WorldWideScience

Sample records for cycle systems phase

  1. Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems

    Science.gov (United States)

    Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya

    2017-02-01

    Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.

  2. Feasibility study on commercialized fast reactor cycle systems. Phase II final report

    International Nuclear Information System (INIS)

    Ieda, Yoshiaki; Uchikawa, Sadao; Okubo, Tsutomu; Ono, Kiyoshi; Kato, Atsushi; Kurisaka, Kenichi; Sakamoto, Yoshihiko; Sato, Kazujiro; Sato, Koji; Chikazawa, Yoshitaka; Nakai, Ryodai; Nakabayashi, Hiroki; Nakamura, Hirofumi; Namekawa, Takashi; Niwa, Hajime; Nomura, Kazunori; Hayashi, Hideyuki; Hayafune, Hiroki; Hirao, Kazunori; Mizuno, Tomoyasu; Muramatsu, Toshiharu; Ando, Masato; Ono, Katsumi; Ogata, Takanari; Kubo, Shigenobu; Kotake, Shoji; Sagayama, Yutaka; Takakuma, Katsuyuki; Tanaka, Toshihiko; Namba, Takashi; Fujii, Sumio; Muramatsu, Kazuyoshi

    2006-06-01

    A joint project team of Japan Atomic Energy Agency and the Japan Atomic Power Company (as the representative of the electric utilities) started the feasibility study on commercialized fast reactor cycle systems (F/S) in July 1999 in cooperation with Central Research Institute of Electric Power Industry and vendors. On the major premise of safety assurance, F/S aims to present an appropriate picture of commercialization of fast reactor (FR) cycle system which has economic competitiveness with light water reactor cycle systems and other electricity base load systems, and to establish FR cycle technologies for the future major energy supply. In the period from Japanese fiscal year (JFY) 1999 to 2000, the phase-I of F/S was carried out to screen our representative FR, reprocessing and fuel fabrication technologies. In the phase-II (JFY 2001-2005), the design study of FR cycle concepts, the development of significant technologies necessary for the feasibility evaluation, and the confirmation of key technical issues were performed to clarify the promising candidate concepts toward the commercialization. In this final phase-II report clarified the most promising concept, the R and D plan until around 2015, and the key issues for the commercialization. Based on the comprehensive evaluation in F/S, the combination of the sodium-cooled FR with MOX fuel core, the advanced-aqueous reprocessing process and the simplified-pelletizing fuel fabrication process was recommended as the mainline choice for the most promising concept. The concept exceeds in technical advancement, and the conformity to the development targets was higher compared with that of the others. Alternative technologies are prepared to be decrease the development risk of innovative technologies in the mainline choice. (author)

  3. Novel BCH Code Design for Mitigation of Phase Noise Induced Cycle Slips in DQPSK Systems

    DEFF Research Database (Denmark)

    Leong, M. Y.; Larsen, Knud J.; Jacobsen, G.

    2014-01-01

    We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbau d DQPSK systems. Performance of BCH codes are investigated in terms of required overhead......We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbau d DQPSK systems. Performance of BCH codes are investigated in terms of required overhead...

  4. Experimental study on the application of phase change material in the dynamic cycling of battery pack system

    International Nuclear Information System (INIS)

    Yan, Jiajia; Li, Ke; Chen, Haodong; Wang, Qingsong; Sun, Jinhua

    2016-01-01

    Highlights: • Two temperature peaks are observed in the single battery during the dynamic cycling. • The cooling performance of PCM system is superior to the natural convection system. • Increasing the laying-aside time is beneficial to the cooling performance of PCM system. • The optimal phase change temperature of PCM is recommended as 45 °C. - Abstract: The thermal performance of phase change material (PCM) based battery thermal management system in dynamic cycling is investigated, and several factors influencing the PCM system are discussed in detail. It is established that the surface temperature of a single battery has two temperature peaks during one charge/discharge cycle, while it disappears in the PCM system for the temperature buffering of PCM. In addition, the cooling performance of the PCM system is superior to that of natural convection system especially at a high current rate. Moreover, increasing the laying-aside time properly between each cycling step is beneficial to the cooling performance of the PCM system. Additionally, PCM with a phase change temperature of 45 °C is recommended to be used in the real battery pack system.

  5. Results of FY 2002 of feasibility study on commercialized fast reactor cycle systems. Phase 2

    International Nuclear Information System (INIS)

    2003-06-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC, that is the representative of the electric utilities in Japan) established a new organization to develop a commercialized fast reactor (FR) cycle system on July 1, 1999 and feasibility study (F/S) was undertaken in order to determine the promising concepts and to define the necessary R and D tasks. During Phase 1 (JFY 1999 and 2000), a number of candidate concepts were screened from various options, featuring innovative technologies. In the F/S, the options were evaluated and conceptual designs were examined considering the attainable perspectives for following: 1) ensuring safety, 2) economic competitiveness to future LWRs, 3) efficient utilization of resources, 4) reduction of environmental burden and 5) enhancement of nuclear non-proliferation. The F/S should also guide the necessary R and D to commercialize FR cycle system. To begin with the study of feasible candidate concepts screened in Phase I, Phase 2 started in the plan for five years in 2001. This aims at clarifying several feasible candidate concepts and deciding the research plan after Phase 3 as taking into consideration the innovative technology. As for this plan, an interim report will be carried out in 2003 as one pause and the prospect to clarify the feasible candidates will be expected. Furthermore, after the completion of this research and investigation program, research and development activities will be carried out under a rolling plan in which reviews will be carried out approximately every five years. The objective of these R and D activities is to make a proposal regarding highly attractive and competitive FR cycle system technology that assures safety by 2015. This report summarizes the results of F/S of Phase 2 in 2002. In 2002, the second year of Phase 2, the study was advanced along with the plan which was evaluated by the committee for the Evaluation. Then, in the study of FR system and fuel cycle

  6. Experimental Studies of Phase Change and Microencapsulated Phase Change Materials in a Cold Storage/Transportation System with Solar Driven Cooling Cycle

    Directory of Open Access Journals (Sweden)

    Lin Zheng

    2017-11-01

    Full Text Available The paper presents the different properties of phase change material (PCM and Microencapsulated phase change material (MEPCM employed to cold storage/transportation system with a solar-driven cooling cycle. Differential Scanning Calorimeter (DSC tests have been performed to analyze the materials enthalpy, melting temperature range, and temperature range of solidification. KD2 Pro is used to test the thermal conductivities of phase change materials slurry and the results were used to compare the materials heat transfer performance. The slurry flow characteristics of MEPCM slurry also have been tested. Furthermore, in order to analyze the improvement effect on stability, the stability of MEPCM slurry with different surfactants have been tested. The researches of the PCM and MEPCM thermal properties revealed a more prospective application for phase change materials in energy storage/transportation systems. The study aims to find the most suitable chilling medium to further optimize the design of the cold storage/transportation systems with solar driven cooling cycles.

  7. Technological study report on synthetic evaluation for FBR cycle. The report of the feasibility studies on commercialized FBR cycle system. Phase 1

    International Nuclear Information System (INIS)

    Shinoda, Yoshihiko; Ohtaki, Akira; Kofuji, Hirohide; Ono, Kiyoshi; Hirao, Kazunori

    2001-03-01

    This report is intended to explain the outline of the characteristic evaluation work on various FR cycle system concepts, following the design work, in the 1st phase of the JNC's 'Feasibility Study on Commercialized Fast Reactor Cycle System (the F/S)' (from 1999 to March 2001). The purpose of this characteristic evaluation is to reveal the performance of candidate FR cycle systems. For this synthetic estimation, six viewpoints, such as Economics, Effective utilization of uranium resource, Reduction of environmental impact, Safety, Proliferation resistance, and Technological feasibility, are selected. In addition, aiming at the practical use in phase 2, we examined an application to FBR research and development of cost benefit analysis method used for the policy evaluation. Furthermore, long-term nuclear material mass flow was analyzed and the scenario of 'FBR application for the hydrogen production' is proposed, considering how FBR would be utilized for the 21st century. And, a database including the various documents and data used for evaluation was constructed. (author)

  8. Potential benefits of saturation cycle with two-phase refrigerant injection

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard; Chun, Ho-Hwan

    2013-01-01

    In this paper, a saturation cycle is proposed to enhance a vapor compression cycle performance by reducing thermodynamic losses associated with single phase gas compression and isenthalpic expansion. In order to approach the saturation cycle, a two-phase refrigerant injection technique is applied to the multi-stage cycle. This multi-stage cycle with different options is modeled, and its performance is evaluated under ASHRAE standard operating conditions for air conditioning systems. Moreover, the two-phase refrigerant injection cycle is compared with the typical vapor injection cycle which is utilizing the internal heat exchanger or the flash tank. Low GWP refrigerants are applied to this two-phase refrigerant injection cycle. In terms of the COP and its improvement, R123 has a higher potential than any other refrigerants in the multi-stage cycle. Lastly, practical ideas realizing the saturation cycle are discussed such as multi-stage phase separator, phase separator with helical structure inside, and injection location of the compressor. -- Highlights: • A saturation cycle is proposed to enhance the vapor compression cycle performance. • Two-phase refrigerant injection technique is applied to the multi-stage cycle. • Modeling results of the proposed cycle show the significant performance improvement. • Low GWP refrigerants are applied and R123 shows the highest performance. • New parameters, α and ε, are used to show the potential of the saturation cycle

  9. Feasibility study on commercialization of fast breeder reactor cycle system. Interim report of phase 2. Technical study report on synthetic evaluation for FBR cycle

    International Nuclear Information System (INIS)

    Shiotani, Hiroki; Ohtaki, Akira; Ono, Kiyoshi; Yasumatsu, Naoto; Kubota, Sadae; Heta, Masanori

    2004-09-01

    This report presents the outline of the development and the results of Synthetic evaluation on the candidate Fast Reactor (FR) cycle system concepts, scenario study on FR cycle deployment and cost-benefit analysis on the candidate FR cycle system concepts in the interim evaluation (FY2001 through FY2003) of the phase 2 of the Japanese 'Feasibility Study on Commercialization of Fast Reactor Cycle System (FS)'. The characteristic evaluation extended to evaluate a new view point of social acceptance besides the viewpoints of safety, economics, reduction of environmental burden, efficient utilization of uranium resource, proliferation resistance, and technical feasibility, which has been considered since the phase 1 of FS. As for the six view points, hierarchy structures and utility functions for quantitative evaluation have been developed and/or improved. Furthermore, the methodology for weighing the viewpoints, which was also developed, made it possible to examine the characteristics of the candidate concepts from all the seven viewpoints. Generally, the FR cycles with sodium-cooled FR were highly evaluated. The characteristic evaluation for alternative power supply systems was also tried in this report for the first time. FR cycle deployment scenarios clarified the necessity of FR cycle deployment and the desirable core features, etc. through the long-term mass flow analysis, which includes comparison among other nuclear fuel cycle schemes and analysis for evaluating the degree to meet future needs, on the typical FR cycle systems. Regarding cost-benefit analysis, both the amount of the cost estimated by the past R and D and the cost in the Road map of FS are used as the investment for FR cycle research and development (R and D), the results showed that the benefit derived from the commercialization of FR cycle will be more than the investment. (author)

  10. Experimental Studies of Phase Change and Microencapsulated Phase Change Materials in a Cold Storage/Transportation System with Solar Driven Cooling Cycle

    OpenAIRE

    Lin Zheng; Wei Zhang; Fei Liang; Shuang Lin; Xiangyu Jin

    2017-01-01

    The paper presents the different properties of phase change material (PCM) and Microencapsulated phase change material (MEPCM) employed to cold storage/transportation system with a solar-driven cooling cycle. Differential Scanning Calorimeter (DSC) tests have been performed to analyze the materials enthalpy, melting temperature range, and temperature range of solidification. KD2 Pro is used to test the thermal conductivities of phase change materials slurry and the results were used to compar...

  11. Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling

    Science.gov (United States)

    Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.

    2017-02-01

    Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.

  12. Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae.

    Science.gov (United States)

    Brewer, B J; Chlebowicz-Sledziewska, E; Fangman, W L

    1984-11-01

    During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.

  13. Feasibility study on commercialization of fast breeder reactor cycle systems interim report of phase II. Technical study report for nuclear fuel cycle systems

    International Nuclear Information System (INIS)

    Sato, Koji; Amamoto, Ippei; Inoue, Akira

    2004-06-01

    As a part of the feasibility study on commercialization of fast breeder reactor cycle systems, the plant concept concerning the fuel cycle systems (combination of the reprocessing and the fuel fabrication) has been constructed to reduce their total cost by the introduction of various innovative techniques and to apply their utmost superior efficiency from such standpoints of a decrease in the environmental burden, better resource utilization and proliferation resistance improvement by the low decontamination transuranium element (TRU) recycle. This interim report of Phase II describes the results of an on-going study which will cover a five-year period. For oxide fuels, the system which combines the use of the advanced aqueous reprocessing using three main methods such as the crystallization method, the simplified solvent extraction method, and the extraction chromatography method for minor actinide (MA) recovery, as well as the simplified pelletizing fuel fabrication which rationalized a powder mixing process etc., has abundant current results and a high technical feasibility for the basic process. Though this system faces difficulties in the technical development of control technology of the extraction chromatography and the fabrication technology of low decontamination TRU fuel etc., its expected practical use is possible at an early stage. As for the super-critical direct extraction reprocessing, it is necessary to fulfill more basic data although further economical improvement of an advanced aqueous reprocessing is expected. The system which combines the advanced aqueous reprocessing and the gelation sphere packing fuel fabrication has the advantage of lesser dispersion of the fine powder due to the use of solution and granule in the fuel fabrication process. However, this system will shoulder additional cost for the reagent recovery process and the waste liquid treatment process due to need to dispose of a large bulk of process waste liquid. The system which

  14. Management system and organizational life cycle: A qualitative study

    OpenAIRE

    Selma Zone Fekih Ahmed

    2013-01-01

    This research deals with the importance of the components of the management system according to the phases of organizational life cycle. The goal of our research is to provide the theoretical reflection on the life cycle of the organization and to shed light on the components of the management system for each phase. The conceptual analysis shows that the management system is made up of its three components: ethics, mode of functioning and procedure of regulation. The organizational life cycle...

  15. Methodologies for verification and validation of expert systems as a function of component, criticality and life-cycle phase

    International Nuclear Information System (INIS)

    Miller, L.

    1992-01-01

    The review of verification and validation (V and V) methods presented here is based on results of the initial two tasks of a contract with the US Nuclear Regulatory Commission and the Electric Power Research Institute to Develop and Document Guidelines for Verifying and Validating Expert Systems. The first task was to review the applicability of conventional software techniques to expert systems; the second was to directly survey V and V practices associated with development of expert systems. Subsequent tasks will focus on selecting, synthesizing or developing V and V methods appropriate for the overall system, for specific expert systems components, and for different phases of the life-cycle. In addition, final guidelines will most likely be developed for each of three levels of expert systems: safety-related (systems whose functions directly relate to system safety, so-called safety-critical systems), important-to-safety (systems which support the critical safety functions), and non-safety (systems which are unrelated to safety functions). For the present purposes of categorizing and discussing various types of V and V methods, the authors simplify the life-cycle and consider only two aspects - systems validation phase. The authors identified a number of techniques for the first, combined, phase and two general classes of V and V techniques for the latter phase: static testing techniques, which do not involve execution of the system code, and dynamic testing techniques, which do. In the next two sections the author reviews first the applicability to expert systems of conventional V and V techniques and, second, the techniques expert system developers actually use. In the last section the authors make some general observations

  16. Thermodynamic sensitivity analysis of a novel trigeneration thermodynamic cycle with two-phase expanders and two-phase compressors

    International Nuclear Information System (INIS)

    Briola, Stefano; Di Marco, Paolo; Gabbrielli, Roberto

    2017-01-01

    A novel Combined Cooling, Heating and Power (CCHP) cycle, operating with two-phase devices for the compression and expansion processes and a single-component wet working fluid, is proposed. A detailed sensitivity analysis of the novel CCHP cycle has been investigated in order to evaluate, in terms of energy performance indicators, its potentiality to serve typical trigenerative tertiary and industrial end-users with different fixed operating temperatures. In general, the novel CCHP cycle is characterized by higher energy performance indicators than a separated energy production system. The comparison between the novel CCHP cycle and several commercialized CCHP systems has been performed in the case studies related to tertiary and industrial end-users. The novel CCHP cycle shows a trigenerative capability in wide ranges of the end-users demands without surplus or deficit of the electric or thermal powers. Furthermore, the maximum allowable capital cost of the whole novel CCHP plant (BEPCC), that will assure the profitability of the investment, is calculated in the tertiary and industrial end-users case studies. For the tertiary end-user, the capital costs of the commercialized CCHP are between the minimum and maximum BEPCC values. On the contrary, for the industrial end-user, they are lower than the minimum and maximum BEPCC values. - Highlights: • Novel CCHP cycle with two-phase expanders and compressors has been conceived. • Novel CCHP cycle has higher performances than a separated energy production system. • Novel CCHP cycle satisfies the user demands in wide ranges without surplus/deficit. • Tertiary user: novel CCHP cycle is competitive against marketed CCHP systems. • Industrial user: novel CCHP cycle is not competitive against marketed CCHP systems.

  17. Multidimensional evaluation on FR cycle systems

    International Nuclear Information System (INIS)

    Nakai, Ryodai; Fujii, Sumio; Takakuma, Katsuyuki; Katoh, Atsushi; Ono, Kiyoshi; Ohtaki, Akira; Shiotani, Hiroki

    2004-01-01

    This report explains some results of the multidimensional evaluation on various fast reactor cycle system concepts from an interim report of the 2nd phase of ''Feasibility Study on Commercialized FR Cycle System''. This method is designed to give more objective and more quantitative evaluations to clarify commercialized system candidate concepts. Here we brief current evaluation method from the five viewpoints of safety, economy, environment, resource and non-proliferation, with some trial evaluation results for some cycles consist of promising technologies in reactor, core and fuel, reprocessing and fuel manufacture. Moreover, we describe FR cycle deployment scenarios which describe advantages and disadvantages of the cycles from the viewpoints of uranium resource and radioactive waste based on long-term nuclear material mass flow analyses and advantages of the deployment of FR cycle itself from the viewpoints of the comparison with alternative power supplies as well as cost and benefit. (author)

  18. Respiratory functions in asthmatic and normal women during different phases of menstrual cycle

    International Nuclear Information System (INIS)

    Arora, D.B.; Sandhu, P.K.; Dhillon, S.; Arora, A.

    2015-01-01

    Menstrual cycle is an integral part of life of women. There is widespread agreement that changes in the levels of oestrogen and progesterone associated with menstrual cycle also affect different systems of the body besides reproductive system. Levels of oestrogen and progesterone are maximum in the secretory phase and minimum just before the menstruation .Bronchial asthma is one of the commonest chronic respiratory diseases. Premenstrual worsening of asthma symptoms has been reported to affect 33-40% of asthmatic women. This exacerbation of asthma symptoms has been correlated with the oestrogen and progesterone levels. The association between menstrual cycle and lung functions in normal females has also been recognised. The pathophysiology of this process is still not proved. The purpose of our study was to confirm the probable effects of the female hormones on lung functions in normal and asthmatic women in different phases of menstrual cycle and to compare them. Methods: The study was done on 40 normal and 40 asthmatic females in the age group of 15-45 years. Pulmonary function tests were done in three phases of menstrual cycle i.e. follicular, secretory and menstrual in all the subjects. Results: The mean value of lung functions, i.e., FVC, FEV, PEFR, FEF25-75%, FEF 200-1200 were significantly lower in asthmatic females than normal ones (p<0.01) in all three phases. The lung functions of both asthmatic and non-asthmatic females in secretory phase were significantly higher than in menstrual phase (p<0.005). The PFTs in menstrual phase were even lower than the follicular phase (p<0.04). Conclusion: Respiratory parameters of both asthmatic and non-asthmatic women in reproductive age group show significant variation in different phases of menstrual cycle. The smooth muscle relaxant effect of progesterone and probably oestrogen might have contributed to it. The lung function parameters in asthmatics were of lower value compared to normal women. (author)

  19. Cell-cycle phase specificity of chloroethylnitrosoureas

    International Nuclear Information System (INIS)

    Linfoot, P.A.

    1986-01-01

    Although the cancer chemotherapeutic agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) is considered a non-cell cycle phase specific drug, it has been shown to produce differential cell killing in G 1 , S, and G 2 /M phase cells, with S phase cells appearing relatively resistant. Studies of cell cycle phase specific cell killing produced by nitrosoureas with different chemical reactivities, clearly indicated that the ability of compounds to cross-link DNA was important in determining their phase specificity. Cells that lacked guanine O 6 -alkytransferase activity showed similar patterns of BCNU phase specificity regardless of their intrinsic sensitivity to BCNU. DNA inter-strand cross-linking, as measured by alkaline elution, was similar in cells exposed to BCNU in G 1 or S phase. 3 H [1-chloroethyl-1nitrosourea] binding to DNA was the same in G 1 , S and G 2 /M phase cells indicating that phase-specific differences in drug uptake and intracellular drug dose were not responsible for phase specific cell kill. These studies suggest that cross-link lesions, other than DNA inter-strand cross-links, and/or effects on DNA repair, other than guanine O 6 -alkyltransferase, are additional important determinants of BCNU phase specific cell killing

  20. Performance research on modified KCS (Kalina cycle system) 11 without throttle valve

    International Nuclear Information System (INIS)

    He, Jiacheng; Liu, Chao; Xu, Xiaoxiao; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2014-01-01

    Two modified systems based on a KCS (Kalina cycle system) 11 with a two-phase expander to substitute a throttle valve are proposed. The two-phase expander is located between the regenerator and the absorber in the B-modified cycle and between the separator and the regenerator in the C-modified cycle. A thermodynamic performance analysis of both the original KCS 11 and the modified systems is carried out. The optimization of two key parameters (the concentration of working fluid and the temperature of cooling water) is also conducted. It is shown that the two modified cycles have different performance under the investigated conditions. Results also indicate that the C-modified cycle can obtain better thermodynamic effect than the B-modified cycle. The temperature of cooling water plays an important role in improving the system performance. When the cooling water temperature drops from 303 K to 278 K, the C-modified cycle thermal efficiency can be improved by 27%. - Highlights: • Throttling valve is replaced by a two-phase expander to recover the expansion work. • Thermodynamic performance of two modified cycle systems is very different. • The maximum increase of work output by C-modified cycle compared with KCS (Kalina cycle system) 11 is 9.4%. • The ranges of ammonia content of B-modified cycle are rather larger

  1. Predicting the start and maximum amplitude of solar cycle 24 using similar phases and a cycle grouping

    International Nuclear Information System (INIS)

    Wang Jialong; Zong Weiguo; Le Guiming; Zhao Haijuan; Tang Yunqiu; Zhang Yang

    2009-01-01

    We find that the solar cycles 9, 11, and 20 are similar to cycle 23 in their respective descending phases. Using this similarity and the observed data of smoothed monthly mean sunspot numbers (SMSNs) available for the descending phase of cycle 23, we make a date calibration for the average time sequence made of the three descending phases of the three cycles, and predict the start of March or April 2008 for cycle 24. For the three cycles, we also find a linear correlation of the length of the descending phase of a cycle with the difference between the maximum epoch of this cycle and that of its next cycle. Using this relationship along with the known relationship between the rise-time and the maximum amplitude of a slowly rising solar cycle, we predict the maximum SMSN of cycle 24 of 100.2 ± 7.5 to appear during the period from May to October 2012. (letters)

  2. The feasibility study on commercialized fast reactor cycle system

    International Nuclear Information System (INIS)

    Noda, Hiroshi

    2002-01-01

    The feasibility study on commercialized Fast Reactor cycle system (FS) has been carried out by a joint team with the participation of all parties concerned in Japan since July, 1999. It aims to clarify various perspectives for commercialized fast reactor cycle system and also suggest development strategies to diverse social needs in the 21 st century. The FS consists of several phases. The phase 1 has progressed as planned and the highly feasible candidate concepts with innovative technologies have been screened out among a wide variety of concepts. During the phase 2, approximately five years after the phase 1, the in-depth design studies and engineering scale tests of key technologies are being conducted to verify and validate the feasibility of screened candidate concepts. At the end of the phase 2, a few promising concepts will be selected with their R and D tasks. The paper describes the results of the phase 1, the activities of the phase 2 and the new concept related to the fast reactor fuel cycle focusing on the reduction in environmental burden, which is one of key factors to sustain the nuclear power generation in the 21 st century

  3. Limit cycles in quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Patrick

    2015-04-27

    In this thesis we investigate Limit Cycles in Quantum Systems. Limit cycles are a renormalization group (RG) topology. When degrees of freedom are integrated out, the coupling constants flow periodically in a closed curve. The presence of limit cycles is restricted by the necessary condition of discrete scale invariance. A signature of discrete scale invariance and limit cycles is log-periodic behavior. The first part of this thesis is concerned with the study of limit cycles with the similarity renormalization group (SRG). Limit cycles are mainly investigated within conventional renormalization group frameworks, where degrees of freedom, which are larger than a given cutoff, are integrated out. In contrast, in the SRG potentials are unitarily transformed and thereby obtain a band-diagonal structure. The width of the band structure can be regarded as an effective cutoff. We investigate the appearance of limit cycles in the SRG evolution. Our aim is to extract signatures as well as the scaling factor of the limit cycle. We consider the 1/R{sup 2}-potential in a two-body system and a three-body system with large scattering lengths. Both systems display a limit cycle. Besides the frequently used kinetic energy generator we apply the exponential and the inverse generator. In the second part of this thesis, Limit Cycles at Finite Density, we examine the pole structure of the scattering amplitude for distinguishable fermions at zero temperature in the medium. Unequal masses and a filled Fermi sphere for each fermion species are considered. We focus on negative scattering lengths and the unitary limit. The properties of the three-body spectrum in the medium and implications for the phase structure of ultracold Fermi gases are discussed.

  4. Brayton-Cycle Baseload Power Tower CSP System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce [Wilson Solarpower Corporation, Boston, MA (United States)

    2013-12-31

    The primary objectives of Phase 2 of this Project were:1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system. This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components.

  5. Self-phase modulation of a single-cycle THz pulse

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, M. C.

    2013-01-01

    We demonstrate self-phase modulation (SPM) of a single-cycle THz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the THz pulse. Electron heating leads to an ultrafast reduction of the plasma frequency, which...... results in a strong modification of the THz-range dielectric function of the material. THz SPM is observed directly in the time domain as a characteristic reshaping of single-cycle THz pulse. In the frequency domain, it corresponds to a strong frequency-dependent refractive index nonlinearity of n...

  6. Effect of exercise on the pulmonary system in proliferative phase of menstrual cycle in a group of perimenopausal women

    Directory of Open Access Journals (Sweden)

    Amrith Pakkala

    2014-01-01

    Full Text Available Background: Hormonal levels influence dynamic lung function parameters. Significant increase in both progesterone (37% and estradiol (13.5%; where as, no change in plasma follicle stimulating hormone (FSH and luteinizing hormone (LH was observed in exercising women in previous studies. Therefore, this study was intended to see the limitations of the pulmonary system in adaptability to exercise in proliferative phase of menstrual cycle in perimenopausal women. Material and Methods: The present study was conducted as a part of cardiopulmonary efficiency studies on two groups of nonathletes (n = 10 and athletes (n = 10 comparable in age and sex. Menstrual history was ascertained to confirm proliferative phase of menstrual cycle. Dynamic lung functions were measured in both groups before exercise and immediately after exercise. Results: It was observed that exercise per se does not cause a statistically significant change in dynamic lung function parameters maximum mid-expiratory flow (MMEF, peak expiratory flow rate (PEFR, and MEF 25-75% in either of the groups. Conclusion: This finding supports the hypothesis that the respiratory system is not normally the most limiting factor in the delivery of oxygen even under the predominant influence of estrogen in proliferative phase, which is further accentuated by exercise.

  7. A Geometry-Based Cycle Slip Detection and Repair Method with Time-Differenced Carrier Phase (TDCP for a Single Frequency Global Position System (GPS + BeiDou Navigation Satellite System (BDS Receiver

    Directory of Open Access Journals (Sweden)

    Chuang Qian

    2016-12-01

    Full Text Available As the field of high-precision applications based on carriers continues to expand, the development of low-cost, small, modular receivers and their application in diverse scenarios and situations with complex data quality has increased the requirements of carrier-phase data preprocessing. A new geometry-based cycle slip detection and repair method based on Global Position System (GPS + BeiDou Navigation Satellite System (BDS is proposed. The method uses a Time-differenced Carrier Phase (TDCP model, which eliminates the Inner-System Bias (ISB between GPS and BDS, and it is conducive to the effective combination of GPS and BDS. It avoids the interference of the noise of the pseudo-range with cycle slip detection, while the cycle slips are preserved as integers. This method does not limit the receiver frequency number, and it is applicable to single-frequency data. The process is divided into two steps to detect and repair cycle slip. The first step is cycle slip detection, using the Improved Local Analysis Method (ILAM to find satellites that have cycle slips; The second step is to repair the cycle slips, including estimating the float solution of changes in ambiguities at the satellites that have cycle slips with the least squares method and the integer solution of the cycle slips by rounding. In the process of rounding, in addition to the success probability, a decimal test is carried out to validate the result. Finally, experiments with filed test data are carried out to prove the effectiveness of this method. The results show that the detectable cycle slips number with GPS + BDS is much greater than that with GPS. The method can also detect the non-integer outliers while fixing the cycle slip. The maximum decimal bias in repair is less than that with GPS. It implies that this method takes full advantages of multi-system.

  8. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Minhwan; Choe, G. S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Woods, T. N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Hong, Sunhak, E-mail: gchoe@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin 17104 (Korea, Republic of)

    2016-12-10

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  9. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    International Nuclear Information System (INIS)

    Jang, Minhwan; Choe, G. S.; Woods, T. N.; Hong, Sunhak

    2016-01-01

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  10. Prospects and progress status of the Advanced Fuel Cycle System in Japan

    International Nuclear Information System (INIS)

    Namba, T.; Funasaka, H.; Nagaoki, Y.; Sagayama, Y.

    2004-01-01

    Feasibility study on commercialized FR cycle systems has been carried out by a joint team established within JNC with the participation of all parties concerned in Japan since July, 1999. This research program aims to clarify various perspectives for commercializing the FR cycle. This also will suggest development strategies that correspond flexibly to diverse future social needs in the 21. century. After the Phase I, Phase II stage started from April, 2001 for five years. In this stage the highly feasible candidate concepts for FR cycle systems screened in the previous step have been intensively studied by both design study and elemental process tests. In this paper, results of mid-term evaluation of these concepts for FR cycle systems will be summarized

  11. Prospects and progress status of the Advanced Fuel Cycle System in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Namba, T.; Funasaka, H.; Nagaoki, Y.; Sagayama, Y

    2004-07-01

    Feasibility study on commercialized FR cycle systems has been carried out by a joint team established within JNC with the participation of all parties concerned in Japan since July, 1999. This research program aims to clarify various perspectives for commercializing the FR cycle. This also will suggest development strategies that correspond flexibly to diverse future social needs in the 21. century. After the Phase I, Phase II stage started from April, 2001 for five years. In this stage the highly feasible candidate concepts for FR cycle systems screened in the previous step have been intensively studied by both design study and elemental process tests. In this paper, results of mid-term evaluation of these concepts for FR cycle systems will be summarized.

  12. Menstrual cycle phase does not predict political conservatism.

    Directory of Open Access Journals (Sweden)

    Isabel M Scott

    Full Text Available Recent authors have reported a relationship between women's fertility status, as indexed by menstrual cycle phase, and conservatism in moral, social and political values. We conducted a survey to test for the existence of a relationship between menstrual cycle day and conservatism. 2213 women reporting regular menstrual cycles provided data about their political views. Of these women, 2208 provided information about their cycle date, 1260 provided additional evidence of reliability in self-reported cycle date, and of these, 750 also indicated an absence of hormonal disruptors such as recent hormonal contraception use, breastfeeding or pregnancy. Cycle day was used to estimate day-specific fertility rate (probability of conception; political conservatism was measured via direct self-report and via responses to the "Moral Foundations" questionnaire. We also recorded relationship status, which has been reported to interact with menstrual cycle phase in determining political preferences. We found no evidence of a relationship between estimated cyclical fertility changes and conservatism, and no evidence of an interaction between relationship status and cyclical fertility in determining political attitudes. Our findings were robust to multiple inclusion/exclusion criteria and to different methods of estimating fertility and measuring conservatism. In summary, the relationship between cycle-linked reproductive parameters and conservatism may be weaker or less reliable than previously thought.

  13. Menstrual cycle phase does not predict political conservatism.

    Science.gov (United States)

    Scott, Isabel M; Pound, Nicholas

    2015-01-01

    Recent authors have reported a relationship between women's fertility status, as indexed by menstrual cycle phase, and conservatism in moral, social and political values. We conducted a survey to test for the existence of a relationship between menstrual cycle day and conservatism. 2213 women reporting regular menstrual cycles provided data about their political views. Of these women, 2208 provided information about their cycle date, 1260 provided additional evidence of reliability in self-reported cycle date, and of these, 750 also indicated an absence of hormonal disruptors such as recent hormonal contraception use, breastfeeding or pregnancy. Cycle day was used to estimate day-specific fertility rate (probability of conception); political conservatism was measured via direct self-report and via responses to the "Moral Foundations" questionnaire. We also recorded relationship status, which has been reported to interact with menstrual cycle phase in determining political preferences. We found no evidence of a relationship between estimated cyclical fertility changes and conservatism, and no evidence of an interaction between relationship status and cyclical fertility in determining political attitudes. Our findings were robust to multiple inclusion/exclusion criteria and to different methods of estimating fertility and measuring conservatism. In summary, the relationship between cycle-linked reproductive parameters and conservatism may be weaker or less reliable than previously thought.

  14. Innovative TRU Burners and Fuel Cycles Options for Phase-Out and Regional Scenarios

    International Nuclear Information System (INIS)

    Vezzoni, B.; Gabrielli, F.; Rineiski, A.; Schwenk-Ferrero, A.; Andriolo, L.; Maschek, W.

    2015-01-01

    Partitioning and transmutation (P and T) technologies may be considered either for minor actinides (MAs) inventory stabilisation (typical for on-going/regional scenarios) or for a drastic reduction of the transuranics inventory (as in phasing-out scenarios). In this paper, two sodium-cooled fast reactor cores, based on the French ASTRID design and characterised by different amounts of MAs in the fuel, are proposed. Attention focuses on the safety and on the burning performances of the systems. The behaviour of the systems under dynamic conditions has been investigated considering phasing-out and on-going fuel cycle scenarios. The results demonstrate the flexibility of such systems when employed in different kinds of fuel cycles. The impact of different parameters, such as the initial isotopic vector (and Cm content) and the cooling time before reprocessing, on the simulation results is investigated as well. (authors)

  15. Interactive Effects of Dopamine Baseline Levels and Cycle Phase on Executive Functions: The Role of Progesterone

    Directory of Open Access Journals (Sweden)

    Esmeralda Hidalgo-Lopez

    2017-07-01

    Full Text Available Estradiol and progesterone levels vary along the menstrual cycle and have multiple neuroactive effects, including on the dopaminergic system. Dopamine relates to executive functions in an “inverted U-shaped” manner and its levels are increased by estradiol. Accordingly, dopamine dependent changes in executive functions along the menstrual cycle have been previously studied in the pre-ovulatory phase, when estradiol levels peak. Specifically it has been demonstrated that working memory is enhanced during the pre-ovulatory phase in women with low dopamine baseline levels, but impaired in women with high dopamine baseline levels. However, the role of progesterone, which peaks in the luteal cycle phase, has not been taken into account previously. Therefore, the main goals of the present study were to extend these findings (i to the luteal cycle phase and (ii to other executive functions. Furthermore, the usefulness of the eye blink rate (EBR as an indicator of dopamine baseline levels in menstrual cycle research was explored. 36 naturally cycling women were tested during three cycle phases (menses–low sex hormones; pre-ovulatory–high estradiol; luteal–high progesterone and estradiol. During each session, women performed a verbal N-back task, as measure of working memory, and a single trial version of the Stroop task, as measure of response inhibition and cognitive flexibility. Hormone levels were assessed from saliva samples and spontaneous eye blink rate was recorded during menses. In the N-back task, women were faster during the luteal phase the higher their progesterone levels, irrespective of their dopamine baseline levels. In the Stroop task, we found a dopamine-cycle interaction, which was also driven by the luteal phase and progesterone levels. For women with higher EBR performance decreased during the luteal phase, whereas for women with lower EBR performance improved during the luteal phase. These findings suggest an important

  16. Segmentation and classification of cell cycle phases in fluorescence imaging.

    Science.gov (United States)

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  17. Effects of menstrual cycle phase on cocaine self-administration in rhesus macaques.

    Science.gov (United States)

    Cooper, Ziva D; Foltin, Richard W; Evans, Suzette M

    2013-01-01

    Epidemiological findings suggest that men and women vary in their pattern of cocaine use resulting in differences in cocaine dependence and relapse rates. Preclinical laboratory studies have demonstrated that female rodents are indeed more sensitive to cocaine's reinforcing effects than males, with estrous cycle stage as a key determinant of this effect. The current study sought to extend these findings to normally cycling female rhesus macaques, a species that shares a nearly identical menstrual cycle to humans. Dose-dependent intravenous cocaine self-administration (0.0125, 0.0250, and 0.0500 mg/kg/infusion) using a progressive-ratio schedule of reinforcement was determined across the menstrual cycle. The menstrual cycle was divided into 5 discrete phases - menses, follicular, periovulatory, luteal, and late luteal phases - verified by the onset of menses and plasma levels of estradiol and progesterone. Dependent variables including number of infusions self-administered per session, progressive ratio breakpoint, and cocaine intake were analyzed according to cocaine dose and menstrual cycle phase. Analysis of plasma hormone levels verified phase-dependent fluctuations of estradiol and progesterone, with estrogen levels peaking during the periovulatory phase, and progesterone peaking during the luteal phase. Progressive ratio breakpoint, infusions self-administered, and cocaine intake did not consistently vary based on menstrual cycle phase. These findings demonstrate that under the current experimental parameters, the reinforcing effects of cocaine did not vary across the menstrual cycle in a systematic fashion in normally cycling rhesus macaques. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Development of FBR cycle data base system

    International Nuclear Information System (INIS)

    Kubota, Sadae; Ohtaki, Akira; Hirao, Kazuhiro

    2002-06-01

    In the 'Feasibility Study on Commercialized Fast Reactor Cycle System (F/S)'. scenario evaluations, cost-benefit evaluations and system characteristic evaluations to show significance of the Fast Breeder Reactor (FBR) cycle system introduction concretely are performed in parallel with a design study for FBR plants, reprocessing systems and fabrication systems. In these evaluations, informations such as economic prospects, prospects for supply and demand of resources and a progress of engineering development are used in addition to design information. This report explains a FBR Cycle Database in order to carry out management and search of various design information and the relating information. The prototype system of the database was completed in the 2000 fiscal year, and the problem of the user number restriction of the prototype system has been improved by Web-ization in the 2001 fiscal year. About 7,000 data are stored in this data base (as of the end of March, 2002). The expansion of user etc., and the continuation of input work of various evaluation information will be carried out, in the phase 2 of F/S. (author)

  19. Serum Thyrotropin and Phase of the Menstrual Cycle

    Directory of Open Access Journals (Sweden)

    Salvatore Benvenga

    2017-09-01

    Full Text Available About one-fifth of patients treated with levothyroxine have serum thyrotropin (TSH above target concentrations but, in approximately 15% of them, the cause of this TSH insufficient normalization remains unknown. We report the cases of two regularly menstruating women with known thyroid disease who had TSH levels consistently >3 mU/L (and sometimes above target levels during mid-cycle, but consistently lower serum levels during the follicular and luteal phases of menstrual cycle. A major TSH release by the thyrotrophs in response to high circulating levels of estradiol (E2 at mid-cycle may increase levels of TSH compared to other phases of the cycle. The increased TSH can be misinterpreted as refractory hypothyroidism if the woman is under L-T4 replacement therapy or as subclinical hypothyroidism if the woman is not. Our findings might have important implications for diagnosis and management of thyroid disease, suggesting to request serum TSH measurements outside of the periovulatory days.

  20. Evaluation methodology and prospective introduction scenarios of FR cycle systems

    International Nuclear Information System (INIS)

    Fujii, Sumio; Katoh, Atsushi; Sato, Kazujiro

    2003-01-01

    The 21st century society will be facing growing demand of energy, global environmental issues and concerns about fossil fuel exhaustion. In this society, it is essential to seek for a sustainable energy system to solve these energy-related concerns. In order to find ways for solving these problems, 'Feasibility Study on Commercialized FR Cycle System' was launched in 1999 as a joint research project of JNC, electric utilities, JAERI, CRIEPI etc. This project aims to build promising FR cycle technologies for the 21st century. Now, we are in the second phase (JFY 2001-2005) of this project. At the end of the second phase, we will propose promising concepts through applying innovative technologies. We started this Feasibility Study with defining the development target, which ended in five items; safety, economy, environmental burden, resource utilization and nuclear non-proliferation. These items should also serve as basic viewpoints to evaluate achievements of the study. This paper describes how we evaluate FR cycle options to come up with the final promising candidates. This paper also describes a prospective scenario to introduce FR cycle system, which shows how the FR cycle will be replacing existing LWRs by using limited natural uranium resource and spent fuels. (author)

  1. CORE COMPETENCIES AND PHASES OF THE ORGANIZATIONAL LIFE CYCLE

    OpenAIRE

    Ahmed, Selma Zone Fekih; Koubaa, Manel Belguith

    2013-01-01

    Organizations evolve according to well-defined phases during which it must raise some competencies more than others. This study discusses the importance of core competencies according to the phases of the life cycle of the organization. In this research, we mobilize the core competencies approach to explore the competence required at each stage of the organizational life cycle. The quantitative study of 50 Tunisian companies operating in the food sector shows that the importance of core ...

  2. PHASE RELATIONSHIPS OF SOLAR HEMISPHERIC TOROIDAL AND POLOIDAL CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Muraközy, J., E-mail: murakozy.judit@csfk.mta.hu [Debrecen Heliophysical Observatory (DHO), Konkoly Observatory, Research Centre for Astronomy and Earth Sciences H-4010 Debrecen P.O.B. 30, H-4010 (Hungary)

    2016-08-01

    The solar northern and southern hemispheres exhibit differences in their intensities and time profiles of the activity cycles. The time variation of these properties was studied in a previous article covering the data from Cycles 12–23. The hemispheric phase lags exhibited a characteristic variation: the leading role was exchanged between hemispheres every four cycles. The present work extends the investigation of this variation using the data of Staudacher and Schwabe in Cycles 1–4 and 7–10 as well as Spörer’s data in Cycle 11. The previously observed variation cannot be clearly recognized using the data of Staudacher, Schwabe, and Spörer. However, it is more interesting that the phase lags of the reversals of the magnetic fields at the poles follow the same variations as those of the hemispheric cycles in Cycles 12–23, i.e., one of the hemispheres leads in four cyles and the leading role jumps to the opposite hemisphere in the next four cycles. This means that this variation is a long-term property of the entire solar dynamo mechanism, for both the toroidal and poloidal fields, which hints at an unidentified component of the process responsible for the long-term memory.

  3. Label-free cell-cycle analysis by high-throughput quantitative phase time-stretch imaging flow cytometry

    Science.gov (United States)

    Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2018-02-01

    Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.

  4. Impact of gender and menstrual cycle phase on plasma cytokine concentrations.

    LENUS (Irish Health Repository)

    O'Brien, Sinead M

    2012-02-03

    OBJECTIVE: The lifetime prevalence of major depression is twice as high in females as in males. Depression is known to increase at periods where there are changes in gonadal hormones. We examined pro- and anti-inflammatory cytokine levels during the normal menstrual cycle of healthy females compared to similar time points in healthy males. METHODS: Plasma concentrations of interleukin (IL)-4, IL-6, IL-8, IL-10, tumour necrosis factor-alpha (TNF-alpha) and soluble IL-6 receptor (sIL-6R) were measured with enzyme-linked immunosorbent assays in healthy females during the normal ovulatory menstrual cycle and also in males at similar time points. RESULTS: The luteal phase of the menstrual cycle is associated with increased production of sIL-6R, IL-4 and TNF-alpha compared to the early follicular phase. No change was observed in IL-6, IL-8 and IL-10 concentration throughout the menstrual cycle. We found IL-4 positively correlated with oestrogen while TNF-alpha positively correlated with progesterone. Females were found to have significantly higher concentrations of TNF-alpha and sIL-6R across all phases of the menstrual cycle, compared to males across similar time points. CONCLUSION: The normal menstrual cycle is associated with increased production of sIL-6R, IL-4 and TNF-alpha in the luteal phase compared to the early follicular phase. Females have significantly higher concentrations of sIL-6R and TNF-alpha at all time points across the menstrual cycle than males.

  5. APT, The Phase I tool for HST Cycle 12

    Science.gov (United States)

    Blacker, Brett S.; Bertch, Maria; Curtis, Gary; Douglas, Robert E., Jr.; Krueger, Anthony P.

    2002-12-01

    In the continuing effort to streamline our systems and improve service to the science community, the Space Telescope Science Institute (STScI) is developing and releasing, APT The Astronomer’s Proposal Tool as the new interface for Hubble Space Telescope (HST) Phase I and Phase II proposal submissions for HST Cycle 12. APT, was formerly called the Scientist’s Expert Assistant (SEA), which started as a prototype effort to try and bring state of the art technology, more visual tools and power into the hands of proposers so that they can optimize the scientific return of their programs as well as HST. Proposing for HST and other missions, consists of requesting observing time and/or archival research funding. This step is called Phase I, where the scientific merit of a proposal is considered by a community based peer-review process. Accepted proposals then proceed thru Phase II, where the observations are specified in sufficient detail to enable scheduling on the telescope. In this paper, we will present our concept and implementation plans for our Phase I development and submission tool, APT. More importantly, we will go behind the scenes and discuss why it’s important for the Science Policies Division (SPD) and other groups at the STScI to have a new submission tool and submission output products. This paper is an update of the status of the HST Phase I Proposal Processing System that was described in the published paper “A New Era for HST Phase I Development and Submission.”

  6. A signature-based method for indexing cell cycle phase distribution from microarray profiles

    Directory of Open Access Journals (Sweden)

    Mizuno Hideaki

    2009-03-01

    Full Text Available Abstract Background The cell cycle machinery interprets oncogenic signals and reflects the biology of cancers. To date, various methods for cell cycle phase estimation such as mitotic index, S phase fraction, and immunohistochemistry have provided valuable information on cancers (e.g. proliferation rate. However, those methods rely on one or few measurements and the scope of the information is limited. There is a need for more systematic cell cycle analysis methods. Results We developed a signature-based method for indexing cell cycle phase distribution from microarray profiles under consideration of cycling and non-cycling cells. A cell cycle signature masterset, composed of genes which express preferentially in cycling cells and in a cell cycle-regulated manner, was created to index the proportion of cycling cells in the sample. Cell cycle signature subsets, composed of genes whose expressions peak at specific stages of the cell cycle, were also created to index the proportion of cells in the corresponding stages. The method was validated using cell cycle datasets and quiescence-induced cell datasets. Analyses of a mouse tumor model dataset and human breast cancer datasets revealed variations in the proportion of cycling cells. When the influence of non-cycling cells was taken into account, "buried" cell cycle phase distributions were depicted that were oncogenic-event specific in the mouse tumor model dataset and were associated with patients' prognosis in the human breast cancer datasets. Conclusion The signature-based cell cycle analysis method presented in this report, would potentially be of value for cancer characterization and diagnostics.

  7. Towards cycle-accurate performance predictions for real-time embedded systems

    NARCIS (Netherlands)

    Triantafyllidis, K.; Bondarev, E.; With, de P.H.N.; Arabnia, H.R.; Deligiannidis, L.; Jandieri, G.

    2013-01-01

    In this paper we present a model-based performance analysis method for component-based real-time systems, featuring cycle-accurate predictions of latencies and enhanced system robustness. The method incorporates the following phases: (a) instruction-level profiling of SW components, (b) modeling the

  8. Opportunities for sub-laser-cycle spectroscopy in condensed phase

    International Nuclear Information System (INIS)

    Ivanov, Misha; Smirnova, Olga

    2013-01-01

    Highlights: ► We discuss how sub-cycle attosecond spectroscopy can be extended from gas to condensed phase. ► We show that attosecond streaking measurements can be applied to bound electrons. ► We discuss time-resolving the formation of band structure in laser fields. - Abstract: To a large extent, progress of attosecond spectroscopy in the gas phase has been driven by designing approaches where time-resolution is not limited by the pulse duration. Instead, the time resolution comes from exploiting the sensitivity of electronic response to the oscillations of the electric field in the laser pulse and attosecond control over these oscillations. This paper discusses perspectives and opportunities for transporting the ideas of sub-cycle spectroscopy from gas to condensed phase

  9. Effects of the menstrual cycle phases on the tilt testing results in vasovagal patients.

    Science.gov (United States)

    Zyśko, Dorota; Gajek, Jacek; Terpiłowski, Lukasz; Agrawal, Anil Kumar; Wróblewski, Paweł; Rudnicki, Jerzy

    2012-08-01

    The aim of the study was to assess the distribution of positive tilt testing (TT) throughout the menstrual cycle and to determine if the phase of menstrual cycle contributes to the duration of the loss of consciousness. TT results of 183 premenopausal women, aged 29.5 ± 9.8 years, were studied. The menstrual cycle was divided into four phases based on the first day of the last menstrual bleeding: perimenstrual (M), preovulatory (F), periovulatory (O) and postovulatory (L). Positive TT results were equally distributed. In patients with TT in O phase, the highest percentage of NTG provocation was needed. Patients in L phase had significantly lower incidence of cardioinhibitory reaction. The longest duration of loss of consciousness was in the M phase. Multiple regression analysis revealed that the duration of loss of consciousness during positive TT was significantly associated with higher number of syncopal events, TT performed in M phase and lower heart rate at TT termination. Cardiodepressive type of neurocardiogenic reaction was more frequent during M and O phase than during L phase. The distribution of positive TT results as well as syncope and presyncope does not differ throughout the menstrual cycle. Diagnostic TT in premenopausal women with unexplained syncope could be performed irrespective of the phase of menstrual cycle. TT has similar sensitivity throughout the menstrual cycle. During the postovulatory phase, cardioinhibitory reaction is less frequent than in M and O phases. The duration of loss of consciousness is longer during the M phase of the menstrual cycle independently of the higher syncope number and lower heart rate at TT termination.

  10. Luteal phase support for assisted reproduction cycles

    NARCIS (Netherlands)

    Linden, M. van der; Buckingham, K.; Farquhar, C.; Kremer, J.A.M.; Metwally, M.

    2015-01-01

    BACKGROUND: Progesterone prepares the endometrium for pregnancy by stimulating proliferation in response to human chorionic gonadotropin(hCG) produced by the corpus luteum. This occurs in the luteal phase of the menstrual cycle. In assisted reproduction techniques(ART), progesterone and/or hCG

  11. Luteal phase support for assisted reproduction cycles

    NARCIS (Netherlands)

    Linden, M. Van der; Buckingham, K.; Farquhar, C.; Kremer, J.A.M.; Metwally, M.

    2011-01-01

    BACKGROUND: Progesterone prepares the endometrium for pregnancy by stimulating proliferation in response to human chorionic gonadotropin (hCG), which is produced by the corpus luteum. This occurs in the luteal phase of the menstrual cycle. In assisted reproduction techniques (ART) the progesterone

  12. Investigation of two-phase liquid-metal magnetohydrodynamic power systems

    International Nuclear Information System (INIS)

    Amend, W.E.; Fabris, G.; Cutting, J.

    1975-01-01

    A two-phase Liquid-Metal MHD (LMMHD) system is under development at the Argonne National Laboratory, and results are presented for detailed cycle analysis and systems studies, the experimental facility, and the thermal and magneto fluid mechanics problems encountered. The studies indicate that the LMMHD cycle will operate efficiently in the temperature range of 1000-1600 0 F (50 percent efficiency with a maximum cycle temperature of 1600 0 F) and is therefore potentially compatible with many advanced heat sources under development such as the LMFBR, fluidized-bed coal combustor, HTGCR and the fusion reactor. Of special interest is the coupling to the LMFBR thereby eliminating the costly, potentially hazardous liquid-metal/water interface. The results of detailed parametric studies of the heat transfer interfaces between an LMMHD power cycle and an LMFBR and a steam bottoming plant are described. Experimental evaluation of the two-phase LMMHD generator was performed in an ambient temperature NaK--N 2 facility at ANL. Results of these experiments, performed to determine the operating characteristics of the device as a function of the various independent parameters and to investigate two-phase flow, are given. (U.S.)

  13. Effect of operational cycle time length on nitrogen removal in an alternating oxidation ditch system.

    Science.gov (United States)

    Mantziaras, I D; Stamou, A; Katsiri, A

    2011-06-01

    This paper refers to nitrogen removal optimization of an alternating oxidation ditch system through the use of a mathematical model and pilot testing. The pilot system where measurements have been made has a total volume of 120 m(3) and consists of two ditches operating in four phases during one cycle and performs carbon oxidation, nitrification, denitrification and settling. The mathematical model consists of one-dimensional mass balance (convection-dispersion) equations based on the IAWPRC ASM 1 model. After the calibration and verification of the model, simulation system performance was made. Optimization is achieved by testing operational cycles and phases with different time lengths. The limits of EU directive 91/271 for nitrogen removal have been used for comparison. The findings show that operational cycles with smaller time lengths can achieve higher nitrogen removals and that an "equilibrium" between phase time percentages in the whole cycle, for a given inflow, must be achieved.

  14. Influence of menstrual cycle phase on pulmonary function in asthmatic athletes.

    Science.gov (United States)

    Stanford, Kristin I; Mickleborough, Timothy D; Ray, Shahla; Lindley, Martin R; Koceja, David M; Stager, Joel M

    2006-04-01

    The main aim of this study was to investigate whether there is a relationship between menstrual cycle phase and exercise-induced bronchoconstriction (EIB) in female athletes with mild atopic asthma. Seven eumenorrheic subjects with regular 28-day menstrual cycles were exercised to volitional exhaustion on day 5 [mid-follicular (FOL)] and day 21 [mid-luteal (LUT)] of their menstrual cycle. Pulmonary function tests were conducted pre- and post-exercise. The maximal percentage decline in post-exercise forced expiratory volume in 1 s (FEV(1)) and forced expiratory flow from 25 to 75% of forced vital capacity (FEF(25-75%)) was significantly greater (Pphase) (-17.35+/-2.32 and -26.28+/-6.04%, respectively), when salivary progesterone concentration was highest, compared to day 5 (mid-FOL phase) (-12.81+/-3.35 and -17.23+/-8.20%, respectively), when salivary progesterone concentration was lowest. The deterioration in the severity of EIB during the mid-LUT phase was accompanied by worsening asthma symptoms and increased bronchodilator use. There was a negative correlation between the percent change in pre- to post-exercise FEV(1) and salivary progesterone concentration. However, no such correlation was found between salivary estradiol and the percentage change in pre- to post-exercise FEV(1). This study has shown for the first time that menstrual cycle phase is an important determinant of the severity of EIB in female athletes with mild atopic asthma. Female asthmatic athletes may need to adjust their training and competition schedules to their menstrual cycle and to consider the potential negative effects of the LUT phase of the menstrual cycle on exercise performance.

  15. Operating cycle optimization for a Magnus effect-based airborne wind energy system

    International Nuclear Information System (INIS)

    Milutinović, Milan; Čorić, Mirko; Deur, Joško

    2015-01-01

    Highlights: • Operating cycle of a Magnus effect-based AWE system has been optimized. • The cycle trajectory should be vertical and far from the ground based generator. • Vertical trajectory provides high pulling force that drives the generator. • Large distance from the generator is required for the feasibility of the cycle. - Abstract: The paper presents a control variables optimization study for an airborne wind energy production system. The system comprises an airborne module in the form of a buoyant, rotating cylinder, whose rotation in a wind stream induces the Magnus effect-based aerodynamic lift. Through a tether, the airborne module first drives the generator fixed on the ground, and then the generator becomes a motor that lowers the airborne module. The optimization is aimed at maximizing the average power produced at the generator during a continuously repeatable operating cycle. The control variables are the generator-side rope force and the cylinder rotation speed. The optimization is based on a multi-phase problem formulation, where operation is divided into ascending and descending phases, with free boundary conditions and free cycle duration. The presented simulation results show that significant power increase can be achieved by using the obtained optimal operating cycle instead of the initial, empirically based operation control strategy. A brief analysis is also given to provide a physical interpretation of the optimal cycle results

  16. Effect of menstrual cycle phase on corticolimbic brain activation by visual food cues.

    Science.gov (United States)

    Frank, Tamar C; Kim, Ginah L; Krzemien, Alicja; Van Vugt, Dean A

    2010-12-02

    Food intake is decreased during the late follicular phase and increased in the luteal phase of the menstrual cycle. While a changing ovarian steroid milieu is believed to be responsible for this behavior, the specific mechanisms involved are poorly understood. Brain activity in response to visual food stimuli was compared during the estrogen dominant peri-ovulatory phase and the progesterone dominant luteal phase of the menstrual cycle. Twelve women underwent functional magnetic resonance imaging during the peri-ovulatory and luteal phases of the menstrual cycle in a counterbalanced fashion. Whole brain T2* images were collected while subjects viewed pictures of high calorie (HC) foods, low calorie (LC) foods, and control (C) pictures presented in a block design. Blood oxygen level dependent (BOLD) signal in the late follicular phase and luteal phase was determined for the contrasts HC-C, LC-C, HC-LC, and LC-HC. Both HC and LC stimuli activated numerous corticolimbic brain regions in the follicular phase, whereas only HC stimuli were effective in the luteal phase. Activation of the nucleus accumbens (NAc), amygdala, and hippocampus in response to the HC-C contrast and the hippocampus in response to the LC-C contrast was significantly increased in the late follicular phase compared to the luteal phase. Activation of the orbitofrontal cortex and mid cingulum in response to the HC-LC contrast was greater during the luteal phase. These results demonstrate for the first time that brain responses to visual food cues are influenced by menstrual cycle phase. We postulate that ovarian steroid modulation of the corticolimbic brain contributes to changes in ingestive behavior during the menstrual cycle. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Characterizing cycle-to-cycle variations of the shedding cycle in the turbulent wake of a normal flat plate using generalized phase averages

    Science.gov (United States)

    Martinuzzi, Robert

    2016-11-01

    Quasi-periodic vortex shedding in the turbulent wake of a thin-flat plate placed normal to a uniform stream at Reynolds number of 6700 is investigated based on Particle Image Velocimetry experiments. The wake structure and vortex formation are characterized using a generalized phase average (GPA), a refinement of the triple decomposition of Reynolds and Hussain (1970) incorporating elements of mean-field theory (Stuart, 1958). The resulting analysis highlights the importance of cycle-to-cycle variations in characterizing vortex formation, wake topology and the residual turbulent Reynolds Stresses. For example, it is shown that during high-amplitude cycles vorticity is strongly concentrated within the well-organized shed vortices, whereas during low-amplitude cycles the shed vortices are highly distorted resulting in significant modulation of the shedding frequency. It is found that high-amplitude cycles contribute more to the coherent Reynolds stress field while the low-amplitude cycles contribute to the residual stress field. It is further shown that traditional phase-averaging techniques lead to an over-estimation of the residual stress field. Natural Sciences and Engineering Research Council of Canada.

  18. Environmental systems analysis of biogas systems-Part I: Fuel-cycle emissions

    International Nuclear Information System (INIS)

    Boerjesson, Pal; Berglund, Maria

    2006-01-01

    Fuel-cycle emissions of carbon dioxide (CO 2 ), carbon oxide (CO), nitrogen oxides (NO x ), sulphur dioxide (SO 2 ), hydrocarbons (HC), methane (CH 4 ), and particles are analysed from a life-cycle perspective for different biogas systems based on six different raw materials. The gas is produced in large- or farm-scale biogas plants, and is used in boilers for heat production, in turbines for co-generation of heat and electricity, or as a transportation fuel in light- and heavy-duty vehicles. The analyses refer mainly to Swedish conditions. The levels of fuel-cycle emissions vary greatly among the biogas systems studied, and are significantly affected by the properties of the raw material digested, the energy efficiency of the biogas production, and the status of the end-use technology. For example, fuel-cycle emission may vary by a factor of 3-4, and for certain gases by up to a factor of 11, between two biogas systems that provide an equivalent energy service. Extensive handling of raw materials, e.g. ley cropping or collection of waste-products such as municipal organic waste, is often a significant source of emissions. Emission from the production phase of the biogas exceeds the end-use emissions for several biogas systems and for specific emissions. Uncontrolled losses of methane, e.g. leakages from stored digestates or from biogas upgrading, increase the fuel-cycle emissions of methane considerably. Thus, it is necessary to clearly specify the biogas production system and end-use technology being studied in order to be able to produce reliable and accurate data on fuel-cycle emission

  19. Solar central receiver hybrid power system. Phase I study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-11-01

    A management plan is presented for implementation during the Solar Central Receiver Hybrid Power System - Phase I study project. The project plan and the management controls that will be used to assure technically adequate, timely and cost effective performance of the work required to prepare the designated end products are described. Bechtel in-house controls and those to be used in directing the subcontractors are described. Phase I of the project consists of tradeoff studies, parametric analyses, and engineering studies leading to conceptual definition and evaluation of a commercial hybrid power system that has the potential for supplying economically competitive electric power to a utility grid in the 1985-1990 time frame. The scope also includes the preparation of a development plan for the resolution of technical uncertainties and the preparation of plans and a proposal for Phase II of the program. The technical approach will be based on a central receiver solar energy collection scheme which supplies thermal energy to a combined cycle, generating system, consisting of a gas turbine cycle combined with a steam bottoming cycle by means of a heat recovery steam generator.

  20. GASCON and MHDGAS: FORTRAN IV computer codes for calculating gas and condensed-phase compositions in the coal-fired open-cycle MHD system

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, P E

    1977-12-01

    Fortran IV computer codes have been written to calculate the equilibrium partial pressures of the gaseous phase and the quantity and composition of the condensed phases in the open-cycle MHD system. The codes are based on temperature-dependent equilibrium constants, mass conservation, the mass action law, and assumed ideal solution of compounds in each of two condensed phases. It is assumed that the phases are an oxide-silicate phase and a sulfate-carbonate-hydroxide phase. Calculations are iterated for gas and condensate concentrations while increasing or decreasing the total moles of elements, but keeping mole ratios constant, to achieve the desired total pressure. During iteration the oxygen partial pressure is incrementally changed. The decision to increase or decrease the oxygen pressure in this process depends on comparison of the oxygen content calculated in the gas and condensate phases with the initial amount of oxygen in the ash, coal, seed, and air. This process, together with a normalization step, allows the elements to converge to their initial quantities. Two versions of the computer code have been written. GASCON calculates the equilibrium gas partial pressures and the quantity and composition of the condensed phases in steps of thirteen temperature and pressure combinations in which the condensate is removed after each step, simulating continuous slag removal from the MHD system. MHDGAS retains the condensate for each step, simulating flow of condensate (and gas) through the MHD system.

  1. Solar Cycle Phase Dependence of Supergranular Fractal Dimension

    Indian Academy of Sciences (India)

    Solar Cycle Phase Dependence of Supergranular Fractal Dimension ... NIE Institute of Technology, Mysore, India. ... This means that each accepted article is being published immediately online with DOI and article citation ID with starting page ...

  2. Cell Cycle Phase Abnormalities Do Not Account for Disordered Proliferation in Barrett's Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Pierre Lao-Sirieix

    2004-11-01

    Full Text Available Barrett's esophagus (BE epithelium is the precursor lesion for esophageal adenocarcinoma. Cell cycle proteins have been advocated as biomarkers to predict the malignant potential in BE. However, whether disruption of the cell cycle plays a causal role in Barrett's carcinogenesis is not clear. Specimens from the Barrett's dysplasia—carcinoma sequence were immunostained for cell cycle phase markers (cyclin D1 for G1; cyclin A for S, G2, and M; cytoplasmic cyclin B1 for G2; and phosphorylated histone 3 for M phase and expressed as a proportion of proliferating cells. Flow cytometric analysis of the cell cycle phase of prospective biopsies was also performed. The proliferation status of nondysplastic BE was similar to gastric antrum and D2, but the proliferative compartment extended to the luminal surface. In dysplastic samples, the number of proliferating cells correlated with the degree of dysplasia (P < .001. The overall levels of cyclins A and B1 correlated with the degree of dysplasia (P < .001. However, the cell cycle phase distribution measured with both immunostaining and flow cytometry was conserved during all stages of BE, dysplasia, and cancer. Hence, the increased proliferation seen in Barrett's carcinogenesis is due to abnormal cell cycle entry or exit, rather than a primary abnormality within the cell cycle.

  3. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  4. Does the phase of menstrual cycle affect MR-guided focused ultrasound surgery of uterine leiomyomas?

    International Nuclear Information System (INIS)

    So, Minna J.; Fennessy, Fiona M.; Zou, Kelly H.; McDannold, Nathan; Hynynen, Kullervo; Jolesz, Ferenc A.; Stewart, Elizabeth A.; Rybicki, Frank J.; Tempany, Clare M.

    2006-01-01

    Purpose: To determine whether the phase of menstrual cycle at the time of MR-guided focused ultrasound surgery (MRgFUS) treatment for uterine leiomyomas affects treatment outcome. Methods: We enrolled all patients participating in a prospective phase III clinical trial from our center who completed 6 months of clinical and imaging follow-up. Patients with irregular cycles and those on oral contraceptives were excluded. Data prospectively documenting the date of the last menstrual period (LMP) at the time of treatment, length and duration of cycle, and raw symptom severity score (SSS) from the Uterine Fibroid Symptom and Quality of Life questionnaire, at baseline and 6 months were collected. Proliferative phase patients were determined retrospectively as those who were treated within less than 14 days from LMP; secretory phase patients were classified as those who were treated greater than 14 days from LMP. Results: A total of 58 patients were enrolled. There was no significant difference in the mean SSS at baseline and mean SSS at 6 months between patients treated in the proliferative versus secretory phase of the cycle. No significant difference in the SSS change from baseline to 6 months was seen between the two groups. Conclusions: Menstrual cycle phase does not influence MRgFUS treatment outcome. Symptomatic improvement occurs with treatment during either phase of the menstrual cycle. Thus, the scheduling of MRgFUS treatment need not be based upon the phase of the menstrual cycle

  5. Does the phase of menstrual cycle affect MR-guided focused ultrasound surgery of uterine leiomyomas?

    Energy Technology Data Exchange (ETDEWEB)

    So, Minna J. [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); Fennessy, Fiona M. [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); Zou, Kelly H. [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); McDannold, Nathan [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); Hynynen, Kullervo [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); Jolesz, Ferenc A. [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); Stewart, Elizabeth A. [Department of Obstetrics and Gynecology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); Rybicki, Frank J. [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); Tempany, Clare M. [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States)]. E-mail: ctempanyafdhal@partners.org

    2006-08-15

    Purpose: To determine whether the phase of menstrual cycle at the time of MR-guided focused ultrasound surgery (MRgFUS) treatment for uterine leiomyomas affects treatment outcome. Methods: We enrolled all patients participating in a prospective phase III clinical trial from our center who completed 6 months of clinical and imaging follow-up. Patients with irregular cycles and those on oral contraceptives were excluded. Data prospectively documenting the date of the last menstrual period (LMP) at the time of treatment, length and duration of cycle, and raw symptom severity score (SSS) from the Uterine Fibroid Symptom and Quality of Life questionnaire, at baseline and 6 months were collected. Proliferative phase patients were determined retrospectively as those who were treated within less than 14 days from LMP; secretory phase patients were classified as those who were treated greater than 14 days from LMP. Results: A total of 58 patients were enrolled. There was no significant difference in the mean SSS at baseline and mean SSS at 6 months between patients treated in the proliferative versus secretory phase of the cycle. No significant difference in the SSS change from baseline to 6 months was seen between the two groups. Conclusions: Menstrual cycle phase does not influence MRgFUS treatment outcome. Symptomatic improvement occurs with treatment during either phase of the menstrual cycle. Thus, the scheduling of MRgFUS treatment need not be based upon the phase of the menstrual cycle.

  6. Promising fast reactor systems in the feasibility study on commercialized FR cycle system

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Kotake, S.; Enuma, Y.; Sagayama, Y.; Nishikawa, A.; Ando, M.

    2005-01-01

    The Feasibility Study on Commercialized Fast Reactor (FR) Cycle Systems is under way in order to propose prominent FR cycle systems that will respond to the diverse needs of society in the future. The design studies on various FR system concepts have been achieved and then the evaluations of potential to achieve the development targets have been carried out. Crucial issues have been found out for each FR system concept and their development plans for the key technologies are summarized as the roadmap. The characteristics and the differences in performances have been investigated. The crucial issues and the development periods have been clarified. Further investigation is now in progress. The promising concept will be proposed based on result of comparative evaluation at the end of the Phase II study. (authors)

  7. Transportation Life Cycle Assessment (LCA) Synthesis, Phase II

    Science.gov (United States)

    2018-04-24

    The Transportation Life Cycle Assessment (LCA) Synthesis includes an LCA Learning Module Series, case studies, and analytics on the use of the modules. The module series is a set of narrated slideshows on topics related to environmental LCA. Phase I ...

  8. Angular-dependent light scattering from cancer cells in different phases of the cell cycle.

    Science.gov (United States)

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong

    2017-10-10

    Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.

  9. Luteal phase of the menstrual cycle increases sweating rate during exercise

    Directory of Open Access Journals (Sweden)

    Garcia A.M.C.

    2006-01-01

    Full Text Available The present study evaluated whether the luteal phase elevation of body temperature would be offset during exercise by increased sweating, when women are normally hydrated. Eleven women performed 60 min of cycling exercise at 60% of their maximal work load at 32ºC and 80% relative air humidity. Each subject participated in two identical experimental sessions: one during the follicular phase (between days 5 and 8 and the other during the luteal phase (between days 22 and 25. Women with serum progesterone >3 ng/mL, in the luteal phase were classified as group 1 (N = 4, whereas the others were classified as group 2 (N = 7. Post-exercise urine volume (213 ± 80 vs 309 ± 113 mL and specific urine gravity (1.008 ± 0.003 vs 1.006 ± 0.002 changed (P < 0.05 during the luteal phase compared to the follicular phase in group 1. No menstrual cycle dependence was observed for these parameters in group 2. Sweat rate was higher (P < 0.05 in the luteal (3.10 ± 0.81 g m-2 min-1 than in the follicular phase (2.80 ± 0.64 g m-2 min-1 only in group 1. During exercise, no differences related to menstrual cycle phases were seen in rectal temperature, heart rate, rate of perceived exertion, mean skin temperature, and pre- and post-exercise body weight. Women exercising in a warm and humid environment with water intake seem to be able to adapt to the luteal phase increase of basal body temperature through reduced urinary volume and increased sweating rate.

  10. Development of FBR cycle data base system (II)

    International Nuclear Information System (INIS)

    Kubota, Sadae; Ohtaki, Akira; Hirao, Kazuhiro

    2003-05-01

    In the 'Feasibility Study on Commercialized FBR Cycle Systems (F/S)', scenario evaluations, cost-benefit evaluations and system characteristic evaluations to show the significance of the FBR cycle system introduction concretely are performed while design studies for FBR plants, reprocessing systems and fabrication systems are conducted. In these evaluations, future society of various conditions and situation is assumed, and investigation and analysis about needs and social effects of FBR cycle are carried out. In this study, promising FBR cycle concepts are suggested by taking information such as domestic and foreign policies and bills, an economic prediction, a supply and demand prediction of resources, a project of technology development into consideration in addition to system design information. The development of the FBR Cycle Database which this report introduced started in 1999 fiscal year to enable managed unitarity and searched reference information to use for the above scenario evaluations, cost-benefit evaluations and system characteristic evaluations. In 2000 fiscal year, its prototype was made and used tentatively, and we extracted the problems in operation and functions from that, and, in 2001 fiscal year, the entry system and the search system using the Web page were made in order to solve problems of the prototype, and started use in our group. Moreover, in 2002 fiscal year, we expanded and improved the search system and promoted the efficiency of management work, and use in JNC through intranet of the database was started. In addition, as a result of having made the entry of about 350 data in 2002 fiscal year, the collected number of the database reaches about 7,250 by the end of March, 2003. We are to continue the entry of related information of various evaluations in F/S phase 2 from now on. In addition, we are to examine improvement of convenience of the search system and cooperation with the economy database. (author)

  11. Assessing an Adaptive Cycle in a Social System under External Pressure to Change: the Importance of Intergroup Relations in Recreational Fisheries Governance

    Directory of Open Access Journals (Sweden)

    Katrin Daedlow

    2011-06-01

    Full Text Available The adaptive cycle constitutes a heuristic originally used to interpret the dynamics of complex ecosystems in response to disturbance and change. It is assumed that socially constructed governance systems go through similar phases (K, Ω [omega], α [alpha], r as evident in ecological adaptive cycles. Two key dimensions of change shaping the four phases of an adaptive cycle are the degree of connectedness and the range of potential in the system. Our purpose was to quantitatively assess the four phases of the adaptive cycle in a social system by measuring the potential and connectedness dimensions and their different levels in each of the four phases. We assessed these dimensions using quantitative data from content analysis of magazine articles describing the transition process of East German recreational fisheries governance after the fall of the Berlin Wall in 1989. This process was characterized by the discussion of two governance alternatives amendable for implementation: a central East German and a decentralized West German approach. Contrary to assumptions in the adaptive cycle heuristic, we were unable to identify the four phases of the adaptive cycle in our governance system based on quantitatively assessed levels of connectedness and potential alone. However, the insertion of in-group (East Germans and out-group (West Germans dimensions representing the two governance alternatives in our analysis enabled us to identify the specific time frames for all four phases of the adaptive cycle on a monthly basis. These findings suggest that an unmodified "figure-eight model" of the adaptive cycle may not necessarily hold in social systems. Inclusion of disciplinary theories such as intergroup relation theory will help in understanding adaptation processes in social systems.

  12. Feasibility study on commercialized fast reactor cycle systems. (1) Current status of the phase-II study

    International Nuclear Information System (INIS)

    Sagayama, Yutaka

    2005-01-01

    A feasibility study on commercialized fast reactors including related nuclear fuel cycle systems has been started from Japanese fiscal year 1999 by a Japanese joint project team of Japan Nuclear Cycle Development Institute and the Japan Atomic Power Company. This project aims at elucidating prominent fast reactor cycle systems that will respond to various needs of society in the future, together with economic competitiveness as future electricity supply systems. Challenging technology goals for the fast reactor cycle systems were defined in five targets: safety, economic competitiveness, reduction of environmental burden, efficient utilization of nuclear fuel resources and enhancement of nuclear non-proliferation. As the results of the feasibility study up to now, it is confirmed as the interim results that the combination of sodium-cooled fast reactors with oxide fuels, advanced aqueous reprocessing and simplified pellet fuel fabrication is highly suited to the development targets. The cost would be highly reduced by the adoption of innovative technologies, which feasibility is relatively clear and some R and D issues are now under progress. (author)

  13. Susceptibility of Hep3B cells in different phases of cell cycle to tBid.

    Science.gov (United States)

    Ma, Shi-Hong; Chen, George G; Ye, Caiguo; Leung, Billy C S; Ho, Rocky L K; Lai, Paul B S

    2011-01-01

    tBid is a pro-apoptotic molecule. Apoptosis inducers usually act in a cell cycle-specific fashion. The aim of this study was to elucidate whether effect of tBid on hepatocellular carcinoma (HCC) Hep3B cells was cell cycle phase specific. We synchronized Hep3B cells at G0/G1, S or G2/M phases by chemicals or flow sorting and tested the susceptibility of the cells to recombinant tBid. Cell viability was measured by MTT assay and apoptosis by TUNEL. The results revealed that tBid primarily targeted the cells at G0/G1 phase of cell cycle, and it also increased the cells at the G2/M phase. 5-Fluorouracil (5-FU), on the other hand, arrested Hep3B cells at the G0/G1 phase, but significantly reduced cells at G2/M phase. The levels of cell cycle-related proteins and caspases were altered in line with the change in the cell cycle. The combination of tBid with 5-FU caused more cells to be apoptotic than either agent alone. Therefore, the complementary effect of tBid and 5-FU on different phases of the cell cycle may explain their synergistric effect on Hep3B cells. The elucidation of the phase-specific effect of tBid points to a possible therapeutic option that combines different phase specific agents to overcome resistance of HCC. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases

    Science.gov (United States)

    Moton, Tryshanda

    2016-01-01

    Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.

  15. Should breast MRI be performed with adjustment for the phase in patients’ menstrual cycle? Correlation between mammographic density, age, and background enhancement on breast MRI without adjusting for the phase in patients’ menstrual cycle

    International Nuclear Information System (INIS)

    Uematsu, Takayoshi; Kasami, Masako; Watanabe, Junichiro

    2012-01-01

    Purpose: The purpose of this study was to assess the correlation between mammographic density, age, and background enhancement on breast MRI without adjusting for the phase in patients’ menstrual cycle. Material and methods: The background enhancement of bilateral breast MRI and the breast density of mammography in 146 consecutive women without adjusting for the phase in patients’ menstrual cycle were reviewed. The breast density was classified into four categories according to the American College of Radiology the Breast Imaging Reporting and Data System lexicon. The background enhancement was classified into four categories: minimal, mild, moderate, and marked. The correlations of mammographic breast density as well as age with background enhancement on breast MRI were examined. Results: There was a significant correlation between mammographic breast density and background enhancement (p = 0.011). All nine cases with almost completely fat mammographic breast density showed minimal (78%) or mild (12%) background enhancement on breast MRI. There was a significant inverse correlation between age and background enhancement (p < 0.0001). Younger patients with dense breasts were more likely to demonstrate moderate/marked background enhancement. Conclusion: When no adjusting for the phase in patients’ menstrual cycle, a significant correlation was observed between background enhancement and mammographic density. A significant inverse correlation was also observed between age and background enhancement.

  16. Technical study report on reprocessing systems. The report of the feasibility study on commercialized FR cycle systems (phase I)

    International Nuclear Information System (INIS)

    Tanaka, Hiroshi; Kawamura, Fumio; Kakehi, Isao

    2001-04-01

    As a part of the feasibility study (FS) on commercialized fast reactor (FR) cycle systems started on July 1999, the design studies and the technical assessments for various advanced reprocessing systems have been carried out. In this study, plant design for the advanced aqueous system and the three non-aqueous systems (oxide electrowinning method, metal electrorefining method, and fluoride volatility method) has been carried out, and each system has been evaluated mainly from the viewpoint of economics. The future R and D issues on the processes and systems have been also clarified. This report describes the results of the study for two years as final report of FS phase I. (1) The advanced aqueous system, based on the simplified PUREX process, has been shown to be much more economical than the conventional PUREX. The 200 tHM/y plant achieves the target of economics, but the 50 tHM/y plant can not achieve the target. (2) The promising alternative systems replaced for advanced aqueous are the supercritical fluid direct extraction method and amine extraction method from the economical viewpoint. The ion exchange method is promising as the process for minor actinide recovery. (3) For reprocessing MOX fuel, all non-aqueous plants with a capacity of 200 tHM/y achieve the economical target. For such a small capacity as 50 tHM/y, further rationalization of the process is required for the oxide electrowinning method and metal electrorefining method to attain the target, though they are more economical than the advanced aqueous system. (4) For metallic and nitride fuel reprocessing, a metal electrorefining system has been shown to be advantageous. (author)

  17. Kilowatt isotope power system. Phase II plan. Volume I. Phase II program plan

    International Nuclear Information System (INIS)

    1978-01-01

    The development of a Kilowatt Isotope Power System (KIPS) was begun in 1975 for the purpose of satisfying the power requirements of satellites in the 1980's. The KIPS is a 238 PuO 2 -fueled organic Rankine cycle turbine power system to provide a design output of 500 to 2000 W. Phase II of the overall 3-phase KIPS program is described. This volume presents a program plan for qualifying the organic Rankine power system for flight test in 1982. The program plan calls for the design and fabrication of the proposed flight power system; conducting a development and a qualification program including both environmental and endurance testing, using an electrical and a radioisotope heat source; planning for flight test and spacecraft integration; and continuing ground demonstration system testing to act as a flight system breadboard and to accumulate life data

  18. Knee joint kinaesthesia and neuromuscular coordination during three phases of the menstrual cycle in moderately active women.

    Science.gov (United States)

    Fridén, Cecilia; Hirschberg, Angelica Lindén; Saartok, Tönu; Renström, Per

    2006-04-01

    An increased incidence of sports related injuries in the premenstrual phase as well as in the menstrual phase of the menstrual cycle has been described. This may be explained by alterations in proprioception and neuromuscular coordination due to hormonal variations. Prospective, within women analysis of knee joint kinesthesia and neuromuscular coordination were performed by repeated measures analysis of variance in three hormonally verified phases of three consecutive menstrual cycles. Thirty-two healthy, moderately active female subjects volunteered to participate in the study. Twenty-five of the subjects performed at least one hormonally verified menstrual cycle. A specially designed device was used to investigate knee joint kinaesthesia and neuromuscular coordination was measured with the square hop test. These tests were carried out in the menstrual phase, ovulation phase and premenstrual phase determined by hormone analyses in three consecutive menstrual cycles. An impaired knee joint kinaesthesia was detected in the premenstrual phase and the performance of square hop test was significantly improved in the ovulation phase compared to the other two phases. The results of this study indicate that the variation of sex hormones in the menstrual cycle has an effect on performance of knee joint kinaesthesia and neuromuscular coordination.

  19. G2 phase arrest of cell cycle induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Guangwei; Gong Shouliang

    2002-01-01

    The exposure of mammalian cells to X rays results in the prolongation of the cell cycle, including the delay or the arrest in G 1 , S and G 2 phase. The major function of G 1 arrest may be to eliminate the cells containing DNA damage and only occurs in the cells with wild type p53 function whereas G 2 arrest following ionizing radiation has been shown to be important in protecting the cells from death and occurs in all cells regardless of p53 status. So the study on G 2 phase arrest of the cell cycle induced by ionizing radiation has currently become a focus at radiobiological fields

  20. Default cycle phases determined after modifying discrete DNA sequences in plant cells

    International Nuclear Information System (INIS)

    Sans, J.; Leyton, C.

    1997-01-01

    After bromosubstituting DNA sequences replicated in the first, second, or third part of the S phase, in Allium cepa L. meristematic cells, radiation at 313 nm wavelength under anoxia allowed ascription of different sequences to both the positive and negative regulation of some cycle phase transitions. The present report shows that the radiation forced cells in late G 1 phase to advance into S, while those in G 2 remained in G 2 and cells in prophase returned to G 2 when both sets of sequences involved in the positive and negative controls were bromosubstituted and later irradiated. In this way, not only G 2 but also the S phase behaved as cycle phases where cells accumulated by default when signals of different sign functionally cancelled out. The treatment did not halt the rates of replication or transcription of plant bromosubstituted DNA. The irradiation under hypoxia apparently prevents the binding of regulatory proteins to Br-DNA. (author)

  1. Executive overview and introduction to the SMAP information system life-cycle and documentation standards

    Science.gov (United States)

    1989-01-01

    An overview of the five volume set of Information System Life-Cycle and Documentation Standards is provided with information on its use. The overview covers description, objectives, key definitions, structure and application of the standards, and document structure decisions. These standards were created to provide consistent NASA-wide structures for coordinating, controlling, and documenting the engineering of an information system (hardware, software, and operational procedures components) phase by phase.

  2. Prospects of the use of nanofluids as working fluids for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Mondejar, Maria E.; Andreasen, Jesper G.; Regidor, Maria

    2017-01-01

    The search of novel working fluids for organic Rankine cycle power systems is driven by the recent regulations imposing additional phase-out schedules for substances with adverse environmental characteristics. Recently, nanofluids (i.e. colloidal suspensions of nanoparticles in fluids) have been...... suggested as potential working fluids for organic Rankine cycle power systems due to their enhanced thermal properties, potentially giving advantages with respect to the design of the components and the cycle performance. Nevertheless, a number of challenges concerning the use of nanofluids must...... the prospects of using nanofluids as working fluids for organic Rankine cycle power systems. As a preliminary study, nanofluids consisting of a homogenous and stable mixture of different nanoparticles types and a selected organic fluid are simulated on a case study organic Rankine cycle unit for waste heat...

  3. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    Science.gov (United States)

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  4. Transvaginal sonographic evaluation at different menstrual cycle phases in diagnosis of uterine lesions

    Directory of Open Access Journals (Sweden)

    Hajishaiha M

    2011-10-01

    Full Text Available Masomeh Hajishaiha1, Mohammad Ghasemi-rad2, Nazila Karimpour1, Nikol Mladkova3, Farzaneh Boromand11Department of Gynecology, 2Student Research Committee (SRC, Urmia University of Medical Sciences, Urmia, Islamic Republic of Iran; 3Institute of Cell and Molecular Science, London, UKPurpose: Intrauterine lesions (IULs are a common finding in women of reproductive age, particularly infertile women. Transvaginal sonography (TVS is a popular tool for IUL detection, but there are conflicting data with respect to its accuracy.Methods: Five hundred and six women were enrolled into the study. Of these, 496 underwent hysterosalpingography and subsequent TVS six different times during the course of their menstrual cycle. If a lesion was detected, it was further evaluated by sonohysterography (SHG and hysteroscopy.Results: Of 496 women, 41 were shown to have IULs by TVS and those lesions were confirmed in 39 by SHG and hysteroscopy. All 39 lesions were detectable during the ovulatory and early luteal phase (days 16–19 of the menstrual cycle. Accuracy of TVS during different phases was largely dependent on the size of the lesion. TVS falsely detected two lesions and missed fine adhesions in two patients.Conclusion: Accuracy of TVS in detection of IULs is highly dependent on the menstrual cycle phase, with the ovulatory and early luteal phase being the optimal time for this examination.Keywords: menstrual cycle phase, space occupying lesions, transvaginal sonography

  5. The effects of menstrual cycle phase on physical performance in female soccer players

    Science.gov (United States)

    Julian, Ross; Hecksteden, Anne; Fullagar, Hugh H. K.; Meyer, Tim

    2017-01-01

    Background Female soccer has grown extensively in recent years, however differences in gender-specific physiology have rarely been considered. The female reproductive hormones which rise and fall throughout the menstrual cycle, are known to affect numerous cardiovascular, respiratory, thermoregulatory and metabolic parameters, which in turn, may have implications on exercise physiology and soccer performance. Therefore, the main aim of the present study was to investigate potential effects of menstrual cycle phase on performance in soccer specific tests. Methods Nine sub elite female soccer players, all of whom have menstrual cycles of physiological length; performed a series of physical performance tests (Yo-Yo Intermittent endurance test (Yo-Yo IET), counter movement jump (CMJ) and 3x30 m sprints). These were conducted at distinct time points during two main phases of the menstrual cycle (early follicular phase (FP) and mid luteal phase (LP)) where hormones contrasted at their greatest magnitude. Results Yo-Yo IET performance was considerably lower during the mid LP (2833±896 m) as compared to the early FP (3288±800 m). A trend towards significance was observed (p = 0.07) and the magnitude based inferences suggested probabilities of 0/61/39 for superiority/equality/inferiority of performance during the mid LP, leading to the inference of a possibly harmful effect. For CMJ (early FP, 20.0±3.9 cm; mid LP 29.6±3.0 cm, p = 0.33) and sprint (early FP, 4.7±0.1 s; mid LP, 4.7±0.1 s, p = 0.96) performances the results were unclear (8/24/68, 48/0/52, respectively). Conclusion The results of this study are in support of a reduction in maximal endurance performance during the mid LP of the menstrual cycle. However, the same effect was not observed for jumping and sprint performance. Therefore, consideration of cycle phase when monitoring a player’s endurance capacity may be worthwhile. PMID:28288203

  6. Experimental demonstrations of organic Rankine cycle waste heat rejection systems

    Science.gov (United States)

    Bland, Timothy J.; Lacey, P. Douglas

    Two phase fluid management is an important factor in the successful design of organic Rankine cycle (ORC) power conversion systems for space applications. The evolution of the heat rejection system approach from a jet condenser, through a rotary jet condenser, to a rotary fluid management device (RFMD) with a surface condenser has been described in a previous paper. Some of the test programs that were used to prove the validity of the selected approach are described.

  7. Tracking the evolution of the disaster management cycle: A general system theory approach

    Directory of Open Access Journals (Sweden)

    Christo Coetzee

    2012-12-01

    Full Text Available Officials and scholars have used the disaster management cycle for the past 30 years to explain and manage impacts. Although very little understanding and agreement exist in terms of where the concept originated it is the purpose of this article to address the origins of the disaster management cycle. To achieve this, general system theory concepts of isomorphisms, equifinality, open systems and feedback arrangements were applied to linear disaster phase research (which emerged in the 1920s and disaster management cycles. This was done in order to determine whether they are related concepts with procedures such as emergency, relief, recovery and rehabilitation.

  8. Dynamic Isotope Power System: technology verification phase, program plan, 1 October 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The technology verification phase program plan of the Dynamic Isotope Power System (DIPS) project is presented. DIPS is a project to develop a 0.5 to 2.0 kW power system for spacecraft using an isotope heat source and a closed-cycle Rankine power-system with an organic working fluid. The technology verification phase's purposes are to increase the system efficiency to over 18%, to demonstrate system reliability, and to provide an estimate for flight test scheduling. Progress toward these goals is reported

  9. Relationship between geomagnetic classes’ activity phases and their occurrence during the sunspot cycle

    Directory of Open Access Journals (Sweden)

    Frédéric Ouattara

    2009-06-01

    Full Text Available Four well known geomagnetic classes of activity such as quiet days activity, fluctuating activity, recurrent activity
    and shock activity time occurrences have been determined not only by using time profile of sunspot number
    Rz but also by using aa index values.
    We show that recurrent wind stream activity and fluctuating activity occur in opposite phase and slow solar wind
    activity during minimum phase and shock activity at the maximum phase.
    It emerges from this study that fluctuating activity precedes the sunspot cycle by π/2 and the latter also precedes
    recurrent activity by π/2. Thus in the majority the activities do not happen at random; the sunspot cycle starts
    with quiet days activity, continues with fluctuating activity and during its maximum phase arrives shock activity.
    The descending phase is characterized by the manifestation of recurrent wind stream activity.

  10. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2012-01-01

    We investigate the self-phase modulation (SPM) of a single-cycle terahertz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the terahertz pulse, leading to an ultrafast reduction of the plasma frequency...

  11. Technology verification phase. Dynamic isotope power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  12. Technology verification phase. Dynamic isotope power system. Final report

    International Nuclear Information System (INIS)

    Halsey, D.G.

    1982-01-01

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance

  13. Development of the System Dynamics Code using Homogeneous Equilibrium Model for S-CO{sub 2} Brayton cycle Transient Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Lee, Won Woong; Oh, Bongseong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The features of the S-CO{sub 2} Brayton cycle come from a small compressing work by designing the compressor inlet close the critical point of CO{sub 2}. This means the system condition can be operating under two-phase or sub-critical phase during transient situations such as changes of cooling system performance, load variations, etc. Since there is no operating MW scale S-CO{sub 2} Brayton cycle system in the world yet, using an analytical code is the only way to predict the system behavior and develop operating strategies of the S-CO{sub 2} Brayton cycles. Therefore, the development of a credible system code is an important part for the practical S-CO{sub 2} system research. The current status of the developed system analysis code for S-CO{sub 2} Brayton cycle transient analyses in KAIST and verification results are presented in this paper. To avoid errors related with convergences of the code during the phase changing flow calculation in GAMMA+ code, the authors have developed a system analysis code using Homogeneous Equilibrium Model (HEM) for the S-CO{sub 2} Brayton cycle transient analysis. The backbone of the in-house code is the GAMMA+1.0 code, but treating the quality of fluid by tracking system enthalpy gradient every time step. Thus, the code adopts pressure and enthalpy as the independent scalar variables to track the system enthalpy for updating the quality of the system every time step. The heat conduction solving method, heat transfer correlation and frictional losses on the pipe are referred from the GAMMA+ code.

  14. Characterization of Al-Ti phases in cycled TiF3-enhanced Na2LiAlH6

    International Nuclear Information System (INIS)

    Nakamura, Y.; Fossdal, A.; Brinks, H.W.; Hauback, B.C.

    2006-01-01

    TiF 3 -enhanced Na 2 LiAlH 6 was investigated after dehydrogenation-hydrogenation cycles by synchrotron X-ray diffraction. There was no sign of Ti after ball-milling with TiF 3 , but two types of Al-Ti phases were observed in the cycled samples. In a sample after measuring five pressure-composition isotherms in the temperature range from 170 to 250 deg. C, a fcc phase with a = 3.987 A was observed. This phase is considered to be Al 3 Ti with the L1 2 structure. Samples after one or four cycles at selected temperatures between 170 and 250 deg. C showed diffraction from another fcc phase with a ∼ 4.03 A. This indicates formation of an Al 1-y Ti y solid-solution phase with y ∼ 0.15 similar to previously reported for cycled NaAlH 4 with Ti additives

  15. The Impact of Menstrual Cycle Phase on Economic Choice and Rationality.

    Science.gov (United States)

    Lazzaro, Stephanie C; Rutledge, Robb B; Burghart, Daniel R; Glimcher, Paul W

    2016-01-01

    It is well known that hormones affect both brain and behavior, but less is known about the extent to which hormones affect economic decision-making. Numerous studies demonstrate gender differences in attitudes to risk and loss in financial decision-making, often finding that women are more loss and risk averse than men. It is unclear what drives these effects and whether cyclically varying hormonal differences between men and women contribute to differences in economic preferences. We focus here on how economic rationality and preferences change as a function of menstrual cycle phase in women. We tested adherence to the Generalized Axiom of Revealed Preference (GARP), the standard test of economic rationality. If choices satisfy GARP then there exists a well-behaved utility function that the subject's decisions maximize. We also examined whether risk attitudes and loss aversion change as a function of cycle phase. We found that, despite large fluctuations in hormone levels, women are as technically rational in their choice behavior as their male counterparts at all phases of the menstrual cycle. However, women are more likely to choose risky options that can lead to potential losses while ovulating; during ovulation women are less loss averse than men and therefore more economically rational than men in this regard. These findings may have market-level implications: ovulating women more effectively maximize expected value than do other groups.

  16. The Impact of Menstrual Cycle Phase on Economic Choice and Rationality.

    Directory of Open Access Journals (Sweden)

    Stephanie C Lazzaro

    Full Text Available It is well known that hormones affect both brain and behavior, but less is known about the extent to which hormones affect economic decision-making. Numerous studies demonstrate gender differences in attitudes to risk and loss in financial decision-making, often finding that women are more loss and risk averse than men. It is unclear what drives these effects and whether cyclically varying hormonal differences between men and women contribute to differences in economic preferences. We focus here on how economic rationality and preferences change as a function of menstrual cycle phase in women. We tested adherence to the Generalized Axiom of Revealed Preference (GARP, the standard test of economic rationality. If choices satisfy GARP then there exists a well-behaved utility function that the subject's decisions maximize. We also examined whether risk attitudes and loss aversion change as a function of cycle phase. We found that, despite large fluctuations in hormone levels, women are as technically rational in their choice behavior as their male counterparts at all phases of the menstrual cycle. However, women are more likely to choose risky options that can lead to potential losses while ovulating; during ovulation women are less loss averse than men and therefore more economically rational than men in this regard. These findings may have market-level implications: ovulating women more effectively maximize expected value than do other groups.

  17. Visualization of endothelial cell cycle dynamics in mouse using the Flt-1/eGFP-anillin system.

    Science.gov (United States)

    Herz, Katia; Becker, Alexandra; Shi, Chenyue; Ema, Masatsugo; Takahashi, Satoru; Potente, Michael; Hesse, Michael; Fleischmann, Bernd K; Wenzel, Daniela

    2018-05-01

    Endothelial cell proliferation is a key process during vascular growth but its kinetics could only be assessed in vitro or ex vivo so far. To enable the monitoring and quantification of cell cycle kinetics in vivo, we have generated transgenic mice expressing an eGFP-anillin construct under control of the endothelial-specific Flt-1 promoter. This construct labels the nuclei of endothelial cells in late G1, S and G2 phase and changes its localization during the different stages of M phase, thereby enabling the monitoring of EC proliferation and cytokinesis. In Flt-1/eGFP-anillin mice, we found eGFP + signals specifically in Ki67 + /PECAM + endothelial cells during vascular development. Quantification using this cell cycle reporter in embryos revealed a decline in endothelial cell proliferation between E9.5 to E12.5. By time-lapse microscopy, we determined the length of different cell cycle phases in embryonic endothelial cells in vivo and found a M phase duration of about 80 min with 2/3 covering karyokinesis and 1/3 cytokinesis. Thus, we have generated a versatile transgenic system for the accurate assessment of endothelial cell cycle dynamics in vitro and in vivo.

  18. Investigation/evaluation of water cooled fast reactor in the feasibility study on commercialized fast reactor cycle systems. Intermediate evaluation of phase-II study

    International Nuclear Information System (INIS)

    Kotake, Syoji; Nishikawa, Akira

    2005-01-01

    Feasibility study on commercialized fast reactor cycle systems aims at investigation and evaluation of FBR design requirement's attainability, operation and maintenance, and technical feasibility of the candidate system. Development targets are 1) ensuring safety, 2) economic competitiveness, 3) efficient utilization of resources, 4) reduction of environmental load and 5) enhancement of nuclear non-proliferation. Based on the selection of the promising concepts in the first phase, conceptual design for the plant system has proceeded with the following plant system: a) sodium cooled reactors at large size and medium size module reactors, b) a lead-bismuth cooled medium size reactor, c) a helium gas cooled large size reactor and d) a BWR type large size FBR. Technical development and feasibility has been assessed and the study considers the need of respective key technology development for the confirmation of the feasibility study. (T. Tanaka)

  19. Removal of Direct Current Link Harmonic Ripple in Single Phase Voltage Source Inverter Systems Using Supercapacitors

    Science.gov (United States)

    2016-09-01

    Khaligh, “Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications...depth cycling operation in photovoltaic system ,” in 22nd International Conference “Mixed Design of Integrated Circuits and Systems ,” Toruń, Poland...CURRENT LINK HARMONIC RIPPLE IN SINGLE-PHASE VOLTAGE SOURCE INVERTER SYSTEMS USING SUPERCAPACITORS by Gabriel D. Hernandez September 2016

  20. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    Science.gov (United States)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  1. Effect of menstrual cycle phase on glucose kinetics in healthy women & women with premenstrual symptoms.

    Directory of Open Access Journals (Sweden)

    Meena K. Nandimath

    2015-11-01

    Full Text Available Objective: To compare the blood glucose levels during the two phases of the menstrual cycle between healthy women and patients with premenstrual syndrome (PMS.Methods: From January of 2012 to the August of 2013, a descriptive cross-sectional study was performed among staff of tertiary care hospital.Inclusion Criteria: 1100 women aged 18 to 45 years, 2 Regular Menstrual cycle.Exclusion Criteria: 1 Menopause 2 Patient on Oral Contraceptive pills.After approval from IEC and informed consent from the 100 enrolled subjects with either the most severe symptoms of PMS or healthy controls. 2ml of venous blood was collected on fasting condition during the follicular phase (5-11 days of  menstrual cycleand the luteal phase of the cycle (19-28 days menstrual cycle and analyzed the serum concentrations of glucose by using the glucose oxidase method.Results: The statistical analysis was done using student's paired T test. P value less than 0.0001was taken as significant.No significant differences between the demographic data of the control and PMS groups were observed. The mean concentrations of glucose were significantly different during the follicular and luteal phases.

  2. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    Science.gov (United States)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  3. Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Lindley, B.A.; Parks, G.T.; Nuttall, W.J.; Gregg, R.; Hesketh, K.W.; Kannan, U.; Krishnani, P.D.; Singh, B.; Thakur, A.; Cowper, M.; Talamo, A.

    2014-01-01

    Highlights: • We study three open cycle Th–U-fuelled nuclear energy systems. • Comparison of these systems is made to a reference U-fuelled EPR. • Fuel cycle modelling is performed with UK NNL code “ORION”. • U-fuelled system is economically favourable and needs least separative work per kWh. • Th–U-fuelled systems offer negligible waste and proliferation resistance advantages. - Abstract: In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium–uranium-fuelled (Th–U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to ∼20% 235 U, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory’s fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th–U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of ∼6% in the required uranium ore per kWh was seen for one of the Th–U-fuelled systems compared to the reference U-fuelled system, the other two Th–U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th–U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little

  4. Method for Controlling Space Transportation System Life Cycle Costs

    Science.gov (United States)

    McCleskey, Carey M.; Bartine, David E.

    2006-01-01

    A structured, disciplined methodology is required to control major cost-influencing metrics of space transportation systems during design and continuing through the test and operations phases. This paper proposes controlling key space system design metrics that specifically influence life cycle costs. These are inclusive of flight and ground operations, test, and manufacturing and infrastructure. The proposed technique builds on today's configuration and mass properties control techniques and takes on all the characteristics of a classical control system. While the paper does not lay out a complete math model, key elements of the proposed methodology are explored and explained with both historical and contemporary examples. Finally, the paper encourages modular design approaches and technology investments compatible with the proposed method.

  5. Study on liquid-metal MHD power generation system with two-phase natural circulation. Applicability to fast reactor conditions

    International Nuclear Information System (INIS)

    Saito, Masaki

    2001-03-01

    Feasibility study of the liquid-metal MHD power generation system combined with the high-density two-phase natural circulation has been performed for the applicability to the simple, autonomic energy conversion system of the liquid-metal cooled fast reactor. The present system has many promising aspects not only in the energy conversion process, but also in safety and economical improvements of the liquid-metal cooled fast reactor. In the previous report, as the first step of the feasibility study, the cycle analyses were performed to examine the effects of the main system parameters on the fundamental characteristics of the system. It was found that the cycle efficiency of the present system is enough competitive with that of the conventional steam turbine system. It was also found that the cycle efficiency depends strongly on the gas-liquid slip ratio in the two-phase flow channel. However, it is very difficult to estimate the gas-liquid slip ratio theoretically, especially in the heavy liquid metal two-phase natural circulation. For example, the effects of MHD load on the two-phase flow characteristics, such as the void fraction and gas-liquid slip ratio are not known well. In the present study, therefore, as the second step of the feasibility study, a series of the experiments were performed to investigate, especially, the effect of MHD load at the single-phase shown-comer flow channel on the characteristics of the two-phase natural circulation. In the first series of the experiments, Woods-metal (Density: 9517 Kg/m 3 ) and nitrogen gas were chosen as the two-phase working fluids. The MHD pressure drop was simulated by the ball valve. The experiments with water and nitrogen gas were also performed to check the effects of the physical properties. From the present experiments, it is found that the average void fraction in the two-phase flow channel is determined by the force balance between the MHD pressure drop, frictional and pressure losses in the tube, and

  6. Induction of Phase Variation Events in the Life Cycle of the Marine Coccolithophorid Emiliania huxleyi

    Science.gov (United States)

    Laguna, Richard; Romo, Jesus; Read, Betsy A.; Wahlund, Thomas M.

    2001-01-01

    Emiliania huxleyi is a unicellular marine alga that is considered to be the world's major producer of calcite. The life cycle of this alga is complex and is distinguished by its ability to synthesize exquisitely sculptured calcium carbonate cell coverings known as coccoliths. These structures have been targeted by materials scientists for applications relating to the chemistry of biomedical materials, robust membranes for high-temperature separation technology, lightweight ceramics, and semiconductor design. To date, however, the molecular and biochemical events controlling coccolith production have not been determined. In addition, little is known about the life cycle of E. huxleyi and the environmental and physiological signals triggering phase switching between the diploid and haploid life cycle stages. We have developed laboratory methods for inducing phase variation between the haploid (S-cell) and diploid (C-cell) life cycle stages of E. huxleyi. Plating E. huxleyi C cells on solid media was shown to induce phase switching from the C-cell to the S-cell life cycle stage, the latter of which has been maintained for over 2 years under these conditions. Pure cultures of S cells were obtained for the first time. Laboratory conditions for inducing phase switching from the haploid stage to the diploid stage were also established. Regeneration of the C-cell stage from pure cultures of S cells followed a predictable pattern involving formation of large aggregations of S cells and the subsequent production of cultures consisting predominantly of diploid C cells. These results demonstrate the ability to manipulate the life cycle of E. huxleyi under controlled laboratory conditions, providing us with powerful tools for the development of genetic techniques for analysis of coccolithogenesis and for investigating the complex life cycle of this important marine alga. PMID:11525973

  7. S-phase Synchronization Facilitates the Early Progression of Induced-Cardiomyocyte Reprogramming through Enhanced Cell-Cycle Exit.

    Science.gov (United States)

    Bektik, Emre; Dennis, Adrienne; Pawlowski, Gary; Zhou, Chen; Maleski, Danielle; Takahashi, Satoru; Laurita, Kenneth R; Deschênes, Isabelle; Fu, Ji-Dong

    2018-05-04

    Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds a great promise for regenerative medicine and has been studied in several major directions. However, cell-cycle regulation, a fundamental biological process, has not been investigated during iCM-reprogramming. Here, our time-lapse imaging on iCMs, reprogrammed by Gata4, Mef2c, and Tbx5 (GMT) monocistronic retroviruses, revealed that iCM-reprogramming was majorly initiated at late-G1- or S-phase and nearly half of GMT-reprogrammed iCMs divided soon after reprogramming. iCMs exited cell cycle along the process of reprogramming with decreased percentage of 5-ethynyl-20-deoxyuridine (EdU)⁺/α-myosin heavy chain (αMHC)-GFP⁺ cells. S-phase synchronization post-GMT-infection could enhance cell-cycle exit of reprogrammed iCMs and yield more GFP high iCMs, which achieved an advanced reprogramming with more expression of cardiac genes than GFP low cells. However, S-phase synchronization did not enhance the reprogramming with a polycistronic-viral vector, in which cell-cycle exit had been accelerated. In conclusion, post-infection synchronization of S-phase facilitated the early progression of GMT-reprogramming through a mechanism of enhanced cell-cycle exit.

  8. Martensitic transformation, fcc and hcp relative phase stability, and thermal cycling effects in Fe-Mn and Fe-Mn-X Alloys (X = Si, Co)

    International Nuclear Information System (INIS)

    Baruj, Alberto

    1999-01-01

    In this Thesis we present a study of the fcc and hcp relative phase stability in the Fe-Mn and Fe-Mn-Co systems. In particular, we have investigated the effect of two main factors affecting the relative phase stability: changes in the chemical composition of the alloys and changes in the density of crystalline defects in the microstructure.In order to analyse the effect of chemical composition, we have performed an experimental study of the fcc/hcp martensitic transformation temperatures in Fe-Mn-Co alloys in the composition range lying between 15% and 34% Mn, and between 1% and 16% Co.We have measured the martensitic transformation temperatures by means of dilatometry and electrical resistivity.We have combined this information with measurements of the fcc/hcp martensitic transformation temperatures in Co-rich alloys to perform a modelling of the Gibbs energy function for the hcp phase in the Fe-Mn-Co and Fe-Co systems.We found that, for alloys in the Mn range between 17% and 25%, Co additions tend to stabilise slightly the fcc phase.In the alloys with Mn contents below that range, increasing the amount of Co stabilise the bcc phase. In alloys with Mn contents above 25% the Neel temperature is depressed by the addition of Co, which stabilise the hcp phase.In order to investigate the effect of changes in the density of crystalline defects, we have performed thermal cycling experiments through the fcc/hcp martensitic transformation in Fe-Mn, Fe-Mn-Co and Fe-Mn-Si alloys.We have applied the thermodynamic description obtained before in order to analyse these experiments.We found in the thermal cycling experiments a first stage where the martensitic transformation is promoted.This stage occurs in all the studied alloys during the first cycle or the two first cycles.Increasing the number of thermal cycles, the promotion stage is replaced by an inhibition of the transformation stage.We propose a possible microstructural interpretation of these phenomena where the plastic

  9. Topological Classification of Limit Cycles of Piecewise Smooth Dynamical Systems and Its Associated Non-Standard Bifurcations

    Directory of Open Access Journals (Sweden)

    John Alexander Taborda

    2014-04-01

    Full Text Available In this paper, we propose a novel strategy for the synthesis and the classification of nonsmooth limit cycles and its bifurcations (named Non-Standard Bifurcations or Discontinuity Induced Bifurcations or DIBs in n-dimensional piecewise-smooth dynamical systems, particularly Continuous PWS and Discontinuous PWS (or Filippov-type PWS systems. The proposed qualitative approach explicitly includes two main aspects: multiple discontinuity boundaries (DBs in the phase space and multiple intersections between DBs (or corner manifolds—CMs. Previous classifications of DIBs of limit cycles have been restricted to generic cases with a single DB or a single CM. We use the definition of piecewise topological equivalence in order to synthesize all possibilities of nonsmooth limit cycles. Families, groups and subgroups of cycles are defined depending on smoothness zones and discontinuity boundaries (DB involved. The synthesized cycles are used to define bifurcation patterns when the system is perturbed with parametric changes. Four families of DIBs of limit cycles are defined depending on the properties of the cycles involved. Well-known and novel bifurcations can be classified using this approach.

  10. Life cycle and economic efficiency analysis phase II : durable pavement markings.

    Science.gov (United States)

    2011-04-01

    This report details the Phase II analysis of the life cycle and economic efficiency of inlaid tape : and thermoplastic. Waterborne paint was included as a non-durable for comparison purposes : only. In order to find the most economical product for sp...

  11. Women's preferences for men's beards show no relation to their ovarian cycle phase and sex hormone levels.

    Science.gov (United States)

    Dixson, Barnaby J W; Lee, Anthony J; Blake, Khandis R; Jasienska, Grazyna; Marcinkowska, Urszula M

    2018-01-01

    According to the ovulatory shift hypothesis, women's mate preferences for male morphology indicative of competitive ability, social dominance, and/or underlying health are strongest at the peri-ovulatory phase of the menstrual cycle. However, recent meta-analyses are divided on the robustness of such effects and the validity of the often-used indirect estimates of fertility and ovulation has been called into question in methodological studies. In the current study, we test whether women's preferences for men's beardedness, a cue of male sexual maturity, androgenic development and social dominance, are stronger at the peri-ovulatory phase of the menstrual cycle compared to during the early follicular or the luteal phase. We also tested whether levels of estradiol, progesterone, and the estradiol to progesterone ratio at each phase were associated with facial hair preferences. Fifty-two heterosexual women completed a two-alternative forced choice preference test for clean-shaven and bearded male faces during the follicular, peri-ovulatory (validated by the surge in luteinizing hormone or the drop in estradiol levels) and luteal phases. Participants also provided for one entire menstrual cycle daily saliva samples for subsequent assaying of estradiol and progesterone. Results showed an overall preference for bearded over clean-shaven faces at each phase of the menstrual cycle. However, preferences for facial hair were not significantly different over the phases of menstrual cycle and were not significantly associated with levels of reproductive hormones. We conclude that women's preferences for men's beardedness may not be related to changes in their likelihood of conception. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Phase 1 study of metallic cask systems for spent fuel management from reactor to repository. Volume I. Phase 1 study summary

    International Nuclear Information System (INIS)

    1986-02-01

    It was proposed to perform a systems evaluation of metallic cask systems in order to define and examine the use of various metallic cask concepts or combination of concepts for the overall inventory management of spent fuel starting with its discharge from reactors to its emplacement in geologic repositories. This systems evaluation occurs in three phases. This three phase systems evaluation leads to a definition and recommendation of a sound and practical metallic cask system to accomplish efficient and effective management of spent fuel in the back end of the nuclear fuel cycle. Phase 1 Study objectives: establish system-wide functional criteria and assumptions; perform the systems engineering needed to define the metallic cask concepts and their feasibility; perform a screening evaluation of the technical and economic merits of the concepts; and recommend those to be included for a more detailed systems evaluation in Phase 2. Phase 2 Study objectives: refine the system-wide functional criteria and assumptions; perform the design engineering needed to enhance the validity and workability of those concepts recommended in Phase 1; and perform a more detailed systems evaluation. Phase 3 Study objectives: conclude the systems evaluation and develop an implementation plan. Volume I presents an overview of the detailed systems evaluation presented in Volume II

  13. Bunching phase evolution of short-pulse FEL oscillator system

    CERN Document Server

    Song, S B; Choi, D I

    2000-01-01

    We studied numerically the short-pulse FEL oscillator system using properly defined bunching phase theta sub B and PSI sub B. In stable operation, we have found that the optical field 'locks' the phase to pi/2 at the trailing edge, which gives the maximum gain. Moreover, electrons can be detrapped from ponderomotive bucket due to the spatial variation of the optical field, and this detrapping effect is a major cause of the limit cycle oscillation of the system. The 'bump' of the output power during the amplification usually exists at the near-perfect cavity synchronism regime, which can be explained as the change of the matching condition between electron micropulse and optical pulse.

  14. Conceptual design study on advanced aqueous reprocessing system for fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Takata, Takeshi; Koma, Yoshikazu; Sato, Koji; Kamiya, Masayoshi; Shibata, Atsuhiro; Nomura, Kazunori; Ogino, Hideki; Koyama, Tomozo; Aose, Shin-ichi

    2003-01-01

    As a feasibility study on commercialized fast reactor cycle system, a conceptual design study is being progressed for the aqueous and pyrochemical processes from the viewpoint of economical competitiveness, efficient utilization of resources, decreasing environmental impact and proliferation resistance in Japan Nuclear Cycle Development Institute (JNC). In order to meet above-mentioned requirements, the survey on a range of reprocessing technologies and the evaluation of conceptual plant designs against targets for the future fast reactor cycle system have been implemented as the fist phase of the feasibility study. For an aqueous reprocessing process, modification of the conventional PUREX process (a solvent extraction process with purification of U/Pu, with nor recovery of minor actinides (MA)) and investigation of alternatives for the PUREX process has been carried out and design study of advanced aqueous reprocessing system and its alternatives has been conducted. The conceptual design of the advanced aqueous reprocessing system has been updated and evaluated by the latest R and D results of the key technologies such as crystallization, single-cycle extraction, centrifugal contactors, recovery of Am/Cm and waste processing. In this paper, the outline of the design study and the current status of development for advanced aqueous reprocessing system, NEXT process, are mentioned. (author)

  15. The fuel cycle scoping system

    International Nuclear Information System (INIS)

    Dooley, G.D.; Malone, J.P.

    1986-01-01

    The Fuel Cycle Scoping System (FCSS) was created to fill the need for a scoping tool which provides the utilities with the ability to quickly evaluate alternative fuel management strategies, tails assay choices, fuel fabrication quotes, fuel financing alternatives, fuel cycle schedules, and other fuel cycle perturbations. The FCSS was specifically designed for PC's that support dBASE-III(TM), a relational data base software system by Ashton-Tate. However, knowledge of dBASE-III is not necessary in order to utilize the FCSS. The FCSS is menu driven and can be utilized as a teaching tool as well as a scoping tool

  16. Heat treatments and thermomechanical cycling influences on the R-phase in Ti-Ni shape memory alloys

    Directory of Open Access Journals (Sweden)

    Cezar Henrique Gonzalez

    2010-09-01

    Full Text Available This article studies changes observed on the R-phase thermoelastic behavior in a near-equiatomic Ti-Ni shape memory alloy. Three kinds of procedures have been performed: different treatments, thermomechanical cycling under constant loading in shape memory helical springs and thermal cycling in as-treated and trained samples. Several heat treatments were carried out to investigate evolution of the R-phase by differential scanning calorimetry (DSC. A heat treatment was chosen on which R-phase is absent. Shape memory springs were produced and submitted to a training process in an apparatus by tensioning the springs under constant loading. Thermal cycling in DSC was realized in as-treated and trained samples. Several aspects of one-step (B2→B19' and two-steps (B2→R→B19' martensitic transformations and R-phase formation and their evolution during tests were observed and discussed.

  17. Specifics of system of external influences on the life cycle of a construction object

    Directory of Open Access Journals (Sweden)

    Aleksanin Aleksander

    2016-01-01

    Full Text Available There is a very important issue today which includes the harmonious and effective development of the system ‘man –environment’. Construction is a branch of material production, which has a significant negative impact on the world around us. It is necessary to plan and operate processes of construction at all stages of the life cycle of a building without exception, to prevent of ecological threats. The article describes the concept of ‘life cycle’ as applied to various fields of knowledge, analyzes existing in the scientific literature division of the life cycle of buildings in the periods, proposes own approach to the division of periods of the life cycle on the basis of resource-saving. The article proposes the creation of a unified organizational system for the effective management of all periods with the constituent phases and formulates the main external influences on the building life cycle.

  18. Specifics of system of external influences on the life cycle of a construction object

    Directory of Open Access Journals (Sweden)

    Aleksanin Aleksander

    2016-01-01

    Full Text Available There is a very important issue today which includes the harmonious and effective development of the system ‘man–environment’. Construction is a branch of material production, which has a significant negative impact on the world around us. It is necessary to plan and operate processes of construction at all stages of the life cycle of a building without exception, to prevent of ecological threats. The article describes the concept of ‘life cycle’ as applied to various fields of knowledge, analyzes existing in the scientific literature division of the life cycle of buildings in the periods, proposes own approach to the division of periods of the life cycle on the basis of resource-saving. The article proposes the creation of a unified organizational system for the effective management of all periods with the constituent phases and formulates the main external influences on the building life cycle.

  19. Circadian Clock Synchronization of the Cell Cycle in Zebrafish Occurs through a Gating Mechanism Rather Than a Period-phase Locking Process.

    Science.gov (United States)

    Laranjeiro, Ricardo; Tamai, T Katherine; Letton, William; Hamilton, Noémie; Whitmore, David

    2018-04-01

    Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles.

  20. Predictive Duty Cycle Control of Three-Phase Active-Front-End Rectifiers

    DEFF Research Database (Denmark)

    Song, Zhanfeng; Tian, Yanjun; Chen, Wei

    2016-01-01

    This paper proposed an on-line optimizing duty cycle control approach for three-phase active-front-end rectifiers, aiming to obtain the optimal control actions under different operating conditions. Similar to finite control set model predictive control strategy, a cost function previously...

  1. Resting state alpha frequency is associated with menstrual cycle phase, estradiol and use of oral contraceptives.

    Science.gov (United States)

    Brötzner, Christina P; Klimesch, Wolfgang; Doppelmayr, Michael; Zauner, Andrea; Kerschbaum, Hubert H

    2014-08-19

    Ongoing intrinsic brain activity in resting, but awake humans is dominated by alpha oscillations. In human, individual alpha frequency (IAF) is associated with cognitive performance. Noticeable, performance in cognitive and emotional tasks in women is associated with menstrual cycle phase and sex hormone levels, respectively. In the present study, we correlated frequency of alpha oscillation in resting women with menstrual cycle phase, sex hormone level, or use of oral contraceptives. Electroencephalogram (EEG) was recorded from 57 women (aged 24.07 ± 3.67 years) having a natural menstrual cycle as well as from 57 women (aged 22.37 ± 2.20 years) using oral contraceptives while they sat in an armchair with eyes closed. Alpha frequency was related to the menstrual cycle phase. Luteal women showed highest and late follicular women showed lowest IAF or center frequency. Furthermore, IAF as well as center frequency correlated negatively with endogenous estradiol level, but did not reveal an association with endogenous progesterone. Women using oral contraceptives showed an alpha frequency similar to women in the early follicular phase. We suggest that endogenous estradiol modulate resting alpha frequency. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Cell cycle G2/M arrest through an S phase-dependent mechanism by HIV-1 viral protein R.

    Science.gov (United States)

    Li, Ge; Park, Hyeon U; Liang, Dong; Zhao, Richard Y

    2010-07-07

    Cell cycle G2 arrest induced by HIV-1 Vpr is thought to benefit viral proliferation by providing an optimized cellular environment for viral replication and by skipping host immune responses. Even though Vpr-induced G2 arrest has been studied extensively, how Vpr triggers G2 arrest remains elusive. To examine this initiation event, we measured the Vpr effect over a single cell cycle. We found that even though Vpr stops the cell cycle at the G2/M phase, but the initiation event actually occurs in the S phase of the cell cycle. Specifically, Vpr triggers activation of Chk1 through Ser345 phosphorylation in an S phase-dependent manner. The S phase-dependent requirement of Chk1-Ser345 phosphorylation by Vpr was confirmed by siRNA gene silencing and site-directed mutagenesis. Moreover, downregulation of DNA replication licensing factors Cdt1 by siRNA significantly reduced Vpr-induced Chk1-Ser345 phosphorylation and G2 arrest. Even though hydroxyurea (HU) and ultraviolet light (UV) also induce Chk1-Ser345 phosphorylation in S phase under the same conditions, neither HU nor UV-treated cells were able to pass through S phase, whereas vpr-expressing cells completed S phase and stopped at the G2/M boundary. Furthermore, unlike HU/UV, Vpr promotes Chk1- and proteasome-mediated protein degradations of Cdc25B/C for G2 induction; in contrast, Vpr had little or no effect on Cdc25A protein degradation normally mediated by HU/UV. These data suggest that Vpr induces cell cycle G2 arrest through a unique molecular mechanism that regulates host cell cycle regulation in an S-phase dependent fashion.

  3. Cell cycle G2/M arrest through an S phase-dependent mechanism by HIV-1 viral protein R

    Directory of Open Access Journals (Sweden)

    Liang Dong

    2010-07-01

    Full Text Available Abstract Background Cell cycle G2 arrest induced by HIV-1 Vpr is thought to benefit viral proliferation by providing an optimized cellular environment for viral replication and by skipping host immune responses. Even though Vpr-induced G2 arrest has been studied extensively, how Vpr triggers G2 arrest remains elusive. Results To examine this initiation event, we measured the Vpr effect over a single cell cycle. We found that even though Vpr stops the cell cycle at the G2/M phase, but the initiation event actually occurs in the S phase of the cell cycle. Specifically, Vpr triggers activation of Chk1 through Ser345 phosphorylation in an S phase-dependent manner. The S phase-dependent requirement of Chk1-Ser345 phosphorylation by Vpr was confirmed by siRNA gene silencing and site-directed mutagenesis. Moreover, downregulation of DNA replication licensing factors Cdt1 by siRNA significantly reduced Vpr-induced Chk1-Ser345 phosphorylation and G2 arrest. Even though hydroxyurea (HU and ultraviolet light (UV also induce Chk1-Ser345 phosphorylation in S phase under the same conditions, neither HU nor UV-treated cells were able to pass through S phase, whereas vpr-expressing cells completed S phase and stopped at the G2/M boundary. Furthermore, unlike HU/UV, Vpr promotes Chk1- and proteasome-mediated protein degradations of Cdc25B/C for G2 induction; in contrast, Vpr had little or no effect on Cdc25A protein degradation normally mediated by HU/UV. Conclusions These data suggest that Vpr induces cell cycle G2 arrest through a unique molecular mechanism that regulates host cell cycle regulation in an S-phase dependent fashion.

  4. LIFE CYCLE OF INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Y. S. Sennik

    2015-01-01

    Full Text Available This work is a generalization of the theoretical propositions related to the life cycle of information systems. There was given the definition of the life cycle, specify which items you should include every step of the cycle. Describes the methodology division of the life cycle on the main stage, including methodology Rational Unified Process. The description of the fundamental standards in this area. Special attention was paid to the work of the basic life cycle models. It was carried out their comparative characteristics. On the basis of the theoretical propositions, it was concluded that the preferred model of the life cycle for the corporate network is a spiral model and the use of international standards in the life cycle saves a lot of effort, time and material resources.

  5. Integrated operation and management system for a 700MW combined cycle power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shiroumaru, I. (Yanai Power Plant Construction Office, Chugoku Electric Power Co., Inc., 1575-5 Yanai-Miyamoto-Shiohama, Yanai-shi, Yamaguchi-ken (JP)); Iwamiya, T. (Omika Works, Hitachi, Ltd., 5-2-1 Omika-cho, Hitachi-shi, Ibaraki-ken (JP)); Fukai, M. (Hitachi Works, Hitachi, Ltd., 3-1-1 Saiwai-cho, Hitachi-shi, Ibaraki-ken (JP))

    1992-03-01

    Yanai Power Plant of the Chugoku Electric Power Co., Inc. (Yamaguchi Pref., Japan) is in the process of constructing a 1400MW state-of-the-art combined cycle power plant. The first phase, a 350MW power plant, started operation on a commercial basis in November, 1990. This power plant has achieved high efficiency and high operability, major features of a combined cycle power plant. The integrated operation and management system of the power plant takes care of operation, maintenance, control of general business, etc., and was built using the latest computer and digital control and communication technologies. This paper reports that it is expected that this system will enhance efficient operation and management for the power plant.

  6. Brayton Isotope Power System. Phase I. (Ground demonstration system) Configuration Control Document (CCD)

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration control document (CCD) defines the BIPS-GDS configuration. The GDS configuration is similar to a conceptual flight system design, referred to as the BIPS-FS, which is discussed in App. I. The BIPS is being developed by ERDA as a 500 to 2000 W(e), 7-y life, space power system utilizing a closed Brayton cycle gas turbine engine to convert thermal energy (from an isotope heat source) to electrical energy at a net efficiency exceeding 25 percent. The CCD relates to Phase I of an ERDA Program to qualify a dynamic system for launch in the early 1980's. Phase I is a 35-month effort to provide an FS conceptual design and GDS design, fabrication, and test. The baseline is a 7-year life, 450-pound, 4800 W(t), 1300 W(e) system which will use two multihundred watt (MHW) isotope heat sources being developed

  7. Study on liquid-metal MHD power generation system with two-phase natural circulation. Applicability to fast reactor conditions

    International Nuclear Information System (INIS)

    Saito, Masaki

    2000-03-01

    Feasibility study of the liquid-metal MHD power generation system combined with the high-density two-phase natural circulation has been performed for the applicability to the simple, autonomic energy conversion system of the liquid-metal cooled fast reactor. The present system has many promising aspects not only in the energy conversion process, but also in safety and economical improvements of the liquid-metal cooled fast reactor. For example, the high cycle efficiency can be expected because of the similarity of the present cycle to the Ericsson cycle. Sodium-Water Interaction problem can be excluded by proper combination of the working fluids. As the economical feature, the present system is so simple that the liquid-metal main circular pump, the steam turbine generator, and even the steam generator can be excluded if the thermodynamic working fluid is injected directly into the high temperature liquid metal MHD working fluid. In addition, the present system has the potential to be applied to various heat sources including solar energy because of the high flexibility of the operation temperature. In the present paper, as the first step of the feasibility study, the cycle analyses were performed to examine the effects of the main system parameters on the fundamental characteristics of the system. It is found that the cycle efficiency of the present system is enough competitive with that of the conventional steam turbine system. It is, however, found that the cycle efficiency depends strongly on the gas-liquid slip ratio in the two-phase flow channel. As the conclusions, it is recommended to perform experimental study to obtain the fundamental data, such as the gas-liquid slip ratio in the high-density liquid-metal two-phase natural circulation. (author)

  8. ITER fuel cycle systems layout

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-10-01

    The ITER fuel cycle building (FCB) will contain the following systems: fuel purification - permeator based; fuel purification - molecular sieves; impurity treatment; waste water storage and treatment; isotope separation; waste water tritium extraction; tritium extraction from solid breeder; tritium extraction from test modules; tritium storage, shipping and receiving; tritium laboratory; atmosphere detritiation systems; fuel cycle control centre; tritiated equipment maintenance space; control maintenance space; health physics laboratory; access, access control and facilities. The layout of the FCB and the requirements for these systems are described. (10 figs.)

  9. The VIP/VPACR system in the reproductive cycle of male lizard Podarcis sicula.

    Science.gov (United States)

    Agnese, Marisa; Rosati, Luigi; Prisco, Marina; Coraggio, Francesca; Valiante, Salvatore; Scudiero, Rosaria; Laforgia, Vincenza; Andreuccetti, Piero

    2014-09-01

    Starting from the knowledge that in the reproductive period the Vasoactive Intestinal Peptide (VIP) is widely distributed in Podarcis sicula testis, we studied VIP expression and the localization of the neuropeptide and its receptors in the testis of the Italian wall lizard P. sicula in the other phases of its reproductive cycle (summer stasis, autumnal resumption, winter stasis, spring resumption). By Real Time-PCR, we demonstrated that testicular VIP mRNA levels change during the reproductive cycle, showing a cyclic trend with two peaks, one in the mid-autumnal resumption and the other in the reproductive period. By in situ hybridization and immunohistochemistry, we demonstrated that both VIP mRNA and protein were widely distributed in the testis in almost all the phases of the cycle, except in the early autumnal resumption. As regards the receptors, the VPAC1R was localized mainly in Leydig cells, while the VPAC2R showed the same distribution of VIP. Our results demonstrate that, differently from mammals, where VIP is present only in nerve fibres innerving the testis, an endotesticular synthesis takes place in the lizard and the VIP synthesis changes throughout the reproductive cycle. Moreover, the VIP/VPAC receptor system distribution observed in germ and somatic cells in various phases of the cycle, and particularly in the autumnal resumption and the reproductive period, strongly suggests its involvement in both spermatogenesis and steroidogenesis. Finally, the wider distribution of VIP in lizards with respect to mammals leads us to hypothesize that during the evolution the synthesis sites have been transferred from the testis to other districts, such as the brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Study on closed cycle MHD generation systems; Closed cycle MHD hatsuden system no kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    The closed cycle noble gas MHD generation systems are surveyed and studied. The concept of closed cycle noble gas MHD generation is confirmed to extract high enthalpy, and now going into the engineering demonstration stage from the basic research stage. These systems have various characteristics. The highest working temperature is around 1,700 degrees C, which is close to that associated with the existing techniques. Use of helium or argon gas as the working fluid makes the system relatively free of various problems, e.g., corrosion. It can attain a much higher efficiency than the combined cycle involving gas turbine. It suffers less heat loss in the passages, is suitable for small- to medium-capacity power generation systems, and copes with varying load. The compact power generation passages decrease required size of the superconducting magnet. The technical problems to be solved include optimization of power generation conditions, demonstration of durability of the power generation passages, injection/recovery of the seed material, treatment of the working gas to remove molecular impurities, and development of heat exchangers serviceable at high temperature produced by direct combustion of coal. The conceptual designs of the triple combined system are completed. (NEDO)

  11. Resting state alpha frequency is associated with menstrual cycle phase, estradiol and use of oral contraceptives

    OpenAIRE

    Brötzner, Christina P.; Klimesch, Wolfgang; Doppelmayr, Michael; Zauner, Andrea; Kerschbaum, Hubert H.

    2014-01-01

    Ongoing intrinsic brain activity in resting, but awake humans is dominated by alpha oscillations. In human, individual alpha frequency (IAF) is associated with cognitive performance. Noticeable, performance in cognitive and emotional tasks in women is associated with menstrual cycle phase and sex hormone levels, respectively. In the present study, we correlated frequency of alpha oscillation in resting women with menstrual cycle phase, sex hormone level, or use of oral contraceptives. Electro...

  12. Effect of door opening and defrost cycle on a freezer with phase change panels

    International Nuclear Information System (INIS)

    Gin, B.; Farid, M.M.; Bansal, P.K.

    2010-01-01

    An investigation into the effectiveness of phase change material (PCM) panels placed against the internal walls of a freezer to maintain stable temperatures in the presence of heat loads such as door openings, defrosting, and loss of electrical power was carried out. Temperature response was studied during loss of power, a defrost cycle lasting 30 min, and a door opening scheme of 13 door openings over an 11 h period. This PCM system has significantly decreased the rate of temperature increase inside the freezer during defrosting and power loss. Energy consumption was measured during steady operation, a defrost cycle of 30 min, and a scheme of eight door openings at 40 min intervals. It was found that heat loads caused greater energy consumption, and that the presence of PCM during defrosting and door openings resulted in slightly lower energy consumption compared to without PCM.

  13. Eruption cycles in a basaltic andesite system: insights from numerical modeling

    Science.gov (United States)

    Smekens, J. F.; Clarke, A. B.; De'Michieli Vitturi, M.

    2015-12-01

    Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. Many of these systems present relatively evolved compositions (andesite to rhyolite), and their cyclic activity has been the subject of extensive work (e.g., Soufriere Hills Volcano, Montserrat). However, the same periodic behavior can also be observed at open systems of more mafic compositions, such as Semeru in Indonesia or Karymsky in Kamchatka for example. In this work, we use DOMEFLOW, a 1D transient numerical model of magma ascent, to identify the conditions that lead to and control periodic eruptions in basaltic andesite systems, where the viscosity of the liquid phase can be drastically lower. Periodic behavior occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly generates a viscous plug, pressurizes the magma beneath the plug, and then explosively disrupts it. The characteristic timescale and magnitude of the eruptive cycles are controlled by the overall viscosity of the magmatic mixture, with higher viscosities leading to longer cycles and lower flow rates at the top of the conduit. Cyclic eruptions in basaltic andesite systems are observed for higher crystal contents, smaller conduit radii, and over a wider range of chamber pressures than the andesitic system, all of which are the direct consequence of a decrease in viscosity of the melt phase, and in turn in the intensity of the viscous forces generated by the system. Results suggest that periodicity can exist in more mafic systems with relatively lower chamber pressures than andesite and rhyolite systems, and may explain why more mafic magmas sometimes remain active for decades.

  14. A comparison of production system life cycle models

    Science.gov (United States)

    Attri, Rajesh; Grover, Sandeep

    2012-09-01

    Companies today need to keep up with the rapidly changing market conditions to stay competitive. The main issues in this paper are related to a company's market and its competitors. The prediction of market behavior is helpful for a manufacturing enterprise to build efficient production systems. However, these predictions are usually not reliable. A production system is required to adapt to changing markets, but such requirement entails higher cost. Hence, analyzing different life cycle models of the production system is necessary. In this paper, different life cycle models of the production system are compared to evaluate the distinctive features and the limitations of each model. Furthermore, the difference between product life cycle and production life cycle is summarized, and the effect of product life cycle on production life cycle is explained. Finally, a production system life cycle model, along with key activities to be performed in each stage, is proposed specifically for the manufacturing sector.

  15. SIMULATION STUDY OF HEMISPHERIC PHASE-ASYMMETRY IN THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Shukuya, D.; Kusano, K., E-mail: kusano@nagoya-u.jp [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 4648601 (Japan)

    2017-01-20

    Observations of the Sun suggest that solar activities systematically create north–south hemispheric asymmetries. For instance, the hemisphere in which sunspot activity is more active tends to switch after the early half of each solar cycle. Svalgaard and Kamide recently pointed out that the time gaps of polar field reversal between the northern and southern hemispheres are simply consequences of the asymmetry of sunspot activity. However, the mechanism underlying the asymmetric feature in solar cycle activity is not yet well understood. In this paper, in order to explain the cause of the asymmetry from the theoretical point of view, we investigate the relationship between the dipole- and quadrupole-type components of the magnetic field in the solar cycle using the mean-field theory based on the flux transport dynamo model. As a result, we found that there are two different attractors of the solar cycle, in which either the north or the south polar field is first reversed, and that the flux transport dynamo model explains well the phase-asymmetry of sunspot activity and the polar field reversal without any ad hoc source of asymmetry.

  16. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems; Systeme energetiques, TOME 3: cycles avances, systemes innovants a faible impact environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Gicquel, R

    2009-07-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO{sub 2} capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  17. Expression of the epidermal growth factor system in human endometrium during the menstrual cycle

    DEFF Research Database (Denmark)

    Ejskjaer, Kirsten; Sørensen, B S; Poulsen, Steen Seier

    2005-01-01

    The epidermal growth factor (EGF) system is ubiquitous in humans and plays fundamental roles in embryogenesis, development, proliferation and differentiation. As the endometrium of fertile women is characterized by proliferation and differentiation, we hypothesize a role for the EGF system....... Fourteen premenopausal women had endometrial samples removed on day 6 +/- 1 and day 6 +/- 1 and 12 +/- 1 after ovulation during one menstrual cycle. RNA was extracted and analysed by real-time PCR, and immunohistochemistry was performed to localize the components of the EGF system. Human EGF Receptor 1...... (HER1) showed highest expression during the proliferative phase, HER2 and HER4 during the early and HER3 during the late secretory phase. Amphiregulin (AR) and transforming growth factor alpha (TGFalpha) expression is highest in proliferative phase. Heparin binding (HB)-EGF and betacellulin (BCL) show...

  18. Cycle layout studies of S-CO2 cycle for the next generation nuclear system application

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Bae, Seong Jun; Kim, Minseok; Cho, Seong Kuk; Baik, Seungjoon; Lee, Jeong Ik; Cha, Jae Eun

    2014-01-01

    According to the second law of thermodynamics, the next generation nuclear reactor system efficiency can potentially be increased with higher operating temperature. Fig.1 shows several power conversion system efficiencies and heat sources with respect to the system top operating temperature. As shown in Fig.1, the steam Rankine and gas Brayton cycles have been considered as the major power conversion systems more than several decades. In the next generation reactor operating temperature region (450 - 900 .deg. C), the steam Rankine and gas Brayton cycles have limits due to material problems and low efficiency, respectively. Among the future power conversion systems, S-CO 2 cycle is receiving interests due to several benefits including high efficiency under the mild turbine inlet temperature range (450-650 .deg. C), compact turbomachinery and simple layout compared to the steam Rankine cycle. S-CO 2 cycle can show relatively high efficiency under the mild turbine inlet temperature range (450-600 .deg. C) compared to other power conversion systems. The recompression cycle shows the best efficiency among other layouts and it is suitable for the application to advanced nuclear reactor systems. As S-CO 2 cycle performance can vary depending on the layout configuration, further studies on the layouts are required to design a better performing cycle

  19. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING PHASE 3 RESTRUCTURED (3R)

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-03-17

    This scope document defines the work scope for accomplishing the design of the GE MS7001H and MS9001H (7H and 9H) combined-cycle power systems under the original ATS Phase 3 DOE Cooperative Agreement No. DE-FC21-95MC31176, and incorporates changes in scope required to convert Phase 3 to the ''restructured'' Phase 3R as defined in Amendment A012 to the Cooperative Agreement.

  20. Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments.

    Science.gov (United States)

    Bloem, Robbert; Garrett-Roe, Sean; Strzalka, Halina; Hamm, Peter; Donaldson, Paul

    2010-12-20

    We demonstrate how quasi-phase-cycling achieved by sub-cycle delay modulation can be used to replace optical chopping in a box-CARS 2D IR experiment in order to enhance the signal size, and, at the same time, completely eliminate any scattering contamination. Two optical devices are described that can be used for this purpose, a wobbling Brewster window and a photoelastic modulator. They are simple to construct, easy to incorporate into any existing 2D IR setup, and have attractive features such as a high optical throughput and a fast modulation frequency needed to phase cycle on a shot-to-shot basis.

  1. Organic Rankine Kilowatt Isotope Power System. Final phase I report

    International Nuclear Information System (INIS)

    1978-01-01

    On 1 August 1975 under Department of Energy Contract EN-77-C-02-4299, Sundstrand Energy Systems commenced development of a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980s and beyond. The KIPS is a 238 PuO 2 fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W/sub (e)/ with a minimum of system changes. The principal objectives of the Phase 1 development effort were to: conceptually design a flight system; design a Ground Demonstration System (GDS) that is prototypic of the flight system in order to prove the feasibility of the flight system design; fabricate and assemble the GDS; and performance and endurance test the GDS using electric heaters in lieu of the isotope heat source. Results of the work performed under the Phase 1 contract to 1 July 1978 are presented

  2. Exploring the data constrained phase space of the last Antarctic glacial cycle

    Science.gov (United States)

    Lecavalier, Benoit; Tarasov, Lev

    2017-04-01

    The evolution of the Antarctic Ice Sheet over the last two glacial cycles is studied using the Glacial Systems Model (GSM). Glaciological modelling is an effective tool to generate continental-scale reconstructions over glacial cycles, but the models depend on parameterizations to account for the deficiencies (e.g., missing physics, unresolved sub-grid processes, uncertain boundary conditions) inherent in any numerical model. These parameters, considered together, form a parameter phase space from which sets of parameters can be sampled; each set corresponds to an ice sheet reconstruction. The GSM has been updated with a number of recent developments: hybrid SIA-SSA physics, Schoof grounding line parameterization, broadened degrees of freedom in the climate forcing, sub-shelf melt explicitly dependent on ocean temperatures, improved hydrofracturing, cliff failure at the margins, basal topographic uncertainties, impact of basal drag roughness and subgrid statistics, and first order geoidal corrections in the coupled glacial isostatic adjustment component. Parametric uncertainties are defined in the GSM using >36 ensemble parameters. Prior to conducting a full Bayesian calibration, one must first validate the ability of the GSM to simulate a broad range of responses. We attempt this by latin hypercube sampling of the parameter phase space and comparing the model predictions against our constraint database consisting of past elevation, extent and relative sea level observations and the present day geometry. We document the capability of the GSM to envelope the observational constraints given the parametric uncertainties and discuss the implications for the evolution of the Antarctic Ice Sheet.

  3. Phases, phase equilibria, and phase rules in low-dimensional systems

    International Nuclear Information System (INIS)

    Frolov, T.; Mishin, Y.

    2015-01-01

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phase rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality

  4. Life cycle assessment of domestic heat pump hot water systems in Australia

    Directory of Open Access Journals (Sweden)

    Moore Andrew D.

    2017-01-01

    Full Text Available Water heating accounts for 23% of residential energy consumption in Australia, and, as over half is provided by electric water heaters, is a significant source of greenhouse gas emissions. Due to inclusion in rebate schemes heat pump water heating systems are becoming increasingly popular, but do they result in lower greenhouse gas emissions? This study follows on from a previous life cycle assessment study of domestic hot water systems to include heat pump systems. The streamlined life cycle assessment approach used focused on the use phase of the life cycle, which was found in the previous study to be where the majority of global warming potential (GWP impacts occurred. Data was collected from an Australian heat pump manufacturer and was modelled assuming installation within Australian climate zone 3 (AS/NZS 4234:2011. Several scenarios were investigated for the heat pumps including different sources of electricity (grid, photovoltaic solar modules, and batteries and the use of solar thermal panels. It was found that due to their higher efficiency heat pump hot water systems can result in significantly lower GWP than electric storage hot water systems. Further, solar thermal heat pump systems can have lower GWP than solar electric hot water systems that use conventional electric boosting. Additionally, the contributions of HFC refrigerants to GWP can be significant so the use of alternative refrigerants is recommended. Heat pumps combined with PV and battery technology can achieve the lowest GWP of all domestic hot water systems.

  5. Analysis of the functional state of students in the process of healthy training exercises in different phases of the ovarian-menstrual cycle

    Directory of Open Access Journals (Sweden)

    N.V. Petrenko

    2017-11-01

    Full Text Available Aim: to substantiate the application of a rational program of health-training sessions in the educational process of physical education of students in different phases of the ovarian-menstrual cycle. Material: in study participated students (n=127, who did not have deviations in health (the main medical group. According to the results of the tests were determined: heart rate; blood pressure; vital capacity of the lungs. To determine physical performance was used Harvard step-test. Physical exercises from the main means of health fitness were used differentially and dosed. Results: It was established that the consideration in the phases of the ovarian-menstrual cycle of indicators of the functional state, changes in well-being and working capacity give an opportunity: planning loads in the training process; adjustment of volume and intensity of loads. We recommend to schedule the load of our program as follows: in the menstrual phase - the development of flexibility (moderate load; in the postmenstrual phase - development of coordination, overall endurance; in ovulatory - speed development; in postovulatory - development of special endurance; in premenstrual - the development of strength, flexibility. In the postmenstrual and postovulatory phase, a high level of physical working capacity, functional state of the cardiopulmonary system has been registered. It also has a positive effect on body weight correction in the women students. Conclusions: When developing programs of health training sessions with women students it is necessary to take into account the phases of the ovarian-menstrual cycle.

  6. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  7. Systems Analyses of Advanced Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  8. Effects of sex, menstrual cycle phase, and endogenous hormones on cognition in schizophrenia.

    Science.gov (United States)

    Rubin, Leah H; Carter, C Sue; Drogos, Lauren L; Pournajafi-Nazarloo, Hossein; Sweeney, John A; Maki, Pauline M

    2015-08-01

    In women with schizophrenia, cognition has been shown to be enhanced following administration of hormone therapy or oxytocin. We examined how natural hormonal changes across the menstrual cycle influence cognition in women with schizophrenia. We hypothesized that female patients would perform worse on "female-dominant" tasks (verbal memory/fluency) and better on "male-dominant" tasks (visuospatial) during the early follicular phase (low estradiol and progesterone) compared to midluteal phase (high estradiol and progesterone) in relation to estradiol but not progesterone. Fifty-four women (23 with schizophrenia) completed cognitive assessments and provided blood for sex steroid assays and oxytocin at early follicular (days 2-4) and midluteal (days 20-22) phases. Men were included to verify the expected pattern of sex differences on cognitive tests. Expected sex differences were observed on "female-dominant" and "male-dominant" tasks (pperformance did not change across the menstrual cycle on "female-dominant" or "male-dominant" tasks in either group. Estradiol and progesterone levels were unrelated to cognitive performance. Oxytocin levels did not change across the menstrual cycle but were positively related to performance on "female-dominant" tasks in female patients only (pperformance on female dominant tests in women. Physiological levels of oxytocin may thus have a more powerful benefit in some cognitive domains than estrogens in schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Cell cycle phase of nondividing cells in aging human cell cultures determined by DNA content and chromosomal constitution

    International Nuclear Information System (INIS)

    Yanishevsky, R.M.

    1975-01-01

    Human diploid cell cultures, strain WI-38, have a finite proliferative capacity and have been proposed as a model of biological aging. To identify the cell cycle phase of the nondividing cells, cultures of various ages were exposed to 3 Hdt for 48 hours to label dividing cells, then the cycle phase was identified for individual cells by one of two methods, and finally, the proliferative status of the same cells was scored by autoradiographic evidence of 3 HdT uptake. The methods to identify the cycle phase were: determination of DNA strain content by Feulgen scanning cytophotometry, and determination of chromosome constitution by the technique of premature chromosome condensation (PCC). Preliminary experiments showed the effect of continuous exposure to various levels of 3 HdT on cell growth. High levels of 3 HdT inhibited cell cycle traverse: the cell number and labeling index curves reached a plateau; the cell volume increased; the cells accumulated with 4C DNA contents and it appeared that they blocked in G 2 phase. This pattern is consistent with a radiation effect. (U.S.)

  10. Influence of accelerated thermal charging and discharging cycles on thermo-physical properties of organic phase change materials for solar thermal energy storage applications

    International Nuclear Information System (INIS)

    Raam Dheep, G.; Sreekumar, A.

    2015-01-01

    Highlights: • Identification of organic phase change materials namely benzamide and sebacic acid. • Thermal reliability studies on identified phase change materials. • Measurement of phase transition temperature and latent heat of fusion. • Analysis of relative percentage difference (RPD%) in heat of fusion and melting temperature of benzamide and sebacic acid. - Abstract: Integration of appropriate thermal energy storage system plays a predominant role in upgrading the efficiency of solar thermal energy devices by reducing the incongruity between energy supply and demand. Latent heat thermal energy storage based on phase change materials (PCM) is found to be the most efficient and prospective method for storage of solar thermal energy. Ensuring the thermal reliability of PCM through large number of charging (melting) and discharging (solidification) cycles is a primary prerequisite to determine the suitability of PCM for a specific thermal energy storage applications. The present study explains the experimental analysis carried out on two PCM’s namely benzamide and sebacic acid to check the compatibility of the material in solar thermal energy storage applications. The selected materials were subjected to one thousand accelerated melting and solidification cycles in order to investigate the percentage of variation at different stages on latent heat of fusion, phase transition temperature, onset and peak melting temperature. Differential Scanning Calorimeter (DSC) was used to determine the phase transition temperature and heat of fusion upon completion of every 100 thermal cycles and continued up to 1000 cycles. Relative Percentage Difference (RPD%) is calculated to find out the absolute deviation of melting temperature and latent heat of fusion with respect to zeroth cycle. The experimental study recorded a melting temperatures of benzamide and sebacic acid as 125.09 °C and 135.92 °C with latent heat of fusion of 285.1 (J/g) and 374.4 (J/g). The

  11. HPT Clearance Control: Intelligent Engine Systems-Phase 1

    Science.gov (United States)

    2005-01-01

    The following work has been completed to satisfy the Phase I Deliverables for the "HPT Clearance Control" project under NASA GRC's "Intelligent Engine Systems" program: (1) Need for the development of an advanced HPT ACC system has been very clearly laid out, (2) Several existing and potential clearance control systems have been reviewed, (3) A scorecard has been developed to document the system, performance (fuel burn, range, payload, etc.), thermal, and mechanical characteristics of the existing clearance control systems, (4) Engine size and flight cycle selection for the advanced HPT ACC system has been reviewed with "large engine"/"long range mission" combination showing the most benefit, (5) A scoring criteria has been developed to tie together performance parameters for an objective, data driven comparison of competing systems, and (6) The existing HPT ACC systems have been scored based on this scoring system.

  12. Using single cell cultivation system for on-chip monitoring of the interdivision timer in Chlamydomonas reinhardtii cell cycle

    Directory of Open Access Journals (Sweden)

    Soloviev Mikhail

    2010-09-01

    Full Text Available Abstract Regulation of cell cycle progression in changing environments is vital for cell survival and maintenance, and different regulation mechanisms based on cell size and cell cycle time have been proposed. To determine the mechanism of cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii, we developed an on-chip single-cell cultivation system that allows for the strict control of the extracellular environment. We divided the Chlamydomonas cell cycle into interdivision and division phases on the basis of changes in cell size and found that, regardless of the amount of photosynthetically active radiation (PAR and the extent of illumination, the length of the interdivision phase was inversely proportional to the rate of increase of cell volume. Their product remains constant indicating the existence of an 'interdivision timer'. The length of the division phase, in contrast, remained nearly constant. Cells cultivated under light-dark-light conditions did not divide unless they had grown to twice their initial volume during the first light period. This indicates the existence of a 'commitment sizer'. The ratio of the cell volume at the beginning of the division phase to the initial cell volume determined the number of daughter cells, indicating the existence of a 'mitotic sizer'.

  13. A model for a knowledge-based system's life cycle

    Science.gov (United States)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a Committee on Standards for Artificial Intelligence. Presented here are the initial efforts of one of the working groups of that committee. The purpose here is to present a candidate model for the development life cycle of Knowledge Based Systems (KBS). The intent is for the model to be used by the Aerospace Community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are detailed as are and the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  14. Fluctuations in the limit cycle state and the problem of phase chaos

    International Nuclear Information System (INIS)

    Szepfalusy, P.; Tel, T.

    1981-11-01

    Gaussian fluctuations and first order fluctuation corrections to the deterministic solution are investigated in the framework of the generalized Ginzburg-Landau type equation of motion exhibiting a hard mode transition leading a to homogeneous limit cycle state. It is shown that the stationary distribution of the fluctuations around the limit cycle is not of the form of a Ginzburg-Landau functional. The nature of the further instability in the post bifurcational region, resulting in the phase chaos in the deterministic problem, is found to be qualitatively changed by the presence of noise. (author)

  15. Characterization of Al-Ti phases in cycled TiF{sub 3}-enhanced Na{sub 2}LiAlH{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway)]. E-mail: yumikon@ife.no; Fossdal, A. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway); Brinks, H.W. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway); Hauback, B.C. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway)

    2006-06-08

    TiF{sub 3}-enhanced Na{sub 2}LiAlH{sub 6} was investigated after dehydrogenation-hydrogenation cycles by synchrotron X-ray diffraction. There was no sign of Ti after ball-milling with TiF{sub 3}, but two types of Al-Ti phases were observed in the cycled samples. In a sample after measuring five pressure-composition isotherms in the temperature range from 170 to 250 deg. C, a fcc phase with a = 3.987 A was observed. This phase is considered to be Al{sub 3}Ti with the L1{sub 2} structure. Samples after one or four cycles at selected temperatures between 170 and 250 deg. C showed diffraction from another fcc phase with a {approx} 4.03 A. This indicates formation of an Al{sub 1-y}Ti {sub y} solid-solution phase with y {approx} 0.15 similar to previously reported for cycled NaAlH{sub 4} with Ti additives.

  16. Airbreathing combined cycle engine systems

    Science.gov (United States)

    Rohde, John

    1992-01-01

    The Air Force and NASA share a common interest in developing advanced propulsion systems for commercial and military aerospace vehicles which require efficient acceleration and cruise operation in the Mach 4 to 6 flight regime. The principle engine of interest is the turboramjet; however, other combined cycles such as the turboscramjet, air turborocket, supercharged ejector ramjet, ejector ramjet, and air liquefaction based propulsion are also of interest. Over the past months careful planning and program implementation have resulted in a number of development efforts that will lead to a broad technology base for those combined cycle propulsion systems. Individual development programs are underway in thermal management, controls materials, endothermic hydrocarbon fuels, air intake systems, nozzle exhaust systems, gas turbines and ramjet ramburners.

  17. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24

    Science.gov (United States)

    Luhmann, Janet G.; Petrie, Gordon; Riley, Pete

    2012-01-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is ‘typical’ solar wind, even when the Sun is relatively inactive. PMID:25685422

  18. Life-cycle analysis of renewable energy systems

    DEFF Research Database (Denmark)

    Sørensen, Bent

    1994-01-01

    An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants......An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants...

  19. Thermodynamic cycles of adsorption desalination system

    International Nuclear Information System (INIS)

    Wu, Jun W.; Hu, Eric J.; Biggs, Mark J.

    2012-01-01

    Highlights: ► Thermodynamic cycles of adsorption desalination (AD) system have been identified all possible evaporator temperature scenarios. ► Temperature of evaporator determines the cycle. ► Higher evaporator temperature leads to higher water production if no cooling is required. -- Abstract: The potential to use waste heat to co-generate cooling and fresh water from saline water using adsorption on silica is attracting increasing attention. A variety of different thermodynamic cycles of such an adsorption desalination (AD) system arise as the temperature of the saline water evaporator is varied relative to temperature of the water used to cool the adsorbent as it adsorbs the evaporated water. In this paper, all these possible thermodynamic cycles are enumerated and analysed to determine their relative performances in terms of specific energy consumption and fresh water productivity.

  20. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    Science.gov (United States)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-06-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  1. Dimensioning BCH codes for coherent DQPSK systems with laser phase noise and cycle slips

    DEFF Research Database (Denmark)

    Leong, Miu Yoong; Larsen, Knud J.; Jacobsen, Gunnar

    2014-01-01

    Forward error correction (FEC) plays a vital role in coherent optical systems employing multi-level modulation. However, much of coding theory assumes that additive white Gaussian noise (AWGN) is dominant, whereas coherent optical systems have significant phase noise (PN) in addition to AWGN...... approach for a target post-FEC BER of 10-5. Codes dimensioned with our bivariate binomial model meet the target within 0.2-dB signal-to-noise ratio....

  2. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.

    Science.gov (United States)

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C; Downey, Mike J; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A; Bretschneider, Till; van der Horst, Gijsbertus T J; Delaunay, Franck; Rand, David A

    2014-07-08

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.

  3. Association between different phases of menstrual cycle and body image measures of perceived size, ideal size, and body dissatisfaction.

    Science.gov (United States)

    Teixeira, André Luiz S; Dias, Marcelo Ricardo C; Damasceno, Vinícius O; Lamounier, Joel A; Gardner, Rick M

    2013-12-01

    The association between phases of the menstrual cycle and body image was investigated. 44 university women (M age = 23.3 yr., SD = 4.7) judged their perceived and ideal body size, and body dissatisfaction was calculated at each phase of the menstrual cycle, including premenstrual, menstrual, and intermenstrual. Participants selected one of nine figural drawings ranging from very thin to obese that represented their perceived size and ideal size. Body dissatisfaction was measured as the absolute difference between scores on perceived and ideal figural drawings. During each menstrual phase, anthropometric measures of weight, height, body mass index, circumference of waist and abdomen, and body composition were taken. There were no significant differences in any anthropometric measures between the three menstrual cycle phases. Perceived body size and body dissatisfaction were significantly different between menstrual phases, with the largest perceived body size and highest body dissatisfaction occurring during the menstrual phase. Ideal body size did not differ between menstrual phases, although participants desired a significantly smaller ideal size as compared to the perceived size.

  4. New method of thermal cycling stability test of phase change material

    Directory of Open Access Journals (Sweden)

    Putra Nandy

    2017-01-01

    Full Text Available Phase Change Material (PCM is the most promising material as thermal energy storage nowadays. As thermal energy storage, examination on endurance of material for long-term use is necessary to be carried out. Therefore, thermal cycling test is performed to ensure thermal stability of PCM. This study have found a new method on thermal cycling test of PCM sample by using thermoelectric as heating and cooling element. RT 22 HC was used as PCM sample on this thermal cycling test. The new method had many advantages compared to some references of the same test. It just needed a small container for PCM sample. The thermoelectric could release heat to PCM sample and absorb heat from PCM sample uniformly, respectively, was called as heating and cooling process. Hence, thermoelectric had to be supported by a relay control device to change its polarity so it could heat and cool PCM sample alternately and automatically. On the other hand, the thermoelectric was cheap, easy to be found and available in markets. It can be concluded that new method of thermal cycling test by using thermoelectric as source of heating and cooling can be a new reference for performing thermal cycling test on PCM.

  5. General problems of metrology and indirect measuring in cardiology: error estimation criteria for indirect measurements of heart cycle phase durations

    Directory of Open Access Journals (Sweden)

    Konstantine K. Mamberger

    2012-11-01

    Full Text Available Aims This paper treats general problems of metrology and indirect measurement methods in cardiology. It is aimed at an identification of error estimation criteria for indirect measurements of heart cycle phase durations. Materials and methods A comparative analysis of an ECG of the ascending aorta recorded with the use of the Hemodynamic Analyzer Cardiocode (HDA lead versus conventional V3, V4, V5, V6 lead system ECGs is presented herein. Criteria for heart cycle phase boundaries are identified with graphic mathematical differentiation. Stroke volumes of blood SV calculated on the basis of the HDA phase duration measurements vs. echocardiography data are compared herein. Results The comparative data obtained in the study show an averaged difference at the level of 1%. An innovative noninvasive measuring technology originally developed by a Russian R & D team offers measuring stroke volume of blood SV with a high accuracy. Conclusion In practice, it is necessary to take into account some possible errors in measurements caused by hardware. Special attention should be paid to systematic errors.

  6. Phase-changes in cell cycle of wound tissue irradiated with 5.21 Gy soft X-rays

    International Nuclear Information System (INIS)

    Liu Jianzhong; Zhou Yuanguo; Cheng Tianmin; Zhou Ping; Liu Xia; Li Ping

    2002-01-01

    Objective: To study the phase-changes in cell cycle of wound tissue which was locally irradiated with 5.21 Gy soft X-rays. Methods: Flow cytometry and PI staining were used to analyze cell cycle. Cell proliferation was determined with BrdU labeling. Results: During 3-9 days after irradiation, the percentage of the G 0 /G 1 phase cells in wound of the control side decreased while the percentage of S phase cells increased and reached the highest value on day 9. The percentage of G 2 /M phase cells also increased, and reached its peak on day 15. The percentage of G 0 /G 1 phase cell increased in wound of the irradiation side and was higher than that of the control wound, meanwhile the percentages of S and G 2 /M cells were significantly lower than those of the control wound. In the period of 12-22 days after wounding, the percentage of S phase cells increased and reached its peak value on the 22 th day. When most of cells were in S phase and arrested dramatically. Through the whole healing process, the percentage of G 2 /M in wound of the irradiation side was lower than that of the non-irradiated wound. The BrdU-positive cells were fibroblasts, endothelial cells and smooth muscle cells. Conclusion: These results suggest that G 1 block, S phase arrest, and switch of G 2 /M with suppression of mitotic activity of these cells are induced by local 5.21 Gy soft X-ray irradiation. Therefore, wound healing delay is induced partly by cell cycle arrest

  7. Comparative analysis of thermodynamic performance and optimization of organic flash cycle (OFC) and organic Rankine cycle (ORC)

    International Nuclear Information System (INIS)

    Lee, Ho Yong; Park, Sang Hee; Kim, Kyoung Hoon

    2016-01-01

    A comparative thermodynamic performance and optimization analysis of basic organic flash cycle (OFCB), organic flash cycle with two-phase expander (OFCT), and organic Rankine cycle (ORC) activated by low-temperature sensible energy is carried out in the subcritical pressure regions. The three substances of R245fa, R123, and o-xylene are considered as the working fluids. Effects of cycle type, working fluid, and evaporation and source temperatures are systemically investigated on the system performance such as net power production, thermal and exergy efficiencies, and exergy destruction ratios at each component of the systems. Results show that the cycle type or working fluid which shows optimum performance depends on the source temperature, and organic flash cycle shows a potential for efficient recovery of low grade energy source.

  8. [EEG alpha indices in dependence on the menstrual cycle phase and salivary progesterone].

    Science.gov (United States)

    Bazanova, O M; Kondratenko, A V; Kuz'minova, O I; Muravleva, K B; Petrova, S E

    2014-01-01

    The effects of the neurohumoral status on the EEG alpha - activity indices were studied in a within-subject design with 78 women aged 18-27 years during 1-2 menstrual cycle. Psychometric and EEG indices of alpha waves basal body temperature, saliva progesterone and cortisol level were monitored every 2-3 days. Menstrual and follicular recording sessions occurred before the ovulatory temperature rise, luteal recording session--after increasing progesterone level more than 20% respect to previous day and premenstrual sessions after decreasing progesterone level more that 20% respect to previous day. The design consisted of rest and task periods EEG, EMG and ECG recordings. Half the subjects began during their menstrual phase and half began during their luteal phase. All 5 phases were compared for differences between psychometric features EEG alpha activity, EMG and ECG baseline resting levels, as well as for reactivity to cognitive task. The results showed menstrual phase differences in all psychometric and alpha EEG indices. The cognitive fluency, alpha peak frequency, alpha band width, power in alpha-2 frequency range are maximal at luteal, alpha visual activation and reactivity to cognitive task performance--at follicular phase. The hypothesis that the EEG alpha activity depends on the hormonal status supported by the positive association salivary progesterone level with the alpha peak frequency, power in the alpha-2 band and negative--with the power of the alpha-1 band. According these results, we conclude that psycho-physiological recording sessions with women might be provided with a glance to phase of menstrual cycle.

  9. Enhanced response to ozone exposure during the follicular phase of the menstrual cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fox, S.D.; Adams, W.C.; Brookes, K.A.; Lasley, B.L. (Univ. of Calfornia, Davis (United States))

    1993-08-01

    Exposure to ozone (O[sub 3]), a toxic component of photochemical smog, results in significant airway inflammation, respiratory discomfort, and pulmonary function impairment. These effects can be reduced via pretreatment with anti-inflammatory agents. Progesterone, a gonadal steroid, is known to reduce general inflammation in the uterine endometrium. However, it is not known whether fluctuation in blood levels of progesterone, which are experienced during the normal female menstrual cycle, could alter O[sub 3] inflammatory-induced pulmonary responses. In this study, we tested the hypothesis that young, adult females are more responsive to O[sub 3] inhalation with respect to pulmonary function impairment during their follicular (F) menstrual phase when progesterone levels are lowest that during their mid-luteal (ML) phase when progesterone levels are highest. Nine subjects with normal ovarian function were exposed in random order for 1 hour each to filtered air and to 0.30 ppm O[sub 3] in their F and ML menstrual phases. Ozone responsiveness was measured by percent change in pulmonary function from pre- to postexposure. Significant gas concentration effects (filtered air versus O[sub 3]) were observed for forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV[sub 1]), and forced expiratory flow between 25 and 75% of FVC (FEF[sub 25-75]), showed a significant menstrual phase and gas concentration interaction effect, with larger decrements observed in the F menstrual phase when progesterone concentrations were significantly lower. We conclude that young, adult females appear to be more responsive to acute O[sub 3] exposure during the F phase than during the ML phase of their menstrual cycles. This difference in pulmonary function response could be related to the anti-inflammatory effects of increased progesterone concentrations during the luteal phase.

  10. Porcine epidemic diarrhea virus through p53-dependent pathway causes cell cycle arrest in the G0/G1 phase.

    Science.gov (United States)

    Sun, Pei; Wu, Haoyang; Huang, Jiali; Xu, Ying; Yang, Feng; Zhang, Qi; Xu, Xingang

    2018-05-22

    Porcine epidemic diarrhea virus (PEDV), an enteropathogenic Alphacoronavirus, has caused enormous economic losses in the swine industry. p53 protein exists in a wide variety of animal cells, which is involved in cell cycle regulation, apoptosis, cell differentiation and other biological functions. In this study, we investigated the effects of PEDV infection on the cell cycle of Vero cells and p53 activation. The results demonstrated that PEDV infection induces cell cycle arrest at G0/G1 phase in Vero cells, while UV-inactivated PEDV does not cause cell cycle arrest. PEDV infection up-regulates the levels of p21, cdc2, cdk2, cdk4, Cyclin A protein and down-regulates Cyclin E protein. Further research results showed that inhibition of p53 signaling pathway can reverse the cell cycle arrest in G0/G1 phase induced by PEDV infection and cancel out the up-regulation of p21 and corresponding Cyclin/cdk mentioned above. In addition, PEDV infection of the cells synchronized in various stages of cell cycle showed that viral subgenomic RNA and virus titer were higher in the cells released from G0/G1 phase synchronized cells than that in the cells released from the G1/S phase and G2/M phase synchronized or asynchronous cells after 18 h p.i.. This is the first report to demonstrate that the p53-dependent pathway plays an important role in PEDV induced cell cycle arrest and beneficially contributes to viral infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Comparison between two forms of vaginally administered progesterone for luteal phase support in assisted reproduction cycles.

    Science.gov (United States)

    Geber, Selmo; Moreira, Ana Carolina Ferreira; de Paula, Sálua Oliveira Calil; Sampaio, Marcos

    2007-02-01

    The use of progesterone for luteal phase support has been demonstrated to be beneficial in assisted reproduction cycles using gonadotrophin-releasing hormone analogues (GnRHa). Two micronized progesterone preparations are available for vaginal administration: capsules and gel. The objective of this study was to compare the efficacy of these two forms for luteal phase support in assisted reproduction cycles. A total of 244 couples undergoing IVF/intracytoplasmic sperm injection cycles were included in the study and were randomly allocated (sealed envelopes) into two groups: group 1 (122) received vaginal capsules of 200 mg of micronized progesterone (Utrogestan), 3 times daily, and group 2 (122) received micronized progesterone in gel (Crinone 8%), once daily. Both groups received progesterone for 13 days beginning day 1 after oocyte retrieval, continuing until the pregnancy test was performed and until 12 weeks of pregnancy. Groups were compared by clinical data and assisted reproduction results and had similar ages and causes of infertility. Although the pregnancy rate was higher for those receiving progesterone gel than capsules (44.26 and 36.06% respectively), this difference was not statistically significant. The study showed that vaginal progesterone gel and capsules used for luteal phase support in assisted reproduction cycles with long protocol GnRHa result in similar pregnancy rates.

  12. ARC System fuel cycle analysis capability, REBUS-2

    International Nuclear Information System (INIS)

    Hosteny, R.P.

    1978-10-01

    A detailed description is given of the ARC System fuel cycle modules FCI001, FCC001, FCC002, and FCC003 which form the fuel cycle analysis modules of the ARC System. These modules, in conjunction with certain other modules of the ARC System previously described in documents of this series, form the fuel cycle analysis system called REBUS-2. The physical model upon which the REBUS-2 fuel cycle modules are based and the calculational approach used in solving this model are discussed in detail. The REBUS-2 system either solves for the infinite time (i.e., equilibrium) operating conditions of a fuel recycle system under fixed fuel management conditions, or solves for the operating conditions during each of a series of explicitly specified (i.e., nonequilibrium) sequence of burn cycles. The code has the capability to adjust the fuel enrichment, the burn time, and the control poison requirements in order to satisfy user specified constraints on criticality, discharge fuel burnup, or to give the desired multiplication constant at some specified time during the reactor operation

  13. ARC System fuel cycle analysis capability, REBUS-2

    Energy Technology Data Exchange (ETDEWEB)

    Hosteny, R.P.

    1978-10-01

    A detailed description is given of the ARC System fuel cycle modules FCI001, FCC001, FCC002, and FCC003 which form the fuel cycle analysis modules of the ARC System. These modules, in conjunction with certain other modules of the ARC System previously described in documents of this series, form the fuel cycle analysis system called REBUS-2. The physical model upon which the REBUS-2 fuel cycle modules are based and the calculational approach used in solving this model are discussed in detail. The REBUS-2 system either solves for the infinite time (i.e., equilibrium) operating conditions of a fuel recycle system under fixed fuel management conditions, or solves for the operating conditions during each of a series of explicitly specified (i.e., nonequilibrium) sequence of burn cycles. The code has the capability to adjust the fuel enrichment, the burn time, and the control poison requirements in order to satisfy user specified constraints on criticality, discharge fuel burnup, or to give the desired multiplication constant at some specified time during the reactor operation.

  14. A New Power Calculation Method for Single-Phase Grid-Connected Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    A new method to calculate average active power and reactive power for single-phase systems is proposed in this paper. It can be used in different applications where the output active power and reactive power need to be calculated accurately and fast. For example, a grid-connected photovoltaic...... system in low voltage ride through operation mode requires a power feedback for the power control loop. Commonly, a Discrete Fourier Transform (DFT) based power calculation method can be adopted in such systems. However, the DFT method introduces at least a one-cycle time delay. The new power calculation...... method, which is based on the adaptive filtering technique, can achieve a faster response. The performance of the proposed method is verified by experiments and demonstrated in a 1 kW single-phase grid-connected system operating under different conditions.Experimental results show the effectiveness...

  15. An Inquiry into the Life Cycle of Systems of Inner Walls: Comparison of Masonry and Drywall

    Directory of Open Access Journals (Sweden)

    Karina Condeixa

    2015-06-01

    Full Text Available Life Cycle Assessment is a methodology that investigates impacts linked to a product or service during its entire life cycle. Life Cycle Assessment studies investigate processes and sub-processes in a fragmented way to ascertain their inputs, outputs and emissions and get an overview of the generating sources of their environmental loads. The lifecycle concept involves all direct and indirect processes of the studied object. This article aims to model the material flows in the masonry and drywall systems and internal walls in a Brazilian scenario, and calculate the climate change impacts generated by the transport of the component materials of the systems. Internal walls of a residential dwelling in Rio de Janeiro are analyzed from a qualitative inventory of all life cycles with an analysis of material flows, based on technical and academic literature. All Life Cycle Impact Assessment of the systems is carried out with international data from the database, and using the IPCC2013 method for climate change impacts. This study disregards the refurbishment and possible extensions within the use phase. Thus, the inventory identifies weaknesses of the systems while the impact assessment validates the results. This study allows us a complete understanding about the inner walls systems in the Brazilian scenario, evidencing its main weaknesses and subsidizes decision-making for the industry and for planning of the new buildings.

  16. Phase change thermal storage for a solar total energy system

    Science.gov (United States)

    Rice, R. E.; Cohen, B. M.

    1978-01-01

    An analytical and experimental program is being conducted on a one-tenth scale model of a high-temperature (584 K) phase-change thermal energy storage system for installation in a solar total energy test facility at Albuquerque, New Mexico, U.S.A. The thermal storage medium is anhydrous sodium hydroxide with 8% sodium nitrate. The program will produce data on the dynamic response of the system to repeated cycles of charging and discharging simulating those of the test facility. Data will be correlated with a mathematical model which will then be used in the design of the full-scale system.

  17. Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system

    International Nuclear Information System (INIS)

    Bi, Zicheng; Song, Lingjun; De Kleine, Robert; Mi, Chunting Chris; Keoleian, Gregory A.

    2015-01-01

    Graphical abstract: In this study, plug-in and wireless charging for an all-electric bus system are compared from the life cycle energy and greenhouse gas (GHG) emissions perspectives. The comparison of life cycle GHG emissions is shown in the graph below. The major differences between the two systems, including the charger, battery and use-phase electricity consumption, are modeled separately and compared aggregately. In the base case, the wireless charging system consumes 0.3% less energy and emits 0.5% less greenhouse gases than plug-in charging system in the total life cycle. To further improve the energy and environmental performance of the wireless charging system, key parameters including grid carbon intensity and wireless charging efficiency are analyzed and discussed in this paper. - Highlights: • Compared life cycle energy and GHG emissions of wireless to plug-in charging. • Modeled a transit bus system to compare both charging methods as a case study. • Contrasted tradeoffs of infrastructure burdens with lightweighting benefits. • The wireless battery can be downsized to 27–44% of a plug-in charged battery. • Explored sensitivity of wireless charging efficiency & grid carbon intensity. - Abstract: Wireless charging, as opposed to plug-in charging, is an alternative charging method for electric vehicles (EVs) with rechargeable batteries and can be applicable to EVs with fixed routes, such as transit buses. This study adds to the current research of EV wireless charging by utilizing the Life Cycle Assessment (LCA) to provide a comprehensive framework for comparing the life cycle energy demand and greenhouse gas emissions associated with a stationary wireless charging all-electric bus system to a plug-in charging all-electric bus system. Life cycle inventory analysis of both plug-in and wireless charging hardware was conducted, and battery downsizing, vehicle lightweighting and use-phase energy consumption were modeled. A bus system in Ann Arbor

  18. INFLUENCE OF EMBRYO IMPLANTATION ON ENDOMETRIUM IN LUTEAL PHASE OF MENSTRUAL CYCLE

    Directory of Open Access Journals (Sweden)

    Romana Dmitrović

    2018-02-01

    Full Text Available Background: Based on the facts known from embryology, rapid endometrial growth during late luteal phase of the cycle could be expected. In this research, we sought to establish if normal intrauterine pregnancy could be confirmed before gestational sac vizualization, by trans- vaginal ultrasound and hormonal tests. The primary hypothesis was that the endometrial thickness and/or volume in the luteal phase of the cycle, in cycles resulting in normal intra- uterine pregnancy, is significantly different compared to non-conception cycles. We also hypothesized that endometrial thickness and/or volume are different in cycles resulting in normal intrauterine pregnancy compared to cycles resulting in abnormal pregnancy, namely biochemical and ectopic pregnancy, and spontaneous abortion. Additionally, next to endometrial volumes, we decided to measure the endometrium in three planes (thick- ness, length and width, to see if the hypothesized endometrial volume differences could be approximated by this simple surrogate technique, which is available in most parts of the world. Methods: This was a prospective observational study of women enrolled in an assisted reproduction program. Patients were stimulated with standard stimulation protocols. The oocyte retrieval was performed 36 hours after the hCG administration and the embryo was transferred 3 or 5 days later. Patients were first seen on day 20–24 of the cycle , and then on day 27–30 of the cycle. A blood sample was taken, and 3D transvaginal ultrasound was done. Following the completion of study visits, patients with a positive HCG test received phone call check- ups until week 12 of pregnancy, and were stratified according to pregnancy outcome. Results: 80 subjects signed the informed consent form. 4 patients had the IUI in the stimulated cycle, one had ET in spontaneous cycle, and 74 patients had undergone IVF/ET in the stimulated cycle. 63 patients in the stimulated cycles completed the study and

  19. A Wearable Gait Phase Detection System Based on Force Myography Techniques

    Directory of Open Access Journals (Sweden)

    Xianta Jiang

    2018-04-01

    Full Text Available (1 Background: Quantitative evaluation of gait parameters can provide useful information for constructing individuals’ gait profile, diagnosing gait abnormalities, and better planning of rehabilitation schemes to restore normal gait pattern. Objective determination of gait phases in a gait cycle is a key requirement in gait analysis applications; (2 Methods: In this study, the feasibility of using a force myography-based technique for a wearable gait phase detection system is explored. In this regard, a force myography band is developed and tested with nine participants walking on a treadmill. The collected force myography data are first examined sample-by-sample and classified into four phases using Linear Discriminant Analysis. The gait phase events are then detected from these classified samples using a set of supervisory rules; (3 Results: The results show that the force myography band can correctly detect more than 99.9% of gait phases with zero insertions and only four deletions over 12,965 gait phase segments. The average temporal error of gait phase detection is 55.2 ms, which translates into 2.1% error with respect to the corresponding labelled stride duration; (4 Conclusions: This proof-of-concept study demonstrates the feasibility of force myography techniques as viable solutions in developing wearable gait phase detection systems.

  20. System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Nguyen, Tuong-Van; Knudsen, Thomas

    2014-01-01

    Waste heat recovery systems can produce power from heat without using fuel or emitting CO2, therefore their implementation is becoming increasingly relevant. The Kalina cycle is proposed as an efficient process for this purpose. The main reason for its high efficiency is the non-isothermal phase...... change characteristics of the ammonia-water working fluid. The present study investigates a unique type of Kalina process called the Split-cycle, applied to the exhaust heat recovery from large marine engines. In the Split-cycle, the working fluid concentration can be changed during the evaporation...

  1. Analysis of interconnecting energy systems over a synchronized life cycle

    International Nuclear Information System (INIS)

    Nian, Victor

    2016-01-01

    Highlights: • A methodology is developed for evaluating a life cycle of interconnected systems. • A new concept of partial temporal boundary is introduced via quantitative formulation. • The interconnecting systems are synchronized through the partial temporal boundary. • A case study on the life cycle of the coal–uranium system is developed. - Abstract: Life cycle analysis (LCA) using the process chain analysis (PCA) approach has been widely applied to energy systems. When applied to an individual energy system, such as coal or nuclear electricity generation, an LCA–PCA methodology can yield relatively accurate results with its detailed process representation based on engineering data. However, there are fundamental issues when applying conventional LCA–PCA methodology to a more complex life cycle, namely, a synchronized life cycle of interconnected energy systems. A synchronized life cycle of interconnected energy systems is established through direct interconnections among the processes of different energy systems, and all interconnecting systems are bounded within the same timeframe. Under such a life cycle formation, there are some major complications when applying conventional LCA–PCA methodology to evaluate the interconnecting energy systems. Essentially, the conventional system and boundary formulations developed for a life cycle of individual energy system cannot be directly applied to a life cycle of interconnected energy systems. To address these inherent issues, a new LCA–PCA methodology is presented in this paper, in which a new concept of partial temporal boundary is introduced to synchronize the interconnecting energy systems. The importance and advantages of these new developments are demonstrated through a case study on the life cycle of the coal–uranium system.

  2. Impact of menstrual cycle phase on endocrine effects of partial sleep restriction in healthy women.

    Science.gov (United States)

    LeRoux, Amanda; Wright, Lisa; Perrot, Tara; Rusak, Benjamin

    2014-11-01

    There is extensive evidence that sleep restriction alters endocrine function in healthy young men, increasing afternoon cortisol levels and modifying levels of other hormones that regulate metabolism. Recent studies have confirmed these effects in young women, but have not investigated whether menstrual cycle phase influences these responses. The effects on cortisol levels of limiting sleep to 3h for one night were assessed in two groups of women at different points in their menstrual cycles: mid-follicular and mid-luteal. Eighteen healthy, young women, not taking oral contraceptives (age: 21.8±0.53; BMI: 22.5±0.58 [mean±SEM]), were studied. Baseline sleep durations, eating habits and menstrual cycles were monitored. Salivary samples were collected at six times of day (08:00, 08:30, 11:00, 14:00, 17:00, 20:00) during two consecutive days: first after a 10h overnight sleep opportunity (Baseline) and then after a night with a 3h sleep opportunity (Post-sleep restriction). All were awakened at the same time of day. Women in the follicular phase showed a significant decrease (p=0.004) in their cortisol awakening responses (CAR) after sleep restriction and a sustained elevation in afternoon/evening cortisol levels (p=0.008), as has been reported for men. Women in the luteal phase showed neither a depressed CAR, nor an increase in afternoon/evening cortisol levels. Secondary analyses examined the impact of sleep restriction on self-reported hunger and mood. Menstrual cycle phase dramatically altered the cortisol responses of healthy, young women to a single night of sleep restriction, implicating effects of spontaneous changes in endocrine status on adrenal responses to sleep loss. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Noncircular Chainrings Do Not Influence Maximum Cycling Power.

    Science.gov (United States)

    Leong, Chee-Hoi; Elmer, Steven J; Martin, James C

    2017-12-01

    Noncircular chainrings could increase cycling power by prolonging the powerful leg extension/flexion phases, and curtailing the low-power transition phases. We compared maximal cycling power-pedaling rate relationships, and joint-specific kinematics and powers across 3 chainring eccentricities (CON = 1.0; LOW ecc  = 1.13; HIGH ecc  = 1.24). Part I: Thirteen cyclists performed maximal inertial-load cycling under 3 chainring conditions. Maximum cycling power and optimal pedaling rate were determined. Part II: Ten cyclists performed maximal isokinetic cycling (120 rpm) under the same 3 chainring conditions. Pedal and joint-specific powers were determined using pedal forces and limb kinematics. Neither maximal cycling power nor optimal pedaling rate differed across chainring conditions (all p > .05). Peak ankle angular velocity for HIGH ecc was less than CON (p pedal system allowed cyclists to manipulate ankle angular velocity to maintain their preferred knee and hip actions, suggesting maximizing extension/flexion and minimizing transition phases may be counterproductive for maximal power.

  4. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 1, Data Analysis-The Deliverables provides a comprehensive treatment of data analysis within the systems development life-cycle and all the deliverables that need to be collected in analysis. The purpose of deliverables is explained and a number of alternative ways of collecting them are discussed. This book is comprised of five chapters and begins with an overview of what """"analysis"""" actually means, with particular reference to tasks such as hardware planning and software evaluation and where they fit into the overall cycle. The ne

  5. Development of Phase Lock Loop System for Synchronisation of a Hybrid System with the Grid

    Directory of Open Access Journals (Sweden)

    A. S. Abubakar

    2016-06-01

    Full Text Available Phase locked loop (PLL is an important part of the control unit of the grid connected power converter. The method of zero crossing detection (ZCD does not produce accurate phase information when grid is non-ideal. In this work, a synchronous reference frame (SRF PLL method to obtain accurate phase information when the grid voltages are unbalanced is proposed. The performances of the PLL have been verified for ideal and abnormal grid conditions such as unbalance, voltage sag, faults condition etc. Based on the results obtained, the developed PLL gives better fault ride when unbalances in the three phase input signals are overall handled well by the PLL system as it locks the two signal back within the first cycle. It also overcomes a phase jump after 5 milli-seconds from the time the fault was introduced and performs better tracking of the grid voltage and that of the renewable energy source.

  6. Development of Phase Lock Loop System for Synchronisation of a Hybrid System with the Grid

    Directory of Open Access Journals (Sweden)

    A. S. Abubakar

    2016-12-01

    Full Text Available Phase locked loop (PLL is an important part of the control unit of the grid connected power converter. The method of zero crossing detection (ZCD does not produce accurate phase information when grid is non-ideal. In this work, a synchronous reference frame (SRF PLL method to obtain accurate phase information when the grid voltages are unbalanced is proposed. The performances of the PLL have been verified for ideal and abnormal grid conditions such as unbalance, voltage sag, faults condition etc. Based on the results obtained, the developed PLL gives better fault ride when unbalances in the three phase input signals are overall handled well by the PLL system as it locks the two signal back within the first cycle. It also overcomes a phase jump after 5 milli-seconds from the time the fault was introduced and performs better tracking of the grid voltage and that of the renewable energy source.

  7. Administration of single-dose GnRH agonist in the luteal phase in ICSI cycles: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Oliveira João

    2010-09-01

    Full Text Available Abstract Background The effects of gonadotrophin-releasing hormone agonist (GnRH-a administered in the luteal phase remains controversial. This meta-analysis aimed to evaluate the effect of the administration of a single-dose of GnRH-a in the luteal phase on ICSI clinical outcomes. Methods The research strategy included the online search of databases. Only randomized studies were included. The outcomes analyzed were implantation rate, clinical pregnancy rate (CPR per transfer and ongoing pregnancy rate. The fixed effects model was used for odds ratio. In all trials, a single dose of GnRH-a was administered at day 5/6 after ICSI procedures. Results All cycles presented statistically significantly higher rates of implantation (P Conclusions These findings demonstrate that the luteal-phase single-dose GnRH-a administration can increase implantation rate in all cycles and CPR per transfer and ongoing pregnancy rate in cycles with GnRH antagonist ovarian stimulation protocol. Nevertheless, by considering the heterogeneity between the trials, it seems premature to recommend the use of GnRH-a in the luteal phase. Additional randomized controlled trials are necessary before evidence-based recommendations can be provided.

  8. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING: PHASE 3R

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q99.

  9. Effects of menstrual cycle phase and oral contraceptives on alertness, cognitive performance, and circadian rhythms during sleep deprivation

    Science.gov (United States)

    Wright, K. P. Jr; Badia, P.; Czeisler, C. A. (Principal Investigator)

    1999-01-01

    The influence of menstrual cycle phase and oral contraceptive use on neurobehavioral function and circadian rhythms were studied in healthy young women (n = 25) using a modified constant routine procedure during 24 h of sleep deprivation. Alertness and performance worsened across sleep deprivation and also varied with circadian phase. Entrained circadian rhythms of melatonin and body temperature were evident in women regardless of menstrual phase or oral contraceptive use. No significant difference in melatonin levels, duration, or phase was observed between women in the luteal and follicular phases, whereas oral contraceptives appeared to increase melatonin levels. Temperature levels were higher in the luteal phase and in oral contraceptive users compared to women in the follicular phase. Alertness on the maintenance of wakefulness test and some tests of cognitive performance were poorest for women in the follicular phase especially near the circadian trough of body temperature. These observations suggest that hormonal changes associated with the menstrual cycle and the use of oral contraceptives contribute to changes in nighttime waking neurobehavioral function and temperature level whereas these factors do not appear to affect circadian phase.

  10. Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Chan, A.K.

    2000-02-23

    This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

  11. Environmental and resources geochemistry of earth system mass transfer mechanism, geochemical cycle and the influence of human activity

    CERN Document Server

    Shikazono, Naotatsu

    2015-01-01

    The Earth system consists of subsystems that include the atmosphere, hydrosphere (water), geosphere (rocks, minerals), biosphere, and humans. In order to understand these subsystems and their interactions, it is essential to clarify the mass transfer mechanism, geochemical cycle, and influence of human activity on the natural environment. This book presents fundamental theories (thermodynamics, kinetics, mass balance model, coupling models such as the kinetics-fluid flow model, the box model, and others) concerning mechanisms in weathering, formation of hydrothermal ore deposits, hydrothermal alteration, formation of groundwater quality, and the seawater system. The interaction between fluids (atmosphere, water) and solid phases (rocks, minerals) occurs both in low-temperature and also in high-temperature systems. This book considers the complex low-temperature cycle with the high-temperature cycle, a combination that has not been dealt with in previous books concerning Earth systems. Humanity is a small part...

  12. Menstrual cycle phase affects discrimination of infant cuteness.

    Science.gov (United States)

    Lobmaier, Janek S; Probst, Fabian; Perrett, David I; Heinrichs, Markus

    2015-04-01

    Recent studies have shown that women are more sensitive than men to subtle cuteness differences in infant faces. It has been suggested that raised levels in estradiol and progesterone may be responsible for this advantage. We compared young women's sensitivity to computer-manipulated baby faces varying in cuteness. Thirty-six women were tested once during ovulation and once during the luteal phase of their menstrual cycle. In a two alternative forced-choice experiment, participants chose the baby which they thought was cuter (Task 1), younger (Task 2), or the baby that they would prefer to babysit (Task 3). Saliva samples to assess levels of estradiol, progesterone and testosterone were collected at each test session. During ovulation, women were more likely to choose the cuter baby than during the luteal phase, in all three tasks. These results suggest that cuteness discrimination may be driven by cyclic hormonal shifts. However none of the measured hormones were related to increased cuteness sensitivity. We speculate that other hormones than the ones measured here might be responsible for the increased sensitivity to subtle cuteness differences during ovulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Survey on the life cycle system of a product with shared information; Joho kyoyugata product life cycle system ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report provides and proposes new concept and optimization technology on the life cycle system of product for emission minimum. For the proposed life cycle system of product with shared information, the global emission minimum is realized by considering the final emission, the information is given to the product and shared in all the life cycle system, the information sending function is considered from the product, and the information necessary for material processing are actively used. For this life cycle system of product, development of the information model for the system, development of the technology of data saving, renewing, searching and sending, development of sensing and re-using technologies of the product for life cycle, development of the technology attaching information in the product for emission minimum, design of the guidelines of material composition, and research and development of materials for emission minimum are extracted and provided as tasks. 26 refs., 69 figs., 8 tabs.

  14. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems

    International Nuclear Information System (INIS)

    Gicquel, R.

    2009-01-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO 2 capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  15. PROJECT GOVERNANCE – PHASES AND LIFE CYCLE

    Directory of Open Access Journals (Sweden)

    Robbert Titus DEENEN

    2007-01-01

    Full Text Available When talking about projects, the barrier is clear: successful and failed. Some fail due to different reasons, but lack of good project and risk management played a large part. Others succeed largely because of the rigorous and disciplined application of good project practices. But both groups illustrate many points that underline and demonstrate important concepts applicable to current projects. Systematic application of good methods leads to successful outcomes in projects of all types. All projects are fundamentally dependent on people, and human beings are not very different today than we were hundreds, or even thousands, of years ago. This paper uncovers main elements in projects area such as the concepts and governance of projects, with an underline of the main characteristics and the projects phases and life cycle that erase the uncertainty that joins all the projects built at any time.

  16. Lunar Phase Modulates Circadian Gene Expression Cycles in the Broadcast Spawning Coral Acropora millepora.

    Science.gov (United States)

    Brady, Aisling K; Willis, Bette L; Harder, Lawrence D; Vize, Peter D

    2016-04-01

    Many broadcast spawning corals in multiple reef regions release their gametes with incredible temporal precision just once per year, using the lunar cycle to set the night of spawning. Moonlight, rather than tides or other lunar-regulated processes, is thought to be the proximate factor responsible for linking the night of spawning to the phase of the Moon. We compared patterns of gene expression among colonies of the broadcast spawning coral Acropora millepora at different phases of the lunar cycle, and when they were maintained under one of three experimentally simulated lunar lighting treatments: i) lunar lighting conditions matching those on the reef, or lunar patterns mimicking either ii) constant full Moon conditions, or iii) constant new Moon conditions. Normal lunar illumination was found to shift both the level and timing of clock gene transcription cycles between new and full moons, with the peak hour of expression for a number of genes occurring earlier in the evening under a new Moon when compared to a full Moon. When the normal lunar cycle is replaced with nighttime patterns equivalent to either a full Moon or a new Moon every evening, the normal monthlong changes in the level of expression are destroyed for most genes. In combination, these results indicate that daily changes in moonlight that occur over the lunar cycle are essential for maintaining normal lunar periodicity of clock gene transcription, and this may play a role in regulating spawn timing. These data also show that low levels of light pollution may have an impact on coral biological clocks. © 2016 Marine Biological Laboratory.

  17. Life cycles of energetic systems

    International Nuclear Information System (INIS)

    Adnot, Jerome; Marchio, Dominique; Riviere, Philippe; Duplessis, B.; Rabl, A.; Glachant, M.; Aggeri, F.; Benoist, A.; Teulon, H.; Daude, J.

    2012-01-01

    This collective publication aims at being a course for students in engineering of energetic systems, i.e. at learning how to decide to accept or discard a project, to select the most efficient system, to select the optimal system, to select the optimal combination of systems, and to classify independent systems. Thus, it presents methods to analyse system life cycle from an energetic, economic and environmental point of view, describes how to develop an approach to the eco-design of an energy consuming product, how to understand the importance of hypotheses behind abundant and often contradicting publicised results, and to be able to criticise or to put in perspective one's own analysis. The first chapters thus recall some aspects of economic calculation, introduce the assessment of investment and exploitation costs of energetic systems, describe how to assess and internalise environmental costs, present the territorial carbon assessment, discuss the use of the life cycle assessment, and address the issue of environmental management at a product scale. The second part proposes various case studies: an optimal fleet of thermal production of electric power, the eco-design of a refrigerator, the economic and environmental assessment of wind farms

  18. Fast in situ X-ray diffraction phase and stress analysis during complete heat treatment cycles of steel

    International Nuclear Information System (INIS)

    Rocha, A. da S.; Hirsch, T.

    2005-01-01

    This paper presents results obtained with a method for time and temperature resolved analysis of changes in phase composition and stresses/residual stresses during complete heat treatment cycles of steel, including quenching. Sample temperatures of up to 930 deg. C could be reached with a specially designed furnace, where fast cooling of the samples was realized by gas quenching. Measurements for phase and stress analysis could be performed with an acquisition rate of at least one value every 3 s. Results concerning residual stress relaxation during heating, and stress/residual stress development during quenching are presented and discussed for AISI E52100 ball bearing steel. The observed stress development during quenching followed the expected transformation behavior with some deviations that could be explained through the effects of surface decarburization. The system developed proved to be a suitable tool for characterizing phase and stress changes that occur during heat treatment of steels, as a function of time and temperature

  19. The status of nuclear fuel cycle system analysis for the development of advanced nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Seong Ki; Lee, Hyo Jik; Chang, Hong Rae; Kwon, Eun Ha; Lee, Yoon Hee; Gao, Fanxing [KAERI, Daejeon (Korea, Republic of)

    2011-11-15

    The system analysis has been used with different system and objectives in various fields. In the nuclear field, the system can be applied from uranium mining to spent fuel reprocessing or disposal which is called the nuclear fuel cycle. The analysis of nuclear fuel cycle can be guideline for development of advanced fuel cycle through integrating and evaluating the technologies. For this purpose, objective approach is essential and modeling and simulation can be useful. In this report, several methods which can be applicable for development of advanced nuclear fuel cycle, such as TRL, simulation and trade analysis were explained with case study

  20. The Nuclear Fuel Cycle Information System

    International Nuclear Information System (INIS)

    1987-02-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities. Its purpose is to identify existing and planned nuclear fuel cycle facilities throughout the world and to indicate their main parameters. It includes information on facilities for uranium ore processing, refining, conversion and enrichment, for fuel fabrication, away-from-reactor storage of spent fuel and reprocessing, and for the production of zirconium metal and Zircaloy tubing. NFCIS currently covers 271 facilities in 32 countries and includes 171 references

  1. Demographic-Based Perceptions of Adequacy of Software Security's Presence within Individual Phases of the Software Development Life Cycle

    Science.gov (United States)

    Kramer, Aleksey

    2013-01-01

    The topic of software security has become paramount in information technology (IT) related scholarly research. Researchers have addressed numerous software security topics touching on all phases of the Software Development Life Cycle (SDLC): requirements gathering phase, design phase, development phase, testing phase, and maintenance phase.…

  2. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

    2017-01-01

    recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables......Today, some established working fluids are being phased out due to new international regulations on theuse of environmentally harmful substances. With an ever-increasing cost to resources, industry wants toconverge on improved sustainability through resource recovery, and in particular waste heat...

  3. Recurrence phase shift in Fermi-Pasta-Ulam nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Devine, N., E-mail: nnd124@rsphysse.anu.edu.au [Optical Sciences Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Ankiewicz, A. [Optical Sciences Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Genty, G. [Tampere University of Technology, Optics Laboratory, FI-33101 Tampere (Finland); Dudley, J.M. [Institut FEMTO-ST UMR 6174 CNRS/Universite de Franche-Comte, Besancon (France); Akhmediev, N. [Optical Sciences Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

    2011-11-07

    We show that the dynamics of Fermi-Pasta-Ulam recurrence is associated with a nonlinear phase shift between initial and final states that are otherwise identical, after a full growth-return cycle. The properties of this phase shift are studied for the particular case of the self-focussing nonlinear Schroedinger equation, and we describe the magnitude of the phase shift in terms of the system parameters. This phase shift, accumulated during the nonlinear recurrence cycle, is a previously-unremarked feature of the Fermi-Pasta-Ulam problem, and we anticipate its wide significance as an essential feature of related dynamics in other systems. -- Highlights: → The dynamics of FPU recurrence is associated with a phase shift between initial and final states. → The properties of this phase shift are studied for the self-focussing NLS equation. → This phase shift is a previously-unremarked feature of the FPU growth-return cycle. → We anticipate its wide significance as an essential feature of related dynamics in other systems.

  4. Recurrence phase shift in Fermi-Pasta-Ulam nonlinear dynamics

    International Nuclear Information System (INIS)

    Devine, N.; Ankiewicz, A.; Genty, G.; Dudley, J.M.; Akhmediev, N.

    2011-01-01

    We show that the dynamics of Fermi-Pasta-Ulam recurrence is associated with a nonlinear phase shift between initial and final states that are otherwise identical, after a full growth-return cycle. The properties of this phase shift are studied for the particular case of the self-focussing nonlinear Schroedinger equation, and we describe the magnitude of the phase shift in terms of the system parameters. This phase shift, accumulated during the nonlinear recurrence cycle, is a previously-unremarked feature of the Fermi-Pasta-Ulam problem, and we anticipate its wide significance as an essential feature of related dynamics in other systems. -- Highlights: → The dynamics of FPU recurrence is associated with a phase shift between initial and final states. → The properties of this phase shift are studied for the self-focussing NLS equation. → This phase shift is a previously-unremarked feature of the FPU growth-return cycle. → We anticipate its wide significance as an essential feature of related dynamics in other systems.

  5. REQUIREMENTS FOR SYSTEMS DEVELOPMENT LIFE CYCLE MODELS FOR LARGE-SCALE DEFENSE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kadir Alpaslan DEMIR

    2015-10-01

    Full Text Available TLarge-scale defense system projects are strategic for maintaining and increasing the national defense capability. Therefore, governments spend billions of dollars in the acquisition and development of large-scale defense systems. The scale of defense systems is always increasing and the costs to build them are skyrocketing. Today, defense systems are software intensive and they are either a system of systems or a part of it. Historically, the project performances observed in the development of these systems have been signifi cantly poor when compared to other types of projects. It is obvious that the currently used systems development life cycle models are insuffi cient to address today’s challenges of building these systems. Using a systems development life cycle model that is specifi cally designed for largescale defense system developments and is effective in dealing with today’s and near-future challenges will help to improve project performances. The fi rst step in the development a large-scale defense systems development life cycle model is the identifi cation of requirements for such a model. This paper contributes to the body of literature in the fi eld by providing a set of requirements for system development life cycle models for large-scale defense systems. Furthermore, a research agenda is proposed.

  6. Late follicular phase administration of levonorgestrel as an emergency contraceptive changes the secretory pattern of glycodelin in serum and endometrium during the luteal phase of the menstrual cycle.

    Science.gov (United States)

    Durand, Marta; Seppala, Markku; Cravioto, Ma Del Carmen; Koistinen, Hannu; Koistinen, Riitta; González-Macedo, José; Larrea, Fernando

    2005-06-01

    This study examined serum glycodelin concentrations and endometrial expression during the luteal phase following oral administration of levonorgestrel (LNG) at different stages of the ovarian cycle. Thirty women were recruited and allocated into three groups. All groups were studied during two consecutive cycles, a control cycle and the treatment cycle. In the treatment cycle, each woman received two doses of 0.75 mg LNG taken 12 h apart on days 3-4 before the luteinizing hormone (LH) surge (Group 1), at the time of LH rise (Group 2) and 48 h after the rise in LH was detected (Group 3). Serum progesterone (P) and glycodelin were measured daily during the luteal phase, and an endometrial biopsy was taken at day LH +9 for immunohistochemical glycodelin-A staining. In Group 1, serum P levels were significantly lower, serum glycodelin levels rose earlier and endometrial glycodelin-A expression was weaker than in Groups 2 and 3, in which no differences were found between control and treatment cycles. Levonorgestrel taken for emergency contraception (EC) prior to the LH surge alters the luteal phase secretory pattern of glycodelin in serum and endometrium. Based on the potent gamete adhesion inhibitory activity of glycodelin-A, the results may account for the action of LNG in EC in those women who take LNG before the LH surge.

  7. Life-Cycle Models for Survivable Systems

    National Research Council Canada - National Science Library

    Linger, Richard

    2002-01-01

    .... Current software development life-cycle models are not focused on creating survivable systems, and exhibit shortcomings when the goal is to develop systems with a high degree of assurance of survivability...

  8. A vision for an ultra-high resolution integrated water cycle observation and prediction system

    Science.gov (United States)

    Houser, P. R.

    2013-05-01

    Society's welfare, progress, and sustainable economic growth—and life itself—depend on the abundance and vigorous cycling and replenishing of water throughout the global environment. The water cycle operates on a continuum of time and space scales and exchanges large amounts of energy as water undergoes phase changes and is moved from one part of the Earth system to another. We must move toward an integrated observation and prediction paradigm that addresses broad local-to-global science and application issues by realizing synergies associated with multiple, coordinated observations and prediction systems. A central challenge of a future water and energy cycle observation strategy is to progress from single variable water-cycle instruments to multivariable integrated instruments in electromagnetic-band families. The microwave range in the electromagnetic spectrum is ideally suited for sensing the state and abundance of water because of water's dielectric properties. Eventually, a dedicated high-resolution water-cycle microwave-based satellite mission may be possible based on large-aperture antenna technology that can harvest the synergy that would be afforded by simultaneous multichannel active and passive microwave measurements. A partial demonstration of these ideas can even be realized with existing microwave satellite observations to support advanced multivariate retrieval methods that can exploit the totality of the microwave spectral information. The simultaneous multichannel active and passive microwave retrieval would allow improved-accuracy retrievals that are not possible with isolated measurements. Furthermore, the simultaneous monitoring of several of the land, atmospheric, oceanic, and cryospheric states brings synergies that will substantially enhance understanding of the global water and energy cycle as a system. The multichannel approach also affords advantages to some constituent retrievals—for instance, simultaneous retrieval of vegetation

  9. In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta).

    Science.gov (United States)

    Frada, Miguel J; Bidle, Kay D; Probert, Ian; de Vargas, Colomban

    2012-06-01

    The cosmopolitan coccolithophore Emiliania huxleyi is characterized by a strongly differentiated haplodiplontic life cycle consisting of a diploid phase, generally bearing coccoliths (calcified) but that can be also non-calcified, and a non-calcified biflagellated haploid phase. Given most studies have focused on the bloom-producing calcified phase, there is little-to-no information about non-calcified cells in nature. Using field mesocoms as experimental platforms, we quantitatively surveyed calcified and non-calcified cells using the combined calcareous detection fluorescent in situ hybridization (COD-FISH) method and qualitatively screened for haploid specific transcripts using reverse transcription-PCR during E. huxleyi bloom successions. Diploid, calcified cells formed dense blooms that were followed by the massive proliferation of E. huxleyi viruses (EhVs), which caused bloom demise. Non-calcified cells were also detected throughout the experiment, accounting for a minor fraction of the population but becoming progressively more abundant during mid-late bloom periods concomitant with EhV burst. Non-calcified cell growth also paralleled a distinct window of haploid-specific transcripts and the appearance of autotrophic flagellates morphologically similar to haploid cells, both of which are suggestive of meiosis and sexual life cycling during natural blooms of this prominent marine phytoplankton species. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Long-term variations in the geomagnetic activity level Part II: Ascending phases of sunspot cycles

    Directory of Open Access Journals (Sweden)

    V. Mussino

    1994-08-01

    Full Text Available Monthly averages of the Helsinki Ak-values have been reduced to the equivalent aa-indices to extend the aa-data set back to 1844. A periodicity of about five cycles was found for the correlation coefficient (r between geomagnetic indices and sunspot numbers for the ascending phases of sunspot cycles 9 to 22, confirming previous findings based on a minor number of sunspot cycles. The result is useful to researchers in topics related to solar-terrestrial physics, particularly for the interpretation of long-term trends in geomagnetic activity during the past, and to forecast geomagnetic activity levels in the future.

  11. Women's preferences for sexual dimorphism in height depend on menstrual cycle phase and expected duration of relationship.

    Science.gov (United States)

    Pawlowski, Boguslaw; Jasienska, Grazyna

    2005-09-01

    Human mate preferences are related to many morphological traits, such as female waist-to-hip ratio (WHR), body mass index (BMI), male height or facial symmetry. People also vary in preferences for sexual dimorphism in stature (SDS = male height/female height) between themselves and a potential partner. Here, we demonstrate that women adjust their preference for SDS not only in relation to their own height but also in relation to (1) the phase of menstrual cycle during which their preferences were studied and (2) the sexual strategy (short- versus long-term) they were asked to choose. Taller males (larger SDS) were preferred more often when women were in the follicular (i.e. fertile) phase of their menstrual cycle and when the partners were chosen for short-term relationships. These effects were independent of woman's height. The results show that women in a potentially fertile phase of their menstrual cycle and when choosing a partner who might be less likely to invest in children select genes of taller males.

  12. Theory of limit cycles

    CERN Document Server

    Ye, Yan-Qian; Lo, Chi Y

    1986-01-01

    Over the past two decades the theory of limit cycles, especially for quadratic differential systems, has progressed dramatically in China as well as in other countries. This monograph, updating the 1964 first edition, includes these recent developments, as revised by eight of the author's colleagues in their own areas of expertise. The first part of the book deals with limit cycles of general plane stationary systems, including their existence, nonexistence, stability, and uniqueness. The second section discusses the global topological structure of limit cycles and phase-portraits of quadratic systems. Finally, the last section collects important results that could not be included under the subject matter of the previous two sections or that have appeared in the literature very recently. The book as a whole serves as a reference for college seniors, graduate students, and researchers in mathematics and physics.

  13. Algebraic limit cycles in polynomial systems of differential equations

    International Nuclear Information System (INIS)

    Llibre, Jaume; Zhao Yulin

    2007-01-01

    Using elementary tools we construct cubic polynomial systems of differential equations with algebraic limit cycles of degrees 4, 5 and 6. We also construct a cubic polynomial system of differential equations having an algebraic homoclinic loop of degree 3. Moreover, we show that there are polynomial systems of differential equations of arbitrary degree that have algebraic limit cycles of degree 3, as well as give an example of a cubic polynomial system of differential equations with two algebraic limit cycles of degree 4

  14. Introduction to nuclear supply chain management. In the context of fuel cycle strategy from LWR cycle system to FR cycle system

    International Nuclear Information System (INIS)

    Shiotani, Hiroki; Ono, Kiyoshi; Namba, Takashi; Yasumatsu, Naoto; Heta, Masanori

    2011-01-01

    Supply chain management (SCM) is an important technique to maintain supply and demand balance and to achieve total optimization from upstream to downstream in manufacturers' management. One of the major reasons why SCM receives much attention recently is the trend in production and sales systems from 'Push type' to 'Pull type'. 'Push type' can be restated as 'Make to Stock' (MTS). MTS is a type of supply chain in which the production is not connected to actual demand. On the contrary, 'Pull type' can be restated as 'Make to Order' (MTO) in which the production is connected to actual demand. In this paper, the terminologies and ideas of SCM was introduced into the scenario study to give a fresh perspective for considering LWR cycle to FR cycle transition strategies in Japan. Then, an analytical tool (SCM tool) which has been developed by the authors is used to survey Japanese nuclear energy system in transition with the SCM terminologies and viewpoints. When some of the Japanese nuclear fuel cycle strategies and tools are thought back with the framework of SCM, they tend to treat nuclear fuel cycle system as 'Push type' supply chain in their simulations. For example, a reprocessing plant separates SFs (spent fuels) without considering the actual Pu demand. However, because future reprocessing plants and fuel fabrication plants will act as Pu suppliers (front-end facility) to FR as well as back-end facilities of LWRs, the reasonable plant operation principle can be 'Pull type'. The analysis was conducted by the SCM tool to simulate the behaviors of both MTS and MTO type facilities during the LWR to FR transition period. If there are large uncertainties in the Pu demand or the load factor, etc. of future reprocessing plants, SCM framework is beneficial. Furthermore, the realization of MTO type operation by SCM can reduce the recovered Pu stock in spite of the increase of the SF interim storage. As the result of the investigation on the boundary location of 'Push type

  15. Phase Control in Nonlinear Systems

    Science.gov (United States)

    Zambrano, Samuel; Seoane, Jesús M.; Mariño, Inés P.; Sanjuán, Miguel A. F.; Meucci, Riccardo

    The following sections are included: * Introduction * Phase Control of Chaos * Description of the model * Numerical exploration of phase control of chaos * Experimental evidence of phase control of chaos * Phase Control of Intermittency in Dynamical Systems * Crisis-induced intermittency and its control * Experimental setup and implementation of the phase control scheme * Phase control of the laser in the pre-crisis regime * Phase control of the intermittency after the crisis * Phase control of the intermittency in the quadratic map * Phase Control of Escapes in Open Dynamical Systems * Control of open dynamical systems * Model description * Numerical simulations and heuristic arguments * Experimental implementation in an electronic circuit * Conclusions and Discussions * Acknowledgments * References

  16. Diagnostic system for combine cycle power plant

    International Nuclear Information System (INIS)

    Shimizu, Yujiro; Nomura, Masumi; Tanaka, Satoshi; Ito, Ryoji; Kita, Yoshiyuki

    2000-01-01

    We developed the Diagnostic System for Combined Cycle Power Plant which enables inexperienced operators as well as experienced operators to cope with abnormal conditions of Combined Cycle Power Plant. The features of this system are the Estimate of Emergency Level for Operation and the Prediction of Subsequent Abnormality, adding to the Diagnosis of Cause and the Operation Guidance. Moreover in this system, Diagnosis of Cause was improved by using our original method and support screens can be displayed for educational means in normal condition as well. (Authors)

  17. Practicalization strategic research of FBR cycle

    International Nuclear Information System (INIS)

    2000-01-01

    Practicalization strategic research of FBR cycle consists of two phases such as phase I (FY 1999-2000) and phase II (to FY 2005). In every phase, research and development plants and results are checked and reviewed. The assessment indexes are five development objects such as safety, economical efficiency, resource effective utilization, environmental load decrease and nuclear non-proliferation and technical realization, too. Reactor core, FBR plant system and fuel cycle system are investigated. We selected the research subjects of cooling materials as sodium, heavy metals (lead and lead bismuth alloy), gas (carbon dioxide and helium) and water (boiling water, power water and supercritical pressure water) and fuel types as cladding tube fuel (oxide, nitride and metal) and coated fuel particle (oxide and nitride) for helium gas cooling reactor. In FY1999, the good reactor core and FBR plant system for every cooling materials are studied. Two reprocessing (a wet reprocessing using aqueous solution and a dry method) were selected. In FY 2000, we will investigate effects of throughput, plant concept and cost and evaluate achievement of development objects and then decide the development plan. (S.Y.)

  18. Bifurcation of limit cycles for cubic reversible systems

    Directory of Open Access Journals (Sweden)

    Yi Shao

    2014-04-01

    Full Text Available This article is concerned with the bifurcation of limit cycles of a class of cubic reversible system having a center at the origin. We prove that this system has at least four limit cycles produced by the period annulus around the center under cubic perturbations

  19. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  20. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    International Nuclear Information System (INIS)

    Sandvig, Eric; Walling, Gary; Brown, Robert C.; Pletka, Ryan; Radlein, Desmond; Johnson, Warren

    2003-01-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW e ; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system

  1. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  2. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    Science.gov (United States)

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  3. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 2, Data Analysis-The Methods describes the methods for carrying out data analysis within the systems development life-cycle and demonstrates how the results of fact gathering can be used to produce and verify the analysis deliverables. A number of alternative methods of analysis other than normalization are suggested. Comprised of seven chapters, this book shows the tasks to be carried out in the logical order of progression-preparation, collection, analysis of the existing system (which comprises the tasks of synthesis, verification, an

  4. Analysis of temporal variation in human masticatory cycles during gum chewing.

    Science.gov (United States)

    Crane, Elizabeth A; Rothman, Edward D; Childers, David; Gerstner, Geoffrey E

    2013-10-01

    The study investigated modulation of fast and slow opening (FO, SO) and closing (FC, SC) chewing cycle phases using gum-chewing sequences in humans. Twenty-two healthy adult subjects participated by chewing gum for at least 20s on the right side and at least 20s on the left side while jaw movements were tracked with a 3D motion analysis system. Jaw movement data were digitized, and chewing cycle phases were identified and analysed for all chewing cycles in a complete sequence. All four chewing cycle phase durations were more variant than total cycle durations, a result found in other non-human primates. Significant negative correlations existed between the opening phases, SO and FO, and between the closing phases, SC and FC; however, there was less consistency in terms of which phases were negatively correlated both between subjects, and between chewing sides within subjects, compared with results reported in other species. The coordination of intra-cycle phases appears to be flexible and to follow complex rules during gum-chewing in humans. Alternatively, the observed intra-cycle phase relationships could simply reflect: (1) variation in jaw kinematics due to variation in how gum was handled by the tongue on a chew-by-chew basis in our experimental design or (2) by variation due to data sampling noise and/or how phases were defined and identified. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Determination of cell cycle phases in live B16 melanoma cells using IRMS.

    Science.gov (United States)

    Bedolla, Diana E; Kenig, Saša; Mitri, Elisa; Ferraris, Paolo; Marcello, Alessandro; Grenci, Gianluca; Vaccari, Lisa

    2013-07-21

    The knowledge of cell cycle phase distribution is of paramount importance for understanding cellular behaviour under normal and stressed growth conditions. This task is usually assessed using Flow Cytometry (FC) or immunohistochemistry. Here we report on the use of FTIR microspectroscopy in Microfluidic Devices (MD-IRMS) as an alternative technique for studying cell cycle distribution in live cells. Asynchronous, S- and G0-synchronized B16 mouse melanoma cells were studied by running parallel experiments based on MD-IRMS and FC using Propidium Iodide (PI) staining. MD-IRMS experiments have been done using silicon-modified BaF2 devices, where the thin silicon layer prevents BaF2 dissolution without affecting the transparency of the material and therefore enabling a better assessment of the Phosphate I (PhI) and II (PhII) bands. Hierarchical Cluster Analysis (HCA) of cellular microspectra in the 1300-1000 cm(-1) region pointed out a distribution of cells among clusters, which is in good agreement with FC results among G0/G1, S and G2/M phases. The differentiation is mostly driven by the intensity of PhI and PhII bands. In particular, PhI almost doubles from the G0/G1 to G2/M phase, in agreement with the trend followed by nucleic acids during cellular progression. MD-IRMS is then proposed as a powerful method for the in situ determination of the cell cycle stage of an individual cell, without any labelling or staining, which gives the advantage of possibly monitoring specific cellular responses to several types of stimuli by clearly separating the spectral signatures related to the cellular response from those of cells that are normally progressing.

  6. SU-E-T-247: Determinations of the Optimal Phase for Respiratory Gated Radiotherapy From Statistical Analysis Using a Visible Guidance System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S; Yea, J; Kang, M; Lee, H; Kim, S [Yeungnam University Medical Center, Daegu, Daegu (Korea, Republic of)

    2015-06-15

    Purpose: Respiratory gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung cancer patients. Determination of the optimal point in the respiratory phase of a patient is important in RGRT but it is not easy. The goal of the present study was to see if a visible guidance system is helpful in determining the optimal phase in respiratory gated therapy. Methods: The breathing signals of 23 lung cancer patients were recorded with a Real-time Position Management (RPM) respiratory gating system (Varian, USA). The patients underwent breathing training with our visible guidance system, after which their breathing signals were recorded during 5 min of free breathing and 5 min of guided breathing. The breathing signals recorded between 3 and 5 min before and after training were compared. We performed statistical analysis of the breathing signals to find the optimal duty cycle in guided breathing for RGRT. Results: The breathing signals aided by the visible guidance system had more regular cycles over time and smaller variations in the positions of the marker block than the free breathing signals. Of the 23 lung cancer patients, 19 showed statistically significant differences by time when the values obtained before and after breathing were compared (p < 0.05); 30% and 40% of the duty cycle, respectively, was determined to be the most effective, and the corresponding phases were 30 60% (duty cycle, 30%; p < 0.05) and 30 70% (duty cycle, 40%; p < 0.05). Conclusion: Respiratory regularity was significantly improved with the use of the RPM with our visible guiding system; therefore, it would help improve the accuracy and efficiency of RGRT.

  7. Quantifying the Adaptive Cycle.

    Directory of Open Access Journals (Sweden)

    David G Angeler

    Full Text Available The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011 data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  8. Cytokine production by natural killer lymphocytes in follicular and luteal phase of the ovarian cycle in humans

    NARCIS (Netherlands)

    Bouman, A.; Moes, H; Heineman, MJ; De Leij, LFMH; Faas, MM

    PROBLEM: The aim of this study was to test the hypothesis that, during luteal phase of the ovarian cycle, as compared with follicular phase, the cytokine productive capacity of peripheral natural killer (NK)-lymphocytes in humans is shifted towards a "Th2-type"-like response. METHOD OF STUDY:

  9. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Science.gov (United States)

    Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R; Scherer, Norbert F

    2012-01-01

    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS).

  10. Effect of thermal cycling on martensitic transformation and mechanical strengthening of stainless steels – A phase-field study

    DEFF Research Database (Denmark)

    Yeddu, Hemantha Kumar; Shaw, Brian A.; Somers, Marcel A. J.

    2017-01-01

    A 3D elastoplastic phase-field model is used to study the effect of thermal cycling on martensitic transformationas well as on mechanical strengthening of both austenite and martensite in stainless steel. The results show that with an increasing number of thermal cycles, martensite becomes more...

  11. Uterine uptake of iodine-123 metaiodobenzylguanidine during the menstrual phase of uterine cycle

    International Nuclear Information System (INIS)

    Bomanji, J.; Britton, K.E.

    1987-01-01

    Radioiodinated I-123 metaiodobenzylguanidine (MIBG) has been used for diagnostic purposes for detection of apudomas. In this paper normal physiological uptake of I-123 MIBG by the uterus during the menstrual phase of the uterine cycle is reported. It is likely that I-123 MIBG can be used to evaluate some of the problems in this context

  12. Uterine uptake of iodine-123 metaiodobenzylguanidine during the menstrual phase of uterine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bomanji, J.; Britton, K.E.

    1987-08-01

    Radioiodinated I-123 metaiodobenzylguanidine (MIBG) has been used for diagnostic purposes for detection of apudomas. In this paper normal physiological uptake of I-123 MIBG by the uterus during the menstrual phase of the uterine cycle is reported. It is likely that I-123 MIBG can be used to evaluate some of the problems in this context.

  13. Extracellular matrix-dependent myosin dynamics during G1-S phase cell cycle progression in hepatocytes

    International Nuclear Information System (INIS)

    Bhadriraju, Kiran; Hansen, Linda K.

    2004-01-01

    Cell spreading and proliferation are tightly coupled in anchorage-dependent cells. While adhesion-dependent proliferation signals require an intact actin cytoskeleton, and some of these signals such as ERK activation have been characterized, the role of myosin in spreading and cell cycle progression under different extracellular matrix (ECM) conditions is not known. Studies presented here examine changes in myosin activity in freshly isolated hepatocytes under ECM conditions that promote either proliferation (high fibronectin density) or growth arrest (low fibronectin density). Three different measures were obtained and related to both spreading and cell cycle progression: myosin protein levels and association with cytoskeleton, myosin light chain phosphorylation, and its ATPase activity. During the first 48 h in culture, corresponding with transit through G1 phase, there was a six-fold increase in both myosin protein levels and myosin association with actin cytoskeleton. There was also a steady increase in myosin light chain phosphorylation and ATPase activity with spreading, which did not occur in non-spread, growth-arrested cells on low density of fibronectin. Myosin-inhibiting drugs blocked ERK activation, cyclin D1 expression, and S phase entry. Overexpression of the cell cycle protein cyclin D1 overcame both ECM-dependent and actomyosin-dependent inhibition of DNA synthesis, suggesting that cyclin D1 is a key event downstream of myosin-dependent cell cycle regulation

  14. Soccer-related performance in eumenorrheic Tunisian high-level soccer players: effects of menstrual cycle phase and moment of day.

    Science.gov (United States)

    Tounsi, Mohamed; Jaafar, Hamdi; Aloui, Asma; Souissi, Nizar

    2018-04-01

    This study aimed to examine the combined effects of menstrual cycle phase and moment of day on female soccer players' performances in the five-jump test (5JT), the repeated shuttle-sprint ability test (RSSA), and the Yo-Yo intermittent recovery test level 1 (YYIRT1). Eleven eumenorrheic Tunisian high-level soccer players volunteered to participate. Each subject individually participated in three testing periods: one in the early follicular phase (menses), one in the late follicular phase, and another in the luteal phase. In each period, two test sessions were conducted: one at 07:30 and another at 17:30. The testing routines included the 5JT, the RSSA, and the YYIRT1. None of the measured variables were altered due to menstrual cycle phase (all P>0.05). Mean time during RSSA was significantly lower in the afternoon session compared to the morning session (8.48±0.27 s and 8.77±0.34 s, respectively, P<0.001), while 5JT performance was significantly higher in the afternoon compared to the morning (9.08±0.58 m and 8.60±0.56 m, respectively, P<0.001). Soccer-specific endurance as well as jumping and repeated sprinting ability of Tunisian female high-level soccer players are not affected due to menstrual cycle phase neither in the morning nor in the afternoon.

  15. Influence of bodybuilding classes on physical qualities of the qualified sportswomen in different phases of the specific biological cycle

    Directory of Open Access Journals (Sweden)

    Vyacheslav Mulik

    2017-02-01

    Full Text Available Purpose: to conduct researches of influence of classes of the sportswomen who are going in for bodybuilding and fitness-bikini on manifestation of physical qualities in different phases of the ovarian-menstrual cycle. Material & Methods: researches were conducted in sports fitness-clubs of Kharkov "Feromon", "Gorod", “King” with the qualified sportswomen who are going in for bodybuilding and fitness-bikini within 3 months of the preparatory period in number of 14 people. We used as methods of the research: the analysis of references and testing of level of motive qualities in separate phases of OMC. Results: the theoretical analysis of features of the accounting of phases of OMC at sportswomen is submitted and the testing of the level of development of physical qualities in different phases of the specific biological cycle at the qualified sportswomen, who are going in for bodybuilding, is held. Conclusions: the received results demonstrate that physical efficiency of the qualified sportswomen, who are going in for bodybuilding, is not identical in phases of the ovarian-menstrual cycle. It is revealed that the best conditions for performance of considerable exercise stresses in post-ovulatory and post-menstrual phases of OMC, therefore it is expedient to plan them in the preparatory periods of the qualified sportswomen, who are going in for bodybuilding.

  16. Proliferation in cycle

    Energy Technology Data Exchange (ETDEWEB)

    Piao Yunsong [College of Physical Sciences, Graduate School of Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: yspiao@gucas.ac.cn

    2009-06-15

    In the contracting phase with w{approx_equal}0, the scale invariant spectrum of curvature perturbation is given by the increasing mode of metric perturbation. In this Letter, it is found that if the contracting phase with w{approx_equal}0 is included in each cycle of a cycle universe, since the metric perturbation is amplified on super horizon scale cycle by cycle, after each cycle the universe will be inevitably separated into many parts independent of one another, each of which corresponds to a new universe and evolves up to next cycle, and then is separated again. In this sense, a cyclic multiverse scenario is actually presented, in which the universe proliferates cycle by cycle. We estimate the number of new universes proliferated in each cycle, and discuss the implications of this result.

  17. Proliferation in cycle

    International Nuclear Information System (INIS)

    Piao Yunsong

    2009-01-01

    In the contracting phase with w≅0, the scale invariant spectrum of curvature perturbation is given by the increasing mode of metric perturbation. In this Letter, it is found that if the contracting phase with w≅0 is included in each cycle of a cycle universe, since the metric perturbation is amplified on super horizon scale cycle by cycle, after each cycle the universe will be inevitably separated into many parts independent of one another, each of which corresponds to a new universe and evolves up to next cycle, and then is separated again. In this sense, a cyclic multiverse scenario is actually presented, in which the universe proliferates cycle by cycle. We estimate the number of new universes proliferated in each cycle, and discuss the implications of this result.

  18. Comparing the environmental footprints of home-care and personal-hygiene products: the relevance of different life-cycle phases.

    Science.gov (United States)

    Koehler, Annette; Wildbolz, Caroline

    2009-11-15

    An in-depth life-cycle assessment of nine home-care and personal-hygiene products was conducted to determine the ecological relevance of different life-cycle phases and compare the environmental profiles of products serving equal applications. Using detailed data from industry and consumer-behavior studies a broad range of environmental impacts were analyzed to identify the main drivers in each life-cycle stage and potentials for improving the environmental footprints. Although chemical production significantly adds to environmental burdens, substantial impacts are caused in the consumer-use phase. As such, this research provides recommendations for product development, supply chain management, product policies, and consumer use. To reduce environmental burdens products should, for instance, be produced in concentrated form, while consumers should apply correct product dosages and low water temperatures during product application.

  19. Rankine cycle system and method

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-09-09

    A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.

  20. DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    Science.gov (United States)

    Vítová, Milada; Bišová, Kateřina; Zachleder, Vilém

    2011-01-01

    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605

  1. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda.

    Directory of Open Access Journals (Sweden)

    Monika Hlavová

    Full Text Available DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase.

  2. Evolution of cell resistance, threshold voltage and crystallization temperature during cycling of line-cell phase-change random access memory

    NARCIS (Netherlands)

    Oosthoek, J. L. M.; Attenborough, K.; Hurkx, G. A. M.; Jedema, F. J.; Gravesteijn, D. J.; Kooi, B. J.

    2011-01-01

    Doped SbTe phase change (PRAM) line cells produced by e-beam lithography were cycled 100 million times. During cell cycling the evolution of many cell properties were monitored, in particular the crystalline and amorphous resistance, amorphous resistance drift exponent, time-dependent threshold

  3. Global water cycle

    Science.gov (United States)

    Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge

    1993-01-01

    This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.

  4. Development of a control system for compression and expansion cycles of critical valve for high vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Jyoti, E-mail: jagarwal@ipr.res.in; Sharma, H.; Patel, Haresh; Gangradey, R.; Lambade, Vrushabh

    2016-11-15

    Highlights: • Control system with feedback loop of pressure gauge is developed for measuring the life cycle of vacuum isolation valve. • GUI based software developed for easy use and handling of control system. • Control system tested with an experiment showcasing the capability of the control system. • Control system can operate valve based on pressure inside the chamber, which helps to know the degradation of sealing capabilities of valve. • Control system can monitor the total closing and opening time of valve, cycles and pressure inside the vessel. - Abstract: A control system with feedback loop is designed, developed and tested to monitor the life cycles of the axial valve and bellows used in vacuum valves. The control system monitors number of compression cycles of any bellow or closing and opening cycle of a valve. It also interfaces vacuum gauges or pressure gauges to get pressure values inside the system. To find life cycle of valve, the developed control and monitoring system is integrated with an axial valve experimental test set up. In this system, feedback from the vacuum gauge attached to valve enclosure, is given and the life cycle test is automated. This paper describes the control and monitoring system in details and briefs the experiment carried out for valve life cycle. The same system can be used for life cycle estimate for bellows. A suitable GUI is also developed to control the function of the components and resister the number of cycles.

  5. The NEWS Water Cycle Climatology

    Science.gov (United States)

    Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T.; Olson, W. S.

    2012-12-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  6. The NEWS Water Cycle Climatology

    Science.gov (United States)

    Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson

    2012-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  7. Optimized phases for the acquisition of J-spectra in coupled spin systems for thermally and PHIP polarized molecules.

    Science.gov (United States)

    Bussandri, S; Prina, I; Acosta, R H; Buljubasich, L

    2018-04-01

    We demonstrate that the relative phases in the refocusing pulses of multipulse sequences can compensate for pulse errors and off-resonant effects, which are commonly encountered in J-spectroscopy when CPMG is used for acquisition. The use of supercycles has been considered many times in the past, but always from the view point of time-domain NMR, that is, in an effort to lengthen the decay of the magnetization. Here we use simple spin-coupled systems, in which the quantum evolution of the system can be simulated and contrasted to experimental results. In order to explore fine details, we resort to partial J-spectroscopy, that is, to the acquisition of J-spectra of a defined multiplet, which is acquired with a suitable digital filter. We unambiguously show that when finite radiofrequency pulses are considered, the off-resonance effects on nearby multiplets affects the dynamics of the spins within the spectral window under acquisition. Moreover, the most robust phase cycling scheme for our setup consists of a 4-pulse cycle, with phases yyyy‾ or xxxx‾ for an excitation pulse with phase x. We show simulated and experimental results in both thermally polarized and PHIP hyperpolarized systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Describing phase coexistence in systems with small phases

    International Nuclear Information System (INIS)

    Lovett, R

    2007-01-01

    Clusters of atoms can be studied in molecular beams and by computer simulation; 'liquid drops' provide elementary models for atomic nuclei and for the critical nuclei of nucleation theory. These clusters are often described in thermodynamic terms, but the behaviour of small clusters near a phase boundary is qualitatively different from the behaviour at a first order phase transition in idealized thermodynamics. In the idealized case the density and entropy show mathematically sharp discontinuities when the phase boundary is crossed. In large, but finite, systems, the phase boundaries become regions of state space wherein these properties vary rapidly but continuously. In small clusters with a large surface/volume ratio, however, the positive interfacial free energy makes it unlikely, even in states on phase boundaries, that a cluster will have a heterogeneous structure. What is actually seen in these states is a structure that fluctuates in time between homogeneous structures characteristic of the two sides of the phase boundary. That is, structural fluctuations are observed. Thermodynamics only predicts average properties; statistical mechanics is required to understand these fluctuations. Failure to distinguish thermodynamic properties and characterizations of fluctuations, particularly in the context of first order phase transitions, has led to suggestions that the classical rules for thermodynamic stability are violated in small systems and that classical thermodynamics provides an inconsistent description of these systems. Much of the confusion stems from taking statistical mechanical identifications of thermodynamic properties, explicitly developed for large systems, and applying them uncritically to small systems. There are no inconsistencies if thermodynamic properties are correctly identified and the distinction between thermodynamic properties and fluctuations is made clear

  9. Life Cycle Inventory Analysis

    DEFF Research Database (Denmark)

    Bjørn, Anders; Moltesen, Andreas; Laurent, Alexis

    2018-01-01

    of different sources. The output is a compiled inventory of elementary flows that is used as basis of the subsequent life cycle impact assessment phase. This chapter teaches how to carry out this task through six steps: (1) identifying processes for the LCI model of the product system; (2) planning...

  10. Phase-Modulated Optical Communication Systems

    CERN Document Server

    Ho, Keang-Po

    2005-01-01

    Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...

  11. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling

    NARCIS (Netherlands)

    Zhang, X.; Van Hulzen, M.; Singh, D.P.; Brownrigg, A.W.; Wright, J.P.; Van Dijk, N.H.; Wagemaker, M.

    2015-01-01

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is

  12. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling.

    Science.gov (United States)

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix

    2015-09-23

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements.

  13. Modeling and investigation of refrigeration system performance with two-phase fluid injection in a scroll compressor

    Science.gov (United States)

    Gu, Rui

    Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.

  14. Enterprise and system of systems capability development life-cycle processes.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    This report and set of appendices are a collection of memoranda originally drafted circa 2007-2009 for the purpose of describing and detailing a models-based systems engineering approach for satisfying enterprise and system-of-systems life cycle process requirements. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. The main thrust of the material presents a rational exposâe of a structured enterprise development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of standard systems engineering processes. While the approach described invokes application of the Department of Defense Architectural Framework (DoDAF), it is suitable for use with other architectural description frameworks.

  15. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle, Book 3: Activity Analysis - The Deliverables provides a comprehensive coverage of the deliverables of activity analysis. The book also details purpose of each deliverable in the context of the next tasks in the systems development cycle (SDC). The text first covers the concept of deliverables and the benefits of making deliverables visible. In the second chapter, the book introduces the main concepts and diagrammatic techniques of activity analysis. The third chapter deals with the important classes or categories of concept, while the fourth

  16. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 4, Activity Analysis-The Methods describes the techniques and concepts for carrying out activity analysis within the systems development life-cycle. Reference is made to the deliverables of data analysis and more than one method of analysis, each a viable alternative to the other, are discussed. The """"bottom-up"""" and """"top-down"""" methods are highlighted. Comprised of seven chapters, this book illustrates how dependent data and activities are on each other. This point is especially brought home when the task of inventing new busin

  17. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  18. Sudomotor and vasomotor activity during the menstrual cycle with global heating.

    Science.gov (United States)

    Petrofsky, Jerrold; Lee, Haneul; Khowailed, Iman Akef

    2017-07-01

    Many studies have reported that there are changes in sympathetic activity throughout the menstrual cycle as there are oestrogen receptor in the hypothalamus and all other parts of the sympathetic nervous system. The purpose of this study was to see whether there were variations in sympathetic activity, skin vasomotor and sweat gland sudomotor rhythms during the menstrual cycle. Eight young female subjects with a regular menstrual cycle participated in the study. Subjects were tested once during the follicular phase and once during the luteal phase. Skin blood flow and sweat rate were significantly higher in the luteal phase compared with the follicular phase (p < .05), but the frequency and magnitude of sudomotor and vasomotor rhythms were significantly greater in the follicular phase (p < .05). In contrast, spectral data showed less sympathetic activity in the luteal phase. A significant finding here is that the sudomotor rhythm of sweat glands is altered by the menstrual cycle. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  19. Ultrahigh-resolution imaging of the human brain with phase-cycled balanced steady-state free precession at 7 T.

    Science.gov (United States)

    Zeineh, Michael M; Parekh, Mansi B; Zaharchuk, Greg; Su, Jason H; Rosenberg, Jarrett; Fischbein, Nancy J; Rutt, Brian K

    2014-05-01

    The objectives of this study were to acquire ultra-high resolution images of the brain using balanced steady-state free precession (bSSFP) at 7 T and to identify the potential utility of this sequence. Eight volunteers participated in this study after providing informed consent. Each volunteer was scanned with 8 phase cycles of bSSFP at 0.4-mm isotropic resolution using 0.5 number of excitations and 2-dimensional parallel acceleration of 1.75 × 1.75. Each phase cycle required 5 minutes of scanning, with pauses between the phase cycles allowing short periods of rest. The individual phase cycles were aligned and then averaged. The same volunteers underwent scanning using 3-dimensional (3D) multiecho gradient recalled echo at 0.8-mm isotropic resolution, 3D Cube T2 at 0.7-mm isotropic resolution, and thin-section coronal oblique T2-weighted fast spin echo at 0.22 × 0.22 × 2.0-mm resolution for comparison. Two neuroradiologists assessed image quality and potential research and clinical utility. The volunteers generally tolerated the scan sessions well, and composite high-resolution bSSFP images were produced for each volunteer. Rater analysis demonstrated that bSSFP had a superior 3D visualization of the microarchitecture of the hippocampus, very good contrast to delineate the borders of the subthalamic nucleus, and relatively good B1 homogeneity throughout. In addition to an excellent visualization of the cerebellum, subtle details of the brain and skull base anatomy were also easier to identify on the bSSFP images, including the line of Gennari, membrane of Liliequist, and cranial nerves. Balanced steady-state free precession had a strong iron contrast similar to or better than the comparison sequences. However, cortical gray-white contrast was significantly better with Cube T2 and T2-weighted fast spin echo. Balanced steady-state free precession can facilitate ultrahigh-resolution imaging of the brain. Although total imaging times are long, the individually short

  20. Flow cytometric analysis of mitotic cycle perturbation by chemical carcinogens in cultured epithelial cells. [Effects of benzo(a)pyrene-diol-epoxide on mitotic cycle of cultural mouse liver epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, Andrew Leonard [Univ. of California, Berkeley, CA (United States)

    1978-08-01

    A system for kinetic analysis of mitotic cycle perturbation by various agents was developed and applied to the study of the mitotic cycle effects and dependency of the chemical carcinogen benzo(a)pyrene-diolepoxide, DE, upon a mouse lever epithelial cell line, NMuLi. The study suggests that the targets of DE action are not confined to DNA alone but may include cytoplasmic structures as well. DE was found to affect cells located in virtually every phase of the mitotic cycle, with cells that were actively synthesizing DNA showing the strongest response. However, the resulting perturbations were not confined to S-phase alone. DE slowed traversal through S-phase by about 40% regardless of the cycle phase of the cells exposed to it, and slowed traversal through G2M by about 50%. When added to G1 cells, DE delayed recruitment of apparently quiescent (G0) cells by 2 hours, and reduced the synchrony of the cohort of cells recruited into active proliferation. The kinetic analysis system consists of four elements: tissue culture methods for propagating and harvesting cell populations; an elutriation centrifugation system for bulk synchronization of cells in various phases of the mitotic cycle; a flow cytometer (FCM), coupled with appropriate staining protocols, to enable rapid analysis of the DNA distribution of any given cell population; and data reduction and analysis methods for extracting information from the DNA histograms produced by the FCM. The elements of the system are discussed. A mathematical analysis of DNA histograms obtained by FCM is presented. The analysis leads to the detailed implementation of a new modeling approach. The new modeling approach is applied to the estimation of cell cycle kinetic parameters from time series of DNA histograms, and methods for the reduction and interpretation of such series are suggested.

  1. Life Cycle Thinking, Measurement and Management for Food System Sustainability.

    Science.gov (United States)

    Pelletier, Nathan

    2015-07-07

    Food systems critically contribute to our collective sustainability outcomes. Improving food system sustainability requires life cycle thinking, measurement and management strategies. This article reviews the status quo and future prospects for bringing life cycle approaches to food system sustainability to the fore.

  2. Secretory activity and cell cycle alteration of alveolar type II cells in the early and late phase after irradiation

    International Nuclear Information System (INIS)

    Willner, Jochen; Vordermark, Dirk; Schmidt, Michael; Gassel, Andreamaria; Flentje, Michael; Wirtz, Hubert

    2003-01-01

    Purpose: Type II cells and the surfactant system have been proposed to play a central role in pathogenesis of radiation pneumonitis. We analyzed the secretory function and proliferation parameters of alveolar type II cells in the early (until 24 h) and late phase (1-5 weeks) after irradiation (RT) in vitro and in vivo. Methods and Materials: Type II cells were isolated from rats according to the method of Dobbs. Stimulation of secretion was induced with terbutaline, adenosine triphosphate (ATP), and 12-O-tetradecanoylphorbol-13-acetate (TPA) for a 2-h period. Determination of secretion was performed using 3 H-labeled phosphatidylcholine. For the early-phase analysis, freshly isolated and adherent type II cells were irradiated in vitro with 9-21 Gy (stepwise increase of 3 Gy). Secretion stimulation was initiated 1, 6, 24, and 48 h after RT. For late-phase analysis, type II cells were isolated 1-5 weeks after 18 Gy whole lung or sham RT. Each experiment was repeated at least fivefold. Flow cytometry was used to determine cell cycle distribution and proliferating cell nuclear antigen index. Results: During the early-phase (in vitro) analysis, we found a normal stimulation of surfactant secretion in irradiated, as well as unirradiated, cells. No change in basal secretion and no dose effect were seen. During the late phase, 1-5 weeks after whole lung RT, we observed enhanced secretory activity for all secretagogues and a small increase in basal secretion in Weeks 3 and 4 (pneumonitis phase) compared with controls. The total number of isolated type II cells, as well as the rate of viable cells, decreased after the second post-RT week. Cell cycle alterations suggesting an irreversible G 2 /M block occurred in the second post-RT week and did not resolve during the observation period. The proliferating cell nuclear antigen index of type II cells from irradiated rats did not differ from that of controls. Conclusion: In contrast to literature data, we observed no direct

  3. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, “Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems.” This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N’,N’-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  4. Enginnering development of coal-fired high performance power systems phase II and III

    International Nuclear Information System (INIS)

    1998-01-01

    This report presents work carried out under contract DE-AC22-95PC95144 ''Engineering Development of Coal-Fired High Performance Systems Phase II and III.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) >47%; NOx, SOx, and particulates 65% of heat input; all solid wastes benign; cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R ampersand D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update

  5. Influences of the ENSO, oscillation Madden-Julian, waves of the east, hurricanes and moon phases on the diurnal cycle of precipitation at the tropical Andes of Colombia

    International Nuclear Information System (INIS)

    Poveda, German; Mesa, Oscar; Agudelo, Paula; Alvarez, Juan; Arias, Paola; Moreno, Hernan; Salazar, Luis; Toro, Vladimir; Vieira, Sara

    2002-01-01

    We study the effects of large-scale ocean-atmospheric, astronomic phenomena on the diurnal cycle of precipitation at the tropical Andes of Colombia. Such phenomena include both phases of El Nino/Southern Oscillation (ENSO), namely El Nino and La Nina, the intra seasonal Madden-Julian oscillation, tropical easterly waves (4-8 days), moon phases and hurricanes over the Atlantic and eastern pacific oceans. We found a clear-cut effect of both ENSO phases: El Nino is associated with a diminished rainfall diurnal cycle, and La Nina intensifies it. Thus, ENSO modulates precipitation in Colombia at timescales ranging from hours to decades. We identified a close association with different phases of the Madden-Julian oscillation, as the diurnal cycle is intensified (larger amplitude) during its westerly phase, but it gets decreased during its easterly phase. For both ENSO and the Madden-Julian oscillation we identified a clear-cut influence on the amplitude of the diurnal cycle, yet the phase is conserved for the most part. Tropical easterly waves appear to affect the diurnal cycle, but no clear overall signal is pervasive throughout the region. We al so found a significant statistical association with hurricanes occurring over the northeastern pacific ocean with the diurnal cycle of precipitation at rain gages located over the eastern slope of the eastern range of the Colombian Andes. Rainfall at all the remaining slopes of the Andes is statistically associated with hurricanes occurring at the tropical north Atlantic and the Caribbean Sea. Moon phases are not statistically associated with the diurnal cycle and daily total rainfall

  6. Relative estimates of TCA cycle pool size from 14CO2 production profiles

    International Nuclear Information System (INIS)

    Kelleher, J.K.; Cesta, M.L.; Holleran, A.L.

    1986-01-01

    In metabolic and isotopic steady state, the rate of 14 CO 2 production by TCA cycle intermediates labeled at different positions is linear. However, before the system reaches isotopic steady state, the rate of 14 CO 2 production is non-linear. The x-intercept extrapolated from the linear phase indicates the turnover rate of all metabolic pools the tracer must pass through. By exposing identical systems to 14 C succinate labeled in different positions, the contribution of TCA cycle pools to the non-linear phase may be considered. Specifically, the extrapolated x-intercept for [2,3 14 C] succinate will be greater than the x-intercept for [1,4 14 C] succinate if the TCA cycle pools are a contributing factor to the non-linear phase. The authors have used this method to analyze pyruvate oxidation in AS 30D hepatoma cells. They found that the extrapolated x-intercepts for the two tracers were identical. This indicates that the non-linear phase resulted from equilibration of the tracer with pools prior to entering the TCA cycle, i.e. lactate. Using this technique, it may be possible to estimate the variations in TCA cycle pool sizes in vivo

  7. Space Transportation System Availability Relationships to Life Cycle Cost

    Science.gov (United States)

    Rhodes, Russel E.; Donahue, Benjamin B.; Chen, Timothy T.

    2009-01-01

    Future space transportation architectures and designs must be affordable. Consequently, their Life Cycle Cost (LCC) must be controlled. For the LCC to be controlled, it is necessary to identify all the requirements and elements of the architecture at the beginning of the concept phase. Controlling LCC requires the establishment of the major operational cost drivers. Two of these major cost drivers are reliability and maintainability, in other words, the system's availability (responsiveness). Potential reasons that may drive the inherent availability requirement are the need to control the number of unique parts and the spare parts required to support the transportation system's operation. For more typical space transportation systems used to place satellites in space, the productivity of the system will drive the launch cost. This system productivity is the resultant output of the system availability. Availability is equal to the mean uptime divided by the sum of the mean uptime plus the mean downtime. Since many operational factors cannot be projected early in the definition phase, the focus will be on inherent availability which is equal to the mean time between a failure (MTBF) divided by the MTBF plus the mean time to repair (MTTR) the system. The MTBF is a function of reliability or the expected frequency of failures. When the system experiences failures the result is added operational flow time, parts consumption, and increased labor with an impact to responsiveness resulting in increased LCC. The other function of availability is the MTTR, or maintainability. In other words, how accessible is the failed hardware that requires replacement and what operational functions are required before and after change-out to make the system operable. This paper will describe how the MTTR can be equated to additional labor, additional operational flow time, and additional structural access capability, all of which drive up the LCC. A methodology will be presented that

  8. Non-reproductive Effects of Anovulation: Bone Metabolism in the Luteal Phase of Premenopausal Women Differs between Ovulatory and Anovulatory Cycles.

    Science.gov (United States)

    Niethammer, B; Körner, C; Schmidmayr, M; Luppa, P B; Seifert-Klauss, V R

    2015-12-01

    Introduction: Several authors have linked subclinical ovulatory disturbances in normal length menstrual cycles to premenopausal fracture risk and bone changes. This study systematically examined the influence of ovulation and anovulation on the bone metabolism of premenopausal women. Participants and Methods: In 176 cycles in healthy premenopausal women, FSH, 17β-estradiol (E2) and progesterone (P4) as well as bone alkalic phosphatase (BAP), pyridinoline (PYD) and C-terminal crosslinks (CTX) were measured during the follicular and during the luteal phase. The probability and timing of ovulation was self-assessed by a monitoring device. In addition, bone density of the lumbar spine was measured by quantitative computed tomography (QCT) at baseline and at the end of the study. Analysis was restricted to blood samples taken more than three days before the following menstruation. Results: 118 cycles out of the 176 collected cycles were complete with blood samples taken within the correct time interval. Of these, 56.8 % were ovulatory by two criteria (ovulation symbol shown on the monitor display and LP progesterone > 6 ng/ml), 33.1 % were possibly ovulatory by one criterion (ovulation symbol shown on the monitor display or LP progesterone > 6 ng/ml), and 10.2 % were anovulatory by both criteria). Ovulation in the previous cycle and in the same cycle did not significantly influence the mean absolute concentrations of the bone markers. However, bone formation (BAP) was higher in the luteal phase of ovulatory cycles than in anovulatory cycles (n. s.) and the relative changes within one cycle were significantly different for bone resorption (CTX) during ovulatory vs. anovulatory cycles (p cycles following each other directly, both ovulation in the previous cycle and ovulation in the present cycle influenced CTX, but not the differences of other bone markers. Conclusion: Ovulatory cycles reduce bone resorption in their luteal phase and that of the

  9. Dynamic Testing of the NASA Hypersonic Project Combined Cycle Engine Testbed for Mode Transition Experiments

    Science.gov (United States)

    2011-01-01

    NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control

  10. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    International Nuclear Information System (INIS)

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna; Martin, Lane W.; King, William P.

    2014-01-01

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO 3 film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10 5  kV/cm-s, and temperature change rates as high as 6 × 10 5  K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems

  11. Rapid cell cycle analysis by measurement of the radioactivity per cell in a narrow window in S phase (RCSsub(i))

    International Nuclear Information System (INIS)

    Gray, J.W.; Carver, J.H.; George, Y.S.; Mendelsohn, M.L.

    1977-01-01

    A new rapid method for the cell cycle analysis of asynchronously growing cells is presented. The new method is an alternative to the more time consuming and subjective fraction of labeled mitoses (FLM) method. Like the FLM method, all cells in the S phase of the cell cycle are marked by pulse labeling with a radioactive DNA precursor. The subsequent progress of the cohort of cells thus labeled is monitored through a narrow window in the cell cycle. The window is defined by a narrow range of DNA contents corresponding to cells in mid-S phase and is designated Ssub(i). The cellular DNA content is measured by flow cytometry and the cells in the window Ssub(i) are selected by electronic cell sorting. The radioactivity per cell in Ssub(i) (RCSsub(i)) is determined by liquid scintillation counting. The duration of S phase and of the total cycle and the dispersions therein are determined from the oscillation of the RCSsub(i) values with time. The complete cell cycle analysis can be accomplished in as little as 1 day following the collection of samples. Exponentially growing Chinese hamster ovary (CHO) cells were analyzed according to the RCSsub(i) method and the FLM method. It is demonstrated that the two techniques give essentially the same results. (author)

  12. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    International Nuclear Information System (INIS)

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun; Zheng, Lemin; Zhou, Boda; Zhang, Wei; Lv, He; Yuan, Yun

    2014-01-01

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21

  13. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun [Department of Neurology, Peking University First Hospital, Beijing 100034 (China); Zheng, Lemin [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing 100191 (China); Zhou, Boda [The Department of Cardiology, Peking University Third Hospital, Beijing 100191 (China); Zhang, Wei; Lv, He [Department of Neurology, Peking University First Hospital, Beijing 100034 (China); Yuan, Yun, E-mail: yuanyun2002@sohu.com [Department of Neurology, Peking University First Hospital, Beijing 100034 (China)

    2014-03-28

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21.

  14. The Geometric Phase of Stock Trading.

    Science.gov (United States)

    Altafini, Claudio

    2016-01-01

    Geometric phases describe how in a continuous-time dynamical system the displacement of a variable (called phase variable) can be related to other variables (shape variables) undergoing a cyclic motion, according to an area rule. The aim of this paper is to show that geometric phases can exist also for discrete-time systems, and even when the cycles in shape space have zero area. A context in which this principle can be applied is stock trading. A zero-area cycle in shape space represents the type of trading operations normally carried out by high-frequency traders (entering and exiting a position on a fast time-scale), while the phase variable represents the cash balance of a trader. Under the assumption that trading impacts stock prices, even zero-area cyclic trading operations can induce geometric phases, i.e., profits or losses, without affecting the stock quote.

  15. Combined Cycle Engine Large-Scale Inlet for Mode Transition Experiments: System Identification Rack Hardware Design

    Science.gov (United States)

    Thomas, Randy; Stueber, Thomas J.

    2013-01-01

    The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.

  16. Supporting innovation. International Project on Innovative Nuclear Reactors and Fuel Cycles moves into first phase

    International Nuclear Information System (INIS)

    Gowin, Peter J.; Kupitz, Juergen

    2001-01-01

    energy needs and environmental impact. In order for nuclear energy to play a meaningful role in the global energy supply in the foreseeable future, innovative approaches will be required to address concerns about economic competitiveness, safety, waste and potential proliferation risks.' INPRO's objectives, as defined in the Terms of Reference, are: to help to ensure that nuclear energy is available to contribute in fulfilling, in a sustainable manner, energy needs in the 21st century; to bring together all interested Member States, both technology holders and technology users, to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles that use sound and economically competitive technology, are based - to the extent possible - on systems with inherent safety features and minimise the risk of proliferation and the impact on the environment; to create a process that involves all relevant stake holders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. INPRO is an Agencywide project, with contributions from all relevant IAEA Departments within available resources. The Project will be implemented in two phases. Phase I was initiated in early 2001 and is planned to run to 2003. In the first phase, work will proceed in five subject areas recognized as important for the future development of nuclear energy technology, and on two parallel tracks. Upon successful completion of INPRO's first phase, taking into account advice from the Steering Committee, and with the approval of participating Member States, a second phase of INPRO may be initiated. Drawing on the results from the first phase, it would be directed at: examining in the context of available technologies the feasibility of commencing an international project; and identifying technologies which might be appropriate for

  17. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    International Nuclear Information System (INIS)

    Kim, Chan-Joong; Kim, Jimin; Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok; Park, Hyo Seon

    2015-01-01

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developed system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to

  18. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan-Joong [Parsons Brinckerhoff, Seoul 135-763 (Korea, Republic of); Kim, Jimin; Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok; Park, Hyo Seon [Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-09-15

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developed system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to

  19. Cycle analysis of MCFC/gas turbine system

    Directory of Open Access Journals (Sweden)

    Musa Abdullatif

    2017-01-01

    Full Text Available High temperature fuel cells such as the solid oxide fuel cell (SOFC and the molten carbonate fuel cell (MCFC are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC performances is evaluated using validated model for the internally reformed (IR fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.

  20. Cycle analysis of MCFC/gas turbine system

    Science.gov (United States)

    Musa, Abdullatif; Alaktiwi, Abdulsalam; Talbi, Mosbah

    2017-11-01

    High temperature fuel cells such as the solid oxide fuel cell (SOFC) and the molten carbonate fuel cell (MCFC) are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC) performances is evaluated using validated model for the internally reformed (IR) fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR) cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.

  1. Theoretical modeling of a gas clearance phase regulation mechanism for a pneumatically-driven split-Stirling-cycle cryocooler

    Science.gov (United States)

    Zhang, Cun-quan; Zhong, Cheng

    2015-03-01

    The concept of a new type of pneumatically-driven split-Stirling-cycle cryocooler with clearance-phase-adjustor is proposed. In this implementation, the gap between the phase-adjusting part and the cylinder of the spring chamber is used, instead of dry friction acting on the pneumatically-driven rod to control motion damping of the displacer and to adjust the phase difference between the compression piston and displacer. It has the advantages of easy damping adjustment, low cost, and simplified manufacturing and assembly. A theoretical model has been established to simulate its dynamic performance. The linear compressor is modeled under adiabatic conditions, and the displacement of the compression piston is experimentally rectified. The working characteristics of the compressor motor and the principal losses of cooling, including regenerator inefficiency loss, solid conduction loss, shuttle loss, pump loss and radiation loss, are taken into account. The displacer motion was modeled as a single-degree-of-freedom (SDOF) forced system. A set of governing equations can be solved numerically to simulate the cooler's performance. The simulation is useful for understanding the physical processes occurring in the cooler and for predicting the cooler's performance.

  2. Life-Cycle Evaluation of Domestic Energy Systems

    Science.gov (United States)

    Bando, Shigeru; Hihara, Eiji

    Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.

  3. Implementing risk-informed life-cycle design

    International Nuclear Information System (INIS)

    Hill, Ralph S.

    2009-01-01

    This paper describes a design process based on risk-informed probabilistic design methodologies that cover a facility's life-cycle from start of conceptual design through decontamination and decommissioning. The concept embodies use of probabilistic risk assessments to establish target reliabilities for facility systems and components. The target reliabilities are used for system based code margin exchange and performance simulation analyses to optimize design over all phases (design, construction, operation and decommissioning) of a facility's life-cycle. System based code margin exchange reduces excessive level of construction margins for passive components to appropriate levels resulting in a more flexible structure of codes and standards that improves facility reliability and cost. System and subsystem simulation analyses determine the optimum combination of initial system and component construction reliability, maintenance frequency, and inspection frequency for both active and passive components. The paper includes a description of these risk-informed life-cycle design processes, a summary of work being done, and a discussion of additional work needed to implement the process.

  4. High-speed thermal cycling system and method of use

    Science.gov (United States)

    Hansen, A.D.A.; Jaklevic, J.M.

    1996-04-16

    A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

  5. The planning cycle.

    Science.gov (United States)

    Johnson, William

    2005-01-01

    Information technology planning can be described as a continuous cyclical process composed of three phases whose primary purpose is optimum allocation of scarce resources. In the assessment phase, planners assess user needs, environmental factors, business objectives, and IT infrastructure needs to develop IT projects that address needs in each of these areas. A major goal of this phase is to develop a broad IT inventory. The prioritization phase seeks to ensure optimum allocation of scarce resources by prioritizing ITprojects based on: Costs--total life cycle costs. Benefits--both quantitative and non-quantitative, including support for the organization's strategic business objectives. Risks--subjective assessments of technological and non-technological risks. Implementation requirements--time and personnel requirements to implement the system. The scheduling phase incorporates sequencing considerations, personnel availability, and budgetary constraints to produce an IT plan in which project priorities are adjusted to meet organizational realities.

  6. Control system to a Rankine cycle with a Tesla turbine using arduino

    International Nuclear Information System (INIS)

    Medeiros, Josenei G.; Guimaraes, Lamartine F.; Placco, Guilherme M.

    2013-01-01

    The thermal Rankine cycle is a thermodynamic cycle which converts heat in energy. This cycle occurs in steady state, in other words the cycle is a closed loop circuit with continuous feedback, which guarantees the reuse process one energy transformed in the various stages of the cycle. This cycle is used to drive a turbine type TESLA designed for the system. The objective of this work is to create the control and automation of this cycle using an micro-controlled system with Arduino that will hold the collection of sensors and the system will act to maintain the balance of the cycle causing it to behave continuously and with less interference from human operation for maintenance. Data will be collected and further processed, where it will display all the sensors and the situation of the actuators involved. Using Arduino system ensures the stability and reliability with a low cost of implementation

  7. Control system to a Rankine cycle with a Tesla turbine using arduino

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josenei G., E-mail: joseneigodoi@yahoo.com.br [Faculdade de Tecnologia Sao Francisco (FATESF), Jacarei, SP (Brazil); Guimaraes, Lamartine F.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: placco@ieav.cta.br [Instituto de Estudos Avancados (ENU/IEAv/DCTA), Sao Jose dos Campos, SP (Brazil). Departamento de Energia Nuclear

    2013-07-01

    The thermal Rankine cycle is a thermodynamic cycle which converts heat in energy. This cycle occurs in steady state, in other words the cycle is a closed loop circuit with continuous feedback, which guarantees the reuse process one energy transformed in the various stages of the cycle. This cycle is used to drive a turbine type TESLA designed for the system. The objective of this work is to create the control and automation of this cycle using an micro-controlled system with Arduino that will hold the collection of sensors and the system will act to maintain the balance of the cycle causing it to behave continuously and with less interference from human operation for maintenance. Data will be collected and further processed, where it will display all the sensors and the situation of the actuators involved. Using Arduino system ensures the stability and reliability with a low cost of implementation.

  8. Development of FR fuel cycle in japan (1) development scope of fuel cycle technology

    International Nuclear Information System (INIS)

    Nakamura, H.; Funasaka, H.; Namekawa, T.

    2008-01-01

    A fast reactor (FR) cycle has a potential to realize a sustainable energy supply system that is harmonized with environment by fully recycling both uranium (U) and transuranium (TRU) elements. In Japan, a Feasibility Study on Commercialized FR Cycle Systems (FS) was launched in July 1999, and through two different study phases, a final report was presented in 2006. As a result of FS, a combined system of sodium-cooled FR with mixed-oxide (MOX) fuel, advanced aqueous reprocessing and simplified pelletizing fuel fabrication was considered to be most promising for commercialization. The advanced aqueous reprocessing system, which is called the New Extraction system for TRU recovery (NEXT), consists of a U crystallization process for the bulk of U recovery, a simplified solvent extraction process for residual U, plutonium (Pu) and neptunium (Np) without Pu partitioning and purification, and a process for recovering americium (Am) and curium (Cm) from the raffinate. The ratio of Pu/U concentration in the mother solution after crystallization is adequate for MOX fuel fabrication, and thus complicated powder mixing processes for adjusting Pu content in MOX fuel can be eliminated in the subsequent simplified fuel fabrication system. In this system, lubricant-mixing process can also be eliminated by adopting the advanced technology in which lubricant is coated on the inner surface of a die before fuel powder supply. Such a simplification could help us overcoming the difficulty to treat MA bearing fuel powders in a hot cell. Ministry of Education, Culture, Sports, Science and Technology (MEXT) reviewed these results of FS in 2006 and identified the most promising FR cycle concept proposed in the FS phase II study as a mainline choice for commercialization. According to such a governmental assessment, R and D activities of FR cycle systems were decided to be concentrated mainly to the innovative technology development for the mainline concept. The stage of R and D project was

  9. Solar energetic particle events during the rise phases of solar cycles 23 and 24

    Science.gov (United States)

    Chandra, R.; Gopalswamy, N.; Mäkelä, P.; Xie, H.; Yashiro, S.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Jain, R.; Awasthi, A. K.; Manoharan, P. K.; Mahalakshmi, K.; Dwivedi, V. C.; Choudhary, D. P.; Nitta, N. V.

    2013-12-01

    We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996-1998) (22 events) and 24 (2009-2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity pfu), minor (1 pfu pfu) and major (intensity ⩾ 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north-south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares.

  10. Spatio-temporal structure and cycle to cycle variations of an in-cylinder tumbling flow

    Science.gov (United States)

    Voisine, M.; Thomas, L.; Borée, J.; Rey, P.

    2011-05-01

    The aim of this paper is to make use of PIV and high-speed PIV in a research engine of moderate tumbling ratio in order to analyze both the spatial structure of the flow and its temporal evolution during series of consecutive cycles. Appropriate analyzing tools are introduced, and four different points are addressed: (1) the chain of events driving the generation of the three-dimensional mean tumbling motion is investigated; (2) a Lagrangian analysis of the roll-up of the tumbling jet in individual cycles demonstrates a strong cycle to cycle variation during the compression phase (the rms of the position of the jet front being approximately 10% of the piston stroke); (3) focussing on the "breakdown" phase, phase invariant proper orthogonal decomposition enables us to distinguish cycles according to their structure near top dead center (TDC). We show that when the coherent energy of the flow is conserved, there is no increase in the fluctuating kinetic energy; (4) finally, the phase-averaged Reynolds stresses is decomposed into a contribution of the in-cycle coherence and the turbulence carried by the flow states. Approximately 30% of the fluctuating kinetic energy is due to cycle to cycle fluctuations in this chamber near TDC.

  11. Sustainability of a Compartmentalized Host-Parasite Replicator System under Periodic Washout-Mixing Cycles

    Directory of Open Access Journals (Sweden)

    Taro Furubayashi

    2018-01-01

    Full Text Available The emergence and dominance of parasitic replicators are among the major hurdles for the proliferation of primitive replicators. Compartmentalization of replicators is proposed to relieve the parasite dominance; however, it remains unclear under what conditions simple compartmentalization uncoupled with internal reaction secures the long-term survival of a population of primitive replicators against incessant parasite emergence. Here, we investigate the sustainability of a compartmentalized host-parasite replicator (CHPR system undergoing periodic washout-mixing cycles, by constructing a mathematical model and performing extensive simulations. We describe sustainable landscapes of the CHPR system in the parameter space and elucidate the mechanism of phase transitions between sustainable and extinct regions. Our findings revealed that a large population size of compartments, a high mixing intensity, and a modest amount of nutrients are important factors for the robust survival of replicators. We also found two distinctive sustainable phases with different mixing intensities. These results suggest that a population of simple host–parasite replicators assumed before the origin of life can be sustained by a simple compartmentalization with periodic washout-mixing processes.

  12. Analysis of human mammary fibroadenoma by Ki-67 index in the follicular and luteal phases of menstrual cycle.

    Science.gov (United States)

    Rego, M F; Navarrete, M A L H; Facina, G; Falzoni, R; Silva, R; Baracat, E C; Nazario, A C P

    2009-04-01

    Fibroadenoma is the most common benign mammary condition among women aged 35 or younger. Expression of Ki-67 antigen has been used to compare proliferative activity of mammary fibroadenoma epithelium in the follicular and luteal phases of the menstrual cycle. Ninety eumenorrheic women were selected for tumour excision; they were assigned to either of the two groups, according to their phase of menstrual cycle. At the end of the study, 75 patients with 87 masses were evaluated by epithelial cell Ki-67 expression, blind (no information given concerning group to which any lesion belonged). Both groups were found to be homogeneous relative to age, menarche, body mass index, previous gestation, parity, breastfeeding, number of fibroadenomas, family history of breast cancer and tabagism. Median tumour size was 2.0 cm and no relationship between proliferative activity and nodule diameter was observed. No typical pattern was observed in the expression of Ki-67 in distinct nodules of the same patient. Average values for expression of Ki-67 (per 1000 epithelial cells) in follicular and luteal phases were 27.88 and 37.88, respectively (P = 0.116). Our findings revealed that proliferative activities in the mammary fibroadenoma epithelium did not present a statistically significant difference in the follicular and luteal phases. The present study contributes to clarifying that fibroadenoma is a neoplasm and does not undergo any change in the proliferative activity during the menstrual cycle.

  13. Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle.

    Science.gov (United States)

    Ahn, Eunyong; Kumar, Praveen; Mukha, Dzmitry; Tzur, Amit; Shlomi, Tomer

    2017-11-06

    Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal-fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse-chase LC-MS-based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine-derived fluxes: Oxidation of glucose-derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Immuno-histochemical localization of LH-RH during different phases of estrus cycle of rat, with reference to the preoptic and arcuate neurons, and the ependymal cells.

    Science.gov (United States)

    Naik, D V

    1976-10-06

    Immunohistochemical localization of luteinizing hormone-releasing hormone (LH-RH), during different phases of the estrus cycle, in the preoptic, suprachiasmatic and arcuate nuclei, and in the OVLT of rats, with special emphasis on the ependymal cells, was studied by light, fluorescent and electron microscopy, by using rabbit anti serum to synthetic LH-RH. The LH-RH neurons in the above mentioned areas, were very active during late diestrus and early proestrus phases. Specialized ependymal cells bordering the 3rd ventricle also showed varied LH-RH positive reaction during different phases of the estrus cycle. Immunofluorescent studies showed cyclic variations in the LH-RH material in the CSF of the preoptic and infundibular recesses, as well as in the 3rd ventricle near OVLT, in that, it was maximum during late diestrus and early proestrus phases. Immediately after this, the LH-RH late proestrus was reached. We have also observed that during the proestrus phase, as the LH-RH material started declining in the CSF, it had started building up in the specialized ependyma. Estrus, metaestrus and early diestrus phases showed very weak immunofluorescent LH-RH material in the lumen of the infundibular recess and in the specialized ependyma. Our immuno-electron microscopic observations showed pleomorphic LH-RH granules in the specialized ependyma during late kiestrus and proestrus phases. All these observations lead us to believe that LH-RH is not synthesized in the ependymal cells,but is phagocytosed from the CSF of the 3rd ventricle by the specialized ependyma, which transports it to the ME portal system. In males, the fluorescent LH-RH material did not show any noticeable changes. With the present and previous work,it is concluded that the neurons in differentnuclei synthesize LH-RH and transport it to the ME portal system,primarily through the nerve fibers and secondarily by the ventricular route. It is also suggested that the ependymal transport of LH-RH to the ME

  15. Overview of the CANDU fuel handling system for advanced fuel cycles

    International Nuclear Information System (INIS)

    Koivisto, D.J.; Brown, D.R.

    1997-01-01

    Because of its neutron economies and on-power re-fuelling capabilities the CANDU system is ideally suited for implementing advanced fuel cycles because it can be adapted to burn these alternative fuels without major changes to the reactor. The fuel handling system is adaptable to implement advanced fuel cycles with some minor changes. Each individual advanced fuel cycle imposes some new set of special requirements on the fuel handling system that is different from the requirements usually encountered in handling the traditional natural uranium fuel. These changes are minor from an overall plant point of view but will require some interesting design and operating changes to the fuel handling system. Some preliminary conceptual design has been done on the fuel handling system in support of these fuel cycles. Some fuel handling details were studies in depth for some of the advanced fuel cycles. This paper provides an overview of the concepts and design challenges. (author)

  16. Cascaded recompression closed brayton cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Pasch, James J.

    2018-01-02

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  17. Cascaded recompression closed brayton cycle system

    Science.gov (United States)

    Pasch, James J.

    2018-01-02

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  18. A novel single virus infection system reveals that influenza virus preferentially infects cells in g1 phase.

    Directory of Open Access Journals (Sweden)

    Ryuta Ueda

    Full Text Available BACKGROUND: Influenza virus attaches to sialic acid residues on the surface of host cells via the hemagglutinin (HA, a glycoprotein expressed on the viral envelope, and enters into the cytoplasm by receptor-mediated endocytosis. The viral genome is released and transported in to the nucleus, where transcription and replication take place. However, cellular factors affecting the influenza virus infection such as the cell cycle remain uncharacterized. METHODS/RESULTS: To resolve the influence of cell cycle on influenza virus infection, we performed a single-virus infection analysis using optical tweezers. Using this newly developed single-virus infection system, the fluorescence-labeled influenza virus was trapped on a microchip using a laser (1064 nm at 0.6 W, transported, and released onto individual H292 human lung epithelial cells. Interestingly, the influenza virus attached selectively to cells in the G1-phase. To clarify the molecular differences between cells in G1- and S/G2/M-phase, we performed several physical and chemical assays. Results indicated that: 1 the membranes of cells in G1-phase contained greater amounts of sialic acids (glycoproteins than the membranes of cells in S/G2/M-phase; 2 the membrane stiffness of cells in S/G2/M-phase is more rigid than those in G1-phase by measurement using optical tweezers; and 3 S/G2/M-phase cells contained higher content of Gb3, Gb4 and GlcCer than G1-phase cells by an assay for lipid composition. CONCLUSIONS: A novel single-virus infection system was developed to characterize the difference in influenza virus susceptibility between G1- and S/G2/M-phase cells. Differences in virus binding specificity were associated with alterations in the lipid composition, sialic acid content, and membrane stiffness. This single-virus infection system will be useful for studying the infection mechanisms of other viruses.

  19. Software safety analysis on the model specified by NuSCR and SMV input language at requirements phase of software development life cycle using SMV

    International Nuclear Information System (INIS)

    Koh, Kwang Yong; Seong, Poong Hyun

    2005-01-01

    Safety-critical software process is composed of development process, verification and validation (V and V) process and safety analysis process. Safety analysis process has been often treated as an additional process and not found in a conventional software process. But software safety analysis (SSA) is required if software is applied to a safety system, and the SSA shall be performed independently for the safety software through software development life cycle (SDLC). Of all the phases in software development, requirements engineering is generally considered to play the most critical role in determining the overall software quality. NASA data demonstrate that nearly 75% of failures found in operational software were caused by errors in the requirements. The verification process in requirements phase checks the correctness of software requirements specification, and the safety analysis process analyzes the safety-related properties in detail. In this paper, the method for safety analysis at requirements phase of software development life cycle using symbolic model verifier (SMV) is proposed. Hazard is discovered by hazard analysis and in other to use SMV for the safety analysis, the safety-related properties are expressed by computation tree logic (CTL)

  20. System identification on two-phase flow stability

    International Nuclear Information System (INIS)

    Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei

    1996-01-01

    The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system

  1. Life cycle assessments of urban water systems: a comparative analysis of selected peer-reviewed literature.

    Science.gov (United States)

    Loubet, Philippe; Roux, Philippe; Loiseau, Eleonore; Bellon-Maurel, Veronique

    2014-12-15

    Water is a growing concern in cities, and its sustainable management is very complex. Life cycle assessment (LCA) has been increasingly used to assess the environmental impacts of water technologies during the last 20 years. This review aims at compiling all LCA papers related to water technologies, out of which 18 LCA studies deals with whole urban water systems (UWS). A focus is carried out on these 18 case studies which are analyzed according to criteria derived from the four phases of LCA international standards. The results show that whereas the case studies share a common goal, i.e., providing quantitative information to policy makers on the environmental impacts of urban water systems and their forecasting scenarios, they are based on different scopes, resulting in the selection of different functional units and system boundaries. A quantitative comparison of life cycle inventory and life cycle impact assessment data is provided, and the results are discussed. It shows the superiority of information offered by multi-criteria approaches for decision making compared to that derived from mono-criterion. From this review, recommendations on the way to conduct the environmental assessment of urban water systems are given, e.g., the need to provide consistent mass balances in terms of emissions and water flows. Remaining challenges for urban water system LCAs are identified, such as a better consideration of water users and resources and the inclusion of recent LCA developments (territorial approaches and water-related impacts). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Thermal cycle efficiency of the indirect combined HTGR-GT power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    High thermal efficiency of 50% could be expected in a power generation system coupling a high temperature gas-cooled reactor(HTGR) with a closed cycle gas turbine(GT). There are three candidate systems such as a direct cycle(DC), an indirect cycle(ICD) and an indirect combined cycle(IDCC). The IDCC could solve many problems in both the DC and the IDC and consists of a primary circuit and a secondary circuit where a topping cycle is a Brayton cycle and a bottoming cycle is a steam cycle. In this report, the thermal cycle efficiency of the IDCC is examined regarding configurations of components and steam pressure. It has been shown that there are two types of configurations, that is, a perfect cascade type and a semi-cascade one and the latter can be further classified into Case A, Case B and Case C. The conditions achieving the maximum thermal cycle efficiency were revealed for these cases. In addition, the optimum system configurations were proposed considering the thermal cycle efficiency, safety and plant arrangement. (author).

  3. Proterozoic Milankovitch cycles and the history of the solar system.

    Science.gov (United States)

    Meyers, Stephen R; Malinverno, Alberto

    2018-06-19

    The geologic record of Milankovitch climate cycles provides a rich conceptual and temporal framework for evaluating Earth system evolution, bestowing a sharp lens through which to view our planet's history. However, the utility of these cycles for constraining the early Earth system is hindered by seemingly insurmountable uncertainties in our knowledge of solar system behavior (including Earth-Moon history), and poor temporal control for validation of cycle periods (e.g., from radioisotopic dates). Here we address these problems using a Bayesian inversion approach to quantitatively link astronomical theory with geologic observation, allowing a reconstruction of Proterozoic astronomical cycles, fundamental frequencies of the solar system, the precession constant, and the underlying geologic timescale, directly from stratigraphic data. Application of the approach to 1.4-billion-year-old rhythmites indicates a precession constant of 85.79 ± 2.72 arcsec/year (2σ), an Earth-Moon distance of 340,900 ± 2,600 km (2σ), and length of day of 18.68 ± 0.25 hours (2σ), with dominant climatic precession cycles of ∼14 ky and eccentricity cycles of ∼131 ky. The results confirm reduced tidal dissipation in the Proterozoic. A complementary analysis of Eocene rhythmites (∼55 Ma) illustrates how the approach offers a means to map out ancient solar system behavior and Earth-Moon history using the geologic archive. The method also provides robust quantitative uncertainties on the eccentricity and climatic precession periods, and derived astronomical timescales. As a consequence, the temporal resolution of ancient Earth system processes is enhanced, and our knowledge of early solar system dynamics is greatly improved.

  4. Expression of progesterone receptor membrane component-1 in bovine reproductive system during estrous cycle

    Directory of Open Access Journals (Sweden)

    A.M. Luciano

    2011-09-01

    Full Text Available Several reports suggest the participation of progesterone receptor membrane component 1 (PGRMC1 in progesterone signaling in the reproductive system. This study aimed at investigating the presence and localization of PGRMC1 in bovine ovary, oviduct and uterus, during the follicular and luteal phases of the estrous cycle. In the ovary, PGRMC1 has been detected in surface germinal epithelium, granulosa cells, theca cells and in the germinal vesicle of the oocytesat all stages of folliculogenesis. In the corpus luteum the expression of PGRMC1 was influenced by the stage of the estrous cycle. In the oviducts and in the uterus horns, PGRMC1 was immunolocalized in the luminal epithelium, in the muscle layer cells and in the endothelial cells. In the uterus, PGRMC1 was intensely localized also in the glandular endometrium. However, in the oviducts and in the uterus horns, the localization of PGRMC1 was independent on the stage of the estrous cycle and on whether evaluating the ipsilateral or the contralateral organ. In conclusion, the present immunohistochemical study showed that PGRMC1 is located in various compartments of the bovine female reproductive organs. With the exception of the corpora lutea, PGRMC1 localization showed similar pattern during different stage of the estrous cycle.

  5. The differences in RCAS1 and DFF45 endometrial expression between late proliferative, early secretory, and mid-secretory cycle phases.

    Directory of Open Access Journals (Sweden)

    Jerzy Sikora

    2008-04-01

    Full Text Available RCAS1 expression is related to the regulation of activated immune cells and to connective tissue remodeling within the endometrium. DFF45 seems to play an important role in the apoptotic process, most likely by acting through the regulation of DNA fragmentation. Its expression changes within the endometrium seem to be related to the resistance of endometrial cells to apoptosis. The aim of the present study was to evaluate RCAS1 and DFF45 endometrial expressions during ovulation and the implantation period. RCAS1 and DFF45 expression was assessed by the Western-blot method in endometrial tissue samples obtained from 20 patients. The tissue samples were classified according to the menstrual cycle phases in which they were collected, with a division into three phases: late proliferative, early secretory, and mid-secretory. The lowest level of RCAS1 and the highest level of DFF45 endometrial expression was found during the early secretory cycle phase. Statistically significantly higher RCAS1 and statistically significantly lower DFF45 endometrial expression was identified in the endometrium during the late proliferative as compared to the early secretory cycle phase. Moreover, statistically significantly higher RCAS1 and statistically significantly lower DFF45 expression was found in the endometrium during the mid-secretory as compared to the early secretory cycle phase. The preparation for implantation process in the endometrium is preceded by dynamic changes in endometrial ECM and results from the proper interaction between endometrial and immune cells. The course of this process is conditioned by the immunomodulating activity of endometrial cells and their resistance to immune-mediated apoptosis. These dynamic changes are closely related to RCAS1 and DFF45 expression alterations.

  6. Nonautonomous linear system of the terrestrial carbon cycle

    Science.gov (United States)

    Luo, Y.

    2012-12-01

    Carbon cycle has been studied by uses of observation through various networks, field and laboratory experiments, and simulation models. Much less has been done on theoretical thinking and analysis to understand fundament properties of carbon cycle and then guide observatory, experimental, and modeling research. This presentation is to explore what would be the theoretical properties of terrestrial carbon cycle and how those properties can be used to make observatory, experimental, and modeling research more effective. Thousands of published data sets from litter decomposition and soil incubation studies almost all indicate that decay processes of litter and soil organic carbon can be well described by first order differential equations with one or more pools. Carbon pool dynamics in plants and soil after disturbances (e.g., wildfire, clear-cut of forests, and plows of soil for cropping) and during natural recovery or ecosystem restoration also exhibit characteristics of first-order linear systems. Thus, numerous lines of empirical evidence indicate that the terrestrial carbon cycle can be adequately described as a nonautonomous linear system. The linearity reflects the nature of the carbon cycle that carbon, once fixed by photosynthesis, is linearly transferred among pools within an ecosystem. The linear carbon transfer, however, is modified by nonlinear functions of external forcing variables. In addition, photosynthetic carbon influx is also nonlinearly influenced by external variables. This nonautonomous linear system can be mathematically expressed by a first-order linear ordinary matrix equation. We have recently used this theoretical property of terrestrial carbon cycle to develop a semi-analytic solution of spinup. The new methods have been applied to five global land models, including NCAR's CLM and CABLE models and can computationally accelerate spinup by two orders of magnitude. We also use this theoretical property to develop an analytic framework to

  7. Regeneration cycle and the covariant Lyapunov vectors in a minimal wall turbulence.

    Science.gov (United States)

    Inubushi, Masanobu; Takehiro, Shin-ichi; Yamada, Michio

    2015-08-01

    Considering a wall turbulence as a chaotic dynamical system, we study regeneration cycles in a minimal wall turbulence from the viewpoint of orbital instability by employing the covariant Lyapunov analysis developed by [F. Ginelli et al. Phys. Rev. Lett. 99, 130601 (2007)]. We divide the regeneration cycle into two phases and characterize them with the local Lyapunov exponents and the covariant Lyapunov vectors of the Navier-Stokes turbulence. In particular, we show numerically that phase (i) is dominated by instabilities related to the sinuous mode and the streamwise vorticity, and there is no instability in phase (ii). Furthermore, we discuss a mechanism of the regeneration cycle, making use of an energy budget analysis.

  8. Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Hauschild, Michael Zwicky; Boulay, Anne-Marie

    2018-01-01

    This chapter is dedicated to the third phase of an LCA study, the Life Cycle Impact Assessment (LCIA) where the life cycle inventory’s information on elementary flows is translated into environmental impact scores. In contrast to the three other LCA phases, LCIA is in practice largely automated...

  9. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  10. Effect of Estradiol Prescribed during Luteal Phase of Art Cycles and Pregnancy Outcome

    Directory of Open Access Journals (Sweden)

    M Karimzadeh

    2007-01-01

    Full Text Available Introduction: Implantation is one of the most important steps in ART cycles and it depends upon embryo and endometrial reception. Different protocols have been suggested for getting better endometrium. It seems estrogen increases the endometrial reception and pregnancy rate by inducing changes in the hormonal status. The aim of this study was to evaluate the effect of estradiol(E2 on luteal phase support and pregnancy rate in ART cycles Methods: This prospective randomized study was done in Yazd at the IVF center from March until December, 2002. 68 patients who had undergone IVF or ICSI were enrolled in the study. Exclusion criteria was age>40, endometriosis and ovarian hyper stimulation syndrome. Induction ovulation protocol was long suppression with GnRH analogues.After embryo transfer, patients were divided in two groups randomly. Both groups received 100mg progesterone IM daily from the transfer day. Estradiol valerate 2 mg/day was added from the 7th transfer day to progesterone in Group I and continued if the BhCG became positive. Abortion and malformations were measured in all patients. Data analyzed with SPSS 11.0 and P value <0.05 considered statistically significant. Results: Pregnancy rate in the 34 patients of estradiol group (group I was 26.5%which was significantly higher than 11.8 %( 4 cases in the other group (Pvalue=0.034. Abortion rate was higher in estradiol group (3 cases, but there was no abortion in the progesterone group(P=0.119. 2 cases of major fetal malformations were observed in E2 supplementation group (P=0.246 . Conclusions: E2 suplementation to progesterone in the luteal phase of ART cycles, especially in the long GnRH analogues causes higher endometrial receptivity and pregnancy rate.

  11. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  12. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2007-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO 2 turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na/CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  13. A comprehensive complex systems approach to the study and analysis of mammalian cell cycle control system in the presence of DNA damage stress.

    Science.gov (United States)

    Abroudi, Ali; Samarasinghe, Sandhya; Kulasiri, Don

    2017-09-21

    Not many models of mammalian cell cycle system exist due to its complexity. Some models are too complex and hard to understand, while some others are too simple and not comprehensive enough. Moreover, some essential aspects, such as the response of G1-S and G2-M checkpoints to DNA damage as well as the growth factor signalling, have not been investigated from a systems point of view in current mammalian cell cycle models. To address these issues, we bring a holistic perspective to cell cycle by mathematically modelling it as a complex system consisting of important sub-systems that interact with each other. This retains the functionality of the system and provides a clearer interpretation to the processes within it while reducing the complexity in comprehending these processes. To achieve this, we first update a published ODE mathematical model of cell cycle with current knowledge. Then the part of the mathematical model relevant to each sub-system is shown separately in conjunction with a diagram of the sub-system as part of this representation. The model sub-systems are Growth Factor, DNA damage, G1-S, and G2-M checkpoint signalling. To further simplify the model and better explore the function of sub-systems, they are further divided into modules. Here we also add important new modules of: chk-related rapid cell cycle arrest, p53 modules expanded to seamlessly integrate with the rapid arrest module, Tyrosine phosphatase modules that activate Cyc_Cdk complexes and play a crucial role in rapid and delay arrest at both G1-S and G2-M, Tyrosine Kinase module that is important for inactivating nuclear transport of CycB_cdk1 through Wee1 to resist M phase entry, Plk1-Related module that is crucial in activating Tyrosine phosphatases and inactivating Tyrosine kinase, and APC-Related module to show steps in CycB degradation. This multi-level systems approach incorporating all known aspects of cell cycle allowed us to (i) study, through dynamic simulation of an ODE model

  14. Nuclear fuel cycle simulation system (VISTA)

    International Nuclear Information System (INIS)

    2007-02-01

    The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. The VISTA model needs isotopic composition of spent nuclear fuel in order to make estimations of the material arisings from the nuclear reactor operation. For this purpose, in accordance with the requirements of the VISTA code, a new module called Calculating Actinide Inventory (CAIN) was developed. CAIN is a simple fuel depletion model which requires a small number of input parameters and gives results in a very short time. VISTA has been used internally by the IAEA for the estimation of: spent fuel discharge from the reactors worldwide, Pu accumulation in the discharged spent fuel, minor actinides (MA) accumulation in the spent fuel, and in the high level waste (HLW) since its development. The IAEA decided to disseminate the VISTA tool to Member States using internet capabilities in 2003. The improvement and expansion of the simulation code and the development of the internet version was started in 2004. A website was developed to introduce the simulation system to the visitors providing a simple nuclear material flow calculation tool. This website has been made available to Member States in 2005. The development work for the full internet version is expected to be fully available to the interested parties from IAEA Member States in 2007 on its website. This publication is the accompanying text which gives details of the modelling and an example scenario

  15. Dual-objective optimization of organic Rankine cycle (ORC) systems using genetic algorithm: a comparison between basic and recuperative cycles

    Science.gov (United States)

    Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad

    2017-08-01

    Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives (η_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.

  16. Use of two-phase flow heat transfer method in spacecraft thermal system

    Science.gov (United States)

    Hye, A.

    1985-01-01

    In space applications, weight, volume and power are critical parameters. Presently liquid freon is used in the radiator planels of the Space Shuttle to dissipate heat. This requires a large amount of freon, large power for pumps, large volume and weight. Use of two-phase flow method to transfer heat can reduce them significantly. A modified commercial vapor compression refrigerator/freezer was sucessfully flown in STS-4 to study the effect of zero-gravity on the system. The duty cycle was about 5 percent higher in flight as compared to that on earth due to low flow velocity in condenser. The vapor Reynolds number at exit was about 4000 as compared to about 12,000. Efforts are underway to design a refrigerator/freezer using an oil-free compressor for Spacelab Mission 4 scheduled to fly in January 1986. A thermal system can be designed for spacecraft using the two-phase flow to transfer heat economically.

  17. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ames, David E.,

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  18. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Oyeniyi A. Oyewunmi

    2016-06-01

    Full Text Available In the present paper, we consider the employment of working-fluid mixtures in organic Rankine cycle (ORC systems with respect to thermodynamic and heat-transfer performance, component sizing and capital costs. The selected working-fluid mixtures promise reduced exergy losses due to their non-isothermal phase-change behaviour, and thus improved cycle efficiencies and power outputs over their respective pure-fluid components. A multi-objective cost-power optimization of a specific low-temperature ORC system (operating with geothermal water at 98 °C reveals that the use of working-fluid-mixtures does indeed show a thermodynamic improvement over the pure-fluids. At the same time, heat transfer and cost analyses, however, suggest that it also requires larger evaporators, condensers and expanders; thus, the resulting ORC systems are also associated with higher costs. In particular, 50% n-pentane + 50% n-hexane and 60% R-245fa + 40% R-227ea mixtures lead to the thermodynamically optimal cycles, whereas pure n-pentane and pure R-245fa have lower plant costs, both estimated as having ∼14% lower costs per unit power output compared to the thermodynamically optimal mixtures. These conclusions highlight the importance of using system cost minimization as a design objective for ORC plants.

  19. Innovation Cycles Concerning Strategic Planning of Product-Service-Systems

    OpenAIRE

    Hepperle, Clemens;Mörtl, Markus;Lindemann, Udo

    2017-01-01

    This paper proposes a research program for identifying, understanding and describing innovation cycles concerning strategic planning of product-service-systems. A general overview about the background of cycle management in innovation processes, which the proposed research program is part of, is given before focusing cycles concerning strategic planning. As companies offer more and more complex products in order to satisfy market needs, the innovation process of such products becomes also mor...

  20. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  1. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  2. The thorium fuel cycle in water-moderated reactor systems

    International Nuclear Information System (INIS)

    Critoph, E.

    1977-05-01

    Thorium and uranium cycles are compared with regard to reactor characteristics and technology, fuel-cycle technology, economic parameters, fuel-cycle costs, and system characteristics. In heavy-water reactors (HWRs) thorium cycles having uranium requirements at equilibrium ranging from zero to a quarter of those for the natural-uranium once-through cycle appear feasible. An 'inventory' of uranium of between 1 and 2 Mg/MW(e) is required for the transition to equilibrium. The cycles with the lowest uranium requirements compete with the others only at high uranium prices. Using thorium in light-water reactors, uranium requirements can be reduced by a factor of between two and three from the once-through uranium cycle. The light-water breeder reactor, promising zero uranium requirements at equilibrium, is being developed. Larger uranium inventories are required than for the HWRs. The lead time, from a decision to use thorium to significant impact on uranium utilization (compared to uranium cycle, recycling plutonium) is some two decades

  3. Uranium requirements for advanced fuel cycles in expanding nuclear power systems

    International Nuclear Information System (INIS)

    Banerjee, S.; Tamm, H.

    1978-01-01

    When considering advanced fuel cycle strategies in rapidly expanding nuclear power systems, equilibrium analyses do not apply. A computer simulation that accounts for system delay times and fissile inventories has been used to study the effects of different fuel cycles and different power growth rates on uranium consumption. The results show that for a given expansion rate of installed capacity, the main factors that affect resource requirements are the fissile inventory needed to introduce the advanced fuel cycle and the conversion (or breeding) ratio. In rapidly expanding systems, the effect of fissile inventory dominates, whereas in slowly expanding systems, conversion or breeding ratio dominates. Heavy-water-moderated and -cooled reactors, with their high conversion ratios, appear to be adaptable vehicles for accommodating fuel cycles covering a wide range of initial fissile inventories. They are therefore particularly suitable for conserving uranium over a wide range of nuclear power system expansion rates

  4. Cubic and quartic planar differential systems with exact algebraic limit cycles

    Directory of Open Access Journals (Sweden)

    Ahmed Bendjeddou

    2011-01-01

    Full Text Available We construct cubic and quartic polynomial planar differential systems with exact limit cycles that are ovals of algebraic real curves of degree four. The result obtained for the cubic case generalizes a proposition of [9]. For the quartic case, we deduce for the first time a class of systems with four algebraic limit cycles and another for which nested configurations of limit cycles occur.

  5. The combination of an Environmental Management System and Life Cycle Assessment at the territorial level

    Energy Technology Data Exchange (ETDEWEB)

    Mazzi, Anna; Toniolo, Sara; Catto, Stella; De Lorenzi, Valentina; Scipioni, Antonio, E-mail: scipioni@unipd.it

    2017-03-15

    A framework to include a Life Cycle Assessment in the significance evaluation of the environmental aspects of an Environmental Management System has been studied for some industrial sectors, but there is a literature gap at the territorial level, where the indirect impact assessment is crucial. To overcome this criticality, our research proposes the Life Cycle Assessment as a framework to assess environmental aspects of public administration within an Environmental Management System applied at the territorial level. This research is structured in two parts: the design of a new methodological framework and the pilot application for an Italian municipality. The methodological framework designed supports Initial Environmental Analysis at the territorial level thanks to the results derived from the impact assessment phase. The pilot application in an Italian municipality EMAS registered demonstrates the applicability of the framework and its effectiveness in evaluating the environmental impact assessment for direct and indirect aspects. Through the discussion of the results, we underline the growing knowledge derived by this research in terms of the reproducibility and consistency of the criteria to define the significance of the direct and indirect environmental aspects for a local public administration. - Highlights: • The combination between Environmental Management System and LCA is studied. • A methodological framework is elaborated and tested at the territorial level. • Life Cycle Impact Assessment supports the evaluation of aspects significance. • The framework assures consistency of evaluation criteria on the studied territory.

  6. The combination of an Environmental Management System and Life Cycle Assessment at the territorial level

    International Nuclear Information System (INIS)

    Mazzi, Anna; Toniolo, Sara; Catto, Stella; De Lorenzi, Valentina; Scipioni, Antonio

    2017-01-01

    A framework to include a Life Cycle Assessment in the significance evaluation of the environmental aspects of an Environmental Management System has been studied for some industrial sectors, but there is a literature gap at the territorial level, where the indirect impact assessment is crucial. To overcome this criticality, our research proposes the Life Cycle Assessment as a framework to assess environmental aspects of public administration within an Environmental Management System applied at the territorial level. This research is structured in two parts: the design of a new methodological framework and the pilot application for an Italian municipality. The methodological framework designed supports Initial Environmental Analysis at the territorial level thanks to the results derived from the impact assessment phase. The pilot application in an Italian municipality EMAS registered demonstrates the applicability of the framework and its effectiveness in evaluating the environmental impact assessment for direct and indirect aspects. Through the discussion of the results, we underline the growing knowledge derived by this research in terms of the reproducibility and consistency of the criteria to define the significance of the direct and indirect environmental aspects for a local public administration. - Highlights: • The combination between Environmental Management System and LCA is studied. • A methodological framework is elaborated and tested at the territorial level. • Life Cycle Impact Assessment supports the evaluation of aspects significance. • The framework assures consistency of evaluation criteria on the studied territory.

  7. Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-μm pulses using a mixed phase matching scheme

    International Nuclear Information System (INIS)

    Xu, Guibao; Wandel, Scott F.; Jovanovic, Igor

    2014-01-01

    We describe the production of 2.2-mJ, ∼6 optical-cycle-long mid-infrared laser pulses with a carrier wavelength of 2.05 μm in a two-stage β-BaB 2 O 4 nondegenerate optical parametric amplifier design with a mixed phase matching scheme, which is pumped by a standard Ti:sapphire chirped-pulse amplification system. It is demonstrated that relatively high pulse energies, short pulse durations, high stability, and excellent beam profiles can be obtained using this simple approach, even without the use of optical parametric chirped-pulse amplification

  8. Single phase inverter for a three phase power generation and distribution system

    Science.gov (United States)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  9. Water Cycling under Climate Change. Interactions between the water cycle, vegetation and a changing (sub)tropical climate

    NARCIS (Netherlands)

    de Boer, H.J.

    2012-01-01

    The water cycle is an essential component of the climate system because the physical properties of water in its liquid, solid and gaseous phases allow for the redistribution of energy in the oceans and atmosphere. At the scale of individual organisms, water and energy are also essential for the

  10. Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.

    Science.gov (United States)

    Chao, Hui Xiao; Poovey, Cere E; Privette, Ashley A; Grant, Gavin D; Chao, Hui Yan; Cook, Jeanette G; Purvis, Jeremy E

    2017-11-22

    Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The clock is ticking. Ageing of the circadian system: From physiology to cell cycle.

    Science.gov (United States)

    Terzibasi-Tozzini, Eva; Martinez-Nicolas, Antonio; Lucas-Sánchez, Alejandro

    2017-10-01

    The circadian system is the responsible to organise the internal temporal order in relation to the environment of every process of the organisms producing the circadian rhythms. These rhythms have a fixed phase relationship among them and with the environment in order to optimise the available energy and resources. From a cellular level, circadian rhythms are controlled by genetic positive and negative auto-regulated transcriptional and translational feedback loops, which generate 24h rhythms in mRNA and protein levels of the clock components. It has been described about 10% of the genome is controlled by clock genes, with special relevance, due to its implications, to the cell cycle. Ageing is a deleterious process which affects all the organisms' structures including circadian system. The circadian system's ageing may produce a disorganisation among the circadian rhythms, arrhythmicity and, even, disconnection from the environment, resulting in a detrimental situation to the organism. In addition, some environmental conditions can produce circadian disruption, also called chronodisruption, which may produce many pathologies including accelerated ageing. Finally, some strategies to prevent, palliate or counteract chronodisruption effects have been proposed to enhance the circadian system, also called chronoenhancement. This review tries to gather recent advances in the chronobiology of the ageing process, including cell cycle, neurogenesis process and physiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Phase space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22.

    Science.gov (United States)

    Silva, H G; Lopes, I

    Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.

  13. Phase Change Energy Storage Material Suitable for Solar Heating System

    Science.gov (United States)

    Li, Xiaohui; Li, Haihua; Zhang, Lihui; Liu, Zhenfa

    2018-01-01

    Differential scanning calorimetry (DSC) was used to investigate the thermal properties of palmitic acid, myristic acid, laurel acid and the binary composite of palmitic/laurel acid and palmitic/myristic acid. The results showed that the phase transition temperatures of the three monomers were between 46.9-65.9°C, and the latent heats were above 190 J/g, which could be used as solar energy storage material. When the mass ratio of Palmitic acid and myristic was 1:1, the eutectic mixture could be formed. The latent heat of the eutectic mixture was 186.6 J/g, the melting temperature and the solidification temperature was 50.6°C and 43.8°C respectively. The latent heat of phase change and the melting temperature had not obvious variations after 400 thermal cycles, which proved that the binary composite had good thermal stability and was suitable for solar floor radiant heating system.

  14. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system

    International Nuclear Information System (INIS)

    Wu, Weixiong; Yang, Xiaoqing; Zhang, Guoqing; Chen, Kai; Wang, Shuangfeng

    2017-01-01

    Highlights: • A heat pipe assisted phase change material based battery thermal management system is proposed. • The proposed system is compact and efficient from a view of practical application. • Cycling conditions are experimentally simulated for practical working environment. • The proposed system presents better thermal performance in comparison to other systems. • Combining forced air convection with heat pipe further enhances the cooling effect. - Abstract: In this paper, a heat pipe-assisted phase change material (PCM) based battery thermal management (BTM) system is designed to fulfill the comprehensive energy utilization for electric vehicles and hybrid electric vehicles. Combining the large heat storage capacity of the PCM with the excellent cooling effect of heat pipe, the as-constructed heat pipe-assisted PCM based BTM is feasible and effective with a relatively longer operation time and more suitable temperature. The experimental results show that the temperature maldistribution of battery module can be influenced by heat pipes when they are activated under high discharge rates of the batteries. Moreover, with forced air convection, the highest temperature could be controlled below 50 °C even under the highest discharge rate of 5C and a more stable and lower temperature fluctuation is obtained under cycling conditions. Meanwhile, the effectiveness of further increasing air velocity (i.e., more fan power consumption) is limited when the highest temperature continues to reduce at a lower rate due to the phase transition process of PCM. These results are expected to provide insights into the design and optimization of BTM systems.

  15. [Profile of sulphated glycosaminoglycans content in the murine uterus during the different phases of the estrous cycle].

    Science.gov (United States)

    Gomes, Regina Célia Teixeira; Simões, Ricardo Santos; Soares, José Maria; Nader, Helena Bonciani; Simões, Manuel de Jesus; Baracat, Edmund C

    2007-01-01

    Identification and quantitation of sulphated glycosaminoglycans (GAGs) in the uterus of female mice during the estrous cycle. Four groups (n = 10 each) of virgin, 100-day old female mice were assembled according to the estrous cycle phase: proestrus, estrus, metaestrus and diestrus. Samples of the median portion of uterine horns were processed for light microscopy examination (H/E and Alcian blue + PAS). The GAGs were extracted and characterized by agarose gel electrophoresis. Data were analyzed by the unpaired Student's t-test. At light microscopy GAGs appear in all layers of the uterus, especially in the endometrium, between collagen fibers, in the basal membrane and around fibroblasts. Biochemical analyses disclosed presence of dermatan sulphate (DS), chondroitin sulphate (CS and heparan sulphate (HS) during all estral cycle phases. There was no clear electrophoretic separation between DS and CS, thus these two GAGs were considered together (DS+CS) (proestrus = 0.854 +/- 0.192; estrus = 1.073 +/- 0.254; metaestrus = 1.003 +/- 0.255; diestrus = 0.632 +/- 0.443 microg/mg). HS was as follows: proestrus = 0.092 +/- 0.097; estrus = 0.180 +/- 0.141; metaestrus = 0.091 +/- 0.046; diestrus = 0.233 +/- 0.147 microg/mg. The uterine content of DS+CS peaked at estrus (estrogenic action) and that of HS at diestrus (progestagen action). Due to a constant turnover process, there are definite alterations in the uterine profile of GAGs content during the estrous cycle in mice, which may be modulated by female sex hormones.

  16. Bipolar mood cycles and lunar tidal cycles.

    Science.gov (United States)

    Wehr, T A

    2018-04-01

    In 17 patients with rapid cycling bipolar disorder, time-series analyses detected synchronies between mood cycles and three lunar cycles that modulate the amplitude of the moon's semi-diurnal gravimetric tides: the 14.8-day spring-neap cycle, the 13.7-day declination cycle and the 206-day cycle of perigee-syzygies ('supermoons'). The analyses also revealed shifts among 1:2, 1:3, 2:3 and other modes of coupling of mood cycles to the two bi-weekly lunar cycles. These shifts appear to be responses to the conflicting demands of the mood cycles' being entrained simultaneously to two different bi-weekly lunar cycles with slightly different periods. Measurements of circadian rhythms in body temperature suggest a biological mechanism through which transits of one of the moon's semi-diurnal gravimetric tides might have driven the patients' bipolar cycles, by periodically entraining the circadian pacemaker to its 24.84-h rhythm and altering the pacemaker's phase-relationship to sleep in a manner that is known to cause switches from depression to mania.

  17. Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Guo, Hairun; Zhou, Binbin

    2013-01-01

    We discuss a novel method for generating octave-spanning supercontinua and few-cycle pulses in the important mid-IR wavelength range. The technique relies on strongly phase-mismatched cascaded second-harmonic generation (SHG) in mid-IR nonlinear frequency conversion crystals. Importantly we here...... of the promising crystals: in one case soliton pulse compression from 50 fs to 15 fs (1.5 cycles) at 3.0 μm is achieved, and at the same time a 3-cycle dispersive wave at 5.0 μm is formed that can be isolated using a long-pass filter. In another example we show that extremely broadband supercontinua can form...

  18. Cold storage condensation heat recovery system with a novel composite phase change material

    International Nuclear Information System (INIS)

    Xia, Mingzhu; Yuan, Yanping; Zhao, Xudong; Cao, Xiaoling; Tang, Zhonghua

    2016-01-01

    Highlights: • Cold storage condensation heat recovery system using PCM was proposed. • CW with a phase change temperature of nearly 80 °C was selected as the potential PCM. • The optimal mass ratio between the CW and EG was 10:1. • The thermal and physical performances of the CW/EG were investigated. • The thermal reliability was demonstrated by 1000 cycles. - Abstract: Using condensation heat from cold storage refrigeration systems to provide heat for domestic hot water preparation and industrial hot water supply promotes energy conservation. However, few studies have investigated cold storage condensation heat recovery using phase change materials (PCMs). In this study, a cold storage condensation heat recovery system that uses PCMs has been designed and analysed. According to the principle of energy cascade recycling, different operation modes could be effectively switched to recycle condensation heat. Furthermore, a novel and suitable phase change composite material is developed for cold storage condensation heat recovery, which has a relatively large latent heat, high thermal conductivity, and an appropriate phase change temperature (i.e. 80 °C). With carnauba wax (CW) as the PCM and expanded graphite (EG) as the additive, a composite was developed with an optimal mass ratio of CW:EG = 10:1. The thermal and physical properties and the interior structure of the composite were then investigated using a scanning electron microscope (SEM), thermal constants analyser (Hot Disk), differential scanning calorimeter (DSC), and Fourier transform infrared spectrometer (FT-IR). Furthermore, experiments on the melting and solidification processes and accelerated thermal cycling were also conducted. It was found that at the optimal mass ratio of 10:1, the temperatures of the CW/EG composite in the melting and solidification processes were 81.98 °C and 80.43 °C, respectively, while the corresponding latent heats were 150.9 J/g and 142.6 J/g, respectively

  19. Software Safety Life cycle and Method of POSAFE-Q System

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Kwon, Kee-Choon

    2006-01-01

    This paper describes the relationship between the overall safety life cycle and the software safety life cycle during the development of the software based safety systems of Nuclear Power Plants. This includes the design and evaluation activities of components as well as the system. The paper also compares the safety life cycle and planning activities defined in IEC 61508 with those in IEC 60880, IEEE 7-4.3.2, and IEEE 1228. Using the KNICS project as an example, software safety life cycle and safety analysis methods applied to the POSAFE-Q are demonstrated. KNICS software safety life cycle is described by comparing to the software development, testing, and safety analysis process with international standards. The safety assessment of the software for POSAFE-Q is a joint Korean German project. The assessment methods applied in the project and the experiences gained from this project are presented

  20. Development of multilateral comparative evaluation method for fuel cycle system

    International Nuclear Information System (INIS)

    Tamaki, Hitoshi; Ikushima, Takeshi; Nomura, Yasushi; Nakajima, Kiyoshi.

    1998-03-01

    In the near future, Japanese nuclear fuel cycle system will be promoted by national nuclear energy policy, and it''s options i.e. once through, thermal cycle and fast breeder cycle must be selected by multilateral comparative evaluation method from various aspects of safety, society, economy, and e.t.c. Therefore such a problem can be recognized as a social problem of decision making and applied for AHP (Analytic Hierarchy Process) that can multilaterally and comparatively evaluate the problem. On comparative evaluation, much information are needed for decision making, therefore two kinds of databases having these information have been constructed. And then, the multilateral comparative evaluation method consisting of two kinds of databases and AHP for optimum selection of fuel cycle system option have been developed. (author)

  1. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  2. Assessment of the proliferative, apoptotic and cellular renovation indices of the human mammary epithelium during the follicular and luteal phases of the menstrual cycle

    International Nuclear Information System (INIS)

    Navarrete, Maria Alicia H; Maier, Carolina M; Falzoni, Roberto; Quadros, Luiz Gerk de Azevedo; Lima, Geraldo R; Baracat, Edmund C; Nazário, Afonso CP

    2005-01-01

    During the menstrual cycle, the mammary gland goes through sequential waves of proliferation and apoptosis. In mammary epithelial cells, hormonal and non-hormonal factors regulate apoptosis. To determine the cyclical effects of gonadal steroids on breast homeostasis, we evaluated the apoptotic index (AI) determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining in human mammary epithelial cells during the spontaneous menstrual cycle and correlated it with cellular proliferation as determined by the expression of Ki-67 during the same period. Normal breast tissue samples were obtained from 42 randomly selected patients in the proliferative (n = 21) and luteal (n = 21) phases. Menstrual cycle phase characterization was based on the date of the last and subsequent menses, and on progesterone serum levels obtained at the time of biopsy. The proliferation index (PI), defined as the number of Ki-67-positive nuclei per 1,000 epithelial cells, was significantly larger in the luteal phase (30.46) than in the follicular phase (13.45; P = 0.0033). The AI was defined as the number of TUNEL-positive cells per 1,000 epithelial cells. The average AI values in both phases of the menstrual cycle were not statistically significant (P = 0.21). However, the cell renewal index (CRI = PI/AI) was significantly higher in the luteal phase (P = 0.033). A significant cyclical variation of PI, AI and CRI was observed. PI and AI peaks occurred on about the 24th day of the menstrual cycle, whereas the CRI reached higher values on the 28th day. We conclude that proliferative activity is dependent mainly on hormonal fluctuations, whereas apoptotic activity is probably regulated by hormonal and non-hormonal factors

  3. Cytological image of the endometrium in cows in follicular and luteal phases of the ovarian cycle and in cows with follicular and luteal ovarian cysts

    Directory of Open Access Journals (Sweden)

    Brodzki Piotr

    2014-03-01

    Full Text Available The experiment was conducted on 30 Holstein-Friesian cows: 10 cows in the follicular phase of the cycle and in the luteal phase 10 d later, 10 cows with follicular cysts, and 10 with luteal cysts. The presence of the ovarian structures was confirmed by ultrasonography. Serum levels of progesterone and 17β-oestradiol were tested with ELISA. Samples for cytological examination were collected from the uterus of all cows using a cytological brush. Following staining, the smears were evaluated in terms of quality and percentages of endometrial cells. In the follicular phase of the oestrous cycle, cells of type A - superficial cells (64.6 ± 4.48 were proportionally the largest group of cells. Cells of type C - basal cells (19.8 ± 2.75 were also present. In the luteal phase, the highest percentage of cells was of type B - intermediate cells (76.9 ± 4.26. When follicular cysts were present on the ovaries, the cytology resembled the follicular phase of the cycle, but with many younger type C cells (33.1 ± 4.11. In the case of luteal cysts on the ovaries, the cytology was similar to that of the luteal phase of the cycle, however with a lower percentage of type B cells (58.1 ± 5.71, and a slightly higher percentage of the other types. The differences in the cytological image of the uterus when different ovarian structures are present, depend on the hormonal activity of those structures. Due to the lack of literature data, the results of the study are important as a model, and may substantially facilitate identification of phases of the oestrus cycle, or the pathologies described, as well as indicate the current status of the endometrium

  4. Bioenergetic coupling between membrane transport systems and biosynthetic pathways essential for cell cycle progression

    International Nuclear Information System (INIS)

    Leister, K.J.; Cutry, A.F.; Wenner, C.E.

    1986-01-01

    Recently, it has been shown that there exists a point in the cell cycle (approximately 2 h prior to S phase entry) when (Na + /K + )ATPase pump activity is no longer needed for progression through the cycle. These data suggests that pump activity is critical in the biosynthetic processes which enables the cell to proceed through the G 1 phase. A scheme is proposed which is currently being tested that (Na + /K + )ATPase pump activity serves as the driving force in the regulation of other membrane transport processes critical for cell proliferation. For example, in post-confluent quiescent C3H-10T1/2 fibroblasts, when [K + ]/sub o/ is lowered just below the K/sub m/ of the pump for K + there is a 10-fold increase in 3 H-uridine uptake into both acid soluble and insoluble cell fractions. By modulation of the pump in this manner, glucose utilization is enhanced whereas inhibition of the pump by ouabain suppresses glucose utilization. In both methods of affecting the pump, 3 H-leucine incorporation is inhibited. Electron acceptors that influence the redox state of the cell have been shown to both stimulate or inhibit cell cycle progression. Under conditions where [K + ]/sub o/ is lowered, the nucleoside uptake responses observed were modified by electron acceptors depending on the ability to oxidize NAD(P)H directly or to interact with a cytochrome-like component, (e.g. phenazine methosulfate) reversed the enhanced uridine uptake and p-phenylene diamine further enhanced the uridine uptake response. These findings suggest that a plasma membrane redox system (presumably cyt-c like) is linked to nucleoside transport which is subject to (Na + /K + )ATPase activity

  5. Life cycle management of service water systems

    International Nuclear Information System (INIS)

    Egan, Geoffrey R.; Besuner, Philip M.; Mahajan, Sat P.

    2004-01-01

    As nuclear plants age, more attention must focus on age and time dependent degradation mechanisms such as corrosion, erosion, fatigue, etc. These degradation mechanisms can best be managed by developing a life cycle management plan which integrates past historical data, current conditions and future performance needs. In this paper we present two examples of life cycle management. In the first example, the 20-year maintenance history of a sea water cooling system (cement-lined, cast iron) is reviewed to develop attributes like maintenance cost, spare part inventory, corrosion, and repair data. Based on this information, the future expected damage rate was forecast. The cost of managing the future damage was compared with the cost to replace (in kind and with upgraded materials. A decision optimization scheme was developed to choose the least cost option from: a) Run as-is and repair; b) replace in kind; or c) replace with upgraded material and better design. In the second example, life cycle management techniques were developed for a ceilcote lined steel pipe cooling water system. Screens (fixed and traveling), filters, pumps, motors, valves, and piping were evaluated. (author)

  6. Management of actinide waste inventories in nuclear phase-out scenarios

    International Nuclear Information System (INIS)

    Cometto, M.; Wydler, P.; Chawla, R.

    2008-01-01

    The improvement of the 'radiological cleanliness' of nuclear energy is a primary goal in the development of advanced reactors and fuel cycles. The multiple recycling of actinides in advanced nuclear systems with fast neutron spectra represents a key option for reducing the potential hazard from high-level waste, especially when the fuel cycle is fully closed. Such strategies, however, involve large inventories of radiotoxic, transuranic (TRU) nuclides in the nuclear park, both in-pile and out-of-pile. The management of these inventories with the help of actinide burners is likely to become an important issue, if nuclear energy systems are eventually phased out, i.e. replaced by other types of energy systems. The present paper compares phase-out scenarios for two transmutation strategies involving fast reactors (FRs) and accelerator-driven systems (ADSs), respectively, operating in symbiosis with conventional light water reactors (LWRs). Particular objectives are to evaluate and compare the TRU reduction performance of the systems as a function of the phase-out time and to determine the appropriate phase-out length for different phase-out criteria. In this connection, an interesting aspect concerns the continuous optimisation of the fuel cycle to counterbalance the reactivity decrease due to the depletion of the fissile isotopes in the fuel. It will be shown that both FRs and ADSs can achieve the goal, provided that the phase-out operation can be continued for about a hundred years

  7. Closed-cycle cooling systems for nuclear power plants

    International Nuclear Information System (INIS)

    Santini, Lorenzo

    2006-01-01

    The long experience in the field of closed-cycle cooling systems and high technological level of turbo machines and heat exchangers concurs to believe in the industrial realizability of nuclear systems of high thermodynamic efficiency and intrinsic safety [it

  8. Effects of ACTH on corticosteroid and progesterone levels in female baboons depending on the phase of the menstrual cycle

    International Nuclear Information System (INIS)

    Todua, T.N.; Goncharov, N.P.; Katsiya, G.V.; Lapin, B.A.; Vorontsov, V.I.

    1986-01-01

    To study the effect of ACTH on the endocrine function of steroid producing glands depending on the level of sex hormones in the body, a comparative study of the dynamics of steroid hormones in the follicular and luteal phases of the menstrual cycle in response to a standard does of ACTH was undertaken in experiments on hamadryad baboons. Concentrations of corticosterone, 11-deoxycortisol, and progesterone were determined in duplicate samples of plasma by radioimmunoassay. It is shown that the sensitivity of the adrenals to a single injection of ACTH is independent of the phase of the menstrual cycle and the inhibitory effects of ACTH on progesterone secretion is exhibited only in the presence of an actively functioning corpus luteus of the ovary

  9. Effects of ACTH on corticosteroid and progesterone levels in female baboons depending on the phase of the menstrual cycle

    Energy Technology Data Exchange (ETDEWEB)

    Todua, T.N.; Goncharov, N.P.; Katsiya, G.V.; Lapin, B.A.; Vorontsov, V.I.

    1986-01-01

    To study the effect of ACTH on the endocrine function of steroid producing glands depending on the level of sex hormones in the body, a comparative study of the dynamics of steroid hormones in the follicular and luteal phases of the menstrual cycle in response to a standard does of ACTH was undertaken in experiments on hamadryad baboons. Concentrations of corticosterone, 11-deoxycortisol, and progesterone were determined in duplicate samples of plasma by radioimmunoassay. It is shown that the sensitivity of the adrenals to a single injection of ACTH is independent of the phase of the menstrual cycle and the inhibitory effects of ACTH on progesterone secretion is exhibited only in the presence of an actively functioning corpus luteus of the ovary.

  10. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system

    Science.gov (United States)

    Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro

    2008-05-01

    A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.

  11. Phase transitions in finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), DSM-CEA / IN2P3-CNRS, 14 - Caen (France); Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    2002-07-01

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  12. Phase transitions in finite systems

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Gulminelli, F.

    2002-01-01

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  13. Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems. Phase I: Isothermal forced convection case

    International Nuclear Information System (INIS)

    2012-06-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of the Fuel Cycle (WPFC) has been established to co-ordinate scientific activities regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, associated chemistry and flowsheets, development and performance of fuel and materials and accelerators and spallation targets. The WPFC has different expert groups to cover a wide range of scientific issues in the field of nuclear fuel cycle. The Task Force on Lead-Alloy-Cooled Advanced Nuclear Energy Systems (LACANES) was created in 2006 to study thermal-hydraulic characteristics of heavy liquid metal coolant loop. The objectives of the task force are to (1) validate thermal-hydraulic loop models for application to LACANES design analysis in participating organisations, by benchmarking with a set of well-characterised lead-alloy coolant loop test data, (2) establish guidelines for quantifying thermal-hydraulic modelling parameters related to friction and heat transfer by lead-alloy coolant and (3) identify specific issues, either in modelling and/or in loop testing, which need to be addressed via possible future work. Nine participants from seven different institutes participated in the first phase of the benchmark. This report provides details of the benchmark specifications, method and code characteristics and results of the preliminary study: pressure loss coefficient and Phase-I. A comparison and analysis of the results will be performed together with Phase-II

  14. Solar combi system with phase-change materials; CoSyPCM. Combi-systeme avec materiaux a changement de phase

    Energy Technology Data Exchange (ETDEWEB)

    Citherlet, S.; Bony, J.

    2007-02-15

    Within the framework of Task 32 of the Solar Heating and Cooling Programme of the International Energy Agency (IEA) we studied the potential of using Phase Change Material (PCM) in a solar combi system in the form of modules placed in a storage tank. The goal was to analyze the potential of latent heat storage in a water tank of a solar installation, in order to increase the performance or to reduce the storage volume. This report describes the methodology used and the results obtained during the analysis of the heat storage potential by latent heat. The following stages were carried out: (i) Development of a simulation model: As no reliable numerical model exists, we developed a dynamic model to simulate PCM modules of various PCM types and shapes. This simulation model takes into account the hysteresis, the subcooling as well as the internal convection of the PCM in a liquid phase. This model was implemented in an existing TRNSYS Type(60). (ii) Laboratory measurements: In order to validate the digital model we tested various configurations and different types of PCM to check the agreement between simulations and experimental results. This step was focused on the time-dependent temperature distribution in the PCM and in the storage tank in order to validate the numerical model. (iii) Solar combi system: The potential relevance of the PCM was tested by using a solar combi system (Arpege) both with and without PCM. An energy balance was established on the basis of a seven days uninterrupted use of Arpege in various conditions (meteorological conditions and domestic hot water draw-off). Following the validation of the numerical model, annual simulations were carried out. (iv) Environmental impacts: A life cycle analysis of this solar combi system both with and without PCM was carried out. This analysis takes into account materials of the Arpege installation, the PCM and its container, as well as auxiliary energy used. (author)

  15. Cooperation between Epstein-Barr Virus Immune Evasion Proteins Spreads Protection from CD8+ T Cell Recognition across All Three Phases of the Lytic Cycle

    Science.gov (United States)

    Quinn, Laura L.; Zuo, Jianmin; Abbott, Rachel J. M.; Shannon-Lowe, Claire; Tierney, Rosemary J.; Hislop, Andrew D.; Rowe, Martin

    2014-01-01

    CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IEevasion functions are actually relevant in the context of lytic virus replication, and secondly identify lytic-cycle phase-specific effects that provide mechanistic insight into the immunodominance pattern seen for CD8+ T cell responses to EBV lytic antigens. PMID:25144360

  16. Data for chromosome contacts and matched transcription profiles at three cell cycle phases in the fission yeast

    Directory of Open Access Journals (Sweden)

    Ralph S. Grand

    2015-06-01

    Full Text Available The data described in this article pertains to Grand et al. (2014, “Chromosome conformation maps in fission yeast reveal cell cycle dependent sub nuclear structure” [1]. Temperature sensitive Schizosaccharomyces pombe cell division cycle (cdc mutants, which are induced by a shift in temperature to 36 °C, were chosen for the analysis of genome structure in the G1 phase, G2 phase and mitotic anaphase of the cell cycle. Chromatin and total RNA were isolated from the same cell culture following synchronization. Two biological replicates were analyzed for each condition. The global, three-dimensional organization of the chromosomes was captured at high resolution using Genome Conformation Capture (GCC. GCC libraries and RNA samples were sequenced using an Illumina Hi-Seq 2000 platform (Beijing Genomics Institute (China. DNA sequences were processed using the Topography suite v1.19 [2] to obtain chromosome contact frequency matrices. RNA sequences were processed using the Cufflinks pipeline [3] to measure gene transcript levels and how these varied between the conditions. All sequence data, processed GCC and transcriptome files are available under the Gene Expression Omnibus (GEO accession number GSE52287 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52287.

  17. Crying, oral contraceptive use and the menstrual cycle.

    Science.gov (United States)

    Romans, Sarah E; Clarkson, Rose F; Einstein, Gillian; Kreindler, David; Laredo, Sheila; Petrovic, Michele J; Stanley, James

    2017-01-15

    Crying, a complex neurobiological behavior with psychosocial and communication features, has been little studied in relationship to the menstrual cycle. In the Mood and Daily Life study (MiDL), a community sample of Canadian women aged 18-43 years, n=76, recorded crying proneness and crying frequency daily for six months along with menstrual cycle phase information. Crying proneness was most likely during the premenstruum, a little less likely during menses and least likely during the mid-cycle phase, with statistically significant differences although the magnitude of these differences were small. By contrast, actual crying did not differ between the three menstrual cycle phases. Oral contraceptive use did not alter the relationship between menstrual cycle phase and either crying variable. A wide range of menstrual cycle phase - crying proneness patterns were seen with visual inspection of the individual women's line graphs. timing of ovulation was not ascertained. Using a three phase menstrual cycle division precluded separate late follicular and early luteal data analysis. The sample size was inadequate for a robust statistical test of actual crying. reproductive aged women as a group report feeling more like crying premenstrually but may not actually cry more during this menstrual cycle phase. Individual patterns vary substantially. Oral contraceptive use did not affect these relationships. Suggestions for future research are included. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The Application of Supercritical CO{sub 2} Power Cycle to Various Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The main reason why the S-CO{sub 2} Brayton cycle has these advantages is that the compressor operates near the critical point of CO{sub 2} (30.98 .deg. C, 7.38MPa) to reduce the compression work significantly compared to the other Brayton cycles. In this paper, various applications of supercritical CO{sub 2} power cycle to nuclear systems will be presented and summarized. The S-CO{sub 2} cycle can achieve relatively high efficiency within the mild turbine inlet temperature range (450 - 850 .deg. C) compared with other power conversion systems. The main benefit of the S-CO{sub 2} cycle is the small size of the overall system and its application includes not only the next generation nuclear reactors but also conventional water-cooled reactors too. Various layouts were compared and the recompression cycle shows the best efficiency. The layout is suitable for application to advanced nuclear reactor systems. To evaluate the S-CO{sub 2} cycle performance, various countries constructed and demonstrated S-CO{sub 2} integral system test loops and similar research works are ongoing in Korea as well. However, to evaluate the commercial S-CO{sub 2} power systems, development of a large scale (> 10 MW) prototype S-CO{sub 2} system is necessary.

  19. Cell cycle phase dependent role of DNA polymerase beta in DNA repair and survival after ionizing radiation.

    NARCIS (Netherlands)

    Vermeulen, C.; Verwijs-Janssen, M.; Begg, A.C.; Vens, C.

    2008-01-01

    PURPOSE: The purpose of the present study was to determine the role of DNA polymerase beta in repair and response after ionizing radiation in different phases of the cell cycle. METHODS AND MATERIALS: Synchronized cells deficient and proficient in DNA polymerase beta were irradiated in different

  20. Market-Based and System-Wide Fuel Cycle Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Paul Philip Hood [Univ. of Wisconsin, Madison, WI (United States); Scopatz, Anthony [Univ. of South Carolina, Columbia, SC (United States); Gidden, Matthew [Univ. of Wisconsin, Madison, WI (United States); Carlsen, Robert [Univ. of Wisconsin, Madison, WI (United States); Mouginot, Baptiste [Univ. of Wisconsin, Madison, WI (United States); Flanagan, Robert [Univ. of South Carolina, Columbia, SC (United States)

    2017-06-13

    This work introduces automated optimization into fuel cycle simulations in the Cyclus platform. This includes system-level optimizations, seeking a deployment plan that optimizes the performance over the entire transition, and market-level optimization, seeking an optimal set of material trades at each time step. These concepts were introduced in a way that preserves the flexibility of the Cyclus fuel cycle framework, one of its most important design principles.

  1. Market-Based and System-Wide Fuel Cycle Optimization

    International Nuclear Information System (INIS)

    Wilson, Paul Philip Hood; Scopatz, Anthony; Gidden, Matthew; Carlsen, Robert; Mouginot, Baptiste; Flanagan, Robert

    2017-01-01

    This work introduces automated optimization into fuel cycle simulations in the Cyclus platform. This includes system-level optimizations, seeking a deployment plan that optimizes the performance over the entire transition, and market-level optimization, seeking an optimal set of material trades at each time step. These concepts were introduced in a way that preserves the flexibility of the Cyclus fuel cycle framework, one of its most important design principles.

  2. Effect of menstrual cycle phase on the concentration of individual carotenoids in lipoproteins of premenopausal women: a controlled dietary study.

    Science.gov (United States)

    Forman, M R; Johnson, E J; Lanza, E; Graubard, B I; Beecher, G R; Muesing, R

    1998-01-01

    Because premenopausal women experience cyclic fluctuations of plasma carotenoids and their lipoprotein carriers, it is hypothesized that carotenoid concentrations in lipoprotein fractions fluctuate by phase of the menstrual cycle. Nine women ate a standard set of carotenoid-rich foods daily for two cycles under isoenergetic conditions. In the second cycle, hormones and carotenoids in lipoprotein fractions were measured in the early and late follicular and luteal phases. alpha-Carotene concentrations in the LDL fraction were lower in the early than in the late follicular phase (P = 0.03) on the basis of regression analysis. beta-carotene concentrations in the LDL fraction and the HDL2 subfraction were higher in the late follicular than in the luteal phase (P = 0.02 and P = 0.04, respectively). Lutein/zeaxanthin concentrations in the LDL and HDL fractions were higher in the late follicular than in the luteal phase (P = 0.03 and P = 0.02, respectively). In each phase, 80% of alpha-carotene, 82% of beta-carotene, 85% of lycopene, and 64% of lutein/zeaxanthin were distributed in the LDL fraction. Among the hydrocarbon cartenoids, 18% of alpha-carotene and of beta-carotene and 13% of lycopene were distributed in the HDL fraction, with slightly more in the HDL2 than in the HDL3 subfraction. In contrast 34% of lutein/zeaxanthin was distributed in the HDL fraction with more concentrated in the HDL3 than in the HDL2 subfraction. Less than 4% of any carotenoid was found in the VLDL + IDL (intermediate-density-lipoprotein) fractions. Thus, the hydrocarbon carotenoids were highly concentrated in the LDL fraction and xanthophyll was more evenly distributed in the LDL and HDL fractions. The cyclic fluctuations of these carotenoids in lipoprotein fractions add another dimension to the understanding of their transport and physiologic function.

  3. Nonlinear dynamics of cycle-to-cycle combustion variations in a lean-burn natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Li Guoxiu [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)], E-mail: gxli@bjtu.edu.cn; Yao Baofeng [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2008-04-15

    Temporal dynamics of the combustion process in a lean-burn natural gas engine was studied by the analysis of time series of consecutive experimental in-cylinder pressure data in this work. Methods borrowed to the nonlinear dynamical system theory were applied to analyze the in-cylinder pressure time series under operating conditions with different equivalence ratio. Phase spaces were reconstructed from the in-cylinder pressure time series and Poincare section calculated from each phase space. Poincare sections show that the in-cylinder combustion process involves chaotic behavior. Furthermore, return maps plotted from time series of indicated mean effective pressure show that both nonlinear deterministic components and stochastic components are involved in the dynamics of cycle-to-cycle combustion variations in the lean burn natural gas engine. There is a transition from stochastic behavior to noisy nonlinear determinism as equivalence ratio decreases from near stoichiometric to very lean conditions.

  4. Nonlinear dynamics of cycle-to-cycle combustion variations in a lean-burn natural gas engine

    International Nuclear Information System (INIS)

    Li Guoxiu; Yao Baofeng

    2008-01-01

    Temporal dynamics of the combustion process in a lean-burn natural gas engine was studied by the analysis of time series of consecutive experimental in-cylinder pressure data in this work. Methods borrowed to the nonlinear dynamical system theory were applied to analyze the in-cylinder pressure time series under operating conditions with different equivalence ratio. Phase spaces were reconstructed from the in-cylinder pressure time series and Poincare section calculated from each phase space. Poincare sections show that the in-cylinder combustion process involves chaotic behavior. Furthermore, return maps plotted from time series of indicated mean effective pressure show that both nonlinear deterministic components and stochastic components are involved in the dynamics of cycle-to-cycle combustion variations in the lean burn natural gas engine. There is a transition from stochastic behavior to noisy nonlinear determinism as equivalence ratio decreases from near stoichiometric to very lean conditions

  5. Aerospace Systems Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposal Title: Aerospace Systems Monitor PHASE 1 Technical Abstract: This Phase II STTR project will continue development and commercialization of the Aerospace...

  6. Ammonia control in children with urea cycle disorders (UCDs); Phase 2 comparison of sodium phenylbutyrate and glycerol phenylbutyrate☆

    OpenAIRE

    Lichter-Konecki, Uta; Diaz, G.A.; Merritt, J.L.; Feigenbaum, A.; Jomphe, C.; Marier, J.F.; Beliveau, M.; Mauney, J.; Dickinson, K.; Martinez, A.; Mokhtarani, M.; Scharschmidt, B.; Rhead, W.

    2011-01-01

    Twenty four hour ammonia profiles and correlates of drug effect were examined in a phase 2 comparison of sodium phenylbutyrate (NaPBA) and glycerol phenylbutyrate (GPB or HPN-100), an investigational drug being developed for urea cycle disorders (UCDs).

  7. Exergy analysis of helium liquefaction systems based on modified Claude cycle with two-expanders

    Science.gov (United States)

    Thomas, Rijo Jacob; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2011-06-01

    Large-scale helium liquefaction systems, being energy-intensive, demand judicious selection of process parameters. An effective tool for design and analysis of thermodynamic cycles for these systems is exergy analysis, which is used to study the behavior of a helium liquefaction system based on modified Claude cycle. Parametric evaluation using process simulator Aspen HYSYS® helps to identify the effects of cycle pressure ratio and expander flow fraction on the exergetic efficiency of the liquefaction cycle. The study computes the distribution of losses at different refrigeration stages of the cycle and helps in selecting optimum cycle pressures, operating temperature levels of expanders and mass flow rates through them. Results from the analysis may help evolving guidelines for designing appropriate thermodynamic cycles for practical helium liquefaction systems.

  8. Lunar phase-dependent expression of cryptochrome and a photoperiodic mechanism for lunar phase-recognition in a reef fish, goldlined spinefoot.

    Science.gov (United States)

    Fukushiro, Masato; Takeuchi, Takahiro; Takeuchi, Yuki; Hur, Sung-Pyo; Sugama, Nozomi; Takemura, Akihiro; Kubo, Yoko; Okano, Keiko; Okano, Toshiyuki

    2011-01-01

    Lunar cycle-associated physiology has been found in a wide variety of organisms. Recent study has revealed that mRNA levels of Cryptochrome (Cry), one of the circadian clock genes, were significantly higher on a full moon night than on a new moon night in coral, implying the involvement of a photoreception system in the lunar-synchronized spawning. To better establish the generalities surrounding such a mechanism and explore the underlying molecular mechanism, we focused on the relationship between lunar phase, Cry gene expression, and the spawning behavior in a lunar-synchronized spawner, the goldlined spinefoot (Siganus guttatus), and we identified two kinds of Cry genes in this animal. Their mRNA levels showed lunar cycle-dependent expression in the medial part of the brain (mesencephalon and diencephalon) peaking at the first quarter moon. Since this lunar phase coincided with the reproductive phase of the goldlined spinefoot, Cry gene expression was considered a state variable in the lunar phase recognition system. Based on the expression profiles of SgCrys together with the moonlight's pattern of timing and duration during its nightly lunar cycle, we have further speculated on a model of lunar phase recognition for reproductive control in the goldlined spinefoot, which integrates both moonlight and circadian signals in a manner similar to photoperiodic response.

  9. Application of S-CO_2 Cycle for Small Modular Reactor coupled with Desalination System

    International Nuclear Information System (INIS)

    Lee, Won Woong; Bae, Seong Jun; Lee, Jeong Ik

    2016-01-01

    The Korean small modular reactor, SMART (System-integrated Modular Advanced ReacTor, 100MWe), is designed to achieve enhanced safety and improved economics through reliable passive safety systems, a system simplification and component modularization. SMART can generate electricity and provide water by seawater desalination. However, due to the desalination aspect of SMART, the total amount of net electricity generation is decreased from 100MWe to 90MWe. The authors suggest in this presentation that the reduction of electricity generation can be replenished by applying S-CO_2 power cycle technology. The S-CO_2 Brayton cycle, which is recently receiving significant attention as the next generation power conversion system, has some benefits such as high cycle efficiency, simple configuration, compactness and so on. In this study, the cycle performance analysis of the S-CO_2 cycles for SMART with desalination system is conducted. The simple recuperated S-CO_2 cycle is revised for coupling with desalination system. The three revised layout are proposed for the cycle performance comparison. In this results of the 3rd revised layout, the cycle efficiency reached 37.8%, which is higher than the efficiency of current SMART with the conventional power conversion system 30%

  10. Patterns, structures and regulations of domestic water cycle systems in China

    Science.gov (United States)

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system

  11. The control system of the ecological hybrid two stages refrigerating cycle

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The compression anticlockwise cycle is mostly used for refrigeration. However due to the environmental regulations, the use of classic refrigerants: F-gases is limited by international agreements. Therefore the combined compression-adsorption hybrid cycle with natural liquids: water/carbon dioxide working as the energy carriers is a promising solution. This allows to utilize the solar or waste energy for the refrigeration purpose. In this paper application of the solar collectors as the energy source for the adsorption cycle, coupled with the low temperature (LT refrigerating carbon dioxide compression cycle is shown. The control of the system is an essential issue to reduce the electric power consumption. The control of the solar heat supply and water sprayed cooling tower, for the adsorption cycle re-cooling, is presented in this paper. The designed control system and algorithm is related to the LT compression cycle, which operates according to the need of cold for the refrigeration chamber. The results of the laboratory investigations of the full system, showing the reduction of the energy consumption and maximum utilization of the solar heat for different control methods are presented.

  12. Phase Noise Compensation for OFDM Systems

    Science.gov (United States)

    Leshem, Amir; Yemini, Michal

    2017-11-01

    We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo\\'{e}ve representation of the phase noise process to estimate the phase noise. We then derive an improved datadirected choice of basis elements for LS phase noise estimation and present its total least square counterpart problem. The proposed method helps overcome one of the major weaknesses of OFDM systems. We also generalize the time domain phase noise compensation to the multiuser MIMO context. Finally we present simulation results using both simulated and measured phased noise. We quantify the tracking performance in the presence of residual carrier offset.

  13. Sensitivity analysis of system parameters on the performance of the Organic Rankine Cycle system for binary-cycle geothermal power plants

    International Nuclear Information System (INIS)

    Liu, Xiaomin; Wang, Xing; Zhang, Chuhua

    2014-01-01

    The main purpose of this paper is to analyze the sensitivity of system parameters to the performance of the Organic Rankine Cycle (ORC) system quantitatively. A thermodynamic model of the ORC system for binary-cycle geothermal power plants has been developed and verified. The system parameters, such as working fluid, superheat temperature, pinch temperature difference in evaporator and condenser, evaporating temperature, the isentropic efficiencies of the cycle pump and radial inflow turbine are selected as six factors for orthogonal design. The order of factors sensitivity on performance indices of the net power output of the ORC system, the thermal efficiency, the size parameter of radial inflow turbine, the power decrease factor of the pump and the total heat transfer capacity are determined by the range obtained from the orthogonal design. At different geothermal temperatures, the ranges of the six factors corresponding to performance indices are analyzed respectively. The results show that the geothermal temperature influences the range of the factors to the net power output, SP factor of radial inflow turbine, and the total heat transfer capacity, but it has no effect for the range of the factors for the thermal efficiency and the power decrease factor of the pump. The evaporating temperature is always the primary or secondary factor that influence the thermodynamic and economic performance of the ORC system. This study would provide useful references for determining the proper design variables in the performance optimization of the ORC system at different geothermal temperatures. - Highlights: • Evaporating temperature has significant effect on performance of ORC system. • Order of system parameters' sensitivity to the performance of ORC is revealed. • Effect of system parameters on performance indices vary with geothermal temperature. • Geothermal temperature has no effect on range of six factors to the size of turbine

  14. Systems design of direct-cycle supercritical-water-cooled fast reactors

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Koshizuka, Seiichi; Jevremovic, Tatjana; Okano, Yashushi

    1995-01-01

    The system design of a direct-cycle supercritical-water-cooled fast reactor is presented. The supercritical water does not exhibit a change of phase. the recirculation system, steam separator, and dryer of a boiling water reactor (BWR) are unnecessary. Roughly speaking, the reactor pressure vessel and control rods are similar to those of a pressurized water reactor, the containment and emergency core cooling system are similar to a BWR, and the balance of plant is similar to a supercritical-pressure fossil-fired power plant (FPP). the electric power of the fast converter is 1,508 MW(electric). The number of coolant loops is only two because of the high coolant enthalpy. Containment volume is much reduced. The thermal efficiency is improved 24% over a BWR. The coolant void reactivity is negative by placing thin zirconium-hydride layers between seeds and blankets. The power costs would be much reduced compared with those of a light water reactor (LWR) and a liquid-metal fast breeder reactor. The concept is based on the huge amount of experience with the water coolant technology of LWRs and FPPs. The oxidation of stainless steel cladding is avoided by adopting a much lower coolant temperature than that of the FPP

  15. Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system

    Science.gov (United States)

    Building upon previously published life cycle assessment (LCA) methodologies, we conducted an LCA of a commercial rainwater harvesting (RWH) system and compared it to a municipal water supply (MWS) system adapted to Washington, D.C. Eleven life cycle impact assessment (LCIA) indi...

  16. Engineering development of coal-fired high performance power systems, Phase II and III

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-04-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input, all solid wastes benign, and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  17. High efficiency Dual-Cycle Conversion System using Kr-85.

    Science.gov (United States)

    Prelas, Mark A; Tchouaso, Modeste Tchakoua

    2018-04-26

    This paper discusses the use of one of the safest isotopes known isotopes, Kr-85, as a candidate fuel source for deep space missions. This isotope comes from 0.286% of fission events. There is a vast quantity of Kr-85 stored in spent fuel and it is continually being produced by nuclear reactors. In using Kr-85 with a novel Dual Cycle Conversion System (DCCS) it is feasible to boost the system efficiency from 26% to 45% over a single cycle device while only increasing the system mass by less than 1%. The Kr-85 isotope is the ideal fuel for a Photon Intermediate Direct Energy Conversion (PIDEC) system. PIDEC is an excellent choice for the top cycle in a DCCS. In the top cycle, ionization and excitation of the Kr-85:Cl gas mixture (99% Kr and 1% Cl) from beta particles creates KrCl* excimer photons which are efficiently absorbed by diamond photovoltaic cells on the walls of the pressure vessels. The benefit of using the DCCS is that Kr-85 is capable of operating at high temperatures in the primary cycle and the residual heat can then be converted into electrical power in the bottom cycle which uses a Stirling Engine. The design of the DCCS begins with a spherical pressure vessel of radius 13.7 cm with 3.7 cm thick walls and is filled with a Kr-85:Cl gas mixture. The inner wall has diamond photovoltaic cells attached to it and there is a sapphire window between the diamond photovoltaic cells and the Kr-85:Cl gas mixture which shields the photovoltaic cells from beta particles. The DCCS without a gamma ray shield has specific power of 6.49 W/kg. A removable 6 cm thick tungsten shield is used to safely limit the radiation exposure levels of personnel. A shadow shield remains in the payload to protect the radiation sensitive components in the flight package. The estimated specific power of the unoptimized system design in this paper is about 2.33 W/kg. The specific power of an optimized system should be higher. The Kr-85 isotope is relatively safe because it

  18. Will Solar Cycles 25 and 26 Be Weaker than Cycle 24?

    Science.gov (United States)

    Javaraiah, J.

    2017-11-01

    The study of variations in solar activity is important for understanding the underlying mechanism of solar activity and for predicting the level of activity in view of the activity impact on space weather and global climate. Here we have used the amplitudes (the peak values of the 13-month smoothed international sunspot number) of Solar Cycles 1 - 24 to predict the relative amplitudes of the solar cycles during the rising phase of the upcoming Gleissberg cycle. We fitted a cosine function to the amplitudes and times of the solar cycles after subtracting a linear fit of the amplitudes. The best cosine fit shows overall properties (periods, maxima, minima, etc.) of Gleissberg cycles, but with large uncertainties. We obtain a pattern of the rising phase of the upcoming Gleissberg cycle, but there is considerable ambiguity. Using the epochs of violations of the Gnevyshev-Ohl rule (G-O rule) and the `tentative inverse G-O rule' of solar cycles during the period 1610 - 2015, and also using the epochs where the orbital angular momentum of the Sun is steeply decreased during the period 1600 - 2099, we infer that Solar Cycle 25 will be weaker than Cycle 24. Cycles 25 and 26 will have almost same strength, and their epochs are at the minimum between the current and upcoming Gleissberg cycles. In addition, Cycle 27 is expected to be stronger than Cycle 26 and weaker than Cycle 28, and Cycle 29 is expected to be stronger than both Cycles 28 and 30. The maximum of Cycle 29 is expected to represent the next Gleissberg maximum. Our analysis also suggests a much lower value (30 - 40) for the maximum amplitude of the upcoming Cycle 25.

  19. Comparative study of measured heart cycle phase durations: standard lead ECG versus original ascending aorta lead ECG

    Directory of Open Access Journals (Sweden)

    Sergey V. Kolmakov

    2012-11-01

    Full Text Available Aims The present paper aims at evaluating the existing difference in duration measurements of the same heart cycle phases in the standard V3, V4, V5, V6 leads ECG versus original HDA lead ECG of the ascending aorta. Materials and methods The method of changing the filter pass band is used. Its essence is in artificial changing of the conditions of the signal recording carrying the informative indications of the initial information used in hemodynamic equations. The method also enables calculating the percentage deviation from the initial values. The principle of balance of the blood volume entering the heart and the blood volume leaving the heart is used to trace the minimal deviations and their respective recording conditions. Results In each of the V3, V4, V5, V6 ECG leads durations of the same phases have different values. The values measured on the ECG of the ascending aorta and those measured using the standard V4 ECG lead differ slightly. Conclusion For heart cycle phase analysis it is possible to use only the ECG of the ascending aorta and V4 standard lead ECG. Using conventional standard ECG leads causes an error up to 25%.

  20. ALG-2 knockdown in HeLa cells results in G2/M cell cycle phase accumulation and cell death

    DEFF Research Database (Denmark)

    Høj, Berit Rahbek; la Cour, Peter Jonas Marstrand; Mollerup, Jens

    2009-01-01

    downregulation induces accumulation of HeLa cells in the G2/M cell cycle phase and increases the amount of early apoptotic and dead cells. Caspase inhibition by the pan-caspase inhibitor zVAD-fmk attenuated the increase in the amount of dead cells following ALG-2 downregulation. Thus, our results indicate...... that ALG-2 has an anti-apoptotic function in HeLa cells by facilitating the passage through checkpoints in the G2/M cell cycle phase.......ALG-2 (apoptosis-linked gene-2 encoded protein) has been shown to be upregulated in a variety of human tumors questioning its previously assumed pro-apoptotic function. The aim of the present study was to obtain insights into the role of ALG-2 in human cancer cells. We show that ALG-2...

  1. The role of circulating sex hormones in menstrual cycle dependent modulation of pain-related brain activation

    Science.gov (United States)

    Veldhuijzen, Dieuwke S.; Keaser, Michael L.; Traub, Deborah S.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.

    2013-01-01

    Sex differences in pain sensitivity have been consistently found but the basis for these differences is incompletely understood. The present study assessed how pain-related neural processing varies across the menstrual cycle in normally cycling, healthy females, and whether menstrual cycle effects are based on fluctuating sex hormone levels. Fifteen subjects participated in four test sessions during their menstrual, mid-follicular, ovulatory, and midluteal phases. Brain activity was measured while nonpainful and painful stimuli were applied with a pressure algometer. Serum hormone levels confirmed that scans were performed at appropriate cycle phases in 14 subjects. No significant cycle phase differences were found for pain intensity or unpleasantness ratings of stimuli applied during fMRI scans. However, lower pressure pain thresholds were found for follicular compared to other phases. Pain-specific brain activation was found in several regions traditionally associated with pain processing, including the medial thalamus, anterior and mid-insula, mid-cingulate, primary and secondary somatosensory cortices, cerebellum, and frontal regions. The inferior parietal lobule, occipital gyrus, cerebellum and several frontal regions demonstrated interaction effects between stimulus level and cycle phase, indicating differential processing of pain-related responses across menstrual cycle phases. Correlational analyses indicated that cycle-related changes in pain sensitivity measures and brain activation were only partly explained by varying sex hormone levels. These results show that pain-related cerebral activation varies significantly across the menstrual cycle, even when perceived pain intensity and unpleasantness remain constant. The involved brain regions suggest that cognitive pain or more general bodily awareness systems are most susceptible to menstrual cycle effects. PMID:23528204

  2. Current status of feasibility studies on commercialized fuel cycle system for Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Ojima, Hisao; Nagaoki, Yoshihiro

    2000-01-01

    A 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' is underway at the Japan Nuclear Cycle Development Institute (JNC). The study will select the promising concepts with their R and D tasks in order to commercialize the fast breeder reactor (FBR) cycle system. The feasibility studies (F/S) have to present surveyed and screened various relevant technologies, and defined the design requirement of the commercialized fuel cycle system for FBR. The promising technical options are being evaluated and conceptual designs are being examined. At the end of JFY2000, several candidate concepts of the commercialized FBR cycle system will be proposed. (author)

  3. Interrelation between the changes of phase functions of cardiac muscle contraction and biochemical processes as an algorithm for identifying local pathologies in cardiovascular system

    Directory of Open Access Journals (Sweden)

    Yury V. Fedosov

    2012-11-01

    Full Text Available Aims The interrelation between hemodynamic changes, functions of the cardiovascular system and biochemical reactions in the cells of the heart muscle is investigated in the present paper. Materials and methods Several methods were used to influence the metabolism processes in the myocardium. The changes in the phase functions of contraction of different cardiac muscles were recorded. In order to have comprehensive influence on the metabolism processes, normalization of the acid-base balance was performed. L-carnitine and octolipen were used to affect the lipid metabolism. Results Phase blood volumes that are characteristic of hemodynamics changed in the course of treatment to reach their nornal values. The ECG shape during the heart cycle phases also changed to reach the norm. The initial ECG shape describing Brugada syndrome almost reached its normal value. Extrasystole disappeared therewith. Conclusion The method of the heart cycle phase analysis enables monitoring any changes in hemodynamics and functions of the cardiovascular system. The method can be used for identifying the original cause of pathologies and efficient monitoring of the treatment progress.

  4. A synthesis/design optimization algorithm for Rankine cycle based energy systems

    International Nuclear Information System (INIS)

    Toffolo, Andrea

    2014-01-01

    The algorithm presented in this work has been developed to search for the optimal topology and design parameters of a set of Rankine cycles forming an energy system that absorbs/releases heat at different temperature levels and converts part of the absorbed heat into electricity. This algorithm can deal with several applications in the field of energy engineering: e.g., steam cycles or bottoming cycles in combined/cogenerative plants, steam networks, low temperature organic Rankine cycles. The main purpose of this algorithm is to overcome the limitations of the search space introduced by the traditional mixed-integer programming techniques, which assume that possible solutions are derived from a single superstructure embedding them all. The algorithm presented in this work is a hybrid evolutionary/traditional optimization algorithm organized in two levels. A complex original codification of the topology and the intensive design parameters of the system is managed by the upper level evolutionary algorithm according to the criteria set by the HEATSEP method, which are used for the first time to automatically synthesize a “basic” system configuration from a set of elementary thermodynamic cycles. The lower SQP (sequential quadratic programming) algorithm optimizes the objective function(s) with respect to cycle mass flow rates only, taking into account the heat transfer feasibility constraint within the undefined heat transfer section. A challenging example of application is also presented to show the capabilities of the algorithm. - Highlights: • Energy systems based on Rankine cycles are used in many applications. • A hybrid algorithm is proposed to optimize the synthesis/design of such systems. • The topology of the candidate solutions is not limited by a superstructure. • Topology is managed by the genetic operators of the upper level algorithm. • The effectiveness of the algorithm is proved in a complex test case

  5. The GLOBE Carbon Cycle Project: Using a systems approach to understand carbon and the Earth's climate system

    Science.gov (United States)

    Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.

    2009-12-01

    National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.

  6. Effect of duration of the GnRH agonists in the luteal phase in the outcome of assisted reproduction cycles.

    Science.gov (United States)

    Geber, Selmo; Sampaio, Marcos

    2013-06-01

    The effect of long-acting GnRHa, in the luteal phase, during ART cycles varies from one patient to another. The aim of this study was to evaluate whether the effect of long-acting GnRHa in the luteal phase, in ART cycles, affects pregnancy rates according to the duration of its action in such phase. This is a retrospective study of 367 patients submitted to ovulation induction for in vitro fertilization/intracytoplasmic sperm injection procedures that used long-acting depot GnRHa for pituitary suppression. Patients were stratified according to the period of action of the agonist in the luteal phase: group 1, ≤ 6 days; group 2, 7 to 12 days; and group 3, >12 days. The following variables were analyzed: ovarian response, age, infertility causes and pregnancy rates. Group 1 (n = 53) had a mean age of 33.8 ± 4.55 years (23-44 years) and a pregnancy rate of 45.2%. In group 2 (n = 118), mean age was 33.7 ± 4.5 years (24-44 years) and the pregnancy rate was 38.9%. In group 3 (n = 196), mean age was 33.7 ± 4.4 years (23-43 years) and the pregnancy rate was 47.4%. Regardless of the duration of depot GnRHa action in the luteal phase, no significant association with pregnancy rates was found.

  7. A phase plane graph based model of the ovulatory cycle lacking the "positive feedback" phenomenon

    Directory of Open Access Journals (Sweden)

    Kurbel Sven

    2012-08-01

    Full Text Available Abstract When hormones during the ovulatory cycle are shown in phase plane graphs, reported FSH and estrogen values form a specific pattern that resembles the leaning “&" symbol, while LH and progesterone (Pg values form a "boomerang" shape. Graphs in this paper were made using data reported by Stricker et al. [Clin Chem Lab Med 2006;44:883–887]. These patterns were used to construct a simplistic model of the ovulatory cycle without the conventional "positive feedback" phenomenon. The model is based on few well-established relations: hypothalamic GnRH secretion is increased under estrogen exposure during two weeks that start before the ovulatory surge and lasts till lutheolysis. the pituitary GnRH receptors are so prone to downregulation through ligand binding that this must be important for their function. in several estrogen target tissue progesterone receptor (PgR expression depends on previous estrogen binding to functional estrogen receptors (ER, while Pg binding to the expressed PgRs reduces both ER and PgR expression. Some key features of the presented model are here listed: High GnRH secretion induced by the recovered estrogen exposure starts in the late follicular phase and lasts till lutheolysis. The LH and FSH surges start due to combination of accumulated pituitary GnRH receptors and increased GnRH secretion. The surges quickly end due to partial downregulation of the pituitary GnRH receptors (64% reduction of the follicular phase pituitary GnRH receptors is needed to explain the reported LH drop after the surge. A strong increase in the lutheal Pg blood level, despite modest decline in LH levels, is explained as delayed expression of pituitary PgRs. Postponed pituitary PgRs expression enforces a negative feedback loop between Pg levels and LH secretions not before the mid lutheal phase. Lutheolysis is explained as a consequence of Pg binding to hypothalamic and pituitary PgRs that reduces local ER expression. When hypothalamic

  8. The CEBAF fiber optic phase reference system

    International Nuclear Information System (INIS)

    Crawford, K.; Simrock, S.; Hovater, C.; Krycuk, A.

    1995-01-01

    The specified phase stability of the CEBAF RF distribution system is 2.9 degree rms per linac. Stability is achieved through the use of a temperature and pressure regulated coaxial drive line. Purpose of the fiber optic phase reference system is to monitor the relative phase at the beginning and ending of this drive line, between linacs, injector and separator to determine drift due to ambient temperature fluctuations. The system utilizes an Ortel 1310 nm single mode laser driving Sumitumo optical fiber to distribute a reference signal at 1497 MHz. Phase of this reference signal is compared to the 1427 MHz (LO) and the 70 MHz (IF) via a 360 degree phase detector. The detected information is then routed to the CEBAF control system for display with a specified resolution of ±0.2 degree over a 20 degree phase delta

  9. Influence of bodybuilding training on changes in the anthropometric indicators of skilled female athletes in different phases of a specific biological cycle

    Directory of Open Access Journals (Sweden)

    Yevheniia Dzhym

    2017-08-01

    Full Text Available Purpose: to carry out research on the influence of the activities of female athletes engaged in bodybuilding on changes in anthropometric indicators in different phases of the ovarian-menstrual cycle (OMC. Material & Methods: studies were conducted in the fitness clubs of Kharkiv "Pheromone", "City", "King" with qualified athletes who are engaged in bodybuilding for 3 months of the preparatory period in the amount of 22 people. As research methods used: analysis of literature sources and testing of the level of motor qualities in individual phases of the OMC. Result: presented analysis of the condition of the female athletes taking into account the features of the OMC phases and the testing of body weight and anthropometric indicators in different phases of a specific biological cycle in qualified female athletes engaged in bodybuilding. Conclusion: Obtained results indicate that the anthropometric indicators of qualified female athletes engaged in bodybuilding are not the same in the phases of the ovarian-menstrual cycle. It was revealed that during the OMC period the body is able to retain water, which leads to fluctuations in the body weight of female athletes from 0,5 to 2,5 kg, while on the 3rd-6th day and on the 25–26th there is an increase in body weight, and on the 7th and 16th - its decrease. According to the results of the study, in the first phase, the decrease in anthropometry and body weight, this is due to the rejection of the mucous membrane of the uterus and menstrual bleeding.

  10. Entransy in phase-change systems

    CERN Document Server

    Gu, Junjie

    2014-01-01

    Entransy in Phase-Change Systems summarizes recent developments in the area of entransy, especially on phase-change processes. This book covers new developments in the area including the great potential for energy saving for process industries, decreasing carbon dioxide emissions, reducing energy bills and improving overall efficiency of systems. This concise volume is an ideal book for engineers and scientists in energy-related industries.

  11. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    Science.gov (United States)

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.

  12. Space Transportation Engine Program (STEP), phase B

    Science.gov (United States)

    1990-01-01

    The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.

  13. Geometric phases in discrete dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)

    2016-10-14

    In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.

  14. [Morphological changes in the thyroid gland of rats during various phases of the estral cycle].

    Science.gov (United States)

    Pliner, L I; Ledovskaia, S M

    1975-08-01

    The functional state of the thyroid gland and the concentration of thyroid hormones in the peripheral blood were studied in 20 mature female albino rats during their estral cycle. Evaluation of the thyroid functional state was made according to data of histological, morphological (the diameter of folliculi, the height of the thyroid epithelium) and histochemical analysis (determination of NAD and NADP-dehydrogenase, succinatedehydrogenase, lactate dehydrogenase, peroxydase, acid and alkaline phosphatase) as well as biochemical determination of iodine bound with protein (IBP) in the blood plasma and investigation of the ratio of the parameters in question under conditions of the sex cycle. The cyclic changes of the morphological state of the thyroid gland attended by the phases of the estral cycle were revealed. The activation of the organ was observed in proestrus and estrus which was evidenced by high levels of activity of the enzymes under study, high concentration of IBP in the blood and increased height of thyreocytes. A decreased function of the thyroid parenchyma was observed at the period of metaestrus-diestrus.

  15. Implementing Life Cycle Assessment in systems development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky; McAloone, Timothy Charles

    2003-01-01

    and the rapid changes in markets for many products. The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems...... for the designer in evaluating the environmental benignity of the product from the outset and to provide the designer with a framework for decision support based on the performance evaluation at different stages of the design process. The overall aim of this paper is to produce an in-depth understanding...... of possibilities which can be introduced in the design stage compared to the other life cycle stages of the product system. The paper collects experiences and ideas around the state-of-the-art in eco-design, from literature and personal experience and further provides eco-design life cycle assessment strategies...

  16. Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by light intensity

    Czech Academy of Sciences Publication Activity Database

    Vítová, Milada; Bišová, Kateřina; Umysová, Dáša; Hlavová, Monika; Kawano, S.; Zachleder, Vilém; Čížková, Mária

    2011-01-01

    Roč. 233, č. 1 (2011), s. 75-86 ISSN 0032-0935 R&D Projects: GA AV ČR IAA500200614; GA ČR GA525/09/0102; GA ČR GA204/09/0111 Institutional research plan: CEZ:AV0Z50200510 Keywords : Cell division timing * Cell cycle phases * Chlamydomonas Subject RIV: EE - Microbiology, Virology Impact factor: 3.000, year: 2011

  17. Life-cycle impacts from novel thorium–uranium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Fenner, R.A.; Nuttall, W.J.; Parks, G.T.

    2015-01-01

    Highlights: • LCA performed for three open cycle Th–U-fuelled nuclear energy systems. • LCA for open cycle U-fuelled nuclear energy system (Areva’s EPR) used as benchmark. • U-fuelled EPR had lowest emissions per kWh over all systems studied in this work. • LCA model developed for thorium recovered from monazitic beach sands. • LCA model developed for the production of heavy water. - Abstract: Electricity generated from nuclear power plants is generally associated with low emissions per kWh generated, an aspect that feeds into the wider debate surrounding nuclear power. This paper seeks to investigate how life-cycle emissions would be affected by including thorium in the nuclear fuel cycle, and in particular its inclusion in technologies that could prospectively operate open Th–U-based nuclear fuel cycles. Three potential Th–U-based systems operating with open nuclear fuel cycles are considered: AREVA’s European Pressurised Reactor; India’s Advanced Heavy Water Reactor; and General Atomics’ Gas-Turbine Modular Helium Reactor. These technologies are compared to a reference U-fuelled European Pressurised Reactor. A life-cycle analysis is performed that considers the construction, operation, and decommissioning of each of the reactor technologies and all of the other associated facilities in the open nuclear fuel cycle. This includes the development of life-cycle analysis models to describe the extraction of thorium from monazitic beach sands and for the production of heavy water. The results of the life-cycle impact analysis highlight that the reference U-fuelled system has the lowest overall emissions per kWh generated, predominantly due to having the second-lowest uranium ore requirement per kWh generated. The results highlight that the requirement for mined or recovered uranium (and thorium) ore is the greatest overall contributor to emissions, with the possible exception of nuclear energy systems that require heavy water. In terms of like

  18. FY 1997 survey report on information sharing product life-cycle systems. 2; 1997 nendo joho kyoyugata product life cycle system ni kansuru chosa hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Highly value-added products considering a total life-cycle of products by integrating both production and consumption activities are much in demand, and each information corresponding to each product should be realized by concept integrating both information and product as common element. Survey was made on what a social system integrating production and consumption should be, a product information model, and technology integrating both information and product for raw material, industrial machine and household appliance as examples. An information model shared by the whole production and consumption activities was first prepared. Based on this model, data storage, update, retrieval and dispatch technologies were surveyed and developed for life-cycle systems. Degradation and life sensing technology was surveyed for maintenance, repair and disposal activities using proper unstable information of each product. A support system for use of shared information was developed to promote a new highly value-added function. Total evaluation was made on information sharing product life-cycle systems. 10 refs., 23 figs., 7 tabs.

  19. Protein tyrosine nitration in the cell cycle

    International Nuclear Information System (INIS)

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-01-01

    Highlights: → Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. → Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. → Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  20. Phase Change Materials for Thermal Energy Storage

    OpenAIRE

    Stiebra, L; Cabulis, U; Knite, M

    2014-01-01

    Phase change materials (PCMs) for thermal energy storage (TES) have become an important subject of research in recent years. Using PCMs for thermal energy storage provides a solution to increase the efficiency of the storage and use of energy in many domestic and industrial sectors. Phase change TES systems offer a number of advantages over other systems (e.g. chemical storage systems): particularly small temperature distance between the storage and retrieval cycles, small unit sizes and lo...

  1. Methodology for the assessment of innovative nuclear reactors and fuel cycles. Report of Phase 1B (first part) of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2004-12-01

    an innovative nuclear energy system (INS) to meet the overall target of sustainable energy supply. As well, the initial development of the INPRO method for the assessment of nuclear energy systems was carried out. The Basic Principles, User Requirements, and Criteria and the INPRO method of assessment, taken together, comprise the INPRO methodology. The INPRO methodology provides the possibility to take into account local, regional and global boundary conditions of IAEA Member States, including those of both developing and developed countries. Phase 1A was completed in June of 2003 with the publication of IAEA-TECDOC-1362, Guidance for the Evaluation of Innovative Nuclear Reactors and Fuel Cycles, which documented the results of the Phase 1A work. The next step of INPRO was immediately launched. In this step, referred to as Phase 1B (first part), INPRO arranged for some 14 case studies to be performed, by national teams or by individual experts from seven countries, to test and provide feedback on the applicability, consistency and completeness of the INPRO methodology. This report documents changes to the basic principles, user requirements, criteria and the method of assessment that resulted from the second step of INPRO (referred to as Phase 1B (first part)), which started in June 2003 and ended in December 2004. During this step, Member States and individual experts performed 14 case studies with the objective of testing and validating the INPRO methodology. Based on the feedback from these case studies and numerous consultancies mostly held at the IAEA, the INPRO methodology has been significantly updated and revised, as documented in this report. The ongoing and future activities of INPRO will lead to further modifications to the INPRO methodology, based on the feedback received from Member States in light of their experience in applying the methodology. Thus, additional reports will be issued, as appropriate, to update the INPRO methodology

  2. WDM Phase-Modulated Millimeter-Wave Fiber Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Gibbon, Timothy Braidwood

    2012-01-01

    This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one of the lat......This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one...... of the latest research efforts in the rapidly emerging Radio-over-Fiber (RoF) application space for in-house access networks....

  3. Cooperation between Epstein-Barr virus immune evasion proteins spreads protection from CD8+ T cell recognition across all three phases of the lytic cycle.

    Directory of Open Access Journals (Sweden)

    Laura L Quinn

    2014-08-01

    Full Text Available CD8+ T cell responses to Epstein-Barr virus (EBV lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE and some early (E antigens are more frequently observed than responses to epitopes of late (L expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE- and early (E-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L, interference by BILF1 increases with progression through lytic cycle (IEcycle phase-specific effects that provide mechanistic

  4. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    Science.gov (United States)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  5. Experimental and numerical study of two-phase flows at the inlet of evaporators in vapour compression cycles

    International Nuclear Information System (INIS)

    Ahmad, M.

    2007-09-01

    Maldistribution of liquid-vapour two phase flows causes a significant decrease of the thermal and hydraulic performance of evaporators in thermodynamic vapour compression cycles. A first experimental installation was used to visualize the two phase flow evolution between the expansion valve and the evaporator inlet. A second experimental set-up simulating a compact heat exchanger has been designed to identify the functional and geometrical parameters creating the best distribution of the two phases in the different channels. An analysis and a comprehension of the relation between the geometrical and functional parameters with the flow pattern inside the header and the two phase distribution, has been established. A numerical simulations of a stratified flow and a stratified jet flow have been carried out using two CFD codes: FLUENT and NEPTUNE. In the case of a fragmented jet configuration, a global definition of the interfacial area concentration for a separated phases and dispersed phases flow has been established and a model calculating the fragmented mass fraction has been developed. (author)

  6. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  7. Alteration of cell cycle progression by Sindbis virus infection

    International Nuclear Information System (INIS)

    Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa; Shirasawa, Hiroshi

    2015-01-01

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G 1 phase preferred to proliferate during S/G 2 phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G 1 phase than in cells infected during S/G 2 phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases

  8. Life cycle assessment of the end-of-life phase of a residential building.

    Science.gov (United States)

    Vitale, Pierluca; Arena, Noemi; Di Gregorio, Fabrizio; Arena, Umberto

    2017-02-01

    The study investigates the potential environmental impacts related to the end-of-life phase of a residential building, identified in a multifamily dwelling of three levels, constructed in the South of Italy by utilizing conventional materials and up-to-date procedures. An attributional life cycle assessment has been utilised to quantify the contributions of each stage of the end-of-life phase, with a particular attention to the management of the demolition waste. The investigation takes into account the selective demolition, preliminary sorting and collection of main components of the building, together with the processes of sorting, recycling and/or disposal of main fractions of the demolition waste. It quantifies the connections between these on-site and off-site processes as well as the main streams of materials sent to recycling, energy recovery, and final disposal. A sensitivity analysis has been eventually carried out by comparing the overall environmental performances of some alternative scenarios, characterised by different criteria for the demolition of the reference building, management of demolition waste and assessment of avoided burdens of the main recycled materials. The results quantify the advantage of an appropriate technique of selective demolition, which could increase the quality and quantity of residues sent to the treatment of resource recovery and safe disposal. They also highlight the contributions to the positive or negative environmental impact of each stage of the investigated waste management system. The recycling of reinforcing steel appears to play a paramount role, accounting for 65% of the total avoided impacts related to respiratory inorganics, 89% of those for global warming and 73% of those for mineral extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Life Cycle Thinking and Integrated Product Deliveries in renovation projects: Extending the concept of Integrated Product Deliveries with Product Service Systems

    DEFF Research Database (Denmark)

    Schipull Kauschen, Jan

    2012-01-01

    on renovation projects from Denmark, using different forms of IPDs for façade renovation and discusses the different stakeholder’s perspectives on life cycle thinking and their interests and values regarding sustainable building. Furthermore is the concept of Product Service Systems (PSS) as a valuable...... IPDs with regard to longevity and adaptability. CONCLUSION The new type of service-focused IPD and the related life-cycle responsibility (development, building phase, maintenance and dismantling/adaption/recycling) creates incentive to integrate life cycle thinking into the development process of IPDs......, resulting in more sustainable building solutions with a greater extend of positive environmental, economical and social impacts. The research presented will also show the importance of adaption and configuration of these complex building components by architects and planners, as they will have a great...

  10. Changes in the Amplitude and Phase of the Annual Cycle: quantifying from surface wind series in China

    Science.gov (United States)

    Feng, Tao

    2013-04-01

    Climate change is not only reflected in the changes in annual means of climate variables but also in the changes in their annual cycles (seasonality), especially in the regions outside the tropics. Changes in the timing of seasons, especially the wind season, have gained much attention worldwide in recent decade or so. We introduce long-range correlated surrogate data to Ensemble Empirical Mode Decomposition method, which represent the statistic characteristics of data better than white noise. The new method we named Ensemble Empirical Mode Decomposition with Long-range Correlated noise (EEMD-LRC) and applied to 600 station wind speed records. This new method is applied to investigate the trend in the amplitude of the annual cycle of China's daily mean surface wind speed for the period 1971-2005. The amplitude of seasonal variation decrease significantly in the past half century over China, which can be well explained by Annual Cycle component from EEMD-LRC. Furthermore, the phase change of annual cycle lead to strongly shorten of wind season in spring, and corresponding with strong windy day frequency change over Northern China.

  11. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  12. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23

    Directory of Open Access Journals (Sweden)

    K. E. J. Huttunen

    2005-02-01

    Full Text Available The magnetic structure and geomagnetic response of 73 magnetic clouds (MC observed by the WIND and ACE satellites in solar cycle 23 are examined. The results have been compared with the surveys from the previous solar cycles. The preselected candidate MC events were investigated using the minimum variance analysis to determine if they have a flux-rope structure and to obtain the estimation for the axial orientation (θC, φC. Depending on the calculated inclination relative to the ecliptic we divided MCs into "bipolar" (θC<45° and "unipolar" (θC>45°. The number of observed MCs was largest in the early rising phase, although the halo CME rate was still low. It is likely that near solar maximum we did not identify all MCs at 1AU, as they were crossed far from the axis or they had interacted strongly with the ambient solar wind or with other CMEs. The occurrence rate of MCs at 1AU is also modified by the migration of the filament sites on the Sun towards the poles near solar maximum and by the deflection of CMEs towards the equator due to the fast solar wind flow from large polar coronal holes near solar minimum. In the rising phase nearly all bipolar MCs were associated with the rotation of the magnetic field from the south at the leading edge to the north at the trailing edge. The results for solar cycles 21-22 showed that the direction of the magnetic field in the leading portion of the MC starts to reverse at solar maximum. At solar maximum and in the declining phase (2000-2003 we observed several MCs with the rotation from the north to the south. We observed unipolar (i.e. highly inclined MCs frequently during the whole investigated period. For solar cycles 21-22 the majority of MCs identified in the rising phase were bipolar while in the declining phase most MCs were unipolar. The geomagnetic response of a given MC depends greatly on its magnetic structure and the orientation of the sheath fields. For each event we distinguished the

  13. Digital quadrature phase detection

    Science.gov (United States)

    Smith, J.A.; Johnson, J.A.

    1992-05-26

    A system for detecting the phase of a frequency or phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2[pi] when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2[pi] when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention. 6 figs.

  14. Phosphorus cycling in Montreal's food and urban agriculture systems.

    Science.gov (United States)

    Metson, Geneviève S; Bennett, Elena M

    2015-01-01

    Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities' P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents' relationship to, and understanding of, the food system and increases their acceptance of composting.

  15. Performance analysis of Brayton cycle system for space power reactor

    International Nuclear Information System (INIS)

    Li Zhi; Yang Xiaoyong; Zhao Gang; Wang Jie; Zhang Zuoyi

    2017-01-01

    The closed Brayton cycle system now is the potential choice as the power conversion system for High Temperature Gas-cooled Reactors because of its high energy conversion efficiency and compact configuration. The helium is the best working fluid for the system for its chemical stability and small neutron absorption cross section. However, the Helium has small mole mass and big specific volume, which would lead to larger pipes and heat exchanger. What's more, the big compressor enthalpy rise of helium would also lead to an unacceptably large number of compressor's stage. For space use, it's more important to satisfy the limit of the system's volume and mass, instead of the requirement of the system's thermal capacity. So Noble-Gas binary mixture of helium and xenon is presented as the working fluid for space Brayton cycle. This paper makes a mathematical model for space Brayton cycle system by Fortran language, then analyzes the binary mixture of helium and xenon's properties and effects on power conversion units of the space power reactor, which would be helpful to understand and design the space power reactor. The results show that xenon would lead to a worse system's thermodynamic property, the cycle's efficiency and specific power decrease as xenon's mole fraction increasing. On the other hand, proper amount of xenon would decrease the enthalpy changes in turbomachines, which would be good for turbomachines' design. Another optimization method – the specific power optimization is also proposed to make a comparison. (author)

  16. Cell cycle phase dependent emergence of thymidylate synthase studied by monoclonal antibody (M-TS-4).

    Science.gov (United States)

    Shibui, S; Hoshino, T; Iwasaki, K; Nomura, K; Jastreboff, M M

    1989-05-01

    A method of identifying thymidylate synthase (TS) at the cellular level was developed using anti-TS monoclonal antibody (M-TS-4), a monoclonal antibody created against purified TS from a HeLa cell line. In HeLa cells and four human glioma cell lines (U-251, U-87, 343-MGA, and SF-188), TS was identified primarily in the cytoplasm. Autoradiographic and flow cytometric studies showed that TS appeared mainly in the G1 phase and subsided early in the S phase; thus, the G1 phase can be divided into TS-positive and -negative fractions. Nuclear TS was not demonstrated unequivocally with M-TS-4, and the relationship between nuclear TS and DNA synthesis could not be determined. Although the percentage of TS-positive cells was larger than the S-phase fraction measured by autoradiography after a pulse of tritiated thymidine or by the immunoperoxidase method using BUdR, the ratios were within a similar range (1.2-1.4) in all cell lines studied. Therefore, the S-phase fraction can be estimated indirectly from the percentage of TS-positive cells measured by M-TS-4. Because the emergence of TS detected by our method is cell cycle dependent, M-TS-4 may be useful for biochemical studies of TS and for cytokinetic analysis.

  17. Applications and control of air conditioning systems using rapid cycling to modulate capacity

    Energy Technology Data Exchange (ETDEWEB)

    Poort, M.J.; Bullard, C.W. [Department of Mechanical and Industrial Engineering, Air Conditioning and Refrigeration Center, University of Illinois, 1206 W. Green St., Urbana, IL 61801 (United States)

    2006-08-15

    Rapid cycling the compressor of an air conditioning or refrigeration system can be used to modulate capacity, thus offering an alternative to a variable speed compressor. This paper explores design tradeoffs to optimize rapid cycling performance based on experimental results using two different evaporators and changing other components of an air conditioning system. Rapid cycling has inherent compressor lift penalties associated with larger mass flow rates, which need to be minimized. Preventing dryout (superheating) in the evaporator during the off cycle, a major penalty as cycles are lengthened, is also important. Evaporator dryout is minimized by increasing the refrigerant side area and reducing off cycle drainage. Combining a flash gas bypass with a suction line heat exchanger was found to maximize performance during the off cycle while allowing increased cycle lengths without incurring major penalties. (author)

  18. Entry into the Postparental Phase of the Family Life Cycle

    Directory of Open Access Journals (Sweden)

    Barbara Wawrzyniak

    2015-02-01

    Full Text Available Der Originalbeitrag in deutscher Sprache ist verfügbar unter: Bd. 40 (2015: Ausgewählte deutsche BeiträgeThe article examines entry into the postparental phase of the family life cycle, which is the familial situation when all children have moved out of the parental household. We position this event chronologically within the life course and examine the probability of occurrence. Using panel data (3 survey waves covering a period of 40 years of a cohort of former North-Rhine Westphalian grammar school pupils, event history models (Cox regression are employed to analyse what factors accelerate or decelerate the transition. This revealed that the parent’s individual biography (in particular the age at the own move out, age at the birth of the first child and the number of children has a major impact on the time of occurrence, while the occupational history has no effect. In addition, sons delay the transition, while children’s academic studies and occupation accelerate it.

  19. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team

  20. The hamster clock phase-response curve from summerlike light:dark cycles and its role in daily and seasonal timekeeping.

    Science.gov (United States)

    Alleva, John J; Alleva, Frederic R

    2002-11-01

    We address the subject of entrainment of the hamster clock by the day:night cycle in summer when the sun sets after 6 PM and rises before 6 AM (nights cycles were simulated by 6 light:dark (LD) cycles with D estrus and wheel running in hamsters. The onset of estrus was observed every 4 d in the same hamsters as a phase marker of their 24 h clock. On the day before an experimental estrus, preceded and followed by control onsets, a dark period was imposed to cover a putative 6 PM-6 AM light-sensitive period (LSP). This was scanned with a light pulse (and periodic 5 sec bell alarms) lasting 5-240 min. Shifts in onset of estrus on the next day were plotted vs. the end of the light pulse for PM times ("dusk") and its onset for AM times ("dawn"). The resulting phase shifts from the six SLDs were similar, permitting their combination into a single phase-response curve (PRC) of 1605 shifts. This SLD composite PRC rose at 10:15 PM, peaked at 2 AM (81 min advanced shift), fell linearly to 5:55 AM, and then abruptly to normal at 6 AM (no shift). Peak shift was unaffected by light pulse duration or intensity, or hamster age. The SLD composite PRC lacked the 6 PM-9 PM curve of delayed shifts present in reported PRCs from LD 12 h:12 h and DD. However, a two-pulse experiment showed that all light from 6 PM to L-off was needed to block (balance) the advancing action of a 5 min morning light pulse, thereby maintaining entrainment. A working hypothesis to explain daily entrainment and seasonal fertility in the golden hamster is illustrated. A nomenclature for labeling the phases of the hamster clock (circadian time) is proposed.

  1. Limit Cycle Analysis in a Class of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Antonio Favela-Contreras

    2016-01-01

    Full Text Available Hybrid systems are those that inherently combine discrete and continuous dynamics. This paper considers the hybrid system model to be an extension of the discrete automata associating a continuous evolution with each discrete state. This model is called the hybrid automaton. In this work, we achieve a mathematical formulation of the steady state and we show a way to obtain the initial conditions region to reach a specific limit cycle for a class of uncoupled and coupled continuous-linear hybrid systems. The continuous-linear term is used in the sense of the system theory and, in this sense, continuous-linear hybrid automata will be defined. Thus, some properties and theorems that govern the hybrid automata dynamic behavior to evaluate a limit cycle existence have been established; this content is explained under a theoretical framework.

  2. Integrated thermal treatment system sudy: Phase 2, Results

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

  3. Integrated thermal treatment system sudy: Phase 2, Results

    International Nuclear Information System (INIS)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr)

  4. Tracheal sound parameters of respiratory cycle phases show differences between flow-limited and normal breathing during sleep

    International Nuclear Information System (INIS)

    Kulkas, A; Huupponen, E; Virkkala, J; Saastamoinen, A; Rauhala, E; Tenhunen, M; Himanen, S-L

    2010-01-01

    The objective of the present work was to develop new computational parameters to examine the characteristics of respiratory cycle phases from the tracheal breathing sound signal during sleep. Tracheal sound data from 14 patients (10 males and 4 females) were examined. From each patient, a 10 min long section of normal and a 10 min section of flow-limited breathing during sleep were analysed. The computationally determined proportional durations of the respiratory phases were first investigated. Moreover, the phase durations and breathing sound amplitude levels were used to calculate the area under the breathing sound envelope signal during inspiration and expiration phases. An inspiratory sound index was then developed to provide the percentage of this type of area during the inspiratory phase with respect to the combined area of inspiratory and expiratory phases. The proportional duration of the inspiratory phase showed statistically significantly higher values during flow-limited breathing than during normal breathing and inspiratory pause displayed an opposite difference. The inspiratory sound index showed statistically significantly higher values during flow-limited breathing than during normal breathing. The presented novel computational parameters could contribute to the examination of sleep-disordered breathing or as a screening tool

  5. Lactose hydrolysis in aqueous two-phase system by whole-cell {beta}-galactosidase of Kluyveromyces marxianus. Semicontinuous and continuous processes

    Energy Technology Data Exchange (ETDEWEB)

    Tomaska, M [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Stredansky, M [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Tomaskova, A [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Sturdik, E [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology

    1995-01-01

    Semicontinuous and continuous hydrolysis of lactose in aqueous two-phase systems (polyethylene glycol 20000/ dextran 40) with whole-cell {beta}-galactosidase of K. marxianus were studied. Both phase polymers had no effect on {beta}-galactosidase activity confined in cells. Good operational stability of the biocatalyst during 55 cycles of semicontinuous process was observed without appreciable decrease in product concentration. Continuous hydrolysis of lactose was performed in the stirred bioreactor, connected with the phase separator. The satisfactory degree of hydrolysis (between 82-88%) and volumetric productivity (21.6 g/l/h) were reached during 72 hours of continuous hydrolysis of 5% (w/w) lactose. (orig.)

  6. Title IV Cash Management Life Cycle Training. Participant's Guide.

    Science.gov (United States)

    Department of Education, Washington, DC.

    This participant's guide includes: "Introduction: Welcome to Cash Management Life Cycle Training"; "Module 1: Review of Cash Management Principles" (cash management overview and activity); "Module 2: Common Origination and Disbursement (COD) System Overview" (e.g., full participants and phase-in participants, COD…

  7. Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment

    OpenAIRE

    De Laborderie , Alexis; Puech , Clément; Adra , Nadine; Blanc , Isabelle; Beloin-Saint-Pierre , Didier; Padey , Pierryves; Payet , Jérôme; Sie , Marion; Jacquin , Philippe

    2011-01-01

    Available on: http://www.ep.liu.se/ecp/057/vol14/002/ecp57vol14_002.pdf; International audience; Solar thermal systems are an ecological way of providing domestic hot water. They are experiencing a rapid growth since the beginning of the last decade. This study characterizes the environmental performances of such installations with a life-cycle approach. The methodology is based on the application of the international standards of Life Cycle Assessment. Two types of systems are presented. Fir...

  8. Phase tracking system for ultra narrow bandwidth applications

    NARCIS (Netherlands)

    Hill, M.T.; Cantoni, A.

    2002-01-01

    Recent advances make it possible to mitigate a number of drawbacks of conventional phase locked loops. These advances permit the design of phase tracking systems with much improved characteristics that are sought after in modern communication system applications. A new phase tracking system is

  9. Superfluid thermodynamic cycle refrigerator

    Science.gov (United States)

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  10. Isotropic–Nematic Phase Transitions in Gravitational Systems

    Energy Technology Data Exchange (ETDEWEB)

    Roupas, Zacharias; Kocsis, Bence [Institute of Physics, Eötvös University, Pázmány P. s. 1/A, Budapest, 1117 (Hungary); Tremaine, Scott [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2017-06-20

    We examine dense self-gravitating stellar systems dominated by a central potential, such as nuclear star clusters hosting a central supermassive black hole. Different dynamical properties of these systems evolve on vastly different timescales. In particular, the orbital-plane orientations are typically driven into internal thermodynamic equilibrium by vector resonant relaxation before the orbital eccentricities or semimajor axes relax. We show that the statistical mechanics of such systems exhibit a striking resemblance to liquid crystals, with analogous ordered-nematic and disordered-isotropic phases. The ordered phase consists of bodies orbiting in a disk in both directions, with the disk thickness depending on temperature, while the disordered phase corresponds to a nearly isotropic distribution of the orbit normals. We show that below a critical value of the total angular momentum, the system undergoes a first-order phase transition between the ordered and disordered phases. At a critical point, the phase transition becomes second order, while for higher angular momenta there is a smooth crossover. We also find metastable equilibria containing two identical disks with mutual inclinations between 90° and 180°.

  11. The thorium fuel cycle in water-moderated reactor systems

    International Nuclear Information System (INIS)

    Critoph, E.

    1977-01-01

    Current interest in the thorium cycle, as an alternative to the uranium cycle, for water-moderated reactors is based on two attractive aspects of its use - the extension of uranium resources, and the related lower sensitivity of energy costs to uranium price. While most of the scientific basis required is already available, some engineering demonstrations are needed to provide better economic data for rational decisions. Thorium and uranium cycles are compared with regard to reactor characteristics and technology, fuel-cycle technology, economic parameters, fuel-cycle costs, and system characteristics. There appear to be no major feasibility problems associated with the use of thorium, although development is required in the areas of fuel testing and fuel management. The use of thorium cycles implies recycling the fuel, and the major uncertainties are in the associated costs. Experience in the design and operation of fuel reprocessing and active-fabrication facilities is required to estimate costs to the accuracy needed for adequately defining the range of conditions economically favourable to thorium cycles. In heavy-water reactors (HWRs) thorium cycles having uranium requirements at equilibrium ranging from zero to a quarter of those for the natural-uranium once-through cycle appear feasible. An ''inventory'' of uranium of between 1 and 2Mg/MW(e) is required for the transition to equilibrium. The cycles with the lowest uranium requirements compete with the others only at high uranium prices. Using thorium in light-water reactors, uranium requirements can be reduced by a factor of between two and three from the once-through uranium cycle. The light-water breeder reactor, promising zero uranium requirements at equilibrium, is being developed. Larger uranium inventories are required than for the HWRs. The lead time, from a decision to use thorium to significant impact on uranium utilization (compared to uranium cycle, recycling plutonium), is some two decades

  12. Characterizing Observed Limit Cycles in the Cassini Main Engine Guidance Control System

    Science.gov (United States)

    Rizvi, Farheen; Weitl, Raquel M.

    2011-01-01

    The Cassini spacecraft dynamics-related telemetry during long Main Engine (ME) burns has indicated the presence of stable limit cycles between 0.03-0.04 Hz frequencies. These stable limit cycles cause the spacecraft to possess non-zero oscillating rates for extended periods of time. This indicates that the linear ME guidance control system does not model the complete dynamics of the spacecraft. In this study, we propose that the observed limit cycles in the spacecraft dynamics telemetry appear from a stable interaction between the unmodeled nonlinear elements in the ME guidance control system. Many nonlinearities in the control system emerge from translating the linear engine gimbal actuator (EGA) motion into a spacecraft rotation. One such nonlinearity comes from the gear backlash in the EGA system, which is the focus of this paper. The limit cycle characteristics and behavior can be predicted by modeling this gear backlash nonlinear element via a describing function and studying the interaction of this describing function with the overall dynamics of the spacecraft. The linear ME guidance controller and gear backlash nonlinearity are modeled analytically. The frequency, magnitude, and nature of the limit cycle are obtained from the frequency response of the ME guidance controller and nonlinear element. In addition, the ME guidance controller along with the nonlinearity is simulated. The simulation response contains a limit cycle with similar characterstics as predicted analytically: 0.03-0.04 Hz frequency and stable, sustained oscillations. The analytical and simulated limit cycle responses are compared to the flight telemetry for long burns such as the Saturn Orbit Insertion and Main Engine Orbit Trim Maneuvers. The analytical and simulated limit cycle characteristics compare well with the actual observed limit cycles in the flight telemetry. Both have frequencies between 0.03-0.04 Hz and stable oscillations. This work shows that the stable limit cycles occur

  13. Adjoint method provides phase response functions for delay-induced oscillations.

    Science.gov (United States)

    Kotani, Kiyoshi; Yamaguchi, Ikuhiro; Ogawa, Yutaro; Jimbo, Yasuhiko; Nakao, Hiroya; Ermentrout, G Bard

    2012-07-27

    Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.

  14. Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems

    Directory of Open Access Journals (Sweden)

    Akhil Kadiyala

    2016-06-01

    Full Text Available This study evaluated the life cycle greenhouse gas (GHG emissions from different hydroelectricity generation systems by first performing a comprehensive review of the hydroelectricity generation system life cycle assessment (LCA studies and then subsequent computation of statistical metrics to quantify the life cycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO2e/kWh. A categorization index (with unique category codes, formatted as “facility type-electric power generation capacity” was developed and used in this study to evaluate the life cycle GHG emissions from the reviewed hydroelectricity generation systems. The unique category codes were labeled by integrating the names of the two hydro power sub-classifications, i.e., the facility type (impoundment (I, diversion (D, pumped storage (PS, miscellaneous hydropower works (MHPW and the electric power generation capacity (micro (µ, small (S, large (L. The characterized hydroelectricity generation systems were statistically evaluated to determine the reduction in corresponding life cycle GHG emissions. A total of eight unique categorization codes (I-S, I-L, D-µ, D-S, D-L, PS-L, MHPW-µ, MHPW-S were designated to the 19 hydroelectricity generation LCA studies (representing 178 hydropower cases using the proposed categorization index. The mean life cycle GHG emissions resulting from the use of I-S (N = 24, I-L (N = 8, D-µ (N = 3, D-S (N = 133, D-L (N = 3, PS-L (N = 3, MHPW-µ (N = 3, and MHPW-S (N = 1 hydroelectricity generation systems are 21.05 gCO2e/kWh, 40.63 gCO2e/kWh, 47.82 gCO2e/kWh, 27.18 gCO2e/kWh, 3.45 gCO2e/kWh, 256.63 gCO2e/kWh, 19.73 gCO2e/kWh, and 2.78 gCO2e/kWh, respectively. D-L hydroelectricity generation systems produced the minimum life cycle GHGs (considering the hydroelectricity generation system categories with a representation of at least two cases.

  15. Borrelia burgdorferi requires glycerol for maximum fitness during the tick phase of the enzootic cycle.

    Directory of Open Access Journals (Sweden)

    Christopher J Pappas

    2011-07-01

    Full Text Available Borrelia burgdorferi, the spirochetal agent of Lyme disease, is a vector-borne pathogen that cycles between a mammalian host and tick vector. This complex life cycle requires that the spirochete modulate its gene expression program to facilitate growth and maintenance in these diverse milieus. B. burgdorferi contains an operon that is predicted to encode proteins that would mediate the uptake and conversion of glycerol to dihydroxyacetone phosphate. Previous studies indicated that expression of the operon is elevated at 23°C and is repressed in the presence of the alternative sigma factor RpoS, suggesting that glycerol utilization may play an important role during the tick phase. This possibility was further explored in the current study by expression analysis and mutagenesis of glpD, a gene predicted to encode glycerol 3-phosphate dehydrogenase. Transcript levels for glpD were significantly lower in mouse joints relative to their levels in ticks. Expression of GlpD protein was repressed in an RpoS-dependent manner during growth of spirochetes within dialysis membrane chambers implanted in rat peritoneal cavities. In medium supplemented with glycerol as the principal carbohydrate, wild-type B. burgdorferi grew to a significantly higher cell density than glpD mutant spirochetes during growth in vitro at 25°C. glpD mutant spirochetes were fully infectious in mice by either needle or tick inoculation. In contrast, glpD mutants grew to significantly lower densities than wild-type B. burgdorferi in nymphal ticks and displayed a replication defect in feeding nymphs. The findings suggest that B. burgdorferi undergoes a switch in carbohydrate utilization during the mammal to tick transition. Further, the results demonstrate that the ability to utilize glycerol as a carbohydrate source for glycolysis during the tick phase of the infectious cycle is critical for maximal B. burgdorferi fitness.

  16. Application of S-CO{sub 2} Cycle for Small Modular Reactor coupled with Desalination System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Woong; Bae, Seong Jun; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The Korean small modular reactor, SMART (System-integrated Modular Advanced ReacTor, 100MWe), is designed to achieve enhanced safety and improved economics through reliable passive safety systems, a system simplification and component modularization. SMART can generate electricity and provide water by seawater desalination. However, due to the desalination aspect of SMART, the total amount of net electricity generation is decreased from 100MWe to 90MWe. The authors suggest in this presentation that the reduction of electricity generation can be replenished by applying S-CO{sub 2} power cycle technology. The S-CO{sub 2} Brayton cycle, which is recently receiving significant attention as the next generation power conversion system, has some benefits such as high cycle efficiency, simple configuration, compactness and so on. In this study, the cycle performance analysis of the S-CO{sub 2} cycles for SMART with desalination system is conducted. The simple recuperated S-CO{sub 2} cycle is revised for coupling with desalination system. The three revised layout are proposed for the cycle performance comparison. In this results of the 3rd revised layout, the cycle efficiency reached 37.8%, which is higher than the efficiency of current SMART with the conventional power conversion system 30%.

  17. Engine cycle design considerations for nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T.

    1993-01-01

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown

  18. Serum Leptin Concentrations during the Menstrual Cycle in Iranian Healthy Women

    Directory of Open Access Journals (Sweden)

    Nahid Einollahi

    2010-09-01

    Full Text Available "nLeptin, a circulating 16-kd polypeptide consisting of 167 amino acids, appears to be involved in the body weight homeostasis. Moreover leptin plays an important role for the reproductive system, early embryogenesis, and fat metabolism during pregnancy and puberty. Significant correlations have been found between leptin and sexual hormones, which is a cytokine and has hormonal properties. The aim of this study was to determine serum leptin levels during the menstrual cycle, and the association between serum leptin and reproductive hormones in young, healthy Iranian women. 42 healthy women volunteered for the study. They all had regular menstrual cycles, with cycle length varying between 26 and 32 days. None of them used oral contraceptives. All were of normal weight, with body mass index ( BMI < 25 Kg/m2. Fasting blood samples were collected during the follicular phase, mid cycle and luteal phase of the menstrual cycle. FSH and LH were measured with coated tube immunoradiometric assay. Estrogen and progesterone were measured using antibody -coated tubes. Serum Leptin concentration were measured by Leptin (sandwich ELISA. In menstruating women, serum leptin increased from 13.15+/-1.60 ng/ml in the early follicular phase to 16.57+/-1.68 ng/ml (P<0.01 at the luteal phase. Serum leptin concentration negatively correlated with LH and progesterone (P<0.05. Mean serum leptin levels correlated with body mass index (BMI (r =0.78, P<0.001.

  19. Life Cycle Assessment of Wall Systems

    Science.gov (United States)

    Ramachandran, Sriranjani

    Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned

  20. Development of fusion fuel cycles: Large deviations from US defense program systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, James Edward, E-mail: james.klein@srnl.doe.gov; Poore, Anita Sue; Babineau, David W.

    2015-10-15

    Highlights: • All tritium fuel cycles start with a “Tritium Process.” All have similar tritium processing steps. • Fusion tritium fuel cycles minimize process tritium inventories for various reasons. • US defense program facility designs did not minimize in-process inventories. • Reduced inventory tritium facilities will lower public risk. - Abstract: Fusion energy research is dominated by plasma physics and materials technology development needs with smaller levels of effort and funding dedicated to tritium fuel cycle development. The fuel cycle is necessary to supply and recycle tritium at the required throughput rate; additionally, tritium confinement throughout the facility is needed to meet regulatory and environmental release limits. Small fuel cycle development efforts are sometimes rationalized by stating that tritium processing technology has already been developed by nuclear weapons programs and these existing processes only need rescaling or engineering design to meet the needs of fusion fuel cycles. This paper compares and contrasts features of tritium fusion fuel cycles to United States Cold War era defense program tritium systems. It is concluded that further tritium fuel cycle development activities are needed to provide technology development beneficial to both fusion and defense programs tritium systems.

  1. Power generation and heating performances of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Zhang, Zhi; Guo, Zhanwei; Chen, Yaping; Wu, Jiafeng; Hua, Junye

    2015-01-01

    Highlights: • Integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) is investigated. • Ammonia–water Rankine cycle is operated for cogenerating room heating-water in winter. • Kalina cycle with higher efficiency is operated for power generation in other seasons. • Power recovery efficiency accounts thermal efficiency and waste heat absorbing ratio. • Heating water with 70 °C and capacity of 55% total reclaimed heat load is cogenerated. - Abstract: An integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) for power generation and heating is introduced. The Kalina cycle has large temperature difference during evaporation and small one during condensation therefore with high thermal efficiency for power generation, while the ammonia–water Rankine cycle has large temperature difference during condensation as well as evaporation, thus it can be adopted to generate heating-water as a by-product in winter. The integrated system is based on the Kalina cycle and converted to the Rankine cycle with a set of valves. The performances of the AWKRC system in different seasons with corresponding cycle loops were studied and analyzed. When the temperatures of waste heat and cooling water are 300 °C and 25 °C respectively, the thermal efficiency and power recovery efficiency of Kalina cycle are 20.9% and 17.4% respectively in the non-heating seasons, while these efficiencies of the ammonia–water Rankine cycle are 17.1% and 13.1% respectively with additional 55.3% heating recovery ratio or with comprehensive efficiency 23.7% higher than that of the Kalina cycle in heating season

  2. DNA double-strand break and apoptosis induction in human lymphocytes in different cycle cell phases by 60Co gamma rays and Bragg peak protons of a medical beam

    International Nuclear Information System (INIS)

    Khachenkova, A.A.; Boreyko, A.V.; Mozhaeva, A.V.; Chausov, V.N.; Ravnachka, I.I.; Amov, I.; Tiunchik, S.I.

    2009-01-01

    A comparative analysis is made of the regularities in the formation of DNA double-strand break and apoptosis induction in peripheral human blood lymphocytes in different cell cycle phases after 60 Co gamma and extended Bragg peak proton irradiation. It is shown that the formation of apoptotic cells in a lymphocyte population increases linearly in all the cell cycle stages after proton irradiation. The maximal DNA double-strand break and apoptosis yield in lymphocytes is observed in the S phase of the cell cycle

  3. Nearly identical cycles of the quasi-biennial oscillation in the equatorial lower stratosphere

    Science.gov (United States)

    Dunkerton, T. J.

    2017-08-01

    As a nonlinear dynamical system with limit cycles but subject to periodic forcings associated with the seasonal cycle, the quasi-biennial oscillation (QBO) displays seasonal modulation such that phase transitions are more likely to occur in certain months than in others. Modulation is distinct from seasonal synchronization, defined as quantized QBO periods and identical cycles. Instead, nearly identical QBO cycles can be identified in the data having similar period, internal structure, and (optionally) timing with respect to the calendar year. Four such categories are found using a spectral phase method based on the 2-D phase space of the leading rotated principal components (RPCs) of near-equatorial monthly mean zonal wind in the layer 70-10 hPa. The most prominent category, containing as many as 15 cycles of the 28 observed thus far, is "nearly biennial" with period slightly greater than 24 months. All results, prior to the recent QBO anomaly in Cycle 28, are demonstrated to be statistically stationary in the sense that the RPCs are temporally invariant and insensitive to the inclusion of data to 100 hPa and with higher vertical resolution. Inclusion of Cycle 28 has no effect on the rotated empirical orthogonal functions but a microscopic change in the long-term average, since strong easterlies are missing in the anomalous cycle. For objective definition of QBO cycles in physical space-time, westerly onsets in the 40-53 hPa layer are least likely to stall and provide unambiguous starting times. Half of these onsets cluster in April-May, consistent with the seasonal modulation obtained with the spectral phase method.

  4. A comparison of nuclear power systems for Brazil using plutonium and binary cycles

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Fernandes, J.E.

    1985-01-01

    Nuclear power systems based on plutonium cycle and binary cycle are compared taking into account natural uranium demand and reactor combination. The systems start with PWR type reactors (U5/U8) and change to systems composed exclusively of FBR type reactors or PWR-FBR symbiotic systems. Four loading modes are considered for the PWR and two for the FBR. The FBR is either a LMFBR loaded with PU/U or a LMFBR loaded the binary way. A linear and a non-linear capacity growth and two different criteria for the FBR introduction are considered. The results show that a 100 GWe permanent system can be established in 50 years in all cases, based on 300000 t of natural uranium and in case of delay in the FBR introduction and if a thermal-fast symbiotic system is chosen, a binary cycle could be more advantageous than a plutonium cycle. (F.E.) [pt

  5. Automated Test Case Generation from Highly Reliable System Requirements Models, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Software testing is a complex and expensive phase of the software development cycle. Effective software testing is especially important in mission-critical software,...

  6. Strategy Diversity Stabilizes Mutualism through Investment Cycles, Phase Polymorphism, and Spatial Bubbles

    Science.gov (United States)

    Boza, Gergely; Kun, Ádám; Scheuring, István; Dieckmann, Ulf

    2012-01-01

    There is continuing interest in understanding factors that facilitate the evolution and stability of cooperation within and between species. Such interactions will often involve plasticity in investment behavior, in response to the interacting partner's investments. Our aim here is to investigate the evolution and stability of reciprocal investment behavior in interspecific interactions, a key phenomenon strongly supported by experimental observations. In particular, we present a comprehensive analysis of a continuous reciprocal investment game between mutualists, both in well-mixed and spatially structured populations, and we demonstrate a series of novel mechanisms for maintaining interspecific mutualism. We demonstrate that mutualistic partners invariably follow investment cycles, during which mutualism first increases, before both partners eventually reduce their investments to zero, so that these cycles always conclude with full defection. We show that the key mechanism for stabilizing mutualism is phase polymorphism along the investment cycle. Although mutualistic partners perpetually change their strategies, the community-level distribution of investment levels becomes stationary. In spatially structured populations, the maintenance of polymorphism is further facilitated by dynamic mosaic structures, in which mutualistic partners form expanding and collapsing spatial bubbles or clusters. Additionally, we reveal strategy-diversity thresholds, both for well-mixed and spatially structured mutualistic communities, and discuss factors for meeting these thresholds, and thus maintaining mutualism. Our results demonstrate that interspecific mutualism, when considered as plastic investment behavior, can be unstable, and, in agreement with empirical observations, may involve a polymorphism of investment levels, varying both in space and in time. Identifying the mechanisms maintaining such polymorphism, and hence mutualism in natural communities, provides a significant

  7. Filtered Carrier Phase Estimator for High-Order QAM Optical Systems

    DEFF Research Database (Denmark)

    Rozental, Valery; Kong, Deming; Corcoran, Bill

    2018-01-01

    We investigate, using Monte Carlo simulations, the performance characteristics and limits of a low-complexity filtered carrier phase estimator (F-CPE) in terms of cycle slip occurrences and SNR penalties. In this work, the F-CPE algorithm has been extended to include modulation formats whose oute...

  8. Thermal analysis of a Phase Change Material for a Solar Organic Rankine Cycle

    Science.gov (United States)

    Iasiello, M.; Braimakis, K.; Andreozzi, A.; Karellas, S.

    2017-11-01

    Organic Rankine Cycle (ORC) is a promising technology for low temperature power generation, for example for the utilization of medium temperature solar energy. Since heat generated from solar source is variable throughout the day, the implementation of Thermal Energy Storage (TES) systems to guarantee the continuous operation of solar ORCs is a critical task, and Phase Change Materials (PCM) rely on latent heat to store large amounts of energy. In the present study, a thermal analysis of a PCM for a solar ORC is carried out. Three different types of PCMs are analyzed. The energy equation for the PCM is modeled by using the heat capacity method, and it is solved by employing a 1Dexplicit finite difference scheme. The solar source is modeled with a time-variable temperature boundary condition, with experimental data taken from the literature for two different solar collectors. Results are presented in terms of temperature profiles and stored energy. It has been shown that the stored energy depends on the heat source temperature, on the employed PCM and on the boundary conditions. It has been demonstrated that the use of a metal foam can drastically enhance the stored energy due to the higher overall thermal conductivity.

  9. Solution of multiple circuits of steam cycle HTR system

    International Nuclear Information System (INIS)

    Li, Fu; Wang, Dengying; Hao, Chen; Zheng, Yanhua

    2014-01-01

    In order to analyze the dynamic operation performance and safety characteristics of the steam cycle high temperature gas cooled reactor (HTR) systems, it is necessary to find the solution of the whole HTR systems with all coupled circuits, including the primary circuit, the secondary circuit, and the residual heat removal system (RHRS). Considering that those circuits have their own individual fluidity and characteristics, some existing code packages for independent circuits themselves have been developed, for example THEMRIX and TINTE code for the primary circuit of the pebble bed reactor, BLAST for once through steam generator. To solve the coupled steam cycle HTR systems, a feasible way is to develop coupling method to integrate these independent code packages. This paper presents several coupling methods, e.g. the equivalent component method between the primary circuit and steam generator which reflect the close coupling relationship, the overlapping domain decomposition method between the primary circuit and the passive RHRS which reflects the loose coupling relationship. Through this way, the whole steam cycle HTR system with multiple circuits can be easily and efficiently solved by integration of several existing code packages. Based on this methodology, a code package TINTE–BLAST–RHRS was developed. Using this code package, some operation performance of HTR–PM was analyzed, such as the start-up process of the plant, and the depressurized loss of forced cooling accident when different number of residual heat removal trains is operated

  10. Phase-space networks of geometrically frustrated systems.

    Science.gov (United States)

    Han, Yilong

    2009-11-01

    We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.

  11. LIFE CYCLE ASSESSMENT IN HEALTHCARE SYSTEM OPTIMIZATION. INTRODUCTION

    Directory of Open Access Journals (Sweden)

    V. Sarancha

    2015-03-01

    Full Text Available Article describes the life cycle assessment method and introduces opportunities for method performance in healthcare system settings. LSA draws attention to careful use of resources, environmental, human and social responsibility. Modelling of environmental and technological inputs allows optimizing performance of the system. Various factors and parameters that may influence effectiveness of different sectors in healthcare system are detected. Performance optimization of detected parameters could lead to better system functioning, higher patient safety, economic sustainability and reduce resources consumption.

  12. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  13. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program's understanding of the cost drivers that will determine nuclear power's cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-irradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  14. Berry phase in entangled systems

    International Nuclear Information System (INIS)

    Bertlmann, R.A.; Hasegawa, Y.; Hiesmayr, B.C.; Durstberger, C.

    2005-01-01

    Full text: The influence of the geometric phase, in particular the Berry phase, on an entangled spin-1/2 system is studied. We discuss in detail the case, where the geometric phase is generated only by one part of the Hilbert space. We are able to cancel the effects of the dynamical phase by using the 'spin-echo' method. We analyze how the Berry phase affects the Bell angles and the maximal violation of a CHSH-Bell inequality. Furthermore, we suggest an experimental realization of our setup within neutron interferometry. It is possible to create entanglement between different degrees of freedom (spin and spatial degree of freedom) for a single neutron. The influence of the geometrical phase on the entangled neutron state is tested experimentally which is work in progress. (author)

  15. Implementation of a Cost-Accounting System for Visibility of Weapon Systems Life-Cycle Costs

    National Research Council Canada - National Science Library

    Ugone, Mary

    2001-01-01

    .... The DoD Acquisition Reform Goal 10 required DoD to define requirements and establish an implementation plan for a cost-accounting system that provides routine visibility into weapon system life-cycle...

  16. Echography of the Cervix and Uterus during the Proliferative and Secretory Phases of the Menstrual Cycle in Bonnet Monkeys (Macaca radiata)

    Science.gov (United States)

    Chaudhari, Uddhav K; Metkari, Siddnath M; Manjaramkar, Dhyananjay D; Sachdeva, Geetanjali; Katkam, Rajendra; Bandivdekar, Atmaram H; Mahajan, Abhishek; Thakur, Meenakshi H; Kholkute, Sanjiv D

    2014-01-01

    We undertook the present study to investigate the echographic characteristics of the uterus and cervix of female bonnet monkeys (Macaca radiata) during the proliferative and secretory phases of the menstrual cycle. The cervix was tortuous in shape and measured 2.74 ± 0.30 cm (mean ± SD) in width by 3.10 ± 0.32 cm in length. The cervical lumen contained 2 or 3 colliculi, which projected from the cervical canal. The echogenicity of cervix varied during proliferative and secretory phases. The uterus was pyriform in shape (2.46 ± 0.28 cm × 1.45 ± 0.19 cm) and consisted of serosa, myometrium, and endometrium. The endometrium generated a triple-line pattern; the outer and central lines were hyperechogenic, whereas the inner line was hypoechogenic. The endometrium was significantly thicker during the secretory phase (0.69 ± 0.12 cm) than during the proliferative phase (0.43 ± 0.15 cm). Knowledge of the echogenic changes in the female reproductive organs of bonnet monkeys during a regular menstrual cycle may facilitate understanding of other physiologic and pathophysiologic changes. PMID:24411775

  17. Potassium cycling and losses in grassland systems : a review

    NARCIS (Netherlands)

    Kayser, M; Isselstein, J

    Cycling of potassium in grassland systems has received relatively little attention in research and practice in recent years. Balanced nutrient systems require consideration of nutrients other than nitrogen (N). Potassium (K) is needed in large amounts and is closely related to N nutrition. In

  18. Unraveling multiple phases of sulfur cycling during the alteration of ancient ultramafic oceanic lithosphere

    Science.gov (United States)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Johnston, David T.

    2018-02-01

    Ultramafic-hosted hydrothermal systems - characterized by ongoing serpentinization reactions - exert an important influence on the global sulfur cycle. Extensive water-rock interaction causes elemental exchange between seawater and the oceanic lithosphere, effectively removing sulfate from seawater through both abiogenic and biogenic processes. Here, we use bulk rock multiple sulfur isotope signatures (32S, 33S, 34S) and in situ sulfide analyses together with petrographic observations to track the sulfur cycling processes and the hydrothermal evolution of ancient peridotite-hosted hydrothermal systems. We investigate serpentinized peridotites from the Northern Apennine ophiolite in Italy and the Santa Elena ophiolite in Costa Rica and compare those with the Iberian Margin (Ocean Drilling Program (ODP) Leg 149 and 173) and the 15°20‧N Fracture Zone along the Mid-Atlantic Ridge (ODP Leg 209). In situ measurements of sulfides in the Northern Apennine serpentinites preserve a large range in δ34Ssulfide of -33.8 to +13.3‰ with significant heterogeneities within single sulfide grains and depending on mineralogy. Detailed mineralogical investigation and comparison with bulk rock Δ33Ssulfide and in situ δ34Ssulfide data implies a thermal evolution of the system from high temperatures (∼350 °C) that allowed thermochemical sulfate reduction and input of hydrothermal sulfide to lower temperatures (rock associated with detachment faulting along a mid-ocean ridge spreading center. The Santa Elena peridotites preserve distinct signatures for fluid circulation at high temperatures with both closed system thermochemical sulfate reduction and input of mafic-derived sulfur. In addition, the peridotites provide strong evidence that low Ca2+ concentrations in peridotite-hosted systems can limit sulfate removal during anhydrite precipitation at temperatures above 150 °C. This may play a central role for the availability of sulfate to microbial communities within these

  19. Spatiotemporal coding of inputs for a system of globally coupled phase oscillators

    Science.gov (United States)

    Wordsworth, John; Ashwin, Peter

    2008-12-01

    We investigate the spatiotemporal coding of low amplitude inputs to a simple system of globally coupled phase oscillators with coupling function g(ϕ)=-sin(ϕ+α)+rsin(2ϕ+β) that has robust heteroclinic cycles (slow switching between cluster states). The inputs correspond to detuning of the oscillators. It was recently noted that globally coupled phase oscillators can encode their frequencies in the form of spatiotemporal codes of a sequence of cluster states [P. Ashwin, G. Orosz, J. Wordsworth, and S. Townley, SIAM J. Appl. Dyn. Syst. 6, 728 (2007)]. Concentrating on the case of N=5 oscillators we show in detail how the spatiotemporal coding can be used to resolve all of the information that relates the individual inputs to each other, providing that a long enough time series is considered. We investigate robustness to the addition of noise and find a remarkable stability, especially of the temporal coding, to the addition of noise even for noise of a comparable magnitude to the inputs.

  20. Oscillating systems with cointegrated phase processes

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Rahbek, Anders; Ditlevsen, Susanne

    2017-01-01

    We present cointegration analysis as a method to infer the network structure of a linearly phase coupled oscillating system. By defining a class of oscillating systems with interacting phases, we derive a data generating process where we can specify the coupling structure of a network...... that resembles biological processes. In particular we study a network of Winfree oscillators, for which we present a statistical analysis of various simulated networks, where we conclude on the coupling structure: the direction of feedback in the phase processes and proportional coupling strength between...... individual components of the system. We show that we can correctly classify the network structure for such a system by cointegration analysis, for various types of coupling, including uni-/bi-directional and all-to-all coupling. Finally, we analyze a set of EEG recordings and discuss the current...

  1. The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme.

    Science.gov (United States)

    Lisman, John

    2005-01-01

    In the hippocampus, oscillations in the theta and gamma frequency range occur together and interact in several ways, indicating that they are part of a common functional system. It is argued that these oscillations form a coding scheme that is used in the hippocampus to organize the readout from long-term memory of the discrete sequence of upcoming places, as cued by current position. This readout of place cells has been analyzed in several ways. First, plots of the theta phase of spikes vs. position on a track show a systematic progression of phase as rats run through a place field. This is termed the phase precession. Second, two cells with nearby place fields have a systematic difference in phase, as indicated by a cross-correlation having a peak with a temporal offset that is a significant fraction of a theta cycle. Third, several different decoding algorithms demonstrate the information content of theta phase in predicting the animal's position. It appears that small phase differences corresponding to jitter within a gamma cycle do not carry information. This evidence, together with the finding that principle cells fire preferentially at a given gamma phase, supports the concept of theta/gamma coding: a given place is encoded by the spatial pattern of neurons that fire in a given gamma cycle (the exact timing within a gamma cycle being unimportant); sequential places are encoded in sequential gamma subcycles of the theta cycle (i.e., with different discrete theta phase). It appears that this general form of coding is not restricted to readout of information from long-term memory in the hippocampus because similar patterns of theta/gamma oscillations have been observed in multiple brain regions, including regions involved in working memory and sensory integration. It is suggested that dual oscillations serve a general function: the encoding of multiple units of information (items) in a way that preserves their serial order. The relationship of such coding to

  2. Error Cost Escalation Through the Project Life Cycle

    Science.gov (United States)

    Stecklein, Jonette M.; Dabney, Jim; Dick, Brandon; Haskins, Bill; Lovell, Randy; Moroney, Gregory

    2004-01-01

    It is well known that the costs to fix errors increase as the project matures, but how fast do those costs build? A study was performed to determine the relative cost of fixing errors discovered during various phases of a project life cycle. This study used three approaches to determine the relative costs: the bottom-up cost method, the total cost breakdown method, and the top-down hypothetical project method. The approaches and results described in this paper presume development of a hardware/software system having project characteristics similar to those used in the development of a large, complex spacecraft, a military aircraft, or a small communications satellite. The results show the degree to which costs escalate, as errors are discovered and fixed at later and later phases in the project life cycle. If the cost of fixing a requirements error discovered during the requirements phase is defined to be 1 unit, the cost to fix that error if found during the design phase increases to 3 - 8 units; at the manufacturing/build phase, the cost to fix the error is 7 - 16 units; at the integration and test phase, the cost to fix the error becomes 21 - 78 units; and at the operations phase, the cost to fix the requirements error ranged from 29 units to more than 1500 units

  3. Uranium-thorium fuel cycle in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Hernandez, C.R.G.; Oliva, A.M.; Fajardo, L.G.; Garcia, J.A.R.; Curbelo, J.P.; Abadanes, A.

    2011-01-01

    Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. Therefore, Thorium fuels can complement Uranium fuels and ensure long term sustainability of nuclear power. The main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a Uranium-Thorium (U + Th) fuel cycle are shown in this paper. Once-through and two step U + Th fuel cycle was evaluated. With this goal, a preliminary conceptual design of a hybrid system formed by a Graphite Moderated Gas-Cooled Very High Temperature Reactor and two ADSs is proposed. The main parameters related to the neutronic behavior of the system in a deep burn scheme are optimized. The parameters that describe the nuclear fuel breeding and Minor Actinide stockpile are compared with those of a simple Uranium fuel cycle. (author)

  4. Computational analysis of supercritical CO2 Brayton cycle power conversion system for fusion reactor

    International Nuclear Information System (INIS)

    Halimi, Burhanuddin; Suh, Kune Y.

    2012-01-01

    Highlights: ► Computational analysis of S-CO 2 Brayton cycle power conversion system. ► Validation of numerical model with literature data. ► Recompression S-CO 2 Brayton cycle thermal efficiency of 42.44%. ► Reheating concept to enhance the cycle thermal efficiency. ► Higher efficiency achieved by the proposed concept. - Abstract: The Optimized Supercritical Cycle Analysis (OSCA) code is being developed to analyze the design of a supercritical carbon dioxide (S-CO 2 ) driven Brayton cycle for a fusion reactor as part of the Modular Optimal Balance Integral System (MOBIS). This system is based on a recompression Brayton cycle. S-CO 2 is adopted as the working fluid for MOBIS because of its easy availability, high density and low chemical reactivity. The reheating concept is introduced to enhance the cycle thermal efficiency. The helium-cooled lithium lead model AB of DEMO fusion reactor is used as reference in this paper.

  5. Western Wind and Solar Integration Study Phase 2 (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

    2013-06-01

    This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

  6. Cell cycle gene expression under clinorotation

    Science.gov (United States)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  7. Limit cycles from a cubic reversible system via the third-order averaging method

    Directory of Open Access Journals (Sweden)

    Linping Peng

    2015-04-01

    Full Text Available This article concerns the bifurcation of limit cycles from a cubic integrable and non-Hamiltonian system. By using the averaging theory of the first and second orders, we show that under any small cubic homogeneous perturbation, at most two limit cycles bifurcate from the period annulus of the unperturbed system, and this upper bound is sharp. By using the averaging theory of the third order, we show that two is also the maximal number of limit cycles emerging from the period annulus of the unperturbed system.

  8. Nonlinear transport of dynamic system phase space

    International Nuclear Information System (INIS)

    Xie Xi; Xia Jiawen

    1993-01-01

    The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example

  9. Nonlinear observer based phase synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Meng Juan; Wang Xingyuan

    2007-01-01

    This Letter analyzes the phase synchronization problem of autonomous chaotic systems. Based on the nonlinear state observer algorithm and the pole placement technique, a phase synchronization scheme is designed. The phase synchronization of a new chaotic system is achieved by using this observer controller. Numerical simulations further demonstrate the effectiveness of the proposed phase synchronization scheme

  10. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2018-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  11. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2017-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  12. Engineered safeguards system activities at Sandia Laboratories for back-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Sellers, T.A.; Fienning, W.C.; Winblad, A.E.

    1978-01-01

    Sandia Laboratories have been developing concepts for safeguards systems to protect facilities in the back-end of the nuclear fuel cycle against potential threats of sabotage and theft of special nuclear material (SNM). Conceptual designs for Engineered Safeguards Systems (ESSs) have been developed for a Fuel Reprocessing Facility (including chemical separations, plutonium conversion, and waste solidification), a Mixed-Oxide Fuel Fabrication Facility, and a Plutonium Transport Vehicle. Performance criteria for the various elements of these systems and a candidate systematic design approach have been defined. In addition, a conceptual layout for a large-scale Fuel-Cycle Plutonium Storage Facility has been completed. Work is continuing to develop safeguards systems for spent fuel facilities, light-water reactors, alternative fuel cycles, and improved transportation systems. Additional emphasis will be placed on the problems associated with national diversion of special nuclear material. The impact on safeguards element performance criteria for surveillance and containment to protect against national diversion in various alternative fuel cycle complexes is also being investigated

  13. The use of measuring phase-chronometric systems in the production of cyclic aggregates of aircraft

    Directory of Open Access Journals (Sweden)

    Metelkina Ekaterina

    2017-01-01

    Full Text Available The paper gives an assessment of the current technical condition of the machine-building industry as a whole in the aviation industry. Its weak sides are revealed. Based on the obtained data and the evaluation of existing methods for diagnosing cyclic mechanisms, an approach of the phase-chronometric method based on precise measurements of time intervals is proposed. A functional diagram of the information-measuring system is presented. The results of modeling the real and ideal operating cycle of the gear-boxes are analyzed.

  14. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  15. Loss of heterozygosity in yeast can occur by ultraviolet irradiation during the S phase of the cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Daigaku, Yasukazu [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan); Mashiko, Satsuki [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan); Mishiba, Keiichiro [Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003 (Japan); Yamamura, Saburo [Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003 (Japan); Ui, Ayako [Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578 (Japan); Enomoto, Takemi [Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578 (Japan); Yamamoto, Kazuo [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan)]. E-mail: yamamot@mail.tains.tohoku.ac.jp

    2006-08-30

    A CAN1/can1{delta} heterozygous allele that determines loss of heterozygosity (LOH) was used to study recombination in Saccharomyces cerevisiae cells exposed to ultraviolet (UV) light at different points in the cell cycle. With this allele, recombination events can be detected as canavanine-resistant mutations after exposure of cells to UV radiation, since a significant fraction of LOH events appear to arise from recombination between homologous chromosomes. The radiation caused a higher level of LOH in cells that were in the S phase of the cell cycle relative to either cells at other points in the cell cycle or unsynchronized cells. In contrast, the inactivation of nucleotide excision repair abolished the cell cycle-specific induction by UV of LOH. We hypothesize that DNA lesions, if not repaired, were converted into double-strand breaks during stalled replication and these breaks could be repaired through recombination using a non-sister chromatid and probably also the sister chromatid. We argue that LOH may be an outcome used by yeast cells to recover from stalled replication at a lesion.

  16. Loss of heterozygosity in yeast can occur by ultraviolet irradiation during the S phase of the cell cycle.

    Science.gov (United States)

    Daigaku, Yasukazu; Mashiko, Satsuki; Mishiba, Keiichiro; Yamamura, Saburo; Ui, Ayako; Enomoto, Takemi; Yamamoto, Kazuo

    2006-08-30

    A CAN1/can1Delta heterozygous allele that determines loss of heterozygosity (LOH) was used to study recombination in Saccharomyces cerevisiae cells exposed to ultraviolet (UV) light at different points in the cell cycle. With this allele, recombination events can be detected as canavanine-resistant mutations after exposure of cells to UV radiation, since a significant fraction of LOH events appear to arise from recombination between homologous chromosomes. The radiation caused a higher level of LOH in cells that were in the S phase of the cell cycle relative to either cells at other points in the cell cycle or unsynchronized cells. In contrast, the inactivation of nucleotide excision repair abolished the cell cycle-specific induction by UV of LOH. We hypothesize that DNA lesions, if not repaired, were converted into double-strand breaks during stalled replication and these breaks could be repaired through recombination using a non-sister chromatid and probably also the sister chromatid. We argue that LOH may be an outcome used by yeast cells to recover from stalled replication at a lesion.

  17. Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort

    Science.gov (United States)

    Ensworth, Clint B., III; McKissock, David B.

    1998-01-01

    NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.

  18. The inherent complexity in nonlinear business cycle model in resonance

    International Nuclear Information System (INIS)

    Ma Junhai; Sun Tao; Liu Lixia

    2008-01-01

    Based on Abraham C.-L. Chian's research, we applied nonlinear dynamic system theory to study the first-order and second-order approximate solutions to one category of the nonlinear business cycle model in resonance condition. We have also analyzed the relation between amplitude and phase of second-order approximate solutions as well as the relation between outer excitements' amplitude, frequency approximate solutions, and system bifurcation parameters. Then we studied the system quasi-periodical solutions, annulus periodical solutions and the path leading to system bifurcation and chaotic state with different parameter combinations. Finally, we conducted some numerical simulations for various complicated circumstances. Therefore this research will lay solid foundation for detecting the complexity of business cycles and systems in the future

  19. A dynamic, dependent type system for nuclear fuel cycle code generation

    Energy Technology Data Exchange (ETDEWEB)

    Scopatz, A. [The University of Chicago 5754 S. Ellis Ave, Chicago, IL 60637 (United States)

    2013-07-01

    The nuclear fuel cycle may be interpreted as a network or graph, thus allowing methods from formal graph theory to be used. Nodes are often idealized as nuclear fuel cycle facilities (reactors, enrichment cascades, deep geologic repositories). With the advent of modern object-oriented programming languages - and fuel cycle simulators implemented in these languages - it is natural to define a class hierarchy of facility types. Bright is a quasi-static simulator, meaning that the number of material passes through a facility is tracked rather than natural time. Bright is implemented as a C++ library that models many canonical components such as reactors, storage facilities, and more. Cyclus is a discrete time simulator, meaning that natural time is tracked through out the simulation. Therefore a robust, dependent type system was developed to enable inter-operability between Bright and Cyclus. This system is capable of representing any fuel cycle facility. Types declared in this system can then be used to automatically generate code which binds a facility implementation to a simulator front end. Facility model wrappers may be used either internally to a fuel cycle simulator or as a mechanism for inter-operating multiple simulators. While such a tool has many potential use cases it has two main purposes: enabling easy performance of code-to-code comparisons and the verification and the validation of user input.

  20. Architecture and inherent robustness of a bacterial cell-cycle control system.

    Science.gov (United States)

    Shen, Xiling; Collier, Justine; Dill, David; Shapiro, Lucy; Horowitz, Mark; McAdams, Harley H

    2008-08-12

    A closed-loop control system drives progression of the coupled stalked and swarmer cell cycles of the bacterium Caulobacter crescentus in a near-mechanical step-like fashion. The cell-cycle control has a cyclical genetic circuit composed of four regulatory proteins with tight coupling to processive chromosome replication and cell division subsystems. We report a hybrid simulation of the coupled cell-cycle control system, including asymmetric cell division and responses to external starvation signals, that replicates mRNA and protein concentration patterns and is consistent with observed mutant phenotypes. An asynchronous sequential digital circuit model equivalent to the validated simulation model was created. Formal model-checking analysis of the digital circuit showed that the cell-cycle control is robust to intrinsic stochastic variations in reaction rates and nutrient supply, and that it reliably stops and restarts to accommodate nutrient starvation. Model checking also showed that mechanisms involving methylation-state changes in regulatory promoter regions during DNA replication increase the robustness of the cell-cycle control. The hybrid cell-cycle simulation implementation is inherently extensible and provides a promising approach for development of whole-cell behavioral models that can replicate the observed functionality of the cell and its responses to changing environmental conditions.

  1. Post-irradiation DNA synthesis inhibition and G2 phase delay in radiosensitive body cells from non-Hodgkin's lymphoma patients: An indication of cell cycle defects

    International Nuclear Information System (INIS)

    Hannan, Mohammed A.; Kunhi, Mohammed; Einspenner, Michael; Khan, Bashir A.; Al-Sedairy, Sultan

    1994-01-01

    In the present study, both post-irradiation DNA synthesis and G 2 phase accumulation were analyzed in lymphoblastoid cell lines (LCLs) and fibroblast cell strains derived from (Saudi) patients with non-Hodgkin's lymphoma (NHL), ataxia telangiectasia (AT), AT heterozygotes and normal subjects. A comparison of the percent DNA synthesis inhibition (assayed by 3 H-thymidine uptake 30 min after irradiation), and a 24 h post-irradiation G 2 phase accumulation determined by flow cytometry placed the AT heterozygotes and the NHL patients in an intermediate position between the normal subjects (with maximum DNA synthesis inhibition and minimum G 2 phase accumulation) and the AT homozygotes (with minimum DNA synthesis inhibition and maximum G 2 accumulation). The similarity between AT heterozygotes and the NHL patients with respect to the two parameters studied after irradiation was statistically significant. The data indicating a moderate abnormality in the control of cell cycle progression after irradiation in the LCLs and fibroblasts from NHL patients may explain the enhanced cellular and chromosomal radiosensitivity in these patients reported by us earlier. In addition to demonstrating a link between cell cycle abnormality and radiosensitivity as a possible basis for cancer susceptibility, particularly in the NHL patients, the present studies emphasized the usefulness of the assay for 24 h post-irradiation G 2 phase accumulation developed elsewhere in characterizing AT heterozygote-like cell cycle anomaly in cancer patients irrespective of whether they carried the AT gene or any other affecting the cell cycle

  2. Quantum correlations and limit cycles in the driven-dissipative Heisenberg lattice

    Science.gov (United States)

    Owen, E. T.; Jin, J.; Rossini, D.; Fazio, R.; Hartmann, M. J.

    2018-04-01

    Driven-dissipative quantum many-body systems have attracted increasing interest in recent years as they lead to novel classes of quantum many-body phenomena. In particular, mean-field calculations predict limit cycle phases, slow oscillations instead of stationary states, in the long-time limit for a number of driven-dissipative quantum many-body systems. Using a cluster mean-field and a self-consistent Mori projector approach, we explore the persistence of such limit cycles as short range quantum correlations are taken into account in a driven-dissipative Heisenberg model.

  3. Characterization of chaotic dynamics in the human menstrual cycle

    Science.gov (United States)

    Derry, Gregory; Derry, Paula

    2010-03-01

    The human menstrual cycle exhibits much unexplained variability, which is typically dismissed as random variation. Given the many delayed nonlinear feedbacks in the reproductive endocrine system, however, the menstrual cycle might well be a nonlinear dynamical system in a chaotic trajectory, and that this instead accounts for the observed variability. Here, we test this hypothesis by performing a time series analysis on data for 7438 menstrual cycles from 38 women in the 20-40 year age range, using the database maintained by the Tremin Research Program on Women's Health. Using phase space reconstruction techniques with a maximum embedding dimension of 6, we find appropriate scaling behavior in the correlation sums for this data, indicating low dimensional deterministic dynamics. A correlation dimension of 2.6 is measured in this scaling regime, and this result is confirmed by recalculation using the Takens estimator. These results may be interpreted as offering an approximation to the fractal dimension of a strange attractor governing the chaotic dynamics of the menstrual cycle.

  4. Environmental impact assessment of a package type IFAS reactor during construction and operational phases: a life cycle approach.

    Science.gov (United States)

    Singh, Nitin Kumar; Singh, Rana Pratap; Kazmi, Absar Ahmad

    2017-05-01

    In the present study, a life cycle assessment (LCA) approach was used to analyse the environmental impacts associated with the construction and operational phases of an integrated fixed-film activated sludge (IFAS) reactor treating municipal wastewater. This study was conducted within the boundaries of a research project that aimed to investigate the implementation related challenges of a package type IFAS reactor from an environmental perspective. Along with the LCA results of the construction phase, a comparison of the LCA results of seven operational phases is also presented in this study. The results showed that among all the inputs, the use of stainless steel in the construction phase caused the highest impact on environment, followed by electricity consumption in raw materials production. The impact of the construction phase on toxicity impact indicators was found to be significant compared to all operational phases. Among the seven operational phases of this study, the dissolved oxygen phase III, having a concentration of ∼4.5 mg/L, showed the highest impact on abiotic depletion, acidification, global warming, ozone layer depletion, human toxicity, fresh water eco-toxicity, marine aquatic eco-toxicity, terrestrial eco-toxicity, and photochemical oxidation. However, better effluent quality in this phase reduced the eutrophication load on environment.

  5. Terrestrial nitrogen cycling in Earth system models revisited

    Science.gov (United States)

    Stocker, Benjamin D; Prentice, I. Colin; Cornell, Sarah; Davies-Barnard, T; Finzi, Adrien; Franklin, Oskar; Janssens, Ivan; Larmola, Tuula; Manzoni, Stefano; Näsholm, Torgny; Raven, John; Rebel, Karin; Reed, Sasha C.; Vicca, Sara; Wiltshire, Andy; Zaehle, Sönke

    2016-01-01

    Understanding the degree to which nitrogen (N) availability limits land carbon (C) uptake under global environmental change represents an unresolved challenge. First-generation ‘C-only’vegetation models, lacking explicit representations of N cycling,projected a substantial and increasing land C sink under rising atmospheric CO2 concentrations. This prediction was questioned for not taking into account the potentially limiting effect of N availability, which is necessary for plant growth (Hungate et al.,2003). More recent global models include coupled C and N cycles in land ecosystems (C–N models) and are widely assumed to be more realistic. However, inclusion of more processes has not consistently improved their performance in capturing observed responses of the global C cycle (e.g. Wenzel et al., 2014). With the advent of a new generation of global models, including coupled C, N, and phosphorus (P) cycling, model complexity is sure to increase; but model reliability may not, unless greater attention is paid to the correspondence of model process representations ande mpirical evidence. It was in this context that the ‘Nitrogen Cycle Workshop’ at Dartington Hall, Devon, UK was held on 1–5 February 2016. Organized by I. Colin Prentice and Benjamin D. Stocker (Imperial College London, UK), the workshop was funded by the European Research Council,project ‘Earth system Model Bias Reduction and assessing Abrupt Climate change’ (EMBRACE). We gathered empirical ecologists and ecosystem modellers to identify key uncertainties in terrestrial C–N cycling, and to discuss processes that are missing or poorly represented in current models.

  6. Presence of the acute phase protein, bikunin, in the endometrium of gilts during estrous cycle and early pregnancy.

    Science.gov (United States)

    Hettinger, A M; Allen, M R; Zhang, B R; Goad, D W; Malayer, J R; Geisert, R D

    2001-08-01

    Noninvasive, epitheliochorial placental attachment in the pig is regulated through endometrial production of protease inhibitors. The objective of the present study was to determine if the light-chain serine protease inhibitor of the inter-alpha-trypsin inhibitor family, bikunin, is produced by the porcine endometrium during the estrous cycle and early pregnancy. Western blot analysis revealed the presence of bikunin in uterine flushings of gilts collected during the luteal phase of the estrous cycle and early pregnancy (Days 12-18). However, bikunin unbound to the inter-alpha-trypsin heavy chains was detected only in endometrial explant culture medium obtained from estrus and pregnant (Days 12, 15, and 18) gilts. Endometrial bikunin gene expression was lowest on Day 10 of the estrous cycle and pregnancy, followed by a 30- to 77-fold increase on Day 15 of the estrous cycle and pregnancy. Bikunin gene expression decreased on Day 18 of the estrous cycle, whereas endometrial bikunin gene expression continued to increase in pregnant gilts. Bikunin mRNA was localized to the uterine glands between Days 15 and 18 of the estrous cycle and pregnancy. In addition to its role as a protease inhibitor, bikunin functions in stabilization of the extracellular matrix, which suggests that bikunin could be involved with facilitating placental attachment to the uterine epithelial surface in the pig.

  7. Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel

    Science.gov (United States)

    Turney, G. E.; Fishbach, L. H.

    1984-01-01

    A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.

  8. New device to measure dynamic intrusion/extrusion cycles of lyophobic heterogeneous systems.

    Science.gov (United States)

    Guillemot, Ludivine; Galarneau, Anne; Vigier, Gérard; Abensur, Thierry; Charlaix, Élisabeth

    2012-10-01

    Lyophobic heterogeneous systems (LHS) are made of mesoporous materials immersed in a non-wetting liquid. One application of LHS is the nonlinear damping of high frequency vibrations. The behaviour of LHS is characterized by P - ΔV cycles, where P is the pressure applied to the system, and ΔV its volume change due to the intrusion of the liquid into the pores of the material, or its extrusion out of the pores. Very few dynamic studies of LHS have been performed until now. We describe here a new apparatus that allows us to carry out dynamic intrusion/extrusion cycles with various liquid/porous material systems, controlling the temperature from ambient to 120 °C and the frequency from 0.01 to 20 Hz. We show that for two LHS: water/MTS and Galinstan/CPG, the energy dissipated during one cycle depends very weakly on the cycle frequency, in strong contrast to conventional dampers.

  9. Life-cycle air emissions from PV power systems

    International Nuclear Information System (INIS)

    Watt, M.E.; Johnson, A.J.; Outhred, H.R.; Ellis, M.

    1998-01-01

    This paper addresses the air emission of grid supply versus grid-connected and off-grid photovoltaic power generation, using the framework of life-cycle assessment, in the contents of rural household energy supply in Australia. Emissions of carbon dioxide, sulphur dioxde and nitrous oxides are calculated for the three life-cycle stages of manufacture, use and disposal. Sensitivities to materials and data inputs, as well as to component efficiencies, lifetimes and sizing are discussed. For each supply option, demand management options, including insulation and appliance choice, and the substitution of solar heating or bottled gas for electricity are considered. The best option in all cases, in terms of life-cycle air emissions, is a grid-connected photovoltaic system used to supply an energy-efficient household with a mix of solar, gas and electric appliances. However, in financial terms, with current Australian energy prices, this option represents a high capital and life-cycle costs. Additionally, for the grid options, electricity costs do not significantly disadvantage the high demand scenarios. Both results provide a clear illustration of current Australian energy-pricing policies being in conflict with long-term environmental sustainability. (Author)

  10. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  11. Three-phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Máthé, Lászlo

    2015-01-01

    , detailing the different photovoltaic inverter structures and topologies as well as discussing the different control layers within a grid-connected photovoltaic plant. Modulation schemes for various photovoltaic inverter topologies, grid synchronization, current control, active and reactive power control......Photovoltaic technology has experienced unprecedented growth in the last two decades, transforming from mainly off-grid niche generation to a major renewable energy technology, reaching approximately 180 GW of capacity worldwide at the end of 2014. Large photovoltaic power plants interfacing...... the grid through a three-phase power electronic converter are now well on the way to becoming a major player in the power system in many countries. Therefore, this article gives an overview of photovoltaic systems with a focus on three-phase applications, presenting these both from a hardware point of view...

  12. Impact of cycling cells and cell cycle regulation on Hydra regeneration.

    Science.gov (United States)

    Buzgariu, Wanda; Wenger, Yvan; Tcaciuc, Nina; Catunda-Lemos, Ana-Paula; Galliot, Brigitte

    2018-01-15

    Hydra tissues are made from three distinct populations of stem cells that continuously cycle and pause in G2 instead of G1. To characterize the role of cell proliferation after mid-gastric bisection, we have (i) used flow cytometry and classical markers to monitor cell cycle modulations, (ii) quantified the transcriptomic regulations of 202 genes associated with cell proliferation during head and foot regeneration, and (iii) compared the impact of anti-proliferative treatments on regeneration efficiency. We confirm two previously reported events: an early mitotic wave in head-regenerating tips, when few cell cycle genes are up-regulated, and an early-late wave of proliferation on the second day, preceded by the up-regulation of 17 cell cycle genes. These regulations appear more intense after mid-gastric bisection than after decapitation, suggesting a position-dependent regulation of cell proliferation during head regeneration. Hydroxyurea, which blocks S-phase progression, delays head regeneration when applied before but not after bisection. This result is consistent with the fact that the Hydra central region is enriched in G2-paused adult stem cells, poised to divide upon injury, thus forming a necessary constitutive pro-blastema. However a prolonged exposure to hydroxyurea does not block regeneration as cells can differentiate apical structures without traversing S-phase, and also escape in few days the hydroxyurea-induced S-phase blockade. Thus Hydra head regeneration, which is a fast event, is highly plastic, relying on large stocks of adult stem cells paused in G2 at amputation time, which immediately divide to proliferate and/or differentiate apical structures even when S-phase is blocked. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Data life cycle: a perspective from the Information Science

    Directory of Open Access Journals (Sweden)

    Ricardo César Gonçalves Sant’Ana

    2016-08-01

    Full Text Available Introduction: Access and use of data as a key factor has been extended to several areas of knowledge of today's society. It’s necessary to develop a new perspective that presents phases and factors involved in these processes, providing an initial analysis structure, allowing the efforts, skills and actions organization related to the data life cycle. Purpose: This article is a proposal for a new look at the data life cycle, that assumes, as a central element, the data itself, supporting itself on the concepts and contributions that Information Science can provide, without giving up the reflections on the role of other key areas such as Computer Science. Methodology: The methodological procedures consisted of bibliographic research and content analysis to describe the phases and factors related to the Data Life Cycle, developing reflections and considerations from context already consolidated in the development of systems that can corroborate the idea of centrality of data. Results: The results describe the phases of: collect, storage, recovery and discard, permeated by transverse factors: privacy, integration, quality, copyright, dissemination and preservation, composing a Data Life Cycle. Conclusions: The current context of the availability of large volumes of data, with great variety and at speeds that provide access in real time, setting the so-called Big Data that requires new concerns about access and use processes of data. The Information Science may offer a new approach, now centered in the data, and contribute to the optimization of Data Life Cycle as a whole, extending bridges between users and the data they need.

  14. Overexpression of cell cycle regulator CDCA3 promotes oral cancer progression by enhancing cell proliferation with prevention of G1 phase arrest

    International Nuclear Information System (INIS)

    Uchida, Fumihiko; Uzawa, Katsuhiro; Kasamatsu, Atsushi; Takatori, Hiroaki; Sakamoto, Yosuke; Ogawara, Katsunori; Shiiba, Masashi; Tanzawa, Hideki; Bukawa, Hiroki

    2012-01-01

    Cell division cycle associated 3 (CDCA3), part of the Skp1-cullin-F-box (SCF) ubiquitin ligase, refers to a trigger of mitotic entry and mediates destruction of the mitosis inhibitory kinase. Little is known about the relevance of CDCA3 to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of CDCA3 in OSCC. We evaluated CDCA3 mRNA and protein expression in both OSCC-derived cell lines and primary OSCCs and performed functional analyses of CDCA3 in OSCC-derived cells using the shRNA system. The CDCA3 expression at both the mRNA and protein levels was frequently up-regulated in all cell lines examined and primary tumors (mRNA, 51/69, 74 %; protein, 79/95, 83 %) compared to normal controls (p < 0.001). In contrast, no significant level of CDCA3 protein expression was seen in oral premalignant lesions (OPLs) (n = 20) compared with the expression in OSCCs. Among the clinical variables analyzed, the CDCA3 expression status was closely related to tumor size (p < 0.05). In addition, suppression of CDCA3 expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells by arresting cell-cycle progression at the G1 phase. Further, there was up-regulation of the cyclin-dependent kinase inhibitors (p21 Cip1 , p27 Kip1 , p15 INK4B , and p16 INK4A ) in the knockdown cells. The current results showed that overexpression of CDCA3 occurs frequently during oral carcinogenesis and this overexpression might be associated closely with progression of OSCCs by preventing the arrest of cell-cycle progression at the G1 phase via decreased expression of the cyclin-dependent kinase inhibitors

  15. A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver.

    Science.gov (United States)

    Liu, Wanke; Jin, Xueyuan; Wu, Mingkui; Hu, Jie; Wu, Yun

    2018-02-01

    Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data.

  16. Phase-dependent optical bistability and multistability in a semiconductor quantum well system

    International Nuclear Information System (INIS)

    Wang Zhiping; Fan Hongyi

    2010-01-01

    We theoretically investigate the hybrid absorptive-dispersive optical bistability and multistability in a four-level inverted-Y quantum well system inside a unidirectional ring cavity. We find that the coupling field, the pumping field as well as the cycling field can affect the optical bistability and multistability dramatically, which can be used to manipulate efficiently the threshold intensity and the hysteresis loop. The effects of the relative phase and the electronic cooperation parameter on the OB and OM are also studied. Our study is much more practical than its atomic counterpart due to its flexible design and the wide adjustable parameters. Thus, it may provide some new possibilities for technological applications in optoelectronics and solid-state quantum information science.

  17. Comparative techniques for nuclear fuel cycle waste management systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Voss, J.W.

    1979-09-01

    A safety assessment approach for the evaluation of predisposal waste management systems is described and applied to selected facilities in the light water reactor (LWR) once-through fuel cycle and a potential coprocessed UO 2 -PuO 2 fuel cycle. This approach includes a scoping analysis on pretreatment waste streams and a more detailed analysis on proposed waste management processes. The primary evaluation parameters used in this study include radiation exposures to the public from radionuclide releases from normal operations and potential accidents, occupational radiation exposure from normal operations, and capital and operating costs. On an overall basis, the waste management aspects of the two fuel cycles examined are quite similar. On an individual facility basis, the fuel coprocessing plant has the largest waste management impact

  18. System Life Cycle Evaluation(SM) (SLiCE): harmonizing water treatment systems with implementers' needs.

    Science.gov (United States)

    Goodman, Joseph; Caravati, Kevin; Foote, Andrew; Nelson, Molly; Woods, Emily

    2013-06-01

    One of the methods proposed to improve access to clean drinking water is the mobile packaged water treatment system (MPWTS). The lack of published system performance comparisons combined with the diversity of technology available and intended operating conditions make it difficult for stakeholders to choose the system best suited for their application. MPWTS are often deployed in emergency situations, making selection of the appropriate system crucial to avoiding wasted resources and loss of life. Measurable critical-to-quality characteristics (CTQs) and a system selection tool for MPWTS were developed by utilizing relevant literature, including field studies, and implementing and comparing seven different MPWTS. The proposed System Life Cycle Evaluation (SLiCE) method uses these CTQs to evaluate the diversity in system performance and harmonize relevant performance with stakeholder preference via a selection tool. Agencies and field workers can use SLiCE results to inform and drive decision-making. The evaluation and selection tool also serves as a catalyst for communicating system performance, common design flaws, and stakeholder needs to system manufacturers. The SLiCE framework can be adopted into other emerging system technologies to communicate system performance over the life cycle of use.

  19. A phase one AR/C system design

    Science.gov (United States)

    Kachmar, Peter M.; Polutchko, Robert J.; Matusky, Martin; Chu, William; Jackson, William; Montez, Moises

    1991-01-01

    The Phase One AR&C System Design integrates an evolutionary design based on the legacy of previous mission successes, flight tested components from manned Rendezvous and Proximity Operations (RPO) space programs, and additional AR&C components validated using proven methods. The Phase One system has a modular, open architecture with the standardized interfaces proposed for Space Station Freedom system architecture.

  20. Stand-alone flat-plate photovoltaic power systems: System sizing and life-cycle costing methodology for Federal agencies

    Science.gov (United States)

    Borden, C. S.; Volkmer, K.; Cochrane, E. H.; Lawson, A. C.

    1984-01-01

    A simple methodology to estimate photovoltaic system size and life-cycle costs in stand-alone applications is presented. It is designed to assist engineers at Government agencies in determining the feasibility of using small stand-alone photovoltaic systems to supply ac or dc power to the load. Photovoltaic system design considerations are presented as well as the equations for sizing the flat-plate array and the battery storage to meet the required load. Cost effectiveness of a candidate photovoltaic system is based on comparison with the life-cycle cost of alternative systems. Examples of alternative systems addressed are batteries, diesel generators, the utility grid, and other renewable energy systems.