodes in Robusta, blend coffee I, blend coffee II, chocolate malt and cocoa at the same concentrations was measured with scanning rate of 0.05V/s from -1.5 to 1.5V respectively to Ag/AgCl electrode for five scanning loops. The CV of blended CNT electrode with some MPc electrodes indicated the ionic interaction which can be the effect of catalytic oxidation of saccharides and/or polyphenol on the sensor surface. The major information of CV response can be extracted by using several mother wavelet families viz. daubechies (dB1 to dB3), coiflets (coiflet1), biorthogonal (Bior1.1) and symlets (sym2) and then the discrimination of these wavelet coefficients of each data group can be separated by principal component analysis (PCA). The PCA results indicated the clearly separate groups with total contribution more than 62.37% representing from PC1 and PC2.

  13. A novel framework for intelligent signal detection via artificial neural networks for cyclic voltammetry in pyroprocessing technology

    International Nuclear Information System (INIS)

    Rakhshan Pouri, Samaneh; Manic, Milos; Phongikaroon, Supathorn

    2018-01-01

    Highlights: •First time ANN implementation toward pyroprocessing safeguards. •Real time monitoring in terms of intelligent materials detection and accountability. •CV simulation via ANN showing a high accuracy of prediction for the unseen situation. •Elimination of trial and error approach to avoid overfitting in learning. -- Abstract: Electrorefiner (ER) is the heart of pyroprocessing technology which contains different fission, rare-earth, and transuranic chloride compositions during the operation. This is still a developing technology that needs to be advanced for the commercial reprocessing design of used nuclear fuel (UNF) in terms of intelligent materials detection and accountability towards safeguards. A novel signal detection, artificial neural network (ANN), has been proposed in this study to apply on massive ER systemic parameters to simulate cyclic voltammetry (CV) graphs for the unseen situation. ANN could be trained to mimic the system by driving the data sets interrelation between variables to provide current and potential simulated data sets with a high accuracy of prediction. For this purpose, over 230,000 experimental data points reported in literature have been explored—0.5–5 wt% of zirconium chloride (ZrCl 4 ) in LiCl-KCl molten salt with different scan rates at 773 K. This study has illustrated a new framework of ANN implementation to eliminate trial and error approach by comparing the average error of one to three hidden layers with different number of neurons. In addition, this framework results in finding a preferable balance between underfitting and overfitting in deep learning. Furthermore, simulated CV graphs were compared with the experimental data and illustrated a reasonable prediction. The results reveal two structures with three hidden layers providing a good prediction with a low average error. The outcomes indicate that ANN has a strong potential in applying toward safeguards for pyroprocessing technology.

  14. Electrochemical impedance spectroscopy versus cyclic voltammetry for the electroanalytical sensing of capsaicin utilising screen printed carbon nanotube electrodes.

    Science.gov (United States)

    Randviir, Edward P; Metters, Jonathan P; Stainton, John; Banks, Craig E

    2013-05-21

    Screen printed carbon nanotube electrodes (SPEs) are explored as electroanalytical sensing platforms for the detection of capsaicin in both synthetic capsaicin solutions and capsaicin extracted from chillies and chilli sauces utilising both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It is found that the technique which is most applicable to the electroanalytical detection of capsaicin depends upon the analyte concentration: for the case of low capsaicin concentrations, CV is a more appropriate method as capsaicin exhibits characteristic voltammetric waves of peak heights relevant to the capsaicin concentration; but for the case of high capsaicin concentrations where the voltammetric waves merge and migrate out of the potential window, EIS is shown to be a more appropriate technique, owing to the observed linear increases in R(ct) with increasing concentration. Furthermore, we explore different types of screen printed carbon nanotube electrodes, namely single- and multi- walled carbon nanotubes, finding that they are technique-specific: for the case of low capsaicin concentrations, single-walled carbon nanotube SPEs are preferable (SW-SPE); yet for the case of EIS at high capsaicin concentrations, multi-walled carbon nanotube SPEs (MW-SPE) are preferred, based upon analytical responses. The analytical performance of CV and EIS is applied to the sensing of capsaicin in grown chillies and chilli sauces and is critically compared to 'gold standard' HPLC analysis.

  15. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array

    International Nuclear Information System (INIS)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Hammond, Mark H.; Tillett, Duane; Streckert, Holger H.

    2007-01-01

    Electrochemical sensors composed of a ceramic-metallic (cermet) solid electrolyte are used for the detection of gaseous sulfur compounds SO 2 , H 2 S, and CS 2 in a study involving 11 toxic industrial chemical (TIC) compounds. The study examines a sensor array containing four cermet sensors varying in electrode-electrolyte composition, designed to offer selectivity for multiple compounds. The sensors are driven by cyclic voltammetry to produce a current-voltage profile for each analyte. Raw voltammograms are processed by background subtraction of clean air, and the four sensor signals are concatenated to form one vector of points. The high-resolution signal is compressed by wavelet transformation and a probabilistic neural network is used for classification. In this study, training data from one sensor array was used to formulate models which were validated with data from a second sensor array. Of the 11 gases studied, 3 that contained sulfur produced the strongest responses and were successfully analyzed when the remaining compounds were treated as interferents. Analytes were measured from 10 to 200% of their threshold-limited value (TLV) according to the 8-h time weighted average (TWA) exposure limits defined by the National Institute of Occupational Safety and Health (NIOSH). True positive classification rates of 93.3, 96.7, and 76.7% for SO 2 , H 2 S, and CS 2 , respectively, were achieved for prediction of one sensor unit when a second sensor was used for modeling. True positive rates of 83.3, 90.0, and 90.0% for SO 2 , H 2 S, and CS 2 , respectively, were achieved for the second sensor unit when the first sensor unit was used for modeling. Most of the misclassifications were for low concentration levels (such 10-25% TLV) in which case the compound was classified as clean air. Between the two sensors, the false positive rates were 2.2% or lower for the three sulfur compounds, 0.9% or lower for the interferents (eight remaining analytes), and 5.8% or lower for

  16. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array.

    Science.gov (United States)

    Kramer, Kirsten E; Rose-Pehrsson, Susan L; Hammond, Mark H; Tillett, Duane; Streckert, Holger H

    2007-02-12

    Electrochemical sensors composed of a ceramic-metallic (cermet) solid electrolyte are used for the detection of gaseous sulfur compounds SO(2), H(2)S, and CS(2) in a study involving 11 toxic industrial chemical (TIC) compounds. The study examines a sensor array containing four cermet sensors varying in electrode-electrolyte composition, designed to offer selectivity for multiple compounds. The sensors are driven by cyclic voltammetry to produce a current-voltage profile for each analyte. Raw voltammograms are processed by background subtraction of clean air, and the four sensor signals are concatenated to form one vector of points. The high-resolution signal is compressed by wavelet transformation and a probabilistic neural network is used for classification. In this study, training data from one sensor array was used to formulate models which were validated with data from a second sensor array. Of the 11 gases studied, 3 that contained sulfur produced the strongest responses and were successfully analyzed when the remaining compounds were treated as interferents. Analytes were measured from 10 to 200% of their threshold-limited value (TLV) according to the 8-h time weighted average (TWA) exposure limits defined by the National Institute of Occupational Safety and Health (NIOSH). True positive classification rates of 93.3, 96.7, and 76.7% for SO(2), H(2)S, and CS(2), respectively, were achieved for prediction of one sensor unit when a second sensor was used for modeling. True positive rates of 83.3, 90.0, and 90.0% for SO(2), H(2)S, and CS(2), respectively, were achieved for the second sensor unit when the first sensor unit was used for modeling. Most of the misclassifications were for low concentration levels (such 10-25% TLV) in which case the compound was classified as clean air. Between the two sensors, the false positive rates were 2.2% or lower for the three sulfur compounds, 0.9% or lower for the interferents (eight remaining analytes), and 5.8% or lower for

  17. Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy

    Science.gov (United States)

    Tan, Yih Horng; Davis, Jason A.; Fujikawa, Kohki; Ganesh, N. Vijaya; Demchenko, Alexei V.

    2012-01-01

    Nitrogen adsorption/desorption isotherms are used to investigate the Brunauer, Emmett, and Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size distribution of physically modified, thermally annealed, and octadecanethiol functionalized np-Au monoliths. We present the full adsorption-desorption isotherms for N2 gas on np-Au, and observe type IV isotherms and type H1 hysteresis loops. The evolution of the np-Au under various thermal annealing treatments was examined using scanning electron microscopy (SEM). The images of both the exterior and interior of the thermally annealed np-Au show that the porosity of all free standing np-Au structures decreases as the heat treatment temperature increases. The modification of the np-Au surface with a self-assembled monolayer (SAM) of C18-SH (coverage of 2.94 × 1014 molecules cm−2 based from the decomposition of the C18-SH using thermogravimetric analysis (TGA)), was found to reduce the strength of the interaction of nitrogen gas with the np-Au surface, as reflected by a decrease in the ‘C’ parameter of the BET equation. From cyclic voltammetry studies, we found that the surface area of the np-Au monoliths annealed at elevated temperatures followed the same trend with annealing temperature as found in the BET surface area study and SEM morphology characterization. The study highlights the ability to control free-standing nanoporous gold monoliths with high surface area, and well-defined, tunable pore morphology. PMID:22822294

  18. Finite-element simulations of the influence of pore wall adsorption on cyclic voltammetry of ion transfer across a liquid-liquid interface formed at a micropore.

    Science.gov (United States)

    Ellis, Jonathan S; Strutwolf, Jörg; Arrigan, Damien W M

    2012-02-21

    Adsorption onto the walls of micropores was explored by computational simulations involving cyclic voltammetry of ion transfer across an interface between aqueous and organic phases located at the micropore. Micro-interfaces between two immiscible electrolyte solutions (micro-ITIES) have been of particular research interest in recent years and show promise for biosensor and biomedical applications. The simulation model combines diffusion to and within the micropore, Butler-Volmer kinetics for ion transfer at the liquid-liquid interface, and Langmuir-style adsorption on the pore wall. Effects due to pore radius, adsorption and desorption rates, surface adsorption site density, and scan rates were examined. It was found that the magnitude of the reverse peak current decreased due to adsorption of the transferring ion on the pore wall; this decrease was more marked as the scan rate was increased. There was also a shift in the half-wave potential to lower values following adsorption, consistent with a wall adsorption process which provides a further driving force to transfer ions across the ITIES. Of particular interest was the disappearance of the reverse peak from the cyclic voltammogram at higher scan rates, compared to the increase in the reverse peak size in the absence of wall adsorption. This occurred for scan rates of 50 mV s(-1) and above and may be useful in biosensor applications using micropore-based ITIES.

  19. Measurement of the ground-state distributions in bistable mechanically interlocked molecules using slow scan rate cyclic voltammetry.

    Science.gov (United States)

    Fahrenbach, Albert C; Barnes, Jonathan C; Li, Hao; Benítez, Diego; Basuray, Ashish N; Fang, Lei; Sue, Chi-Hau; Barin, Gokhan; Dey, Sanjeev K; Goddard, William A; Stoddart, J Fraser

    2011-12-20

    In donor-acceptor mechanically interlocked molecules that exhibit bistability, the relative populations of the translational isomers--present, for example, in a bistable [2]rotaxane, as well as in a couple of bistable [2]catenanes of the donor-acceptor vintage--can be elucidated by slow scan rate cyclic voltammetry. The practice of transitioning from a fast scan rate regime to a slow one permits the measurement of an intermediate redox couple that is a function of the equilibrium that exists between the two translational isomers in the case of all three mechanically interlocked molecules investigated. These intermediate redox potentials can be used to calculate the ground-state distribution constants, K. Whereas, (i) in the case of the bistable [2]rotaxane, composed of a dumbbell component containing π-electron-rich tetrathiafulvalene and dioxynaphthalene recognition sites for the ring component (namely, a tetracationic cyclophane, containing two π-electron-deficient bipyridinium units), a value for K of 10 ± 2 is calculated, (ii) in the case of the two bistable [2]catenanes--one containing a crown ether with tetrathiafulvalene and dioxynaphthalene recognition sites for the tetracationic cyclophane, and the other, tetrathiafulvalene and butadiyne recognition sites--the values for K are orders (one and three, respectively) of magnitude greater. This observation, which has also been probed by theoretical calculations, supports the hypothesis that the extra stability of one translational isomer over the other is because of the influence of the enforced side-on donor-acceptor interactions brought about by both π-electron-rich recognition sites being part of a macrocyclic polyether.

  20. Surface characterization by X-ray photoelectron spectroscopy and cyclic voltammetry of products formed during the potentiostatic reduction of chalcopyrite

    International Nuclear Information System (INIS)

    Nava, Dora; Gonzalez, Ignacio; Leinen, Dietmar; Ramos-Barrado, Jose R.

    2008-01-01

    Surface characterization of the transient products that precede chalcocite formation during chalcopyrite reduction was carried out. The experimental strategy employed in the present work consisted of the application of different potential pulses (fixed energetic conditions) on the surface of chalcopyrite electrodes in 1.7 M H 2 SO 4 . The chemical products formed at different potential pulses were characterized by cyclic voltammetry (CV) and XPS. Each electrogenerated species presented a specific voltammetric behavior and an XPS spectrum, in which the values of principal photoelectronic peak bond energies for Cu 2p 3/2 , Fe 2p 3/2 and S 2p 3/2 and the atomic concentrations were considered. Several potential intervals could be identified: in 0.115 ≥ E cat ≥ -0.085 V vs. SHE, an intermediate copper sulfide is formed whose composition is between those of chalcopyrite and bornite, such as talnakhite. The reduction of this product occurs slowly, giving bornite at potentials less than -0.085 V. In the applied potential region -0.085 ≥ E cat > -0.185 V, the bornite gradually decomposes causing the incomplete conversion to chalcocite. In the potential interval -0.185 > E cat ≥ -0.285 V, energetic conditions are large enough to allow the immediate decomposition of bornite, forming chalcocite in a more quantitative manner

  1. Urban Mining and Electrochemistry: Cyclic  Voltammetry Study of Acidic Solutions from  Electronic Wastes (Printed Circuit Boards for  Recovery of Cu, Zn, and Ni

    Directory of Open Access Journals (Sweden)

    Ma. Isabel Reyes‐Valderrama

    2017-02-01

    Full Text Available We report potentiodynamic studies to characterize copper, nickel and zinc leaching solutions from electronic waste. The metals were leached using oxygen and sulfuric acid (pH = 1.5. As is known, reduction potentials are determined using thermodynamics laws, and metal recovery strategies from electronic waste are usually considered according these thermodynamic values. Pourbaix‐type diagrams are not appropriate to plan strategies in electrochemical processing. Therefore, knowledge of electrode potentials for the metal deposit/dissolution process is the basis for the selective recovery planning. For this reason, potentiodynamic studies, specifically cyclic voltammetry, are revealed as a good way to decide the best conditions for the process of electrochemical recovery of metals from electronic waste, which is also cost‐efficient and has no interference from strange ions, such as lead, in this case.

  2. Cathodic adsorptive stripping voltammetry of an anti-emetic agent Granisetron in pharmaceutical formulation and biological matrix

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2012-12-01

    Full Text Available Granisetron showed one well-defined reduction peak at Hanging Mercury Drop Electrode (HMDE in the potential range from −1.3 to −1.5 V due to reduction of C=N bond. Solid-phase extraction technique was employed for extraction of Granisetron from spiked human plasma. Granisetron showed peak current enhancement of 4.45% at square-wave voltammetry and 5.33% at cyclic voltammetry as compared with the non stripping techniques. The proposed voltammetric method allowed quantification of Granisetron in pharmaceutical formulation over the target concentration range of 50–200 ng/mL with detection limit 13.63 ng/mL, whereas in human plasma 50–225 ng/mL with detection limit 11.75 ng/mL. Keywords: Granisetron, Human plasma, Solid-phase extraction, Pharmaceutical formulation, Voltammetry, Hanging mercury drop electrode

  3. Differential Pulse Anodic Stripping Voltammetry for Mercury Determination

    Directory of Open Access Journals (Sweden)

    Vereștiuc Paul C.

    2015-07-01

    Full Text Available In the present work voltammetric investigations have been performed on HgCl2 aqueous solutions prepared from a Cz 9024 reagent. Carbon paste electrode (CPE, eriochrome black T modified carbon paste electrode (MCPE/EBT and KCl 1M as background electrolyte, were involved within the experimental procedures. Cyclic voltammetry (CV has been performed in order to compare the behaviour of the two electrodes in both K3[Fe(CN6] and mercury calibration aqueous solution. Differential pulse anodic stripping voltammetry (DPASV was used to determine the most suitable parameters for mercury determination. All experiments were performed at 25 ± 1 ℃, using an electrochemical cell with three-electrodes connected to an Autolab PG STAT 302N (Metrohm-Autolab potentiostat that is equipped with Nova 1.11 software. The measured potential values were generated by using the silver chloride electrode (AgClE as reference and a platinum wire electrode as auxiliary. A series of time depending equations for the pre-concentration and concentration steps were established, with the observation that a higher sensitivity can be obtained while increasing the pre-concentration time. DPASV were drawn using the CPE in 11.16 % coriander, as mercury complex, the voltamograms signals indicating mercury oxidation, with signal intensity increasing in time.

  4. Determination of propylthiouracil in pharmaceuticals by differential pulse voltammetry using a cathodically pretreated boron-doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Elen Romao [Universidade Estadual de Londrina, PR (Brazil). Dept. de Quimica; Trench, Aline Barrios; Rocha-Filho, Romeu C.; Fatibello-Filho, Orlando, E-mail: bello@ufscar.br [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica

    2013-09-15

    A simple procedure is described for the determination of propylthiouracil (PTU) by differential pulse voltammetry (DPV) using a cathodically pretreated boron-doped diamond (BDD) electrode. Cyclic voltammetry studies indicate that the oxidation of PTU is irreversible at a peak potential of 1.42 V (vs. Ag/AgCl (3.0 mol L{sup -1} KCl)) in a Britton-Robinson (BR) buffer solution (pH 2.0). Under optimized conditions, the obtained analytical curve was linear (r = 0.9985) for the PTU concentration range of 1.0 to 29.1 {mu}mol L{sup -1} in a BR buffer solution (pH 2.0), with a detection limit of 0.90 {mu}mol L{sup -1}. The proposed method was successfully applied in the determination of PTU in pharmaceutical samples, with results in agreement at a 95% confidence level with those obtained using an official titration method. (author)

  5. Voltammetry and in situ scanning tunnelling spectroscopy of osmium, iron, and ruthenium complexes of 2,2′:6′,2′′-terpyridine covalently linked to Au(111)-electrodes

    DEFF Research Database (Denmark)

    Salvatore, Princia; Hansen, Allan Glargaard; Moth-Poulsen, Kasper

    2011-01-01

    prepared in situ by first linking the terpy ligand to the surface via the S-atom, followed by addition of suitable metal compounds. The metal-terpy SAMs were studied by cyclic voltammetry (CV), and in situ scanning tunnelling microscopy with full electrochemical potential control of substrate and tip (in...

  6. Interactions between tetrathiafulvalene units in dimeric structures – the influence of cyclic cores

    Directory of Open Access Journals (Sweden)

    Huixin Jiang

    2015-06-01

    Full Text Available A selection of cyclic and acyclic acetylenic scaffolds bearing two tetrathiafulvalene (TTF units was prepared by different metal-catalyzed coupling reactions. The bridge separating the two TTF units was systematically changed from linearly conjugated ethyne, butadiyne and tetraethynylethene (trans-substituted units to a cross-conjugated tetraethynylethene unit, placed in either acyclic or cyclic arrangements. The cyclic structures correspond to so-called radiaannulenes having both endo- and exocyclic double bonds. Interactions between two redox-active TTF units in these molecules were investigated by cyclic voltammetry, UV–vis–NIR and EPR absorption spectroscopical methods of the electrochemically generated oxidized species. The electron-accepting properties of the acetylenic cores were also investigated electrochemically.

  7. Thin-layer voltammetry of soluble species on screen-printed electrodes: proof of concept.

    Science.gov (United States)

    Botasini, S; Martí, A C; Méndez, E

    2016-10-17

    Thin-layer diffusion conditions were accomplished on screen-printed electrodes by placing a controlled-weight onto the cast solution and allowing for its natural spreading. The restricted diffusive conditions were assessed by cyclic voltammetry at low voltage scan rates and electrochemical impedance spectroscopy. The relationship between the weight exerted over the drop and the thin-layer thickness achieved was determined, in such a way that the simple experimental set-up designed for this work could be developed into a commercial device with variable control of the thin-layer conditions. The experimental results obtained resemble those reported for the voltammetric features of electroactive soluble species employing electrodes modified with carbon nanotubes or graphene layers, suggesting that the attainment of the benefits reported for these nanomaterials could be done simply by forcing the solution to spread over the screen-printed electrodic system to form a thin layer solution. The advantages of thin-layer voltammetry in the kinetic characterization of quasi-reversible and irreversible processes are highlighted.

  8. Electrochemical Studies on Important Elements for Zirconium Recovery Form Irradiated Zircaloy-4 Cladding

    International Nuclear Information System (INIS)

    Park, J.; Sohn, S.; Hwang, I.S.

    2015-01-01

    Since Zircaloy cladding accounts for about 16 wt. % of used nuclear fuel assembly, decontamination process is required to reduce the final waste volume from spent nuclear fuel. To develop Zircaloy-4 electrorefining process as an irradiated Zircaloy cladding decontamination process, electrochemical studies on Sn, Cr, Fe and Co which are major or important elements in the irradiated cladding were conducted based on cyclic voltammetry in LiCl-KCl at 500 deg. C. Cyclic voltammetry for Sn, Fe, Cr and Co elements that should be eliminated was conducted and revealed that redox reactions of these ions are much simpler than Zr and more reductive than Zr. The reliability of cyclic voltammetry was verified by comparing diffusion coefficients and formal reduction potentials of these ions obtained in this study to previous studies. (authors)

  9. Doping effect of polyaniline/MWCNT composites on capacitance and cyclic stability of supercapacitors.

    Science.gov (United States)

    Karthikeyan, G; Sahoo, S; Nayak, G C; Das, C K

    2012-03-01

    Polyaniline doped by Zn2+ ions was synthesized as nanocomposites with multiwalled carbon nanotubes (MWCNT) by in-situ oxidative polymerization and investigated as electrode material for supercapacitors. The uniform coating of polyaniline on MWCNT was characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). The effect of Zn2+ ions on nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The electrochemical performances were investigated by cyclic voltammetry (CV), constant current charging/discharging cyclic test (CC) and electrochemical impedance spectroscopy (EIS) using a three-electrode system. The doped polyaniline composites show higher specific capacitance and better cyclic stability.

  10. Simulating Linear Sweep Voltammetry from First-Principles: Application to Electrochemical Oxidation of Water on Pt(111) and Pt3Ni(111)

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    Cyclic voltammetry is a fundamental experimental method for characterizing adsorbates on electrochemical surfaces. We present a model for the electrochemical solid–liquid interface, and we simulate the linear sweep voltammogram of the electrochemical oxidation of H2O on Pt(111) and Pt3Ni(111...

  11. A flow cell for transient voltammetry and in situ grazing incidence X-ray diffraction characterization of electrocrystallized cadmium(II) tetracyanoquinodimethane

    Energy Technology Data Exchange (ETDEWEB)

    Veder, Jean-Pierre [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Nafady, Ayman [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia); Clarke, Graeme [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Williams, Ross P. [Centre for Materials Research, Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); De Marco, Roland, E-mail: r.demarco@curtin.edu.a [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Bond, Alan M. [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia)

    2011-01-01

    An easy to fabricate and versatile cell that can be used with a variety of electrochemical techniques, also meeting the stringent requirement for undertaking cyclic voltammetry under transient conditions in in situ electrocrystallization studies and total external reflection X-ray analysis, has been developed. Application is demonstrated through an in situ synchrotron radiation-grazing incidence X-ray diffraction (SR-GIXRD) characterization of electrocrystallized cadmium (II)-tetracyanoquinodimethane material, Cd(TCNQ){sub 2}, from acetonitrile (0.1 mol dm{sup -3} [NBu{sub 4}][PF{sub 6}]). Importantly, this versatile cell design makes SR-GIXRD suitable for almost any combination of total external reflection X-ray analysis (e.g., GIXRF and GIXRD) and electrochemical perturbation, also allowing its application in acidic, basic, aqueous, non-aqueous, low and high flow pressure conditions. Nevertheless, the cell design separates the functions of transient voltammetry and SR-GIXRD measurements, viz., voltammetry is performed at high flow rates with a substantially distended window to minimize the IR (Ohmic) drop of the electrolyte, while SR-GIXRD is undertaken using stop-flow conditions with a very thin layer of electrolyte to minimize X-ray absorption and scattering by the solution.

  12. Effect of triphenylphosphine, triphenylphosphine sulphide and bis-(diphenylphosphino) methane on the redox behaviour of lithium iodide: a cyclic voltammetric study

    International Nuclear Information System (INIS)

    Lobana, T.S.; Gratzel, M.; Vlachopolous, N.

    1994-01-01

    The effect of a series of tertiary phosphine Lewis bases, namely, triphenylphosphine, triphenylphosphine sulphide and bis(diphenyl-phosphino) methane on the redox behaviour of lithium iodide in acetonitrile is studied using cyclic voltammetry. Whereas triphenyl-phosphine sulphide causes practically no change on the redox peaks of lithium iodide observed at E 1/2 , 0.150V and 0.570V, both the other phosphines cause significant effects. The redox peak at E 1/2 , 0.570V disappears, while that at Ev 1/2 , 0.150V undergoes shifts to lower E 1/2 values. (author). 5 refs., 1 fig

  13. Development and Characterization of Carbon-Fiber Microbiosensors for Fast-Scan Cyclic Voltammetry

    Science.gov (United States)

    Lugo-Morales, Leyda Zoraida

    Electrochemistry has been shown to be a robust tool in neuroscience. The use of carbon-fiber microelectrodes coupled with background-subtracted fast-scan cyclic voltammetry (FSCV) offers high sensitivity, selectivity, as well as the spatial and temporal resolution necessary for monitoring rapid fluctuations of electroactive molecules in live brain tissue. Dopamine (DA) is a neurotransmitter playing a key role in the regulation of reward and motivated behavior. FSCV has been used to understand DA dynamics and how these underlie discrete aspects of brain function. The methodological aspects of real-time DA detection at carbon-fiber microelectrodes using FSCV in anesthetized and awake animals are presented. Furthermore, the combination of FSCV with other neuroanalytical techniques is also explained. The advantages of FSCV and carbon-fiber microelectrodes can be expanded to the detection of non-electroactive analytes. This broadens the scope of FSCV such that it can be used to investigate how changes in non-electroactive chemicals underlie disease, cognition, and behavior. Carbon-fiber microelectrodes can be modified with an enzyme to monitor non-electroactive molecules, generating an electroactive product (usually hydrogen peroxide, H2O2). The first voltammetric detection of H2O 2 at bare carbon-fiber microelectrodes using FSCV has recently been reported. Thus, an avenue exists to utilize FSCV at enzyme-modified microelectrodes to voltammetrically identify and quantify non-electroactive analytes in real-time. Such an approach will overcome many limitations associated with the traditional amperometric detection scheme, which lacks electrochemical selectivity. Electrodeposition of the biopolymer chitosan with glucose oxidase (GOx) at the carbon surface yields a stable, sensitive, and selective glucose microbiosensor that has been utilized to detect glucose fluctuations in vivo with unprecedented speed. This new method has revealed the first rapid glucose fluctuations in

  14. Insight into the template effect of vesicles on the laccase-catalyzed oligomerization of N-phenyl-1,4-phenylenediamine from Raman spectroscopy and cyclic voltammetry measurements

    Science.gov (United States)

    Ležaić, Aleksandra Janoševic; Luginbühl, Sandra; Bajuk-Bogdanović, Danica; Pašti, Igor; Kissner, Reinhard; Rakvin, Boris; Walde, Peter; Ćirić-Marjanović, Gordana

    2016-08-01

    We report about the first Raman spectroscopy study of a vesicle-assisted enzyme-catalyzed oligomerization reaction. The aniline dimer N-phenyl-1,4-phenylenediamine (= p-aminodiphenylamine, PADPA) was oxidized and oligomerized with Trametes versicolor laccase and dissolved O2 in the presence of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) vesicles (80-100 nm diameter) as templates. The conversion of PADPA into oligomeric products, poly(PADPA), was monitored during the reaction by in situ Raman spectroscopy. The results obtained are compared with UV/vis/NIR and EPR measurements. All three complementary methods indicate that at least some of the poly(PADPA) products, formed in the presence of AOT vesicles, resemble the conductive emeraldine salt form of polyaniline (PANI-ES). The Raman measurements also show that structural units different from those of “ordinary” PANI-ES are present too. Without vesicles PANI-ES-like products are not obtained. For the first time, the as-prepared stable poly(PADPA)-AOT vesicle suspension was used directly to coat electrodes (without product isolation) for investigating redox activities of poly(PADPA) by cyclic voltammetry (CV). CV showed that poly(PADPA) produced with vesicles is redox active not only at pH 1.1-as expected for PANI-ES-but also at pH 6.0, unlike PANI-ES and poly(PADPA) synthesized without vesicles. This extended pH range of the redox activity of poly(PADPA) is important for applications.

  15. Electrochemical studies on the redox behavior of zirconium in the LiF-NaF eutectic melt

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liang [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Xiao, Yanping [School of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Xu, Qian, E-mail: qianxu@shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Sandwijk, Anthonie van [Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Zhao, Zhuo [School of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Song, Qiushi; Cai, Yanqing [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Yang, Yongxiang [School of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Department of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft (Netherlands)

    2017-05-15

    In the present paper, a detailed study of the redox behavior of zirconium in the eutectic LiF-NaF system was carried out on an inert molybdenum electrode at 750 °C. Several transient electrochemical methods were used such as cyclic voltammetry, square wave voltammetry, chronopotentiometry, and open circuit voltammetry. The reduction of Zr (IV) was found to follow a two-step mechanism of Zr (IV)/Zr (II) and Zr (II)/Zr at the potentials of about −1.10 and −1.50 V versus Pt, respectively. The theoretical evaluations of the number of transferred electrons according to both cyclic voltammetry and square wave voltammetry further confirmed the Zr reduction mechanism. The estimations of Zr (IV) diffusion coefficient in the LiF-NaF eutectic melt at 750 °C through cyclic voltammetry and chronopotentiometry are in fair agreement, as to be approximately 1.13E-5 and 2.42E-5 cm{sup 2}/s, respectively. - Highlights: •The redox mechanism of zirconium in a fluoride salt system was investigated. •A multi-step redox process of Zr was found with various electrochemical methods. •Perspectives on zirconium electro-refining process were proposed.

  16. Use of cyclic voltammetry and electrochemical impedance spectroscopy for determination of active surface area of modified carbon-based electrodes

    International Nuclear Information System (INIS)

    Souza, Leticia Lopes de

    2011-01-01

    Carbon-based electrodes as well the ion exchange electrodes among others have been applied mainly in the treatment of industrial effluents and radioactive wastes. Carbon is also used in fuel cells as substrate for the electrocatalysts, having high surface area which surpasses its geometric area. The knowledge of the total active area is important for the determination of operating conditions of an electrochemical cell with respect to the currents to be applied (current density). In this study it was used two techniques to determine the electrochemical active surface area of glassy carbon, electrodes and ion exchange electrodes: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experiments were carried out with KNO 3 0.1 mol.L -1 solutions in a three-electrode electrochemical cell: carbon-based working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode. The glassy carbon and porous carbon electrodes with geometric areas of 3.14 x 10 -2 and 2.83 X 10 -1 cm 2 , respectively, were used. The ion exchange electrode was prepared by mixing graphite, carbon, ion exchange resin and a binder, and this mixture was applied in three layers on carbon felt, using a geometric area of 1.0 cm 2 during the experiments. The capacitance (Cd) of the materials was determined by EIS using Bode diagrams. The value of 172 μF.cm -2 found for the glassy carbon is consistent with the literature data (∼ 200 μF.cm'- 2 ). By VC, varying the scan rate from 0.2 to 2.0 mV.s-1, the capacitance CdS (S = active surface area) in the region of the electric double layer (EDL) of each material was determined. By EIS, the values of C d , 3.0 x 10 -5 μF.cm'- 2 and 11 x 10 3 μF.cm-2, were found for the porous carbon and ion exchange electrodes, respectively, which allowed the determination of active surface areas as 3.73 x 106 cm 2 and 4.72 cm 2 . To sum up, the combined use of EIS and CV techniques is a valuable tool for the calculation of active surface

  17. Electrochemical studies of quinine in surfactant media using hanging mercury drop electrode: a cyclic voltammetric study.

    Science.gov (United States)

    Dar, Riyaz Ahmad; Brahman, Pradeep Kumar; Tiwari, Sweety; Pitre, Krishna Sadashiv

    2012-10-01

    The electrochemical behavior of quinine was investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV) using surfactant. The reduction peak current of quinine increases remarkably in presence of 1% CTAB. Its electrochemical behavior is quasi-reversible in the Britton-Robinson buffers of pH 10.38 by exhibiting the well-defined single cathodic and anodic waves and the ratio of I(p)(a)/I(p)(c) approaching one at the scan rate of 500 mVs(-1). On the basis of CV, SWV and Coulometry, electrochemical reduction mechanism of quinine has been proposed which has shown that protonation occurs on the nitrogen of the quinoline moiety. Linearity was obtained when the peak currents (I(p)) were plotted against concentrations of quinine in the range of 30.0-230.0 ng mL(-1) with a detection limit of 0.132 ng mL(-1) in SWV and 90.0-630.0 ng mL(-1) with a detection limit of 0.238 ng mL(-1) in DPV. Fast and sensitive SWV has been applied for the quantitative analysis of quinine in bark of Cinchona sp. and in soft drinks and a good recovery was obtained. The accuracy and precision of the method are determined and validated statistically. No interferences from other food additives were observed. The relative standard deviation for intraday and interday assay was 0.89 and 0.73% (n=3) respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Cyclic voltammetry: a tool to quantify 2,4,6-trichloroanisole in aqueous samples from cork planks boiling industrial process.

    Science.gov (United States)

    Peres, António M; Freitas, Patrícia; Dias, Luís G; Sousa, Mara E B C; Castro, Luís M; Veloso, Ana C A

    2013-12-15

    Chloroanisoles, namely 2,4,6-trichloroanisole, are pointed out as the primary responsible of the development of musty off-flavours in bottled wine, due to their migration from cork stoppers, which results in huge economical losses for wine industry. A prevention step is the detection of these compounds in cork planks before stoppers are produced. Mass spectrometry gas chromatography is the reference method used although it is far beyond economical possibilities of the majority of cork stoppers producers. In this work, a portable cyclic voltammetry approach was used to detect 2,4,6-trichloroanisole extracted from natural cork planks to the aqueous phase during the cork boiling industrial treatment process. Analyses were carried out under ambient conditions, in less than 15 min with a low use of solvent and without any sample pre-treatment. The proposed technique had detection (0.31±0.01 ng/L) and quantification (0.95±0.05 ng/L) limits lower than the human threshold detection level. For blank solutions, without 2,4,6-trichloroanisole addition, a concentration in the order of the quantification limit was estimated (1.0±0.2 ng/L), which confirms the satisfactory performance of the proposed methodology. For aqueous samples from the industrial cork planks boiling procedure, intra-day repeatabilities were lower than 3%, respectively. Also, 2,4,6-trichloroanisole contents in the aqueous samples determined by this novel approach were in good agreement with those obtained by GC-MS (correlation coefficient equal to 0.98), confirming the satisfactory accuracy of the proposed methodology. So, since this novel approach is a fast, low-cost, portable and user-friendly method, it can be an alternative and helpful tool for in-situ industrial applications, allowing accurate detection of releasable 2,4,6-trichloroanisole in an earlier phase of cork stoppers production, which may allow implementing more effective cork treatments to reduce or avoid future 2,4,6-trichloroanisole

  19. Double elimination voltammetry of short oligonucleotides

    Czech Academy of Sciences Publication Activity Database

    Mikelová, R.; Trnková, L.; Jelen, František

    2007-01-01

    Roč. 19, č. 17 (2007), s. 1807-1814 ISSN 1040-0397 R&D Projects: GA AV ČR(CZ) IAA100040602 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : adsorptive stripping voltammetry * elimination voltammetry * oligodeoxynucleotide Subject RIV: BO - Biophysics Impact factor: 2.949, year: 2007

  20. Cyclic voltammetric study of the reduction of U(III) to uranium metal in molten LiCl-NaCl-CaCl2-BaCl2-UCl3

    International Nuclear Information System (INIS)

    Poa, D.S.; Tomczuk, Z.; Steunenberg, R.K.

    1986-01-01

    Cyclic voltammetry was used to investigate the electrochemistry of the reduction of UCl 3 to uranium metal in molten LiCl-NaCl-CaCl 2 -BaCl 2 (49.7-8.0-26.5-15.8 mol %) containing dissolved UCl 3 . The purpose of the study was to obtain information on the kinetics of the reaction, which will be used in the design of electrorefining equipment for the reprocessing of core and blanket fuel discharged from the Integral Fast Reactor (IFR). The electrorefining operation employs the above salt as the electrolyte and a liquid cadmium pool as the anode

  1. Monolayer Assemblies of a De Novo Designed 4-alpha-Helix Bundle Carboprotein and Its Sulfur Anchor Fragment on Au(111) Surfaces Addressed by Voltammetry and In Situ Scanning Tunneling Microscopy

    DEFF Research Database (Denmark)

    Brask, Jesper; Wackerbarth, Hainer; Jensen, Knud J.

    2003-01-01

    carboprotein without thiol anchor have been prepared and investigated for comparison. Cyclic and differential pulse voltammetry (DPV) of the proteins show desorption peaks around -750 mV (SCE), whereas the thiol anchor desorption peak is at -685 mV. The peaks are by far the highest for thiol monomeric 4-R...

  2. Thin-film voltammetry and its analytical applications: A review

    International Nuclear Information System (INIS)

    Tian, Huihui; Li, Yunchao; Shao, Huibo; Yu, Hua-Zhong

    2015-01-01

    Highlights: • Electrochemistry at immiscible liquid–liquid interfaces is fundamentally important. • Methods for studying redox processes at liquid–liquid interfaces are reviewed. • Thin-film voltammetry is simple in experimental operation and kinetic data analysis. • Thin-film voltammetry’s analytical applications are prevailing and comprehensive. - Abstract: Electrochemical reactions at the interfaces of immiscible electrolyte solutions (ITIES) are of fundamental importance in the fields of chemical, biological and pharmaceutical sciences. Four-electrode cell setup, scanning electrochemical microscopy (SECM) and thin-film voltammetry are the three most frequently used methods for studying the electrochemical processes at these interfaces. The principle, experimental design, advantages and challenges of the three methods are described and compared. The thin-film voltammetry is highlighted for its simplicity in experimental operation and kinetic data analysis. Its versatile analytical applications are discussed in detail, including the study of redox properties of hydrophobic compounds, evaluation of interfacial electron transfer kinetics, synthesis of nanoparticles/nanostructures, and illustration of cross-membrane ion transport phenomena

  3. Cyclic performance tests of Sn/MWCNT composite lithium ion battery anodes at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Tocoglu, U., E-mail: utocoglu@sakarya.edu.tr; Cevher, O.; Akbulut, H. [Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus 54187 (Turkey)

    2016-04-21

    In this study tin-multi walled carbon nanotube (Sn-MWCNT) lithium ion battery anodes were produced and their electrochemical galvanostatic charge/discharge tests were conducted at various (25 °C, 35 °C, 50 °C) temperatures to determine the cyclic behaviors of anode at different temperatures. Anodes were produced via vacuum filtration and DC magnetron sputtering technique. Tin was sputtered onto buckypapers to form composite structure of anodes. SEM analysis was conducted to determine morphology of buckypapers and Sn-MWCNT composite anodes. Structural and phase analyses were conducted via X-ray diffraction and Raman Spectroscopy technique. CR2016 coin cells were assembled for electrochemical tests. Cyclic voltammetry test were carried out to determine the reversibility of reactions between anodes and reference electrode between 0.01-2.0 V potential window. Galvanostatic charge/discharge tests were performed to determine cycle performance of anodes at different temperatures.

  4. Synthesis and characterization of an iron complex bearing a cyclic tetra-N-heterocyclic carbene ligand: An artifical heme analogue?

    KAUST Repository

    Anneser, Markus R.

    2015-04-20

    An iron(II) complex with a cyclic tetradentate ligand containing four N-heterocyclic carbenes was synthesized and characterized by means of NMR and IR spectroscopies, as well as by single-crystal X-ray structure analysis. The iron center exhibits an octahedral coordination geometry with two acetonitrile ligands in axial positions, showing structural analogies with porphyrine-ligated iron complexes. The acetonitrile ligands can readily be substituted by other ligands, for instance, dimethyl sulfoxide, carbon monoxide, and nitric oxide. Cyclic voltammetry was used to examine the electronic properties of the synthesized compounds. © 2015 American Chemical Society.

  5. Absorption spectra and cyclic voltammograms of uranium species in molten lithium molybdate-sodium molybdate eutectic at 550 C

    International Nuclear Information System (INIS)

    Nagai, T.; Fukushima, M.; Myochin, M.; Uehara, A.; Fujii, T.; Yamana, H.; Sato, N.

    2011-01-01

    Absorption spectra of uranium species dissolved in molten lithium molybdate.sodium molybdate eutectic of 0.51Li 2 MoO 4 -0.49Na 2 MoO 4 mixture at 550 C were measured by UV/Vis/NIR spectrophotometry, and their redox reactions were investigated by cyclic voltammetry. We found that the major ions of uranium species dissolved in the melt were uranyl penta-valent. After purging dry oxygen gas into the melt, pentavalent species were oxidized to the uranyl hexa-valent. In the cyclic voltammetry of the melt without uranium species, it was confirmed that the lithium-sodium molybdenum oxide compounds were deposited on the working electrode at the negative potential and the lithium molybdenum oxide compounds were deposited on the counter electrode at positive potential. When UO 2 was dissolved into the melt, the reductive reaction of the uranium species was observed at the reductive potential of the pure melt. This suggests that the uranium species dissolved in the melts could be recovered as mixed uranium-molybdenum oxides by electrolysis. (orig.)

  6. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry.

    Science.gov (United States)

    Bledsoe, Jonathan M; Kimble, Christopher J; Covey, Daniel P; Blaha, Charles D; Agnesi, Filippo; Mohseni, Pedram; Whitlock, Sidney; Johnson, David M; Horne, April; Bennet, Kevin E; Lee, Kendall H; Garris, Paul A

    2009-10-01

    Emerging evidence supports the hypothesis that modulation of specific central neuronal systems contributes to the clinical efficacy of deep brain stimulation (DBS) and motor cortex stimulation (MCS). Real-time monitoring of the neurochemical output of targeted regions may therefore advance functional neurosurgery by, among other goals, providing a strategy for investigation of mechanisms, identification of new candidate neurotransmitters, and chemically guided placement of the stimulating electrode. The authors report the development of a device called the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for intraoperative neurochemical monitoring during functional neurosurgery. This device supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially and chemically resolved neurotransmitter measurements in the brain. The FSCV study consisted of a triangle wave scanned between -0.4 and 1 V at a rate of 300 V/second and applied at 10 Hz. All voltages were compared with an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single carbon fiber (r = 2.5 mum) into a glass capillary and pulling the capillary to a microscopic tip by using a pipette puller. The exposed carbon fiber (that is, the sensing region) extended beyond the glass insulation by approximately 100 microm. The neurotransmitter dopamine was selected as the analyte for most trials. Proof-of-principle tests included in vitro flow injection and noise analysis, and in vivo measurements in urethane-anesthetized rats by monitoring dopamine release in the striatum following high-frequency electrical stimulation of the medial forebrain bundle. Direct comparisons were made to a conventional hardwired system. The WINCS, designed in compliance with FDA-recognized consensus standards for medical electrical device safety, consisted of 4 modules: 1) front-end analog circuit for FSCV (that is, current-to-voltage transducer); 2

  7. Digital simulation of anodic stripping voltammetry from thin film electrodes

    International Nuclear Information System (INIS)

    Magallanes, J.F.

    1984-01-01

    The anodic stripping voltammetry (ASV) is routinely applied to control of Cu(II) in heavy water in the primary cooling loop of the Nuclear Power Reactor. The anodic stripping voltammetry (ASV) is a very well-known technique in electroanalytical chemistry. However, due to the complexity of the phenomena, it is practised with the fundamentals of empiric considerations. A geometric model for the anodic stripping voltammetry (ASV) from thin film electrodes which can be calculated by explicit digital simulation method is proposed as a possibility of solving the electrochemically reversible, cuasi-reversible and irreversible reactions under linear potential scan and multiple potential scans. (Until now the analytical mathematical method was applied to reversible reactions). All the results are compared with analytical solutions and experimental results and it permits to conclude that the anodic stripping voltammetry (ASV) can be studied with the simplicity and potentialities of explicit digital simulation methods. (M.E.L.) [es

  8. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection.

    Science.gov (United States)

    Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Jiang, Yu-Jing; Han, Dong-Dong; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-08-06

    Nanostructured magnesium silicate hollow spheres, one kind of non-conductive nanomaterials, were used in heavy metal ions (HMIs) detection with enhanced performance for the first time. The detailed study of the enhancing electrochemical response in stripping voltammetry for simultaneous detection of ultratrace Cd(2+), Pb(2+), Cu(2+) and Hg(2+) was described. Electrochemical properties of modified electrodes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The operational parameters which have influence on the deposition and stripping of metal ions, such as supporting electrolytes, pH value, and deposition time were carefully studied. The anodic stripping voltammetric performance toward HMIs was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The detection limits achieved (0.186nM, 0.247nM, 0.169nM and 0.375nM for Cd(2+), Pb(2+), Cu(2+) and Hg(2+)) are much lower than the guideline values in drinking water given by the World Health Organization (WHO). In addition, the interference and stability of the modified electrode were also investigated under the optimized conditions. An interesting phenomenon of mutual interference between different metal ions was observed. Most importantly, the sensitivity of Pb(2+) increased in the presence of certain concentrations of other metal ions, such as Cd(2+), Cu(2+) and Hg(2+) both individually and simultaneously. The proposed electrochemical sensing method is thus expected to open new opportunities to broaden the use of SWASV in analysis for detecting HMIs in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. A Study on the Copper Effect on gold leaching in copper-ethanediamine-thiosulphate solutions

    Science.gov (United States)

    Liu, Qiong; Xiang, Pengzhi; Huang, Yao

    2018-01-01

    A simple, fast and sensitive square-wave voltammetry (SWV), cyclic voltammetry(CV) and tafel method for the determination of various factors of gold in thiosulphate solution in this paper. We present our study on the effect of copper(II) on the leaching of gold in thiosulphate solutions. The current study aims to establish the interaction of copper in the leaching process by electrochemical method.

  10. Voltammetry of ion transfer across a polarized room-temperature ionic liquid membrane facilitated by valinomycin: theoretical aspects and application.

    Science.gov (United States)

    Langmaier, Jan; Samec, Zdenek

    2009-08-01

    Cyclic voltammetry is used to investigate the transfer of alkali-metal cations, protons, and ammonium ions facilitated by the complex formation with valinomycin at the interface between an aqueous electrolyte solution and a room-temperature ionic liquid (RTIL) membrane. The membrane is made of a thin (approximately 112 microm) microporous filter impregnated with an RTIL that is composed of tridodecylmethylammonium cations and tetrakis[3,5-bis(trifluoromethyl)phenyl]borate anions. An extension of the existing theory of voltammetry of ion transfer across polarized liquid membranes makes it possible to evaluate the standard ion-transfer potentials for the hydrophilic cations studied, as well as the stability constants (K(i)) of their 1:1 complexes with valinomycin, as log K(i) = 9.0 (H(+)), 11.1 (Li(+)), 12.8 (Na(+)), 17.2 (K(+)), 15.7 (Rb(+)), 15.1 (Cs(+)), and 14.7 (NH(4)(+)). These data point to the remarkably enhanced stability of the valinomycin complexes within RTIL, and to the enhanced selectivity of valinomycin for K(+) over all other univalent ions studied, compared to the conventional K(+) ion-selective liquid-membrane electrodes. Selective complex formation allows one to resolve voltammetric responses of K(+) and Na(+) in the presence of an excess of Mg(2+) or Ca(2+), which is demonstrated by determination of K(+) and Na(+) in the table and tap water samples.

  11. Evaluación de la reactividad de sulfuros de hierro y residuos mineros: una metodología basada en la aplicación de la voltamperometría cíclica Evaluation of the reactivity of iron sulfides and mining wastes: methodology based on cyclic voltammetry

    Directory of Open Access Journals (Sweden)

    Roel Cruz y Marcos Monroy

    2006-06-01

    Full Text Available The mining industry around the world produces an important amount of wastes, which by their high toxic metal and iron sulfide content present a serious environmental problem. Iron sulfide oxidation under weathering conditions provokes the main environmental problem of the mining industry, the generation of Acid Rock Drainage (ARD. Up to now the prediction methodologies do not allow the study of important factors that influence the generation of ARD, producing in some cases erroneous or uncertain conclusions. This paper shows the utilization of cyclic voltammetry using carbon paste electrodes (CPE-Mineral as an alternative tool in the study of the oxidation capacity of iron sulfides and mining wastes. This electrochemical technique constitutes a novel methodology to establish and understand the factors involved during generation of ARD. Results of several studies including selected sulfide samples and sulfide mining wastes have been described in order to show the capacity of this methodology as a complementary tool in the prediction of the generation of ARD.

  12. Applications of voltammetry in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, D.H.S.

    1985-01-01

    The wide-ranging applications of voltammetry to the analysis of trace metals and other ions of interest to environmental scientists are reviewed. It is concluded that the availability of modern microprocessor controlled instrumentation, capable of performing both anodic stripping and square wave voltammetry, provides a flexible and powerful technique to aid in solving analytical problems and carrying out routine analyses. The recent identification of many sensitizing agents which reduce detection limits to part per thousand million level, or below, is a further exciting development in this field.

  13. Electro-oxidation of ethanol at Pt electrodes with the use of a Dynamic Electrochemical Impedance Spectroscopy (DEIS) technique

    OpenAIRE

    Døssland, Line Teigen

    2012-01-01

    Electro-oxidation of ethanol on smooth platinum surfaces was studied in thetemperature range 21C to 140C for 0.2 M ethanol in 0.5 M sulphuric acid.This was done by use of cyclic voltammetry and electrochemical impedancespectroscopy. In addition cyclic voltammetry with different ethanol concentrationsfrom 0.1 M to 1 M, in 0.5 M sulphuric acid was done at room temperature.Cyclic voltammetry with different ethanol concentrations showed a shift to morepositive potentials for the first oxidation p...

  14. supplementary1.doc

    Indian Academy of Sciences (India)

    Electrochemical preparation of Nitrogen doped Graphene Quantum Dots and their Size-dependent Electrocatalytic Activity for Oxygen Reduction. Dhanraj B. Shindea, Vishal M. Dhavalea, Sreekumar Kurungota* and Vijayamohanan K. Pillaib*. Cyclic voltammetry of different size N-GQDs: Figure S1. Cyclic voltammetry study ...

  15. Developing electrodes chemically modified with cucurbit[6]uril to detect 3,4-methylenedioxymethamphetamine (MDMA) by voltammetry

    International Nuclear Information System (INIS)

    Tadini, Maraine Catarina; Balbino, Marco Antonio; Eleoterio, Izabel Cristina; Siqueirade Oliveira, Laura; Dias, Luis Gustavo; Jean-François Demets, Grégoire; Firmino de Oliveira, Marcelo

    2014-01-01

    Graphical abstract: - Highlights: • A new stand in forensic chemistry. • Voltammetric method for the determination of MDMA in seized samples. • A new voltammetric sensor for MDMA. - Abstract: This study aimed to develop an electrode chemically modified with cucurbit[6]uril to detect 3,4-methylenedioxymethamphetamine (MDMA), the main active principle of ecstasy samples, by voltammetry. We modified the electrode surface with a film containing cucurbit[6]uril, Nafion, and methanol, using the dip coating or the spin coating technique. During analysis, we employed an electrochemical cell with a conventional three-electrode system and KCl solution (0.1 mol L −1 ) as the supporting electrolyte. We conducted cyclic voltammetry at concentrations ranging from 4.2 × 10 −6 to 4.8 × 10 −5 mol L −1 . We also accomplished scanning electron microscopy, to investigate the structural behavior of the film that originated on the electrode surface. We obtained the following results when we used dip coating to prepare the modified electrode: standard deviation (SD) = 0.024 μA, limit of detection (LOD) = 3.5 μmol L −1 , limit of quantification (LOQ) = 11.7 μmol L −1 , and amperometric sensitivity (m) = 20.9 × 10 3 μA L mol −1 . As for spin coating, we obtained SD = 0.024 μA, LOD = 2.7 μmol L −1 , LOQ = 9.1 μmol L −1 and m = 25.9 × 10 3 μA mol L −1 . These are very promising data: the modified electrode is more sensitive than the conventional glassy carbon electrode under the studied experimental conditions

  16. Design of Cyclic Peptide Based Glucose Receptors and Their Application in Glucose Sensing.

    Science.gov (United States)

    Li, Chao; Chen, Xin; Zhang, Fuyuan; He, Xingxing; Fang, Guozhen; Liu, Jifeng; Wang, Shuo

    2017-10-03

    Glucose assay is of great scientific significance in clinical diagnostics and bioprocess monitoring, and to design a new glucose receptor is necessary for the development of more sensitive, selective, and robust glucose detection techniques. Herein, a series of cyclic peptide (CP) glucose receptors were designed to mimic the binding sites of glucose binding protein (GBP), and CPs' sequence contained amino acid sites Asp, Asn, His, Asp, and Arg, which constituted the first layer interactions of GBP. The properties of these CPs used as a glucose receptor or substitute for the GBP were studied by using a quartz crystal microbalance (QCM) technique. It was found that CPs can form a self-assembled monolayer at the Au quartz electrode surface, and the monolayer's properties were characterized by using cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy. The CPs' binding affinity to saccharide (i.e., galactose, fructose, lactose, sucrose, and maltose) was investigated, and the CPs' sensitivity and selectivity toward glucose were found to be dependent upon the configuration,i.e., the amino acids sequence of the CPs. The cyclic unit with a cyclo[-CNDNHCRDNDC-] sequence gave the highest selectivity and sensitivity for glucose sensing. This work suggests that a synthetic peptide bearing a particular functional sequence could be applied for developing a new generation of glucose receptors and would find huge application in biological, life science, and clinical diagnostics fields.

  17. Hydrodynamics studies of cyclic voltammetry for electrochemical micro biosensors

    DEFF Research Database (Denmark)

    Adesokan, Bolaji James; Quan, Xueling; Evgrafov, Anton

    2015-01-01

    We investigate the effect of flow rate on the electrical current response to the applied voltage in a micro electrochemical system. To accomplish this, we considered an ion-transport model that is governed by the Nernst-Planck equation coupled to the Navier-Stokes equations for hydrodynamics...

  18. Modification of Screen Printed Carbon Electrode (SPCE with Fe3O4 for the Determination of Nitrite (NO2- in Squarewave Voltammetry

    Directory of Open Access Journals (Sweden)

    Erica Marista Rosida

    2017-11-01

    Full Text Available Nitrite is one of the food preservatives that the government permits, but on the use of over limits can cause endanger health, so it is necessary to control the content of nitrite in the food. Modification of electrodes on a screen printed carbon electrode (SPCE with Fe3O4 has been successfully done for determination of nitrite. Modification of the electrode has been done by electrodeposition with cyclic voltammetry. Electrodeposition successfully performed with an electrolyte solution of FeCl3 in ethanol. Selection of the optimum drying temperature modified electrode obtained based on the respond of the solution of nitrite in Britton Robinson buffer pH 8. The result of the modification electrode used for the determination of nitrite with squarewave voltammetry method. Reaction between Fe3+ with nitrite a basis for determining nitric indirectly measured so that the peak current is the peak current of Fe3+ of about 0,55 V vs Ag/AgCl. The results showed nitrite measurements with this method has a detection limit of 1.3 x 10-8 M.

  19. Arsenic speciation study using x ray fluorescence and cathodic stripping voltammetry

    International Nuclear Information System (INIS)

    Valcarcel, Lino; Montero, Alfredo; Estevez, Juan; Pupo, Ivan

    2006-01-01

    Two methods for the determination of total As concentration and its inorganic species by Energy Dispersive X Ray Fluorescence (EDXRF) and Cathodic Stripping Voltammetry (CSV) were developed. The effect of pH on As (III) recovery after precipitation with APDC and EDXRF measurement was studied. Quantification of As was done using the thin layer approach. A reduction of As(V) to As(III) with sodium thiosulphate was necessary in order to determine the total As concentration. The effect of the amount of reducing agent on the recovery was also studied. As(V) concentration was calculated by difference between total As and As(III) concentration. On the other hand, a polarographic method, using the cathodic stripping mode was implemented. As(III) deposition on the electrode was enhanced by addition of Se(IV). Factors affecting As determination (selenium concentration, deposition potential, deposition time) were studied

  20. Cyclic voltammetric response of nicotinic acid and nicotinamide on a polycrystalline gold electrode

    International Nuclear Information System (INIS)

    Wang Xiaoxia; Yang Nianjun; Wan Qijin

    2006-01-01

    The oxidation of nicotinic acid and nicotinamide on a polycrystalline gold electrode occurred at almost same potentials but their reduction did at different peak potentials. The redox reaction mechanisms of nicotinic acid and nicotinamide were rationalized by the formation/disappearance of the new nitrogen-oxygen bonds in the pyridine rings by means of cyclic voltammetry and bulk electrolysis. The anodic currents of nicotinic acid and nicotinamide were controlled by diffusion, while the cathodic ones by adsorption. The difference in the cathodic peak potentials of nicotinic acid and nicotinamide on the polycrystalline gold electrode is attributed to the effect of the electron densities of remote substituents on the pyridine rings. The cathodic peak currents at about 0.20 V were linear with their concentrations in the range of 2.4 mM to 2.7 μM and 2.4 mM to 3.3 μM with detection limits of 0.27 and 0.33 μM for nicotinic acid and nicotinamide, respectively. Voltammetry was then adopted for the selective monitoring the content of nicotinic acid and nicotinamide in pharmaceuticals

  1. CYCLIC VOLTAMMETRY AND REDUCTION MECHANISTIC ...

    African Journals Online (AJOL)

    Preferred Customer

    potential at different scan rates and upon substrate concentrations confirm, ... All the experiments were performed in acetonitrile purchased from Sigma. ... on the pyrylium cation is followed by chemical reaction of the generated radical, as well.

  2. Stripping voltammetry in environmental and food analysis.

    Science.gov (United States)

    Brainina, K Z; Malakhova, N A; Stojko, N Y

    2000-10-01

    The review covers over 230 papers published mostly in the last 5 years. The goal of the review is to attract the attention of researchers and users to stripping voltammetry in particular, its application in environmental monitoring and analysis of foodstuffs. The sensors employed are impregnated graphite, carbon paste, thick film carbon/graphite and thin film metallic electrodes modified in-situ or beforehand. Hanging mercury drop electrodes and mercury coated glassy carbon electrodes are also mentioned. Strip and long-lived sensors for portable instruments and flow through systems are discussed as devices for future development and application of stripping voltammetry.

  3. Optimization studies of HgSe thin film deposition by electrochemical atomic layer epitaxy (EC-ALE)

    CSIR Research Space (South Africa)

    Venkatasamy, V

    2006-06-01

    Full Text Available Studies of the optimization of HgSe thin film deposition using electrochemical atomic layer epitaxy (EC-ALE) are reported. Cyclic voltammetry was used to obtain approximate deposition potentials for each element. These potentials were then coupled...

  4. Ultramicroelectrode voltammetry and scanning electrochemical microscopy in room-temperature ionic liquid electrolytes.

    Science.gov (United States)

    Walsh, Darren A; Lovelock, Kevin R J; Licence, Peter

    2010-11-01

    The high viscosity and unusual properties of room temperature ionic liquids (RTILs) present a number of challenges when performing steady-state voltammetry and scanning electrochemical microscopy in RTILs. These include difficulties in recording steady-state currents at ultramicroelectrode surfaces due to low diffusion coefficients of redox species and problems associated with unequal diffusion coefficients of oxidised and reduced species in RTILs. In this tutorial review, we highlight the recent progress in the use of RTILs as electrolytes for ultramicroelectrode voltammetry and SECM. We describe the basic principles of ultramicroelectrode voltammetry and SECM and, using examples from the recent literature, we discuss the conditions that must be met to perform steady-state voltammetry and SECM measurements in RTILs. Finally, we briefly discuss the electrochemical insights that can be obtained from such measurements.

  5. A combined SEM, CV and EIS study of multi-layered porous ceramic reactors for flue gas purification

    DEFF Research Database (Denmark)

    He, Zeming; Andersen, Kjeld Bøhm; Nygaard, Frederik Berg

    2013-01-01

    The effect of sintering temperature of 12-layered porous ceramic reactors (comprising 5 cells) was studied using scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The difference in microstructures of the reactors was evaluated by SEM...

  6. Study of antioxidant capacity of different parts of two south Algerian ...

    African Journals Online (AJOL)

    In this study the antioxidant capacity of ethanolic EE and water WE extracts from different parts (calyx, peel, and pulp) of eggplant (Solanum melongena L) were evaluated using cyclic voltammetry. The antioxidant capacity of different parts of eggplant was measured using ascorbic acid equivalent antioxidant capacity assays ...

  7. Voltammetric study of adenine complex with copper on mercury electrode

    Czech Academy of Sciences Publication Activity Database

    Jelen, František; Kouřilová, Alena; Hasoň, Stanislav; Kizek, R.; Trnková, L.

    2009-01-01

    Roč. 21, 3-5 (2009), s. 439-444 ISSN 1040-0397 R&D Projects: GA AV ČR(CZ) IAA100040602; GA AV ČR(CZ) IAA400040804; GA AV ČR(CZ) KAN200040651 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : cyclic voltammetry * elimination voltammetry * copper-adenine complex Subject RIV: BO - Biophysics Impact factor: 2.630, year: 2009

  8. Electrochemical studies of redox probes in self-organized lyotropic ...

    Indian Academy of Sciences (India)

    Administrator

    quinone|hydroquinone, methyl viologen and ferrocenemethanol probes in a lyotropic hexagonal columnar phase (H1 phase) using cyclic voltammetry and electrochemical impedance ..... hydrogen bond of hydroquinone during oxidation is.

  9. Characterization of carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles as a novel electrochemical sensor: Application for highly selective determination of sotalol using voltammetry

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Allafchian, Ali R.; Rezaei, B.; Mohammadzadeh, R.

    2013-01-01

    A magnetic nano‐composite of multiwall carbon nanotube, decorated with NiFe 2 O 4 nanoparticles, was synthesized with citrate sol–gel method. The multiwall carbon nanotubes decorated with NiFe 2 O 4 nanoparticles (NiFe 2 O 4 –MWCNTs) were characterized with different methods such as Fourier transform infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The new nano-composite acts as a suitable electrocatalyst for the oxidation of sotalol at a potential of 500 mV at the surface of the modified electrode. Linear sweep voltammetry exhibited two wide linear dynamic ranges of 0.5–1000 μmol L −1 sotalol with a detection limit of 0.09 μmol L −1 . The modified electrode was used as a novel electrochemical sensor for the determination of sotalol in real samples such as pharmaceutical, patient and safe human urine. - Graphical abstract: Multiwall carbon nanotube, decorated with NiFe 2 O 4 nanoparticles, was prepared using citrate sol–gel method. We characterized the new nanoparticles with different spectroscopic and voltammetric methods. The nano sensor was used as a voltammetric sensor for the determination of trace amounts of sotalol at pH 7.0. Highlights: ► We synthesized and prepared new sensor, multiwall carbon nanotubes decorated with NiFe 2 O 4 . ► Several spectroscopic and voltammetric methods were used to study its characteristics. ► The nanoparticles act as suitable electrocatalyst for the oxidation of sotalol. ► Sotalol could be measured as low as 0.09 μmol L −1 using linear sweep voltammetry.

  10. Methanol oxidation on stepped Pt[n(111) x (110)] electrodes: a chronoamperometric study

    NARCIS (Netherlands)

    Housmans, T.H.M.; Koper, M.T.M.

    2003-01-01

    The methanol oxidation reaction has been studied on Pt[n(111) × (110)]-type electrodes in a 0.5 M sulfuric acid and 0.025 M methanol solution, using cyclic voltammetry and chronoamperometry. The voltammetric behavior of methanol on the three electrodes under investigation [Pt(111), Pt(554), and

  11. Electrochemical characterization of azo dye (E)-1-(4-((4-(phenylamino)phenyl)diazenyl)phenyl)ethanone (DPA)

    International Nuclear Information System (INIS)

    Surucu, Ozge; Abaci, Serdar; Seferoğlu, Zeynel

    2016-01-01

    Highlights: • Electrochemical characterization of azo dye DPA was performed. • Pencil graphite electrode was used as working electrode. • Cyclic voltammetry was used to determine the effect of scan rate and pH. • Chronoamperometry was used to determine diffusion constant. • Square wave voltammetry verified the results of cyclic voltammetry. - Abstract: An enormous range of possible dyes are available, especially as the starting molecules are readily available and cheap. As other dye classes become less viable from either an environmental or economic reasons, azo dyes come to the forefront. Therefore, electrochemical characterization of a novel synthesized azo dye (E)-1-(4-((4-(phenylamino) phenyl)diazenyl)phenyl)ethanone was achieved for the first time. Cyclic voltammetry, chronoamperometry and square wave voltammetry techniques were used to investigate the electrochemical behavior and electrocatalytic effect of azo dye (E)-1-(4-((4-(phenylamino) phenyl)diazenyl)phenyl)ethanone at pencil graphite electrode. Cyclic voltammograms were utilized to determine the effect of scan rate and pH on the peak current and peak potential. Chronoamperometry technique was used to determine diffusion constant, D and the type of adsorption isotherms. The kinetics parameters which were the apparent electron transfer rate constant, k s and charge transfer coefficient, α were calculated. Square wave voltammetry was used to verify responses of cyclic voltammetry technique.

  12. Fracture studies on stainless steel straight pipes under earthquake-type cyclic loading

    International Nuclear Information System (INIS)

    Raghava, G.; Vishnuvardhan, S.; Gandhi, P.; Vaze, K.K.

    2014-01-01

    In order to study the crack growth and cyclic fracture behaviour, which are required for realistic assessment of Leak Before Break (LBB) applicability, experimental investigations were carried out on straight pipes under quasi-crystal loading. Totally 13 pipes were tested; three were stainless steel welded (SSW) using conventional shielded metal arc welding (SMAW) technique and the remaining specimens were Narrow Gap Welded (NGW). The fracture tests were carried out under load control, displacement control and combination of the two; the pipes were subjected to different amplitudes of load or load-line displacement (LLD), which were decided based on the response of the pipes under monotonic loading. Cyclic tearing and crack growth studies on eight straight pipes of the same material reported earlier in published literature are also considered for studying the results and understanding the behaviour. Under load control, with almost equal load amplitude, the NGW pipe exhibited improved life in comparison with SMAW pipe when both are subjected to cyclic loading. The crack growth and tearing instability behaviour of the pipes were studied. The same were found to be different for load control, displacement control and combined control tests. Based in the load-controlled experimental results, material specific plot between cyclic load amplitude (as a percentage of maximum load carrying capacity of a specimen under monotonic fracture) and number of cycles to failure was obtained. The results indicate that the piping components subjected to quasi-cyclic loading may fail in very less number of cycles even when the load amplitude is sufficiently below the monotonic fracture/collapse load. These studies will be helpful in designing nuclear power plant (NPP) piping components subjected to earthquake-type cyclic loading. (author)

  13. Cyclic voltammetric analysis of C 1-C 4 alcohol electrooxidations with Pt/C and Pt-Ru/C microporous electrodes

    Science.gov (United States)

    Lee, Choong-Gon; Umeda, Minoru; Uchida, Isamu

    The effect of temperature on methanol, ethanol, 2-propanol, and 2-butanol electrooxidation is investigated with Pt/C and Pt-Ru/C microporous electrodes. Cyclic voltammetry is employed in temperatures ranging from 25 to 80 °C to provide quantitative and qualitative information on the kinetics of alcohol oxidation. Methanol displays the greatest activity atom alcohols. The addition of ruthenium reduces the poisoning effect, although it is ineffective with secondary alcohols. Secondary alcohols undergo a different oxidation mechanism at higher temperatures. Microporous electrodes provide detailed information on alcohol oxidation.

  14. Cyclic Voltammetric Study of High Speed Silver Electrodeposition and Dissolution in Low Cyanide Solutions

    Directory of Open Access Journals (Sweden)

    Bo Zheng

    2016-01-01

    Full Text Available The electrochemical processes in solutions with a much lower amount of free cyanide (<10 g/L KCN than the conventional alkaline silver electrolytes were first explored by using cyclic voltammetry. The electrochemical behavior and the effect of KAg(CN2, KCN, and KNO3 electrolytes and solution pH on the electrodeposition and dissolution processes were investigated. Moreover, suitable working conditions for high speed, low cyanide silver electrodeposition were also proposed. Both silver and cyanide ions concentration had significant effects on the electrode polarization and deposition rate. The onset potential of silver electrodeposition could be shifted to more positive values by using solutions containing higher silver and lower KCN concentration. Higher silver concentration also led to higher deposition rate. Besides maintaining high conductivity of the solution, KNO3 might help reduce the operating current density required for silver electrodeposition at high silver concentration albeit at the expense of slowing down the electrodeposition rate. The silver dissolution consists of a limiting step and the reaction rate depends on the amount of free cyanide ions. The surface and material characteristics of Ag films deposited by low cyanide solution are also compared with those deposited by conventional high cyanide solution.

  15. New glyme-cyclic imide lithium salt complexes as thermally stable electrolytes for lithium batteries

    Science.gov (United States)

    Tamura, Takashi; Hachida, Takeshi; Yoshida, Kazuki; Tachikawa, Naoki; Dokko, Kaoru; Watanabe, Masayoshi

    New glyme-Li salt complexes were prepared by mixing equimolar amounts of a novel cyclic imide lithium salt LiN(C 2F 4S 2O 4) (LiCTFSI) and a glyme (triglyme (G3) or tetraglyme (G4)). The glyme-Li salt complexes, [Li(G3)][CTFSI] and [Li(G4)][CTFSI], are solid and liquid, respectively, at room temperature. The thermal stability of [Li(G4)][CTFSI] is much higher than that of pure G4, and the vapor pressure of [Li(G4)][CTFSI] is negligible at temperatures lower than 100 °C. Although the viscosity of [Li(G4)][CTFSI] is high (132.0 mPa s at 30 °C), because of its high molar concentration (ca. 3 mol dm -3), its ionic conductivity at 30 °C is relatively high, i.e., 0.8 mS cm -1, which is slightly lower than that of a conventional organic electrolyte solution (1 mol dm -3 LiTFSI dissolved in propylene carbonate). The self-diffusion coefficients of a Li + cation, a CTFSI - anion, and a glyme molecule were measured by the pulsed gradient spin-echo NMR method (PGSE-NMR). The ionicity (dissociativity) of [Li(G4)][CTFSI] at 30 °C is ca. 0.5, as estimated from the PGSE-NMR diffusivity measurements and the ionic conductivity measurements. Results of linear sweep voltammetry revealed that [Li(G4)][CTFSI] is electrochemically stable in an electrode potential range of 0-4.5 V vs. Li/Li +. The reversible deposition-stripping behavior of lithium was observed by cyclic voltammetry. The [LiCoO 2|[Li(G4)][CTFSI]|Li metal] cell showed a stable charge-discharge cycling behavior during 50 cycles, indicating that the [Li(G4)][CTFSI] complex is applicable to a 4 V class lithium secondary battery.

  16. Electrochemical determination of resveratrol in dietary supplements at a boron-doped diamond electrode in the presence of hexadecyltrimethylammonium bromide using square-wave adsorptive stripping voltammetry

    Directory of Open Access Journals (Sweden)

    Yardim Yavuz

    2017-01-01

    Full Text Available A sensitive electroanalytical methodology for the determination of resveratrol is presented for the first time using adsorptive stripping voltammetry at a bare boron-doped diamond (BDD electrode. In cyclic voltammetry, resveratrol shows one irreversible and an adsorption-controlled oxidation peak at a BDD electrode. The voltammetric results indicated that in the presence of hexadecyl trimethyl ammonium bromide, the BDD electrode remarkably enhanced the oxidation of resveratrol, which leads to an improvement in the peak current with a shift of the peak potential to more positive values. Using the square-wave stripping mode, the compound yielded a well-defined voltammetric response in 0.1 M nitric acid solution containing 100 μmol L-1 hexadecyl trimethyl ammonium bromide at 0.74 V (vs. Ag/AgCl, after 60 s accumulation at the open-circuit condition. A linear calibration graph was obtained in the concentration range 0.025 to 60.0 μg mL-1, with a detection limit of 0.0063 μg mL-1. The applicability of the proposed method was verified by analysis of resveratrol in commercial dietary supplements.

  17. Linear sweep anodic stripping voltammetry: Determination of ...

    Indian Academy of Sciences (India)

    The aim of this work is to determine Cr(VI) in water resources by anodic stripping voltammetry using SPE-. AuNPs modified electrode .... surface area about 4 fold). 3.2 Optimization of Parameters ..... in water samples. The above system offers a.

  18. PREPARATION AND CHARACTERIZATION OF IRON THIN FILM ELECTRODEPOSED ON A VITREOUS CARBON ELECTRODE IN AQUEOUS AND ORGANIC MEDIA: A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    A LOUNAS

    2010-06-01

    studied on a vitreous carbon electrode in various aqueous and organic media. The deposit of iron was studied by cyclic voltammetry; the quantity of iron deposited was determined by integration of the cathodic and anodic peaks of Fe (0 and Fe (II of the various media.

  19. Feasibility of Th-U separation through a pyrochemical route in molten LiCl-KCl eutectic

    International Nuclear Information System (INIS)

    Pakhui, Gurudas; Ghosh, Suddhasattwa; Prabhakara Reddy, B.; Nagarajan, K.

    2014-01-01

    Molten salt electrorefining is a high temperature electrometallurgical process developed for the reprocessing of spent UPu-Zr fuel employing LiCl-KCl as the electrolyte. A possible application of this high temperature electrochemical process could be in the separation of U from Th matrix for Th based fuels. It therefore becomes important to investigate the reduction behaviour of Th 4+ in the molten salt and compare with that of U 3+ . The present study is on the electrochemical behaviour of Th 4+ in LiCl-KCl. Electrochemical studies were also carried out on the LiCl-KCl-UCl 3 -ThCl 4 system using transient electrochemical techniques. The cyclic voltammograms for Th 4+ /Th redox couple at various scan rates at 723 K is shown. Reduction of Th 4+ to Th was found to be quasi-reversible at lower scan rates and irreversible at higher scan rates using cyclic voltammetry and convolution voltammetry. The number of electrons transferred for the reduction process was calculated to be ∼ 4 using various techniques like cyclic voltammetry, chronopotentiometry and convolution voltammetry

  20. Modification of Screen Printed Carbon Electrode (SPCE with Polypyrrole (Ppy-SiO2 for Phenol Determination

    Directory of Open Access Journals (Sweden)

    Ani Mulyasuryani

    2018-01-01

    Full Text Available Electrode modification on screen printed carbon electrode (SPCE with polypyrrole (Ppy-SiO2 was done by electropolymerization. Polypyrrole (Ppy-SiO2 was used for phenol determination. The analysis of this material was done by using Scanning Electron Microscopy (SEM, cyclic voltammetry method and differential pulse voltammetry. In a cyclic voltammetry analysis, we used potential range of -1 to 1 V with Ag/AgCl comparator electrode at scan rate of 100 mV/sec, while in differential pulse voltammetry method the potential range was 0 to 1 V toward Ag/AgCl, the scan rate of 50 mV/sec, the pulse rate is 0,2 V and the pulse width is 50 ms. From the analysis result with SEM, cyclic voltammetry and differential pulse voltammetry method, Polypyrrole (Ppy -SiO2 is the best material and can be used as phenol measurement.

  1. On the equivalence of cyclic and quasi-cyclic codes over finite fields

    Directory of Open Access Journals (Sweden)

    Kenza Guenda

    2017-07-01

    Full Text Available This paper studies the equivalence problem for cyclic codes of length $p^r$ and quasi-cyclic codes of length $p^rl$. In particular, we generalize the results of Huffman, Job, and Pless (J. Combin. Theory. A, 62, 183--215, 1993, who considered the special case $p^2$. This is achieved by explicitly giving the permutations by which two cyclic codes of prime power length are equivalent. This allows us to obtain an algorithm which solves the problem of equivalency for cyclic codes of length $p^r$ in polynomial time. Further, we characterize the set by which two quasi-cyclic codes of length $p^rl$ can be equivalent, and prove that the affine group is one of its subsets.

  2. Simultaneous determination of paracetamol and penicillin V by square-wave voltammetry at a bare boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Švorc, Ľubomír; Sochr, Jozef; Tomčík, Peter; Rievaj, Miroslav; Bustin, Dušan

    2012-01-01

    Highlights: ► Unmodified BDD electrode = sensitive electrochemical sensor for drugs determination. ► No special pretreatment of samples except simple dilution. ► Selective method, common compounds present in urine do not interfere in high excess. ► Simultaneous determination of PAR and PEN has yet not been published in literature. - Abstract: A simple, sensitive and selective square-wave voltammetry method for simultaneous determination of paracetamol and penicillin V on a bare (unmodified) boron-doped diamond electrode has been developed. The good potential separation of about 0.35 V between the oxidation peak potentials of both drugs present in mixture was found. It was found by cyclic voltammetry that paracetamol gave quasireversible wave and penicillin V provided irreversible oxidation peak. The effect of supporting electrolyte, pH and scan rate on voltammetric response of both drugs was studied to select the optimum experimental conditions. The optimal conditions for quantitative simultaneous determination were obtained in acetate buffer solution at pH 5.0. The oxidation peak of paracetamol and penicillin V showed a systematic increase in peak currents with increase of their concentration. The calibration curves for the simultaneous determination of paracetamol and penicillin V exhibited the good linear responses within the concentration range from 0.4 to 100 μM for both drugs. The detection limit was established to 0.21 and 0.32 μM for paracetamol and penicillin V, respectively. The method proved the good sensitivity, repeatability (RSD of 1.5 and 2.1% for mixture solution of 10 μM PCM and PEN) and selectivity when influence of interferents commonly existing in human urine was negligible. The practical analytical utility of proposed method was demonstrated by simultaneous determination of paracetamol and penicillin V in human urine samples, with results similar to those obtained using a high-performance liquid chromatography method as an

  3. Compressed sensing with cyclic-S Hadamard matrix for terahertz imaging applications

    Science.gov (United States)

    Ermeydan, Esra Şengün; ćankaya, Ilyas

    2018-01-01

    Compressed Sensing (CS) with Cyclic-S Hadamard matrix is proposed for single pixel imaging applications in this study. In single pixel imaging scheme, N = r . c samples should be taken for r×c pixel image where . denotes multiplication. CS is a popular technique claiming that the sparse signals can be reconstructed with samples under Nyquist rate. Therefore to solve the slow data acquisition problem in Terahertz (THz) single pixel imaging, CS is a good candidate. However, changing mask for each measurement is a challenging problem since there is no commercial Spatial Light Modulators (SLM) for THz band yet, therefore circular masks are suggested so that for each measurement one or two column shifting will be enough to change the mask. The CS masks are designed using cyclic-S matrices based on Hadamard transform for 9 × 7 and 15 × 17 pixel images within the framework of this study. The %50 compressed images are reconstructed using total variation based TVAL3 algorithm. Matlab simulations demonstrates that cyclic-S matrices can be used for single pixel imaging based on CS. The circular masks have the advantage to reduce the mechanical SLMs to a single sliding strip, whereas the CS helps to reduce acquisition time and energy since it allows to reconstruct the image from fewer samples.

  4. Effects of fenspiride on human bronchial cyclic nucleotide phosphodiesterase isoenzymes: functional and biochemical study.

    Science.gov (United States)

    Cortijo, J; Naline, E; Ortiz, J L; Berto, L; Girard, V; Malbezin, M; Advenier, C; Morcillo, E J

    1998-01-02

    We have investigated the role of human bronchial cyclic nucleotide phosphodiesterases in the effects of fenspiride, a drug endowed with bronchodilator and anti-inflammatory properties. Functional studies on human isolated bronchi showed that fenspiride (10(-6)-3 x 10(-3) M, 30 min) induced a shift to the left of the concentration-response curves for isoprenaline and sodium nitroprusside with -logEC50 values of 4.1+/-0.1 (n = 7) and 3.5+/-0.2 (n = 8), respectively. Biochemical studies were carried out on three human bronchi in which separation of cyclic nucleotide phosphodiesterase isoenzymes was performed by ion exchange chromatography followed by determination of phosphodiesterase activity with a radioisotopic method. Phosphodiesterase 4 (cyclic AMP-specific) and phosphodiesterase 5 (cyclic GMP-specific) were the major phosphodiesterase isoforms present in the human bronchial tissue. The presence of phosphodiesterase 1 (Ca2+/calmodulin-stimulated), phosphodiesterase 2 (cyclic GMP-stimulated) and, in two cases, phosphodiesterase 3 (cyclic GMP-inhibited) was also identified. Fenspiride inhibited phosphodiesterase 4 and phosphodiesterase 3 activities with -logIC50 values of 4.16+/-0.09 and 3.44+/-0.12, respectively. Phosphodiesterase 5 activity was also inhibited with a -logIC50 value of approximately 3.8. Fenspiride (fenspiride is an effective inhibitor of both cyclic AMP and cyclic GMP hydrolytic activity in human bronchial tissues and this action may contribute to its airway effects.

  5. Synthesis of fully and partially sulfonated polyanilines derived from ortanilic acid: An electrochemical and electromicrogravimetric study

    International Nuclear Information System (INIS)

    Cano Marquez, Abraham Guadalupe; Torres Rodriguez, Luz Maria; Montes Rojas, Antonio

    2007-01-01

    The electrochemical polymerization of 2-aminobenzene sulfonic acid, also called ortanilic acid (o-ASA), on a gold electrode precoated with polyaniline (PANI), has been carried out. We proved that the electropolymerization of o-ASA is enhanced on PANI electrodes, resulting in thicker films obtained in aqueous media at room temperature. The electrosynthesized film (P(o-ASA)) was characterized by cyclic voltammetry, FTIR and nuclear magnetic resonance. The compensation of P(o-ASA) charge was evaluated using electrochemical quartz crystal microbalance combined with cyclic voltammetry, which showed that the electroneutralization process mainly involves cations. Additionally, copolymers of aniline and o-ASA were electrosynthesized, using a metallic electrode modified with PANI also as a working electrode. The degree of sulfanation of copolymers has been modulated with the proportions of monomers in the electrosynthesis solution. The studies reveal a more important participation of cations in fully sulfonated polyaniline than in partially sulfonated polyaniline

  6. Cyclic voltammetric analysis of C{sub 1}-C{sub 4} alcohol electrooxidations with Pt/C and Pt-Ru/C microporous electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong-Gon [Department of Chemical Engineering, Hanbat National University, San 16-1 Dukmyung-dong, Yusong-gu, Daejon (Korea); Umeda, Minoru [Department of Chemistry, Nagaoka University of Technology, Kamitomioka, Nagaoka (Japan); Uchida, Isamu [Department of Applied Chemistry, Tohoku University, Aramaki-aoba, Aoba-ku, Sendai (Japan)

    2006-09-29

    The effect of temperature on methanol, ethanol, 2-propanol, and 2-butanol electrooxidation is investigated with Pt/C and Pt-Ru/C microporous electrodes. Cyclic voltammetry is employed in temperatures ranging from 25 to 80{sup o}C to provide quantitative and qualitative information on the kinetics of alcohol oxidation. Methanol displays the greatest activity atom alcohols. The addition of ruthenium reduces the poisoning effect, although it is ineffective with secondary alcohols. Secondary alcohols undergo a different oxidation mechanism at higher temperatures. Microporous electrodes provide detailed information on alcohol oxidation. (author)

  7. Synthesis, structural investigation and kinetic studies of uranyl(VI) unsymmetrical Schiff base complexes

    Czech Academy of Sciences Publication Activity Database

    Asadi, Z.; Asadi, M.; Zeinali, A.; Ranjkeshshorkaei, M.; Fejfarová, Karla; Eigner, Václav; Dušek, Michal; Dehnokhalaji, A.

    2014-01-01

    Roč. 126, č. 6 (2014), s. 1673-1683 ISSN 0974-3626 R&D Projects: GA ČR(CZ) GAP204/11/0809 Institutional support: RVO:68378271 Keywords : uranyl schiff base complexes * kinetic study * kinetics of thermal decomposition * X-ray crystallography * cyclic voltammetry Subject RIV: CA - Inorganic Chemistry Impact factor: 1.191, year: 2014

  8. Mechanisms and kinetics of electrodeposition of alkali metals on solid and liquid mercury electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wenzhe.

    1993-01-01

    Electroreduction of alkali metal ions at mercury is an important area in electrochemistry related to the battery industry. In this work, four major topics were considered: alkali metal/mercury interactions; electrosorption of alkali metal ions on solid mercury; electroreduction of alkali metal/crown ether complexes; and ammonium amalgam formation. The formation of alkali metal-mercury intermetallic compounds was studied on liquid and frozen thin layer mercury electrodes. The stoichiometry of the compounds produced under these conditions was determined using cyclic voltammetry. As expected, formation of a new phase was preceded by nucleation phenomena, which were particularly easy to monitor at solid Hg electrodes. The nucleation kinetics were studied using the chronoamperometric method. At very low temperatures, when the mobility of mercury atoms was restricted, the electrosorption of alkali metal ions on solid mercury electrodes was noted. Subsequent study allowed determination of the electrosorption parameters. The free energy of electrosorption is discussed in terms of interactions between alkali metals and mercury. The effect of crown ethers on the kinetics of alkali metal ion reduction was studied at both standard size and ultramicro-mercury electrodes in nonaqueous solutions using ultrafast cyclic voltammetry and ac voltammetry. The usefulness of ultrafast cyclic voltammetry with ultramicroelectrodes in measurements of the kinetics of amalgam formation was verified in a brief study of cadmium ion reduction. The mechanism of the complex reduction at mercury was analyzed based on the free energy changes before and after the activation state. In addition, the stoichiometry and formation constants of the crown ether/alkali metal complexes were determined using cyclic voltammetry. The mechanism of electroreduction of ammonium ions at mercury electrodes in non-aqueous media was analyzed.

  9. Electrogeneration and study of oxide layer on AISI 316 L steel

    International Nuclear Information System (INIS)

    Otero, T.F.; Mateo, M.L.

    1989-01-01

    It has been studied by impedance technique the properties of oxide layers electrogenerated on a stainless steel by cyclic voltammetry. Also, it has been studied the behavior of these layers in chloride media applying a fast corrosion test. The results have been compared with such obtained in mild steel. UV - Vis reflectance and FTIR spectroscopies have been applied to know about the oxide composition [pt

  10. Preparation of Pt Ru/C electrocatalysts using gamma radiation for application as anode in direct methanol fuel cell

    International Nuclear Information System (INIS)

    Spinace, Estevam V.; Silva, Dionisio F. da; Cruz, Victor A. da; Oliveira Neto, Almir; Machado, Luci D.B.; Pino, Eddy S.; Linardi, Marcelo

    2005-01-01

    PtRu nanoparticles supported on carbon (PtRu/C electrocatalysts) were prepared submitting a water/2-propanol mixture containing the metal ions and the carbon support to gamma radiation. The water/2-propanol (v/v) and the total dose (kGy) were studied. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The methanol electro-oxidation was studied by cyclic voltammetry using the thin porous coating. In the studied conditions, the electrocatalytic activity of the prepared electrocatalysts depend on the water/2-propanol ratio used in the reaction medium. (author)

  11. Electrocatalytic oxidation of hydrazine at overoxidized polypyrrole film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Mir Reza [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of); Jouyban, Abolghasem [Faculty of Pharmacy and Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664 (Iran, Islamic Republic of); Asadpour-Zeynali, Karim [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of)]. E-mail: asadpour@tabrizu.ac.ir

    2007-06-20

    Electrocatalytic oxidation of hydrazine (HZ) was studied on an overoxidized polypyrrole (OPPy) modified glassy carbon electrode using cyclic voltammetry and chronoamperometry techniques. The OPPy-modified glassy carbon electrode has very high catalytic ability for electrooxidation of HZ, which appeared as a reduced overpotential in a wide operational pH range of 5-10. The overall numbers of electrons involved in the catalytic oxidation of HZ, the number of electrons involved in the rate-determining and diffusion coefficient of HZ were estimated using cyclic voltammetry and chronoamperometry. It has been shown that using the OPPy-modified electrode, HZ can be determined by cyclic voltammetry and amperometry with limit of detection 36 and 3.7 {mu}M, respectively. The results of the analysis suggest that the proposed method promises accurate results and could be employed for the routine determination of HZ.

  12. Determination of Ascorbic Acid Content of Some Fruit Juices and Wine by Voltammetry Performed at Pt and Carbon Paste Electrodes

    Directory of Open Access Journals (Sweden)

    Aurel Pisoschi

    2011-02-01

    Full Text Available A method was developed for assessing ascorbic acid concentration in fruit juices and wine by differential pulse voltammetry. The oxidation peak for ascorbic acid occurs at about 530 mV (versus SCE on a Pt strip working electrode and at about 470 mV on a carbon paste working electrode. The influence of the operational parameters like the pulse amplitude and the pulse period on the analytical signal was investigated. The obtained calibration graph shows a linear dependence between the peak height and ascorbic acid concentration within the range 0.31-20 mM with a Pt working electrode, and within the range 0.07-20 mM with a carbon paste working electrode. The equation of the calibration graph was y = 21.839x + 35.726, r2 = 0.9940, when a Pt strip electrode was used (where y represents the value of the current intensity measured for the peak height, expressed as µA and x the analyte concentration, as mM. R.S.D. = 2.09%, n = 10, Cascorbic acid = 2.5 mM. The equation of the calibration graph was y = 3.4429x + 5.7334, r2 = 0.9971, when a carbon paste electrode was used (where y represents the value of intensity measured for the peak height, expressed as µA and x the analyte concentration, as mM. R.S.D. = 2.35%, n = 10, Cascorbic acid = 2.5 mM. The developed method was applied to ascorbic acid assessment in fruit juices and wine. The ascorbic acid content determined ranged between 6.83 mg/100 mL juice for soft drinks (Fanta Madness and 54.74 mg/100 mL for citrus (lemon juices obtained by squeezing fruit. Different ascorbic acid concentrations (from standard solutions were added to the analysed samples, the degree of recovery being comprised between 94.74 and 104.97%. The results of ascorbic acid assessment by differential pulse voltammetry were compared with those obtained by cyclic voltammetry. The results obtained by the two methods were in good agreement.

  13. Voltammetry and Electrocatalysis of Achrornobacter Xylosoxidans Copper Nitrite Reductase on Functionalized Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Welinder, Anna C.; Zhang, Jingdong; Hansen, Allan G.

    2007-01-01

    A long-standing issue in protein film voltammetry (PFV), particularly electrocatalytic voltammetry of redox enzyme monolayers, is the variability of protein adsorption modes, reflected in distributions of catalytic activity of the adsorbed protein/enzyme molecules. Use of well-defined, atomically...... planar electrode surfaces is a step towards the resolution of this central issue. We report here the voltammetry of copper nitrite reductase (CNiR, Achromobacter xylosoxidons) on Au(111)-electrode surfaces modified by monolayers of a broad variety of thiol-based linker molecules. These represent......NiR thus shows highly efficient, close to ideal reversible electrocatalytic voltammetry on cysteamine-covered Au(111)-electrode surfaces, most likely due to two cysteamine orientations previously disclosed by in situ scanning tunnelling microscopy. Such a dual orientation exposes both a hydrophobic...

  14. Feasibility Study for the Reduction of Perchlorate, Iodide, and Other Aqueous Anions

    National Research Council Canada - National Science Library

    Clewell, Rebecca A; Tsui, David T; Mattie, David R

    1999-01-01

    Cyclic Voltammetry (CV) was used as a technique to determine the feasibility of the use of a coulometric detector in the determination of perchlorate, iodide, and various other anions commonly found in drinking water...

  15. Electrocatalytic Study of Paracetamol at a Single-Walled Carbon Nanotube/Nickel Nanocomposite Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Koh Sing Ngai

    2015-01-01

    Full Text Available A rapid, simple, and sensitive method for the electrochemical determination of paracetamol was developed. A single-walled carbon nanotube/nickel (SWCNT/Ni nanocomposite was prepared and immobilized on a glassy carbon electrode (GCE surface via mechanical attachment. This paper reports the voltammetry study on the effect of paracetamol concentration, scan rate, pH, and temperature at a SWCNT/Ni-modified electrode in the determination of paracetamol. The characterization of the SWCNT/Ni/GCE was performed by cyclic voltammetry. Variable pressure scanning electron microscopy (VPSEM and energy dispersive X-ray (EDX spectrometer were used to examine the surface morphology and elemental profile of the modified electrode, respectively. Cyclic voltammetry showed significant enhancement in peak current for the determination of paracetamol at the SWCNT/Ni-modified electrode. A linear calibration curve was obtained for the paracetamol concentration between 0.05 and 0.50 mM. The SWCNT/Ni/GCE displayed a sensitivity of 64 mA M−1 and a detection limit of 1.17 × 10−7 M in paracetamol detection. The proposed electrode can be applied for the determination of paracetamol in real pharmaceutical samples with satisfactory performance. Results indicate that electrodes modified with SWCNT and nickel nanoparticles exhibit better electrocatalytic activity towards paracetamol.

  16. Experimental study under uniaxial cyclic behavior at room and high temperature of 316L stainless steel

    International Nuclear Information System (INIS)

    Kang Guozheng; Gao Qing; Yang Xianjie; Sun Yafang

    2001-01-01

    An experimental study was carried out of the cyclic properties of 316L stainless steel subjected to uniaxial strain and stress at room and high temperature. The effects of cyclic strain amplitude, temperature and their histories on the cyclic deformation behavior of 316L stainless steel are investigated. And, the influences of stress amplitude, mean stress, temperature and their histories on ratcheting are also analyzed. It is shown that either uniaxial cyclic property under cyclic strain or ratcheting under asymmetric uniaxial cyclic stress depends not only on the current temperature and loading state, but also on the previous temperature and loading history. Some significant results are obtained

  17. Theoretical and experimental study of redox processes combined with adsorption phenomena under conditions of square-wave voltammetry

    OpenAIRE

    Gulaboski, Rubin

    2001-01-01

    Theoretical models of four electrode reactions coupled with adsorption phenomena under conditions of square-wave voltammetry are developed: simple surface redox reaction, surface catalytic reaction, cathodic stripping reaction of I order, and cathodic stripping reaction of II order.

  18. A New cell design for Potentiostatically Controlled In Situ Atomic Force Microscopy

    DEFF Research Database (Denmark)

    Madsen, Lars Lithen; Friis, Esben P.; Andersen, Jens Enevold Thaulov

    1998-01-01

    inlets for rapid flushing and change of solution, and contains an optical device for adjusting the laser beam deflection in aqueous and gas ambient environments. Cyclic voltammetry of a simple redox couple and combined cyclic voltammetry and in situ AFM of copper deposition/ dissolution cycles testify...

  19. Electrochemical oxidation of niclosamide at a glassy carbon ...

    African Journals Online (AJOL)

    Cyclic voltammetry, square-wave voltammetry and controlled potential electrolysis have been used to study the electrochemical oxidation behaviour of niclosamide at a glassy carbon electrode. The number of electrons transferred, the wave characteristics, the diffusion coefficient and reversibility of the reactions have been ...

  20. Methanol electro-oxidation on Pt-Ru-P/C and Pt-Ru-P/MWCNT in acidic medium

    CSIR Research Space (South Africa)

    Modibedi, M

    2009-06-01

    Full Text Available . The electro-catalytic activity towards methanol oxidation in acidic medium was studied by cyclic voltammetry and linear sweep voltammetry. Pt-Ru-P/MWCNT showed excellent activity compared to that of Pt-Ru-P/C. This may be attributed to the effectiveness...

  1. Ruthenium determination by the method of inversion voltammetry on graphite electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dominova, I G; Kolpakova, N A; Stromberg, A G [Tomskij Politekhnicheskij Inst. (USSR)

    1978-12-01

    Optimal conditions for determining ruthenium by inversion voltammetry on a graphite electrode are 0.1 M KCl or KNO/sub 3/, pH 2-3, electrolysis potential - 1.0 V. A linear dependence of ruthenium electrodissolution current on its concentration in the solution makes it possible to use inversion voltammetry for determining 5x10/sup -7/ - 1x10/sup -4/ g-ion Ru/l. Ruthenium can be determined in the presence of a large excess of nickel and copper but commensurable amounts of mercury adn platinum metals interfere.

  2. Clay matrix voltammetry

    International Nuclear Information System (INIS)

    Perdicakis, Michel

    2012-01-01

    Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II

  3. Application of Elimination Voltammetry to the Study of Electrochemical Reduction and Determination of the Herbicide Metribuzin

    Czech Academy of Sciences Publication Activity Database

    Skopalová, J.; Navrátil, Tomáš

    2007-01-01

    Roč. 52, č. 6 (2007), s. 961-977 ISSN 0009-2223 R&D Projects: GA ČR GA203/07/1195 Institutional research plan: CEZ:AV0Z40400503 Keywords : Elimination voltammetry with linear scan (EVLS) * metribuzin * electrochemical reduction * mercury electrodes Subject RIV: CG - Electrochemistry Impact factor: 0.529, year: 2007

  4. Stripping voltammetry of thallium, indium and gallium on mercury-graphite electrodes

    International Nuclear Information System (INIS)

    Kamenev, A.I.; Kharitonova, O.I.; Chernova, N.A.; Agasyan, P.K.

    1986-01-01

    Electrochemical Tl(1), In(3) and Ga(3) behaviour in mercury-graphite electrodes by the method of direct-current and alternating-current voltammetry is studied. Comparison of mathematical models and their experimental check are carried out. Possibility to forecast the investigation results is shown, and the procedure for mercury-graphite electrode surface formation necessary in measurements is chosen

  5. Study of temperature, air dew point temperature and reactant flow effects on proton exchange membrane fuel cell performances using electrochemical spectroscopy and voltammetry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wasterlain, S.; Hissel, D. [FC LAB, Techn' Hom, rue Thierry Mieg, 90010 Belfort Cedex (France); FEMTO-ST (UMR CNRS 6174), ENISYS Department, University of Franche-Comte, Techn' Hom, rue Thierry Mieg, 90010 Belfort Cedex (France); Candusso, D.; Harel, F. [FC LAB, Techn' Hom, rue Thierry Mieg, 90010 Belfort Cedex (France); INRETS, The French National Institute for Transport and Safety Research, Techn' Hom, rue Thierry Mieg, 90010 Belfort Cedex (France); Bergman, P.; Menard, P.; Anwar, M. [University of Connecticut, Connecticut Global Fuel Cell Center Department of Electrical and Computer Engineering, 44 Weaver Road, Unit 5233, Storrs, CT 06269-5233 (United States)

    2010-02-15

    A single PEMFC has been operated by varying the assembly temperature, the air dew point temperature and the anode/cathode stoichiometry rates with the aim to identify the parameters and combinations of factors affecting the cell performance. Some of the experiments were conducted with low humidified reactants (relative humidity of 12%). The FC characterizations tests have been conducted using in situ electrochemical methods based on load current and cell voltage signal analysis, namely: polarization curves, EIS measurements, cyclic and linear sweep voltammetries (CV and LSV). The impacts of the parameters on the global FC performances were observed using the polarization curves whereas EIS, CV and LSV test results were used to discriminate the different voltage loss sources. The test results suggest that some parameter sets allow maximal output voltages but can also induce material degradation. For instance, higher FC temperature and air flow values can induce significant electrical efficiency benefits, notably by increasing the reversible potential and the reaction kinetics. However, raising the cell temperature can also gradually dry the FC and increase the risk of membrane failure. LSV has also shown that elevated FC temperature and relative humidity can also accelerate the electrolyte degradation (i.e. slightly higher fuel crossover rate) and reduce the lifetime consequently. (author)

  6. Study of temperature, air dew point temperature and reactant flow effects on proton exchange membrane fuel cell performances using electrochemical spectroscopy and voltammetry techniques

    Science.gov (United States)

    Wasterlain, S.; Candusso, D.; Hissel, D.; Harel, F.; Bergman, P.; Menard, P.; Anwar, M.

    A single PEMFC has been operated by varying the assembly temperature, the air dew point temperature and the anode/cathode stoichiometry rates with the aim to identify the parameters and combinations of factors affecting the cell performance. Some of the experiments were conducted with low humidified reactants (relative humidity of 12%). The FC characterizations tests have been conducted using in situ electrochemical methods based on load current and cell voltage signal analysis, namely: polarization curves, EIS measurements, cyclic and linear sweep voltammetries (CV and LSV). The impacts of the parameters on the global FC performances were observed using the polarization curves whereas EIS, CV and LSV test results were used to discriminate the different voltage loss sources. The test results suggest that some parameter sets allow maximal output voltages but can also induce material degradation. For instance, higher FC temperature and air flow values can induce significant electrical efficiency benefits, notably by increasing the reversible potential and the reaction kinetics. However, raising the cell temperature can also gradually dry the FC and increase the risk of membrane failure. LSV has also shown that elevated FC temperature and relative humidity can also accelerate the electrolyte degradation (i.e. slightly higher fuel crossover rate) and reduce the lifetime consequently.

  7. Specificity of the Cyclic GMP-Binding Activity and of a Cyclic GMP-Dependent Cyclic GMP Phosphodiesterase in Dictyostelium discoideum

    NARCIS (Netherlands)

    Haastert, Peter J.M. van; Walsum, Hans van; Meer, Rob C. van der; Bulgakov, Roman; Konijn, Theo M.

    1982-01-01

    The nucleotide specificity of the cyclic GMP-binding activity in a homogenate of Dictyostelium discoideum was determined by competition of cyclic GMP derivatives with [8-3H] cyclic GMP for the binding sites. The results indicate that cyclic GMP is bound to the binding proteins by hydrogen bonds at

  8. Microanalysis of DNA by stripping transfer voltammetry

    Czech Academy of Sciences Publication Activity Database

    Jelen, František; Kouřilová, Alena; Pečinka, Petr; Paleček, Emil

    2004-01-01

    Roč. 63, 1-2 (2004), s. 249-252 ISSN 1567-5394 R&D Projects: GA ČR GA203/02/0422; GA AV ČR IAA1163201; GA AV ČR IBS5004107 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA determination * determination of purine base s * linear sweep voltammetry Subject RIV: BO - Biophysics Impact factor: 2.261, year: 2004

  9. Voltammetry at micro-mesh electrodes

    Directory of Open Access Journals (Sweden)

    Wadhawan Jay D.

    2003-01-01

    Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.

  10. Anodic stripping voltammetry – ASV for determination of heavy metals

    International Nuclear Information System (INIS)

    Barón-Jaimez, J; Joya, M R; Barba-Ortega, J

    2013-01-01

    Although voltammetric methods presented a number of difficulties in its early stages, nowadays ''ASV'' anodic stripping voltammetry is considered one of the most sensitive electro-analytical and suitable for trace-level determination of many metals and compounds in environmental samples, clinical and industrial. Its sensitivity is attributed to the combination of a step of pre-concentration effective together with an electrochemical advanced measurement of accumulated analyte. This paper presents an overview of the voltammetry, which includes a group of electro-analytical methods, in them the information about analyte is obtained from measurements of the current flowing in an electrochemical cell when applied a potential difference to an suitable electrode system

  11. Probing the electrochemical double layer of an ionic liquid using voltammetry and impedance spectroscopy: a comparative study of carbon nanotube and glassy carbon electrodes in [EMIM](+)[EtSO(4)](-).

    Science.gov (United States)

    Zheng, J P; Goonetilleke, P C; Pettit, C M; Roy, D

    2010-05-15

    Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are compared as techniques for analyzing double layer capacitances of ionic liquids (ILs) at the surfaces of two carbon-based electrodes. These systems are relevant for energy storage supercapacitors and often are associated with unconventional electrochemical properties. Certain theoretical and experimental aspects of CV and EIS necessary for quantitative evaluation of the capacitance characteristics of such systems are explored. The experiments use 1-ethyl-3-methyl imidazolium ethylsulfate as a model IL electrolyte in combination with a porous electrode of carbon nanotubes (CNTs). The results are compared with those obtained with a nonporous glassy carbon (GC) electrode. The time is constant, and hence the power delivery characteristics of the experimental cell are affected by the electrolyte resistance and residual faradaic reactions of the IL, as well as by the spatially inhomogeneous electrode surfaces. It is shown that adequate characterization of these IL-electrode systems can be achieved by combining CV with EIS. A phenomenological framework for utilizing this combination is discussed.

  12. The solvent effect on the enthalpy of hydrolysis of cyclic adenosine 3',5'-monophosphate : a quantum chemical study

    NARCIS (Netherlands)

    Scheffers - Sap, Miek; Buck, H.M.

    1978-01-01

    The solvent effect on the enthalpy of hydrolysis has been studied by the Extended-Hückel method for the hydrolysis reactions of cyclic adenosine 3',5'-monophosphate (cyclic 3',5'-AMP) and related cyclic phosphate diesters. The results show that the difference in enthalpy of hydrolysis between cyclic

  13. Study on the change of cyclic nucleotide in mice with yang vacuity disease

    International Nuclear Information System (INIS)

    Zhu Xinhua; Shen Ling; Wang Shuguang

    2002-01-01

    To study the relation between Yang Vacuity disease happening, development and cyclic nucleotide response, and prove curative effects of some assisting Yang drug, the plasma cAMP, cGMP and cAMP/cGMP levels were detected by radioimmunoassay in the Yang Vacuity group and curing group. Results: showed: (1) Yang Vacuity group: the symptoms were clear, death rate was high, the plasma cAMP and cAMP/cGMP increased obviously, it suggests that cyclic nucleotide was imbalance. (2) Curing group: the symptoms of Yang Vacuity disease were improved obviously, death rate dropped, cAMP declined, cGMP increased, while cAMP/cGMP reached the normal level, it showed that cyclic nucleotide of the body had altered greatly. (3) It is a reference target for Yang Vacuity. (4) Assisting yang drug (Sini Decoction) had a close relation with correcting imbalance of cyclic nucleotide

  14. Adsorptive stripping voltammetry in lipophilic vitamins determination

    Directory of Open Access Journals (Sweden)

    Milan Sýs

    2016-06-01

    Full Text Available The aim of this contribution was to check if adsorptive stripping differential pulse voltammetry (AdSDPV is suitable tool for sensitive simultenous electrochemical detection of lipophilic vitamins. Retinol (vitamin A1, cholecalciferol (vitamin D3, α-tocopherol (vitamin E and phylloquinone (vitamin K1 were selected as representatives. All electrochemical measurements were performed in two separate steps due to the lipophilic character of the analytes. In the first step, an accumulation of lipophilic vitamin on the surface of glassy carbon electrode (GCE was done by immersing working electrode into the aqueous‑acetonitrile solutions (50%, v/v of each vitamin (50.0 µmol.L-1 at 400 rpm for 5 min. In the second one, differential pulse voltammetry of accumulated vitamins was performed in 0.01 mol.L-1 acetate (pH 4.5 buffer at potential step (Estep 5 mV, potential of amplitude (Eampl 25 mV, interval time (t 0.1 s and scan rate (ν 50 mV.s-1. It was observed that electrochemical behaviour of lipophilic vitamins adsorbed on surface of solid GCE in the aqueous electrolyte was very similar to those performed in organic/aqueous electrolyte in literature. Due to reversible electrochemical behaviour of vitamin K1 (phylloquinone/phyllohydroquinone redox couple, it was possible to detect all lipophilic vitamins only in one analysis. Observed values of peak potentials (Ep were sufficiently different for their recognition which was confirmed by the analysis of real sample. The results obtained in this study showed that simultaneous determination of some lipophilic vitamins is possible requiring further optimization study. For this reason, it is necessary to understand this work as an initial step in simultaneous determination of lipophilic vitamins without application of any chromatographic technique.

  15. Study on elastic-plastic deformation analysis using a cyclic stress-strain curve

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Yamauchi, Masafumi

    1983-01-01

    This paper presents the results of the elastic-plastic deformation analysis using a cyclic stress-strain curve with an intention to apply this method for predicting the low-cycle fatigue life. Uniaxial plastic cycling tests were performed on 2 1/4Cr-1Mo steel to investigate the correspondence between the cyclic stress-strain curve and the hysteresis loop, and also to determine what mathematical model should be used for analysis of deformation at stress reversal. Furthermore, a cyclic in-plane bending test was performed on a flat plate to clarify the validity of the cyclic stress-strain curve-based theoretical analysis. The results obtained are as follows: (1) The cyclic stress-strain curve corresponds nearly to the ascending curve of hysteresis loop scaled by a factor of 1/2 for both stress and strain. Therefore, the cyclic stress-strain curve can be determined from the shape of hysteresis loop, for simplicity. (2) To perform the elastic-plastic deformation analysis using the cyclic stress-strain curve is both practical and effective for predicting the cyclic elastic-plastic deformation of structures at the stage of advanced cycles. And Masing model can serve as a suitable mathematical model for such a deformation analysis. (author)

  16. Stripping Voltammetry

    Science.gov (United States)

    Lovrić, Milivoj

    Electrochemical stripping means the oxidative or reductive removal of atoms, ions, or compounds from an electrode surface (or from the electrode body, as in the case of liquid mercury electrodes with dissolved metals) [1-5]. In general, these atoms, ions, or compounds have been preliminarily immobilized on the surface of an inert electrode (or within it) as the result of a preconcentration step, while the products of the electrochemical stripping will dissolve in the electrolytic solution. Often the product of the electrochemical stripping is identical to the analyte before the preconcentration. However, there are exemptions to these rules. Electroanalytical stripping methods comprise two steps: first, the accumulation of a dissolved analyte onto, or in, the working electrode, and, second, the subsequent stripping of the accumulated substance by a voltammetric [3, 5], potentiometric [6, 7], or coulometric [8] technique. In stripping voltammetry, the condition is that there are two independent linear relationships: the first one between the activity of accumulated substance and the concentration of analyte in the sample, and the second between the maximum stripping current and the accumulated substance activity. Hence, a cumulative linear relationship between the maximum response and the analyte concentration exists. However, the electrode capacity for the analyte accumulation is limited and the condition of linearity is satisfied only well below the electrode saturation. For this reason, stripping voltammetry is used mainly in trace analysis. The limit of detection depends on the factor of proportionality between the activity of the accumulated substance and the bulk concentration of the analyte. This factor is a constant in the case of a chemical accumulation, but for electrochemical accumulation it depends on the electrode potential. The factor of proportionality between the maximum stripping current and the analyte concentration is rarely known exactly. In fact

  17. Interaction between adrenaline and dibenzo-18-crown-6: Electrochemical, nuclear magnetic resonance, and theoretical study

    Science.gov (United States)

    Yu, Zhang-Yu; Liu, Tao; Wang, Xue-Liang

    2014-12-01

    The interaction between adrenaline (Ad) and dibenzo-18-crown-6 (DB18C6) was studied by cyclic voltammetry, nuclear magnetic resonance spectroscopy, and the theoretical calculations, respectively. The results show that DB18C6 will affect the electron transfer properties of Ad. DB18C6 can form stable supramolecular complexes with Ad through ion-dipole and hydrogen bond interactions.

  18. Chemometric study of Maya Blue from the voltammetry of microparticles approach.

    Science.gov (United States)

    Doménech, Antonio; Doménech-Carbó, María Teresa; de Agredos Pascual, María Luisa Vazquez

    2007-04-01

    The use of the voltammetry of microparticles at paraffin-impregnated graphite electrodes allows for the characterization of different types of Maya Blue (MB) used in wall paintings from different archaeological sites of Campeche and YucatAn (Mexico). Using voltammetric signals for electron-transfer processes involving palygorskite-associated indigo and quinone functionalities generated by scratching the graphite surface, voltammograms provide information on the composition and texture of MB samples. Application of hierarchical cluster analysis and other chemometric methods allows us to characterize samples from different archaeological sites and to distinguish between samples proceeding from different chronological periods. Comparison between microscopic, spectroscopic, and electrochemical examination of genuine MB samples and synthetic specimens indicated that the preparation procedure of the pigment evolved in time via successive steps anticipating modern synthetic procedures, namely, hybrid organic-inorganic synthesis, temperature control of chemical reactivity, and template-like synthesis.

  19. Phosphazene like film formation on InP in liquid ammonia (223 K)

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, A.-M., E-mail: goncalves@chimie.uvsq.fr; Njel, C.; Mathieu, C.; Aureau, D.; Etcheberry, A.

    2013-07-01

    An anodic photo-galvanostatic treatment at low current density (1 μA·cm{sup −2}) is carried out on n-InP semiconductor in liquid ammonia (223 K). The gradual chemical evolution of the surface is studied as a function of the anodic charge. Proof and reproducibility of the chemical transformation of the surface are clearly evidenced by X-ray photoelectron spectroscopy (XPS) analyses. Like by cyclic voltammetry, the perfect coverage of the InP surface by a thin phosphazene like film is also revealed by XPS data. However, a low anodic charge (≈ 0.5 mC·cm{sup −2}) is required by photo-galvanostatic treatment while a higher anodic charge (≈ 7 mC·cm{sup −2}) is involved by cyclic voltammetry. The excess of charge could be related to ammonia oxidation during the formation of the passivating film. This result proves the electrochemical oxidation of the solvent as a determinant step of the mechanism film formation. - Highlights: ► Cyclic voltammetry and galvanostatic modes on n-InP in liquid ammonia (223 K). ► A thin film growth is reached by photo-anodic polarization. ► The same phosphazene like film is evidenced by X-ray photoelectron spectroscopy. ► An excess of charge is observed by cyclic voltammetry. ► An electrochemical oxidation step of the solvent is assumed.

  20. Electrochemical Behaviour of a PPy(DBS)/Polyacrylonitrile (PAN):LITF:EC:PC/ Li Cell

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen

    2006-01-01

    The electrochemical behaviour of Li rechargeable cells with Polypyrrole (PPy) as the cathode material was investigated using cyclic voltammetry. The PPy used was doped with the large surfactant anion dodecyl benzenesulphonate (DBS-). The cells were constructed with PAN:LiTF:EC:PC gel electrolyte...... with Li as anode. The results indicate that during the first reduction, cations are inserted into the PPy film forming LiDBS neutral salt. During the next oxidation/reduction cycles, the mechanism then switches to anion movement. Cyclic voltammetry studies also verified that complete electrochemical...

  1. Preparation and characterization of PtRu/C, PtBi/C, PtRuBi/C electrocatalysts for direct electro-oxidation of ethanol in PEM fuels cells using the method of reduction by sodium borohydride

    International Nuclear Information System (INIS)

    Brandalise, Michele

    2010-01-01

    Pt/C, PtBi/C, PtRu/C and PtRuBi/C electrocatalysts were prepared by a borohydride reduction methodology and tested for ethanol oxidation. This methodology consists in mix a solution with sodium hydroxide and sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. It was studied the addition method of borohydride (drop by drop addition or rapid addition). The obtained electrocatalysts were characterized by energy dispersive X ray spectroscopy (EDX), thermogravimetric analysis (TGA), X ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry. The ethanol electro-oxidation was studied by cyclic voltammetry and chronoamperometry using the thin porous coating technique. The electrocatalysts were tested in real conditions of operation by unit cell tests. The stability of PtRuBi/C electrocatalysts was evaluated by cyclic voltammetry, chronoamperometry using the ultra-thin porous coating technique and ring-disk electrode. The PtRuBi/C electro catalyst apparently presented a good performance for ethanol electro-oxidation but experimental evidences showed accentuated bismuth dissolution. (author)

  2. Cyclic AMP in rat pancreatic islets

    International Nuclear Information System (INIS)

    Grill, V.; Borglund, E.; Cerasi, E.; Uppsala Univ.

    1977-01-01

    The incorporation of [ 3 H]adenine into cyclic AMP was studied in rat pancreatic islets under varying conditions of labeling. Prolonging the exposure to [ 3 H]adenine progressively augmented the islet cyclic [ 3 H]AMP level. Islets labeled for different periods of time and subsequently incubated (without adenine) in the presence of D-glucose or cholera toxin showed stimulations of intra-islet cyclic [ 3 H]AMP that were proportionate to the levels of radioactive nucleotide present under non-stimulatory conditions. Labeling the islets in a high glucose concentration (27.7 mM) did not modify the nucleotide responses to glucose or cholera toxin. The specific activity of cyclic [ 3 H]AMP, determined by simultaneous assay of cyclic [ 3 H]AMP and total cyclic AMP, was not influenced by glucose or cholera toxin. Glucose had no effect on the specific activity of labeled ATP

  3. Integration of β-cyclodextrin into graphene quantum dot nano-structure and its application towards detection of Vitamin C at physiological pH: A new electrochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Shadjou, Nasrin, E-mail: Nasrin.Shadjou@gmail.com [Department of Nanochemistry, Nano Technology Research Center, Urmia University, Urmia 57154 (Iran, Islamic Republic of); Department of Nano Technology, Faculty of Science, Urmia University, Urmia 57154 (Iran, Islamic Republic of); Hasanzadeh, Mohammad, E-mail: mhmmd_hasanzadeh@yahoo.com [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664 (Iran, Islamic Republic of); Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664 (Iran, Islamic Republic of); Talebi, Faeze; Marjani, Ahmad Poursattar [Department of Chemistry, Faculty of Science, Urmia University, Urmia 57154 (Iran, Islamic Republic of)

    2016-10-01

    For the first time, β-Cyclodextrin (β-CD) attachment to graphene quantum dot (GQD) structure was performed using simultaneous electrodeposition of GQD and β-CD on the surface of glassy carbon electrode (GCE). Cyclic voltammetry at potential range − 1.0 to 1.0 V from mixture of GQD and β-CD produced a well-defined β-CD-GQD deposited on the surface of glassy carbon electrode. β-CD-GQD modified GCE was used as a new electrocatalytical nanocomposite towards electrooxidation of Vitamin C (as sample analyte). The synergistic effects and the catalytic activity of the β-CD-GQD modified GCE were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) chronoamperometry (CA) and square wave voltammetry (SWV). The process of oxidation involved and its kinetics were established by using cyclic voltammetry, chronoamperometry techniques. It has been found that in the course of an anodic potential sweep the electro-oxidation of Vitamin C is catalyzed by synergetic effect of β-CD and GQD through a mediated electron transfer mechanism. Therefore, β-CD-GQDs promote the rate of oxidation by increasing the peak current. The cyclic voltammetric results indicate that β-CD-GQDs-GCE can remarkably enhance electroactivity towards the oxidation of Vitamin C in buffer solution. We have illustrated that the as-obtained β-CD-GQDs-GCE exhibited a much higher electrocatalytical behavior than GQDs for the electrooxidation and detection of Vitamin C which was about two fold higher than for GQDs. The electrochemical behavior was further exploited as detection scheme for the Vitamin C electrooxidation by square wave voltammetry. - Graphical abstract: Stable electroactive modified electrode using electrodeposition of GQD in the presence β-CD was prepared by cyclic voltammetry. It was found that the β-CD-GQD-GCE exhibit good catalytic activity for the oxidation of Vitamin C at a reduced overpotential and it has a significant high response for Vitamin C oxidation

  4. Integration of β-cyclodextrin into graphene quantum dot nano-structure and its application towards detection of Vitamin C at physiological pH: A new electrochemical approach

    International Nuclear Information System (INIS)

    Shadjou, Nasrin; Hasanzadeh, Mohammad; Talebi, Faeze; Marjani, Ahmad Poursattar

    2016-01-01

    For the first time, β-Cyclodextrin (β-CD) attachment to graphene quantum dot (GQD) structure was performed using simultaneous electrodeposition of GQD and β-CD on the surface of glassy carbon electrode (GCE). Cyclic voltammetry at potential range − 1.0 to 1.0 V from mixture of GQD and β-CD produced a well-defined β-CD-GQD deposited on the surface of glassy carbon electrode. β-CD-GQD modified GCE was used as a new electrocatalytical nanocomposite towards electrooxidation of Vitamin C (as sample analyte). The synergistic effects and the catalytic activity of the β-CD-GQD modified GCE were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) chronoamperometry (CA) and square wave voltammetry (SWV). The process of oxidation involved and its kinetics were established by using cyclic voltammetry, chronoamperometry techniques. It has been found that in the course of an anodic potential sweep the electro-oxidation of Vitamin C is catalyzed by synergetic effect of β-CD and GQD through a mediated electron transfer mechanism. Therefore, β-CD-GQDs promote the rate of oxidation by increasing the peak current. The cyclic voltammetric results indicate that β-CD-GQDs-GCE can remarkably enhance electroactivity towards the oxidation of Vitamin C in buffer solution. We have illustrated that the as-obtained β-CD-GQDs-GCE exhibited a much higher electrocatalytical behavior than GQDs for the electrooxidation and detection of Vitamin C which was about two fold higher than for GQDs. The electrochemical behavior was further exploited as detection scheme for the Vitamin C electrooxidation by square wave voltammetry. - Graphical abstract: Stable electroactive modified electrode using electrodeposition of GQD in the presence β-CD was prepared by cyclic voltammetry. It was found that the β-CD-GQD-GCE exhibit good catalytic activity for the oxidation of Vitamin C at a reduced overpotential and it has a significant high response for Vitamin C oxidation

  5. Anodic stripping voltammetry using graphite composite solid electrode

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Barek, J.; Kopanica, Miloslav

    2009-01-01

    Roč. 74, 11-12 (2009), s. 1807-1826 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400400806; GA ČR GA203/07/1195; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : Graphite composite solid electrode * voltammetry * metals Subject RIV: CG - Electrochemistry Impact factor: 0.856, year: 2009

  6. Synchrotron X-ray fluorescence studies of a bromine-labelled cyclic RGD peptide interacting with individual tumor cells

    International Nuclear Information System (INIS)

    Sheridan, Erin J.; Austin, Christopher J. D.; Aitken, Jade B.; Vogt, Stefan; Jolliffe, Katrina A.; Harris, Hugh H.; Rendina, Louis M.

    2013-01-01

    The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells. The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells

  7. Electrochemical studies of ropinirole, an anti-Parkinson's disease drug

    Indian Academy of Sciences (India)

    The oxidation behaviour of a potent anti-Parkinson's disease drug ropinirole hydrochloride was investigated over a wide pH range in aqueous solution at glassy carbon electrode using cyclic and square-wave voltammetry. The oxidation of drug is a pH dependent irreversible process and occurs in two steps.

  8. Nitration Study of Cyclic Ladder Polyphenylsilsesquioxane

    Directory of Open Access Journals (Sweden)

    LIANG Jia-xiang

    2017-05-01

    Full Text Available Several nitration reagents including fuming nitric acid, HNO3-H2SO4, KNO3-H2SO4, HNO3-KNO3, CH3COOH-KNO3, (CH3CO2O-HNO3 were used to nitrate cyclic ladder polyphenylsilsesquioxane (CL-PPSQ in different conditions in order to enhance the compatibility of the CL-PPSQ in polymers, the NO2-PPSQ was obtained. FTIR, element analysis, GPC, TGA and 1H NMR were used to characterize the structures of the nitrated products. The results show that the nitrating abilities of the fuming nitric acid, HNO3-H2SO4 and KNO3-H2SO4 are very strong. Many nitro groups can be linked with phenyl groups in CL-PPSQ, but with low molecular mass, fracture occurs in siloxane segment. However, the Mn of the product NO2-PPSQ sharply drops by 50% compared with that of CL-PPSQ, so the nitration reagents can break the cyclic structure of CL-PPSQ. The nitrating reagents of HNO3-KNO3 and CH3COOH-KNO3 have no nitration effects on CL-PPSQ. At last, NO2-CL-PPSQ was prepared using (CH3CO2O-HNO3 because of the moderate nitration process and ability. The cyclic structure of PPSQ is remained, although the number of —NO2 group is not too much. At the same time, the nitration mechanism using different nitration reagents was analyzed. A certain amount of NO2+, which is a kind of activator owning strong nitration ability, can be found in the fuming nitric acid and H2SO4-HNO3(KNO3 systems. As to the (CH3CO2O-HNO3 system, the main activator is CH3COONO2.

  9. Preparation of PtRu/Carbon hybrid materials by hydrothermal carbonization: A study of the Pt:Ru atomic ratio

    International Nuclear Information System (INIS)

    Tusi, Marcelo Marques; Brandalise, Michele; Correa, Olandir Vercino; Oliveira Neto, Almir; Linardi, Marcelo; Spinace, Estevam Vitorio; Villalba, Juan Carlo

    2009-01-01

    PtRu/Carbon materials with different Pt:Ru atomic ratios (30:70, 50:50, 60:40, 80:20 and 90:10) and 5 wt% of nominal metal load were prepared by hydrothermal carbonization using H 2 PtCl 6.6 H 2 O and RuCl 3. xH 2 O as metals sources and catalysts of the carbonization process and starch as carbon source and reducing agent. The obtained materials were treated at 900 deg C under argon and characterized by EDX, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry and chronoamperometry using thin porous coating technique. The PtRu/Carbon materials showed Pt:Ru atomic ratios obtained by EDX similar to the nominal ones. XRD analysis showed that Pt face-cubic centered (FCC) and Ru hexagonal close-packed (HCP) phases coexist in the obtained materials. The average crystallite sizes of the Pt (FCC) phase were in the range of 8-12 nm. The material prepared with Pt:Ru atomic ratio of 50:50 showed the best performance for methanol electro-oxidation. (author)

  10. Detection of Cyclic Dinucleotides by STING.

    Science.gov (United States)

    Du, Xiao-Xia; Su, Xiao-Dong

    2017-01-01

    STING (stimulator of interferon genes) is an essential signaling adaptor protein mediating cytosolic DNA-induced innate immunity for both microbial invasion and self-DNA leakage. STING is also a direct receptor for cytosolic cyclic dinucleotides (CDNs), including the microbial secondary messengers c-di-GMP (3',3'-cyclic di-GMP), 3',3'cGAMP (3',3'-cyclic GMP-AMP), and mammalian endogenous 2',3'cGAMP (2',3'-cyclic GMP-AMP) synthesized by cGAS (cyclic GMP-AMP synthase). Upon CDN binding, STING undergoes a conformational change to enable signal transduction by phosphorylation and finally to active IRF3 (Interferon regulatory factor 3) for type I interferon production. Here, we describe some experimental procedures such as Isothermal Titration Calorimetry and luciferase reporter assays to study the CDNs binding and activity by STING proteins.

  11. Cyclic characteristics of earthquake time histories

    International Nuclear Information System (INIS)

    Hall, J.R. Jr; Shukla, D.K.; Kissenpfennig, J.F.

    1977-01-01

    From an engineering standpoint, an earthquake record may be characterized by a number of parameters, one of which is its 'cyclic characteristics'. The cyclic characteristics are most significant in fatigue analysis of structures and liquefaction analysis of soils where, in addition to the peak motion, cyclic buildup is significant. Whereas duration peak amplitude and response spectra for earthquakes have been studied extensively, the cyclic characteristics of earthquake records have not received an equivalent attention. Present procedures to define the cyclic characteristics are generally based upon counting the number of peaks at various amplitude ranges on a record. This paper presents a computer approach which describes a time history by an amplitude envelope and a phase curve. Using Fast Fourier Transform Techniques, an earthquake time history is represented as a projection along the x-axis of a rotating vector-the length the vector is given by the amplitude spectra-and the angle between the vector and x-axis is given by the phase curve. Thus one cycle is completed when the vector makes a full rotation. Based upon Miner's cumulative damage concept, the computer code automatically combines the cycles of various amplitudes to obtain the equivalent number of cycles of a given amplitude. To illustrate the overall results, the cyclic characteristics of several real and synthetic earthquake time histories have been studied and are presented in the paper, with the conclusion that this procedure provides a physical interpretation of the cyclic characteristics of earthquakes. (Auth.)

  12. The Electrodeposition of Cobalt, Iron, and Antimony and their Aluminum Alloys from Room-Temperature Aluminum Chloride 1-Methyl-3-Ethylimidazolium Chloride Molten Salt

    National Research Council Canada - National Science Library

    Mitchell, John

    1997-01-01

    .... The plating and stripping of these metals was investigated using cyclic voltammetry, rotating disk and rotating ring-disk electrode voltammetry, controlled potential coulometry, and potential step chronoamperometry...

  13. Electrochemical Behavior of La on Liquid Bi electrode in LiCl-KCl molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom Kyu; Han, Hwa Jeong; Park, Byung Gi [Soonchunyang University, Asan (Korea, Republic of)

    2016-05-15

    Pyroprocessing technology aims to achieve a grouped and efficiently separation of all actinide for recycling with a sufficient decontamination of fission products generating the minimum. The main steps of the pyroprocess is electrowinning process, where the remaining elements in a molten salt after electrorifinning process. That process is U, MAs are concurrently recovered at the liquid metal. Recently, a study of the liquid metal and molten salt using an electrochemical is carried out in a variety of fields. However, there is deficient information about the electrode reaction of lanthanide and actinide on the liquid bismuth metal electrodes. In this paper, the electrochemical behavior of La(III), with liquid bismuth was investigated by the electrochemical method. The aim of this study is to investigate the electrochemical behavior of lanthanum or neodymium among lanthanides in molten LiCl-KCl salt at liquid metal bismuth electrode cyclic voltammetry and derive the thermochemical properties. The electrochemical behavior of La was studied in LiCl-KCl-LaCl{sub 3} molten salts using electrochemical techniques Cyclic Voltammetry on liquid Bi electrodes at 773K. During the process of cyclic voltammetry electrolysis, intermetallic compound were observed of La, Lax-Biy, Li-Bi. The diffusion coefficient of La was measured by cyclic voltemmetry and was found to be 8.18x10{sup -5}cm{sup 2}/s.

  14. Synthesis and characterization of a new porphyrin-polyoxometalate hybrid material and investigation of its catalytic activity.

    Science.gov (United States)

    Araghi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammdpoor-Baltork, Iraj

    2012-03-14

    In the present work, the preparation of a new organic-inorganic hybrid material in which tetrakis(p-aminophenylporphyrin) is covalently linked to a Lindqvist structure of polyoxometalate, is reported. This new porphyrin-polyoxometalate hybrid material was characterized by (1)H NMR, FT-IR and UV-Vis spectroscopic methods and cyclic voltammetry. These spectro- and electrochemical studies provided spectral data of the synthesis of this compound. Cyclic voltammetry showed the influence of the porphyrin on the redox process of the polyoxometalate. The catalytic activity of this hybrid material was investigated in the alkene epoxidation with NaIO(4).

  15. Electrochemistry of uranium in sodium chloroaluminate melts

    International Nuclear Information System (INIS)

    D'olieslager, W.; Meuris, F.; Heerman, L.

    1990-01-01

    The electrochemical behaviour of uranium was studied in basic, NaCl-saturated NaAlCl 4 melts at 175 deg C. Solutions of UO 3 exhibit two oxidation/reduction waves (cyclic voltammetry). Analysis of the peak currents (cyclic voltammetry), the limiting currents (pulse polarography) and the non-linear log i-t curves (anodic controlled potential coulometry) leads to the conclusion that uranium(IV) in the basic chloroaluminate melt exists as two different species in slow equilibrium with one another, of which only one species can be oxidized to U(VI). (author) 16 refs.; 7 figs.; 3 tabs

  16. Structure-activity studies of vasoactive intestinal peptide (VIP): cyclic disulfide analogs.

    Science.gov (United States)

    Bolin, D R; Cottrell, J; Garippa, R; O'Neill, N; Simko, B; O'Donnell, M

    1993-02-01

    Analogs of vasoactive intestinal peptide with cysteine residues incorporated at selected sites within the sequence were prepared by solid phase methods, oxidized to the corresponding cyclic disulfides and purified to homogeneity by preparative HPLC. The cyclic compounds were assayed as smooth muscle relaxants on isolated guinea pig trachea, as bronchodilators in vivo in guinea pigs, and for binding to VIP receptors in guinea pig lung membranes. Of the analogs prepared at the N-terminus, one compound, Ac-[D-Cys6,D-Cys11,Lys12,Nle17,Val26,Th r28]-VIP, was found to be a full agonist with slightly more than one tenth the potency of native VIP. Most other cyclic analogs in the N-terminal region were found to be inactive. A second analog, Ac-[Lys12,Cys17,Val26,Cys28]-VIP, was also found to be a full agonist with potency about one third that of native VIP. Furthermore, this compound was active as a bronchodilator in vivo in guinea pig, but with somewhat diminished potency as compared to native VIP. Strikingly, this cyclic compound was found to have significantly longer duration of action (> 40 min) when compared to an analogous acyclic compound (5 min). The conformational restrictions imposed by formation of the cyclic ring structures may have stabilized the molecule to degradation, thus enhancing the effective duration of action. Analysis of this series of cyclic analogs has also yielded information about the requirements for the receptor-active conformation of VIP.

  17. STUDY OF ELECTROPOLIMERIZATION PROCESSES OF PYRROLE BY CYCLIC VOLTAMMETRIC TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Adhitasari Suratman

    2010-06-01

    Full Text Available Electropolymerization processes and electrochemical properties of polypyrrole as electroactive polymer have been studied by cyclic voltammetric technique. Pyrrole was electropolymerized to form polypyrrole in water-based solvent containing sodium perchlorate as supporting electrolyte in several pH values. The pH of the solutions were varied by using Britton Robinson buffer. The results showed that oxidation potential limit of electropolymerization processes of pyrrole was 1220 mV vs Ag/AgCl reference electrode. It can be seen that cyclic voltammetric respon of polypyrrole membrane that was prepared by electropolymerization processes of pyrrole at the scanning rate of 100 mV/s was stable. While the processes of pyrrole electropolymerization carried out at the variation of pH showed that the best condition was at the pH range of 2 - 6.   Keywords: polypyrolle, electropolymer, voltammetric technique

  18. Simultaneous determination of mycophenolate mofetil and its active metabolite, mycophenolic acid, by differential pulse voltammetry using multi-walled carbon nanotubes modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Soleimani, Mohammad; Afkhami, Abbas

    2014-09-01

    A highly sensitive electrochemical sensor for the simultaneous determination of mycophenolate mofetil (MPM) and mycophenolic acid (MPA) was fabricated by multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE). The electrochemical behavior of these two drugs was studied at the modified electrode using cyclic voltammetry and adsorptive differential pulse voltammetry. MPM and MPA were oxidized at the GCE during an irreversible process. DPV analysis showed two oxidation peaks at 0.87 V and 1.1 V vs. Ag/AgCl for MPM and an oxidation peak at 0.87 V vs. Ag/AgCl for MPA in phosphate buffer solution of pH 5.0. The MWCNTs/GCE displayed excellent electrochemical activities toward oxidation of MPM and MPA relative to the bare GCE. The experimental design algorithm was used for optimization of DPV parameters. The electrode represents linear responses in the range 5.0 × 10{sup −6} to 1.6 × 10{sup −4} mol L{sup −1} and 2.5 × 10{sup −6} mol L{sup −1} to 6.0 × 10{sup −5} mol L{sup −1} for MPM and MPA, respectively. The detection limit was found to be 9.0 × 10{sup −7} mol L{sup −1} and 4.0 × 10{sup −7} mol L{sup −1} for MPM and MPA, respectively. The modified electrode showed a good sensitivity and stability. It was successfully applied to the simultaneous determination of MPM and MPA in plasma and urine samples. - Highlights: • A new modified electrochemical sensor was constructed and used. • Multiwalled carbon nanotubes were used as the modifiers. • MPM and MPA were measured simultaneously at the low levels. • The sensor was used to the determination of MPA and MPM in real samples.

  19. Electrochemical Studies of the Inhibition and Activation Effects of Al (III on the Activity of Bovine Liver Glutamate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Shuping Bi

    2005-04-01

    Full Text Available Since the study of Al3+ ion on the enzyme activity by using of electrochemical techniques was rarely found in available literatures, the differential-pulse polarography (DPP technique was applied to study the effects of Al3+ ion on the glutamate dehydrogenase (GDH activity in the catalytical reaction of α-KG +NADH+NH4 + ⇔ L-Glu+NAD++H2O by monitoring the DPP reduction current of NAD+. At the plant and animal physiologically relevant pH values (pH=6.5 and 7.5, the GDH enzyme activities were strongly depended on the concentrations of the metal ion in the assay mixture solutions. In the lower Al (III concentration solutions (80μM, the inhibition effects of Al (III were shown again. The cyclic voltammetry of NAD+ and NAD+-GDH in the presence of Al (III can help to explain some biological phenomena. According to the differential-pulse polarography and cyclic voltammetry experiments, the present research confirmed that the electrochemical technique is a convenient and reliable sensor for accurate determination of enzyme activity in biological and environmental samples.

  20. Een bepalingsmethode voor thallium in regenwater met behulp van voltammetrie

    NARCIS (Netherlands)

    Struijs; J.; Wolfs; P.M.; Esseveld; F.G.van

    1985-01-01

    In dit rapport wordt een bepalingmethode beschreven voor thallium in het nanogram/liter-gebied, waarbij gebruik wordt gemaakt van differentiele pulse-anodic stripping voltammetry (DPASV) aan de dunne kwikfilm. Met deze techniek blijkt het mogelijk om de concentratie van dit element rechtstreeks

  1. Comparative voltammetric study and determination of carbamate pesticide residues in soil at carbon nanotubes paste electrodes

    Directory of Open Access Journals (Sweden)

    THOMMANDRU RAVEENDRANATH BAB

    2014-02-01

    Full Text Available In this investigation, the persistence of carbamate pesticides in soil samples was investigated. A simple and selective differential pulse adsorptive stripping voltammetry was selected for this investigation. Carbon nanotubes paste electrodes were used as working electrodes for differential pulse adsorptive stripping voltammetry and cyclic voltammetry. A symmetric study of the various operational parameters that affect the stripping response was carried out by differential pulse voltammetry. Peak currents were linear over the concentration range of 10-5 to 10-10 M with an accumulation potential of -0.6 V and a 70 s accumulation time with lower detection limits of 1.09 x 10-7 M, 1.07 × 10-7M, 1.09×10-7 M for chlorphropham, thiodicarb, aldicarb. The relative standard deviation (n=10 and correlation coefficient values were 1.15 %, 0.988; 1.13 %, 0.978; and 1.14 %, 0.987, respectively. Universal buffer with pH range 2.0 - 6.0 was used as sup­porting electrolyte. The solutions with uniform concentration (10-5 M were used in all deter­minations. Calculations were made by standard addition method.

  2. A combined SEM and CV Study of Solid Oxide Fuel Cell Interconnect Steels

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent; Ofoegbu, Stanley; Mikkelsen, Lars

    2012-01-01

    Scanning electron microscopy and cyclic voltammetry were used to investigate the high temperature oxidation behavior of two solid oxide fuel cell interconnect steels. One alloy had a low content of manganese; the other alloy had a high content of manganese. Four reduction and four oxidation peaks...

  3. Effects of Electrodeposition Mode and Deposition Cycle on the Electrochemical Performance of MnO2-NiO Composite Electrodes for High-Energy-Density Supercapacitors.

    Science.gov (United States)

    Rusi; Majid, S R

    2016-01-01

    Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg-1 with energy and power densities of 1322 Wh kg-1 and 110.5 kW kg-1, respectively, at a current density of 20 Ag-1 in a mixed KOH/K3Fe(CN)6 electrolyte.

  4. Effects of Electrodeposition Mode and Deposition Cycle on the Electrochemical Performance of MnO2-NiO Composite Electrodes for High-Energy-Density Supercapacitors.

    Directory of Open Access Journals (Sweden)

    Rusi

    Full Text Available Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg-1 with energy and power densities of 1322 Wh kg-1 and 110.5 kW kg-1, respectively, at a current density of 20 Ag-1 in a mixed KOH/K3Fe(CN6 electrolyte.

  5. Behaviour of Cohesionless Soils During Cyclic Loading

    DEFF Research Database (Denmark)

    Shajarati, Amir; Sørensen, Kris Wessel; Nielsen, Søren Kjær

    Offshore wind turbine foundations are typically subjected to cyclic loading from both wind and waves, which can lead to unacceptable deformations in the soil. However, no generally accepted standardised method is currently available, when accounting for cyclic loading during the design of offshore...... wind turbine foundations. Therefore a literature study is performed in order to investigate existing research treating the behaviour of cohesionless soils, when subjected to cyclic loading. The behaviour of a soil subjected to cyclic loading is found to be dependent on; the relative density, mean...

  6. A potentiostat featuring an integrator transimpedance amplifier for the measurement of very low currents—Proof-of-principle application in microfluidic separations and voltammetry

    Science.gov (United States)

    Koutilellis, G. D.; Economou, A.; Efstathiou, C. E.

    2016-03-01

    This work reports the design and construction of a novel potentiostat which features an integrator transimpedance amplifier as a current-monitoring unit. The integration approach addresses the limitations of the feedback resistor approach used for current monitoring in conventional potentiostat designs. In the present design, measurement of the current is performed by a precision switched integrator transimpedance amplifier operated in the dual sampling mode which enables sub-pA resolution. The potentiostat is suitable for measuring very low currents (typical dynamic range: 5 pA-4.7 μA) with a 16 bit resolution, and it can support 2-, 3- and 4-electrode cell configurations. Its operation was assessed by using it as a detection module in a home-made capillary electrophoresis system for the separation and amperometric detection of paracetamol and p-aminophenol at a 3-electrode microfluidic chip. The potential and limitations of the proposed potentiostat to implement fast potential-scan voltammetric techniques were demonstrated for the case of cyclic voltammetry.

  7. A potentiostat featuring an integrator transimpedance amplifier for the measurement of very low currents--Proof-of-principle application in microfluidic separations and voltammetry.

    Science.gov (United States)

    Koutilellis, G D; Economou, A; Efstathiou, C E

    2016-03-01

    This work reports the design and construction of a novel potentiostat which features an integrator transimpedance amplifier as a current-monitoring unit. The integration approach addresses the limitations of the feedback resistor approach used for current monitoring in conventional potentiostat designs. In the present design, measurement of the current is performed by a precision switched integrator transimpedance amplifier operated in the dual sampling mode which enables sub-pA resolution. The potentiostat is suitable for measuring very low currents (typical dynamic range: 5 pA-4.7 μA) with a 16 bit resolution, and it can support 2-, 3- and 4-electrode cell configurations. Its operation was assessed by using it as a detection module in a home-made capillary electrophoresis system for the separation and amperometric detection of paracetamol and p-aminophenol at a 3-electrode microfluidic chip. The potential and limitations of the proposed potentiostat to implement fast potential-scan voltammetric techniques were demonstrated for the case of cyclic voltammetry.

  8. Study on shear properties of coral sand under cyclic simple shear condition

    Science.gov (United States)

    Ji, Wendong; Zhang, Yuting; Jin, Yafei

    2018-05-01

    In recent years, the ocean development in our country urgently needs to be accelerated. The construction of artificial coral reefs has become an important development direction. In this paper, experimental studies of simple shear and cyclic simple shear of coral sand are carried out, and the shear properties and particle breakage of coral sand are analyzed. The results show that the coral sand samples show an overall shear failure in the simple shear test, which is more accurate and effective for studying the particle breakage. The shear displacement corresponding to the peak shear stress of the simple shear test is significantly larger than that corresponding to the peak shear stress of the direct shear test. The degree of particle breakage caused by the simple shear test is significantly related to the normal stress level. The particle breakage of coral sand after the cyclic simple shear test obviously increases compared with that of the simple shear test, and universal particle breakage occurs within the whole particle size range. The increasing of the cycle-index under cyclic simple shear test results in continuous compacting of the sample, so that the envelope curve of peak shearing force increases with the accumulated shear displacement.

  9. Electrochemical Study of the EuIII/EuII Redox Properties of Complexes with Potential MRI Ligands

    Czech Academy of Sciences Publication Activity Database

    Gál, Miroslav; Kielar, F.; Sokolová, Romana; Ramešová, Šárka; Kolivoška, Viliam

    2013-01-01

    Roč. 2013, č. 18 (2013), s. 3217-3223 ISSN 1434-1948 R&D Projects: GA ČR GA203/09/1607 Institutional support: RVO:61388955 Keywords : europium * cyclic voltammetry * nitrogen heterocycle Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.965, year: 2013

  10. Anodic Stripping Voltammetry for Arsenic Determination on Composite Gold Electrode

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Kopanica, M.; Krista, J.

    2003-01-01

    Roč. 48, č. 2 (2003), s. 265-272 ISSN 0009-2223 Grant - others:GIT(AR) 101/02/U111/CZ Institutional research plan: CEZ:AV0Z4040901 Keywords : arsenic determination * stripping voltammetry * composite gold electrode Subject RIV: CG - Electrochemistry Impact factor: 0.415, year: 2003

  11. Voltammetry of hypoxic cells radiosensitizer etanidazole radical anion in water

    Czech Academy of Sciences Publication Activity Database

    Gál, Miroslav; Hromadová, Magdaléna; Pospíšil, Lubomír; Híveš, J.; Sokolová, Romana; Kolivoška, Viliam; Kocábová, Jana

    2010-01-01

    Roč. 78, č. 2 (2010), s. 118-123 ISSN 1567-5394 R&D Projects: GA ČR GP203/09/P502 Institutional research plan: CEZ:AV0Z40400503 Keywords : etanidazole * radiosensitizer * electron transfer * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 3.520, year: 2010

  12. Experimental study on uniaxial cyclic ratcheting behavior of 304 stainless steel at room temperature

    International Nuclear Information System (INIS)

    Yang Xianjie; Gao Qing; Cai Lixun; Liu Yujie

    2004-01-01

    The cyclic tests for 304 stainless steel with solution heat treatment under uni-axial cyclic straining and stressing were carried out systematically. The effects of the cyclic engineering stress amplitude history with constant mean stress, the mean engineering stress history with constant cyclic stress amplitude and the stress amplitude histories with the specific mean stress increment per cycle on the uni-axial ratcheting deformation behavior were investigated. Some significant results are obtained

  13. Fast and sensitive metronidazole determination by means of voltammetry on renewable amalgam silver based electrode without the preconcentration step

    Directory of Open Access Journals (Sweden)

    Piech Robert

    2017-01-01

    Full Text Available Application of cyclic renewable amalgam silver-based electrode (Hg(AgFE for sensitive metronidazole detection by the differential pulse voltammetry (DPV is described. The unique properties of the Hg(AgFE such as the relative large surface area and its fast and very simple renewal were fully utilized for sensitive measurements. Compared with the classical hanging mercury drop electrode (HMDE, the renewable Hg(AgFE significantly increases the reduction peak current of metronidazole because of its large surface area. The effects of various factors for the metronidazole determination such as: pulse height and width, step potential, surface area of the working electrode, and basic electrolyte composition are optimized. The obtained calibration graph is linear from 0.1 (17 μg L-1 to 2 μM (342 μg L-1 with correlation coefficient 0.999. For the Hg(AgFE with the surface area of 10.1 mm2 the limit of detection (LOD is 20 nM (3.4 μg L-1. The repeatability of the method at a concentration of the analyte of 0.5 μM (5.6 μg L−1, expressed as relative standard deviation (RSD is 2.1 % (n = 7. The proposed method was successfully applied and confirmed by studying recovery of metronidazole from spiked samples.

  14. Synthesis, characterization and electroanalytical application of a new SiO2/SnO2 carbon ceramic electrode

    International Nuclear Information System (INIS)

    Arguello, Jacqueline; Magosso, Herica A.; Landers, Richard; Pimentel, Vinicius L.; Gushikem, Yoshitaka

    2010-01-01

    A new SiO 2 /SnO 2 carbon ceramic composite was prepared by the sol-gel method, and its potential application in electrochemistry as a novel electrode material has been studied. The prepared xerogel was structurally and electrochemically characterized by scanning electron microscopy coupled to energy dispersive spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and cyclic voltammetry. The composite was pressed in a rigid disk-shape and used as a conductive substrate to immobilize a water-soluble organic-inorganic hybrid polymer, 3-n-propyl-4-picolinium chloride silsesquioxane. The oxidation of nitrite was studied on this polymer film coated electrode in aqueous solution using cyclic voltammetry and differential pulse voltammetry. This modified electrode exhibited a better defined voltammetric peak shifted negatively about 60 mV. The linear detection limit found for nitrite was from 1.3 x 10 -5 to 1.3 x 10 -3 mol l -1 and the detection limit was 3.3 x 10 -6 mol l -1 .

  15. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    Science.gov (United States)

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.

  16. Electrochemical Synthesis of Polyaniline/Poly-O-Aminophenol Copolymers in Chloride Medium

    Directory of Open Access Journals (Sweden)

    Lucia H. Mascaro

    2011-01-01

    Full Text Available The copolymerization of o-aminophenol (OAP and aniline (ANI on Pt and ITO electrodes was studied using cyclic voltammetry in 0.1 M HCl/0.4 M NaCl solution. The films were characterized by SEM, cyclic voltammetry, and UV-Vis spectroscopy. The properties of the copolymer were compared with PANI and POAP films. The results strongly suggest that the growth of PANI-POAP films does not consist of the simple buildup of layers of homopolymers on the electrode surface as a result of OAP or ANI oxidation products in the monomer mixture, but that a new conducting polymer is formed by copolymerization.

  17. DNA-binding studies of valrubicin as a chemotherapy drug using spectroscopy and electrochemical techniques

    Directory of Open Access Journals (Sweden)

    Reza Hajian

    2017-06-01

    Full Text Available In this study, the molecular interactions between valrubicin, an anticancer drug, and fish sperm DNA have been studied in phosphate buffer solution (pH 7.4 using UV–Vis spectrophotometry and cyclic voltammetry techniques. Valrubicin intercalated into double stranded DNA under a weak displacement reaction with methylene blue (MB molecule in a competitive reaction. The binding constant (kb of valrubicin-DNA was determined as 1.75×103 L/mol by spectrophotometric titration. The value of non-electrostatic binding constant (kt0 was almost constant at different ionic strengths while the ratio of kt0/kb increased from 4.51% to 23.77%. These results indicate that valrubicin binds to ds-DNA via electrostatic and intercalation modes. Thermodynamic parameters including ΔH0, ΔS0 and ΔG0 for valrubicin-DNA interaction were determined as −25.21×103 kJ/mol, 1.55×102 kJ/mol K and −22.03 kJ/mol, respectively. Cyclic voltammetry study shows a pair of redox peaks for valrubicin at 0.45 V and 0.36 V (vs. Ag/AgCl. The peak currents decreased and peak positions shifted to positive direction in the presence of DNA, showing intercalation mechanism due to the variation in formal potential.

  18. Synthesis of Cyclic Py-Im Polyamide Libraries

    OpenAIRE

    Li, Benjamin C.; Montgomery, David C.; Puckett, James W.; Dervan, Peter B.

    2013-01-01

    Cyclic Py-Im polyamides containing two GABA turn units exhibit enhanced DNA binding affinity, but extensive studies of their biological properties have been hindered due to synthetic inaccessibility. A facile modular approach toward cyclic polyamides has been developed via microwave-assisted solid-phase synthesis of hairpin amino acid oligomer intermediates followed by macrocyclization. A focused library of cyclic polyamides 1–7 targeted to the androgen response element (ARE) and the estrogen...

  19. Behaviour and quantification studies of terbacil and lenacil in environmental samples using cyclic and adsorptive stripping voltammetry at hanging mercury drop electrode.

    Science.gov (United States)

    Thriveni, T; Rajesh Kumar, J; Sujatha, D; Sreedhar, N Y

    2007-05-01

    The cyclic voltammograms of terbacil and lenacil at the hanging mercury drop electrode showed a single well defined four electron irreversible peak in universal buffer of pH 4.0 for both compounds. The peak potentials were shifted to more negative values on the increase of pH of the medium, implying the involvement of protons in the electrode reaction and that the proton transfer reaction precedes the proper electrode process. The four electron single peak may be attributed to the simultaneous reduction of carbonyl groups present in 2 and 4 in pyrimidine ring of terbacil and lenacil to the corresponding hydroxy derivative. Based on the interfacial adsorptive character of the terbacil and lenacil onto the mercury electrode surface, a simple sensitive and low cost differential pulse adsorptive stripping voltammetric procedure was optimized for the analysis of terbacil and lenacil. The optimal operational conditions of the proposed procedure were accumulation potential E (acc) = -0.4 V, accumulation time t (acc) = 80 s, scan rate = 40 mV s(-1), pulse amplitude = 25 mV using a universal buffer pH 4.0 as a supporting electrolyte. The linear concentration range was found to be 1.5 x 10(-5) to 1.2 x 10(-9) mol/l and 1.5 x 10(-5) to 2.5 x 10(-8) mol/l with the lower detection limit of 1.22 x 10(-9) and 2.0 x 10(-8) mol/l. The correlation coefficient and relative standard deviation values are found to be 0.942, 0.996, 1.64% and 1.23%, respectively, for 10 replicants. The procedure was successfully applied for determination of terbacil and lenacil in formulations, mixed formulations, environmental samples such as fruit samples and spiked water samples.

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Electrochemical reduction of hydrogen peroxide is studied on a sand-blasted stainless steel (SSS) electrode in an aqueous solution of NaClO4. The cyclic voltammetric reduction of H2O2 at low concentrations is characterized by a cathodic peak at -0.40 V versus standard calomel electrode (SCE). Cyclic voltammetry is ...

  1. Determination of copper in whole blood by differential pulse adsorptive stripping voltammetry

    Directory of Open Access Journals (Sweden)

    Tarik Attar

    2014-02-01

    Full Text Available A selective and sensitive method for determination of copper in blood by adsorptive differential pulse cathodic stripping voltammetry is presented. The method is based on adsorptive accumulation of the complexes of Cu (II ions with benzenesulfonyl hydrazide onto hanging mercury drop electrode (HMDE, followed by the reduction of the adsorbed species by differential pulse cathodic stripping voltammetry. The effect of various parameters such as supporting electrolyte, concentration of benzenesulfonyl hydrazide, accumulation potential, accumulation time and stirring rate on the selectivity and sensitivity were studied. The optimum conditions for determination of copper include perchloric acid 0.03 M, concentration of benzenesulfonyl hydrazide 7.5×10-5 M, the accumulation potential of -350 mV (vs. Ag/AgCl, the accumulation time of 50 s, and the scan rate of 50 mV s-1. Under optimized conditions, linear calibration curves were established for the concentration of Cu (II in the range of 0.62-275 ng mL-1, with detection limit of 0.186 ng mL-1 for Cu (II. The procedure was successfully applied to the determination of copper ion in whole blood samples.

  2. Z₂-double cyclic codes

    OpenAIRE

    Borges, J.

    2014-01-01

    A binary linear code C is a Z2-double cyclic code if the set of coordinates can be partitioned into two subsets such that any cyclic shift of the coordinates of both subsets leaves invariant the code. These codes can be identified as submodules of the Z2[x]-module Z2[x]/(x^r − 1) × Z2[x]/(x^s − 1). We determine the structure of Z2-double cyclic codes giving the generator polynomials of these codes. The related polynomial representation of Z2-double cyclic codes and its duals, and the relation...

  3. Synthesis of unstable cyclic peroxides for chemiluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Bartoloni, Fernando H.; Oliveira, Marcelo A. de; Augusto, Felipe A.; Ciscato, Luiz Francisco M.L.; Bastos, Erick L.; Baader, Wilhelm J., E-mail: wjbaader@iq.usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Fundamental

    2012-11-15

    Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, a-peroxy lactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to study the properties of these substances. In this study, the synthesis, purification and characterization of three 1,2-dioxetanones are reported and a detailed procedure for the known synthesis of diphenoyl peroxide, another important model compound for the chemical generation of electronically excited states, is provided. For most of these peroxides, the complete spectroscopic characterization is reported here for the first time. (author)

  4. Direct monitoring of dopamine and 5-HT release in substantia nigra and ventral tegmental area in vitro

    DEFF Research Database (Denmark)

    Rice, M E; Richards, C D; Nedergaard, S

    1994-01-01

    Fast-scan cyclic voltammetry with carbon fibre microelectrodes was used to detect endogenous dopamine (DA) and 5-hydroxytryptamine (5-HT) release from three distinct regions of guinea-pig mid-brain in vitro: rostral and caudal substantia nigra (SN) and the ventral tegmental area (VTA). Previous...... these regions with in situ electrodes and demonstrates the utility of fast-scan cyclic voltammetry to investigate the mechanisms and possible non-classical functions of somato-dendritic DA release....

  5. Study of Essence of Managing Changes in Ensuring Cyclic Development of Enterprises

    Directory of Open Access Journals (Sweden)

    Hrynyova Valentyna M.

    2013-12-01

    Full Text Available The article conducts the study of essence of the change notion at stages of the life cycle of an enterprise. It justifies a necessity of study of cyclic development of enterprises within the concept of managing changes. It shows interconnection of such notions as functioning, development, flexibility and adaptability of an enterprise. It generalises and shows the essence of scientific studies of cyclic development of an enterprise. In the result of the study it reveals that evolution of concepts of managing changes and life cycle have a complex and ambiguous history. Each stage is connected with certain political, social and economic factors, which should be considered not only in the context of the international market, but, first of all, within experience of the national economy. This has to do with relatively small independent experience of the Ukrainian economy, which makes it difficult to make decisions on the basis of the organisational memory of an enterprise. The said factors make for a deeper study of theoretical and practical approaches to the study of changes at the stages of enterprise development.

  6. Formation, surface characterization, and electrocatalytic application of self-assembled monolayer films of tetra-substituted manganese, iron, and cobalt benzylthio phthalocyanine complexes

    CSIR Research Space (South Africa)

    Akinbulu, IA

    2011-10-01

    Full Text Available characteristics of the films were interrogated by cyclic voltammetry. Significant passivation of voltammetry processes associated with bare gold surface (gold oxidation and underpotential deposition of copper) confirmed formation of the films. Electrocatalytic...

  7. Evidence of metallic plating on archaeological artefacts by voltammetry of microparticles

    Czech Academy of Sciences Publication Activity Database

    Ottenwelter, Estelle; Costa, V.

    2015-01-01

    Roč. 57, č. 3 (2015), s. 497-504 ISSN 0003-813X Institutional support: RVO:67985912 Keywords : metallic plating * voltammetry of microparticles * non-invasive analysis * medieval period * archaeological artefacts Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 1.364, year: 2015

  8. Simulating cyclic voltammetry under advection for electrochemical cantilevers

    DEFF Research Database (Denmark)

    Adesokan, Bolaji James; Evgrafov, Anton; Sørensen, Mads Peter

    2015-01-01

    We present a mathematical model describing an electrochemical system involving electrode–electrolyte interaction. The model is governed by a system of advection–diffusion equations with a nonlinear reaction term at the boundary. Our calculations based on such model demonstrate the dynamics of ionic...

  9. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Breum Andersen, Sandra; Johansen, Helle Krogh

    2016-01-01

    Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin....... The linear quantification of pyocyanin has an R2 value of 0.991 across the clinically relevant concentration range of 2–100 ηM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ±1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive...

  10. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry

    DEFF Research Database (Denmark)

    Alatraktchi, Fatima AlZahra'a; Andersen, Sandra Breum; Johansen, Helle Krogh

    2016-01-01

    Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin....... The linear quantification of pyocyanin has an R² value of 0.991 across the clinically relevant concentration range of 2-100 µM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ± 1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive...

  11. Electrochemical detection of commercial silver nanoparticles: identification, sizing and detection in environmental media

    International Nuclear Information System (INIS)

    Stuart, E J E; Tschulik, K; Compton, R G; Omanović, D; Cullen, J T; Jurkschat, K; Crossley, A

    2013-01-01

    The electrochemistry of silver nanoparticles contained in a consumer product has been studied. The redox properties of silver particles in a commercially available disinfectant cleaning spray were investigated via cyclic voltammetry before particle-impact voltammetry was used to detect single particles in both a typical aqueous electrolyte and authentic seawater media. We show that particle-impact voltammetry is a promising method for the detection of nanoparticles that have leached into the environment from consumer products, which is an important development for the determination of risks associated with the incorporation of nanotechnology into everyday products. (paper)

  12. Anodic Stripping Voltammetry at Nanoelectrodes: Trapping of Mn2+ by Crown Ethers

    International Nuclear Information System (INIS)

    Danis, Laurence; Gateman, Samantha Michelle; Snowden, Michael Edward; Halalay, Ion C.; Howe, Jane Y.; Mauzeroll, Janine

    2015-01-01

    The work presented here describes the development and characterization of platinum-mercury hemispherical nanoelectrodes for the spatially resolved quantitative detection of manganese cations. The electrochemical probes were made by electrodeposition of metallic mercury from a mercuric ion solution onto Pt/quartz laser-pulled concentric disk nanoelectrodes (with disk radii ranging from 3 to 500 nm). The nanoelectrodes were characterized by steady-state voltammetry, scanning electrochemical microscopy, environmental scanning electron microscopy, energy-dispersive X-ray spectroscopy and calibrated with respect to the concentration of Mn 2+ ions using anodic stripping voltammetry. The fully characterized probes were employed for the quantitative detection of Mn 2+ . The technique has been used to evaluate the impact of a novel approach for mitigating the undesirable consequences of manganese dissolution in Li-ion batteries

  13. Technetium electrodeposition from aqueous formate solutions at graphite electrode: electrochemical study

    International Nuclear Information System (INIS)

    Maslennikov, A.; Peretroukhine, V.; Masson, M.; Lecomte, M.

    1999-01-01

    Recovery of technetium from aqueous formate buffer solutions of ionic strength μ = 1.0 was studied in the pH interval from 1.6 to 7.5 at graphite cathode in an electrolytic cell with separated compartments was studied, using cyclic voltammetry (CV) and inverse stripping voltammetry (ISV) techniques. It has been shown that Tc electrodeposition process becomes possible at the potentials of graphite cathode E cath. 1/2 = -0.72±0.02 V/SCE and was pH independent in the interval pH = 3.46-7.32. Mechanism of electrodeposition, including Tc(VII)/Tc(IV) reduction in the solution followed by Tc(IV) hydrolysis at the electrode surface with formation of hydrated Tc oxide cathodic deposit has been proposed. The further precision of the Tc(VII) electrochemical reduction mechanism in formate buffer media and optimization of the electrodeposition process seems to be possible using additional analytical facilities except electrochemical methods. (orig.)

  14. [Cyclic movement training versus conventional physiotherapy for rehabilitation of hemiparetic gait after stroke: a pilot study].

    Science.gov (United States)

    Podubecka, J; Scheer, S; Theilig, S; Wiederer, R; Oberhoffer, R; Nowak, D A

    2011-07-01

    Recovery of impaired motor functions following stroke is commonly incomplete in spite of intensive rehabilitation programmes. At 6 months following a stroke up to 60 % of affected individuals still suffer from permanent motor deficits, in particular hemiparetic gait, that are relevant for daily life. Novel innovative therapeutic strategies are needed to enhance the recovery of impaired gait function following stroke. This pilot study has investigated the effectiveness of conventional physiotherapy in comparison to an apparative cyclic movement training over a period of 4 weeks to improve (i) power during a submaximal cyclic movement training of the lower limbs, (ii) cardiac fitness, (iii) balance and gait ability, and (iv) quality of life in stroke patients. In comparison to physiotherapy apparative cyclic movement training improved power, balance, cardiac fitness and quality of life to a greater extent. However, there was a statistically significant difference between both intervention groups only for balance but not for the other parameters assessed. The present pilot study should inspire future research with larger patient cohorts to allow appropriate judgement on the effectiveness of apparative cyclic movement training in stroke rehabilitation. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Comparative Study of Phase Transformation in Single-Crystal Germanium during Single and Cyclic Nanoindentation

    Directory of Open Access Journals (Sweden)

    Koji Kosai

    2017-11-01

    Full Text Available Single-crystal germanium is a semiconductor material which shows complicated phase transformation under high pressure. In this study, new insight into the phase transformation of diamond-cubic germanium (dc-Ge was attempted by controlled cyclic nanoindentation combined with Raman spectroscopic analysis. Phase transformation from dc-Ge to rhombohedral phase (r8-Ge was experimentally confirmed for both single and cyclic nanoindentation under high loading/unloading rates. However, compared to single indentation, double cyclic indentation with a low holding load between the cycles caused more frequent phase transformation events. Double cyclic indentation caused more stress in Ge than single indentation and increased the possibility of phase transformation. With increase in the holding load, the number of phase transformation events decreased and finally became less than that under single indentation. This phenomenon was possibly caused by defect nucleation and shear accumulation during the holding process, which were promoted by a high holding load. The defect nucleation suppressed the phase transformation from dc-Ge to r8-Ge, and shear accumulation led to another phase transformation pathway, respectively. A high holding load promoted these two phenomena, and thus decreased the possibility of phase transformation from dc-Ge to r8-Ge.

  16. Electrochemistry of chlorogenic acid: experimental and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Namazian, Mansoor [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)]. E-mail: namazian@yazduni.ac.ir; Zare, Hamid R. [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2005-08-10

    Cyclic voltammetry, chronoamperometry and rotating disk electrode voltammetry as well as quantum chemical methods, are used for electrochemical study of chlorogenic acid, as an important biological molecule. The standard formal potential, diffusion coefficient, and heterogeneous electron transfer rate constant of chlorogenic acid in aqueous solution are investigated. Acidic dissociation constant of chlorogenic acid is also obtained. Quantum mechanical calculations on oxidation of chlorogenic acid in aqueous solution, using density functional theory are presented. The change of Gibbs free energy and entropy of oxidation of chlorogenic acid are calculated using thermochemistry calculations. The calculations in aqueous solution are carried out with the use of polarizable continuum solvation method. Theoretical standard electrode potential of chlorogenic acid is achieved to be 0.580 V versus standard calomel electrode (SCE) which is in agreement with the experimental value of 0.617 V obtained experimentally in this work. The difference is consistent with the values we previously reported for other quinone derivatives.

  17. Electrochemical Performance of a New Modified Graphite-Epoxy Electrode for Covalent Immobilization of DNA

    OpenAIRE

    Balbin-Tamayo, Abel I; Riso, Laura S; Esteva-Guas, Ana Margarita; Mardini-Farias, Pércio Augusto; Pérez-Gramatges, Aurora

    2017-01-01

    A new epoxy conducting composite material prepared from epoxy resin, graphite and benzoic acid was developed and used for the manufacture of electrodes, which were characterized by cyclic voltammetry, Raman spectroscopy and field-emission scanning electron microscopy (FESEM). The dependence of peak-to-peak potential, peak anodic current, and the anodic peak/cathodic peak current ratio with scan rate were evaluated by cyclic voltammetry taking into account the Fe(CN)6(3-/4-) standard redox sys...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    methylimidazolium chloride (C6mimCl) ionic liquid was studied using glassy carbon electrode at 375 K by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. In this electrochemical study, we have made an attempt ...

  19. Thorium effect on the oxidation of uranium: Photoelectron spectroscopy (XPS/UPS) and cyclic voltammetry (CV) investigation on (U{sub 1−x}Th{sub x})O{sub 2} (x = 0 to 1) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cakir, P., E-mail: pelincakir@outlook.com [European Commission, Joint Research Centre, P.O. Box 2340, D-76125, Karlsruhe (Germany); Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629, JB Delft (Netherlands); Eloirdi, R.; Huber, F. [European Commission, Joint Research Centre, P.O. Box 2340, D-76125, Karlsruhe (Germany); Konings, R.J.M. [European Commission, Joint Research Centre, P.O. Box 2340, D-76125, Karlsruhe (Germany); Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629, JB Delft (Netherlands); Gouder, T. [European Commission, Joint Research Centre, P.O. Box 2340, D-76125, Karlsruhe (Germany)

    2017-01-30

    Highlights: • XRD and XPS data of U{sub x}Th{sub 1-x}O{sub 2} films are in agreement with data obtained on bulk. • Oxygen affinity of thorium is much stronger than uranium. • Oxidation of uranium decreases as a function of thorium in the matrix. • XPS made pre and post CV shows thorium enrichment indicating a protective layer. • Higher initial uranium content is directly proportional to higher oxidation states. - Abstract: Thin films of U{sub 1−x}Th{sub x}O{sub 2} (x = 0 to 1) have been deposited via reactive DC sputter technique and characterized by X-ray/Ultra-violet Photoelectron Spectroscopy (XPS/UPS), X-ray Powder Diffractometer (XRD) and Cyclic Voltammetry (CV) in order to understand the effect of Thorium on the oxidation mechanism. During the deposition, the competition between uranium and thorium for oxidation showed that thorium has a much higher affinity for oxygen. Deposition conditions, time and temperature were also the subject of this study, to look at the homogeneity and the stability of the films. While core level and valence band spectra were not altered by the time of deposition, temperature was affecting the oxidation state of uranium and the valence band due to the mobility increase of oxygen through the film. X-ray diffraction patterns, core level spectra obtained for U{sub 1−x}Th{sub x}O{sub 2} versus the composition showed that lattice parameters follow the Vegard's law and together with the binding energies of U-4f and Th-4f are in good agreement with literature data obtained on bulk compounds. To study the effect of thorium on the oxidation of U{sub 1−x}Th{sub x}O{sub 2} films, we used CV experiments at neutral pH of a NaCl solution in contact with air. The results indicated that thorium has an effect on the uranium oxidation as demonstrated by the decrease of the current of the oxidation peak of uranium. XPS measurements made before and after the CV, showed a relative enrichment of thorium at the extent of uranium at

  20. Electrochemical Study of Bromide in the Presence of 1,3-Indandione. Application to the Electrochemical Synthesis of Bromo Derivatives of 1,3-Indandione

    OpenAIRE

    Nematollahi, D.; Akaberi, N.

    2001-01-01

    The electrochemical oxidation of bromide in the presence of 1,3-indandione (1) in water/acetic acid and methanol/acetic acid mixtures has been studied by cyclic voltammetry and controlled-potential coulometry. The results indicate the participation of 1,3-indandione in the bromination reaction. On the basis of the electroanalytical and preparative results a reaction mechanism including electron transfer, chemical reaction and regeneration of bromide was discussed. The electrochemical synthesi...

  1. Study of antioxidant properties of a water-soluble Vitamin E derivative-tocopherol monoglucoside (TMG) by differential pulse voltammetry.

    Science.gov (United States)

    Korotkova, E I; Avramchik, O A; Kagiya, T V; Karbainov, Y A; Tcherdyntseva, N V

    2004-06-17

    Study of antioxidant properties of tocopherol monoglucoside (TMG), a water-soluble Vitamin E derivative, by differential pulse voltammetry has been carried out in this work. The pH influence on the antioxidant properties of TMG has been also investigated. It was observed that the antioxidant activity of TMG is greater at 6.90TMG and reactive oxygen species have been considered. Antioxidant activity of some standard antioxidants including Vitamin E was given for comparison. The results indicate that the TMG is an effective antioxidant in neutral solutions. The oxidation potential for TMG at pH 7.31 has been found (E=0.55+/-0.03V versus Ag|AgCl|KCl(sat) electrode). Finally the use of TMG for protection against oxidative stress has been recommended.

  2. Ion Movement in Polypyrrole/Dodecylbenzenesulphonate Films in aqueous and non-aqueous electrolytes

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen

    2002-01-01

    The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements. Investigati......The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements....... Investigations were carried out using aqueous and non-aqueous electrolytes to study the effect of solvent on the ion movement during redox processes. When PPy films are cycled in aqueous electrolytes transport of both anion and cation occurs during oxidation and reduction. However, when cycled in the nonaqueous...

  3. Cyclic nucleotides and radioresistnace

    International Nuclear Information System (INIS)

    Kulinskij, V.I.; Mikheeva, G.A.; Zel'manovich, B.M.

    1982-01-01

    The addition of glucose to meat-peptone broth does not change the radiosensitizing effect (RSE) of cAMP at the logarithmic phase (LP) and the radioprotective effect (RPE) at the stationary phase (SP), but sensitization, characteristic of cGMP, disappears in SP and turns into RPE in LP. Introduction of glucose into the broth for 20 min eliminates all the effects of both cyclic nucleotides in the cya + strain while cya - mutant exhibits RSE. RSE of both cyclic nucleotides is only manifested on minimal media. These data brought confirmation of the dependence of the influence of cyclic media. These data brought confirmation of the dependence of the influence of cyclic nucleotides on radioresistance upon the metabolic status of the cell [ru

  4. The study of the oxidation of the natural flavonol fisetin confirmed quercetin oxidation mechanism

    Czech Academy of Sciences Publication Activity Database

    Ramešová, Šárka; Sokolová, Romana; Degano, I.

    2015-01-01

    Roč. 182, NOV 2015 (2015), s. 544-549 ISSN 0013-4686 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR M200401201 Program:M Institutional support: RVO:61388955 Keywords : oxidation * flavonoids * cyclic voltammetry Subject RIV: CG - Electrochemistry Impact factor: 4.803, year: 2015

  5. Electrocatalysis and kinetics of the direct alcohol fuel cells. DEMS and ac voltammetry studies

    Energy Technology Data Exchange (ETDEWEB)

    Othman Mostafa, Ehab Mostafa

    2013-01-11

    For the direct methanol fuel cell (DMFC) operating at low temperature, the main problem that arises at the anode is its poisoning (deactivation) due to the accumulation of the fuel adsorption product (CO{sub ad}) which can only be oxidized at high potentials (> 0.7 V). For low temperature direct ethanol fuel cells (DEFCs), the main problem that arises at the anode, beside its poisoning by ethanol adsorption products (CO{sub ad} and CH{sub x,ad}), is the incomplete ethanol oxidation due to the difficulty of (C-C) bond breaking. In the previous types of fuel cells, a sluggish oxygen reduction reaction (ORR) kinetics was observed at the cathode which results in a large voltage drop. Such behavior is due to strong inhibition of the cathodic ORR, resulting in high overpotentials and therefore, significant deterioration in the energy conversion efficiency of the cell. The slow kinetic behavior stems from the difficulty of (O=O) bond breaking. In order to model the conditions of continuous oxidation/reduction in a fuel cell, the continuous mass transfer to the electrode surface is necessary. Therefore, mass spectrometry and AC voltammetry measurements presented here were done using the thin layer flow through cell. This thesis aims at a determination of the rate constant of single reaction steps during the oxidation of CO, methanol and ethanol at different platinum surfaces. Towards that aim, I investigated the electrocatalytic oxidation and adsorption rate of methanol (chapter 3) and the electrocatalytic oxidation of ethanol (chapter 4) at different Pt surfaces, using DEMS. In chapter 5, the potential dependence of the bulk and adsorbed methanol oxidation reaction rate (presented by the apparent transfer coefficient, {alpha}') and the corresponding Tafel slope of the reaction have been determined under convection conditions using a potential modulation ac voltammetry technique. Finally, as an application of the method presented in chapter 5, my work in chapter 6

  6. Conformation of cyclic and linear polydimethylsiloxane in the melt a small-angle neutron-scattering study

    CERN Document Server

    Gagliardi, S; Dagger, A; Semlyen, A J

    2002-01-01

    In this study we report small-angle neutron-scattering measurements of cyclic and linear polydimethylsiloxane (PDMS) in the melt. It has been suggested that due to the presence of topological constraints, rings in the melt may be more compact than Gaussian chains. We show that the cyclic chains are partially collapsed and do not follow Gaussian statistics: the weight-average radius of gyration R sub g sub , sub w is found to be proportional to M sub w sup 0 sup . sup 5 sup 3 and M sub w sup 0 sup . sup 4 sup 0 in the case of linear and cyclic PDMS, respectively. The results are in agreement with recent computer simulations, which predict R sub g to be proportional to N sup 2 sup / sup 5 , where N is the degree of polymerisation. (orig.)

  7. Visual search of cyclic spatio-temporal events

    Science.gov (United States)

    Gautier, Jacques; Davoine, Paule-Annick; Cunty, Claire

    2018-05-01

    The analysis of spatio-temporal events, and especially of relationships between their different dimensions (space-time-thematic attributes), can be done with geovisualization interfaces. But few geovisualization tools integrate the cyclic dimension of spatio-temporal event series (natural events or social events). Time Coil and Time Wave diagrams represent both the linear time and the cyclic time. By introducing a cyclic temporal scale, these diagrams may highlight the cyclic characteristics of spatio-temporal events. However, the settable cyclic temporal scales are limited to usual durations like days or months. Because of that, these diagrams cannot be used to visualize cyclic events, which reappear with an unusual period, and don't allow to make a visual search of cyclic events. Also, they don't give the possibility to identify the relationships between the cyclic behavior of the events and their spatial features, and more especially to identify localised cyclic events. The lack of possibilities to represent the cyclic time, outside of the temporal diagram of multi-view geovisualization interfaces, limits the analysis of relationships between the cyclic reappearance of events and their other dimensions. In this paper, we propose a method and a geovisualization tool, based on the extension of Time Coil and Time Wave, to provide a visual search of cyclic events, by allowing to set any possible duration to the diagram's cyclic temporal scale. We also propose a symbology approach to push the representation of the cyclic time into the map, in order to improve the analysis of relationships between space and the cyclic behavior of events.

  8. VOLTAMMETRY OF AQUEOUS CHLOROAURIC ACID WITH HANGING MERCURY DROP ELECTRODE

    Czech Academy of Sciences Publication Activity Database

    Korshunov, A.; Josypčuk, Bohdan; Heyrovský, Michael

    2011-01-01

    Roč. 76, č. 7 (2011), s. 929-936 ISSN 0010-0765 R&D Projects: GA ČR GAP206/11/1638; GA AV ČR IAA400400806; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z40400503 Keywords : aqueous chloauric acid * voltammetry * hanging mercury drop electrode Subject RIV: CG - Electrochemistry Impact factor: 1.283, year: 2011

  9. Carbon paste electrode incorporating multi-walled carbon nanotube ...

    Indian Academy of Sciences (India)

    The preparation and electrochemical performance of the carbon nanotube paste electrode modified with ferrocene (FCMCNPE) was investigated for electrocatalytic behaviour toward oxidation of -acetyl--cysteine (NAC) in the presence of tryptophan (Trp) using cyclic voltammetry (CV) and differential pulse voltammetry ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The electrochemical and structural properties of the electrode were assessed using cyclic voltammetry, differential voltammetry, chronoamperometric techniques. The analytical properties (sensitivity, p) of this biosensor increased with plant tissue loading. Also this new biosensor was successfully applied for determination ...

  11. IMPACT OF POLYCYCLIC AROMATIC HYDROCARBONS OF THE ELECTROCHEMICAL RESPONSES OF A FERRICYNIDE PROBE AT TEMPLATE-MODIFIED SELF ASSEMBLED MONOLAYERS ON GOLD ELECTRODES

    Science.gov (United States)

    The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...

  12. Platinum-carbon black-titanium dioxide nanocomposite ...

    Indian Academy of Sciences (India)

    New-generation Pt/C-TiO2 nanocomposite electrocatalysts for fuel cells, prepared by a heterogeneous photocatalytic method, have been characterized using techniques such as cyclic voltammetry, rotating disk electrode (RDE) voltammetry, and electrochemical impedance spectroscopy (EIS). Importantly, galvanostatic data ...

  13. Micromechanical studies of cyclic creep fracture under stress controlled loading

    DEFF Research Database (Denmark)

    van der Giessen, Erik; Tvergaard, Viggo

    1996-01-01

    is based on numerical unit cell analyses for a planar polycrystal model with the grains and grain boundaries modeled individually, in order to investigate the interactions between the mechanisms involved and to account for the build-up of residual stress fields during cycling. The behaviour of a limiting......This paper deals with a study of intergranular failure by creep cavitation under stress-controlled cyclic loading conditions. Loading is assumed to be slow enough that diffusion and creep mechanisms (including grain boundary sliding) dominate, leading to intergranular creep fracture. This study...

  14. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  15. True Triaxial Experimental Study of Rockbursts Induced By Ramp and Cyclic Dynamic Disturbances

    Science.gov (United States)

    Su, Guoshao; Hu, Lihua; Feng, Xiating; Yan, Liubin; Zhang, Gangliang; Yan, Sizhou; Zhao, Bin; Yan, Zhaofu

    2018-04-01

    A modified rockburst testing system was utilized to reproduce rockbursts induced by ramp and cyclic dynamic disturbances with a low-intermediate strain rate of 2 × 10-3-5 × 10-3 s-1 in the laboratory. The experimental results show that both the ramp and cyclic dynamic disturbances play a significant role in inducing rockbursts. In the tests of rockbursts induced by a ramp dynamic disturbance, as the static stress before the dynamic disturbance increases, both the strength of specimens and the kinetic energy of the ejected fragments first increase and then decrease. In the tests of rockbursts induced by a cyclic dynamic disturbance, there exists a rockburst threshold of the static stress and the dynamic disturbance amplitude, and the kinetic energy of the ejected fragments first increases and then decreases as the cyclic dynamic disturbance frequency increases. The main differences between rockbursts induced by ramp dynamic disturbances and those induced by cyclic dynamic disturbances are as follows: the rockburst development process of the former is characterized by an impact failure feature, while that of the latter is characterized by a fatigue failure feature; the damage evolution curve of the specimen of the former has a leap-developing form with a significant catastrophic feature, while that of the latter has an inverted S-shape with a remarkable fatigue damage characteristic; the energy mechanism of the former involves the ramp dynamic disturbance giving extra elastic strain energy to rocks, while that of the latter involves the cyclic dynamic disturbance decreasing the ultimate energy storage capacity of rocks.

  16. Manual for Cyclic Triaxial Test

    DEFF Research Database (Denmark)

    Shajarati, Amir; Sørensen, Kris Wessel; Nielsen, Søren Kjær

    This manual describes the different steps that is included in the procedure for conducting a cyclic triaxial test at the geotechnical Laboratory at Aalborg University. Furthermore it contains a chapter concerning some of the background theory for the static triaxial tests. The cyclic/dynamic tria......This manual describes the different steps that is included in the procedure for conducting a cyclic triaxial test at the geotechnical Laboratory at Aalborg University. Furthermore it contains a chapter concerning some of the background theory for the static triaxial tests. The cyclic...

  17. Combination of Scanning Probe Microscopy and Coordination Chemistry: Structural and Electronic Study of Bis(methylbenzimidazolyl)ketone and Its Iron Complex

    NARCIS (Netherlands)

    Folkertsma, Emma; Van Der Lit, Joost; Di Cicco, Francesca; Lutz, Martin; Klein Gebbink, Robertus J. M.; Swart, Ingmar; Moret, Marc-etienne

    2017-01-01

    Here, we report the bulk synthesis of [FeII(BMBIK)Cl2] bearing the redox noninnocent bis(methylbenzimidazolyl)ketone (BMBIK) ligand and the synthesis of the similar complex [FeI(BMBIK)]+ on a Au(111) surface using lateral manipulation at the atomic level. Cyclic voltammetry and scanning tunneling

  18. Electrochemical Study of Modified Glassy Carbon Electrode with Carboxyphenyl Diazonium Salt in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mariem BOUROUROU

    2014-05-01

    Full Text Available The covalent grafting of carboxyphenyl functionalities to planar carbon substrates by reaction with 2-carboxybenezenediazonium salt has been studied in aqueous acid solution. The surface was characterized, before and after the functionnalization process, by cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry (LSV in order to control and to prove the formation of a coating on the carbon surface. The results indicate the presence of substituted phenyl groups on the investigated surface. Electrochemical impedance measurements show that the slowing down of the electron transfer kinetics was more evident by increasing the number of cycles resulting to higher DEp and RCT parameters. Besides, the effect of the pH on the electron transfer processes of the Fe(CN63-/4- at the modified electrode is studied. By changing the solution pH the terminal group’s charge state would vary, based on which the surface pKa value is estimated.

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniqueswere employed to clarify the changes in charge transfer during the fabrication and utilization of the DNA biosensor. The DNA hybridization event was monitored by differential pulse voltammetry (DPV). Under optimal conditions, the ...

  20. Analysis of polypyrrole-coated stainless steel electrodes ...

    Indian Academy of Sciences (India)

    WINTEC

    The electrochemical behaviour is studied using cyclic voltammetry, charge– discharge analysis and .... strategy is to employ the commercial in-built soft-. Figure 5. Galvanostatic .... not yield identical estimates on account of different parameters ...

  1. Electrochemical Studies of Benzophenone and Fluorenone Imines, Amines and Diphenyldiazomethane.

    Science.gov (United States)

    1982-01-01

    exhaustive, controlled-potential electrolyses has also been described. 2 Cells. electrodes. and electrolysis procedures. All electrochemical experiments...scale electrolyses was monitored periodically by cyclic voltammetry. At the conclusion of the experiment, the electrolysis mixture was protonated in a...stainless steel * column packed with LiChrosorb RP8 or LiChrosorb RP18, 10-pm mean particle size. The eluting solvent was a mixture of methanol and water

  2. Deformation mechanisms in cyclic creep and fatigue

    International Nuclear Information System (INIS)

    Laird, C.

    1979-01-01

    Service conditions in which static and cyclic loading occur in conjunction are numerous. It is argued that an understanding of cyclic creep and cyclic deformation are necessary both for design and for understanding creep-fatigue fracture. Accordingly a brief, and selective, review of cyclic creep and cyclic deformation at both low and high strain amplitudes is provided. Cyclic loading in conjunction with static loading can lead to creep retardation if cyclic hardening occurs, or creep acceleration if softening occurs. Low strain amplitude cyclic deformation is understood in terms of dislocation loop patch and persistent slip band behavior, high strain deformation in terms of dislocation cell-shuttling models. While interesting advances in these fields have been made in the last few years, the deformation mechanisms are generally poorly understood

  3. Determination of mobile form contents of Zn, Cd, Pb and Cu in soil extracts by combined stripping voltammetry

    International Nuclear Information System (INIS)

    Nedeltcheva, T.; Atanassova, M.; Dimitrov, J.; Stanislavova, L.

    2005-01-01

    The amount of mobile forms of Zn, Pb, Cd and Cu in extracts obtained by treating soil samples with ammonium nitrate were determined by an appropriate combination of anodic and cathodic stripping voltammetry with hanging mercury drop electrode. Every analysis required three mercury drops: on the first one, zinc was determined; on the second, cadmium and lead; on the third, copper was determined. Zinc, lead and cadmium were determined by conventional differential-pulse anodic stripping voltammetry. For copper determination, adsorptive differential-pulse cathodic stripping voltammetry with amalgamation using chloride ions as a complexing agent was applied. The standard deviation of the results was from 1 to 10% depending on the metal content in the sample. Voltammetric results were in good agreement with the AAS analysis. No microwave digestion of soil extracts was necessary

  4. Determination of mobile form contents of Zn, Cd, Pb and Cu in soil extracts by combined stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Nedeltcheva, T. [Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 8 Kl. Ohridsi Blvd., 1756 Sofia (Bulgaria)]. E-mail: nedel@uctm.edu; Atanassova, M. [Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 8 Kl. Ohridsi Blvd., 1756 Sofia (Bulgaria); Dimitrov, J. [N. Pushkarov Institute of Soil Science and Agroecology, 7 Shosse Bankya St., 1080 Sofia (Bulgaria); Stanislavova, L. [N. Pushkarov Institute of Soil Science and Agroecology, 7 Shosse Bankya St., 1080 Sofia (Bulgaria)

    2005-01-10

    The amount of mobile forms of Zn, Pb, Cd and Cu in extracts obtained by treating soil samples with ammonium nitrate were determined by an appropriate combination of anodic and cathodic stripping voltammetry with hanging mercury drop electrode. Every analysis required three mercury drops: on the first one, zinc was determined; on the second, cadmium and lead; on the third, copper was determined. Zinc, lead and cadmium were determined by conventional differential-pulse anodic stripping voltammetry. For copper determination, adsorptive differential-pulse cathodic stripping voltammetry with amalgamation using chloride ions as a complexing agent was applied. The standard deviation of the results was from 1 to 10% depending on the metal content in the sample. Voltammetric results were in good agreement with the AAS analysis. No microwave digestion of soil extracts was necessary.

  5. Infinity-Norm Permutation Covering Codes from Cyclic Groups

    OpenAIRE

    Karni, Ronen; Schwartz, Moshe

    2017-01-01

    We study covering codes of permutations with the $\\ell_\\infty$-metric. We provide a general code construction, which uses smaller building-block codes. We study cyclic transitive groups as building blocks, determining their exact covering radius, and showing linear-time algorithms for finding a covering codeword. We also bound the covering radius of relabeled cyclic transitive groups under conjugation.

  6. Synthesis, X-ray crystallography, spectroscopy, electrochemistry, thermal and kinetic study of uranyl Schiff base complexes

    Czech Academy of Sciences Publication Activity Database

    Asadi, Z.; Golzard, F.; Eigner, Václav; Dušek, Michal

    2013-01-01

    Roč. 66, č. 20 (2013), s. 3629-3646 ISSN 0095-8972 R&D Projects: GA ČR(CZ) GAP204/11/0809 Institutional support: RVO:68378271 Keywords : X-ray crystallography * uranyl Schiff base complex * kinetics of thermal decomposition * cyclic voltammetry * kinetics and mechanism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.224, year: 2013

  7. The Cyclicality of New Product Introductions

    OpenAIRE

    Kostas Axarloglou

    2003-01-01

    This study analyzes empirically the cyclical nature of the timing of new product introductions in U.S. manufacturing. New product introductions vary more in nonseasonal frequencies than in seasonal frequencies. However, the seasons alone account for only a small part of their total variability with demand factors being much more important. Demand fluctuations account for 35%80% and 17%43%, respectively, of the seasonal and cyclical variability of new product introductions in various industrie...

  8. Electrochemical studies and analysis of 1–10 wt% UCl3 concentrations in molten LiCl–KCl eutectic

    International Nuclear Information System (INIS)

    Hoover, Robert O.; Shaltry, Michael R.; Martin, Sean; Sridharan, Kumar; Phongikaroon, Supathorn

    2014-01-01

    Three electrochemical methods – cyclic voltammetry (CV), chronopotentiometry (CP), and anodic stripping voltammetry (ASV) – were applied to solutions of up to 10 wt% UCl 3 in the molten LiCl–KCl eutectic salt at 500 °C to determine electrochemical properties and behaviors and to help provide a scientific basis for the development of an in situ electrochemical probe for determining the concentration of uranium in a used nuclear fuel electrorefiner. Diffusion coefficients of UCl 4 and UCl 3 were calculated to be (6.72 ± 0.360) × 10 −6 cm 2 /s and (1.04 ± 0.17) × 10 −5 cm 2 /s, respectively. Apparent standard reduction potentials were determined to be (−0.381 ± 0.013) V and (−1.502 ± 0.076) V vs. 5 mol% Ag/AgCl or (−1.448 ± 0.013) V and (−2.568 ± 0.076) V vs. Cl 2 /Cl − for the U(IV)/U(III) and U(III)/U redox couples, respectively. In comparing this data with supercooled thermodynamic data to determine activity coefficients, the thermodynamic database used was important with resulting activity coefficients ranging from 2.34 × 10 −3 to 1.08 × 10 −2 for UCl 4 and 4.94 × 10 −5 to 4.50 × 10 −4 for UCl 3 . Of anodic stripping voltammetry and cyclic voltammetry anodic or cathodic peaks, the CV cathodic peak height divided by square root of scan rate was shown to be the most reliable method of determining UCl 3 concentration in the molten salt

  9. n-Type phosphorus-doped nanocrystalline diamond: electrochemical and in situ Raman spectroelectrochemical study

    Czech Academy of Sciences Publication Activity Database

    Vlčková Živcová, Zuzana; Frank, Otakar; Drijkoningen, S.; Haenen, K.; Mortet, Vincent; Kavan, Ladislav

    2016-01-01

    Roč. 6, č. 56 (2016), s. 51387-51393 ISSN 2046-2069 R&D Projects: GA ČR GA13-31783S Grant - others:AV ČR(CZ) G.0456.1 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : Amorphous films * Cyclic voltammetry * Diamond films Subject RIV: CG - Electrochemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 3.108, year: 2016

  10. The Redox Behaviour of Randomly Dispersed Single Walled Carbon Nanotubes both in the Absence and in the Presence of Adsorbed Glucose Oxidase

    Directory of Open Access Journals (Sweden)

    Gareth P. Keeley

    2006-12-01

    Full Text Available The electrochemical behaviour of SWCNTs randomly dispersed on gold and glassy carbon electrode surfaces was characterised via cyclic voltammetry and complex impedance spectroscopy, using the ferri/ferrocyanide couple as a redox active test probe . In subsequent investigations glucose oxidase (GOx was adsorbed onto the SWCNT ensemble without apparent denaturation of the enzyme. Cyclic voltammetry and potential step chronoamperometry were used to quantify and understand the process of electron transfer between the immobilised protein redox site and the working electrode. The effect of pH on the system was also investigated. In particular, we have shown that, for the calculation of electron transfer rate constants for surface-immobilised redox systems, chronoamperometry is preferable to voltammetry, which has been the technique of choice until now.

  11. Use of UO 2 films for electrochemical studies

    Science.gov (United States)

    Miserque, F.; Gouder, T.; Wegen, D. H.; Bottomley, P. D. W.

    2001-10-01

    UO 2 films have been prepared by dc reactive sputtering of a uranium metal target in an Ar/O 2 atmosphere. We have used the films deposited on gold substrates as working electrodes for electrochemical investigations as simulating the surfaces of fuel pellets. Film composition was determined by photoelectron spectroscopy (XPS and UPS) and X-ray diffraction (XRD). The oxide stoichiometry as a function of deposition conditions was determined and the appropriate conditions for UO 2.0 formation established. AC impedance and cyclic voltammetry measurements were performed. A double RC electrical equivalent circuit was used to fit the data from impedance measurements, similar to those used in unirradiated UO 2 or spent fuel pellets. However due to the porosity or adhesion defects on the thin films that permitted a direct contact between the solution and the gold substrate, we were obliged to add a contribution simulating the water-gold system. Cyclic voltammetry measurements show the influence of pH on the dissolution mechanism. Alkaline solutions permit the formation of an oxidised layer (UO 2.33) which is not present in the acidic solutions. In both pH=2 and pH=6 solutions, a U VI species layer is formed.

  12. One-pot hydrothermal synthesis, characterization and electrochemical properties of CuS nanoparticles towards supercapacitor applications

    International Nuclear Information System (INIS)

    Krishnamoorthy, Karthikeyan; Rao, Alluri Nagamalleswara; Jae Kim, Sang; Kumar Veerasubramani, Ganesh

    2014-01-01

    In this article, we have investigated the electrochemical properties of CuS nanoparticles for supercapacitor applications. The CuS nanoparticles are prepared by a facile one-pot hydrothermal approach using copper nitrate and thiourea as starting materials. The x-ray diffraction study revealed the formation of covellite CuS. The field-emission scanning electron microscope studies suggested the formation of cubic shaped CuS nanoparticles. The electrochemical studies such as cyclic voltammetry, galvanostatic charge-discharge analysis and electrochemical impedance spectroscopy confirmed the pseudocapacitive nature of the CuS electrodes. The CuS electrode shows a specific capacitance of about 101.34 F g −1 from the cyclic voltammetry at a scan rate of 5 mV s −1 . The electrochemical impedance spectra analyzed using Nyquist plot confirmed the pseudocapacitive behavior of the CuS electrodes. (paper)

  13. New porphyrin-polyoxometalate hybrid materials: synthesis, characterization and investigation of catalytic activity in acetylation reactions.

    Science.gov (United States)

    Araghi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammdpoor-Baltork, Iraj

    2012-10-14

    New hybrid complexes based on covalent interaction between 5,10,15,20-tetrakis(4-aminophenyl)porphyrinatozinc(II) and 5,10,15,20-tetrakis(4-aminophenyl)porphyrinatotin(IV) chloride, and a Lindqvist-type polyoxometalate, Mo(6)O(19)(2-), were prepared. These new porphyrin-polyoxometalate hybrid materials were characterized by (1)H NMR, FT IR and UV-Vis spectroscopic methods and cyclic voltammetry. These spectro- and electrochemical studies provided several spectral data for synthesis of these compounds. Cyclic voltammetry showed the influence of the polyoxometalate on the redox process of the porphyrin ring. The catalytic activity of tin(IV)porphyrin-hexamolybdate hybrid material was investigated in the acetylation of alcohols and phenols with acetic anhydride. The reusability of this catalyst was also investigated.

  14. Synthesis of poly(aniline-co-o-toluidine) coatings on copper

    Energy Technology Data Exchange (ETDEWEB)

    Raotole, Pritee, E-mail: priteeraotole@gmail.com; Patil, V. T.; Huse, V. R.; Chaudhari, A. L. [MGSM’s Arts, Science and Commerce, College, Chopda, Dist-Jalgaon 425107, Maharashtra (India); Raotole, Mahesh [Sharacchandrika Suresh Patil, Institute of Technology, Polytechnic, Chopda, Dist-Jalgaon, 425107, Maharashtra (India)

    2016-05-06

    The corrosion protective poly(aniline-co-o-toluidine) (PAOT) coatings were synthesized on copper (Cu) by the electrochemical copolymerization of aniline with o-toluidine under cyclic voltammetry conditions. Aqueous oxalate solutions were used as the supporting electrolytes for the synthesis of PAOT coatings on Cu. The resulting coatings were characterized by different spectroscopic techniques, cyclic voltammetry, ultraviolet-visible absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and scanning electron microscopy. The Fourier Transform InfraRed (FTIR) spectroscopy and Nuclear Magnetic Resonance (NMR) spectroscopy studies reveal that the copolymerization of aniline and o-toluidine takes place on Cu substrates from an aqueous oxalate solutions and resulting in PAOT copolymer, there are more o-toluidine units than aniline units.

  15. Electrochemical and spectroscopic studies of tungstencarbonyl complexes containing nitrogen and phosphorous ligands

    Directory of Open Access Journals (Sweden)

    Haddad Paula S.

    2000-01-01

    Full Text Available The present work deals with the synthesis, spectroscopic investigation and electrochemical behaviour of the compounds [W(CO4(bipy] (1, [W(CO3(bipy(dppm] (2 and [W(CO3(bipy(dppf] (3, bipy = 2,2'-bipyridine; dppm = bis(diphenylphosphinomethane; dppf = 1,1'-bis(diphenylphosphinoferrocene. The IR and 31P{¹H} NMR spectroscopic data have shown an octahedral coordination geometry for the tungsten atom with the diphosphines acting as monodentate ligands. The electrochemical behaviour of the complexes was investigated by cyclic voltammetry and controlled potential coulometry. Cyclic voltammograms have indicated that the compounds containing diphosphines ligands are more stable towards oxidation than compound (1.

  16. Nature of a solar cyclicity

    International Nuclear Information System (INIS)

    Romanchuk, P.R.

    1981-01-01

    The paper contains a critical review of works on studying a cyclic character of solar activity. An introduction of cyclic curves with a frequency spectrum is established to be insolvent. The Wolf, Newcomb and Waldmeier approach seems to be useful. Some evidence is given in favour of the author's conception of solar activity ciclicity of a tide nature. It is accounted for a continuous double and single effect of planets, a resonant character of this effect due to which a 10-year period of Jupiter and Saturn is transformed into an 11-year cycle of activity [ru

  17. Cyclic peptide therapeutics: past, present and future.

    Science.gov (United States)

    Zorzi, Alessandro; Deyle, Kaycie; Heinis, Christian

    2017-06-01

    Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that make them an attractive modality for the development of therapeutics. Over 40 cyclic peptide drugs are currently in clinical use and around one new cyclic peptide drug enters the market every year on average. The vast majority of clinically approved cyclic peptides are derived from natural products, such as antimicrobials or human peptide hormones. New powerful techniques based on rational design and in vitro evolution have enabled the de novo development of cyclic peptide ligands to targets for which nature does not offer solutions. A look at the cyclic peptides currently under clinical evaluation shows that several have been developed using such techniques. This new source for cyclic peptide ligands introduces a freshness to the field, and it is likely that de novo developed cyclic peptides will be in clinical use in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    Science.gov (United States)

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  19. The calculation of dissipated work, elastoplastic cyclic stress and cyclic strain in a structure

    International Nuclear Information System (INIS)

    Wang Xucheng; Xie Yihuan.

    1986-01-01

    With the development of the reactor technique, there is being an increasing interest in the calculation of elastoplastic response of a structure to its complex loading. This paper introduces a constitutive relation of a material for discribing unloading property, and uses it in an analysis of a real structure under a cyclic loading. The results, which include cyclic stress, cyclic strain and dissipated work, are meaningful in the researches of the structure behavior under complex loading and of the structural safety

  20. Corrosion of Cu-xZn alloys in slightly alkaline chloride solutions studied by stripping voltammetry and microanalysis.

    Science.gov (United States)

    Milosev, I; Minović, A

    2001-01-01

    The mechanism of corrosion of Cu-xZn alloys (x = 10-40 wt %) in slightly alkaline chloride solutions was investigated by analysing solid reaction products by energy dispersive X-ray analysis (EDS) and dissolved reaction products by differential anodic pulse stripping (DAPS) voltammetry. The corrosion process was studied under open circuit and under potentiostatic conditions at selected potentials. Pure metals were studied comparatively so that an interacting effect of particular metal components in the alloy could be determined. All four Cu-xZn alloys show an improved behaviour compared to pure metals. Under open-circuit condition both components dissolve simultaneously in the solution. With increasing immersion time the preferential, dissolution of zinc in the solution becomes pronounced. It is the highest for Cu-10Zn and the lowest for Cu-30Zn alloy. Under potentiostatic control the dissolution mechanism depends on the electrode potential and changes from exclusive dissolution of zinc to simultaneous dissolution of both components with preferential dissolution of zinc. The latter decreases, as the electrode potential becomes more positive.

  1. Conductive Polymer Microelectrodes for on-chip measurement of transmitter release from living cells

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Matteucci, Marco; Taboryski, Rafael J.

    2012-01-01

    driven cell trapping inside closed chip devices. Conductive polymer microelectrodes were used to measure transmitter release using electrochemical methods such as cyclic voltammetry and constant potential amperometry. By measuring the oxidation current at a cyclic voltammogram, the concentration...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The electrode parameters of Co(II) ion in hexagonal meso phase of the lyotropic liquid crystal ternary system (pluronic P84/cobalt/-xylene) is determined using cyclic voltammetry, deduced convolutive voltammetry and chronoamperometry techniques. The morphology of nanostructured deposited films of Co2+ ion in ...

  3. Voltammetry of uranyl chloride in the LiCl - KCl eutectic; Voltammetrie du chlorure d'uranyle dans l'eutectique LiCl - KC1

    Energy Technology Data Exchange (ETDEWEB)

    Fondanaiche, J C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    Spent UO{sub 2} - PuO{sub 2} fuels can be reprocessed in a molten salt media. Uranium dioxide can easily be dissolved as UO{sub 2}Cl{sub 2} in a molten salt bath using chlorine gas. A study of quantitative analysis of an uranyl chloride solution in the LiCl-KCl eutectic at 400 C has been performed here using voltammetry (a large area-graphite indicator electrode has been employed). The precision which is obtained is around 6 per cent for concentrations below 10{sup -2} M. Precision decreases slightly for more concentrated solutions. The study of polarization curves allowed to give a reduction mechanism for the UO{sub 2}{sup ++} ion. For dilute solutions, this reduction proceeds through the UO{sub 2}{sup +} ion. But interpretation of current-potential curves is made difficult by the dismutation reaction of the UO{sub 2} ion and by the fact that the surface of the indicator electrode is not renewed. (author) [French] Le traitement des combustibles a base d'oxydes (UO{sub 2} - PUO{sub 2}) peut etre effectue au moyen des sels fondus. Le bioxyde d'uranium passe aisement en solution sous forme de UO{sub 2}Cl{sub 2} dans un bain de sels fondus par action du chlore. Nous avons etudie ici l'analyse quantitative d'une solution de chlorure d'uranyle dans l'eutectique LiCl - KCl a 400 C par voltammetrie (electrode indicatrice de graphite d'assez grande surface). La precision est d'environ 6 pour cent pour les concentrations inferieures a 10{sup -2} M; elle est legerement moins bonne pour les solutions plus concentrees. L'examen des courbes de polarisation a permis de donner un mecanisme de reduction de l'ion UO{sub 2}: pour les solutions diluees, cette reduction se fait par l'intermediaire de l'ion UO{sub 2}{sup +}. Mais l'interpretation des courbes intensite-potentiel est rendue delicate par la reaction de dismutation de l'ion UO{sub 2}{sup +} et par le fait que la surface de l'electrode indicatrice n'est pas renouvelee. (auteur)

  4. Voltametrické stanovení léčiva simvastatin na uhlíkové pastové elektrodě a stříbrné pevné amalgamové elektrodě

    OpenAIRE

    Hrochová, Zuzana

    2015-01-01

    This master thesis is focused on determination simvastain by cyclic voltammetry (CV), DC voltammetry (DCV), and differential pulse voltammetry (DPV) at a carbon paste electrode and a silver solid amalgam electrode. The optimum conditions for determination of simvastatin were found and under these conditions, concentration dependences were measured and the limits of detection (LOD) and limits of quantification (LOQ) were calculated for each method. The optimum conditions for determination simv...

  5. Voltammetric Determination of Nitronaphthalenes at a Silver Solid Amalgam Electrode

    Czech Academy of Sciences Publication Activity Database

    Pecková, K.; Barek, J.; Navrátil, Tomáš; Josypčuk, Bohdan; Zima, J.

    2009-01-01

    Roč. 42, č. 15 (2009), s. 2339-2363 ISSN 0003-2719 R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : cyclic voltammetry * differential pulse voltammetry * elimination voltammetry with linear scan * silver amalgam electrode Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.317, year: 2009

  6. Cathodic Stripping Voltammetry of Cysteine Using Silver and Copper Solid Amalgam Electrodes

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Novotný, Ladislav

    2002-01-01

    Roč. 56, č. 5 (2002), s. 971-976 ISSN 0039-9140 R&D Projects: GA ČR GV204/97/K084 Institutional research plan: CEZ:AV0Z4040901 Keywords : silver or copper solid amalgam electrode * cysteine * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 2.054, year: 2002

  7. Conductometric and voltammetric studies on the bis(triphenyl phosphine) ruthenium(II) complex, cis-[RuCl2(L)(PPh3)2], where L: 2-(2'-pyridyl)quinoxaline

    Czech Academy of Sciences Publication Activity Database

    Tsierkezos, Nikos; Philippopoulos, A. I.

    2009-01-01

    Roč. 362, č. 4 (2009), s. 3079-3087 ISSN 0020-1693 Grant - others:Kapodistrias Program(GR) 70/4/9277 Institutional research plan: CEZ:AV0Z40550506 Keywords : assocition constant * conductivity * cyclic voltammetry * ruthenium * quinoxaline Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.322, year: 2009

  8. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara Elizabeth; Meier, Stuart Kurt; Gehring, Christoph A

    2016-01-01

    Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms

  9. A study of integrated cathode assembly for electrolytic reduction of uranium oxide in LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Park, Sung Bin; Seo, Jung Seok; Kang, Dae Seung; Kwon, Sun Kil; Park, Seong Won

    2004-01-01

    Interest of electrolytic reduction of uranium oxide is increasing in treatment of spent metal fuels. Argonne National Laboratory (ANL) has reported the experimental results of electrochemical reduction of uranium oxide fuel in bench-scale apparatus with cyclic voltammetry, and has designed high-capacity reduction (HCR) cells and conducted three kg-scale UO 2 reduction runs. From the cyclic voltammograms, the mechanism of electrolytic reduction of metal oxides is analyzed. The uranium oxide in LiCl-Li 2 O is converted to uranium metal according to the two mechanism; direct and indirect electrolytic reduction. In this study, cyclic voltammograms for LiCl-3wt% Li 2 O system and U 3 O 8 -LiCl-3wt% Li 2 O system using the 325-mesh stainless steel screen in cathode assembly have been obtained. Direct electrolytic reduction of uranium oxide in LiCl-3wt% Li 2 O molten salt has been conducted

  10. Cyclic multiverses

    Science.gov (United States)

    Marosek, Konrad; Dąbrowski, Mariusz P.; Balcerzak, Adam

    2016-09-01

    Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.

  11. Cyclic creep-rupture behavior of three high-temperature alloys.

    Science.gov (United States)

    Halford, G. R.

    1972-01-01

    Study of some important characteristics of the cyclic creep-rupture curves for the titanium alloy 6Al-2Sn-4Zr-2Mo at 900 and 1100 F (755 and 865 K), the cobalt-base alloy L-605 at 1180 F (910 K), and for two hardness levels of 316 stainless steel at 1300 F (980 K). The cyclic creep-rupture curve relates tensile stress and tensile time-to-rupture for strain-limited cyclic loading and has been found to be independent of the total strain range and the level of compressive stress employed in the cyclic creep-rupture tests. The cyclic creep-rupture curve was always found to be above and to the right of the conventional (constant load) monotonic creep-rupture curve by factors ranging from 2 to 10 in time-to-rupture. This factor tends to be greatest when the creep ductility is large. Cyclic creep acceleration was observed in every cyclic creep-rupture test conducted. The phenomenon was most pronounced at the highest stress levels and when the tensile and compressive stresses were completely reversed. In general, creep rates were found to be lower in compression than in tension for equal true stresses. The differences, however, were strongly material-dependent.

  12. Electrocatalytic oxidative determination of reserpine at electrochemically functionalized single walled carbon nanotube with polyaniline

    International Nuclear Information System (INIS)

    Dar, Riyaz Ahmad; Naikoo, Gowhar Ahmad; Pitre, Krishna Sadashive

    2013-01-01

    Graphical abstract: Electrode oxidation mechanism of reserpine at PANI modified-SWCNT/CPE. -- Highlights: • Electropolymerization of polyaniline at SWCNT/CPE. • CV, EIS, CC SEM techniques were used for characterization of electrode. • Electrode showed electrocatalytic activity towards anodic oxidation of reserpine. • Oxidation process as irreversible and adsorption-controlled. • Reserpine in bark of Rauwolfia serpentina and in its pharmaceutical formulations. -- Abstract: In the present work a polyaniline film was successfully deposited by electropolymerization on single walled carbon nanotube paste electrode. The electrode was characterized using cyclic voltammetry, electrochemical impedance spectroscopy, chronocoulometry and scanning electron microscopy. The modified electrode showed electrocatalytic behaviour towards the anodic oxidation of reserpine. The adsorptive stripping voltammetric behaviour of reserpine at polyaniline film modified single walled carbon nanotube paste electrode (modified-SWCNTPE) was investigated and validated in pharmaceuticals and biological fluids by cyclic voltammetry (CV) and adsorptive stripping differential pulse voltammetry (AdSDPV) in 0.02 M phosphate buffer in the pH range of 2.5–8.5. Cyclic voltammetry has shown that the oxidation process is irreversible over the pH range studied and exhibited an adsorption-controlled behaviour. Further, the overall electrode process is mainly diffusion controlled with adsorption effects. The proposed more sensitive AdSDPV method allow quantitation over the range 0.085 μg mL −1 to 0.87 μg mL −1 with the detection limit of 0.407 ng mL −1 and has been successfully used to determine reserpine in bark of Rauwolfia serpentina and in its pharmaceutical formulations

  13. Utilization of Plant Refuses as Component of Heavy Metal Ion ...

    African Journals Online (AJOL)

    The ability of the fabricated sensors to detect the presence of heavy metals was analyzed using electrochemical methods like cyclic voltammetry and differential pulse anodic stripping voltammetry. Results showed that the fabricated electrode were able to detect the presence of mercury and lead ions in aqueous solutions ...

  14. 40 CFR 721.2120 - Cyclic amide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cyclic amide. 721.2120 Section 721... Cyclic amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a cyclic amide (PMN P-92-131) is subject to reporting under this section for the...

  15. Cyclic completion of the anamorphic universe

    Science.gov (United States)

    Ijjas, Anna

    2018-04-01

    Cyclic models of the universe have the advantage of avoiding initial conditions problems related to postulating any sort of beginning in time. To date, the best known viable examples of cyclic models have been ekpyrotic. In this paper, we show that the recently proposed anamorphic scenario can also be made cyclic. The key to the cyclic completion is a classically stable, non-singular bounce. Remarkably, even though the bounce construction was originally developed to connect a period of contraction with a period of expansion both described by Einstein gravity, we show here that it can naturally be modified to connect an ordinary contracting phase described by Einstein gravity with a phase of anamorphic smoothing. The paper will present the basic principles and steps in constructing cyclic anamorphic models.

  16. Charged states of alpha,omega-dicyano beta, beta' - dibutylquaterthiophene as studied by in situ ESR UV-Vis NIR spectroelectrochemistry

    Czech Academy of Sciences Publication Activity Database

    Haubner, K.; Tarábek, Ján; Ziegs, F.; Lukeš, V.; Jaehne, E.; Dunsch, L.

    2010-01-01

    Roč. 114, č. 43 (2010), s. 11545-11551 ISSN 1089-5639 Grant - others:GA ČR(CZ) GC203/07/J067 Program:GC Institutional research plan: CEZ:AV0Z40550506 Keywords : cyclic voltammetry * ESR/UV-Vis NIR spectrometry * spectroelectrochemistry * thiophene oligomer * dimerisation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.732, year: 2010

  17. Electrochemical behaviour of the Eu3+/Eu2+ system in propionic media studied by cyclic chrono potentiometry

    International Nuclear Information System (INIS)

    Brotto, M.E.

    1989-01-01

    The electrochemical behaviour of the Eu 3 + / Eu 2 + system in propionic media was studied by means of current reversal chrono potentiometry and cyclic chrono potentiometry. Sodium perchlorate was employed as supporting electrolyte. The experiments were carried out at (25.0 ± 0.1) 0 C. The studied variables were the concentration of the electro active species, the composition of the solution and the current density. The cyclic chrono potentiometry results reveal that the charge transfer reaction is followed by the (H 3 O) + ion assisted irreversible catalytic reaction in which the Eu 3 + species is regenerated. (author)

  18. Adenosine 3':5'-cyclic monophosphate in higher plants: Isolation and characterization of adenosine 3':5'-cyclic monophosphate from Kalanchoe and Agave.

    Science.gov (United States)

    Ashton, A R; Polya, G M

    1977-01-01

    1.3':5'-Cyclic AMP was extensively purified from Kalanchoe daigremontiana and Agave americana by neutral alumina and anion- and cation-exchange column chromatography. Inclusion of 3':5'-cyclic [8-3H]AMP from the point of tissue extraction permitted calculation of yields. The purification procedure removed contaminating material that was shown to interfere with the 3':5'-cyclic AMP estimation and characterization procedures. 2. The partially purified 3':5'-cyclic AMP was quantified by means of a radiochemical saturation assay using an ox heart 3':5'-cyclic AMP-binding protein and by an assay involving activation of a mammalian protein kinase. 3. The plant 3':5'-cyclic AMP co-migrated with 3':5'-cyclic [8-3H]AMP on cellulose chromatography, poly(ethyleneimine)-cellulose chromatography and silica-gel t.l.c. developed with several solvent systems. 4. The plant 3':5'-cyclic AMP was degraded by ox heart 3':5'-cyclic nucleotide phosphodiesterase at the same rates as authentic 3':5'-cyclic AMP. 1-Methyl-3-isobutylxanthine (1 mM), a specific inhibitor of the 3':5'-cyclic nucleotide phosphodieterase, completely inhibited such degradation. 5. The concentrations of 3':5'-cyclic AMP satisfying the above criteria in Kalanchoe and Agave were 2-6 and 1 pmol/g fresh wt. respectively. Possible bacterial contribution to these analyses was estimated to be less than 0.002pmol/g fresh wt. Evidence for the occurrence of 3':5'-cyclic AMP in plants is discussed. PMID:196595

  19. Study of the mechanism and kinetics of the reduction of uranyl ions in phosphoric acid solutions

    International Nuclear Information System (INIS)

    El Kacemi, K.; Tyburce, B.; Belcadi, S.

    1982-01-01

    The electrochemical reduction of uranyl ions in 0.1 to 9 M phosphoric acid has been investigated by polarography, cyclic voltammetry, chronopotentiometry and potentiostatic coulometry. In concentrated phosphoric acid solutions (H 3 PO 4 3 PO 4 concentrations. So, when the concentration of U(VI) increases and/or that of H 3 PO 4 reduces, the system becomes reversible. (author)

  20. Electrochemical reduction study of Eu3+ in perchlorid media by cyclic chronopotentiometry

    International Nuclear Information System (INIS)

    Brotto, M.E.; Rabockai, T.

    1990-01-01

    The electrochemical reduction of Eu 3+ in perchloric media was studied by means of cyclic chronopotentiometry. It is shown that the charge transfer reaction is followed by a chemical reaction in which Eu 2+ ion reoxydized to the trivalent ion (catalytic reaction scheme). The mean value of the homogeneous reaction rate constant is (2,43 +- 0,24) x 10 -2 dm 3 .mol -1 . (author)

  1. History-independent cyclic response of nanotwinned metals

    Science.gov (United States)

    Pan, Qingsong; Zhou, Haofei; Lu, Qiuhong; Gao, Huajian; Lu, Lei

    2017-11-01

    Nearly 90 per cent of service failures of metallic components and structures are caused by fatigue at cyclic stress amplitudes much lower than the tensile strength of the materials involved. Metals typically suffer from large amounts of cumulative, irreversible damage to microstructure during cyclic deformation, leading to cyclic responses that are unstable (hardening or softening) and history-dependent. Existing rules for fatigue life prediction, such as the linear cumulative damage rule, cannot account for the effect of loading history, and engineering components are often loaded by complex cyclic stresses with variable amplitudes, mean values and frequencies, such as aircraft wings in turbulent air. It is therefore usually extremely challenging to predict cyclic behaviour and fatigue life under a realistic load spectrum. Here, through both atomistic simulations and variable-strain-amplitude cyclic loading experiments at stress amplitudes lower than the tensile strength of the metal, we report a history-independent and stable cyclic response in bulk copper samples that contain highly oriented nanoscale twins. We demonstrate that this unusual cyclic behaviour is governed by a type of correlated ‘necklace’ dislocation consisting of multiple short component dislocations in adjacent twins, connected like the links of a necklace. Such dislocations are formed in the highly oriented nanotwinned structure under cyclic loading and help to maintain the stability of twin boundaries and the reversible damage, provided that the nanotwins are tilted within about 15 degrees of the loading axis. This cyclic deformation mechanism is distinct from the conventional strain localizing mechanisms associated with irreversible microstructural damage in single-crystal, coarse-grained, ultrafine-grained and nanograined metals.

  2. Mono- and bis(pyrrolo)tetrathiafulvalene derivatives tethered to C60

    DEFF Research Database (Denmark)

    Vico Solano, Marta; Della Pia, Eduardo Antonio; Jevric, Martyn

    2014-01-01

    -functionalized MPTTF/BPTTF derivatives, two different tailor-made amino acids, and C-60. Electronic communication between the MPTTF/BPTTF units and the C-60 moieties was studied by a variety of techniques including cyclic voltammetry and absorption spectroscopy. These solution-based studies indicated no observable...

  3. Study of PtNi/C catalyst for direct ethanol fuel cell

    International Nuclear Information System (INIS)

    Moraes, L.P.R. de; Silva, E.L. da; Amico, S.C.; Malfatti, C.F.

    2014-01-01

    In this work, PtNi binary catalyst and pure platin catalyst were synthesized by the impregnation-reduction method, using Vulcan XC72R as support, for direct ethanol fuel cells. The composition and structure of the catalysts were analyzed by X-ray diffraction, the electrochemical behavior was evaluated by cyclic voltammetry and morphology of the catalysts was studied by high-resolution transmission electron microscopy. The results showed that the addition of Ni to Pt led to the contraction of the crystal lattice, increased the catalytic activity compared to pure Pt and initiated the electrooxidation of ethanol at lower potential. (author)

  4. Cyclical subnormal separation in A-groups

    International Nuclear Information System (INIS)

    Makarfi, M.U.

    1995-12-01

    Three main results, concerning A-groups in respect of cyclical subnormal separation as defined in, are presented. It is shown in theorem A that any A-group that is generated by elements of prime order and satisfying the cyclical subnormal separation conditions is metabelian. The two other main results give necessary and sufficient conditions for A-groups, that are split extensions of certain abelian p-groups by a metabelian p'-group, to satisfy the cyclical subnormal separation condition. There is also a result which shows that A-groups with elementary abelian Sylow subgroups are cyclically separated as defined. (author). 7 refs

  5. Fabrication of Chitosan-complexed Electrode and Evaluation of Its Efficiency in Removal of Copper Ion from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Yoon Young-Chan

    2016-01-01

    Full Text Available In this study, we fabricated chitosan/PVA/activated carbon complexed electrode to remove copper ion from aqueous solution. The prepared composite electrode was analyzed by BET and SEM to investigate its physicochemical properties. Electrochemical properties of prepared composite electrodes were analyzed via cyclic voltammetry. Adsorption performance of copper ion on chitosan composite complexed electrodes was evaluated. Almost similar pore size distribution results were observed in the series of ACP not included electrodes while observed differences in pore size distribution for the ACP included one. Cyclic voltammetry results exhibited that oxidation-reduction reaction does not occur in a potential range of -1.0 ~ 1.0 V. The amount of copper ion during adsroption reaction is increase according to increase of adsorption potential to 1.0 V.

  6. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions

    NARCIS (Netherlands)

    Dima, G.E.; Vooys, de A.C.A.; Koper, M.T.M.

    2003-01-01

    A comparative study was performed to determine the reactivity of nitrate ions at 0.1 M on eight different polycrystalline electrodes (platinum, palladium, rhodium, ruthenium, iridium, copper, silver and gold) in acidic solution using cyclic voltammetry (CV), chronoamperometry and differential

  7. Photoelectrochemical properties of LaRhO3

    International Nuclear Information System (INIS)

    Viswanathan, B.; Narayanan, S.R.; Viswanath, R.P.; Varadrajan, T.K.

    1982-01-01

    The photoelectrochemical properties of LaRhO 3 at different values of pH were studied by current-voltage measurements and cyclic voltammetry and the results obtained are compared with those obtained for LaRhO 3 , a potential photoelectrode. (author)

  8. Improvement of amperometric transducer selectivity using nanosized phenylenediamine films

    Science.gov (United States)

    Soldatkina, O. V.; Kucherenko, I. S.; Pyeshkova, V. M.; Alekseev, S. A.; Soldatkin, O. O.; Dzyadevych, S. V.

    2017-11-01

    In this work, we studied the conditions of deposition of a semipermeable polyphenylenediamine (PPD)-based membrane on amperometric disk platinum electrodes. Restricting an access of interfering substances to the electrode surface, the membrane prevents their impact on the sensor operation. Two methods of membrane deposition by electropolymerization were compared—at varying potential (cyclic voltammetry) and at constant potential. The cyclic voltammetry was shown to be easier in performing and providing better properties of the membrane. The dependence of PPD membrane effectiveness on the number of cyclic voltammograms and phenylenediamine concentration was analyzed. It was shown that the impact of interfering substances (ascorbic acid, dopamine, cysteine, uric acid) on sensor operation could be completely avoided using three cyclic voltammograms in 30 mM phenylenediamine. On the other hand, when working with diluted samples, i.e., at lower concentrations of electroactive substances, it is reasonable to decrease the phenylenediamine concentration to 5 mM, which would result in a higher sensitivity of transducers to hydrogen peroxide due to a thinner PPD layer. The PPD membrane was tested during continuous operation and at 8-day storage and turned out to be efficient in sensor and biosensors.

  9. Electrochemical studies and analysis of 1–10 wt% UCl{sub 3} concentrations in molten LiCl–KCl eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Robert O., E-mail: roberthoover@vandals.uidaho.edu [Chemical and Materials Engineering Department and Nuclear Engineering Program, University of Idaho, Idaho Falls, Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83401 (United States); Shaltry, Michael R., E-mail: mshaltry@uidaho.edu [Chemical and Materials Engineering Department and Nuclear Engineering Program, University of Idaho, Idaho Falls, Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83401 (United States); Martin, Sean, E-mail: Sean.martin@xenuclear.com [Department of Engineering Physics, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Phongikaroon, Supathorn, E-mail: supathor@uidaho.edu [Chemical and Materials Engineering Department and Nuclear Engineering Program, University of Idaho, Idaho Falls, Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83401 (United States)

    2014-09-15

    Three electrochemical methods – cyclic voltammetry (CV), chronopotentiometry (CP), and anodic stripping voltammetry (ASV) – were applied to solutions of up to 10 wt% UCl{sub 3} in the molten LiCl–KCl eutectic salt at 500 °C to determine electrochemical properties and behaviors and to help provide a scientific basis for the development of an in situ electrochemical probe for determining the concentration of uranium in a used nuclear fuel electrorefiner. Diffusion coefficients of UCl{sub 4} and UCl{sub 3} were calculated to be (6.72 ± 0.360) × 10{sup −6} cm{sup 2}/s and (1.04 ± 0.17) × 10{sup −5} cm{sup 2}/s, respectively. Apparent standard reduction potentials were determined to be (−0.381 ± 0.013) V and (−1.502 ± 0.076) V vs. 5 mol% Ag/AgCl or (−1.448 ± 0.013) V and (−2.568 ± 0.076) V vs. Cl{sub 2}/Cl{sup −} for the U(IV)/U(III) and U(III)/U redox couples, respectively. In comparing this data with supercooled thermodynamic data to determine activity coefficients, the thermodynamic database used was important with resulting activity coefficients ranging from 2.34 × 10{sup −3} to 1.08 × 10{sup −2} for UCl{sub 4} and 4.94 × 10{sup −5} to 4.50 × 10{sup −4} for UCl{sub 3}. Of anodic stripping voltammetry and cyclic voltammetry anodic or cathodic peaks, the CV cathodic peak height divided by square root of scan rate was shown to be the most reliable method of determining UCl{sub 3} concentration in the molten salt.

  10. Ratcheting study in pressurized piping components under cyclic loading at room temperature

    International Nuclear Information System (INIS)

    Ravi Kiran, A.; Agrawal, M.K.; Reddy, G.R.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-07-01

    The nuclear power plant piping components and systems are often subjected to reversing cyclic loading conditions due to various process transients, seismic and other events. Earlier the design of piping subjected to seismic excitation was based on the principle of plastic collapse. It is believed that during such events, fatigue-ratcheting is likely mode of failure of piping components. The 1995 ASME Boiler and Pressure Vessel code, Section-III, has incorporated the reverse dynamic loading and ratcheting into the code. Experimental and analytical studies are carried out to understand this failure mechanism. The biaxial ratcheting characteristics of SA 333, Gr. 6 steel and SS 304 stainless steel at room temperature are investigated in the present work. Experiments are carried out on straight pipes subjected to internal pressure and cyclic bending load applied in a three point and four point bend test configurations. A shake table test is also carried out on a pressurized elbow by applying sinusoidal base excitation. Analytical simulation of ratcheting in the piping elements is carried out. Chaboche nonlinear kinematic hardening model is used for ratcheting simulation. (author)

  11. Electrochemical corrosion studies on copper-base waste package container materials in unirradiated 0.1 N NaNO3 at 95 degrees C

    International Nuclear Information System (INIS)

    Akkaya, M.; Verink, E.D. Jr.; Van Konynenburg, R.A.

    1988-05-01

    Three candidate materials were investigated in this study in terms of their electrochemical corrosion behavior in unirradiated 0.1 N NaNO 3 solutions at 95 degrees C. Anodic polarization experiments were conducted to determine the passive current densities, pitting potentials, and other parameters, together with Cyclic Current Reversal Voltammetry tests to evaluate the stability and protectiveness of the passive oxides formed. X-ray diffraction and Auger Electron Spectroscopy were used for identification of the corrosion products as well as Scanning Electron Microscopy for the surface morphology studies. 2 refs., 22 figs., 2 tabs

  12. Voltammetry of Organic Pollutants on FeOOH Nanorods

    International Nuclear Information System (INIS)

    Zhang, Yuanyuan; Wan, Qijin; Yang, Nianjun

    2017-01-01

    FeOOH nanorods synthesized using a solvothermal approach have been employed to investigate the electrochemistry of organic pollutions, including ponceau 4R (PR), sunset yellow (SY), and tetrabromobisphenol A (TBBPA). The as-prepared FeOOH nanorods have been characterized using scanning electron microscopes (SEM), transmission electron microscope (TEM), X-ray photoelectron spectrometry, Brunauer-Emmett-Teller measurements, and electrochemical techniques. The modified electrode based on FeOOH nanorods exhibits a porous and net-like structure, resulting in a high surface area and many reactive/adsorption sites for soluble compounds. On this modified electrode, fast electron transfer processes of redox probes have been achieved. Electrochemistry of PR, SY, and TBBPA has been studied in detail using voltammetry, impedance, and chronocoulometry. The sensitive monitoring of both individual and total concentrations of three organic pollutions has been realized. The detection limits are 0.2, 1.0, and 0.55 nM for PR, SY, and TBBPA, respectively. Such an electrode is then promising for the electrochemical investigation and analysis of organic pollutions in different environments.

  13. Extreme Basicity of Biguanide Drugs in Aqueous Solutions: Ion Transfer Voltammetry and DFT Calculations

    Czech Academy of Sciences Publication Activity Database

    Langmaier, Jan; Pižl, Martin; Samec, Zdeněk; Záliš, Stanislav

    2016-01-01

    Roč. 120, č. 37 (2016), s. 7344-7350 ISSN 1089-5639 R&D Projects: GA ČR(CZ) GA15-03139S Institutional support: RVO:61388955 Keywords : voltammetry * Alkalinity * Complexation Subject RIV: CG - Electrochemistry Impact factor: 2.847, year: 2016

  14. Cyclic Stretch Alters Vascular Reactivity of Mouse Aortic Segments

    Directory of Open Access Journals (Sweden)

    Arthur Leloup

    2017-10-01

    Full Text Available Large, elastic arteries buffer the pressure wave originating in the left ventricle and are constantly exposed to higher amplitudes of cyclic stretch (10% than muscular arteries (2%. As a crucial factor for endothelial and smooth muscle cell function, cyclic stretch has, however, never been studied in ex vivo aortic segments of mice. To investigate the effects of cyclic stretch on vaso-reactivity of mouse aortic segments, we used the Rodent Oscillatory Tension Set-up to study Arterial Compliance (ROTSAC. The aortic segments were clamped at frequencies of 6–600 bpm between two variable preloads, thereby mimicking dilation as upon left ventricular systole and recoiling as during diastole. The preloads corresponding to different transmural pressures were chosen to correspond to a low, normal or high amplitude of cyclic stretch. At different time intervals, cyclic stretch was interrupted, the segments were afterloaded and isometric contractions by α1-adrenergic stimulation with 2 μM phenylephrine in the absence and presence of 300 μM L-NAME (eNOS inhibitor and/or 35 μM diltiazem (blocker of voltage-gated Ca2+ channels were measured. As compared with static or cyclic stretch at low amplitude (<10 mN or low frequency (0.1 Hz, cyclic stretch at physiological amplitude (>10 mN and frequency (1–10 Hz caused better ex vivo conservation of basal NO release with time after mounting. The relaxation of PE-precontracted segments by addition of ACh to stimulate NO release was unaffected by cyclic stretch. In the absence of basal NO release (hence, presence of L-NAME, physiological in comparison with aberrant cyclic stretch decreased the baseline tension, attenuated the phasic contraction by phenylephrine in the absence of extracellular Ca2+ and shifted the smaller tonic contraction more from a voltage-gated Ca2+ channel-mediated to a non-selective cation channel-mediated. Data highlight the need of sufficient mechanical activation of endothelial and

  15. Cyclic AMP system in muscle tissue during prolonged hypokinesia

    Science.gov (United States)

    Antipenko, Y. A.; Bubeyev, Y. A.; Korovkin, B. F.; Mikhaleva, N. P.

    1980-01-01

    Components of the cyclic Adenosine-cyclic-35-monophosphate (AMP) system in the muscle tissue of white rats were studied during 70-75 days of hypokinesia, created by placing the animals in small booths which restricted their movements, and during the readaptation period. In the initial period, cyclic AMP levels and the activities of phosphodiesterase and adenylate cyclase in muscle tissue were increased. The values for these indices were roughly equal for controls and experimental animals during the adaptation period, but on the 70th day of the experiment cAMP levels dropped, phosphodiesterase activity increased, and the stimulative effect of epinephrine on the activity of adenylate cyclase decreased. The indices under study normalized during the readaptation period.

  16. Monopod bucket foundations under cyclic lateral loading

    DEFF Research Database (Denmark)

    Foglia, Aligi; Ibsen, Lars Bo

    on bucket foundations under lateral cyclic loading. The test setup is described in detail and a comprehensive experimental campaign is presented. The foundation is subjected to cyclic overturning moment, cyclic horizontal loading and constant vertical loading, acting on the same plane for thousands...

  17. Degradation forecast for PEMFC cathode-catalysts under cyclic loads

    Science.gov (United States)

    Moein-Jahromi, M.; Kermani, M. J.; Movahed, S.

    2017-08-01

    Degradation of Fuel Cell (FC) components under cyclic loads is one of the biggest bottlenecks in FC commercialization. In this paper, a novel experimental based algorithm is presented to predict the Catalyst Layer (CL) performance loss during cyclic load. The algorithm consists of two models namely Models 1 and 2. The Model 1 calculates the Electro-Chemical Surface Area (ECSA) and agglomerate size (e.g. agglomerate radius, rt,agg) for the catalyst layer under cyclic load. The Model 2 is the already-existing model from our earlier studies that computes catalyst performance with fixed structural parameters. Combinations of these two Models predict the CL performance under an arbitrary cyclic load. A set of parametric/sensitivity studies is performed to investigate the effects of operating parameters on the percentage of Voltage Degradation Rate (VDR%) with rank 1 for the most influential one. Amongst the considered parameters (such as: temperature, relative humidity, pressure, minimum and maximum voltage of the cyclic load), the results show that temperature and pressure have the most and the least influences on the VDR%, respectively. So that, increase of temperature from 60 °C to 80 °C leads to over 20% VDR intensification, the VDR will also reduce 1.41% by increasing pressure from 2 atm to 4 atm.

  18. Generalized Wideband Cyclic MUSIC

    Directory of Open Access Journals (Sweden)

    Zhang-Meng Liu

    2009-01-01

    Full Text Available The method of Spectral Correlation-Signal Subspace Fitting (SC-SSF fails to separate wideband cyclostationary signals with coherent second-order cyclic statistics (SOCS. Averaged Cyclic MUSIC (ACM method made up for the drawback to some degree via temporally averaging the cyclic cross-correlation of the array output. This paper interprets ACM from another perspective and proposes a new DOA estimation method by generalizing ACM for wideband cyclostationary signals. The proposed method successfully makes up for the aforementioned drawback of SC-SSF and obtains a more satisfying performance than ACM. It is also demonstrated that ACM is a simplified form of the proposed method when only a single spectral frequency is exploited, and the integration of the frequencies within the signal bandwidth helps the new method to outperform ACM.

  19. Ion transfer voltammetry of metformin and phenformin at a polarized ionic liquid-membrane

    Czech Academy of Sciences Publication Activity Database

    Langmaier, Jan; Samec, Zdeněk; Samcová, E.

    2015-01-01

    Roč. 61, č. 3 (2015), s. 214-214 ISSN 0034-6691. [Annual Meeting of the Polarographic Society of Japan /61./. 24.11.2015-25.11.2015, Himeji] R&D Projects: GA ČR(CZ) GA15-03139S Institutional support: RVO:61388955 Keywords : electrochemistry * voltammetry Subject RIV: CG - Electrochemistry

  20. A Pre-normative study on the cyclic oxidation behaviour of PM chromium: the effect of experimental parameters

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Y.P.; Haanappel, V.A.C.; Stroosnijder, M.F. [Commission of the European Communities, Ispra (Italy). Joint Research Centre; Caudron, E.; Buscail, H. [Lab. Vellave sur l' Elaboration et l' Etude des Materiaux, Equipe locale Univ. Blaise-Pascal Clermont-Fd 2 (France)

    2001-07-01

    In this study the importance of experimental parameters for the cyclic oxidation behaviour of chromium is discussed. In particular, the effect of different batches, sample geometry, maximum temperature during cyclic oxidation tests, and the effect of isothermal hold-time in relation to the oxidation behaviour are investigated in more detail. It is shown that small differences in the experimental method or material properties could already significantly influence the oxidation kinetics of the material under investigation. Consequently, poorly chosen and/or characterised experimental conditions can cause misleading results and even wrong conclusions. (orig.)

  1. Voltammetry of uranyl chloride in the LiCl - KCl eutectic

    International Nuclear Information System (INIS)

    Fondanaiche, J.C.

    1965-01-01

    Spent UO 2 - PuO 2 fuels can be reprocessed in a molten salt media. Uranium dioxide can easily be dissolved as UO 2 Cl 2 in a molten salt bath using chlorine gas. A study of quantitative analysis of an uranyl chloride solution in the LiCl-KCl eutectic at 400 C has been performed here using voltammetry (a large area-graphite indicator electrode has been employed). The precision which is obtained is around 6 per cent for concentrations below 10 -2 M. Precision decreases slightly for more concentrated solutions. The study of polarization curves allowed to give a reduction mechanism for the UO 2 ++ ion. For dilute solutions, this reduction proceeds through the UO 2 + ion. But interpretation of current-potential curves is made difficult by the dismutation reaction of the UO 2 ion and by the fact that the surface of the indicator electrode is not renewed. (author) [fr

  2. Determination of azidothymidine - an antiproliferative and virostatic drug by square-wave voltammetry

    Czech Academy of Sciences Publication Activity Database

    Vacek, Jan; Andrysík, Zdeněk; Trnková, L.; Kizek, René

    2004-01-01

    Roč. 16, č. 3 (2004), s. 224-230 ISSN 1040-0397 R&D Projects: GA ČR GA203/02/0422; GA AV ČR IAA1163201; GA AV ČR IBS5004009 Institutional research plan: CEZ:AV0Z5004920 Keywords : azidothymidine (AZT) * square-wave voltammetry * hanging mercury drop electrode (HMDE) Subject RIV: BO - Biophysics Impact factor: 2.038, year: 2004

  3. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.

    Science.gov (United States)

    Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C

    2015-03-23

    Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.

  4. Study of fatigue resistance for different steel specimens under conditions of combined action of cyclic bending and torsion

    International Nuclear Information System (INIS)

    Belkin, L.M.; Filimonov, G.N.; Belkin, M.Ya.; Vishnevskij, A.P.; Volkov, I.B.

    1986-01-01

    VP6 alloy is studied for its relaxation stability and fatigue strength. Results of the study are presented. Tests are carried out on the specimens with smooth working part to study relaxation properties of the material, with thread working part to determine stress relaxation in a loose thread, on the thread joints to study relaxation in the working thread. All the studied members of the thread joint under cyclic loading are shown to obey a common regularity. Characteristics of the relaxation material stability under different values on an average stress cycle are presented. Stress concentration associated with inhomogeneity in distribution of axial tensile stresses in a loose thread and nonuniformity in the working thread. All the studied members of the thread joint under cyclic loading are shown to obey a common regularity. Characteristics of the relaxation material stability under different values on an average stress cycle are presented. Stress concentration associated with inhomogeneity in distribution of axial tensile stresses in a loose thread and nonuniformity in the load on the working thread turns along the nut length are studied for their effect on the stress relaxation in the thread joint. Ultimate longevity of the materials under conditions of cyclic stress relaxation is evaluated allowing for relaxation and fatigue characteristics of the material

  5. Characterization of inclusion complexes of organic ions with hydrophilic hosts by ion transfer voltammetry with solvent polymeric membranes.

    Science.gov (United States)

    Olmos, José Manuel; Laborda, Eduardo; Ortuño, Joaquín Ángel; Molina, Ángela

    2017-03-01

    The quantitative characterization of inclusion complexes formed in aqueous phase between organic ions and hydrophilic hosts by ion-transfer voltammetry with solvent polymeric membrane ion sensors is studied, both in a theoretical and experimental way. Simple analytical solutions are presented for the determination of the binding constant of the complex from the variation with the host concentration of the electrochemical signal. These solutions are valid for any voltammetric technique and for solvent polymeric membrane ion sensors comprising one polarisable interface (1PI) and also, for the first time, two polarisable interfaces (2PIs). Suitable experimental conditions and data analysis procedures are discussed and applied to the study of the interactions of a common ionic liquid cation (1-octyl-3-metyl-imidazolium) and an ionisable drug (clomipramine) with two hydrophilic cyclodextrins: α-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. The experimental study is performed via square wave voltammetry with 2PIs and 1PI solvent polymeric membranes and in both cases the electrochemical experiments enable the detection of inclusion complexes and the determination of the corresponding binding constant. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    Science.gov (United States)

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism

    International Nuclear Information System (INIS)

    Li, Qing'an; Kamada, Yasunari; Maeda, Takao; Murata, Junsuke; Iida, Kohei; Okumura, Yuta

    2016-01-01

    Wind turbines mounted on floating platforms are subjected to completely different and soft foundation properties, rather than onshore wind turbines. Due to the flexibility of their mooring systems, floating offshore wind turbines are susceptible to large oscillations such as aerodynamic force of the wind and hydrodynamic force of the wave, which may compromise their performance and structural stability. This paper focuses on the evaluation of aerodynamic forces depending on suppressing undesired turbine's motion by a rotor thrust control which is controlled by pitch changes with wind tunnel experiments. In this research, the aerodynamic forces of wind turbine are tested at two kinds of pitch control system: steady pitch control and cyclic pitch control. The rotational speed of rotor is controlled by a variable speed generator, which can be measured by the power coefficient. Moment and force acts on model wind turbine are examined by a six-component balance. From cyclic pitch testing, the direction and magnitude of moment can be arbitrarily controlled by cyclic pitch control. Moreover, the fluctuations of thrust coefficient can be controlled by collective pitch control. The results of this analysis will help resolve the fundamental design of suppressing undesired turbine's motion by cyclic pitch control. - Highlights: • Offshore wind offers additional options in regions with low onshore potential. • Two kinds of pitch control system: Steady pitch control and Cyclic pitch control. • Performance curves and unsteady aerodynamics are investigated in wind tunnel. • Fluctuations of thrust coefficient can be controlled by collective pitch control.

  8. Preparation, characterization and simulation studies of carbon nanotube electrodes for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Frank; Endler, Ingolf [Fraunhofer-Institut fuer Keramische Technologien und Systeme (IKTS), Dresden (Germany); Lorrmann, Henning [Fraunhofer-Institut fuer Silicatforschung (ISC), Wuerzburg (Germany); Pastewka, Lars [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany)

    2010-07-01

    Chemical Vapor Deposition (CVD) was employed to synthesize multiwalled carbon nanotubes (MWCNT) on different carrier materials for electrode applications. In the field of electrochemical energy storage it is essential to grow MWCNT on conducting substrates. For this reason titanium nitride (TiN) layers as well as a copper foil were used as substrates. The MWCNT grown on TiN layers show diameters of about 20 nm and lengths up to 13 {mu}m. In the case of copper foil substrates a remarkably higher nanotube diameter of several tens of nanometers was found. First electrochemical characterization via cyclic voltammetry shows the potential of MWCNT as electrodes for energy storage applications. The CNT were measured in an organic carbonate electrolyte vs. a lithium counter electrode with various scan rates. Until now the preliminary investigations by cyclic voltammetry for electrodes consisting of aligned MWCNT on TiN showed a capacity of around 130 F g{sup -1} in the range of 1 - 3 V vs. Li/Li{sup +}. In support of the experiments we construct a one dimensional Poisson-Nernst-Planck (PNP) continuum model that has been shown to yield agreement with corresponding molecular dynamics simulations to model ion transport into these types of electrodes. Our simulations show that first the ions accumulate at the tips of the tubes because the inner volume of the electrodes is initially field-free. A homogeneous charge distribution is then established through diffusion. The PNP model is used to compute cyclic voltammograms which show qualitative agreement with the experiments. (orig.)

  9. Synthesis of Cyclic Antifreeze Glycopeptide and Glycopeptoids and Their Ice Recrystallization Inhibition Activity

    International Nuclear Information System (INIS)

    Ahn, Mija; Murugan, Ravichandran N.; Bang, Jeong Kyu; Kim, Hak Jun; Shin, Song Yub; Kim, Eunjung; Lee, Jun Hyuck

    2012-01-01

    Until now, few groups reported the antifreeze activity of cyclic glycopeptides; however, the tedious synthetic procedure is not amenable to study the intensive structure activity relationship. A series of N-linked cyclic glycopeptoids and glycopeptide have been prepared to evaluate antifreeze activity as a function of peptide backbone cyclization and methyl stereochemical effect on the rigid Thr position. This study has combined the cyclization protocol with solid phase peptide synthesis and obtained significant quantities of homogeneous cyclic glycopeptide and glycopeptoids. Analysis of antifreeze activity revealed that our cyclic peptide demonstrated RI activity while cyclic glycopeptoids showed no RI activity. These results suggest that the subtle changes in conformation and Thr orientation dramatically influence RI activity of N-linked glycopeptoids

  10. 21 CFR 862.1230 - Cyclic AMP test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cyclic AMP test system. 862.1230 Section 862.1230....1230 Cyclic AMP test system. (a) Identification. A cyclic AMP test system is a device intended to measure the level of adenosine 3′, 5′-monophosphate (cyclic AMP) in plasma, urine, and other body fluids...

  11. A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Yifan Dai

    2018-01-01

    Full Text Available A cuprous oxide (Cu2O thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50–200 mg/dL using differential pulse voltammetry (DPV measurement. An X-ray photoelectron spectroscopy (XPS study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in both phosphate-buffered saline (PBS and undiluted human serum was carried out. Neither ascorbic acid nor uric acid, even at a relatively high concentration level (100 mg/dL in serum, interfered with the glucose detection, demonstrating the excellent selectivity of this non-enzymatic cuprous oxide thin layer-based glucose sensor. Chronoamperometry and single potential amperometric voltammetry were used to verify the measurements obtained by DPV, and the positive results validated that the detection of glucose in a 0.1 M NaOH alkaline medium by DPV measurement was effective. Nickel, platinum, and copper are commonly used metals for non-enzymatic glucose detection. The performance of these metal-based sensors for glucose detection using DPV were also evaluated. The cuprous oxide (Cu2O thin layer-based sensor showed the best sensitivity for glucose detection among the sensors evaluated.

  12. Waiting-time approximations in multi-queue systems with cyclic service

    NARCIS (Netherlands)

    Boxma, O.J.; Meister, B.W.

    1987-01-01

    This study is devoted to mean waiting-time approximations in a single-server multi-queue model with cyclic service and zero switching times of the server between consecutive queues. Two different service disciplines are considered: exhaustive service and (ordinary cyclic) nonexhaustive service. For

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Furthermore, cyclic voltammetry technique was applied for recording the electrochemical behaviour of the ligand and its complexes. Cyclic voltamogram of the ligand showed that it is reduced at four cathodic potentials and then oxidized only in two anodic potentials in reverse direction. The electrochemical behaviour of ...

  14. INFLUENCE OF INTERMITTENT CYCLIC LOADING ON REINFORCED CONCRETE RESISTANCE MODEL

    Directory of Open Access Journals (Sweden)

    Vasyl Karpiuk

    2017-01-01

    Full Text Available This article describes the study of reinforced concrete span bending structures under conditions of high-level cyclic loading. Previous studies on the development of physical models of bending reinforced concrete element fatigue resistance, cyclic effect of lateral forces, and methods of calculation, are important and appropriate owing to certain features and the essential specificity of the mentioned loading type. These primarily include the nonlinearity of deformation, damage accumulation in the form of fatigue micro- and macro-cracks, and exhausting destruction of construction materials. In this paper, key expressions determining the endurance limits of concrete, longitudinal reinforcement, and anchoring longitudinal reinforcement, which contribute to endurance throughout the entire construction, are considered. Establishing a link between stresses in the elements and deformations in the element under conditions of cyclic loading action is of equal importance because of the presence of cyclic stress-induced creep deformation.

  15. Electrochemical Studies of Lead Telluride Behavior in Acidic Nitrate Solutions

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2015-04-01

    Full Text Available Electrochemistry of lead telluride stationary electrode was studied in nitric acid solutions of pH 1.5-3.0. E-pH diagram for Pb-Te-H2O system was calculated. Results of cyclic voltammetry of Pb, Te and PbTe were discussed in correlation with thermodynamic predictions. Anodic dissolution of PbTe electrode at potential approx. -100÷50 mV (SCE resulted in tellurium formation, while above 300 mV TeO2 was mainly produced. The latter could dissolve to HTeO+2 under acidic electrolyte, but it was inhibited by increased pH of the bath.

  16. Investigation on effectiveness of a prefabricated vertical drain during cyclic loading

    International Nuclear Information System (INIS)

    Indraratna, B; Ni, J; Rujikiatkamjorn, C

    2010-01-01

    The effectiveness of prefabricated vertical drains (PVDs) in enhancing the stability of soft soils during cyclic loading was investigated using triaxial cyclic loading tests. Both undrained and with PVD tests were employed to study the associated excess pore pressure and accumulated strain under the repeated loading condition. The loading frequency and cyclic stress ratio have been chosen to be the variables which influence the performance of soft clays. The experimental results illustrate that with PVDs, the excess pore water pressure generation during cyclic loading decreases significantly. It is found that the excess pore water pressure build up depends on both loading frequency and cyclic stress ratio. The excess pore water pressure will increase when each of them is increased. Furthermore, when the loading frequency is 0.1 Hz, the ratio of coefficient of consolidation under cyclic loading to that under static loading is almost one. With the increasing loading frequency, this ratio increases accordingly.

  17. Some aspects of the role of inhibitors in the corrosion of copper in tap water as observed by cyclic voltammetry

    International Nuclear Information System (INIS)

    Bi, H.; Burstein, G.T.; Rodriguez, B.B.; Kawaley, G.

    2016-01-01

    Highlights: • The presence of Fernox ® inhibits both the anodic and cathodic reactions of copper in tap water, with the anodic reaction more heavily supressed. • Fernox ® is more inhibitive than the individual components, BTA or TEA, and also more inhibitive than a mixture of the two. • BTA is the dominant inhibitive component of Fernox ® . TEA also inhibits the reaction, but less effectively. • The inhibitors show the same degree of inhibition and the same mechanism of inhibition in hard and soft tap water. • A mechanism of inhibition is proposed whereby the inhibitor forms a film on the surface, which is reactive: surface polymerization of the reactive inhibitor is proposed. - Abstract: Cyclic voltammetric examination of the corrosion and inhibition of copper in hard and soft tap-waters in the presence of a commercial inhibitor containing benzotriazole (BTA) and triethanolamine (TEA), or its separate components, is presented. The anodic and cathodic reactions are both strongly inhibited, although the anodic reaction more so. BTA is by far the dominant inhibiting component. The inhibitor forms a polymerized reactive adsorbed surface film. Inhibition of the cathodic reaction (oxygen reduction) is not due to electron resistivity of the inhibitor, but rather, by heavily reduced surface coverage of adsorbed oxygen over a wide range of oxygen reduction overpotential.

  18. DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRY FOR DETERMINATION OF SOME HEAVY METALS IN URANIUM

    Directory of Open Access Journals (Sweden)

    Saryati Saryati

    2010-06-01

    Full Text Available The direct determination of some metals impurity in uranium by using differential pulse anodic stripping voltammetry (DPASV method at a hanging mercury drop electrode and in a carbonate buffer media was developed. It was found that the carbonate buffer show the strongest affinity for uranium and gives the best separation between the DPASV peaks of heavy metals impurities. The carbonate concentration markedly affects the oxidation and reduction the major and the minor constituents of the uranium samples. In 0.1 M carbonate buffer solution pH 10, copper, bismuth, thalium, lead, cadmium, zinc, could be determined without the removal of the uranium matrix. Recovery and relative standard deviation (RSD of this method was in the range of 174% - 85.2% for recovery and 36.8% - 1.2% for RSD. The larger error of analytical result was obtained for Zn at low concentration. In general, the analytic results error and RSD decreased with increasing metals concentration.   Keywords: heavy metal determination, differential pulse anodic stripping voltammetry, uranium

  19. Experimental investigation of steel fiber-reinforced concrete beams under cyclic loading

    Science.gov (United States)

    Ranjbaran, Fariman; Rezayfar, Omid; Mirzababai, Rahmatollah

    2018-03-01

    An experimental study has been conducted to study the cyclic behavior of reinforced concrete beams in which steel fibers were added to the concrete mix. Seven similar geometrically specimens in full scale were studied under four- point bending test in the form of slow cyclic loading. One sample as a control specimen was made without steel fibers or 0% volume fraction (vf) and six other samples with 1, 2 and 4% vf of steel fibers in twin models. The maximum and ultimate resistance, ductility, degradation of loading and unloading stiffness, absorption and dissipation of energy and equivalent viscous damping were studied in this investigation and the effect of steel fibers on the cyclic behavior was compared with each other. Generally, the addition of steel fibers up to a certain limit value (vf = 2%) improves the cyclic behavior of reinforced concrete beams and results in the increase of maximum strength and ultimate displacement.

  20. Corrosion and Durability Research | Concentrating Solar Power | NREL

    Science.gov (United States)

    . Peregrine runs the Linux Operating System and has a dedicated Lustre file system with about 1 petabyte of a high-performance computing (HPC) system that can handle and analyze integrated data. The fundamentals of corrosion mechanisms are studied by several techniques, including cyclic voltammetry, linear

  1. Nitric oxide reduction and oxidation on stepped Pt[n(111)x(111)] electrodes

    NARCIS (Netherlands)

    Beltramo, G.L.; Koper, M.T.M.

    2003-01-01

    The structure sensitivity of the reduction and oxidation of saturated and subsaturated NO adlayers has been studied on a series of stepped Pt[n(111)×(111)] electrodes by cyclic and stripping voltammetry experiments in sulfuric and perchloric acid solution. In agreement with earlier experimental

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Electrochemical oxidation of some catechol derivatives (1a-e) have been studied in water/acetonitrile solution containing 1-methylindole (3) as a nucleophile, using cyclic voltammetry and controlledpotential coulometry. An interesting diversity in the mechanisms has been observed in electrochemical oxidation of catechol ...

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Efficiency of the OBI film to protect copper from corrosion has been investigated in aq. HCl solution using electrochemical impedance spectroscopy, potentiodynamic polarization method, cyclic voltammetry, scanning electron microscopy and gravimetry. Results of these studies inferred that the OBI film has an inhibition ...

  4. Diversity in electrochemical oxidation of dihydroxybenzenes in the ...

    Indian Academy of Sciences (India)

    Abstract. Electrochemical oxidation of some catechol derivatives (1a–e) have been studied in water/ acetonitrile solution containing 1-methylindole (3) as a nucleophile, using cyclic voltammetry and controlled- potential coulometry. An interesting diversity in the mechanisms has been observed in electrochemical oxidation ...

  5. Anisotropic yield surfaces in bi-axial cyclic plasticity

    International Nuclear Information System (INIS)

    Rider, R.J.; Harvey, S.J.; Breckell, T.H.

    1985-01-01

    Some aspects of the behaviour of yield surfaces and work-hardening surfaces occurring in biaxial cyclic plasticity have been studied experimentally and theoretically. The experimental work consisted of subjecting thin-walled tubular steel specimens to cyclic plastic torsion in the presence of sustained axial loads of various magnitudes. The experimental results show that considerable anisotropy is induced when the cyclic shear strains are dominant. Although the true shapes of yield and work-hardening surfaces can be very complex, a mathematical model is presented which includes both anisotropy and Bauschinger effects. The model is able to qualitatively predict the deformation patterns during a cycle of applied plastic shear strain for a range of sustained axial stresses and also indicate the material response to changes in axial stress. (orig.)

  6. The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Alexandra M.; Piazza, Gary A. [Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Suite 3029, Mobile, AL 36604 (United States); Tinsley, Heather N., E-mail: htinsley@montevallo.edu [Department of Biology, Chemistry, and Mathematics, University of Montevallo, Station 6480, Montevallo, AL 35115 (United States)

    2014-02-26

    For more than four decades, the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) have been recognized as important signaling molecules within cells. Under normal physiological conditions, cyclic nucleotides regulate a myriad of biological processes such as cell growth and adhesion, energy homeostasis, neuronal signaling, and muscle relaxation. In addition, altered cyclic nucleotide signaling has been observed in a number of pathophysiological conditions, including cancer. While the distinct molecular alterations responsible for these effects vary depending on the specific cancer type, several studies have demonstrated that activation of cyclic nucleotide signaling through one of three mechanisms—induction of cyclic nucleotide synthesis, inhibition of cyclic nucleotide degradation, or activation of cyclic nucleotide receptors—is sufficient to inhibit proliferation and activate apoptosis in many types of cancer cells. These findings suggest that targeting cyclic nucleotide signaling can provide a strategy for the discovery of novel agents for the prevention and/or treatment of selected cancers.

  7. Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry.

    Science.gov (United States)

    Li, Zhenhan; Xia, Shanhong; Wang, Jinfen; Bian, Chao; Tong, Jianhua

    2016-01-15

    A novel method for determination of trace mercury in water is developed. The method is performed by extracting mercury firstly with ionic liquids (ILs) and then detecting the concentration of mercury in organic media with anodic stripping voltammetry. Liquid-liquid extraction of mercury(II) ions by four ionic liquids with N-octylpyridinium cations ([OPy](+)) was studied. N-octylpyridinium tetrafluoroborate and N-octylpyridinium trifluoromethylsulfonate were found to be efficient and selective extractant for mercury. Temperature controlled dispersive liquid phase microextraction (TC-DLPME) technique was utilized to improve the performance of preconcentration. After extraction, precipitated IL was diluted by acetonitrile buffer and mercury was detected by differential pulse stripping voltammetry (DPSV) with gold disc electrode. Mercury was enriched by 17 times while interfering ions were reduced by two orders of magnitude in the organic media under optimum condition. Sensitivity and selectivity for electrochemical determination of mercury were improved by using the proposed method. Tap, pond and waste water samples were analyzed with recoveries ranging from 81% to 107% and detection limit of 0.05 μg/L. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Practical measurement of silicon in low alloy steels by differential pulse stripping voltammetry

    International Nuclear Information System (INIS)

    Rahier, A.; Lunardi, S.; Triki, C.

    2005-01-01

    A sensitive differential pulse anodic stripping voltammetry has been adapted to allow the determination of Si in low-alloy steels using a hanging mercury drop electrode. The method has been qualified using certified ASTM standards and is now running in routine. The present report describes the experimental details, thereby allowing the reader to carry out the measurements precisely. (author)

  9. Electrochemical study of the tarnish layer of silver deposited on glass

    OpenAIRE

    Ben Amor , Yasser; Sutter , Eliane; Takenouti , Hisasi; Tribollet , Bernard; Boinet , M.; Faure , R.; Balencie , J.; Durieu , G.

    2014-01-01

    International audience; Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the tarnished thin layer of silver deposited on glass. Instead of natural tarnishing in air environment, an acceleration of tarnishing process was realized by immersion of Ag covered glass in 10 μM K2S medium. The X-ray photoelectron spectroscopy (XPS) shows that tarnishing product formed on the silver surface consisted of Ag2S and Ag2O. As electrochemical characterizatio...

  10. On Improvements of Cyclic MUSIC

    Directory of Open Access Journals (Sweden)

    H. Howard Fan

    2005-01-01

    Full Text Available Many man-made signals encountered in communications exhibit cyclostationarity. By exploiting cyclostationarity, cyclic MUSIC has been shown to be able to separate signals with different cycle frequencies, thus, to be able to perform signal selective direction of-arrival (DOA estimation. However, as will be shown in this paper, the DOA estimation of cyclic MUSIC is actually biased. We show in this paper that by properly choosing the frequency for evaluating the steering vector, the bias of DOA estimation can be substantially reduced and the performance can be improved. Furthermore, we propose another algorithm exploiting cyclic conjugate correlation to further improve the performance of DOA estimation. Simulation results show the effectiveness of both of our methods.

  11. Thermodynamic study of Eu3+/Eu2+ redox reaction in aqueous solutions at elevated temperatures and pressures by means of cyclic voltametry

    International Nuclear Information System (INIS)

    Bilal, B.A.

    1991-01-01

    The redox potential of the couple Eu 3+ /E 2+ in aqueous NaCl, NaClO 4 and Na 2 SO 4 solutions of different strength and various pH values has been determined by means of cyclic voltammetry up to 458 K and 1 kbar. In all cases reversible voltammograms were obtained. Compared to the redox potential in ClO 4 - solutions of pH 2, no significant shift was observed in Cl-solutions of the same pH, whereas a drastic shift to more negative potentials in solutions of SO 4 2- and in Cl - solutions of higher pH (pH 3-5) was obtained. This indicates a negligible complexation of Eu 3+ by means of Cl - but a strong one by means of OH - and SO 4 2- . An isothermal pressure increase up to 1 kbar led to a shift of only few mV more negative, indicating a small pressure dependence of the change of the partial molar volume (ΔV el ) accompanying the redox reaction, which results in this case only due to the different degrees of electrostriction. A more drastic shift of the redox potential (in the positive direction) results with increasing temperature. The isobaric temperature dependence of the redox potential is described by a two parameter equation which remains valid up to the saturation pressure at 458 K, due to the small pressure effect. ΔS and ΔH of the redox reaction has been determined. (orig.)

  12. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    Science.gov (United States)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  13. Earl Sutherland (1915-1974) [corrected] and the discovery of cyclic AMP.

    Science.gov (United States)

    Blumenthal, Stanley A

    2012-01-01

    In 1945, Earl Sutherland (1915-1974) [corrected] and associates began studies of the mechanism of hormone-induced glycogen breakdown in the liver. In 1956, their efforts culminated in the identification of cyclic AMP, an ancient molecule generated in many cell types in response to hormonal and other extracellular signals. Cyclic AMP, the original "second messenger," transmits such signals through pathways that regulate a diversity of cellular functions and capabilities: metabolic processes such as lipolysis and glycogenolysis; hormone secretion; the permeability of ion channels; gene expression; cell proliferation and survival. Indeed, it can be argued that the discovery of cyclic AMP initiated the study of intracellular signaling pathways, a major focus of contemporary biomedical inquiry. This review presents relevant details of Sutherland's career; summarizes key contributions of his mentors, Carl and Gerti Cori, to the knowledge of glycogen metabolism (contributions that were the foundation for his own research); describes the experiments that led to his identification, isolation, and characterization of cyclic AMP; assesses the significance of his work; and considers some aspects of the impact of cyclic nucleotide research on clinical medicine.

  14. Influence of electroformation regime on the specific properties of cobalt oxide‒platinum composite films deposited on conductive diamond

    Energy Technology Data Exchange (ETDEWEB)

    Spătaru, Tanţa; Osiceanu, Petre; Preda, Loredana; Munteanu, Cornel [Institute of Physical Chemistry “Ilie Murgulescu”, 202 Spl. Independenţei 060021, Bucharest (Romania); Spătaru, Nicolae, E-mail: nspataru@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, 202 Spl. Independenţei 060021, Bucharest (Romania); Fujishima, Akira [Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 (Japan)

    2014-04-01

    Two straightforward electrochemical methods were used in the present work for depositing cobalt oxide-platinum composite films on boron-doped diamond substrates in order to put into evidence the effect of the electroformation regime on the morphological and electrochemical features of these hybrid systems. The shift from potentiostatic to potentiodynamic deposition enabled not only a significant improvement of the Pt particles dispersion but also a much higher surface concentration of oxygenated species of platinum. For similar Co{sub 3}O{sub 4} and Pt loadings, the specific capacitance of the composite films deposited by cyclic voltammetry was with ca. 8% higher than that of the potentiostatically obtained ones. Additional advantage of potentiodynamic deposition is the improved resistance to fouling during methanol anodic oxidation of Pt particles, tentatively ascribed to the higher surface concentration of oxygenated species of platinum. - Highlights: • Cobalt oxide-platinum composite films were electrodeposited on conductive diamond. • Composite films formed by cyclic voltammetry exhibit enhanced specific capacitance. • Potentiodynamic deposition enables higher concentration of oxygenated Pt species. • Co{sub 3}O{sub 4}–Pt films prepared by cyclic voltammetry are less susceptible to CO poisoning.

  15. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature

    Science.gov (United States)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-10-01

    A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.

  16. Study of cyclic thermal aging of tube type receivers as a function of the duration of the cycle

    Science.gov (United States)

    Setien, Eneko; Fernández-Reche, Jesús; Ariza, María Jesús; Álvarez-de-Lara, Mónica

    2017-06-01

    The tube type receivers are exposed to variable duration cyclic operating conditions, which can jeopardize its reliability, and make it hard to estimate its long term performance. The designers have to deal with this problem and estimate the receiver long term performance based on the poor available litterature and the data sheets of the material. In order to help the designer better estimate the performance of the receivers, in this paper the cyclic thermal aging is analyzed as a function of the cycle duration. For this purpose, coated and uncoated Inconel alloy 625 tubular samples, similar to those used in the commercial receivers, are cyclically aged with different thermal cycle duration. The aging of these samples has been analyzed by means of oxidation kinetics, microstructure examination and mechanical and optical properties. The effect of the thermal cycle duration is studied and discussed by comparison of the results.

  17. Microgravimetric Studies of Selenium Electrodeposition Onto Different Substrates

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2014-10-01

    Full Text Available The mechanism of selenium electrodeposition from sulfuric acid solution on different substrates was studied with the electrochemical techniques. The cyclic voltammetry was combined with the quartz crystal microbalance technique to analyze selenium deposition process. The electrochemical reduction of selenous acid on gold, silver and copper electrodes was investigated. It was found that reduction of selenous acid is a very complex process and it strongly depends from the applied substrate. The voltammetric measurements indicate the range of potentials in which the process of reduction of selenous acids on the applied substrate is possible. Additionally, the microgravimetric data confirm the deposition of selenium and they reveal the mechanism of the deposition process.

  18. Cyclic deformation of zircaloy-4 at room temperature

    International Nuclear Information System (INIS)

    Armas, A. F; Herenu, S; Bolmaro, R; Alvarez-Armas, I

    2003-01-01

    Annealed materials hardens under low cyclic fatigue tests.However, FCC metals tested with medium strain amplitudes show an initial cyclic softening.That behaviour is related with the strong interstitial atom-dislocation interactions.For HCP materials the information is scarce.Commercial purity Zirconium and Zircaloy-4 alloys show also a pronounced cyclic softening, similar to Titanium alloys.Recently the rotation texture induced softening model has been proposed according to which the crystals are placed in a more favourable deformation orientation by prismatic slip due to the cyclic strain.The purpose of the current paper is the presentation of decisive results to discuss the causes for cyclic softening of Zircaloy-4. Low cycle fatigue tests were performed on recrystallized Zircaloy-4 samples.The cyclic behaviour shows an exponential softening at room temperature independently of the deformation range.Only at high temperature a cyclic hardening is shown at low number of cycles.Friction stresses, related with dislocation movement itself, and back stresses, related with dislocation pile-ups can be calculated from the stress-strain loops.The cyclic softening is due to diminishing friction stress while the starting hardening behaviour is due to increasing back stresses.The rotation texture induced softening model is ruled out assuming instead a model based on dislocation unlocking from interstitial oxygen solute atoms

  19. Synthesis, characterization, structure and properties of heterobimetallic complexes [CuNi(μ-OAc) (μ-OH) (μ-OH2) (bpy)2] (BF4)2 and [CuNi(bz)3(bpy)2] ClO4 from 2,2‧ bipyridine

    Science.gov (United States)

    Kurbah, Sunshine D.; Kumar, A.; Syiemlieh, I.; Dey, A. K.; Lal, R. A.

    2018-02-01

    Heterobimetallic complexes of the composition [CuNi(bpy)2 (μ-OAc) (μ-OH) (μ-OH2)](BF4)2 (1) and [CuNi(bz)3 (bpy)2]ClO4 (2) were synthesized in moderate yield through solid state reaction and have been characterized by elemental analyses, molar conductance, mass spectra, magnetic moment, EPR, UV-Vis, IR spectroscopies and cyclic voltammetry. The ground state in complex (1) is doublet while that in complex (2), the ground state is a mixture of doublet and quartet, respectively. The structure of the complexes has been established by X-ray crystallography. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry.

  20. Electrochemical studies of biocatalytic anode of sulfonated graphene/ferritin/glucose oxidase layer-by-layer biocomposite films for mediated electron transfer.

    Science.gov (United States)

    Inamuddin; Haque, Sufia Ul; Naushad, Mu

    2016-06-01

    In this study, a bioanode was developed by using layer-by-layer (LBL) assembly of sulfonated graphene (SG)/ferritin (Frt)/glucose oxidase (GOx). The SG/Frt biocomposite was used as an electron transfer elevator and mediator, respectively. Glucose oxidase (GOx) from Aspergillus niger was applied as a glucose oxidation biocatalyst. The electrocatalytic oxidation of glucose using GOx modified electrode increases with an increase in the concentration of glucose in the range of 10-50mM. The electrochemical measurements of the electrode was carried out by using cyclic voltammetry (CV) at different scan rates (20-100mVs(-1)) in 30mM of glucose solution prepared in 0.3M potassium ferrocyanide (K4Fe(CN)6) and linear sweep voltammetry (LSV). A saturation current density of 50±2mAcm(-2) at a scan rate of 100mVs(-1) for the oxidation of 30Mm glucose is achieved. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent

    DEFF Research Database (Denmark)

    Vijayakumar, Vinodhkumar; Vijayaraj, Ramadoss; Peters, Günther H.J.

    2016-01-01

    The stability of cyclic peptide assemblies (CPs) forming a macromolecular nanotube structure was investigated in solvents of different polarity using computational methods. The stability and structure of the complexes were studied using traditional molecular dynamics (MD). Energy of dissociation ...

  2. A glassy carbon electrode modified with an iron N4-macrocycle and reduced graphene oxide for voltammetric sensing of dissolved oxygen

    International Nuclear Information System (INIS)

    Silva, Saimon M.; Aguiar, Lucas F.; Carvalho, Rita M. S.; Tanaka, Auro A.; Damos, Flavio S.; Luz, Rita C. S.

    2016-01-01

    The authors describe a platform for the electrochemical reduction of oxygen. It is based on the use of a glassy carbon electrode (GCE) that was modified in a single-step microwave assisted reaction with a N4-macrocycle containing iron(III) (FeN4) and with reduced graphene oxide. The FeN4/rGO composite was characterized by cyclic voltammetry, differential pulse voltammetry, and scanning electrochemical microscopy (SECM). Cyclic voltammetry showed the composite to enable efficient reduction of O_2 at a very low overpotential (−0.05 V vs. Ag/AgCl). SECM measurements were carried out to map (in the redox competition mode) the activity of a GCE microelectrode modified with FeN4/rGO. Under optimized conditions, the response to dissolved O_2 ranges from 0.8 up to 25 mg⋅L"-"1, and the limit of detection is 0.2 mg⋅L"-"1. (author)

  3. Substrate integrated Lead-Carbon hybrid ultracapacitor with flooded ...

    Indian Academy of Sciences (India)

    The electrode and silica-gel electrolyte materials are characterized by XRD, XPS, SEM, TEM, Rheometry, BET surface area, and FTIR spectroscopy in conjunction with electrochemistry. Electrochemical performance of SI-PbO2 and carbon electrodes is studied using cyclic voltammetry with constant-current charge and ...

  4. An X-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    International Nuclear Information System (INIS)

    Fourspring, P.M.; Pangborn, R.N.

    1996-06-01

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 microm), subsurface (10--300 microm), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys

  5. Electrical double layer capacitor using poly(methyl methacrylate)–C4BO8Li gel polymer electrolyte and carbonaceous material from shells of mata kucing (Dimocarpus longan) fruit

    International Nuclear Information System (INIS)

    Arof, A.K.; Kufian, M.Z.; Syukur, M.F.; Aziz, M.F.; Abdelrahman, A.E.; Majid, S.R.

    2012-01-01

    Poly(methyl methacrylate), PMMA based gel polymer electrolytes (GPE) containing immobilized lithium bis(oxalato)borate, C 4 BO 8 Li or LiBOB dissolved in a propylene carbonate–ethylene carbonate binary solvent were prepared by heating the cast solution between 70 and 80 °C for 20 min. The electrolyte composition with 5 wt.% PMMA exhibited the highest conductivity of 3.27 and 7.46 mS cm −1 at 298 and 343 K respectively. Cyclic voltammetry studies on the GPE containing 15 wt.% PMMA and 85 wt.% (0.6 M LiBOB) dissolved in equal weight of ethylene and propylene carbonates showed that the electrochemical potential stability window of the electrolyte lies in the range between −1.7 to +1.7 V. Linear sweep voltammetry indicates the gel polymer electrolyte is stable up to 1.7 V. The electrical double layer capacitor (EDLC) using the highest conducting GPE and activated carbon derived from shells of the mata kucing (Dimocarpus longan) fruit has capacitance of ∼685 mF g −1 on the first cycle. The EDLC performance was also characterized using cyclic voltammetry and charge–discharge processes at constant current.

  6. [Cyclic Cushing's Syndrome - rare or rarely recognized].

    Science.gov (United States)

    Kiałka, Marta; Doroszewska, Katarzyna; Mrozińska, Sandra; Milewicz, Tomasz; Stochmal, Ewa

    2015-01-01

    Cyclic Cushing's syndrome is a type of Cushing's disease which is characterized by alternating periods of increasing and decreasing levels of cortisol in the blood. The diagnostic criteria for cyclic Cushing's syndrome are at least three periods of hypercortisolism alternating with at least two episodes of normal levels of serum cortisol concentration. The epidemiology, signs, symptoms, pathogenesis and treatment of cyclic Cushing's syndrome have been discussed.

  7. Cyclic deformation and fatigue behaviors of Hadfield manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-03

    The cyclic deformation characteristics and fatigue behaviors of Hadfield manganese steel have been investigated by means of its ability to memorize strain and stress history. Detailed studies were performed on the strain-controlled low cycle fatigue (LCF) and stress-controlled high cycle fatigue (HCF). Initial cyclic hardening to saturation or peak stress followed by softening to fracture occurred in LCF. Internal stress made the dominant contribution to the fatigue crack propagation until failure. Effective stress evolution revealed the existence of C–Mn clusters with short-range ordering in Hadfield manganese steel and demonstrated that the interaction between C atoms in the C–Mn cluster and dislocation was essential for its cyclic hardening. The developing/developed dislocation cells and stacking faults were the main cyclic deformation microstructures on the fractured sample surface in LCF and HCF, which manifested that fatigue failure behavior of Hadfield manganese steel was induced by plastic deformation during strain-controlled or stress-controlled testing.

  8. Cyclic settlement behavior of strip footings resting on reinforced layered sand slope

    Directory of Open Access Journals (Sweden)

    Mostafa A. El Sawwaf

    2012-10-01

    Full Text Available The paper presents a study of the behavior of model strip footings supported on a loose sandy slope and subjected to both monotonic and cyclic loads. The effects of the partial replacement of a compacted sand layer and the inclusion of geosynthetic reinforcement were investigated. Different combinations of the initial monotonic loads and the amplitude of cyclic loads were chosen to simulate structures in which loads change cyclically such as machine foundations. The affecting factors including the location of footing relative to the slope crest, the frequency of the cyclic load and the number of load cycles were studied. The cumulative cyclic settlement of the model footing supported on a loose sandy slope, un-reinforced and reinforced replaced sand deposits overlying the loose slope were obtained and compared. Test results indicate that the inclusion of soil reinforcement in the replaced sand not only significantly increases the stability of the sandy slope itself but also decreases much both the monotonic and cumulative cyclic settlements leading to an economic design of the footings. However, the efficiency of the sand–geogrid systems depends on the properties of the cyclic load and the location of the footing relative to the slope crest. Based on the test results, the variation of cumulative settlements with different parameters is presented and discussed.

  9. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    Science.gov (United States)

    Bellanger, G.; Rameau, J. J.

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive -transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique.

  10. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    Energy Technology Data Exchange (ETDEWEB)

    Bellanger, G. [CEA Centre d`Etudes de Valduc, 21 - Is-sur-Tille (France); Rameau, J.J. [Ecole Nationale Superieure d`Electrochimie et d`Electrometallurgie, 38 - Saint-Martin-d`Heres (France)

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive-transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique. (orig.).

  11. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    International Nuclear Information System (INIS)

    Bellanger, G.; Rameau, J.J.

    1996-01-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive-transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique. (orig.)

  12. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    Science.gov (United States)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  13. Cyclic operation of power plant; Cyklisk drift av kraftvaermeverk

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan

    2007-12-15

    The great majority of power plants are designed for base load operation with a relatively small number of starts and stops per year. Therefore, there has been no need to consider fatigue at design. Over the last few years operation with more frequent starts and stops exists as a consequence of swinging electricity prices that has become common. This involves significantly higher frequency of damages; not least fatigue relates damages, and the number of severe failures in components that never before have had damage problems may increase as well. In the present work the different types of component that may suffer from cyclic operation related damage are gathered by a literature survey and described as follows: - where and how the damages comes up, - constructions that should be avoided, - non-destructive testing (NDT) for damage that may come up under cyclic operation, - calculation and assessment of integrity of critical components - areas where continued research would be valuable. Recommendations have been put together to be used to prevent cyclic operation related damage and to detect it in time. The target group for this study is i) plant owners of plants where cyclic operation is or may be present, ii) researchers in the area, and, iii) inspectors and NDT-operators. There are quite a number of components where cyclic operation has been found to significantly influence the lift time. Some of these components are described in many papers whereas occasional papers have been found for others. The amount of information that is possible to get for a certain component is likely related to its significance for cyclic operation damage. The most frequently reported problem is ligament cracking of high temperature headers. Other components where extensive studies have been done are: wall panels, creep-fatigue loaded welds and turbine components

  14. Cyclic transformation of orbital angular momentum modes

    International Nuclear Information System (INIS)

    Schlederer, Florian; Krenn, Mario; Fickler, Robert; Malik, Mehul; Zeilinger, Anton

    2016-01-01

    The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states. (paper)

  15. Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications

    Directory of Open Access Journals (Sweden)

    Bhamini Bhujun

    Full Text Available Nanocrystallites of three mixed ternary transition metal ferrite (MTTMF were prepared by a facile sol–gel method and adopted as electrode material for supercapacitors. The phase development of the samples was determined using Fourier transform infrared (FT-IR and thermal gravimetric analysis (TG. X-ray diffraction (XRD analysis revealed the formation of a single-phase spinel ferrite in CuCoFe2O4 (CuCoF, NiCoFe2O4 (NiCoF and NiCuFe2O4 (NiCuF. The surface characteristics and elemental composition of the nanocomposites have been studied by means of field emission scanning electron microscopy (FESEM, as well as energy dispersive spectroscopy (EDS. The electrochemical performance of the nanomaterials was evaluated using a two-electrode configuration by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic technique in 1 M KOH electrolyte and was found to be in the order of: CuCoF > NiCoF > NiCuF. A maximum specific capacitance of 221 Fg−1 was obtained with CuCoF at a scan rate of 5 mV s−1. In addition to an excellent cycling stability, an energy density of 7.9 kW kg−1 was obtained at a current density of 1 Ag−1. The high electrochemical performance of the MTTMF nanocomposites obtained indicates that these materials are promising electrodes for supercapacitors. Keywords: Mixed ternary transition metal ferrite (MTTMF, Nanocomposites, Sol–gel, Cyclic voltammetry, Asymmetric supercapacitor

  16. Direct determination of molybdenum in seawater by adsorption cathodic stripping square-wave voltammetry.

    Science.gov (United States)

    Sun, Y C; Mierzwa, J; Lan, C R

    2000-06-30

    A reliable and very sensitive procedure for the determination of trace levels of molybdenum in seawater is proposed. The complex of molybdenum with 8-hydroxyquinoline (Oxine) is analyzed by cathodic stripping square-wave voltammetry based on the adsorption collection onto a hanging mercury drop electrode (HMDE). This procedure of molybdenum determination was found to be more favorable than differential pulse cathodic stripping voltammetry because of inherently faster scan rate and much better linearity obtained through the one-peak (instead of one-of-two peaks) calibration. The variation of polarographic peak and peak current with a pH, adsorption time, adsorption potential, and some instrumental parameters such as scan rate and pulse height were optimized. The alteration of polarographic wave and its likely mechanism are also discussed. The relationship between peak current and molybdenum concentration is linear up to 150 mug l(-1). Under the optimal analytical conditions, the determination limit of 0.5 mug l(-1) Mo was reached after 60 s of the stirred collection. The estimated detection limit is better than 0.1 mug l(-1) of Mo. The applicability of this method to analysis of seawater was assessed by the determination of molybdenum in two certified reference seawater samples (CASS-2 and NASS-2) and the comparison of the analytical results for real seawater samples (study on a vertical distribution of Mo in the seawater column) with the results obtained by Zeeman-corrected electrothermal atomization atomic absorption spectrometry (Zeeman ETAAS). A good agreement between two used methods of molybdenum determination was obtained.

  17. Electrochemical behavior of two and one electron redox systems adsorbed on to micro- and mesoporous silicate materials: Influence of the channels and the cationic environment of the host materials

    International Nuclear Information System (INIS)

    Senthil Kumar, K.; Natarajan, P.

    2009-01-01

    Electrochemical behavior of two electron redox system, phenosafranine (PS + ) adsorbed on to micro- and mesoporous materials is investigated by cyclic voltammetry and differential pulse voltammetry using modified micro- and mesoporous host electrodes. Two redox peaks were observed when phenosafranine is adsorbed on the surface of microporous materials zeolite-Y and ZSM-5. However, only a single redox peak was observed in the modified electrode with phenosafranine encapsulated into the mesoporous material MCM-41 and when adsorbed on the external surface of silica. The observed redox peaks for the modified electrodes with zeolite-Y and ZSM-5 host are suggested to be primarily due to consecutive two electron processes. The peak separation ΔE and peak potential of phenosafranine adsorbed on zeolite-Y and ZSM-5 were found to be influenced by the pH of the electrolyte solution. The variation of the peak current in the cyclic voltammogram and differential pulse voltammetry with scan rate shows that electrodic processes are controlled by the nature of the surface of the host material. The heterogeneous electron transfer rate constants for phenosafranine adsorbed on to micro- and mesoporous materials were calculated using the Laviron model. Higher rate constant observed for the dye encapsulated into the MCM-41 indicates that the one-dimensional channel of the mesoporous material provides a more facile micro-environment for phenosafranine for the electron transfer reaction as compared to the microporous silicate materials. The stability of the modified electrode surface was investigated by multisweep cyclic voltammetry.

  18. METHODOLOGICAL ASPECTS OF ECONOMIC EVENTS CYCLICITY METHOD CONSIDERATION

    Directory of Open Access Journals (Sweden)

    Yaskova Natalia Yur'ievna

    2017-07-01

    Full Text Available The cyclicity of economic phenomena is not only their immanent property but also the subject of economic analysis. The modern way of making managerial decisions requires analysis of a number of cycles that fill any kind of activity. Accounting and reconciliation of construction, design, investment, purchasing, reproduction, leasing and other cycles is important for the investment and construction sector, both from the point of view of the need for their synchronization and from the position of determining trends in sectoral development. The analysis has showed that three main types of development are characteristic for investment and construction activity. Increasing intensity is inherent in a high level of cyclic synchronization. The degradation trend arises as a result of mismatched cycles. The stabilization character is inherent in the regular modes of maintaining the established proportions and cyclical inter-conformity. The study of the cyclical nature of investment and building processes is impossible without understanding their co-ordination. The principles of synchronization and subordination of the cycles should be used not only for the construction of cost-effective systems but also for the development of management tools.

  19. Quantum Codes From Cyclic Codes Over The Ring R 2

    International Nuclear Information System (INIS)

    Altinel, Alev; Güzeltepe, Murat

    2016-01-01

    Let R 2 denotes the ring F 2 + μF 2 + υ 2 + μυ F 2 + wF 2 + μwF 2 + υwF 2 + μυwF 2 . In this study, we construct quantum codes from cyclic codes over the ring R 2 , for arbitrary length n, with the restrictions μ 2 = 0, υ 2 = 0, w 2 = 0, μυ = υμ, μw = wμ, υw = wυ and μ (υw) = (μυ) w. Also, we give a necessary and sufficient condition for cyclic codes over R 2 that contains its dual. As a final point, we obtain the parameters of quantum error-correcting codes from cyclic codes over R 2 and we give an example of quantum error-correcting codes form cyclic codes over R 2 . (paper)

  20. The use of digital simulation to improve the cyclic voltammetric determination of rate constants for homogeneous chemical reactions following charge transfers

    International Nuclear Information System (INIS)

    Mozo, J.D.; Carbajo, J.; Sturm, J.C.; Nunez-Vergara, L.J.; Moscoso, R.; Squella, J.A.

    2011-01-01

    Cyclic voltammetry (CV) is a very useful electrochemical tool used to study reaction systems that include chemical steps that are coupled to electron transfers. This type of system generally involves the chemical reaction of an electrochemically generated free radical. Published methods exist that are used to determine the kinetics of electrochemically initiated chemical reactions from the measurements of the peak current ratio (i pa /i pc ) of a cyclic voltammogram. The published method requires working curves to relate a kinetic parameter to the peak current ratio. In the presented work, a digital simulation package was used to obtain improved working curves for specific working conditions. The curves were compared with the published results for the first- and second-order chemical reactions following the charge transfer step mechanisms. According to the presented results, the previously published working curve is reliable for a mechanism with a first-order chemical reaction; however, a change in the switching potential requires a recalculation of the curve. In the case of mechanisms with a second-order step (dimerisation and disproportionation), several different views exist on how the second-order chemical term should be expressed so that different values of the constant are obtained. Parameters such as electrode type, electrode area, electroactive species concentration, switching potential, scan rate and method for peak current ratio calculation modify the working curves and must always be specified. We propose a standardised method to obtain the most reliable kinetic constant values. The results of this work will permit researchers who handle simulation software to construct their own working curves. Additionally, those who do not have the simulation software could use the working curves described here. The revelations of the presented experiments may be useful to a broad chemistry audience because this study presents a simple and low-cost procedure for the

  1. Cyclic Creep Behavior of Modified 9Cr-1Mo Steel at 600 .deg. C

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, Dae Whan; Jang, Jin Sung; Park, Jae Young

    2012-01-01

    Cyclic deformation behavior is important in practice because high-temperature structural components are exposed under the cyclic conditions of repeated loading. In static creep (SC), the response of the material is simple as a static state of monotonic loading. However, in cyclic creep (CC), it is complex as dynamic loading. Cyclic creep data have been rarely reported until now. In particular, it is not understood well whether cyclic creep will accelerate or retard the creep rate compared with static creep, because it is not only the plastic deformation under cyclic loading is drastically different from monotonic loading, but also the cyclic response is dependent on the cycling frequency, stress range, stress ratio, and hold periods of cycling. Therefore, it is necessary to clarify the cyclic creep behavior influencing the creep deformation and fracture process. In this study, a series of cyclic creep tests was carried out using magnitudes of stress range of constant stress ratio (R=0.1) under continuous tension-tension loading cycles at a hold time of 10 minutes. Cyclic curves were monitored and obtained with time variations, and the properties of the cyclic creep tests were compared with those of static creep tests. The fracture microstructures were observed and analyzed

  2. INFLUENCE OF FLUORIDE ON THE ELECTROCHEMICAL ...

    African Journals Online (AJOL)

    L. Sadi Oufella, A. Benchettara

    2016-09-01

    Sep 1, 2016 ... ABSTRACT. The aim of the present study is to investigate the corrosion resistance of a new synthesized Ti-. 10Ta-2Mo in 0.9%NaCl solution containing different NaF concentrations using electrochemical techniques, including open circuit potential, potentiodynamic polarization, cyclic voltammetry and ...

  3. Enhanced methanol electro-oxidation activity of Pt/MWCNTs electro-catalyst using manganese oxide deposited on MWCNTs

    International Nuclear Information System (INIS)

    Nouralishahi, Amideddin; Khodadadi, Abbas Ali; Mortazavi, Yadollah; Rashidi, Alimorad; Choolaei, Mohammadmehdi

    2014-01-01

    Highlights: • Promoting effects of manganese oxide (MnO x ) on methanol electro-oxidation over Pt/MWCNTs are studied. • 3.3 times higher activity and improved stability are observed on Pt/MnO x -MWCNTs in MOR. • Both hydrogen spill over and bi-functional mechanism are facilitated in presence of MnO x . • MnO x significantly enhances electrochemical active surface area and dispersion of Pt nanoparticles. • Proton conductivity of electrocatalyst layer is improved upon MnO x incorporation. - Abstract: Electro-oxidation of methanol on platinum nanoparticles supported on a nanocomposite of manganese oxide (MnO x ) and multi-wall carbon nanotubes (MWCNTs) is investigated. The morphology, structure, and chemical composition of the electro-catalysts are characterized by TEM, XRD, EDS, TGA, and H 2 -TPR. The electro-catalytic properties of electrodes are examined by cyclic voltammetry, CO-stripping, electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). Compared to Pt/MWCNTs, the Pt/MnO x -MWCNTs electro-catalyst exhibits about 3.3 times higher forward peak current density, during cyclic voltammetry, and 4.6 times higher exchange current density in methanol electro-oxidation reaction. In addition, deposition of manganese oxide onto MWCNTs dramatically increases the electrochemical active surface area from 29.7 for Pt/MWCNTs to 89.4 m 2 g −1 Pt for Pt/MnO x -MWCNTs. The results of long-term cyclic voltammetry show superior stability of Pt nanoparticles upon addition of manganese oxide to the support. Furthermore, the kinetics of formation of the chemisorbed OH groups improves upon manganese oxide incorporation. This leads to a lower onset potential of CO ads oxidation on Pt/MnO x -MWCNTs than on Pt/MWCNTs

  4. Testing and modeling of cyclically loaded rock anchors

    Directory of Open Access Journals (Sweden)

    Joar Tistel

    2017-12-01

    Full Text Available The Norwegian Public Roads Administration (NPRA is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths at the crossings combined with challenging subsea topography and environmental loads call for an extension of existing practice. A variety of bridge concepts are evaluated in the feasibility study. The structures will experience significant loads from deadweight, traffic and environment. Anchoring of these forces is thus one of the challenges met in the project. Large-size subsea rock anchors are considered a viable alternative. These can be used for anchoring of floating structures but also with the purpose of increasing capacity of fixed structures. This paper presents first a thorough study of factors affecting rock anchor bond capacity. Laboratory testing of rock anchors subjected to cyclic loading is thereafter presented. Finally, the paper presents a model predicting the capacity of a rock anchor segment, in terms of a ribbed bar, subjected to a cyclic load history. The research assumes a failure mode occurring in the interface between the rock anchor and the surrounding grout. The constitutive behavior of the bonding interface is investigated for anchors subjected to cyclic one-way tensile loads. The model utilizes the static bond capacity curve as a basis, defining the ultimate bond τbu and the slip s1 at τbu. A limited number of input parameters are required to apply the model. The model defines the bond-slip behavior with the belonging rock anchor capacity depending on the cyclic load level (τmax cy/τbu, the cyclic load ratio (R = τmin cy/τmax cy, and the number of load cycles (N. The constitutive model is intended to model short anchor lengths representing an incremental length of a complete rock anchor.

  5. Cyclic compressive creep-elastoplastic behaviors of in situ TiB_2/Al-reinforced composite

    International Nuclear Information System (INIS)

    Zhang, Qing; Zhang, Weizheng; Liu, Youyi; Guo, BingBin

    2016-01-01

    This paper presents a study on the cyclic compressive creep-elastoplastic behaviors of a TiB_2-reinforced aluminum matrix composite (ZL109) at 350 °C and 200 °C. According to the experimental results, under cyclic elastoplasticity and cyclic coupled compressive creep-elastoplasticity, the coupled creep will cause changes in isotropic stress and kinematic stress. Isotropic stress decreases with coupled creep, leading to cyclic softening. Positive kinematic stress, however, increases with coupled creep, leading to cyclic hardening. Transmission electron microscopy (TEM) observations of samples under cyclic compressive creep-elastoplasticity with different temperatures and strain amplitudes indicate that more coupled creep contributes to more subgrain boundaries but fewer intracrystalline dislocations. Based on the macro tests and micro observations, the micro mechanism of compressive creep's influence on cyclic elastoplasticity is elucidated. Dislocations recovering with coupled creep leads to isotropic softening, whereas subgrain structures created by coupled creep lead to kinematic hardening during cyclic deformation.

  6. Supplementary Material for: The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara; Meier, Stuart; Gehring, Christoph A

    2016-01-01

    Abstract Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  7. A Note on the G-Cyclic Operators over a Bounded Semigroup

    International Nuclear Information System (INIS)

    Hamada, Nuha H.; Jamil, Zeana Z.

    2010-08-01

    Let H be an infinite-dimensional separable complex Hilbert space, and B(H) be the Banach algebra of all linear bounded operators on H. Let S be a multiplication semigroup of C with 1, an operator T element of B(H) is called G-cyclic operator over S if there is a vector x in H such that {αT n x|α element of S, n ≥ 0} is dense in H. In this case x is called a G-cyclic vector for T over S. If T is G-cyclic operator and S = {1} then T is a hypercyclic operator. In this paper, we study the spectral properties of a G-cyclic operators over a bounded S under the condition that zero is not in the closure of S. We show that the class of all G-cyclic operators is contained in the norm-closure of the class of all hypercyclic operators. (author)

  8. SiN/bamboo like carbon nanotube composite electrodes for lithium ion rechargeable batteries

    International Nuclear Information System (INIS)

    Katar, Sri Lakshmi; Hernandez, Dionne; Biaggi Labiosa, Azlin; Mosquera-Vargas, Edgar; Fonseca, Luis; Weiner, Brad; Morell, Gerardo

    2010-01-01

    A dual stage technique employing hot filament chemical vapor deposition (HFCVD) and radio frequency sputtering was used to synthesize SiN/BCNTs (bamboo like carbon nanotubes) on copper substrates. The films were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Electron field emission studies (EFE), charge-discharge, and cyclic voltammetry. The comprehensive characterization is consistent with a nanolayer of amorphous SiN on BCNTs. Field emission experiments confirm the excellent contact of the SiN nanolayer with the surface of the BCNTs necessary for fabrication of a coin cell. Electrochemical testing shows that SiN/BCNT electrode can deliver an initial discharge capacity of 2000 mAh g -1 which is higher than the capacity of graphite and the reversible capacity after ten cycles is 300 mAh g -1 . The cyclic voltammetry results suggest good reversibility with Li during cycling.

  9. Influence of silver on the anodic corrosion and gas evolution of Pb-Sb-As-Se alloys as positive grids in lead acid batteries

    International Nuclear Information System (INIS)

    Tizpar, A.; Ghasemi, Z.

    2006-01-01

    The influence of silver addition in the range 0.01-0.09 wt.% on the anodic corrosion and gas evolution of Pb-Sb-As-Se alloy in 1.28 sp.gr. H 2 SO 4 solution at 25 deg. C was studied using linear sweep voltammetry, cyclic voltammetry, weight loss measurements and scanning electron microscopy. The results drawn from different techniques are comparable. The effect of different concentration of silver on the corrosion behavior of Pb-Sb-As-Se was investigated. The experimental results show that the silver added to Pb-Sb-As-Se alloy inhibits the growth of anodic corrosion layer. A decrease in the oxygen evolution overpotential and an increase in the hydrogen evolution overpotential with the addition of Ag were also observed during the experiments. Cyclic voltammetric measurements provided information on the effect of Ag on the oxidation of PbSO 4 to PbO 2

  10. Functionalized linear and cyclic polyolefins

    Energy Technology Data Exchange (ETDEWEB)

    Tuba, Robert; Grubbs, Robert H.

    2018-02-13

    This invention relates to methods and compositions for preparing linear and cyclic polyolefins. More particularly, the invention relates to methods and compositions for preparing functionalized linear and cyclic polyolefins via olefin metathesis reactions. Polymer products produced via the olefin metathesis reactions of the invention may be utilized for a wide range of materials applications. The invention has utility in the fields of polymer and materials chemistry and manufacture.

  11. Study on the knock tendency and cyclical variations of a HCCI engine fueled with n-butanol/n-heptane blends

    International Nuclear Information System (INIS)

    Li, Gang; Zhang, Chunhua; Zhou, Jiawang

    2017-01-01

    Highlights: • The HCCI combustion was achieved on an engine fueled by n-butanol/n-heptane blends. • The knock tendency and cyclical variation of the HCCI combustion were studied. • The knock tendency can be weakened by increasing the blending ratio of n-butanol. • The knock tendency and cyclical variation are sensitive to the combustion phasing. • Cyclical variation always shows an opposite trend with the knock tendency. - Abstract: The homogeneous charge compression ignition (HCCI) combustion operation is conducted in the 2nd cylinder of a natural-aspirated four-stroke diesel engine. In the HCCI combustion mode, the n-butanol, n-heptane and their blends are injected into the intake port to form a lean homogeneous air-fuel mixture, which is consumed by the autoignition after compression. The objective of this study is to investigate the knock tendency and the cyclical variations of the HCCI engine. Experimental results show that the volume fraction of n-butanol affects the knock tendency greatly, which obviously decreases as the n-butanol volume fraction increases. The knocking combustion in the HCCI combustion is characterized by the high heat release rate (HRR). Both elevating the engine speed and raising the intake temperature contributes to an obvious increase in HRR and the knock tendency. But the HRR and knock tendency may slightly decrease when the engine speed reaches to 1400 rev/min and intake temperature reaches to 160 °C. Furthermore, the knock tendency can be weakened by increasing the excess air-fuel ratio. Cyclical variations of the HCCI engine are quantified by the coefficient of variation for the peak pressure (COV_P_m_a_x) and it exhibits an almost opposite trend to the knock tendency. The COV_P_m_a_x may considerably increase along with either increasing the blending ratio of n-butanol or increasing the excess air-fuel ratio. Moreover, it is reveled that the COV_P_m_a_x is sensitive to the relative position of peak HRR. The cyclical

  12. Simultaneous extraction and determination of trace amounts of diclofenac from whole blood using supported liquid membrane microextraction and fast Fourier transform voltammetry.

    Science.gov (United States)

    Mofidi, Zahra; Norouzi, Parviz; Sajadian, Masumeh; Ganjali, Mohammad Reza

    2018-04-01

    A novel, simple, and inexpensive analytical technique based on flat sheet supported liquid membrane microextraction coupled with fast Fourier transform stripping cyclic voltammetry on a reduced graphene oxide carbon paste electrode was used for the extraction and online determination of diclofenac in whole blood. First, diclofenac was extracted from blood samples using a polytetrafluoroethylene membrane impregnated with 1-octanol and then into an acceptor solution, subsequently it was oxidized on a carbon paste electrode modified with reduced graphene oxide nanosheets. The optimal values of the key parameters influencing the method were as follows: scan rate, 6 V/s; stripping potential, 200 mV; stripping time, 5 s; pH of the sample solution, 5; pH of the acceptor solution,7; and extraction time, 240 min. The calibration curves were plotted for the whole blood samples and the method was found to have a good linearity within the range of 1-25 μg/mL with a determination coefficient of 0.99. The limits of detection and quantification were 0.1 and 1.0 μg/mL, respectively. Using this coupled method, the extraction and determination were merged into one step. Accordingly, the speed of detection for sensitive determination of diclofenac in complex samples, such as blood, increased considerably. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cyclic antibiotic therapy for diverticular disease: a critical reappraisal.

    Science.gov (United States)

    Zullo, Angelo; Hassan, Cesare; Maconi, Giovanni; Manes, Gianpiero; Tammaro, Gianfranco; De Francesco, Vincenzo; Annibale, Bruno; Ficano, Leonardo; Buri, Luigi; Gatto, Giovanni; Lorenzetti, Roberto; Campo, Salvatore M; Ierardi, Enzo; Pace, Fabio; Morini, Sergio

    2010-09-01

    Different symptoms have been attributed to uncomplicated diverticular disease (DD). Poor absorbable antibiotics are largely used for uncomplicated DD, mainly for symptom treatment and prevention of diverticulitis onset. Controlled trials on cyclic administration of rifaximin in DD patients were evaluated. Four controlled, including 1 double-blind and 3 open-label, randomized studies were available. Following a long-term cyclic therapy, a significant difference emerged in the global symptoms score (range: 0-18) between rifaximin plus fibers (from 6-6.5 to 1-2) and fibers alone (from 6.7 to 2-3.8), although the actual clinically relevance of such a very small difference remains to be ascertained. Moreover, a similar global symptom score reduction (from 6 to 2.4) can be achieved by simply recommending an inexpensive high-fiber diet. Current data suggest that cyclic rifaximin plus fibers significantly reduce the incidence of the first episode of acute diverticulitis as compared to fibers alone (1.03% vs 2.75%), but a cost-efficacy analysis is needed before this treatment can be routinely recommended. The available studies have been hampered by some limitations, and definite conclusions could not be drawn. The cost of a long-life, cyclic rifaximin therapy administered to all symptomatic DD patients would appear prohibitive.

  14. Cloud Point Extraction for Electroanalysis: Anodic Stripping Voltammetry of Cadmium.

    Science.gov (United States)

    Rusinek, Cory A; Bange, Adam; Papautsky, Ian; Heineman, William R

    2015-06-16

    Cloud point extraction (CPE) is a well-established technique for the preconcentration of hydrophobic species from water without the use of organic solvents. Subsequent analysis is then typically performed via atomic absorption spectroscopy (AAS), UV-vis spectroscopy, or high performance liquid chromatography (HPLC). However, the suitability of CPE for electroanalytical methods such as stripping voltammetry has not been reported. We demonstrate the use of CPE for electroanalysis using the determination of cadmium (Cd(2+)) by anodic stripping voltammetry (ASV). Rather than using the chelating agents which are commonly used in CPE to form a hydrophobic, extractable metal complex, we used iodide and sulfuric acid to neutralize the charge on Cd(2+) to form an extractable ion pair. This offers good selectivity for Cd(2+) as no interferences were observed from other heavy metal ions. Triton X-114 was chosen as the surfactant for the extraction because its cloud point temperature is near room temperature (22-25 °C). Bare glassy carbon (GC), bismuth-coated glassy carbon (Bi-GC), and mercury-coated glassy carbon (Hg-GC) electrodes were compared for the CPE-ASV. A detection limit for Cd(2+) of 1.7 nM (0.2 ppb) was obtained with the Hg-GC electrode. ASV with CPE gave a 20x decrease (4.0 ppb) in the detection limit compared to ASV without CPE. The suitability of this procedure for the analysis of tap and river water samples was demonstrated. This simple, versatile, environmentally friendly, and cost-effective extraction method is potentially applicable to a wide variety of transition metals and organic compounds that are amenable to detection by electroanalytical methods.

  15. Experimental study and simulation of cyclic softening of tempered martensite ferritic steels

    International Nuclear Information System (INIS)

    Giroux, P.-F.

    2011-01-01

    The present work focuses on the high temperature mechanical behaviour of 9% Cr tempered martensite steels, considered as potential candidates for structural components in the next Generation IV nuclear power plants. Already used for energy production in fossil power plants, they are sensitive to softening during high-temperature cycling and creep-fatigue. This phenomenon is coupled to a pronounced microstructural degradation: mainly vanishing of subgrain boundaries and decrease in dislocation density. This study aims at (i) linking the macroscopic cyclic softening of 9% Cr steels and their microstructural evolution during cycling and (ii) proposing a physically-based modelling of deformation mechanisms in order to predict the macroscopic mechanical behaviour of these steels during cycling. Mechanical study includes uniaxial tensile and cyclic test at 550 C performed on a Grade 92 steel (9Cr-0,5Mo-1,8W-V-Nb). The effect of both strain amplitude and rate on mechanical behaviour is studied. Examination of tensile specimens suggests that the physical mechanism responsible for slight measured softening is mainly the necking phenomenon and the evolution of mean subgrain size, which increases by more than 15 % compared to the as-received state. The evolution of the macroscopic stress during cycling shows that cyclic softening is due to the decrease in kinematic stress. TEM observations highlights that the mean subgrain size increases by 60 to 100 % while the dislocation density decreases by more than 50 % during cycling, compared to the as-received state. A self-consistent homogenization model based on crystalline elasto-visco-plasticity and dislocation densities, predicting the mechanical behaviour of the material and its microstructural evolution during deformation is proposed. This model takes some of the main physical deformation mechanisms into account and only the two parameters of crystalline visco-plasticity should be adjusted (the effective activation energy and

  16. A literature study on the effects of cyclic lateral loading of monopiles in cohesionless soils

    Energy Technology Data Exchange (ETDEWEB)

    Lange Rasmussen, K. [Niras, Aalborg (Denmark); Hansen, Mette; Kirk Wolf, T. [COWI, Kgs. Lyngby, (Denmark); Ibsen, L.B.; Ravn Roesen, H. [Aalborg Univ.. Dept. of Civil Engineering, Aalborg (Denmark)

    2013-06-15

    Today, monopiles are the most typical foundation for offshore wind turbines. During their lifetime large diameter, stiff piles are subjected to millions of small cyclic loads due to environmental forces. The long-term cyclic loading can change the granular structure of the soil surrounding the pile. This may change the stiffness of the soil-pile system and create an accumulated rotation of the pile. The behaviour of the soil-pile system is very complex and the influence of soil parameters, number of load cycles, and size, amplitude and characteristic of the load are examined, as they all contribute to the rotation and the change in stiffness. The scope of this article is to outline current design methods and the state of the art knowledge within the subject of long-term cyclic, lateral loading of piles. (Author)

  17. The detection of Cd and Pb in soil solution by differential pulse anodic stripping voltammetry

    Czech Academy of Sciences Publication Activity Database

    Jakl, M.; Jaklová Dytrtová, J.; Šestáková, Ivana; Szaková, J.; Tlustoš, P.

    2008-01-01

    Roč. 102, - (2008), s. 99-100 E-ISSN 1213-7103. [International Conference on Electroanalysis /12./. 16.06.2008-19.06.2008, Prague] R&D Projects: GA ČR GA521/06/0496 Institutional research plan: CEZ:AV0Z40400503 Keywords : heavy metals * voltammetry Subject RIV: CG - Electrochemistry

  18. DNA bases assembled on the Au(110)/electrolyte interface: A combined experimental and theoretical study

    DEFF Research Database (Denmark)

    Salvatore, Princia; Nazmutdinov, Renat R.; Ulstrup, Jens

    2015-01-01

    Among the low-index single-crystal gold surfaces, the Au(110) surface is the most active toward molecular adsorption and the one with fewest electrochemical adsorption data reported. Cyclic voltammetry (CV), electrochemically controlled scanning tunneling microscopy (EC-STM), and density functional......, accompanied by a pair of strong voltammetry peaks in the double-layer region in acid solutions. Adsorption of the DNA bases gives featureless voltammograms with lower double-layer capacitance, suggesting that all the bases are chemisorbed on the Au(110) surface. Further investigation of the surface structures...... of the adlayers of the four DNA bases by EC-STM disclosed lifting of the Au(110) reconstruction, specific molecular packing in dense monolayers, and pH dependence of the A and G adsorption. DFT computations based on a cluster model for the Au(110) surface were performed to investigate the adsorption energy...

  19. Cyclic Processing for Context Fusion

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    2007-01-01

    Many machine-learning techniques use feedback information. However, current context fusion systems do not support this because they constrain processing to be structured as acyclic processing. This paper proposes a generalization which enables the use of cyclic processing in context fusion systems....... A solution is proposed to the inherent problem of how to avoid uncontrollable looping during cyclic processing. The solution is based on finding cycles using graph-coloring and breaking cycles using time constraints....

  20. Electrochemical behavior of folic acid at calixarene based chemically modified electrodes and its determination by adsorptive stripping voltammetry

    International Nuclear Information System (INIS)

    Vaze, Vishwanath D.; Srivastava, Ashwini K.

    2007-01-01

    Voltammetric behavior of folic acid at plain carbon paste electrode and electrode modified with calixarenes has been studied. Two peaks for irreversible oxidation were observed. Out of the three calixarenes chosen for modification of the electrodes, p-tert-butyl-calix[6]arene modified electrode (CME-6) was found to have better sensitivity for folic acid. Chronocoulometric and differential pulse voltammetric studies reveal that folic acid can assemble at CME-6 to form a monolayer whose electron transfer rate is 0.00273 s -1 with 2-electron/2-proton transfer for the peak at +0.71 V against SCE. An adsorption equilibrium constant of 5 x 10 3 l/mol for maximum surface coverage of 2.89 x 10 -10 mol/cm 2 was obtained. The current is found to be rectilinear with concentration by differential pulse voltammetry. However, linearity in the lower range of concentration 8.79 x 10 -12 M to 1.93 x 10 -9 M with correlation coefficient of 0.9920 was achieved by adsorptive stripping voltammetry. The limit of detection obtained was found to be 1.24 x 10 -12 M. This method was used for the determination of folic acid in a variety of samples, viz. serum, asparagus, spinach, oranges and multivitamin preparations

  1. Electrochemical behavior of folic acid at calixarene based chemically modified electrodes and its determination by adsorptive stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Vaze, Vishwanath D. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Srivastava, Ashwini K. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India)], E-mail: aksrivastava@chem.mu.ac.in

    2007-12-31

    Voltammetric behavior of folic acid at plain carbon paste electrode and electrode modified with calixarenes has been studied. Two peaks for irreversible oxidation were observed. Out of the three calixarenes chosen for modification of the electrodes, p-tert-butyl-calix[6]arene modified electrode (CME-6) was found to have better sensitivity for folic acid. Chronocoulometric and differential pulse voltammetric studies reveal that folic acid can assemble at CME-6 to form a monolayer whose electron transfer rate is 0.00273 s{sup -1} with 2-electron/2-proton transfer for the peak at +0.71 V against SCE. An adsorption equilibrium constant of 5 x 10{sup 3} l/mol for maximum surface coverage of 2.89 x 10{sup -10} mol/cm{sup 2} was obtained. The current is found to be rectilinear with concentration by differential pulse voltammetry. However, linearity in the lower range of concentration 8.79 x 10{sup -12} M to 1.93 x 10{sup -9} M with correlation coefficient of 0.9920 was achieved by adsorptive stripping voltammetry. The limit of detection obtained was found to be 1.24 x 10{sup -12} M. This method was used for the determination of folic acid in a variety of samples, viz. serum, asparagus, spinach, oranges and multivitamin preparations.

  2. Scale factor duality for conformal cyclic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Silva, University Camara da; Lima, A.L. Alves; Sotkov, G.M. [Departamento de Física - CCE,Universidade Federal de Espirito Santo, 29075-900, Vitoria ES (Brazil)

    2016-11-16

    The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose’s Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.

  3. Scale factor duality for conformal cyclic cosmologies

    International Nuclear Information System (INIS)

    Silva, University Camara da; Lima, A.L. Alves; Sotkov, G.M.

    2016-01-01

    The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose’s Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.

  4. Probing Electrode Heterogeneity Using Fourier-Transformed Alternating Current Voltammetry: Application to a Dual-Electrode Configuration.

    Science.gov (United States)

    Tan, Sze-Yin; Unwin, Patrick R; Macpherson, Julie V; Zhang, Jie; Bond, Alan M

    2017-03-07

    Quantitative studies of electron transfer processes at electrode/electrolyte interfaces, originally developed for homogeneous liquid mercury or metallic electrodes, are difficult to adapt to the spatially heterogeneous nanostructured electrode materials that are now commonly used in modern electrochemistry. In this study, the impact of surface heterogeneity on Fourier-transformed alternating current voltammetry (FTACV) has been investigated theoretically under the simplest possible conditions where no overlap of diffusion layers occurs and where numerical simulations based on a 1D diffusion model are sufficient to describe the mass transport problem. Experimental data that meet these requirements can be obtained with the aqueous [Ru(NH 3 ) 6 ] 3+/2+ redox process at a dual-electrode system comprised of electrically coupled but well-separated glassy carbon (GC) and boron-doped diamond (BDD) electrodes. Simulated and experimental FTACV data obtained with this electrode configuration, and where distinctly different heterogeneous charge transfer rate constants (k 0 values) apply at the individual GC and BDD electrode surfaces, are in excellent agreement. Principally, because of the far greater dependence of the AC current magnitude on k 0 , it is straightforward with the FTACV method to resolve electrochemical heterogeneities that are ∼1-2 orders of magnitude apart, as applies in the [Ru(NH 3 ) 6 ] 3+/2+ dual-electrode configuration experiments, without prior knowledge of the individual kinetic parameters (k 0 1 and k 0 2 ) or the electrode size ratio (θ 1 :θ 2 ). In direct current voltammetry, a difference in k 0 of >3 orders of magnitude is required to make this distinction.

  5. Topological chaos, braiding and bifurcation of almost-cyclic sets.

    Science.gov (United States)

    Grover, Piyush; Ross, Shane D; Stremler, Mark A; Kumar, Pankaj

    2012-12-01

    In certain two-dimensional time-dependent flows, the braiding of periodic orbits provides a way to analyze chaos in the system through application of the Thurston-Nielsen classification theorem (TNCT). We expand upon earlier work that introduced the application of the TNCT to braiding of almost-cyclic sets, which are individual components of almost-invariant sets [Stremler et al., "Topological chaos and periodic braiding of almost-cyclic sets," Phys. Rev. Lett. 106, 114101 (2011)]. In this context, almost-cyclic sets are periodic regions in the flow with high local residence time that act as stirrers or "ghost rods" around which the surrounding fluid appears to be stretched and folded. In the present work, we discuss the bifurcation of the almost-cyclic sets as a system parameter is varied, which results in a sequence of topologically distinct braids. We show that, for Stokes' flow in a lid-driven cavity, these various braids give good lower bounds on the topological entropy over the respective parameter regimes in which they exist. We make the case that a topological analysis based on spatiotemporal braiding of almost-cyclic sets can be used for analyzing chaos in fluid flows. Hence, we further develop a connection between set-oriented statistical methods and topological methods, which promises to be an important analysis tool in the study of complex systems.

  6. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling

    NARCIS (Netherlands)

    Cartigny, M.; Postma, G.; Berg, J.H. van den; Mastbergen, D.R.

    2011-01-01

    Although sediment waves cover many levees and canyon floors of submarine fan systems, their relation to the turbidity currents that formed them is still poorly understood. Over the recent years some large erosional sediment waves have been interpreted as cyclic steps. Cyclic steps are a series of

  7. Binding of the cyclic AMP receptor protein of Escherichia coli to RNA polymerase.

    Science.gov (United States)

    Pinkney, M; Hoggett, J G

    1988-03-15

    Fluorescence polarization studies were used to study the interaction of a fluorescein-labelled conjugate of the Escherichia coli cyclic AMP receptor protein (F-CRP) and RNA polymerase. Under conditions of physiological ionic strength, F-CRP binds to RNA polymerase holoenzyme in a cyclic AMP-dependent manner; the dissociation constant was about 3 microM in the presence of cyclic AMP and about 100 microM in its absence. Binding to core RNA polymerase under the same conditions was weak (Kdiss. approx. 80-100 microM) and independent of cyclic AMP. Competition experiments established that native CRP and F-CRP compete for the same binding site on RNA polymerase holoenzyme and that the native protein binds about 3 times more strongly than does F-CRP. Analytical ultracentrifuge studies showed that CRP binds predominantly to the monomeric rather than the dimeric form of RNA polymerase.

  8. Comparison Of INAA Methods (Long Conventional, Cyclic And Pseudo-Cyclic) For The Determination Of Se In Biological Samples

    International Nuclear Information System (INIS)

    Sarheel, A.

    2004-01-01

    Selenium content in serum blood, sample were received from international comparison programme (SABC) has been determined by Cyclic irradiation, pseudo-cyclic irradiation and long irradiation conventional Instrumental neutron activation analysis through the 162 keV gamma ray of the 77m Se nuclide for both cyclic and pseudo-cyclic and 264 keV gamma ray of 75 Se nuclide for conventional (long irradiation). The CINAA involve irradiation of samples for 20 s, decay for 15 s and counting for 20 s, samples recycling four times to improve the precision. The PCINAA involve irradiation of samples for 20 s, decay for 20 s and counting for 30s, samples recycling four times day by day. The Conventional (long irradiation) involve irradiation of samples for 20 hr (1 week), decay for 4 weeks and counting for 20 hr. The accuracy has been evaluated by analyzing the certified reference materials. (Author)

  9. Cyclic Soft Groups and Their Applications on Groups

    Directory of Open Access Journals (Sweden)

    Hacı Aktaş

    2014-01-01

    Full Text Available In crisp environment the notions of order of group and cyclic group are well known due to many applications. In this paper, we introduce order of the soft groups, power of the soft sets, power of the soft groups, and cyclic soft group on a group. We also investigate the relationship between cyclic soft groups and classical groups.

  10. Electrochemistry of deferiprone as an orally active iron chelator and HIV-1 replication inhibitor and its determination

    OpenAIRE

    Yadegari, H.; Jabbari, A.; Heli, H.; Moosavi-Movahedi, A. A.; Majdi, S.

    2008-01-01

    The electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated by cyclic voltammetry (CV) at a platinum electrode. In an acetate buffer solution, pH = 4.0, two irreversible anodic peaks for deferiprone, with E(0)1 = 875 mV and E(0)2 = 1235 mV (vs. Ag/AgCl) appeared at a potential sweep rate of 50 mV s-1. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion-controlled. The diffusion and the electron tran...

  11. Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors

    Science.gov (United States)

    Shabani Shayeh, J.; Ehsani, A.; Ganjali, M. R.; Norouzi, P.; Jaleh, B.

    2015-10-01

    Polyaniline/reduced graphene oxide/Au nano particles (PANI/rGO/AuNPs) as a hybrid supercapacitor were deposited on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) method as ternary composites and their electrochemical performance was evaluated in acidic medium. Scanning electron micrographs clearly revealed the formation of nanocomposites on the surface of the working electrode. Scanning electron micrographs (SEM) clearly revealed the formation of nanocomposites on the surface of working electrode. Different electrochemical methods including galvanostatic charge-discharge (CD) experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out in order to investigate the applicability of the system as a supercapacitor. Based on the cyclic voltammogram results obtained, PANI/rGO/AuNPs gave higher specific capacitance, power and energy values than PANI at a current density of 1 mA cm-2. Specific capacitance (SC) of PANI and PANI/rGO/AuNPs electrodes calculated using CV method are 190 and 303 F g-1, respectively. The present study introduces new nanocomposite materials for electrochemical redox capacitors with advantages including long life cycle and stability due to synergistic effects of each component.

  12. Optimization of the use of carbon paste electrodes (CPE for electrochemical study of the chalcopyrite

    Directory of Open Access Journals (Sweden)

    Daniela G. Horta

    2009-01-01

    Full Text Available The use of carbon paste electrodes (CPE of mineral sulfides can be useful for electrochemical studies to overcome problems by using massive ones. Using CPE-chalcopyrite some variables were electrochemically evaluated. These variables were: (i the atmosphere of preparation (air or argon of CPE and elapsed time till its use; (ii scan rate for voltammetric measurements and (iii chalcopyrite concentration in the CPE. Based on cyclic voltammetry, open-circuit potential and electrochemical impedance results the recommendations are: oxygen-free atmosphere to prepare and kept the CPE until around two ours, scan rates from 10 to 40 mV s-1, and chalcopyrite concentrations > 20%.

  13. HOST liner cyclic facilities: Facility description

    Science.gov (United States)

    Schultz, D.

    1982-01-01

    A quartz lamp box, a quartz lamp annular rig, and a low pressure liner cyclic can rig planned for liner cyclic tests are described. Special test instrumentation includes an IR-TV camera system for measuring liner cold side temperatures, thin film thermocouples for measuring liner hot side temperatures, and laser and high temperature strain gages for obtaining local strain measurements. A plate temperature of 2,000 F was obtained in an initial test of an apparatus with three quartz lamps. Lamp life, however, appeared to be limited for the standard commercial quartz lamps available. The design of vitiated and nonvitiated preheaters required for the quartz lamp annular rig and the cyclic can test rigs is underway.

  14. Microgravity changes in heart structure and cyclic-AMP metabolism

    Science.gov (United States)

    Philpott, D. E.; Fine, A.; Kato, K.; Egnor, R.; Cheng, L.

    1985-01-01

    The effects of microgravity on cardiac ultrastructure and cyclic AMP metabolism in tissues of rats flown on Spacelab 3 are reported. Light and electron microscope studies of cell structure, measurements of low and high Km phosphodiesterase activity, cyclic AMP-dependent protein kinase activity, and regulatory subunit compartmentation show significant deviations in flight animals when compared to ground controls. The results indicate that some changes have occurred in cellular responses associated with catecholamine receptor interactions and intracellular signal processing.

  15. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    Science.gov (United States)

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  16. Electrochemical Determination of Chlorpyrifos on a Nano-TiO₂Cellulose Acetate Composite Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Kumaravel, Ammasai; Chandrasekaran, Maruthai

    2015-07-15

    A rapid and simple method of determination of chlorpyrifos is important in environmental monitoring and quality control. Electrochemical methods for the determination of pesticides are fast, sensitive, reproducible, and cost-effective. The key factor in electrochemical methods is the choice of suitable electrode materials. The electrode materials should have good stability, reproducibility, more sensitivity, and easy method of preparation. Mercury-based electrodes have been widely used for the determination of chlorpyrifos. From an environmental point of view mercury cannot be used. In this study a biocompatible nano-TiO2/cellulose acetate modified glassy carbon electrode was prepared by a simple method and used for the electrochemical sensing of chlorpyrifos in aqueous methanolic solution. Electroanalytical techniques such as cyclic voltammetry, differential pulse voltammetry, and amperometry were used in this work. This electrode showed very good stability, reproducibility, and sensitivity. A well-defined peak was obtained for the reduction of chlorpyrifos in cyclic voltammetry and differential pulse voltammetry. A smooth noise-free current response was obtained in amperometric analysis. The peak current obtained was proportional to the concentration of chlorpyrifos and was used to determine the unknown concentration of chlorpyrifos in the samples. Analytical parameters such as LOD, LOQ, and linear range were estimated. Analysis of real samples was also carried out. The results were validated through HPLC. This composite electrode can be used as an alternative to mercury electrodes reported in the literature.

  17. Strain gradient effects on cyclic plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2010-01-01

    Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between...... rigid platens have been carried out, using the finite element method. It is shown for elastic–perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly...... hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening...

  18. A uniaxial cyclic elastoplastic constitutive law with a discrete memory variable

    International Nuclear Information System (INIS)

    Taheri, S.

    1991-01-01

    At present, the study on cyclic elastoplastic constitutive laws is focused on nonproportional loading, but for uniaxial loading, some problems still exist. For example, the possibility for a law to describe simultaneously the ratcheting in nonsymmetrical load-controlled test, elastic and plastic shakedown in symmetrical and nonsymmetrical ones. Here a law is presented, which in addition to previous phenomena, describes the cyclic hardening in a pushpull test, the cyclic softening after overloading and also the dependence of cyclic strain-stress curves on the history of loading. These are the usual properties of 316 stainless steel at room temperature. This law uses an internal discrete memory variable: the plastic strain at the last unloading. On the other hand, the choice of all macroscopic variables is justified by a microscopic analysis. This law has been also extended to a three-dimensional case. Regarding the microstructure under cyclic loading, plastic shakedown and ratcheting are discussed. The definition of macroscopic variables taking account of microstructure and uniaxial constitutive law are described. (K.I.)

  19. Synthesis and Study of Chemical and Photo-physical Properties of Quinolinate Aluminum and Zinc Complexes in Organic Light Emitting Diodes (OLEDs)

    Science.gov (United States)

    Rawat, Madhu; Prakash, Sattey; Singh, C.; Anand, R. S.

    2011-10-01

    Two well known electroluminescent (EL) compounds, aluminum and zinc metallo-8-hydroxyquinolates have been synthesized. Their chemical and physical properties like NMR, FTIR, Cyclic Voltammetry, absorption and EL are studied. Organic LEDs are fabricated using both the material as emissive layers. Electroluminescence spectra of the complexes are measured. 2Alq3 and Znq2 give peak emission in yellow-green region at wavelengths 527nm and 540nm respectively. Znq2 is slightly red shifted compared to Alq3 because metal to ligand charge transfer is more in Znq2. A study of ON voltage, luminance efficiency and stability of OLEDs using both materials is made.

  20. Evaluation of cyclic flexural fatigue of M-wire nickel-titanium rotary instruments.

    Science.gov (United States)

    Al-Hadlaq, Solaiman M S; Aljarbou, Fahad A; AlThumairy, Riyadh I

    2010-02-01

    This study was conducted to investigate cyclic flexural fatigue resistance of GT series X rotary files made from the newly developed M-wire nickel-titanium alloy compared with GT and Profile nickel-titanium files made from a conventional nickel-titanium alloy. Fifteen files, size 30/0.04, of each type were used to evaluate the cyclic flexural fatigue resistance. A simple device was specifically constructed to measure the time each file type required to fail under cyclic flexural fatigue testing. The results of this experiment indicated that the GT series X files had superior cyclic flexural fatigue resistance than the other 2 file types made from a conventional nickel-titanium alloy (P = .004). On the other hand, the difference between the Profile and the GT files was not statistically significant. The findings of this study suggest that size 30/0.04 nickel-titanium rotary files made from the newly developed M-wire alloy have better cyclic flexural fatigue resistance than files of similar design and size made from the conventional nickel-titanium alloy. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Structural and Electrochemical Properties of Amorphous and Crystalline Molybdenum Oxide Aerogels

    National Research Council Canada - National Science Library

    Dong, W

    2001-01-01

    .... These different forms of the same nominal material are produced by heat treatment. The influence of the structural differences on electrochemical properties was examined using stepped cyclic voltammetry...

  2. An Electrochemical Investigation of Methanol Oxidation on Nickel ...

    African Journals Online (AJOL)

    NICO

    Cyclic voltammetry, electrooxidation, glassy carbon electrode, methanol, nickel hydroxide nanoparticles. 1. ... substrate at room temperature without templates. Recently, we ... placed in ethanol and sonicated to remove adsorbed particles.

  3. Empirical approach based on centrifuge testing for cyclic deformations of laterally loaded piles in sand

    DEFF Research Database (Denmark)

    Truong, P.; Lehane, B. M.; Zania, Varvara

    2018-01-01

    A systematic study into the response of monopiles to lateral cyclic loading in medium dense and dense sand was performed in beam and drum centrifuge tests. The centrifuge tests were carried out at different cyclic load and magnitude ratios, while the cyclic load sequence was also varied...

  4. Electrochemical Single‐Molecule AFM of the Redox Metalloenzyme Copper Nitrite Reductase in Action

    DEFF Research Database (Denmark)

    Hao, Xian; Zhang, Jingdong; Christensen, Hans Erik Mølager

    2012-01-01

    We studied the electrochemical behavior of the redox metalloenzyme copper nitrite reductase (CNiR, Achromobacter xylosoxidans) immobilized on a Au(111)‐electrode surface modified by a self‐assembled cysteamine molecular monolayer (SAM) using a combination of cyclic voltammetry and electrochemically......‐controlled atomic force microscopy (in situ AFM). The enzyme showed no voltammetric signals in the absence of nitrite substrate, whereas a strong reductive electrocatalytic signal appeared in the presence of nitrite. Such a pattern is common in protein film and monolayer voltammetry and points to conformational...... in the presence of nitrite. No change in size was observed in the absence of nitrite over the same potential range. The enzyme size variation is suggested to offer clues to the broadly observed substrate triggering in metalloenzyme monolayer voltammetry....

  5. The influence of cyclic loading on gentamicin release from acrylic bone cements

    NARCIS (Netherlands)

    Hendriks, JGE; Neut, D; Hazenberg, JG; Verkerke, GJ; van Horn, [No Value; van der Mei, HC; Busscher, HJ

    Antibiotic-loaded acrylic bone cement is widely used in total joint replacement to reduce infections. Walking results in cyclic loading, which has been suggested to stimulate antibiotic release. The goal of this study is to compare antibiotic release from cyclically loaded bone cement with the

  6. Cyclical Variability of Prominences, CMEs and Flares

    Indian Academy of Sciences (India)

    tribpo

    For many years, qualitative studies were made about the cyclical ... plan to review the more recent research concerning all these topics. Key words. ... are distributed in three narrow zones, which show different types of time-latitude behaviour.

  7. Influence of oxide and alloy formation on the Electrochemistry of Ti deposition from the NaCl-KCl-NaF-K-2 TiF6 melt reduced by metallic Ti

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Precht Noyé, Pernille; Barhoun, A

    2005-01-01

    The redox reactions in KCl-NaCl-NaF-K2TiF6 melts reduced by titanium metal have been studied by cyclic voltammetry and chronopotentiommetry. At platinum and nickel electrodes waves due to alloy formation were seen preceding the Ti(III) --> Ti metal deposition wave. The presence of oxide species...

  8. Atomic force microscopy study of anion intercalation into highly oriented pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Alliata, D; Haering, P; Haas, O; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H [University of Berne (Switzerland)

    1999-08-01

    In the context of ion transfer batteries, we studied highly oriented pyrolytic graphite (HOPG) in perchloric acid, as a model to elucidate the mechanism of electrochemical intercalation in graphite. Aim of the work is the local and time dependent investigation of dimensional changes of the host material during electrochemical intercalation processes on the nanometer scale. We used atomic force microscopy (AFM), combined with cyclic voltammetry, as in-situ tool of analysis during intercalation and expulsion of perchloric anions into the HOPG electrodes. According to the AFM measurements, the HOPG interlayer spacing increases by 32% when perchloric anions intercalate, in agreement with the formation of stage IV of graphite intercalation compounds. (author) 3 figs., 3 refs.

  9. Study of the electrocatalytic oxidation of Ethanol over platinum in medium acid

    International Nuclear Information System (INIS)

    Hoyos, Bibian; Gonzalez, Javier; Sanchez, Carlos

    2002-01-01

    Electro-catalytic oxidation of ethanol on platinum surfaces in sulfuric acid solutions at different temperatures and concentrations was studied by cyclic voltammetry. The results shown that there is ethanol adsorption at potentials below 0.4V (vs. RHE) with electrode coverage fraction for residues of 0.3 or less. There are also, two irreversible oxidation reactions. Former reaction seems be catalyzed by Pt(OH) species with electronic charge transfer control and the second reaction seems be catalyzed by Pt(OH) 4 with diffusion control while Pt(OH) 2 does not have catalytic activity. The activity and selectivity for total oxidation increases with ethanol concentration and temperature. Finally, a reaction mechanism, which explains the obtained data, is proposed

  10. Understanding the Earth Systems: Expressions of Dynamic and Cyclic Thinking among University Students

    Science.gov (United States)

    Batzri, Or; Ben Zvi Assaraf, Orit; Cohen, Carmit; Orion, Nir

    2015-01-01

    In this two-part study, we examine undergraduate university students' expression of two important system thinking characteristics--dynamic thinking and cyclic thinking--focusing particularly on students of geology. The study was conducted using an Earth systems questionnaire designed to elicit and reflect either dynamic or cyclic thinking. The…

  11. 3' : 5'-Cyclic AMP-dependent 3'

    NARCIS (Netherlands)

    Mato, José M.; Krens, Frans A.; Haastert, Peter J.M. van; Konijn, Theo M.

    1977-01-01

    Suspensions of 3':5'-cyclic AMP (cAMP)-sensitive cells of Dictyostelium discoideum responded to a cAMP pulse with increased 3':5'-cyclic GMP (cGMP) levels. Under the assay conditions used (2 × 10^8 cells per ml in 10 mM phosphate buffer, pH 6.0) cAMP (5 × 10-8 M final concentration) increased cGMP

  12. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling

    KAUST Repository

    Gehring, Christoph A; Turek, Ilona S.

    2017-01-01

    The cyclic nucleotide monophosphates (cNMPs), and notably 3′,5′-cyclic guanosine monophosphate (cGMP) and 3′,5′-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.

  13. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling

    KAUST Repository

    Gehring, Christoph A.

    2017-10-04

    The cyclic nucleotide monophosphates (cNMPs), and notably 3′,5′-cyclic guanosine monophosphate (cGMP) and 3′,5′-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.

  14. Ceramic breeder pebble bed packing stability under cyclic loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunbo, E-mail: chunbozhang@fusion.ucla.edu [Fusion Science and Technology Center, University of California, Los Angeles, CA 90095-1597 (United States); Ying, Alice; Abdou, Mohamed A. [Fusion Science and Technology Center, University of California, Los Angeles, CA 90095-1597 (United States); Park, Yi-Hyun [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The feasibility of obtaining packing stability for pebble beds is studied. • The responses of pebble bed to cyclic loads have been presented and analyzed in details. • Pebble bed packing saturation and its applications are discussed. • A suggestion is made regarding the improvement of pebbles filling technique. - Abstract: Considering the optimization of blanket performance, it is desired that the bed morphology and packing state during reactor operation are stable and predictable. Both experimental and numerical work are performed to explore the stability of pebble beds, in particular under pulsed loading conditions. Uniaxial compaction tests have been performed for both KIT’s Li{sub 4}SiO{sub 4} and NFRI’s Li{sub 2}TiO{sub 3} pebble beds at elevated temperatures (up to 750 °C) under cyclic loads (up to 6 MPa). The obtained data shows the stress-strain loop initially moves towards the larger strain and nearly saturates after a certain number of cyclic loading cycles. The characterized FEM CAP material models for a Li{sub 4}SiO{sub 4} pebble bed with an edge-on configuration are used to simulate the thermomechanical behavior of pebble bed under ITER pulsed operations. Simulation results have shown the cyclic variation of temperature/stress/strain/gap and also the same saturation trend with experiments under cyclic loads. Therefore, it is feasible for pebble bed to maintain its packing stability during operation when disregarding pebbles’ breakage and irradiation.

  15. Quasi-steady-state voltammetry of rapid electron transfer reactions at the macroscopic substrate of the scanning electrochemical microscope.

    Science.gov (United States)

    Nioradze, Nikoloz; Kim, Jiyeon; Amemiya, Shigeru

    2011-02-01

    We report on a novel theory and experiment for scanning electrochemical microscopy (SECM) to enable quasi-steady-state voltammetry of rapid electron transfer (ET) reactions at macroscopic substrates. With this powerful approach, the substrate potential is cycled widely across the formal potential of a redox couple while the reactant or product of a substrate reaction is amperometrically detected at the tip in the feedback or substrate generation/tip collection mode, respectively. The plot of tip current versus substrate potential features the retraceable sigmoidal shape of a quasi-steady-state voltammogram although a transient voltammogram is obtained at the macroscopic substrate. Finite element simulations reveal that a short tip-substrate distance and a reversible substrate reaction (except under the tip) are required for quasi-steady-state voltammetry. Advantageously, a pair of quasi-steady-state voltammograms is obtained by employing both operation modes to reliably determine all transport, thermodynamic, and kinetic parameters as confirmed experimentally for rapid ET reactions of ferrocenemethanol and 7,7,8,8-tetracyanoquinodimethane at a Pt substrate with ∼0.5 μm-radius Pt tips positioned at 90 nm-1 μm distances. Standard ET rate constants of ∼7 cm/s were obtained for the latter mediator as the largest determined for a substrate reaction by SECM. Various potential applications of quasi-steady-state voltammetry are also proposed.

  16. Cyclic testing of thin Ni films on a pre-tensile compliant substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wei, He [Department of Mechanics, Tianjin University, 135 Yaguan Rd, Jinnan, 300350 Tianjin (China); Département Physique et Mécanique d es Matériaux, Institut Pprime, CNRS–Université de Poitiers, Bd Marie et Pierre Curie, Futuroscope, 86962 (France); Renault, Pierre-Olivier, E-mail: pierre.olivier.renault@univ-poitiers.fr [Département Physique et Mécanique d es Matériaux, Institut Pprime, CNRS–Université de Poitiers, Bd Marie et Pierre Curie, Futuroscope, 86962 (France); Bourhis, Eric Le [Département Physique et Mécanique d es Matériaux, Institut Pprime, CNRS–Université de Poitiers, Bd Marie et Pierre Curie, Futuroscope, 86962 (France); Wang, Shibin [Department of Mechanics, Tianjin University, 135 Yaguan Rd, Jinnan, 300350 Tianjin (China); Goudeau, Philippe [Département Physique et Mécanique d es Matériaux, Institut Pprime, CNRS–Université de Poitiers, Bd Marie et Pierre Curie, Futuroscope, 86962 (France)

    2017-05-17

    A novel experimental approach to study the cyclic plastic deformation of thin metallic films is presented. 300 nm thick Ni films are deposited on both sides of a pre-tensile soft substrate which allows to deform the films alternately in tension and compression (approximately from +2.7 GPa down to −2 GPa) relative to the as-deposited residual stress state. Nanocrystalline thin films' intrinsic elastic strains (or stresses) and true strains have been measured step by step during two loading/unloading cycles thanks to the X-ray diffraction (XRD) and digital image correlation (DIC) techniques respectively. From the first cyclic deformation, a significant Bauschinger effect is evidenced in the films, however, little or no cyclic hardening is observed during the two cyclic tests.

  17. Cyclic polyalcohols: fingerprints to identify the botanical origin of natural woods used in wine aging.

    Science.gov (United States)

    Alañón, M Elena; Díaz-Maroto, M Consuelo; Díaz-Maroto, Ignacio J; Vila-Lameiro, Pablo; Pérez-Coello, M Soledad

    2011-02-23

    Cyclic polyalcohol composition of 80 natural wood samples from different botanical species, with the majority of them used in the oenology industry for aging purposes, has been studied by gas chromatography-mass spectrometry (GC-MS) after its conversion into their trimethylsilyloxime derivatives. Each botanical species showed a different and specific cyclic polyalcohol profile. Oak wood samples were characterized by the richness in deoxyinositols, especially proto-quercitol. Meanwhile, other botanical species showed a very low content of cyclic polyalcohols. The qualitative and quantitative study of cyclic polyalcohols was a useful tool to characterize and differentiate woods of different botanical origin to guarantee the authenticity of chips used in the wine-aging process. Monosaccharide composition was also analyzed, showing some quantitative differences among species, but cyclic polyalcohols were the compounds that revealed the main differentiation power.

  18. Iron selenide films by aerosol assisted chemical vapor deposition from single source organometallic precursor in the presence of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Raja Azadar [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Badshah, Amin, E-mail: aminbadshah@yahoo.com [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Younis, Adnan [School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia); Khan, Malik Dilshad [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Akhtar, Javeed [Department of Physics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad (Pakistan)

    2014-09-30

    This article presents the synthesis and characterization (multinuclear nuclear magnetic resonance, Fourier transform infrared spectroscopy, carbon–hydrogen–nitrogen–sulfur analyzer, atomic absorption spectrometry and thermogravimetric analysis) of a single source organometallic precursor namely 1-acetyl-3-(4-ferrocenylphenyl)selenourea for the fabrication of iron selenide (FeSe) films on glass substrates using aerosol assisted chemical vapor deposition (AACVD). The changes in the morphologies of the films have been monitored by the use of two different surfactants i.e. triton X-100 and tetraoctylphosphonium bromide during AACVD. The role of surfactant has been evaluated by examining the interaction of the surfactants with the precursor by using UV–vis spectroscopy and cyclic voltammetry. The fabricated FeSe films have been characterized with powder X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. - Highlights: • Ferrocene incorporated selenourea (FIS) has been synthesized and characterized. • FeSe thin films have been fabricated from FIS. • Mechanism of film growth was studied with cyclic voltammetry and UV–vis spectroscopy.

  19. Sonochemical synthesis of terbium tungstate for developing high power supercapacitors with enhanced energy densities.

    Science.gov (United States)

    Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Naderi, Hamid Reza; Pourmohamadian, Vafa; Ahmadi, Farhad; Ganjali, Mohammad Reza; Ehrlich, Hermann

    2018-07-01

    Sonochemically prepared nanoparticles of terbium tungstate (TWNPs) were evaluated through scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, and the optimal products were further characterized in terms of their electrochemical properties using conventional and continuous cyclic voltammetry (CV, and CCV), galvanostatic charge/discharge technique, and electrochemical impedance spectroscopy (EIS). The CV studies indicated the TWNPs to have specific capacitance (SC) values of 336 and 205 F g -1 at 1 and 200 mV s -1 , and galvanostatic charge-discharge tests revealed the SC of the TWNP-based electrodes to be 300 F g -1 at 1 Ag -1 . Also continuous cyclic voltammetry evaluations proved the sample as having a capacitance retention value of 95.3% after applying 4000 potential cycles. In the light of the results TWNPs were concluded as favorable electrode materials for use in hybrid vehicle systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Kinetic determinations of accurate relative oxidation potentials of amines with reactive radical cations.

    Science.gov (United States)

    Gould, Ian R; Wosinska, Zofia M; Farid, Samir

    2006-01-01

    Accurate oxidation potentials for organic compounds are critical for the evaluation of thermodynamic and kinetic properties of their radical cations. Except when using a specialized apparatus, electrochemical oxidation of molecules with reactive radical cations is usually an irreversible process, providing peak potentials, E(p), rather than thermodynamically meaningful oxidation potentials, E(ox). In a previous study on amines with radical cations that underwent rapid decarboxylation, we estimated E(ox) by correcting the E(p) from cyclic voltammetry with rate constants for decarboxylation obtained using laser flash photolysis. Here we use redox equilibration experiments to determine accurate relative oxidation potentials for the same amines. We also describe an extension of these experiments to show how relative oxidation potentials can be obtained in the absence of equilibrium, from a complete kinetic analysis of the reversible redox kinetics. The results provide support for the previous cyclic voltammetry/laser flash photolysis method for determining oxidation potentials.

  1. Role of Nitrogenase and Ferredoxin in the Mechanism of Bioelectrocatalytic Nitrogen Fixation by the Cyanobacteria Anabaena variabilis SA-1 Mutant Immobilized on Indium Tin Oxide (ITO) Electrodes

    International Nuclear Information System (INIS)

    Knoche, Krysti L.; Aoyama, Erika; Hasan, Kamrul; Minteer, Shelley D.

    2017-01-01

    Current ammonia production methods are costly and environmentally detrimental. Biological nitrogen fixation has implications for low cost, environmentally friendly ammonia production. It has been shown that electrochemical stimulation increases the ammonia output of the cyanobacteria SA-1 mutant of Anabaena variabilis, but the mechanism of bioelectrocatalysis has been unknown. Here, the mechanism of electrostimulated biological ammonia production is investigated by immobilization of the cyanobacteria with polyvinylamine on indium tin oxide (ITO) coated polyethylene. Cyclic voltammetry is performed in the absence and presence of various substrates and with nitrogenase repressed and nitrogenase derepressed cells to study mechanism, and cyclic voltammetry and UV–vis spectroscopy are used to identify redox moieties in the spent electrolyte. A bioelectrocatalytic signal is observed for nitrogenase derepressed A. variabilis SA-1 in the presence of N_2 and light. Results indicate that the redox protein ferredoxin mediates electron transfer between nitrogenase and the electrode to stimulate ammonia production.

  2. Electrochemistry of oxygen-free curium compounds in fused NaCl-2CsCl eutectic

    International Nuclear Information System (INIS)

    Osipenko, A.; Maershin, A.; Smolenski, V.; Novoselova, A.; Kormilitsyn, M.; Bychkov, A.

    2010-01-01

    This work presents the electrochemical study of Cm(III) in fused NaCl-2CsCl eutectic in the temperature range 823-1023 K. Transient electrochemical techniques such as cyclic, differential pulse and square wave voltammetry, and chronopotentiometry have been used in order to investigate the reduction mechanism of curium ions up to the metal. The results obtained show that the reduction reaction takes place in a single step Cm(III)+3e-bar →Cm(0). The diffusion coefficient of [CmCl 6 ] 3- complex ions was determined by cyclic voltammetry at different temperatures by applying the Berzins-Delahay equation. The validity of the Arrhenius law was also verified and the activation energy for diffusion was found to be 44.46 kJ/mol. The apparent standard electrode potential of the redox couple Cm(III)/Cm(0) was found by chronopotentiometry at several temperatures. The thermodynamic properties of curium trichloride have also been calculated.

  3. Adsorption on smooth electrodes: A radiotracer study

    International Nuclear Information System (INIS)

    Rice-Jackson, L.M.

    1990-01-01

    Adsorption on solids is a complicated process and in most cases, occurs as the early stage of other more complicated processes, i.e. chemical reactions, electrooxidation, electroreduction. The research reported here combines the electroanalytical method, cyclic voltammetry, and the use of radio-labeled isotopes, soft beta emitters, to study adsorption processes at smooth electrodes. The in-situ radiotracer method is highly anion (molecule) specific and provides information on the structure and composition of the electric double layer. The emphasis of this research was on studying adsorption processes at smooth electrodes of copper, gold, and platinum. The application of the radiotracer method to these smooth surfaces have led to direct in-situ measurements from which surface coverage was determined; anions and molecules were identified; and weak interactions of adsorbates with the surface of the electrodes were readily monitored. 179 refs

  4. Effect of cyclic training model on terminal structure of rabbit Achilles tendon: an experimental study

    OpenAIRE

    Chang-lin HUANG; Wang GAO; Tao HUANG; Zhen-hai GUO

    2012-01-01

    Objective  To observe the effect of cyclic training on histomorphology of the terminal structure of rabbit Achilles tendon, and explore its preventive effect on training-based enthesiopathy. Methods  Seventy-two Japanese white rabbits were randomly assigned to four groups: control group, jumping group, running group and cyclic training group, 18 for each. Three rabbits of each group were sacrificed at the 2nd, 3rd, 4th, 6th, 8th and 10th week. The terminal insertion tissues of bilateral Achil...

  5. Analysis of low concentration of free ferric oxides in clays by vis diffuse reflectance spectroscopy and voltammetry

    Czech Academy of Sciences Publication Activity Database

    Grygar, Tomáš; Dědeček, Jiří; Hradil, David

    2002-01-01

    Roč. 53, č. 2 (2002), s. 71-77 ISSN 0016-7738 R&D Projects: GA ČR GA205/00/1349 Institutional research plan: CEZ:AV0Z4032918 Keywords : voltammetry * Vis spectroscopy * analysis Subject RIV: CA - Inorganic Chemistry

  6. Electrochemical determination of paraquat in citric fruit based on electrodeposition of silver particles onto carbon paste electrode

    OpenAIRE

    Abdelfettah Farahi; Mounia Achak; Laila El Gaini; Moulay Abderrahim El Mhammedi; Mina Bakasse

    2015-01-01

    Carbon paste electrodes (CPEs) modified with silver particles present an interesting tool in the determination of paraquat (PQ) using square wave voltammetry. Metallic silver particle deposits have been obtained via electrochemical deposition in acidic media using cyclic voltammetry. Scanning electron microscopy and X-ray diffraction measurements show that the silver particles are deposited onto carbon surfaces in aggregate form. The response of PQ with modified electrode (Ag-CPE) related to ...

  7. Cyclic dominance in evolutionary games: a review

    Science.gov (United States)

    Szolnoki, Attila; Mobilia, Mauro; Jiang, Luo-Luo; Szczesny, Bartosz; Rucklidge, Alastair M.; Perc, Matjaž

    2014-01-01

    Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator–prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms and competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more, regardless of the particularities of the game. Here, we review recent advances on the rock–paper–scissors (RPS) and related evolutionary games, focusing, in particular, on pattern formation, the impact of mobility and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional RPS models and the application of the complex Ginzburg–Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related, for example, to dynamical effects of coevolutionary rules and invasion reversals owing to multi-point interactions, are also outlined. PMID:25232048

  8. Nearly Cyclic Pursuit and its Hierarchical variant for Multi-agent Systems

    DEFF Research Database (Denmark)

    Iqbal, Muhammad; Leth, John-Josef; Ngo, Trung Dung

    2015-01-01

    The rendezvous problem for multiple agents under nearly cyclic pursuit and hierarchical nearly cyclic pursuit is discussed in this paper. The control law designed under nearly cyclic pursuit strategy enables the agents to converge at a point dictated by a beacon. A hierarchical version of the nea......The rendezvous problem for multiple agents under nearly cyclic pursuit and hierarchical nearly cyclic pursuit is discussed in this paper. The control law designed under nearly cyclic pursuit strategy enables the agents to converge at a point dictated by a beacon. A hierarchical version...

  9. Electrochemical Study of Bromide in the Presence of 1,3-Indandione. Application to the Electrochemical Synthesis of Bromo Derivatives of 1,3-Indandione

    Directory of Open Access Journals (Sweden)

    N. Akaberi

    2001-06-01

    Full Text Available The electrochemical oxidation of bromide in the presence of 1,3-indandione (1 in water/acetic acid and methanol/acetic acid mixtures has been studied by cyclic voltammetry and controlled-potential coulometry. The results indicate the participation of 1,3-indandione in the bromination reaction. On the basis of the electroanalytical and preparative results a reaction mechanism including electron transfer, chemical reaction and regeneration of bromide was discussed. The electrochemical synthesis of bromo derivatives of 1,3-indandione (2-3 has been successfully performed at constant current, in an undivided cell, in good yield and purity.

  10. physico-chemical studies on DNA-drugs interaction and their analytical applications

    International Nuclear Information System (INIS)

    Kandil, S.A

    2003-01-01

    The present thesis is devoted to study the interaction of some antibacterial agents i.e. fluoroquinolones . these agents include ciprofloxacin, norfloxacin , ofloxacin , pefloxacin and levofloxacin with DNA. voltammetric and spectrophotometric methods were used to carry out this study. Also the interaction of the suggested drugs with DNA at the surface of carbon electrode by cyclic voltammetry and differential pulse techniques is examined. The work comprises three chapters: (1) includes an introduction of voltammetry , differential pulse, drug-DNA interaction and fluoroquinoline- DNA interaction and literature survey on fluoroquinolones.Chapter (II) includes preparation of the solutions and instruments which were used for the measurements using the different techniques.Chapter(III) comprises three parts; (1) deals with the interaction of fluoroquinolones (ciprofloxacin, norfloxacin, ofloxacin, pefloxacin and levofloxacin) with DNA in solution have been investigated by means of voltammetry and spectroscopy . the results show that the values of binding constant of fluoroquinolne drugs with DNA obtained through the changes of the anodic peak current, and their values are, 30900,31000,32300,32000 and 32500 M -1 respectively. or changes of absorption and values are, 36000,30200.38300,36500 and 34400 M -1 receptively.(II) includes voltammetric behavior of fluoroquinolones on DNA-modified carbon paste electrode. (III)includes analytical application for proposed method for the determination of levofloxacin as a typical example for fluoroquinolones. Concentration in the range 5.0x10 -7 ∼ 5.0x10 -6 mol/L , with a detection limit of 1.0x10 -7 mol/L. direct and simple determination of levofloxacin in urine was established with no manipulation of urine sample other than dilution 1:10

  11. Comparison of adsorptive with extractive stripping voltammetry in electrochemical determination of retinol

    Directory of Open Access Journals (Sweden)

    Milan Sýs

    2017-01-01

    Full Text Available Adsorptive stripping voltammetry (AdSV of retinol at solid glassy carbon electrode (GCE, carbon paste electrode (CPE covered by thin layer of multi-wall carbon nanotubes (CPE/MWCNTs and carbon paste electrode covered by thin layer of single layer graphene (CPE/Graphene was compared with an extractive stripping voltammetry (ExSV into silicone oil (SO as lipophilic binder of glassy carbon paste electrode (GCPE. All types of selected working electrodes were characterized by a scanning electron microscopy to determine overall morphology of electrode surfaces together with spatial arrangement of used carbon particles. The retinol, also known as vitamin A1, was chosen as a model analyte because it is the most biologically active representative of retinoids which are classified as a significant group of lipophilic vitamins. Based on this comparison, it was observed that electrochemical method with high sensitivity (ExSV at GPCE is generally characterized by shorter linear range of the calibration curve than in case of AdSV at CPE/MWCNTs or CPE/Graphene. Unlike AdSV at solid GCE, all other tested electrochemical methods could represent suitable analytical tools for monitoring of retinoids in different types of foodstuffs. Especially, content of retinol up to tenths milligrams can be easily determined using ExSV. Additionally, negative interference of chemical species present in real samples is minimal in comparison with direct voltammetric methods performed in supporting electrolytes based on organic solvents due to application of accumulation step in "ex-situ" mode.

  12. Simulation of square wave voltammetry of three electrode reactions coupled by two reversible chemical reactions

    OpenAIRE

    Lovrić, Milivoj

    2017-01-01

    Three fast and reversible electrode reactions that are connected by two reversible chemical reactions that are permanently in the equilibrium are analysed theoretically for square wave voltammetry. The dependence of peak potentials on the dimensionless equilibrium constants of chemical reactions is calculated. The influence of the basic thermodynamic parameters on the square wave voltammetric responses is analysed.

  13. Study of the electrooxidation of ethanol on hydrophobic electrodes by DEMS and HPLC

    International Nuclear Information System (INIS)

    Gonzalez Pereira, M.; Davila Jimenez, M.; Elizalde, M.P.; Manzo-Robledo, A.; Alonso-Vante, N.

    2004-01-01

    The electrochemical oxidation of ethanol in alkaline solution has been studied on Cu-PVC electrode and Ni/Cu-PVC composite electrodes modified by ruthenium nanoparticles. The techniques used were cyclic voltammetry (CV), steady-state potentiostatic method, on line differential electrochemical mass spectrometry (DEMS), and high-performance liquid chromatography (HPLC). The chemical products: acetaldehyde and acetic acid were detected measuring the proper mass charge (m/z) ratios. These products were also confirmed by HPLC. The surface modification of composite electrodes by ruthenium nanoparticles promotes the formation of acetaldehyde. As shown by DEMS, the surface modification shifts the onset potential for oxygen evolution reaction on the Cu-PVC composite electrode towards more anodic values

  14. Study of the electrooxidation of ethanol on hydrophobic electrodes by DEMS and HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Pereira, M.; Davila Jimenez, M.; Elizalde, M.P.; Manzo-Robledo, A.; Alonso-Vante, N

    2004-09-15

    The electrochemical oxidation of ethanol in alkaline solution has been studied on Cu-PVC electrode and Ni/Cu-PVC composite electrodes modified by ruthenium nanoparticles. The techniques used were cyclic voltammetry (CV), steady-state potentiostatic method, on line differential electrochemical mass spectrometry (DEMS), and high-performance liquid chromatography (HPLC). The chemical products: acetaldehyde and acetic acid were detected measuring the proper mass charge (m/z) ratios. These products were also confirmed by HPLC. The surface modification of composite electrodes by ruthenium nanoparticles promotes the formation of acetaldehyde. As shown by DEMS, the surface modification shifts the onset potential for oxygen evolution reaction on the Cu-PVC composite electrode towards more anodic values.

  15. Methodology study for the catalyst obtention to low temperature fuel cells (DEFC)

    International Nuclear Information System (INIS)

    Oliveira, Emilia Lucena de; Korb, Matias De Angelis; Correa, Patricia dos Santos; Radtke, Claudio; Malfatti, Celia de Fraga; Rieder, Ester

    2010-01-01

    Different methods to elaboration of catalysts in direct ethanol fuel cells (low temperature fuel cells) have been proposed in the literature. The present work aims to study a simplified methodology to obtain Pt-Sn-Ni alloys, used as catalysts in low temperature fuel cells. Impregnation/reduction method was employed to obtain Pt- Sn-Ni alloys supported on carbon, using ethylenoglycol as reductor agent and carbon Vulcan XC72R as support. Different amounts of Pt, Sn e Ni were studied, with the intent to obtain the maximum catalytic effect. The catalysts were obtained in an alkaline range, at 130 deg C, using the proportion ethylenoglycol:water 75/25 v/v. The analytical techniques used in this study was RBS (Rutherford Backscattering Spectroscopy), X Ray Diffraction and Cyclic Voltammetry. (author)

  16. Topology and symmetry of surface Majorana arcs in cyclic superconductors

    Science.gov (United States)

    Mizushima, Takeshi; Nitta, Muneto

    2018-01-01

    We study the topology and symmetry of surface Majorana arcs in superconductors with nonunitary "cyclic" pairing. Cyclic p -wave pairing may be realized in a cubic or tetrahedral crystal, while it is a candidate for the interior P32 superfluids of neutron stars. The cyclic state is an admixture of full gap and nodal gap with eight Weyl points and the low-energy physics is governed by itinerant Majorana fermions. We here show the evolution of surface states from Majorana cone to Majorana arcs under rotation of surface orientation. The Majorana cone is protected solely by an accidental spin rotation symmetry and fragile against spin-orbit coupling, while the arcs are attributed to two topological invariants: the first Chern number and one-dimensional winding number. Lastly, we discuss how topologically protected surface states inherent to the nonunitary cyclic pairing can be captured from surface probes in candidate compounds, such as U1 -xThxBe13 . We examine tunneling conductance spectra for two competitive scenarios in U1 -xThxBe13 —the degenerate Eu scenario and the accidental scenario.

  17. Cyclic features of the consequences from a postulated nuclear accident: a case study of the third level probabilistic safety assessment

    International Nuclear Information System (INIS)

    Xinhe, LIU; Homma, Toshimitsu

    2002-01-01

    In the third level probabilistic safety assessment, one of the three popular meteorological sequence sampling methods is cyclic sampling. The rationale of cyclic sampling is obviously that cyclic variation is the significant characteristics of the meteorological sequences and the health consequences resulting from a postulated nuclear accident are also remarkably of cyclic features. In this work, a set of time series was established for different health consequences using S3 source term and a whole year meteorological data. OSCAAR software system was utilized in the calculation of the health consequences. It is shown by the analysis that diurnal variation is remarked for all the kinds of health consequences, implying that cyclic sampling would be more effective than random sampling. The results also showed that there are not any dominating frequencies in the spectra of the consequences so that cyclic sampling might be incompetent to reduce the third level PSA to a satisfied level. Therefore, new schemes of meteorological sampling should be developed in the light of consideration of complex coupling of meteorological condition and population distribution rather than the consideration of meteorological condition alone

  18. Cyclic voltammetric study of the redox system of glutathione using the disulfide bond reductant tris(2-carboxyethyl)phosphine

    Czech Academy of Sciences Publication Activity Database

    Kizek, René; Vacek, Jan; Trnková, L.; Jelen, František

    2004-01-01

    Roč. 63, 1-2 (2004), s. 19-24 ISSN 1567-5394 R&D Projects: GA AV ČR IAA1163201; GA ČR GA203/02/0422 Institutional research plan: CEZ:AV0Z5004920 Keywords : voltammetry * hanging mercury drop electrode (HMDE) * glutathione (GSH, GSSG) Subject RIV: BO - Biophysics Impact factor: 2.261, year: 2004

  19. Study of PtNi/C catalyst for direct ethanol fuel cell; Estudo do catalisador PtNi/C para celula a combustivel de etanol direto

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, L.P.R. de; Silva, E.L. da; Amico, S.C.; Malfatti, C.F., E-mail: eticiaprm@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2014-07-01

    In this work, PtNi binary catalyst and pure platin catalyst were synthesized by the impregnation-reduction method, using Vulcan XC72R as support, for direct ethanol fuel cells. The composition and structure of the catalysts were analyzed by X-ray diffraction, the electrochemical behavior was evaluated by cyclic voltammetry and morphology of the catalysts was studied by high-resolution transmission electron microscopy. The results showed that the addition of Ni to Pt led to the contraction of the crystal lattice, increased the catalytic activity compared to pure Pt and initiated the electrooxidation of ethanol at lower potential. (author)

  20. Study of the aqueous synthesis, optical and electrochemical characterization of alloyed Zn{sub x}Cd{sub 1-x}Te nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Charlene Regina Santos [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Candido, Luan P.M.; Souza, Helio Oliveira [Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE (Brazil); Pereira da Costa, Luiz [Institute of Technology and Research (ITP), Tiradentes University, Aracaju, SE (Brazil); Sussuchi, Eliana Midori [Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE (Brazil); Gimenez, Iara F., E-mail: gimenez@ufs.br [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE (Brazil); Postgraduate Program in Chemistry, Federal University of Sergipe, São Cristóvão, SE (Brazil)

    2016-08-01

    The effects of experimental factors such as initial reaction pH, capping ligand, and heating method on the optical and electrochemical properties of aqueous alloyed Zn{sub x}Cd{sub 1-x}Te nanocrystals were evaluated. Here the type of capping ligand (glutathione GSH and 3-mercaptopropionic acid MPA) was found to be the most significant factor in controlling the range of photoluminescence emission. Also a pronounced pH effect on the emission wavelength has been verified in the presence of GSH, in contrast to MPA for which only a minor pH effect was observed. The heating method (microwave or hydrothermal) was found to be irrelevant for the emission wavelength at the conditions studied. The electrochemical characterization in aqueous medium (cyclic voltammetry and differential pulse voltammetry) evidenced a good correlation between electrochemical and optical band gap values and allowed estimation of band edge positions. - Highlights: • ZnCdTe quantum dots were obtained by aqueous synthesis. • Nature of capping ligand was the most relevant factor. • Optical and electrochemical band gaps were well correlated.

  1. The role of anti-cyclic citrullinated peptide antibodies in predicting rheumatoid arthritis.

    Science.gov (United States)

    Rexhepi, Sylejman; Rexhepi, Mjellma; Sahatçiu-Meka, Vjollca; Tafaj, Argjend; Izairi, Remzi; Rexhepi, Blerta

    2011-01-01

    The study presents the results of predicting role of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis, compared to rheumatoid factor. 32 patients with rheumatoid arthritis were identified from a retrospective chart review. The results of our study show that presence of the rheumatoid factor has less diagnostic and prognostic significance than the anti-cyclic citrullinated peptide, and suggests its superiority in predicting an erosive disease course.

  2. Electrosynthesis of Clozapine Drug Derivative via an EC Electrochemical Mechanism

    Directory of Open Access Journals (Sweden)

    Esmail Tammari

    2017-12-01

    Full Text Available The fact that oxidation, as one of the main routes of phase I metabolism of drugs, follows by conjugation reactions, and also formation of nitrenium ion as one of the clozapine oxidation products, directed us to investigate the oxidation of clozapine (CLZ in the presence of nucleophile. The oxidation of clozapine (CLZ has been studied on a glassy carbon electrode in the absence and presence of 2-thiobarbituric acid (TBA as nucleophile in aqueous medium by means of cyclic voltammetry and on the graphite rods in controlled-potential coulometry. Cyclic voltammetry studies were realized for CLZ in the pHs 1.0 to 8.0. Results indicate that the electrochemical behavior of CLZ depends on the pH. Based on the obtained electrochemical results, an ECE mechanism was proposed to explain the electrochemical oxidation of CLZ. The results revealed that oxidized CLZ participates in Michael type addition reaction with TBA and via an EC mechanism converts to the corresponding new dibenzodiazepin derivatives. The product has been characterized by IR, 1H NMR, 13C NMR and MS.

  3. Lewis basicity, adhesion thermodynamic work and coordinating ability on aminated silicon surfaces

    International Nuclear Information System (INIS)

    Sánchez, M. Alejandra; Paniagua, Sergio A.; Borge, Ignacio; Viales, Christian; Montero, Mavis L.

    2014-01-01

    Highlights: • Silicon(1 0 0) surfaces with diamines followed by anchoring of copper complexes over the diamine layer, an approach that could be used for advanced functionalization of semiconducting surfaces. • Lewis basicity (using Fowkes–van Oss–Chaudhury–Good surface tension model) and adhesion thermodynamic work (using chemical force microscopy) were determined. • Higher basicity and thermodynamic work correlate with selective copper acetate monolayer grow. The cyclic voltammetry studies confirm the confined copper redox activity. - Abstract: Silicon(1 0 0) surfaces have been modified with three different amines (aniline, benzylamine and dodecylamine) and diamines (4-aminopyridine, 4-aminomethylpyridine, 1,12-dodecyldiamine). The surface energy was measured by contact angle technique. For Si-diamine surfaces, Lewis basicity (using Fowkes–van Oss–Chaudhury–Good surface tension model) and adhesion thermodynamic work (using chemical force microscopy) were determined. We related these data, the amine/diamine nature and their geometry on the surface (via DFT calculations) with the consequent ability to coordinate copper(II) acetate. Finally, copper(II) acetate monolayers behavior was studied by cyclic voltammetry

  4. Electrochemical synthesis of poly(pyrrole-co-o-anisidine)/chitosan composite films

    Science.gov (United States)

    Yalçınkaya, Süleyman; Çakmak, Didem

    2017-05-01

    In this study, poly(pyrrole-co-o-anisidine)/chitosan composite films were electrochemically synthesized in various monomers feed ratio (pyrrole: o-anisidine; 9:1, 7:3, 1:1, 3:7 and 1:9) of pyrrole and o-anisidine on the platinum electrode. Electrochemical synthesis of the composite films was carried out via cyclic voltammetry technique. They were characterized by FT-IR, cyclic voltammetry, SEM micrographs, digital images, TGA and DSC techniques. The SEM results indicated that the particle size of the composite decreased with increasing o-anisidine ratio and the films became more likely to be smooth morphology. The TGA results proved that the film of the composite with 1:1 ratio showed highest final degradation temperature and lowest weight loss (83%) compared to copolymer and 9:1 1:9 composite films. The 1:1 composite film had higher thermal stability than copolymer and the other composite films (9:1 1:9). Meanwhile, electrochemical studies exhibited that the 1/9 composite film had good electrochemical stability as well.

  5. Low-temperature resistance of cyclically strained aluminum

    International Nuclear Information System (INIS)

    Segal, H.R.; Richard, T.G.

    1977-01-01

    An experimental study of the resistance changes in high-purity, reinforced aluminum due to cyclic straining is presently underway. The purpose of this work is to determine the optimum purity of aluminum to be used as a stabilizing material for superconducting magnets used for energy storage. Since pure aluminum has a low yield strength, it is not capable of supporting the stress levels in an energized magnet. Therefore, it has been bonded to a high-strength material--in this case, 6061 aluminum alloy. This bonding permits pure aluminum to be strained cyclically beyond its elastic limit with recovery of large plastic strains upon release of the load. The resistance change in this composite material is less than that of pure, unreinforced aluminum

  6. The Study on the Performance of Carbon Supported PtSnM (M = W, Pd, and Ni) Ternary Electro-Catalysts for Ethanol Electro-Oxidation Reaction.

    Science.gov (United States)

    Noh, Chang Soo; Heo, Dong Hyun; Lee, Ki Rak; Jeon, Min Ku; Sohn, Jung Min

    2016-05-01

    PtSn/C and Pt5Sn4M/C (M = W, Pd, Ni) electrocatalysts were prepared by impregnation method using NaBH4 as a reducing agent. Chemical composition, crystalline size, and alloy formation were determined by EDX, XRD and TEM. The average particle sizes of the synthesized catalysts were approximately 3.64-4.95 nm. The electro-chemical properties were measured by CO stripping, cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. The maximum specific activity of the electro-catalysts for ethanol electro-oxidation was 406.08 mA m(-2) in Pt5Sn4Pd/C. The poisoning rate of the Pt5Sn4Pd/C (0.0017% s(-1)) was 4.5 times lower than that of the PtSn/C (0.0076% s(-1)).

  7. Macromolecular Networks Containing Fluorinated Cyclic Moieties

    Science.gov (United States)

    2015-12-12

    Briefing Charts 3. DATES COVERED (From - To) 17 Nov 2015 – 12 Dec 2015 4. TITLE AND SUBTITLE Macromolecular Networks Containing Fluorinated Cyclic... FLUORINATED CYCLIC MOIETIES 12 December 2015 Andrew J. Guenthner,1 Scott T. Iacono,2 Cynthia A. Corley,2 Christopher M. Sahagun,3 Kevin R. Lamison,4...Reinforcements Good Flame, Smoke, & Toxicity Characteristics Low Water Uptake with Near Zero Coefficient of Hygroscopic Expansion ∆ DISTRIBUTION A

  8. Dependence of adenine isolation efficiency on the chain length evidenced using paramagnetic particles and voltammetry measurements

    International Nuclear Information System (INIS)

    Huska, Dalibor; Adam, Vojtech; Trnkova, Libuse; Kizek, Rene

    2009-01-01

    The main aim of this work was to study the dependence of oligoadenine isolation efficiency on the chain length by using paramagnetic particles covered by homo-deoxythymidines ((dT)25) with subsequent detection by adsorptive transfer technique coupled with square wave voltammetry. For this purpose, the oligonucleotides of the length A5, A10, A15, A20, A25, A30, A35, A40 and poly(A) in various concentrations were chosen. We determined that the isolation efficiency defined as 'isolated oligonucleotide concentration'/'given oligonucleotide concentration' was about 55% on average. Sequence A25 demonstrated the best binding onto microparticles surface.

  9. Classification of cyclic initial states and geometric phase for the spin-j system

    Energy Technology Data Exchange (ETDEWEB)

    Skrynnikov, N.R.; Zhou, J.; Sanctuary, B.C. [Dept. of Chem., McGill Univ., Montreal, PQ (Canada)

    1994-09-21

    Quantum states which evolve cyclically in their projective Hilbert space give rise to a geometric (or Aharonov-Anandan) phase. An aspect of primary interest is stable cyclic behaviour as realized under a periodic Hamiltonian. The problem has been handled by use of time-dependent transformations treated along the lines of Floquet's theory as well as in terms of exponential operators with a goal to examine the variety of initial states exhibiting cyclic behaviour. A particular case of special cyclic initial states is described which is shown to be important for nuclear magnetic resonance experiments aimed at the study of the effects of the geometric phase. An example of arbitrary spin j in a precessing magnetic field and spin j=1 subject to both axially symmetric quadrupolar interaction and a precessing magnetic field are presented. The invariant (Kobe's) geometric phase is calculated for special cyclic states. (author)

  10. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Omolola E. Fayemi

    2017-04-01

    Full Text Available The electrochemical response of serotonin on the modified electrode based on multiwalled-carbon-nanotube (MWCNT doped respectively with nickel, zinc and iron oxide nanoparticles coating on glassy carbon electrode (GCE at physiological pH 7 was determined using cyclic voltammetry (CV and square wave voltammetry (SWV. The modified GCE/MWCNT-metal oxide electrodes exhibited excellent electrocatalytic activity towards the detection of serotonin at large peak current and lower oxidation potentials compared to other electrodes investigated. The dynamic range for the serotonin determination was between 5.98 × 10−3 μM to 62.8 μM with detection limits 118, 129 and 166 nM for GCE/MWCNT-NiO, GCE/MWCNT-ZnO and GCE/MWCNT-Fe3O4 sensors respectively. GCE-MWCNT-NiO was the best electrode in terms of serotonin current response, electrode stability, resistance to fouling and limit of detection towards the analyte. The developed sensors were found to be electrochemically stable, reusable, economically effective due to their extremely low operational cost, and have demonstrated good limit of detection, sensitivity and selectivity towards serotonin determination in urine samples. Keywords: Metal oxides nanoparticles, Multiwalled carbon nanotubes, Glassy carbon electrode, Serotonin, Cyclic voltammetry, Square wave voltammetry

  11. Numerical modeling of centrifuge cyclic lateral pile load experiments

    Science.gov (United States)

    Gerolymos, Nikos; Escoffier, Sandra; Gazetas, George; Garnier, Jacques

    2009-03-01

    To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoire Central des Ponts et Chaussées. Three types of cyclic loading were applied, two asymmetric and one symmetric with respect to the unloaded pile. An approximately square-root variation of soil stiffness with depth was obtained from indirect in-flight density measurements, laboratory tests on reconstituted samples, and well-established empirical correlations. The tests were simulated using a cyclic nonlinear Winkler spring model, which describes the full range of inelastic phenomena, including separation and re-attachment of the pile from and to the soil. The model consists of three mathematical expressions capable of reproducing a wide variety of monotonic and cyclic experimental p-y curves. The physical meaning of key model parameters is graphically explained and related to soil behavior. Comparisons with the centrifuge test results demonstrate the general validity of the model and its ability to capture several features of pile-soil interaction, including: soil plastification at an early stage of loading, “pinching” behavior due to the formation of a relaxation zone around the upper part of the pile, and stiffness and strength changes due to cyclic loading. A comparison of the p-y curves derived from the test results and the proposed model, as well as those from the classical curves of Reese et al. (1974) for sand, is also presented.

  12. Caffeine, cyclic AMP and postreplication repair of mammalian DNA

    International Nuclear Information System (INIS)

    Ehmann, U.K.

    1976-01-01

    The methylxanthines, caffeine and theophylline, inhibit postreplication repair of DNA in mammalian cells. Because they also inhibit cyclic AMP phosphodiesterase, it was thought that there might be some connection between concentrations of cyclic AMP and postreplication repair. This possibility was tested by performing DNA sedimentation experiments with a cyclic AMP-resistant mouse lymphoma cell mutant and its wild-type counterpart. The results show that there is no connection between cellular cyclic AMP concentrations and the rate of postreplication repair. Therefore, it is more likely that caffeine and theophylline inhibit postreplication repair by some other means, such as by binding to DNA

  13. graft-carbon nanotubes with LiNi0.5Mn1.5O4 and

    Indian Academy of Sciences (India)

    ... were investigated by cyclic voltammetry and electrochemical impedance spectroscopy and exhibited the high diffusion of lithium ions .... polymer was precipitated from cold methanol and washed .... for incorporation of metal-oxide particles.

  14. Microfabricated Multianalyte Sensor Arrays for Metabolic Monitoring

    National Research Council Canada - National Science Library

    Pishko, Michael V

    2006-01-01

    ...(ethylene glycol) diacrylate or PEG-DA on the array electrodes. The fabricated microarray sensors were individually addressable and with no cross-talk between adjacent array elements as assessed using cyclic voltammetry...

  15. Microfabricated Multianalyte Sensor Arrays for Metabolic Monitoring

    National Research Council Canada - National Science Library

    Pishko, Michael V

    2007-01-01

    ...(ethylene glycol) diacrylate or PEG-DA on the array electrodes. The fabricated microarray sensors were individually addressable and with no cross-talk between adjacent array elements as assessed using cyclic voltammetry...

  16. Behavior of prestressed concrete subjected to low temperatures and cyclic loading

    International Nuclear Information System (INIS)

    Berner, D.E.

    1984-01-01

    Concrete has exhibited excellent behavior in cryogenic containment vessels for several decades under essentially static conditions. Tests were conducted to determine the response of prestressed lightweight concrete subjected to high-intensity cyclic loading and simultaneous cryogenic thermal shock, simulating the relatively dynamic conditions encountered offshore or in seismic areas. Lightweight concrete has several attractive properties for cryogenic service including: (1) very low permeability, (2) good strain capacity, (3) relatively low thermal conductivity, and (4) a low modulus of elasticity. Experimental results indicated that the mechanical properties of plain lightweight concrete significantly increase with moisture content at low temperatures, while cyclic loading fatigue effects are reduced at low temperatures. Also, tests on uniaxially and on biaxially prestressed lightweight concrete both indicate that the test specimens performed well under severe cyclic loading and cryogenic thermal shock with only moderate reduction in flexural stiffness. Supplementary tests conducted in this study indicate that conventionally reinforced concrete degrades significantly faster than prestressed concrete when subjected to cyclic loading and thermal shock

  17. Comparative studies of electrochemical properties of carbon nanotubes and nanostructured boron carbide

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Singh, Kulwinder; Singh, Bikramjeet; Kaur, Manjot; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay

    2018-05-01

    Boron carbide (B4C) and carbon nanotubes (CNTs) have the potential to act as electrocatalyst as these material show bifunctional behavior. B4C and CNTs were synthesized using solvothermal method. B4C display great catalytic activity as compared to CNTs. Raman spectra confirmed the formation of nanostructured carbon nanotubes. The observed onset potential was smaller 1.58 V in case of B4C as compared to CNTs i.e. 1.96 V in cyclic voltammetry. B4C material can emerge as a promising bifunctional electrocatalyst for battery applications.

  18. Study of cyclic and steady particle motion in a realistic human airway model using phase-Doppler anemometry

    Science.gov (United States)

    Jedelský, Jan; Lízal, František; Jícha, Miroslav

    2012-04-01

    Transport and deposition of particles in human airways has been of research interest for many years. Various experimental methods such as constant temperature anemometry, particle image velocimetry and laser-Doppler based techniques were employed for study of aerosol transport in the past. We use Phase-Doppler Particle Analyser (P/DPA) for time resolved size and velocity measurement of liquid aerosol particles in a size range 1 to 8 μm. The di-2ethylhexyl sabacate (DEHS) particles were produced by condensation monodisperse aerosol generator. A thin-wall transparent model of human airways with non-symmetric bifurcations and non-planar geometry containing parts from throat to 3rd-4th generation of bronchi was fabricated for the study. Several cyclic (sinusoidal) breathing regimes were simulated using pneumatic breathing mechanism. Analogous steady-flow regimes were also investigated and used for comparison. An analysis of the particle velocity data was performed with aim to gain deeper understanding of the transport phenomena in the realistic bifurcating airway system. Flows of particles of different sizes in range 1 - 10 μm was found to slightly differ for extremely high Stokes numbers. Differences in steady and cyclic turbulence intensities were documented in the paper. Systematically higher turbulence intensity was found for cyclic flows and mainly in the expiration breathing phase. Negligible differences were found for behaviour of different particle size classes in the inspected range 1 to 8 μm. Possibility of velocity spectra estimation of air flow using the P/DPA data is discussed.

  19. Study of cyclic and steady particle motion in a realistic human airway model using phase-Doppler anemometry

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Transport and deposition of particles in human airways has been of research interest for many years. Various experimental methods such as constant temperature anemometry, particle image velocimetry and laser-Doppler based techniques were employed for study of aerosol transport in the past. We use Phase-Doppler Particle Analyser (P/DPA for time resolved size and velocity measurement of liquid aerosol particles in a size range 1 to 8 μm. The di-2ethylhexyl sabacate (DEHS particles were produced by condensation monodisperse aerosol generator. A thin-wall transparent model of human airways with non-symmetric bifurcations and non-planar geometry containing parts from throat to 3rd-4th generation of bronchi was fabricated for the study. Several cyclic (sinusoidal breathing regimes were simulated using pneumatic breathing mechanism. Analogous steady-flow regimes were also investigated and used for comparison. An analysis of the particle velocity data was performed with aim to gain deeper understanding of the transport phenomena in the realistic bifurcating airway system. Flows of particles of different sizes in range 1 – 10 μm was found to slightly differ for extremely high Stokes numbers. Differences in steady and cyclic turbulence intensities were documented in the paper. Systematically higher turbulence intensity was found for cyclic flows and mainly in the expiration breathing phase. Negligible differences were found for behaviour of different particle size classes in the inspected range 1 to 8 μm. Possibility of velocity spectra estimation of air flow using the P/DPA data is discussed.

  20. Study of copper and purine-copper complexes on modified carbon electrodes by cyclic and elimination voltammetry

    Czech Academy of Sciences Publication Activity Database

    Trnková, L.; Zerzánková, L.; Dyčka, F.; Mikelová, R.; Jelen, František

    2008-01-01

    Roč. 8, č. 1 (2008), s. 429-444 ISSN 1424-8220 R&D Projects: GA AV ČR(CZ) IAA100040602; GA AV ČR(CZ) IAA400040804 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : copper-purine complexes * paraffin-impregnated graphite electrode * mercury-film electrode Subject RIV: BO - Biophysics Impact factor: 1.870, year: 2008