WorldWideScience

Sample records for cycle nuclear power

  1. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  2. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  3. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  4. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hardy, C.J.; Silver, J.M.

    1985-09-01

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  5. The nuclear power cycle

    International Nuclear Information System (INIS)

    2004-01-01

    Fifty years after the first nuclear reactor come on-line, nuclear power is fourth among the world's primary energy sources, after oil, coal and gas. In 2002, there were 441 reactors in operation worldwide. The United States led the world with 104 reactors and an installed capacity of 100,000 MWe, or more than one fourth of global capacity. Electricity from nuclear energy represents 78% of the production in France, 57% in Belgium, 46% in Sweden, 40% in Switzerland, 39% in South Korea, 34% in Japan, 30% in Germany, 30% in Finland, 26% in Spain, 22% in Great Britain, 20% in the United States and 16% in Russia. Worldwide, 32 reactors are under construction, including 21 in Asia. This information document presents the Areva activities in the nuclear power cycle: the nuclear fuel, the nuclear reactors, the spent fuel reprocessing and recycling and nuclear cleanup and dismantling. (A.L.B.)

  6. Nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1986-01-01

    A series of viewgraphs describes the nuclear fuel cycle and nuclear power, covering reactor types, sources of uranium, enrichment of uranium, fuel fabrication, transportation, fuel reprocessing, and radioactive wastes

  7. Specification of life cycle assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Abbaspour, M.; Kargari, N.; Mastouri, R.

    2008-01-01

    Life Cycle Assessment is an environmental management tool for assessing the environmental impacts of a product of a process. life cycle assessment involves the evaluation of environmental impacts through all stages of life cycle of a product or process. In other words life cycle assessment has a c radle to grave a pproach. Some results of life cycle assessment consist of pollution prevention, energy efficient system, material conservation, economic system and sustainable development. All power generation technologies affect the environment in one way or another. The main environmental impact does not always occur during operation of power plant. The life cycle assessment of nuclear power has entailed studying the entire fuel cycle from mine to deep repository, as well as the construction, operation and demolition of the power station. Nuclear power plays an important role in electricity production for several countries. even though the use of nuclear power remains controversial. But due to the shortage of fossil fuel energy resources many countries have started to try more alternation to their sources of energy production. A life cycle assessment could detect all environmental impacts of nuclear power from extracting resources, building facilities and transporting material through the final conversion to useful energy services

  8. Hydrogen Monitoring in Nuclear Power Cycles

    International Nuclear Information System (INIS)

    Maurer, Heini; Staub, Lukas

    2012-09-01

    Maintaining constant Hydrogen levels in Nuclear power cycles is always associated with the challenge to determine the same reliably. Grab sample analysis is complicated and costly and online instruments currently known are difficult to maintain, verify and calibrate. Although amperometry has been proven to be the most suitable measuring principle for online instruments, it has never been thoroughly investigated what electrode materials would best perform in terms of measurement drift and regeneration requirements. This paper we will cover the findings of a research program, conducted at the R and D centre of Swan Analytische Instrumente AG in Hinwil Switzerland, aimed to find ideal electrode materials and sensor design to provide the nuclear industry with an enhanced method to determine dissolved hydrogen in nuclear power cycles. (authors)

  9. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  10. Nuclear power generation and fuel cycle report 1996

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included

  11. Life cycle analysis of advanced nuclear power generation technologies

    International Nuclear Information System (INIS)

    Uchiyama, Yoji; Yokoyama, Hayaichi

    1996-01-01

    In this research, as for light water reactors and fast breeder reactors, for the object of all the processes from the mining, transport and refining of fuel, electric power generation to the treatment and disposal of waste, the amount of energy input and the quantity of CO 2 emission over the life cycle were analyzed, and regarding the influence that the technical progress of nuclear power generation exerted to environment, the effect of improvement was elucidated. Attention has been paid to nuclear power generation as its CO 2 emission is least, and the effect of global warming is smallest. In order to reduce the quantity of radioactive waste generation in LWRs and the cost of fuel cycle, and to extend the operation cycle, the technical development for heightening fuel burnup is in progress. The process of investigation of the new technologies of nuclear power generation taken up in this research is described. The analysis of the energy balance of various power generation methods is discussed. In the case of pluthermal process, the improvement of energy balance ratio is dependent on uranium enrichment technology. Nuclear power generation requires much materials and energy for the construction, and emits CO 2 indirectly. The CO 2 unit emission based on the analysis of energy balance was determined for the new technologies of nuclear power generation, and the results are shown. (K.I.)

  12. Nuclear power, nuclear fuel cycle and waste management, 1980-1993

    International Nuclear Information System (INIS)

    1994-06-01

    This document lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Power, Nuclear Fuel Cycle and Waste Management, issued during the period 1980-1993. It gives a short abstract of these publications along with contents and their costs in Austrian Schillings

  13. Nuclear-fuel-cycle education: Module 1. Nuclear fuel cycle overview

    International Nuclear Information System (INIS)

    Eckhoff, N.D.

    1981-07-01

    This educational module is an overview of the nuclear-fule-cycle. The overview covers nuclear energy resources, the present and future US nuclear industry, the industry view of nuclear power, the International Nuclear Fuel Cycle Evaluation program, the Union of Concerned Scientists view of the nuclear-fuel-cycle, an analysis of this viewpoint, resource requirements for a model light water reactor, and world nuclear power considerations

  14. Prediction and attendance of Angra 2 nuclear power plant cycle extension

    International Nuclear Information System (INIS)

    Dias, Amory; Ferreira Junior, Decio Brandes M.; Morgado, Mario Monteiro; Santos, Barbara Oliveira dos; Oliveira, Monica Georgia Nunes

    2007-01-01

    The Report Project Nuclear and Thermohydraulic (RPNT) of the Nuclear Power Plant Angra 2 previews extension of the cycle, using a feedback of core reactor reactivity, through the reduction of the moderator average temperature and power. In this phase, the reactor power remains almost invariable. Furthermore, the extension of cycle can be stretch after the limit of the temperature reduction has been reached, through of reactor power fall until the determined date for the end cycle and the start outage for the next cycle. The proposal of this work is to show the Power Plant results during the phase of moderator temperature reduction and to compare with the predict values obtained from reactivity balance calculation methodology used for the Reactor Physics. In general, the results of this work can collaborate for the extension behavior evaluation of the cycles of the Nuclear Power Plant 2, being used the procedure of cooling reduction average temperature, as well as, it will also collaborate for methodology qualification applied for the Reactor Physics during the reactivity balance calculation. (author)

  15. Nuclear and radiological safety nuclear power nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    1997-05-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear and Radiological Safety, Nuclear Power and Nuclear Fuel Cycle and Waste Management and issued during the period of 1995-1996. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (Arabic, Chinese, French, Russian or Spanish), but all these papers have abstracts in English

  16. Nuclear power and the possibility of alternative fuel cycles

    International Nuclear Information System (INIS)

    Engelmann, P.

    1979-01-01

    Concern about the societal implications, potential risks and the possibility of nuclear weapons proliferation has slowed down the growth of nuclear energy. Assuming a further moderate growth of nuclear power in the Federal Republic of Germany several fuel cycle and reactor strategies can the followed without exhausting the nuclear the resources before the year 2100. The uranium demand of various reactor strategies with LWR's FBR's and HTR's is compared for two demand cases in the FRG. While recycling of spent fuel seems necessary in any case, it is shown that the Th/U cycle can provide a realistic alternative to the U/Pu cycle. The parallel introduction of both cycles appears as the best solution, as it reduces the overall risks and leads to minimum uranium demand. The risk of nuclear proliferation does not vary considerably with the fuel cycle applied; it can, however, be reduced to acceptable levels by safeguards methods and institutional means. (orig.) [de

  17. Development of web based performance analysis program for nuclear power plant turbine cycle

    International Nuclear Information System (INIS)

    Park, Hoon; Yu, Seung Kyu; Kim, Seong Kun; Ji, Moon Hak; Choi, Kwang Hee; Hong, Seong Ryeol

    2002-01-01

    Performance improvement of turbine cycle affects economic operation of nuclear power plant. We developed performance analysis system for nuclear power plant turbine cycle. The system is based on PTC (Performance Test Code), that is estimation standard of nuclear power plant performance. The system is developed using Java Web-Start and JSP(Java Server Page)

  18. Safe and effective nuclear power plant life cycle management towards decommissioning

    International Nuclear Information System (INIS)

    2002-08-01

    The objective of this publication is to promote and communicate the need for a longer-term perspective among senior managers and policy or strategy makers for decisions that have the potential to affect the life cycle management of a nuclear power plant including decommissioning. The following sections provide practical guidance in the subject areas that might have the potential to have such an impact. The publication should be used as an aid to help strategic planning take place in an informed way through the proper consideration of any longer-term decisions to enforce recognition of the point that decommissioning is a part of the whole life cycle of a nuclear power plant. The guidance contained in this publication is relevant to all life cycle stages of a nuclear power plant, with particular emphasis on how these decisions have the potential to impact effective decommissioning. The intended users of this publication are: Strategic decision makers within a Utility through all the various life cycle stages; The senior representatives of the owners of a nuclear power plant. This publication is divided into two basic sections. Section 2 provides guidance on the topics considered generic inputs to plant life cycle management and Section 3 provides guidance on the topics that contribute to effective decommissioning

  19. The nuclear power cycle; Le cycle de l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Fifty years after the first nuclear reactor come on-line, nuclear power is fourth among the world's primary energy sources, after oil, coal and gas. In 2002, there were 441 reactors in operation worldwide. The United States led the world with 104 reactors and an installed capacity of 100,000 MWe, or more than one fourth of global capacity. Electricity from nuclear energy represents 78% of the production in France, 57% in Belgium, 46% in Sweden, 40% in Switzerland, 39% in South Korea, 34% in Japan, 30% in Germany, 30% in Finland, 26% in Spain, 22% in Great Britain, 20% in the United States and 16% in Russia. Worldwide, 32 reactors are under construction, including 21 in Asia. This information document presents the Areva activities in the nuclear power cycle: the nuclear fuel, the nuclear reactors, the spent fuel reprocessing and recycling and nuclear cleanup and dismantling. (A.L.B.)

  20. Specific safety aspects of the water-steam cycle important to nuclear power plant project

    International Nuclear Information System (INIS)

    Lobo, C.G.

    1986-01-01

    The water-steam cycle in a nuclear power plant is similar to that used in conventional power plants. Some systems and components are required for the safe nuclear power plant operation and therefore are designed according to the safety criteria, rules and regulations applied in nuclear installations. The aim of this report is to present the safety characteristics of the water-steam cycle of a nuclear power plant with pressurized water reactor, as applied for the design of the nuclear power plants Angra 2 and Angra 3. (Author) [pt

  1. Development of the fuel-cycle costs in nuclear power stations with light-water reactors

    International Nuclear Information System (INIS)

    Brosch, R.; Moraw, G.; Musil, G.; Schneeberger, M.

    1976-01-01

    The authors investigate the fuel-cycle costs in nuclear power stations with light-water reactors in the Federal Republic of Germany in the years 1966 to 1976. They determine the effect of the price development for the individual components of the nuclear fuel cycle on the fuel-cycle costs averaged over the whole power station life. Here account is taken also of inflation rates and the change in the DM/US $ parity. In addition they give the percentage apportionment of the fuel-cycle costs. The authors show that real fuel-cycle costs for nuclear power stations with light-water reactors in the Federal Republic of Germany have risen by 11% between 1966 and 1976. This contradicts the often repeated reproach that fuel costs in nuclear power stations are rising very steeply and are no longer competitive. (orig.) [de

  2. COMPARISON OF S-CO2 POWER CYCLES FOR NUCLEAR ENERGY

    Directory of Open Access Journals (Sweden)

    Ladislav Vesely

    2016-12-01

    Full Text Available The supercritical carbon dioxide (S-CO2 is a possible cooling system for the new generations of nuclear reactors and fusion reactors. The S-CO2 power cycles have several advantages over other possible coolants such as water and helium. The advantages are the compression work, which is lower than in the case of helium, near the critical point and the S-CO2 is more compact than water and helium. The disadvantage is so called Pinch point which occurs in the regenerative heat exchanger. The pinch point can be eliminated by an arrangement of the cycle or using a mixture of CO2. This paper describes the S-CO2 power cycles for nuclear fission and fusion reactors.

  3. Study on economic potential of nuclear-gas combined cycle power generation in Chinese market

    International Nuclear Information System (INIS)

    Zhou Zhiwei; Bian Zhiqiang; Yang Mengjia

    2004-01-01

    Facing the challenges of separation of electric power plant and grid, and the deregulation of Chinese electricity supplying market in near future, nuclear power plants mainly operated as based load at the present regulated market should look for new operation mode. The economics of electric generation with nuclear-natural gas combined cycle is studied based on current conditions of natural gas and nuclear power plants in China. The results indicate that the technology development of nuclear-natural gas combined cycle for power generation is of potential prospects in Chinese electric market. (authors)

  4. Economic aspects of the development of nuclear power and fuel-cycle plants in the USSR

    International Nuclear Information System (INIS)

    Dergachev, N.P.; Kruglov, A.K.; Sedov, V.M.; Shuklin, S.V.

    1977-01-01

    Different possible versions of the construction programme for nuclear power stations and fuel-cycle plants in the USSR are discussed in relation to the target level of installed electrical capacity for 1980 and the predictions for the year 2000. The likely structure of the nuclear power industry is considered and the role of nuclear power stations with fast reactors is discussed, including their effect on the natural uranium supply situation. The effect of the development of fuel-cycle plants and of the organization of the reprocessing of fuel from nuclear power stations on the rate of introduction of fast reactor stations is analysed, and the effect of the technical and economic characteristics of fuel-cycle plants on the economic indices of nuclear power is studied. (author)

  5. Uranium requirements for advanced fuel cycles in expanding nuclear power systems

    International Nuclear Information System (INIS)

    Banerjee, S.; Tamm, H.

    1978-01-01

    When considering advanced fuel cycle strategies in rapidly expanding nuclear power systems, equilibrium analyses do not apply. A computer simulation that accounts for system delay times and fissile inventories has been used to study the effects of different fuel cycles and different power growth rates on uranium consumption. The results show that for a given expansion rate of installed capacity, the main factors that affect resource requirements are the fissile inventory needed to introduce the advanced fuel cycle and the conversion (or breeding) ratio. In rapidly expanding systems, the effect of fissile inventory dominates, whereas in slowly expanding systems, conversion or breeding ratio dominates. Heavy-water-moderated and -cooled reactors, with their high conversion ratios, appear to be adaptable vehicles for accommodating fuel cycles covering a wide range of initial fissile inventories. They are therefore particularly suitable for conserving uranium over a wide range of nuclear power system expansion rates

  6. Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Hao; Weng, Dagen; Lu, Xilin; Lu, Liang

    2013-01-01

    Highlights: • The life-cycle cost of seismic base-isolated nuclear power plants is modeled. • The change law of life-cycle cost with seismic fortification intensity is studied. • The initial cost of laminated lead rubber bearings can be expressed as the function of volume. • The initial cost of a damper can be expressed as the function of its maximum displacement and tonnage. • The use of base-isolation can greatly reduce the expected damage cost, which leads to the reduction of the life-cycle cost. -- Abstract: Evaluation of seismically base-isolated structural life-cycle cost is the key problem in performance based seismic design. A method is being introduced to address the life-cycle cost of base-isolated reinforced concrete structures in nuclear power plants. Each composition of life-cycle cost is analyzed including the initial construction cost, the isolators cost and the excepted damage cost over life-cycle of the structure. The concept of seismic intensity is being used to estimate the expected damage cost, greatly simplifying the calculation. Moreover, French Cruas nuclear power plant is employed as an example to assess its life-cycle cost, compared to the cost of non-isolated plant at the same time. The results show that the proposed method is efficient and the expected damage cost is enormously reduced because of the application of isolators, which leads to the reduction of the life-cycle cost of nuclear power plants

  7. Politics of nuclear power and fuel cycle

    International Nuclear Information System (INIS)

    Uddin, R.

    2007-01-01

    -is likely to remain evolving depending on regional and global affairs. Opposition or support for nuclear technology is also likely to be a function of regional and global politics. In response to such pressures, IAEA is organizing a workshop of 140 countries to discuss proposals to guarantee countries' supply of nuclear fuel (September 19-21-, 2006; Vienna). Premise and Question: A single nuclear power plant in a country may be good for the prestige of the country, but such units are unlikely to make a major impact on the energy scene. Hence, in order for nuclear power to play a significant role, countries that decide to 'go nuclear,' would most likely want to diversify a significant fraction of their electricity generating capacity (and possibly heating and, in the future, hydrogen production) to nuclear, possibly requiring at least few and possibly many nuclear power plants. In order to proceed with the nuclear option, these countries would expect a certain level of long term assurance on the fuel supply. What is the kind of options that would satisfy the needs of these countries and at the same time addressing the non-proliferation concerns? Options: The options available to countries for their nuclear program can be categorized as follows. A. Fully indigenous program with complete development of power plants and fuel cycle. B. Fully or partly indigenous program for power plant development; while depending on international consortium for fuel supply and waste treatment. C. Rely on international consortia to build and operate all aspects of nuclear power plants (with local manpower). Others: A total of around fifty to seventy five countries are likely to be interested in nuclear power in the next fifty years. These can be divided in to the three groups (A-C) given above. It is likely that, with time, there will be some expectation to move to higher levels (C to B and B to A). Countries already in group A and those willing to start in group C do not pose an issue. It is

  8. Life cycle assessment for coordination development of nuclear power and electric vehicle

    International Nuclear Information System (INIS)

    Liu Hong; Wang Yingrong

    2010-01-01

    Energy, environment and climate change have become focus political topics. In this paper, the life cycle assessment for cooperation development of nuclear power and electric vehicle were analyzed from the view of energy efficiency and pollutant emissions. The assessment results show that the pathway of nuclear power coupled with electric vehicle is better than coal electric power coupled with electric vehicle and normal gasoline coupled with internal combustion engine powered vehicle in terms of the environmental and energy characteristics. To charge the electric vehicle, instead of water power station, can safeguard the stable operation of nuclear power station. The results could provide consulted for coordination development of nuclear power, electric vehicle and brain power electric net. (authors)

  9. Nuclear power, nuclear fuel cycle and waste management: Status and trends, 1993

    International Nuclear Information System (INIS)

    1993-09-01

    This report was jointly prepared by the Division of Nuclear Power and the Division of Nuclear Fuel Cycle and Waste Management as part of an annual overview of both global nuclear industry activities and related IAEA programmes. This year's report focuses on activities during 1992 and the status at the end of that year. The trends in the industry are projected to 2010. Special events and highlights of IAEA activities over the past year are also presented. Refs, figs and tabs

  10. Social awareness on nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2006-01-01

    In the present we surveyed public opinion regarding the nuclear fuel cycle to find out about the social awareness about nuclear fuel cycle and nuclear facilities. The study revealed that people's image of nuclear power is more familiar than the image of the nuclear fuel cycle. People tend to display more recognition and concern towards nuclear power and reprocessing plants than towards other facilities. Comparatively speaking, they tend to perceive radioactive waste disposal facilities and nuclear power plants as being highly more dangerous than reprocessing plants. It is found also that with the exception of nuclear power plants don't know very much whether nuclear fuel cycle facilities are in operation in Japan or not. The results suggests that 1) the relatively mild image of the nuclear fuel cycle is the result of the interactive effect of the highly dangerous image of nuclear power plants and the less dangerous image of reprocessing plants; and 2) that the image of a given plant (nuclear power plant, reprocessing plant, radioactive waste disposal facility) is influenced by the fact of whether the name of the plant suggests the presence of danger or not. (author)

  11. International conference on innovative technologies for nuclear fuel cycles and nuclear power. Unedited proceedings

    International Nuclear Information System (INIS)

    2004-01-01

    Nuclear power is a significant contributor to the global supply of electricity, and continues to be the major source that can provide electricity on a large scale with a comparatively minimal impact on the environment. But it is evident that, despite decades of experience with this technology, nuclear power today remains mainly in a holding position, with its future somewhat uncertain primarily due to concerns related to waste, safety and security. One of the most important factors that would influence future nuclear growth is the innovation in reactor and fuel cycle technologies to successfully maximize the benefits of nuclear power while minimizing the associated concerns. The main objectives of the Conference were to facilitate exchange of information between senior experts and policy makers from Member States and international organizations on important aspects of the development of innovative technologies for future generations of nuclear power reactors and fuel cycles; to create an understanding of the social, environmental and economic conditions that would facilitate innovative and sustainable nuclear technologies; and to identify opportunities for collaborative work between Member States and international organizations and programmes. All relevant aspects of innovative technologies for nuclear fuel cycles and nuclear power were discussed in an open, frank and objective manner. These proceedings contain a summary of the results of the conference, invited and contributed papers, and summaries of panel discussions. No large increase in the use of nuclear energy is foreseen in the near and medium term, but is likely in the long term if developing country per-capita electricity consumption reaches that of the developed world. The nuclear sector including regulators view an increased use of nuclear energy as the solution for global sustainable energy needs considering that significant reductions in CO 2 emissions would be required. Although the current nuclear

  12. The future of nuclear power determines tasks of Ukraines nuclear fuel cycle

    International Nuclear Information System (INIS)

    Paton, B.Ye.; Neklyudov, I.M.; Krasnorutskij, V.S.

    2013-01-01

    This study provides a brief analysis on the status and development of nuclear power in the world. The present results of physical and engineering development demonstrate that in the longer term, nuclear energy as a key macro energy source is able to secure the existence and development of mankind. Based on the demand for sustainable socioeconomic existence of Ukraine as a state, there have been determined major tasks for the development of nuclear fuel cycle of Ukraine that have to be implemented at present and in the medium term

  13. International conference on innovative technologies for nuclear fuel cycles and nuclear power. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    A wide range of issues relevant to the innovative technologies for nuclear power cycle and nuclear power were addressed. The 7 sessions of the conference were entitled: (1) no title; (2) needs, prospects and challenges for innovation; (3) evolution of technical, social, economic and political conditions; (4) panel on challenges for the deployment of innovative technologies; (5) international programmes on innovative nuclear systems; (6) innovative nuclear systems and related R and D programmes; (7) concluding panel.

  14. Summary of nuclear power and fuel cycle data in OECD Member countries

    International Nuclear Information System (INIS)

    1983-03-01

    A questionnaire on Electricity Generation, Nuclear Power and Fuel Cycle Data is distributed annually to OECD Member countries. Member countries were asked to provide, where available, various statistics for the previous calendar year (1982) and modified projections up to the year 2000. Tables 1 to 8 are based on the responses received and update the March 1982 issue. Tables 3 to 8 show the revised electricity, nuclear power and fuel cycle supply and demand projections in OECD Member countries to the year 2000. Figure 1 illustrates the contribution of the different fuel sources to the OECD's electricity generation from 1974 to 1982. Figure 2 shows the nuclear share of electricity generation in the OECD countries for 1982 and 1985. Figure 3 gives the fuel cycle supply and demand from the Tables 5, 6 and 8 in the OECD area

  15. The Application of Supercritical CO{sub 2} Power Cycle to Various Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The main reason why the S-CO{sub 2} Brayton cycle has these advantages is that the compressor operates near the critical point of CO{sub 2} (30.98 .deg. C, 7.38MPa) to reduce the compression work significantly compared to the other Brayton cycles. In this paper, various applications of supercritical CO{sub 2} power cycle to nuclear systems will be presented and summarized. The S-CO{sub 2} cycle can achieve relatively high efficiency within the mild turbine inlet temperature range (450 - 850 .deg. C) compared with other power conversion systems. The main benefit of the S-CO{sub 2} cycle is the small size of the overall system and its application includes not only the next generation nuclear reactors but also conventional water-cooled reactors too. Various layouts were compared and the recompression cycle shows the best efficiency. The layout is suitable for application to advanced nuclear reactor systems. To evaluate the S-CO{sub 2} cycle performance, various countries constructed and demonstrated S-CO{sub 2} integral system test loops and similar research works are ongoing in Korea as well. However, to evaluate the commercial S-CO{sub 2} power systems, development of a large scale (> 10 MW) prototype S-CO{sub 2} system is necessary.

  16. Nuclear power. Nuclear fuel cycle and waste management. 1990-2002. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2002-02-01

    This document lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Power, Nuclear Fuel Cycle and Waste Management, issued during the period 1990-2002. It gives a short abstract of these publications along with contents and their costs

  17. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  18. Nuclear design report for Yonggwang nuclear power plant unit 2 cycle 7

    International Nuclear Information System (INIS)

    Zee, Sung Kyun; Choi, Gyoo Hwan; Lee, Ki Bog; Park, Sang Yoon

    1993-02-01

    This report presents nuclear design calculations for Cycle 7 of Yonggwang Unit 2. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 64 KOFA's enriched by nominally 3.70 w/o U235. Among the KOFA's, 40 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 7 amounts to 367 EFPD corresponding to a cycle burnup of 14770 MWD/MTU. (Author)

  19. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1988-06-01

    The percentage of electricity generated by nuclear energy in each of the 26 countries that operated nuclear power plants in 1987 is given. The current policy and programs of some of these countries is described. News concerning uranium mining, enrichment, reprocessing and waste management is also included. Data in the form of a generalized status summary for all power reactors (> 30 MWEN) prepared from the nuclear power reactor data files of ANSTO is shown

  20. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    International Nuclear Information System (INIS)

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste

  1. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste.

  2. Summary of nuclear power and fuel cycle data in OECD member countries

    International Nuclear Information System (INIS)

    1986-04-01

    A questionnaire on Electricity Generation, Nuclear Power and Fuel Cycle Data is distributed annually to OECD Member Countries. In the questionnaire of January 1986, countries were asked to provide historical data for 1984 and 1985 and most likely projections up to the year 2005. The replies to the questionnaire are presented in this Summary. Not all countries have revised or made new projections since the April 1985 issue. Too few countries were able to provide projections beyond 2000 to include data for 2005 in this year's Summary. Data for 1985 are in some cases provisional. Where no data were available the Secretariat made estimates, based on information of IEA, IAEA, the previous Brown Book, OECD/IEA Energy Statistics and other sources. The electricity generation and production data for fuel cycle services refer to those facilities located within the country, and thus exclude imports. The fuel cycle requirements, however, refer to the amounts of fuel cycle services necessary for national nuclear power programmes. The Addendum contains an analysis of the present and past projections for OECD nuclear capacity to 2000

  3. Multimegawatt space nuclear power open-cycle MHD-facility

    International Nuclear Information System (INIS)

    Pavshuk, V.A.; Panchenko, V.P.

    2008-01-01

    Paper presents the results of the efforts to calculate the characteristics, the layout and the engineering design of the open cycle space power propulsion on the basis of the high-temperature nuclear reactor for a nuclear rocket engine and the Faraday 20 MW capacity MHD-generator. The IVG-1 heterogeneous channel-vessel reactor ensuring in the course of the experiments hydrogen heating up to 3100 K, up to 5 MPa pressure at the reactor core outlet, up to 5 kg/s flowsheet, up to 220 MW thermal power served as a reactor is considered. One determined the MHD-generator basic parameters, namely: the portion of Cs dope was equal to 20%, the outlet stagnation pressure - 2 MPa, the electric conductivity - ≅30 S/m, the Mach number - ≅0.7, the magnetic field induction - 6 T, the capacity - 20 MW, the specific power removal - ∼4 MJ/kg. Paper describes the design of the MHD-facility with the working fluid momentless discharge and its basic characteristics [ru

  4. Nuclear design report for Yonggwang nuclear power plant unit 4 cycle 2

    International Nuclear Information System (INIS)

    Park, Chan Oh; Park, Sang Yoon; Yoo, Choon Sung; Ryu, Hyo Sang; Park, Jin Ha; Cho, Young Chul; Song, Jae Woong; Lee Chung Chan.

    1996-10-01

    This report presents nuclear design calculations for Cycle 2 of Yonggwang Unit 4. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths, and operational limits. In addition, the report contains necessary data for the startup tests and for the assurance of shutdown margin during reactor operation. The reload core consists of 48 fresh KSFAs. Among the 48 fresh KSFAs, 32 fuel assemblies contain burnable poison rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 2 amounts to 275 EFPD corresponding to a cycle burnup of 10,100 MWD/MTU. (author). 31 tabs., 92 figs., 7 refs

  5. Nuclear design report for Ulchin nuclear power plant unit 1, cycle 7

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Rae; Park, Yong soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-04-01

    This report presents nuclear design calculations for Cycle 7 of Ulchin Unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 56 KOFA`s enriched by nominally 4.00 w/o U{sub 235}. Among the KOFA`s 36 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 7 amounts to 355 EFPD corresponding to a cycle burnup of 14280 MWD/MTU. (Author) 8 refs., 55 figs., 21 tabs.

  6. Nuclear design report for Kori nuclear power plant unit 4 cycle 8

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyoon; Jung, Yil Sub; Kim, Si Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-07-01

    This report presents nuclear design calculations for cycle 8 of Kori unit 4. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s 48 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 8 amounts to 421 EFPD corresponding to a cycle burnup of 16950 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  7. Nuclear design report for Kori nuclear power plant unit 1, cycle 13

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Moon, Bok Ja; Cho, Byeong Ho; Jung, Yil Sup [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-04-01

    This report presents nuclear design calculations for cycle 13 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 44 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 16 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 13 amounts to 355 EFPD corresponding to a cycle burnup of 13240 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs.

  8. Nuclear design report for Yonggwang nuclear power plant unit 1 cycle 9

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young chul; Kim, Jae Hak; Song, Jae Woong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-03-01

    This report presents nuclear design calculations for Cycle 6 of Yonggwng Unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 4.00 w/o U{sub 235}. Among the KOFA`s, 60 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 9 amounts to 434 EFPD corresponding to a cycle burnup of 17470 MWD/MTU. (Author) 8 refs., 55 figs., 19 tabs.

  9. Nuclear design report for Ulchin nuclear power plant unit 1, cycle 6

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Kim, Yong Rae; Park, Yong Soo; Cho, Byeong Ho; Lee, Sang Keun; Ahn, Dawk Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-12-01

    This report presents nuclear design calculations for cycle 6 of Ulchin unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 64 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 32 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 6 amounts to 369 EFPD corresponding to a cycle burnup of 14850 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  10. Nuclear design report for Ulchin nuclear power plant unit 2, cycle 6

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Oh; Park, Jin Ha; Kim, Yong Rae; Park, Sang Yoon; Lee, Jong Chul; Baik, Joo Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-08-01

    This report presents nuclear design calculations for cycle 6 of Ulchin unit 2. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 64 KOFA`s enriched by nominally 3.80 w/o U{sub 235}. Among the KOFA`s, 36 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 6 amounts to 388 EFPD corresponding to a cycle burnup of 15610 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  11. Nuclear design report for Yonggwang nuclear power plant unit 1, cycle 8

    International Nuclear Information System (INIS)

    Cho, Young Chul; Kim, Jae Hak; Park, Sang Yoon; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan

    1993-10-01

    This report presents nuclear design calculations for cycle 8 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA's enriched by nominally 3.70 w/o U 235 . Among the KOFA's, 56 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 8 amounts to 447 EFPD corresponding to a cycle burnup of 18020 MWD/MTU. (Author) 8 refs., 39 figs., 17 tabs

  12. Nuclear design report for Ulchin nuclear power plant unit 2 cycle 5

    International Nuclear Information System (INIS)

    Park, Jin Ha; Park, Yong Soo; Cho, Byeong Ho; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan

    1993-09-01

    This report presents nuclear design calculations for cycle 5 of Ulchin unit it 2. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 48 KOFA's enriched by nominally 3.50 w/o U 235 . Among the KOFA's, 20 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 5 amounts to 293 EFPD corresponding to a cycle burnup of 11780 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs

  13. Nuclear design report for Yonggwang nuclear power plant unit 1, cycle 8

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Chul; Kim, Jae Hak; Park, Sang Yoon; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-10-01

    This report presents nuclear design calculations for cycle 8 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 56 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 8 amounts to 447 EFPD corresponding to a cycle burnup of 18020 MWD/MTU. (Author) 8 refs., 39 figs., 17 tabs.

  14. 11-th International conference Nuclear power safety and nuclear education - 2009. Abstracts. Part 1. Session: Safety of nuclear technology; Innovative nuclear systems and fuel cycle; Nuclear knowledge management

    International Nuclear Information System (INIS)

    2009-01-01

    The book includes abstracts of the 11-th International conference Nuclear power safety and nuclear education - 2009 (29 Sep - 2 Oct, 2009, Obninsk). Problems of safety of nuclear technology are discussed, innovative nuclear systems and fuel cycles are treated. Abstracts on professional education for nuclear power and industry are presented. Nuclear knowledge management are discussed

  15. Nuclear design report for Yonggwang nuclear power plant unit 3 cycle 2

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Song, Jae Woong; Song, Jae Seung; Park, Sang Yoon; Yoo, Choon Sung; Baek, Byung Chan; Ryu, Hyo Sang; Park, Jin Ha; Cho, Young Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    This report presents nuclear design calculations for Cycle 2 of Yonggwang Unit 3. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths, and operational limits. In addition, the report contains necessary data for the startup tests and for the assurance of shutdown margin during reactor operation. The reload core consists of 48 fresh Korean Standard Fuel Assemblies (KSFAs)and 129 burned KSFAs. Among the 48 fresh KSFAs, 32 fuel assemblies contain burnable poison rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 2 amounts to 276 EFPD corresponding to a cycle burnup of 10,160 MWD/MTU. 95 figs., 31 tabs., 7 refs. (Author) .new.

  16. Nuclear design report for Ulchin nuclear power plant unit 2 cycle 5

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ha; Park, Yong Soo; Cho, Byeong Ho; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-09-01

    This report presents nuclear design calculations for cycle 5 of Ulchin unit it 2. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 48 KOFA`s enriched by nominally 3.50 w/o U{sub 235}. Among the KOFA`s, 20 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 5 amounts to 293 EFPD corresponding to a cycle burnup of 11780 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs.

  17. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    International Nuclear Information System (INIS)

    Solonin, M.I.; Polyakov, A.S.; Zakharkin, B.S.; Smelov, V.S.; Nenarokomov, E.A.; Mukhin, I.V.

    2000-01-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  18. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Solonin, M I; Polyakov, A S; Zakharkin, B S; Smelov, V S; Nenarokomov, E A; Mukhin, I V [SSC, RF, A.A. Bochvar ALL-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2000-07-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  19. Electricity, nuclear power and fuel cycle in OECD countries

    International Nuclear Information System (INIS)

    1988-01-01

    A questionnaire on Electricity Generation, Nuclear Power and Fuel Cycle Data is distributed annually to OECD Member Countries. In the questionnaire of January 1988, countries were asked to provide data for 1986 and 1987 and most likely projections up to the year 2005. The replies to the questionnaire (or estimates for unavailable data) are presented in this Booklet. Data for 1987 are provisional for several countries. The data on electricity generation and electric capacity are presented to the year 2005, and the data on fuel cycle services to the year 2000. The Addendum contains an analysis of the present and past projections for installed nuclear capacity to 2000. It shows the total capacity of those plants connected to the grid, under construction and firmly planned to be in operation in 2000 as 282 GWe. The new projection of 300 GWe is above this estimate, indicating that some countries are considering further expansion of their nuclear capacities within this time-frame [fr

  20. Nuclear Power, Nuclear Fuel Cycle and Sustainable Development in a Changing World

    International Nuclear Information System (INIS)

    Arakawa, Yoshitaka

    2000-01-01

    Important changes concerning nuclear energy are coming to the fore, such as economic competitiveness compared to other energy resources, requirement for severe measures to mitigate man-made greenhouse gas (GHG) emission, due to the rise of energy demand in Central and Eastern Europe and Asia and to the greater public concern with respect to the nuclear safety, particularly related to spent fuel and radioactive waste disposal. Global safety culture, as well as well focused nuclear research and development programs for safer and more efficient nuclear technology manifest themselves in a stronger and effective way. Information and data on nuclear technology and safety are disseminated to the public in timely, accurate and understandable fashion. Nuclear power is an important contributor to the world's electricity needs. In 1999, it supplied roughly one sixth of global electricity. The largest regional percentage of electricity generated through nuclear power last year was in western Europe (30%). The nuclear power shares in France, Belgium and Sweden were 75%, 58% and 47%, respectively. In North America, the nuclear share was 20% for the USA and 12% for Canada. In Asia, the highest figures were 43% for the Republic of Korea and 36% for Japan. In 1998, twenty-three nations produced uranium of which, the ten biggest producers (Australia, Canada, Kazakhstan, Namibia, Niger, the Russian Federation, South Africa, Ukraine, USA and Uzbekistan) supplied over 90% of the world's output. In 1998, world uranium production provided only about 59% of world reactor requirements. In OECD countries, the 1998 production could only satisfy 39% of the demand. The rest of the requirements were satisfied by secondary sources including civilian and military stockpiles, uranium reprocessing and re-enrichment of depleted uranium. With regard to the nuclear fuel industry, an increase in fuel burnup, higher thermal rates, longer fuel cycle and the use of mixed uranium-plutonium oxide (MOX

  1. Alternative fuel cycle options: performance characteristics and impact on nuclear power growth potential

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.; Rudolph, R.R.; Deen, J.R.; King, M.J.

    1977-09-01

    The fuel utilization characteristics for LWR, SSCR, CANDU and LMFBR reactor concepts are quantified for various fuel cycle options, including once-through cycles, thorium cycles, and denatured cycles. The implications of various alternative reactor deployment strategies on the long-term nuclear power growth potential are then quantified in terms of the maximum nuclear capacity that can be achieved and the growth pattern over time, subject to the constraint of a fixed uranium-resource base. The overall objective of this study is to shed light on any large differences in the long-term potential that exist between various alternative reactor/fuel cycle deployment strategies

  2. Electricity, nuclear power and fuel cycle in OECD countries, main data 1987

    International Nuclear Information System (INIS)

    1987-01-01

    A questionnaire on Electricity Generation. Nuclear Power and Fuel Cycle Data is distributed annually to OECD Member Countries. In the questionnaire of January 1987, countries were asked to provide historical data for 1985 and 1986 and most likely projections up to the year 2005. The replies to the questionnaire or the results of the discussions between national correspondents and the Secretariat are presented in this Booklet. The Secretariat has, in some cases, referred to IEA's electricity-related data and IAEA's nuclear plant data. Where data were still unavailable the Secretariat made estimates based on information from other sources. Data for 1986 are provisional for several countries. The data on electricity generation and electric capacity are presented to the year 2005, and the data on fuel cycle services to the year 2000. The installed nuclear capacity of the OECD countries for the year 2000 is estimated at 340 GWe, a 25 GWe reduction from the estimate in the 1986 Booklet. This reduction is mainly due to revised lower projections of electricity demand. The Addendum contains an analysis of the present and past projections for installed nuclear capacity to 2000. It shows the total capacity of those plants connected to the grid, under construction and firmly planned to be in operation in 2000 as 294 GWe. The new projection of 340 GWe is well above this estimate, indicating that some countries are still planning to expand their nuclear capacities. In only one country does it appear that planned expansion has been affected specifically by the Chernobyl accident. The electricity generation and production data for fuel cycle services refer to those facilities located within the country, and thus exclude imports. The fuel cycle requirements, however, refer to the amounts of fuel cycle materials and services necessary for national nuclear power programmes

  3. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  4. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  5. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  6. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  7. 'Crud' detection and evaluation during the Embalse nuclear power plant's thermal cycle for powers of 100%

    International Nuclear Information System (INIS)

    Fernandez, A.; Rosales, A.H.; Mura, V.R.; Sentupery, C.; Rascon, H.

    1987-01-01

    This paper describes the 'crud' measurements performed during the Embalse nuclear power plant's thermal cycle for a power of 100% (645 MWe) under different purification conditions. The aim of this work is to optimize the four steam generators' tube plate cleaning in function of the sweeping produced by their purification. (Author)

  8. Optimization in the scale of nuclear power generation and the economy of nuclear power

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    1983-01-01

    In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)

  9. Thorium fuel for light water reactors - reducing proliferation potential of nuclear power fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Galperin, A; Radkowski, A [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    The proliferation potential of the light water reactor fuel cycle may be significantly reduced by utilization of thorium as a fertile component of the nuclear fuel. The main challenge of Th utilization is to design a core and a fuel cycle, which would be proliferation-resistant and economically feasible. This challenge is met by the Radkowsky Thorium Reactor (RTR) concept. So far the concept has been applied to a Russian design of a 1,000 MWe pressurized water reactor, known as a WWER-1000, and designated as VVERT. The following are the main results of the preliminary reference design: * The amount of Pu contained in the RTR spent fuel stockpile is reduced by 80% in comparison with a VVER of a current design. * The isotopic composition of the RTR-Pu greatly increases the probability of pre-initiation and yield degradation of a nuclear explosion. An extremely large Pu-238 content causes correspondingly large heat emission, which would complicate the design of an explosive device based on RTR-Pu. The economic incentive to reprocess and reuse the fissile component of the RTR spent fuel is decreased. The once-through cycle is economically optimal for the RTR core and cycle. To summarize all the items above: the replacement of a standard (U-based) fuel for nuclear reactors of current generation by the RTR fuel will provide an inherent barrier for nuclear weapon proliferation. This inherent barrier, in combination with existing safeguard measures and procedures is adequate to unambiguously disassociate civilian nuclear power from military nuclear power. * The RTR concept is applied to existing power plants to assure its economic feasibility. Reductions in waste disposal requirements, as well as in natural U and fabrication expenses, as compared to a standard WWER fuel, provide approximately 20% reduction in fuel cycle (authors).

  10. A novel nuclear combined power and cooling system integrating high temperature gas-cooled reactor with ammonia–water cycle

    International Nuclear Information System (INIS)

    Luo, Chending; Zhao, Fuqiang; Zhang, Na

    2014-01-01

    Highlights: • We propose a novel nuclear ammonia–water power and cooling cogeneration system. • The high temperature reactor is inherently safe, with exhaust heat fully recovered. • The thermal performances are improved compared with nuclear combined cycle. • The base case attains an energy efficiency of 69.9% and exergy efficiency of 72.5%. • Energy conservation and emission reduction are achieved in this cogeneration way. - Abstract: A nuclear ammonia–water power and refrigeration cogeneration system (NAPR) has been proposed and analyzed in this paper. It consists of a closed high temperature gas-cooled reactor (HTGR) topping Brayton cycle and a modified ammonia water power/refrigeration combined bottoming cycle (APR). The HTGR is an inherently safe reactor, and thus could be stable, flexible and suitable for various energy supply situation, and its exhaust heat is fully recovered by the mixture of ammonia and water in the bottoming cycle. To reduce exergy losses and enhance outputs, the ammonia concentrations of the bottoming cycle working fluid are optimized in both power and refrigeration processes. With the HTGR of 200 MW thermal capacity and 900 °C/70 bar reactor-core-outlet helium, the system achieves 88.8 MW net electrical output and 9.27 MW refrigeration capacity, and also attains an energy efficiency of 69.9% and exergy efficiency of 72.5%, which are higher by 5.3%-points and 2.6%-points as compared with the nuclear combined cycle (NCC, like a conventional gas/steam power-only combined cycle while the topping cycle is a closed HTGR Brayton cycle) with the same nuclear energy input. Compared with conventional separate power and refrigeration generation systems, the fossil fuel saving (based on CH 4 ) and CO 2 emission reduction of base-case NAPR could reach ∼9.66 × 10 4 t/y and ∼26.6 × 10 4 t/y, respectively. The system integration accomplishes the safe and high-efficiency utilization of nuclear energy by power and refrigeration

  11. Analysis of environmental impact phase in the life cycle of a nuclear power plant

    International Nuclear Information System (INIS)

    Hernandez del M, C.

    2015-01-01

    The life-cycle analysis covers the environmental aspects of a product throughout its life cycle. The focus of this study was to apply a methodology of life-cycle analysis for the environmental impact assessment of a nuclear power plant by analyzing international standards ISO 14040 and 14044. The methodology of life-cycle analysis established by the ISO 14044 standard was analyzed, as well as the different impact assessment methodologies of life cycle in order to choose the most appropriate for a nuclear power plant; various tools for the life-cycle analysis were also evaluated, as is the use of software and the use of databases to feed the life cycle inventory. The functional unit chosen was 1 KWh of electricity, the scope of analysis ranging from the construction and maintenance, disposal of spent fuel to the decommissioning of the plant, the manufacturing steps of the fuel were excluded because in Mexico is not done this stage. For environmental impact assessment was chosen the Recipe methodology which evaluates up to 18 impact categories depending on the project. In the case of a nuclear power plant were considered only categories of depletion of the ozone layer, climate change, ionizing radiation and formation of particulate matter. The different tools for life-cycle analysis as the methodologies of impact assessment of life cycle, different databases or use of software have been taken according to the modeling of environmental sensitivities of different regions, because in Mexico the methodology for life-cycle analysis has not been studied and still do not have all the tools necessary for the evaluation, so the uncertainty of the data supplied and results could be higher. (Author)

  12. Nuclear power in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Ronald E.

    1998-08-01

    Contains Executive Summary and Chapters on: Nuclear Energy in the Asian context; Types of nuclear power reactors used in Asia; A survey of nuclear power by country; The economics of nuclear power; Fuels, fuel cycles and reprocessing; Environmental issues and waste disposal; The weapons issues and nuclear power; Conclusions. (Author)

  13. The development of an integrated nuclear fuel-cycle industry to meet the needs of the Italian nuclear power programme

    International Nuclear Information System (INIS)

    Angelini, A.M.; Badolato, G.; Clementel, E.

    1977-01-01

    The paper summarizes the Italian nuclear power station programme, recently approved by the Government, and illustrates the main reasons for the programme, which are in line with those presented at the Geneva Conference in 1971, and which lead to the consideration that nuclear energy is the main source for meeting practically all new electric power requirements in Italy. The implementation of this programme involves considerable nuclear fuel-cycle services, ranging from uranium supply to waste disposal. The industrial strategy to meet these needs is discussed. Technical and economic factors affecting such strategy, both for the fuel cycle as a whole and for its individual phases, are considered. Attention is focused on problems typical of the Italian situation and on various ways of solving them. A prominent feature of the Italian situation is the lack of sizeable domestic uranium resources, which makes it even more important to try, by local industrial efforts, to cover the phases of the cycle subsequent to uranium supply, so as to increase as much as possible the fraction of added value produced inside the country. The present status of the Italian nuclear fuel-cycle industry is reviewed in detail, and its capability of supporting the nuclear programme is analysed. Future development plans are discussed, taking into account the possibility of European co-operation. While the focus is on short- and medium-term programmes, the long-term nuclear programmes are discussed, such as those based on fast breeders, and stress is laid on the need to build up as quickly as possible a strong nuclear fuel-cycle industry. (author)

  14. Several perspectives on water-chemical cycles for nuclear power stations equipped with type VVER and RBMK reactors

    International Nuclear Information System (INIS)

    Mamet, A.P.; Mamet, V.A.; Pashevich, V.I.; Nazarenko, P.N.

    1982-01-01

    Water-chemical cycles for loops I and II of VVER reactors are discussed. These cycles are mixed ammonia-sodium with a variable concentration of boric acid and ammonia hydrazine with a pH factor of 9.1 +/- 0.1. New water-chemical cycles are considered for use in both existing and new nuclear power plants. Application of these new water-chemical cycles showed produce a significant improvement in operating conditions of nuclear power plants. Upon accumulation of sufficient operating experience with these cycles, it should be possible to raise the issue of revising applicable standard documentation

  15. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  16. Direct cycle type nuclear power plant

    International Nuclear Information System (INIS)

    Tagawa, Hisato; Ibe, Hidefumi.

    1990-01-01

    In a direct cycle type nuclear power plant such as BWR type reactor, since oxygen atoms in reactor water are actuvated by neutron irradiation in the reactor core, carry over of the thus formed radioactive nitrogen atoms causes increase in the dosage in a turbine system. Since 16 N accompanies in the main steams in the chemical form of 16 NO, it can not effectively be removed in a nitrogen removing device. In view of the above, hydrogen atom concentration is reduced by adding metals having high reaction with hydrogen atoms, for example, silver ions, chromium ions, or ruthenium ions are added to reactor water. Then, equilibrium concentration of 16 NO in water is reduced by suppressing the reaction: 16 NO 2 + H → 16 NO + OH. (T.M.)

  17. Nuclear power performance and safety. V.5. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1988-01-01

    The International Conference on Nuclear Power Performance and Safety, organized by the International Atomic Energy Agency, was held at the Austria Centre Vienna (ACV) in Vienna, Austria, from 28 September to 2 October 1987. The objective of the Conference was to promote an exchange of worldwide information on the current trends in the performance and safety of nuclear power and its fuel cycle, and to take a forward look at the expectations and objectives for the 1990s. Policy decisions for waste management have already been taken in many countries and the 1990s should be a period of demonstration and implementation of these policies. As ilustrated by data presented from a number of countries, many years of experience in radioactive waste management have been achieved and the technology exists to implement the national plans and policies that have been developed. The establishment of criteria, the development of safety performance methodology and site investigation work are key activities essential to the successful selection, characterization and construction of geological repositories for the final disposal of radioactive waste. Considerable work has been done in these areas over the last ten years and will continue into the 1990s. However, countries that are considering geological disposal for high level waste now recognize the need for relating the technical aspects to public understanding and acceptance of the concept and decision making activities. The real challenge for the 1990s in waste disposal will be successfully to integrate technological activities within a process which responds to institutional and public concern. Volume 5 of the Proceedings comprehends the contributions on waste management in the 1990s. Decontamination and decommissioning, waste management, treatment and disposal, nuclear fuel cycle - present and future. Enrichment services and advanced reactor fuels, improvements in reactor fuel utilization and performance, spent fuel management

  18. Nuclear design report for Kori nuclear power plant unit 1, cycle 14

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Oh; Kim, Joo Young; Park, Sang Yoon; Song, Jae Woong; Lee, Chong Chul; Baik, Joo Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    This report presents nuclear design calculations for cycle 14 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 44 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 16 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 14 amounts to 366 EFPD corresponding to a cycle burnup of 13680 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs. nozzle by vortex formation during mid-loop operation condition are experimentally investigated. The critical submergence is determined for various types of suction nozzle, and the measurements of velocity distribution are performed in the flow fields near the t-shaped suction nozzle. (Author) 11 refs., 41 figs., 13 tabs.

  19. Romanian nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Comsa, Olivia

    1998-01-01

    Romanian decision to introduce nuclear power was based on the evaluation of electricity demand and supply as well as a domestic resources assessment. The option was the introduction of CANDU-PHWR through a license agreement with AECL Canada. The major factors in this choice have been the need of diversifying the energy resources, the improvement the national industry and the independence of foreign suppliers. Romanian Nuclear Power Program envisaged a large national participation in Cernavoda NPP completion, in the development of nuclear fuel cycle facilities and horizontal industry, in R and D and human resources. As consequence, important support was being given to development of industries involved in Nuclear Fuel Cycle and manufacturing of equipment and nuclear materials based on technology transfer, implementation of advanced design execution standards, QA procedures and current nuclear safety requirements at international level. Unit 1 of the first Romanian nuclear power plant, Cernavoda NPP with a final profile 5x700 Mw e, is now in operation and its production represents 10% of all national electricity production. There were also developed all stages of FRONT END of Nuclear Fuel Cycle as well as programs for spent fuel and waste management. Industrial facilities for uranian production, U 3 O 8 concentrate, UO 2 powder and CANDU fuel bundles, as well as heavy water plant, supply the required fuel and heavy water for Cernavoda NPP. The paper presents the Romanian activities in Nuclear Fuel Cycle and waste management fields. (authors)

  20. Fuel cycle strategies for growth of nuclear power in India

    International Nuclear Information System (INIS)

    Purushotham, D.S.C.; Balu, K.

    2002-01-01

    Nuclear power has been identified as an essential component to meet the growing energy demand of India. The three stage fuel cycle strategy to achieve this with the available resources envisages the use of natural uranium in PHWRs in the first stage, the plutonium-uranium/plutonium-thorium cycles in Fast reactors/Advanced HWRs in the second stage, followed by exploitation of essentially U233 in the third stage. The technologies necessary for this programme, mainly through the back-end of the fuel cycle including reprocessing, waste management and recycle of Pu have been developed accordingly, as a direct result of the closed fuel cycle policy followed by us from the very beginning. This paper addresses the considerations involved in several activities taken up in our programme, their current status and plans for the future. (author)

  1. Feasibility study for application of mixture working fluid cycle to nuclear reactor power plant

    International Nuclear Information System (INIS)

    Takeuchi, Yutaka; Ohshima, Iwao; Shiomi, Hirozo; Miyamae, Nobuhiko; Hiramatsu, Miki; Montani, Mitsuto

    1999-01-01

    There exists a large amount of unused energy in nuclear power plants. However, it consists of relatively low temperature energy, so it is difficult to generate electricity by the conventional water-steam cycle. In order to utilize such low temperature energy, we applied a mixture working fluid cycle called as the Kalina cycle to a light water nuclear reactor power plant. The Kalina cycle uses a working fluid composed of ammonia and water to create a variable temperature boiling process. We applied a saturation type Kalina cycle with single stage ammonia-water separation process as a bottoming cycle to a conventional water-steam cycle of a 1100MWe class BWR as an example case. The input heat source is the exhaust or the partial extraction of a low pressure turbine (LPT). A steady state chemical process modeling code ASPENPLUS was used for the sensitivity analyses. The maximum efficiency was calculated to be realized when using the lowest heat sink temperature, 8degC. The additional electrical output is about 95 MWe when using the exhaust of LPT and is about 127 MWe when using the partial extraction of LPT. Namely, about 4.3% of the exhaust heat for the former case and about 5.8% for the latter case can be utilized as electrical power, respectively. (author)

  2. Nuclear power, nuclear fuel cycle and waste management, 1986-1999. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2000-04-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with nuclear power and nuclear fuel cycle and waste management and issued during the period of 1986-1999. Some earlier titles which form part of an established series or are still considered of importance have been included. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain papers in languages other than English, but all of these papers have abstracts in English

  3. Nuclear power generation and fuel cycle report 1997

    International Nuclear Information System (INIS)

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East

  4. Nuclear power generation and fuel cycle report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  5. The nuclear fuel cycle associated with the operation of nuclear ...

    African Journals Online (AJOL)

    The nuclear power option has been mentioned as an alternative for Ghana but the issue of waste management worries both policy makers and the public. In this paper, the nuclear fuel cycle associated with the operation of nuclear power plants (NPPs) for electric power generation has been extensively reviewed. Different ...

  6. Reactor pressure vessel life cycle management at the Calvert Cliffs Nuclear Power Plant

    International Nuclear Information System (INIS)

    Doroshuk, B.W.; Bowman, M.E.; Henry, S.A.; Pavinich, W.A.; Lapides, M.E.

    1993-01-01

    Life Cycle Management (LCM) seeks to manage the aging process of important systems, structures, and components during licensed operation. The goal of Baltimore Gas and Electric Company's (BG and E) Life Cycle Management Program is to assure attainment of 40 years of operation and to preserve the option of an additional 20 years of operation for the Calvert Cliffs Nuclear Power Plant (CCNPP). Since the reactor pressure vessel (RPV) has been identified as one of the most critical components with regard to long-term operation of a nuclear power plant, BG and E initiated actions to manage life limiting or aging issues for the CCNPP RPVs. To achieve long-term operation, technical RPV issues must be effectively managed. This paper describes methods BG and E uses for managing RPV age-related degradation. (author)

  7. Report of “the 2013 international forum on peaceful use of nuclear energy, nuclear non-proliferation and nuclear security. Ensuring nuclear non-proliferation and nuclear security of nuclear fuel cycle options in consideration of the accident at TEPCO's Fukushima Daiichi Nuclear Power Station”

    International Nuclear Information System (INIS)

    Yamamura, Tsukasa; Suda, Kazunori; Tomikawa, Hirofumi; Suzuki, Mitsutoshi; Kuno, Yusuke; Mochiji, Toshiro

    2014-03-01

    The Japan Atomic Energy Agency (JAEA) held “International Forum on Peaceful Use of Nuclear Energy, Nuclear Non-proliferation and Nuclear Security – Ensuring Nuclear Non-Proliferation and Nuclear Security of Nuclear Fuel Cycle Options in consideration of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station –” on 3 and 4 December 2013, with the Japan Institute of International Affairs (JIIA) and School of Engineering, The University of Tokyo, as co-hosts. In the Forum, officials from Japan, the United States, France and International Atomic Energy Agency (IAEA) explained their efforts regarding peaceful use of nuclear energy and nuclear non-proliferation. Discussion was made in two panels, entitled “Nuclear non-proliferation and nuclear security measures of nuclear fuel cycle options in consideration of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station” and “Roles of safeguards and technical measures for ensuring nuclear non-proliferation for nuclear fuel cycle options”. In the first panel based on the implications of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station on the domestic and global nuclear energy use and increased interest in the back end of nuclear fuel cycle, discussion was made on nuclear non-proliferation and nuclear security challenges on both fuel cycle options from the policy and institutional viewpoints whereas in the second panel the roles of safeguards and proliferation resistant nuclear technology including plutonium burning technology in ensuring nuclear non-proliferation and nuclear security in the back end of nuclear fuel cycle were discussed. Officials and experts from Japan, IAEA, the United States, France and Republic of Korea participated in the panel and made contributions to active discussion. This report includes abstracts of keynote speeches, summaries of two panel discussions and materials of the presentations in the forum. The editors take full responsibility for the wording

  8. The nuclear fuel cycle versus the carbon cycle

    International Nuclear Information System (INIS)

    Ewing, R.C.

    2005-01-01

    Nuclear power provides approximately 17% of the world's electricity, which is equivalent to a reduction in carbon emissions of ∼0.5 gigatonnes (Gt) of C/yr. This is a modest reduction as compared with global emissions of carbon, ∼7 Gt C/yr. Most analyses suggest that in order to have a significant and timely impact on carbon emissions, carbon-free sources, such as nuclear power, would have to expand total production of energy by factors of three to ten by 2050. A three-fold increase in nuclear power capacity would result in a projected reduction in carbon emissions of 1 to 2 Gt C/yr, depending on the type of carbon-based energy source that is displaced. This three-fold increase utilizing present nuclear technologies would result in 25,000 metric tonnes (t) of spent nuclear fuel (SNF) per year, containing over 200 t of plutonium. This is compared to a present global inventory of approximately 280,000 t of SNF and >1,700 t of Pu. A nuclear weapon can be fashioned from as little as 5 kg of 239 Pu. However, there is considerable technological flexibility in the nuclear fuel cycle. There are three types of nuclear fuel cycles that might be utilized for the increased production of energy: open, closed, or a symbiotic combination of different types of reactor (such as, thermal and fast neutron reactors). The neutron energy spectrum has a significant effect on the fission product yield, and the consumption of long-lived actinides, by fission, is best achieved by fast neutrons. Within each cycle, the volume and composition of the high-level nuclear waste and fissile material depend on the type of nuclear fuel, the amount of burn-up, the extent of radionuclide separation during reprocessing, and the types of materials used to immobilize different radionuclides. As an example, a 232 Th-based fuel cycle can be used to breed fissile 233 U with minimum production of Pu. In this paper, I will contrast the production of excess carbon in the form of CO 2 from fossil fuels with

  9. Nuclear fuel cycle scenarios at CGNPC

    International Nuclear Information System (INIS)

    Xiao, Min; Zhou, Zhou; Nie, Li Hong; Mao, Guo Ping; Hao, Si Xiong; Shen, Kang

    2008-01-01

    Established in 1994, China Guangdong Nuclear Power Holding Co. (CGNPC) now owns two power stations GNPS and LNPS Phase I, with approximate 4000 MWe of installed capacity. With plant upgrades, advanced fuel management has been introduced into the two plants to improve the plant economical behavior with the high burnup fuel implemented. For the purpose of sustainable development, some preliminary studies on nuclear fuel cycle, especially on the back-end, have been carried out at CGNPC. According to the nuclear power development plan of China, the timing for operation and the capacity of the reprocessing facility are studied based on the amount of the spent fuel forecast in the future. Furthermore, scenarios of the fuel cycles in the future in China with the next generation of nuclear power were considered. Based on the international experiences on the spent fuel management, several options of spent fuel reprocessing strategies are investigated in detail, for example, MOX fuel recycling in light water reactor, especially in the current reactors of CGNPC, spent fuel intermediated storage, etc. All the investigations help us to draw an overall scheme of the nuclear fuel cycle, and to find a suitable road-map to achieve the sustainable development of nuclear power. (authors)

  10. Strategy of nuclear power in Korea, non-nuclear-weapon state and peaceful use of nuclear power

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2005-01-01

    The nuclear power plant started at Kori in Korea in April, 1978. Korea has carried out development of nuclear power as a national policy. The present capacity of nuclear power plants takes the sixes place in the world. It supplies 42% total power generation. The present state of nuclear power plant, nuclear fuel cycle facility, strategy of domestic production of nuclear power generation, development of next generation reactor and SMART, strategy of export in corporation with industry, government and research organization, export of nuclear power generation in Japan, nuclear power improvement project with Japan, Korea and Asia, development of nuclear power system with nuclear diffusion resistance, Hybrid Power Extraction Reactor System, radioactive waste management and construction of joint management and treatment system of spent fuel in Asia are stated. (S.Y.)

  11. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  12. Life cycle analysis on carbon emissions from power generation – The nuclear energy example

    International Nuclear Information System (INIS)

    Nian, Victor; Chou, S.K.; Su, Bin; Bauly, John

    2014-01-01

    Highlights: • This paper discusses about a methodology on the life cycle analysis of power generation using nuclear as an example. • The methodology encompasses generic system, input–output, and boundaries definitions. • The boundaries facilitate the use of Kaya Identity and decomposition technique to identify carbon emission streams. - Abstract: A common value of carbon emission factor, t-CO 2 /GWh, in nuclear power generation reported in the literature varies by more than a factor of 100. Such a variation suggests a margin of uncertainty and reliability. In this study, we employ a bottom-up approach to better define the system, its input and output, and boundaries. This approach offers improved granularity at the process level and consistency in the results. Based on this approach, we have developed a methodology to enable comparison of carbon emissions from nuclear power generation. The proposed methodology employs the principle of energy balance on a defined power generation system. The resulting system boundary facilitates the use of the “Kaya Identity” and the decomposition technique to identify the carbon emission streams. Using nuclear power as a case study, we obtained a carbon emission factor of 22.80 t-CO 2 /GWh, which falls to within 2.5% of the median of globally reported LCA results. We demonstrate that the resulting methodology could be used as a generic tool for life cycle analysis of carbon emissions from other power generation technologies and systems

  13. Optimization of preventive maintenance cycle based on experimental feedback in nuclear power plants

    International Nuclear Information System (INIS)

    Shi Jie

    2010-01-01

    The preventive replacement method based on the experimental feedback was introduced. In this method, the initial preventive replacement cycle was acquired by expert votes. The preventive replacement cycle combined with the operation experience of the equipment was gained by means of Bayesian theorem. The Optimized preventive replacement cycle can be acquired by comparing the two probabilities that no fault occurs within the cycle. This method was tested on the switches which were used in Daya Bay Nuclear Power Plant and the results indicated its validity. (authors)

  14. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  15. Nuclear steam power plant cycle performance calculations supported by power plant monitoring and results computer

    International Nuclear Information System (INIS)

    Bettes, R.S.

    1984-01-01

    The paper discusses the real time performance calculations for the turbine cycle and reactor and steam generators of a nuclear power plant. Program accepts plant measurements and calculates performance and efficiency of each part of the cycle: reactor and steam generators, turbines, feedwater heaters, condenser, circulating water system, feed pump turbines, cooling towers. Presently, the calculations involve: 500 inputs, 2400 separate calculations, 500 steam properties subroutine calls, 200 support function accesses, 1500 output valves. The program operates in a real time system at regular intervals

  16. Principles of provision concerning the back-end of the fuel cycle of nuclear power plants find application

    International Nuclear Information System (INIS)

    1977-01-01

    The Ministry of the Interior has asked the Laender on the 14th June 1977, to apply forthwith the 'principles of provision concerning the back-end of the fuel cycle of nuclear power plants' as a minimum pre-condition for waste management in licensing procedures for nuclear power stations. The 'principles' were part of a report, elaborated by a Bund/Laender working group at a undersecretary-of-state level on questions concerning the back-end of the fuel cycle of nuclear power plants. The report was favourably acknowledged during a meeting of the Federal Chancellor and the Minister-Presidents of the Laender on May 6th, 1977. The principles are presented. (orig./HP) [de

  17. Nuclear power complexes and economic-ecological problems of nuclear power development

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Bobolovich, V.N.; Emel'yanov, I.Ya.

    1977-01-01

    The effect of constructing NPP's at separate sites in densely populated areas on economic efficiency of nuclear power and its ecological implications has been investigated. Locating NPP's and nuclear fuel cycle plants at different sites results in large scale shipments of fresh and spent nuclear fuels and radioactive wastes. The fact increases the risk of a detrimental environmental impact, duration of the external fuel cycle, and worsens, in the end, nuclear power economics. The prudence of creating nuclear parks is discussed. The parks may be especially efficient if the program of developing NPP's with fast breeder reactors is a success. Comparative evaluations show that from economic standpoint deployment of nuclear parks in the European part of the USSR has no disadvantage before construction of separate NPP's and supporting fuel cycle facilities of equivalent capacity, even if the construction of nuclear parks runs dearer by 30% than assumed. The possibility for nuclear parks to meet a part of demand for ''off-peak'' energy production, district heating and process heat production is also shortly discussed

  18. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  19. Economic analysis of extended cycles in the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Hernandez N, H.; Hernandez M, J.L.; Francois L, J.L.

    2004-01-01

    The present work presents a preliminary analysis of economic type of extended cycles of operation of the Unit One in the Laguna Verde nuclear power plant. It is analysed an equilibrium cycle of 18 months firstly, with base to the Plan of Use of Energy of the Federal Commission of Electricity, being evaluated the cost of the energy until the end of the useful life of the plant. Later on an alternative recharge scenario is presented with base to an equilibrium cycle of 24 months, implemented to the beginning of the cycle 11, without considering transition cycles. It is added in both cycles the cost of the substitution energy, considering the unitary cost of the fuel of a dual thermoelectric power station of 350 M We and evaluating in each operation cycle, in both scenarios, the value of the substitution energy. The results show that a reduction of the days of recharge in the cycle of 24 months could make this option but favorable economically. The duration of the period of recharge rebounds in considerable grade in the cost of energy generation for concept of fuel. (Author)

  20. Web-based turbine cycle performance analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Heo, Gyun Young; Lee, Sung Jin; Chang, Soon Heung; Choi, Seong Soo

    2000-01-01

    As an approach to improve the economical efficiency of operating nuclear power plants, a thermal performance analysis tool for steam turbine cycle has been developed. For the validation and the prediction of the signals used in thermal performance analysis, a few statistical signal processing techniques are integrated. The developed tool provides predicted performance calculation capability that is steady-state wet steam turbine cycle simulation, and measurement performance calculation capability which determines component- and cycle-level performance indexes. Web-based interface with all performance analysis is implemented, so even remote users can achieve performance analysis. Comparing to ASME PTC6 (Performance Test Code 6), the focusing point of the developed tool is historical performance analysis rather than single accurate performance test. The proposed signal processing techniques are validated using actual plant signals, and turbine cycle models are tested by benchmarking with a commercial thermal analysis tool

  1. Economic Analysis of Several Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Gao, Fanxing; Kim, Sung Ki

    2012-01-01

    Economics is one of the essential criteria to be considered for the future deployment of the nuclear power. With regard to the competitive power market, the cost of electricity from nuclear power plants is somewhat highly competitive with those from the other electricity generations, averaging lower in cost than fossil fuels, wind, or solar. However, a closer look at the nuclear power production brings an insight that the cost varies within a wide range, highly depending on a nuclear fuel cycle option. The option of nuclear fuel cycle is a key determinant in the economics, and therefrom, a comprehensive comparison among the proposed fuel cycle options necessitates an economic analysis for thirteen promising options based on the material flow analysis obtained by an equilibrium model as specified in the first article (Modeling and System Analysis of Different Fuel Cycle Options for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation). The objective of the article is to provide a systematic cost comparison among these nuclear fuel cycles. The generation cost (GC) generally consists of a capital cost, an operation and maintenance cost (O and M cost), a fuel cycle cost (FCC), and a decontaminating and decommissioning (D and D) cost. FCC includes a frontend cost and a back-end cost, as well as costs associated with fuel recycling in the cases of semi-closed and closed cycle options. As a part of GC, the economic analysis on FCC mainly focuses on the cost differences among fuel cycle options considered and therefore efficiently avoids the large uncertainties of the Generation-IV reactor capital costs and the advanced reprocessing costs. However, the GC provides a more comprehensive result covering all the associated costs, and therefrom, both GC and FCC have been analyzed, respectively. As a widely applied tool, the levelized cost (mills/KWh) proves to be a fundamental calculation principle in the energy and power industry, which is particularly

  2. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    International Nuclear Information System (INIS)

    Harvego, Edwin A.; McKellar, Michael G.

    2011-01-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550 C and 750 C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in

  3. Fuel cycle management by the electric enterprises and spanish nuclear Power plants

    International Nuclear Information System (INIS)

    Celma, E. M.; Gonzalez, C.; Lopez, J. V.; Melara, J.; Lopez, L.; Martinez, J. C.; Culbras, F.; Blanco, J.; Francia, L.

    2015-01-01

    The Nuclear Fuel Group reports to the Technology Committee of the UNESA Nuclear Energy Committee, and is constituted by representatives of both the Spanish Utilities and the Nuclear Power Plants. The Group addresses the nuclear plant common issues in relation to the operation and management of the nuclear fuel in their different stages of the Fuel Cycle. The article reviews the activities developed by the Group in the Front-End, mainly in the monitoring of international programs that define criteria to improve the Fuel Reliability and in the establishment of common bases for the implementation of changes in the regulation applying the nuclear fuel. Concerning the Back-End the Group focuses on those activities of coordination with third parties related to the management of used fuel. (Author)

  4. Aspects of nuclear safety at power plants and fuel cycle plants in the USSR

    International Nuclear Information System (INIS)

    Kozlov, N.I.; Efimov, E.; Dubovskij, B.G.; Dikarev, V.; Lyubchenko, V.; Kruglov, A.K.

    1977-01-01

    The paper discusses the problems of organizing inspection monitoring of power plants including the development of some regulations and norms and the interaction between the USSR State Nuclear Safety Organization, scientific and designing organizations and power plants. The principles of computer use to work out advice for operational staff and warning signals and commands for the reactor control and protection system are discussed. Some attention is turned to the importance of using high-speed computers to calculate prompt reactivity values and to determine impurity concentrations in the coolant and margins to permissible operational limits. In particular, reactimeters are considered as signal generators in monitor and protection systems. Some problems of nuclear safety inspection, the issue and inculcation of some regulations and operational documents on nuclear safety, and instrumentation of plants reprocessing or processing fuel elements are presented. Methods of determining the critical parameters of technological units are described, together with the fundamental principles of fuel cycle plant nuclear safety, providing margin coefficients, accounting for deviations from the normal operational process and other problems, as well as methods of keeping the restrictions on nuclear safety requirements at fuel cycle plants. (author)

  5. World nuclear fuel cycle requirements 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  6. World nuclear fuel cycle requirements 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, ''burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs

  7. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    The Federal Target Program (FTP) of Russian Federation 'Nuclear Energy Technologies of the New Generation for 2010-2015 and for Perspective up to 2020' is aimed at development of advanced nuclear energy technologies on the basis of closed fuel cycle with fast reactors. There are advanced fast reactor technologies of the 4. generation with liquid metal cooled reactors. Development stages of maturity of fast sodium cooled reactor technology in Russia includes experimental reactors BR-5/10 (1958-2002) and BOR-60 (since 1969), nuclear power plants (NPPs) with BN-350 (1972-1999), BN-600 (since 1980), BN-800 (under construction), BN-1200 (under development). Further stage of development of fast sodium cooled reactor technology in Russia is commercialization. Lead-bismuth eutectic fast reactor technology has been proven at industrial scale for nuclear submarines in former Soviet Union. Lead based technology is currently under development and need for experimental justification. Current status and prospects of State Corporation 'Rosatom' participation in GIF activities was clarified at the 31. Meeting of Policy Group of the International Forum 'Generation-IV', Moscow, May 12-13, 2011. In June, 2010, 'Rosatom' joined the Sodium Fast Reactor Arrangement as an authorized representative of the Russian Government. It was also announced the intention of 'Rosatom' to sign the Memorandum on Lead Fast Reactor based on Russia's experience with lead-bismuth and lead cooled fast reactors. In accordance with the above FTP some innovative liquid metal cooled reactors of different design are under development in Russia. Gidropress, well known as WER designer, develops innovative lead-bismuth eutectic cooled reactor SVBR-100. NIKIET develops innovative lead cooled reactor BRESTOD-300. Some other nuclear scientific centres are also involved in this activity, e.g. Research and Development Institute for Power Engineering (RDIPE). Optimum

  8. The IFR modern nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs

  9. Nuclear power publications

    International Nuclear Information System (INIS)

    1982-01-01

    This booklet lists 69 publications on nuclear energy available free from some of the main organisations concerned with its development and operation in the UK. Headings are: general information; the need for nuclear energy; the nuclear industry; nuclear power stations; fuel cycle; safety; waste management. (U.K.)

  10. Nuclear power in the developing countries

    International Nuclear Information System (INIS)

    Perera, J.

    1984-01-01

    The subject is covered in chapters, entitled: the general energy situation (including nuclear power); the nuclear fuel cycle; the history of nuclear power in the third world; economic considerations; environmental considerations (including general environmental effects of power generation; radiation; normal fuel cycle operation; nuclear waste management; accidents; sabotage; health and safety regulations); political considerations (nuclear weapons proliferation; technology transfer; energy independence and national prestige); the suppliers (mainly USA, France, West Germany, Canada, UK, USSR); Sub-Saharan Africa; the Arab World and Israel; Central Asia; South and East Asia; Latin America; conclusions. (U.K.)

  11. The IFR modern nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs.

  12. The nuclear fuel cycle; Le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  13. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-06-01

    The actualized version (June 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  14. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume III. Resources and fuel cycle facilities

    International Nuclear Information System (INIS)

    1980-06-01

    The ability of uranium supply and the rest of the nuclear fuel cycle to meet the demand for nuclear power is an important consideration in future domestic and international planning. Accordingly, the purpose of this assessment is to evaluate the adequacy of potential supply for various nuclear resources and fuel cycle facilities in the United States and in the world outside centrally planned economy areas (WOCA). Although major emphasis was placed on uranium supply and demand, material resources (thorium and heavy water) and facility resources (separative work, spent fuel storage, and reprocessing) were also considered

  15. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Addinall, E.; Ellington, H.

    1982-01-01

    The subject is covered in chapters: (the nature of nuclear power) the atomic nucleus - a potential source of energy; how nuclear reactors work; the nuclear fuel cycle; radioactivity - its nature and biological effects; (why we need nuclear power) use of energy in the non-communist world -the changing pattern since 1950; use of energy - possible future scenarios; how our future energy needs might be met; (a possible long term nuclear strategy) the history of nuclear power; a possible nuclear power strategy for the Western World; (social and environmental considerations) the hazards to workers in the nuclear power industry; the hazards to the general public (nuclear power industry; reactor operation; transport of radioactive materials; fuel reprocessing; radioactive waste disposal; genetic hazards); the threat to democratic freedom and world peace. (U.K.)

  16. Radioactive Waste Generation in Pyro-SFR Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byung Heung; Ko, Won Il

    2011-01-01

    Which nuclear fuel cycle option to deploy is of great importance in the sustainability of nuclear power. SFR fuel cycle employing pyroprocessing (named as Pyro- SFR Cycle) is one promising fuel cycle option in the near future. Radioactive waste generation is a key criterion in nuclear fuel cycle system analysis, which considerably affects the future development of nuclear power. High population with small territory is one special characteristic of ROK, which makes the waste management pretty important. In this study, particularly the amount of waste generation with regard to the promising advanced fuel cycle option was evaluated, because the difficulty of deploying an underground repository for HLW disposal requires a longer time especially in ROK

  17. Recent situation of the establishment of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hoshiba, Shizuo

    1982-01-01

    In Japan, the development of nuclear power as principal petroleum substitute is actively pursued. Nuclear power generation now accounts for about 17 % of the total power generation in Japan. The business related to nuclear fuel cycle should be established by private enterprises. The basic policy in the establishment of nuclear fuel cycle is the stabilized supply of natural uranium, raise in domestic production of enriched uranium, dFomestic fuel reprocessing in principle, positive plutonium utilization, and so on. After explaining this basic policy, the present situation and problems in the establishment of nuclear fuel cycle are described: securing of uranium resources, securing of enriched uranium, reprocessing of used fuel, utilization of plutonium, management of radioactive wastes. (Mori, K.)

  18. Nuclear closed-cycle gas turbine (HTGR-GT): dry cooled commercial power plant studies

    International Nuclear Information System (INIS)

    McDonald, C.F.; Boland, C.R.

    1979-11-01

    Combining the modern and proven power conversion system of the closed-cycle gas turbine (CCGT) with an advanced high-temperature gas-cooled reactor (HTGR) results in a power plant well suited to projected utility needs into the 21st century. The gas turbine HTGR (HTGR-GT) power plant benefits are consistent with national energy goals, and the high power conversion efficiency potential satisfies increasingly important resource conservation demands. Established technology bases for the HTGR-GT are outlined, together with the extensive design and development program necessary to commercialize the nuclear CCGT plant for utility service in the 1990s. This paper outlines the most recent design studies by General Atomic for a dry-cooled commercial plant of 800 to 1200 MW(e) power, based on both non-intercooled and intercooled cycles, and discusses various primary system aspects. Details are given of the reactor turbine system (RTS) and on integrating the major power conversion components in the prestressed concrete reactor vessel

  19. Nuclear energy technology: theory and practice of commercial nuclear power

    International Nuclear Information System (INIS)

    Knief, R.A.

    1982-01-01

    Reviews Nuclear Energy Technology: Theory and Practice of Commercial Nuclear Power by Ronald Allen Knief, whose contents include an overview of the basic concepts of reactors and the nuclear fuel cycle; the basics of nuclear physics; reactor theory; heat removal; economics; current concerns at the front and back ends of the fuel cycle; design descriptions of domestic and foreign reactor systems; reactor safety and safeguards; Three Mile Island; and a brief overview of the basic concepts of nuclear fusion. Both magnetic and inertial confinement techniques are clearly outlined. Also reviews Nuclear Fuel Management by Harry W. Graves, Jr., consisting of introductory subjects (e.g. front end of fuel cycle); core physics methodology required for fuel depletion calculations; power capability evaluation (analyzes physical parameters that limit potential core power density); and fuel management topics (economics, loading arrangements and core operation strategies)

  20. Nuclear power development on the basis of new concepts of nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    Adamov, E.O.; Orlov, V.V.

    2001-01-01

    Current state of nuclear power in the world has been considered and the reasons for its falling short of the great expectations relating to its vigorous development in the outgoing century are considered. Anticipated energy demand of the mankind in the next century is evaluated, suggesting that with exhausted resources of cheap fossil fuel and ecological restrictions it can be satisfied by means of a new nuclear technology meeting the requirements of large-scale power generation in terms of safety and economic indices, moreover, the technology can be elaborated in the context of achievements made in civil and military nuclear engineering. Since the developing countries are the most interested parties, it is just their initiative in the development of nuclear technology at the next stage that could provide an impetus for its actual advance. It is shown that large-scale development of nuclear power, being adequate to increase in energy demand, is possible even if solely large NPP equipped with breeders providing BR (1 are constructed). Requirements for the reactor and fuel cycle technologies are made, their major aspects being: efficient utilization of Pu accumulated and reduction of U specific consumption by at least an order of magnitude, natural inherent safety and deterministic elimination of accidents involving high radioactive releases, assurance of a balance between radiation hazard posed by radioactive wastes disposed and uranium extracted from the ground, nuclear weapons nonproliferation due to fuel reprocessing ruling out potentiality of Pu diversion, reduction of the new generation reactor costs below the costs of today's LWR. (authors)

  1. Impacts of nuclear fuel cycle costs on nuclear power generating costs

    International Nuclear Information System (INIS)

    Bertel, E.; Naudet, G.

    1989-01-01

    Fuel cycle costs are one of the main parameters to evaluate the competitiveness of various nuclear strategies. The historical analysis based on the French case shows the good performances yet achieved in mastering elementary costs in order to limit global fuel cycle cost escalation. Two contrasted theoretical scenarios of costs evolution in the middle and long term have been determined, based upon market analysis and technological improvements expected. They are used to calculate the global fuel cycle costs for various fuel management options and for three strategies of nuclear deployment. The results illustrate the stability of the expected fuel cycle costs over the long term, to be compared to the high incertainty prevailing for fossil fueled plants. The economic advantages of advanced technologies such as MOX fueled PWRs are underlined

  2. Nuclear Fuel Cycle Introductory Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  3. Nuclear Fuel Cycle Introductory Concepts

    International Nuclear Information System (INIS)

    Karpius, Peter Joseph

    2017-01-01

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  4. Perspective of nuclear fuel cycle for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Fukuda, K.; Bonne, A.; Kagramanian, V.

    2001-01-01

    Nuclear power, on a life-cycle basis, emits about the same level of carbon per unit of electricity generated as wind and solar power. Long-term energy demand and supply analysis projects that global nuclear capacities will expand substantially, i.e. from 350 GW today to more than 1,500 GW by 2050. Uranium supply, spent fuel and waste management, and a non-proliferation nuclear fuel cycle are essential factors for sustainable nuclear power growth. An analysis of the uranium supply up to 2050 indicates that there is no real shortage of potential uranium available if based on the IIASA/WEC scenario on medium nuclear energy growth, although its market price may become more volatile. With regard to spent fuel and waste management, the short term prediction foresees that the amount of spent fuel will increase from the present 145,000 tHM to more than 260,000 tHM in 2015. The IPCC scenarios predicted that the spent fuel quantities accumulated by 2050 will vary between 525 000 tHM and 3 210 000 tHM. Even according to the lowest scenario, it is estimated that spent fuel quantity in 2050 will be double the amount accumulated by 2015. Thus, waste minimization in the nuclear fuel cycle is a central tenet of sustainability. The proliferation risk focusing on separated plutonium and resistant technologies is reviewed. Finally, the IAEA Project INPRO is briefly introduced. (author)

  5. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Patarin, L.

    2002-01-01

    This book treats of the different aspects of the industrial operations linked with the nuclear fuel, before and after its use in nuclear reactors. The basis science of this nuclear fuel cycle is chemistry. Thus a recall of the elementary notions of chemistry is given in order to understand the phenomena involved in the ore processing, in the isotope enrichment, in the fabrication of fuel pellets and rods (front-end of the cycle), in the extraction of recyclable materials (residual uranium and plutonium), and in the processing and conditioning of wastes (back-end of the fuel cycle). Nuclear reactors produce about 80% of the French electric power and the Cogema group makes 40% of its turnover at the export. Thus this book contains also some economic and geopolitical data in order to clearly position the stakes. The last part, devoted to the management of wastes, presents the solutions already operational and also the research studies in progress. (J.S.)

  6. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  7. Nuclear power, nuclear fuel cycle and waste management: Status and trends 1995. Part C of the IAEA Yearbook 1995

    International Nuclear Information System (INIS)

    1995-09-01

    This report was jointly prepared by the Division of Nuclear Power and the Division of Nuclear Fuel Cycle and Waste Management as part of an annual overview of both global nuclear industry activities and related IAEA programmes. This year's report focuses on activities during 1994 and the status at the end of that year. The trends in the industry are projected to 2010. Special events and highlights of IAEA activities over the past year are also presented. Refs, figs and tabs

  8. Nuclear Power, nuclear fuel cycle and waste management: Status and trends 1996. Part C of the IAEA yearbook 1996

    International Nuclear Information System (INIS)

    1996-09-01

    This report was jointly prepared by the Division of Nuclear Power and the Division of Nuclear Fuel Cycle and Waste Management as part of an annual overview of both global nuclear industry activities and related IAEA programmes. This year's report focuses on activities during 1995 and the status at the end of that year. The trends in the industry are projected to the year 2010. Special events and highlights of IAEA activities over the past year are also presented. Refs, figs, tabs

  9. Nuclear power - a reliable future

    International Nuclear Information System (INIS)

    Valeca, Serban

    2002-01-01

    The Ministry of Education and Research - Department of Research has implemented a national Research and Development program taking into consideration the following: - the requirements of the European Union on research as a factor of development of the knowledge-based society; - the commitments to the assimilation and enforcement of the recommendations of the European Union on nuclear power prompted by the negotiations of the sections 'Science and Research' and ' Energy' of the aquis communautaire; - the major lines of interest in Romania in the nuclear power field established by National Framework Program of Cooperation with IAEA, signed on April 2001; - the short and medium term nuclear options of the Romanian Government; - the objectives of the National Nuclear Plan. The major elements of the nuclear research and development program MENER (Environment, Energy, Resources) supported by the Department of Research of the Ministry of Education and Research are the following: - reactor physics and nuclear fuel management; - operation safety of the Power Unit 1 of Cernavoda Nuclear Electric Power Station; - improved nuclear technological solutions at the Cernavoda NPP; - development of technologies for nuclear fuel cycle; - operation safety of the other nuclear plants in Romania; - assessment of nuclear risks and estimation of the radiological impact on the environment; - behavior of materials under the reactor service conditions and environmental conditions; - design of nuclear systems and equipment for the nuclear power stations and nuclear facilities; - radiological safety; - application of nuclear techniques and technologies in industry, agriculture, medicine and other fields of social life. Research to develop high performance methods and equipment for monitoring nuclear impact on environment are conducted to endorse the measures for radiation protection. Also mentioned are the research on implementing a new type of nuclear fuel cycle in CANDU reactors as well as

  10. International Nuclear Fuel Cycle Fact Book. Revision 5

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  11. International Nuclear Fuel Cycle Fact Book. Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  12. International nuclear fuel cycle fact book. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  13. International nuclear fuel cycle fact book. Revision 4

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  14. New trends in nuclear power engineering development

    International Nuclear Information System (INIS)

    Krasin, A.K.

    1974-01-01

    The specific features are considered of three designs of nuclear power plants with fast reactors: three-circuit nuclear power plant with liquid sodium as primary and secondary coolant, in the third circuit water vapor being used as turbine working medium, dual cycle nuclear power plant with pressurized helium as primary coolant and water vapor as turbine working medium, direct cycle nuclear power plant with a dissociating gas (nitrogen tetroxide N 2 O 4 ) as reactor coolant and turbine working medium. The version of the direct cycle nuclear power plant with dissociating N 2 O 4 was proposed and being developed by the Institute of Nuclear Engineering of the Academy of Sciencies of the BSSR. The thermal and physical properties of the dissociating gas allow a high-power-density reactor core to be used with a hard neutron spectra resulting in a high breeding ratio and a short doubling time. The pressure range from 150 to 170 bar was proven for this coolant under laboratory conditions and structural materials were chosen that ensure all the components of the direct cycle nuclear power plant to be workable. At present it is difficult to say which of the three versions is the most advantageous. The further development of a full-scale prototypes of a commercial nuclear power plant with a fast reactor and investigation of their technical and economic parameters remain the problems of utmost importance. A possible use of nuclear reactors is shortly considered for process heat production, in ferrous metallurgy, for hydrogen and new isotope production, and for radiation chemistry as well

  15. EPRI nuclear fuel-cycle accident risk assessment

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The present results of the nuclear fuel-cycle accident risk assessment conducted by the Electric Power Research Institute show that the total risk contribution of the nuclear fuel cycle is only approx. 1% of the accident risk of the power plant; hence, with little error, the accident risk of nuclear electric power is essentially that of the power plant itself. The power-plant risk, assuming a very large usage of nuclear power by the year 2005 is only approx. 0.5% of the radiological risk of natural background. The smallness of the fuel-cycle risk relative to the power-plant risk may be attributed to the lack of internal energy to drive an accident and the small amount of dispersible material. This work aims at a realistic assessment of the process hazards, the effectiveness of confinement and mitigation systems and procedures, and the associated likelihood of errors and the estimated size of errors. The primary probabilistic estimation tool is fault-tree analysis, with the release source terms calculated using physicochemical processes. Doses and health effects are calculated with CRAC (Consequences of Reactor Accident Code). No evacuation or mitigation is considered; source terms may be conservative through the assumption of high fuel burnup (40,000 MWd/t) and short cooling period (90 to 150 d); high-efficiency particulate air filter efficiencies are derived from experiments

  16. Commercialization of nuclear fuel cycle business

    International Nuclear Information System (INIS)

    Yakabe, Hideo

    1998-01-01

    Japan depends on foreign countries almost for establishing nuclear fuel cycle. Accordingly, uranium enrichment, spent fuel reprocessing and the safe treatment and disposal of radioactive waste in Japan is important for securing energy. By these means, the stable supply of enriched uranium, the rise of utilization efficiency of uranium and making nuclear power into home-produced energy can be realized. Also this contributes to the protection of earth resources and the preservation of environment. Japan Nuclear Fuel Co., Ltd. operates four business commercially in Rokkasho, Aomori Prefecture, aiming at the completion of nuclear fuel cycle by the technologies developed by Power Reactor and Nuclear Fuel Development Corporation and the introduction of technologies from foreign countries. The conditions of location of nuclear fuel cycle facilities and the course of the location in Rokkasho are described. In the site of about 740 hectares area, uranium enrichment, burying of low level radioactive waste, fuel reprocessing and high level waste control have been carried out, and three businesses except reprocessing already began the operation. The state of operation of these businesses is reported. Hereafter, efforts will be exerted to the securing of safety through trouble-free operation and cost reduction. (K.I.)

  17. Nuclear power experience

    International Nuclear Information System (INIS)

    1983-01-01

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  18. Evaluation and optimization of a supercritical carbon dioxide power conversion cycle for nuclear applications

    International Nuclear Information System (INIS)

    Harvego, Edwin A.; McKellar, Michael G.

    2011-01-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO 2 ) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550degC and 750degC. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550degC. The particular power cycle investigated in this paper is a supercritical CO 2 recompression Brayton Cycle. The CO 2 recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550degC versus 750degC. However, the supercritical CO 2 recompression Brayton Cycle requires a high end operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle high end operating pressure of 7 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO 2 recompression Brayton cycle for different reactor coolant outlet temperatures and mass flow rates. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550degC and 850degC. Sensitivity calculations were also performed to determine the affect of reactor coolant mass flow rates for a reference reactor coolant outlet temperature of 750degC. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO 2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the

  19. Ecological problems of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Babaev, N S; Demin, V F; Kuz' min, I I; Stepanchikov, V I [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii

    1978-10-01

    Modern power sources including nuclear one are characterized. Basic information on radiation protection of man and biosphere is presented. Problems of radiation effect of nuclear fuel cycle enterprises on population and environment are discussed. Comparative evaluation of nuclear and thermal power effect on biosphere is made. It is shown that nuclear power is the safest power source at the present development state. The conclusion is drawn that the use of nuclear energy controlled and limited by scientifically founded norms does not present radiation hazard for population and environment.

  20. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1980-01-01

    The nuclear power debate hinges upon three major issues: radioactive waste disposal, reactor safety and proliferation. An alternative strategy for waste disposal is advocated which involves disposing of the radwaste (immobilized in SYNROC, a titanate ceramic waste form) in deep (4 km) drill-holes widely dispersed throughout the entire country. It is demonstrated that this strategy possesses major technical (safety) advantages over centralized, mined repositories. The comparative risks associated with coal-fired power generation and with the nuclear fuel cycle have been evaluated by many scientists, who conclude that nuclear power is far less hazardous. Considerable improvements in reactor design and safety are readily attainable. The nuclear industry should be obliged to meet these higher standards. The most hopeful means of limiting proliferation lies in international agreements, possibly combined with international monitoring and control of key segments of the fuel cycle, such as reprocessing

  1. Energy analysis of nuclear power plants and their fuel cycle

    International Nuclear Information System (INIS)

    Held, C.; Moraw, G.; Schneeberger, M.; Szeless, A.

    1977-01-01

    Energy analysis has become an increasingly feasible and practical additional method for evaluating the engineering, economic and environmental aspects of power producing systems. Energy analysis compares total direct and indirect energy investment into construction and operation of power plants with their lifetime energy output. Statically we have applied this method to nuclear power producing sytems and their fuel cycles. Results were adapted to countries with various levels of industrialization and resources. With dynamic energy analysis different scenarios have been investigated. For comparison purposes fossil fueled and solar power plants have also been analyzed. By static evaluation it has been shown that for all types of power plants the energy investment for construction is shortly after plant startup being repaid by energy output. Static analyses of nuclear and fossil fuels have indicated values of fuel concentrations below which more energy is required for their utilization than can be obtained from the plants they fuel. In a further step these global results were specifically modified to the economic situations of countries with various levels of industrialization. Also the influence of energy imports upon energy analysis has been discussed. By dynamic energy analyses the cumulative energy requirements for specific power plant construction programs have been compared with their total energy output. Investigations of this sort are extremely valuable not only for economic reasons but especially for their usefulness in showing the advantages and disadvantages of a specific power program with respect to its alternatives. Naturally the impact of these investigations on the fuel requirements is of importance especially because of the today so often cited ''valuable cumulated fossil fuel savings''

  2. Nuclear fuel cycles : description, demand and supply estimates

    International Nuclear Information System (INIS)

    Gadallah, A.A.; Abou Zahra, A.A.; Hammad, F.H.

    1985-01-01

    This report deals with various nuclear fuel cycles description as well as the world demand and supply estimates of materials and services. Estimates of world nuclear fuel cycle requirements: nuclear fuel, heavy water and other fuel cycle services as well as the availability and production capabilities of these requirements, are discussed for several reactor fuel cycle strategies, different operating and under construction fuel cycle facilities in some industrialized and developed countries are surveyed. Various uncertainties and bottlenecks which are recently facing the development of some fuel cycle components are also discussed, as well as various proposals concerning fuel cycle back-end concepts. finally, the nuclear fuel cycles activities in some developing countries are reviewed with emphasis on the egyptian plans to introduce nuclear power in the country. 11 fig., 16 tab

  3. Nuclear power life cycle management, managing nuclear knowledge, and nuclear security. Introductory statement to the 5th scientific forum during the 46th session of the IAEA General Conference. Vienna, 17 September 2002

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2002-01-01

    The document reproduces the text of the introductory statement made by the Director General of the IAEA at the 5th scientific forum organized during the 46th session of the IAEA General Conference, Vienna, 17 september 2002, on the nuclear power life cycle management, managing nuclear knowledge, and nuclear security. In the area of nuclear power life cycle management two aspects were emphasized: licence extension and facility decommissioning. Nuclear knowledge management includes ensuring the continued availability of the qualified personnel. Nuclear security must be considered for all nuclear applications, in a manner that encompasses all phases of nuclear activity - the use, storage and transport of nuclear and other radioactive material, as well as the design, operation, and decommissioning of nuclear facilities

  4. Cooling of nuclear power stations with high temperature reactors and helium turbine cycles

    International Nuclear Information System (INIS)

    Foerster, S.; Hewing, G.

    1977-01-01

    On nuclear power stations with high temperature reactors and helium turbine cycles (HTR-single circuits) the residual heat from the energy conversion process in the primary and intermediate coolers is removed from cycled gas, helium. Water, which is circulated for safety reasons through a closed circuit, is used for cooling. The primary and intermediate coolers as well as other cooling equipment of the power plant are installed within the reactor building. The heat from the helium turbine cycle is removed to the environment most effectively by natural draught cooling towers. In this way a net plant efficiency of about 40% is attainable. The low quantities of residual heat thereby produced and the high (in comparison with power stations with steam turbine cycles) cooling agent pressure and cooling water reheat pressure in the circulating coolers enable an economically favourable design of the overall 'cold end' to be expected. In the so-called unit range it is possible to make do with one or two cooling towers. Known techniques and existing operating experience can be used for these dry cooling towers. After-heat removal reactor shutdown is effected by a separate, redundant cooling system with forced air dry coolers. The heat from the cooling process at such locations in the power station is removed to the environment either by a forced air dry cooling installation or by a wet cooling system. (orig.) [de

  5. International nuclear power status 2001

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2002-04-01

    This report is the eighth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2001, the report contains: 1) General trends in the development of nuclear power; 2) Nuclear terrorism; 3) Statistical information on nuclear power production (in 2000); 4) An overview of safety-relevant incidents in 2001; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  6. Co-operation of the CMEA member countries in the developing power reactors of various types, including some aspects of their nuclear fuel cycles

    International Nuclear Information System (INIS)

    Barbur, I.; Barchenkov, A.; Molnar, L; Panasenkov, A.; Tolpygo, V.; Hake, V.; Shcherbinin, B.

    1977-01-01

    The report gives an account of the problems of projected development of atomic power and evaluates its role in the fuel and power complex and long-range development of interconnected power systems of the CMEA member countries. The report emphasizes the importance of scientific and technical co-operation in the creation of power reactors on thermal and fast neutrons with 1000-1500 MW unit electric capacity as well as in the elaboration of nuclear plants for heating services. It notes the positive experience of the International scientific and research group of scientists of the CMEA member countries carrying out reactor-physical studies on the critical assembly and its contribution to the elaboration of power reactors. The report contains basic conclusions from the development forecast for nuclear power of the CMEA member countries up to 1990 including forecasting methodology; role of nuclear power plants in saving natural and enriched uranium for a projected period; impact of nuclear power development rates on its structure (thermal and fast reactor ratio); relation between the beginning of mass commissioning of nuclear power plants with fast reactors and the integral demand for nuclear fuel; scale of required capacities of fuel cycle services; time dependence of fuel cycle on nuclear fuel requirements. It examines the problems and lists the results of scientific and technical co-operation of the CMEA member countries in the field of fuel cycle, including the transport of spent nuclear fuel, its recovery, reprocessing and radioactive waste disposal. Particular questions of co-operation of the CMEA member countries to secure radiation safety of nuclear power plants and environmental protection are analyzed. The report notes the role of international economic associations - ''Interatomenergo'' and ''Interatominstrument'' - in the accelerated development of nuclear power on the basis of cooperation and specialization in the manufacture of equipment for nuclear power

  7. Benefits and hazards of nuclear power

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.; Wolters, J.

    1979-09-01

    Compilation of a seminar at the KFA Juelich on topical problems of nuclear power. Subjects: Energy demand, its expected development and possibilities of coverage; physical fundamentals and technical realisation of power generation by nuclear fission; fuel cycle problems and solutions; effects of radioactive radiation; safety of nuclear power plants and the nuclear hazard as compared with other hazards. (orig./RW) [de

  8. Securing a safer, greener, expandable nuclear fuel cycle supply chain for future power production

    International Nuclear Information System (INIS)

    Capus, Georges

    2009-01-01

    After looking at what is necessary to sustainably ensure the global nuclear power plant fleet expansion, it becomes appearant that advanced reactor design should be accompanied with a greener and more flexible fuel cycle capability. The financial crisis has invaded all the front pages and our thoughts. However it has not rescheduled the growth of world population or reduced the desire of people in emerging economies to achieve a higher level of 'development'; nor has it alleviated climate change issues that demand CO2 constrained power sources. What is the outlook for nuclear power? On a worldwide basis, we have today a significant fleet of nuclear power plants, operating well, upgrading output, extending lifetime, and producing not only a safe reliable flow of electricity but a good flow of cash as well. For the countries hosting significant shares of this fleet, their nuclear power plants are increasingly precious assets, and despite the financial crisis, most of them are considering expansion of their nuclear fleets. For the others, the desire to access such a reliable and ultimately cheap source of energy will last longer than the temporary difficulties to get its financing. In short, the outlook for a massive phase of new nuclear builds remains very likely. Then comes the consequential issue of the nuclear fuel supply chain. From uranium exploration and production to back end solutions, most of the existing facilities were designed and startup decades ago. The question is therefore, does this supply chain offer the requested characteristics to sustain the nuclear power plants fleet for the long run? By requested characteristics, it is meant not only adequate capacity and improvement of quality, but also environmentally friendly new designs and processes. This paper is aimed at recalling the current situation of the supply chain, then at describing the status of major projects, and finally at identifying some gaps and issues

  9. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-01-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the ''front end'' and ''back end'' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of the Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  10. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-10-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the 'front end' and 'back end' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of The Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  11. Scientific forum during the 46th regular session of the IAEA General Conference. Topical issues: Nuclear Power - Life Cycle Management; Managing Nuclear Knowledge; Nuclear Security. Programme and synopses

    International Nuclear Information System (INIS)

    2002-01-01

    In response to the recommendations of several Agency advisory committees, to address issues related to nuclear power life cycle management, knowledge management in the field of nuclear power, and security of radiation sources and other nuclear material the IAEA is organizing the scientific forum to be held during the General Conference. The purpose of the meeting is to sharpen awareness and understanding of the emerging concerns about the aging of nuclear power plants, maintenance and preservation of knowledge and expertise in nuclear science, technology and applications, to emphasise the significance of security and physical protection of radiation sources and other radioactive material, and to better comprehend the role of the Agency in these processes

  12. International nuclear fuel cycle fact book. Revision 6

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2

  13. NUCLEAR POWER PLANT

    Science.gov (United States)

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  14. Nuclear power and weapons proliferation

    International Nuclear Information System (INIS)

    Greenwood, T.; Rathjens, C.W.; Ruina, J.

    1977-01-01

    The relationship between nuclear weapons development and nuclear electric power is examined. A brief description of nuclear weapons design is first given. This is then followed by a discussion of various aspects of nuclear power technology and of how they affect a nuclear weapon programme. These include fuel cycles, chemical reprocessing of spent fuel, uranium enrichment, and the control of dissemination of nuclear technology. In conclusion there is a discussion of possible political and institutional controls for limiting nuclear proliferation. (U.K.)

  15. Nuclear power technology system with molten salt reactor for transuranium nuclides burning in closed fuel cycle

    International Nuclear Information System (INIS)

    Alekseev, P.N.; Dudnikov, A.A.; Ignatiev, V.V.; Prusakov, V.N.; Ponomarev-Stepnoy, N.N.; Subbotin, S.A.

    2000-01-01

    A concept of nuclear power technology system with homogeneous molten salt reactors for burning and transmutation of long-lived radioactive toxic nuclides is considered in the paper. Disposition of such reactors in enterprises of fuel cycle allows to provide them with power and facilitate solution of problems with rad waste with minimal losses. (Authors)

  16. Nuclear energy: The role of innovation. Vienna, 23 June 2003. Conference on innovative technologies for nuclear fuel cycles and nuclear power

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2003-01-01

    First, the scope of our vision for the future of nuclear power must be global. While we often point out that nuclear power currently provides about 16% of global electricity, we note less often that some 83% of nuclear capacity is concentrated in industrialized countries. If nuclear power is to play a major role in meeting this demand for additional energy, it will require innovative approaches - both technological and otherwise - to match the needs of users not only in industrialized but also in developing countries. Secondly, innovation must be responsive to concerns that remain about nuclear power, and should be 'smart' in taking into account new developments and expected future trends. For example, innovation should ensure that new reactor and fuel cycle technologies incorporate inherent safety features, proliferation resistant characteristics, and reduced generation of waste. Consideration should be given to physical protection and other characteristics that will reduce the vulnerability of nuclear facilities and materials to theft, sabotage and terrorist acts. Awareness of needs other than electricity generation can help to make the nuclear contribution more substantial. Third, nuclear innovation efforts should be co-operative and collaborative in nature. The most important outcome of this collaboration may be, as I have already suggested, a better understanding of user needs and requirements worldwide. The IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was developed with precisely this objective in mind - to engender the broadest possible international collaboration, to permit the scientific and technological innovation that would ensure that nuclear energy remains a viable option for future generations. INPRO recently completed its work on defining user requirements related to economics, safety, proliferation resistance and the environment, bringing Phase 1A of the project to a close. The INPRO Steering Committee last

  17. Financing the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Stephany, M.

    1975-01-01

    While conventional power stations usually have fossil fuel reserves for only a few weeks, nuclear power stations, because of the relatively long time required for uranium processing from ore extraction to the delivery of the fuel elements and their prolonged in-pile time, require fuel reserves for a period of several years. Although the specific fuel costs of nuclear power stations are much lower than those of conventional power stations, this results in consistently higher financial requirements. But the problems involved in financing the nuclear fuel do not only include the aspect of financing the requirements of reactor operators, but also of financing the facilities of the nuclear fuel cycle. As far as the fuel supply is concerned, the true financial requirements greatly exceed the mere purchasing costs because the costs of financing are rather high as a consequence of the long lead times. (orig./UA) [de

  18. International nuclear power status 2002

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2003-03-01

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  19. International nuclear fuel cycle fact book. Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  20. Contribution of Heavy Water Board in nuclear fuel cycle technologies. Contributed Paper IT-03

    International Nuclear Information System (INIS)

    Mohanty, P.R.

    2014-01-01

    The three stage Indian nuclear power programme envisages use of closed nuclear fuel cycle and thorium utilization as its mainstay for long term energy security on sustainable basis. India is committed to realize this objective through the development and deployment of frontier technologies pertaining to all aspects of a closed nuclear fuel cycle. Comprehensive indigenous capabilities have been developed in all aspects of nuclear power and associated fuel cycles. Heavy Water Board (HWB), with its abiding objective of fulfilling demand of heavy water for India's flourishing nuclear power program, is one of the frontrunner in Nuclear Fuel Cycle Technology. HWB is now engaged in wide spectrum of activities in various facets of fuel cycle covering all the three stages of Indian Nuclear Power Programme. HWB is contributing to Nuclear Fuel Cycle through large scale production and sustained supply of key input materials including heavy water, solvents for nuclear hydrometallurgy, 10 B enriched boron etc

  1. Impacts on human health from the coal and nuclear fuel cycles and other technologies associated with electric power generation and transmission

    International Nuclear Information System (INIS)

    Radford, E.P.

    1980-01-01

    Major public health impacts of electric power generation and transmission associated with the nuclear fuel cycle and with coal use are evaluated. Only existing technology is evaluated. The only health effects of concern are those leading to definable human disease and injury. Health effects are scaled to a nominal 1000 Megawatt (electric) plant fueled by either option. Comparison of the total health effects to the general public gives: nuclear, 0.03 to 0.05 major health effects per 1000 MWe per year; coal, 0.7 to 3.7 per 1000 MWe per year. Thus for the general public the health risks from the coal cycle are about 50 times greater than for the nuclear cycle. Health effects to workers in the industry are currently quite high. For the nuclear cycle, 4.6 to 5.1 major health impacts per 1000 MWe per year; for coal, 6.5 to 10.9. The two-fold greater risk for the coal cycle is primarily due to high injury rates in coal miners. There is no evidence that electrical transmission contributes any health effects to the general public, except for episodes where broken power lines come in contact with people. For power line workers, the risk is estimated at 0.1 serious injury per 1000 MWe per year

  2. MHR fuel cycle options for future sustainability of nuclear power

    International Nuclear Information System (INIS)

    Baxter, Alan; Venneri, Francesco; Rodriguez, Carmelo; Fikani, Michael

    2005-01-01

    The future sustainability of the nuclear option is not significantly tied to the level of resources. For example, current high quality uranium reserves (∼3.34x10 6 tons) are enough for more than 55 years at present consumption rates (IAEA estimate). Doubling of the present uranium ore price (∼$26/kg) could create about a tenfold increase in resources, providing more than 550 years of supply at present rates (World Nuclear Association estimate). There are also thorium reserves which are estimated to be about three times those of uranium, and would allow for a significant increase in annual consumption levels. The key to a sustainable nuclear future is really tied to the political and technical problems of long term waste disposal, and the perceived risks of nuclear weapons proliferation. Thus fuel cycle options for a sustainable nuclear future must address and solve these issues. High temperature, Gas-Cooled, Graphite Moderated, reactors (MHRs) have nuclear and operational characteristics to provide multiple fuel cycle options to solve these issues. Three fuel cycles for the MHD are described in this paper, and their capabilities for meeting a sustainable nuclear future in terms of nuclear waste minimization and destruction, and reduction of proliferation risk, are discussed. (author)

  3. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    International Nuclear Information System (INIS)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-01-01

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study

  4. Impacts on human health from the coal and nuclear fuel cycles and other technologies associated with electric power generation and transmission

    International Nuclear Information System (INIS)

    Radford, E.P.

    1980-07-01

    The report evaluates major public health impacts of electric power generation and transmission associated with the nuclear fuel cycle and with coal use. Only existing technology is evaluated. For the nuclear cycle, effects of future use of fuel reprocessing and long-term radioactive waste disposal are briefly considered. The health effects of concern are those leading to definable human disease and injury. Health effects are scaled to numbers of persons and activities associated with a nominal 1000-megawatt electric plant fueled by either option. Comparison of the total health effects to the general public shows that the health risks from the coal cycle are about 50 times greater than for the nuclear cycle (coal, 0.7-3.7 major health effects per 1000 MWe per year; nuclear, 0.03-0.05 per 1000 MWe per year). For workers, these rates are higher. No evidence is found that electrical transmission contributes any health effects to the general public, except when broken power lines come in contact with people

  5. Nuclear power in western society

    International Nuclear Information System (INIS)

    Franklin, N.L.

    1977-01-01

    The degree to which problems of public acceptance have contributed to the slowdown in progress of nuclear power in Western European countries and the USA is discussed. Some of the effects on the nuclear power industry, i.e. the electrical utilities, the power station suppliers, and the fuel cycle contractors are described. The problem of the lack of public acceptance is examined by consideration of four areas: the position of the employee working in nuclear installations, opposition from the local community, the question of terrorism and its impact on nuclear policy, and finally, what is felt to constitute the greatest anxiety concerning nuclear power, that of proliferation. (U.K.)

  6. Feasibility and desirability of employing the thorium fuel cycle for power generation - 254

    International Nuclear Information System (INIS)

    Sehgal, B.R.

    2010-01-01

    Thorium fuel cycle for nuclear power generation has been considered since the very start of the nuclear power era. In spite of a very large amount of research, experimentation, pilot scale and prototypic scale installations, the thorium fuel was not adopted for large scale power generation [1,2]. This paper reviews the developments over the years on the front and the back-end of the thorium fuel cycle and describes the pros and cons of employing the thorium fuel cycle for large generation of nuclear power. It examines the feasibility and desirability of employing the thorium fuel cycle in concert with the uranium fuel cycle for power generation. (authors)

  7. The debate on nuclear power

    International Nuclear Information System (INIS)

    Bethe, H.A.

    1977-01-01

    The need for nuclear power is pointed out. The Study Group on Nuclear Fuel Cycles of the American Physical Society has studied the problem of waste disposal in detail and has found that geological emplacement leads to safe waste disposal. The relation between nuclear power and weapons proliferation is discussed. The problem of preventing proliferation is primarily a political problem, and the availability of nuclear power will contribute little to the potential for proliferation. However, to further reduce this contribution, it may be desirable to keep fast-breeder reactors under international control and to use only converters for national reactors. The desirable converter is one which has a high conversion ratio, probably one using the thorium cycle, 233 U, and heavy water as the moderator. The nuclear debate in the United States of America is discussed. Work on physical and technical safeguards in the USA against diversion of fissile materials is mentioned. (author)

  8. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    The nuclear fuel cycle covers the procurement and preparation of fuel for nuclear power reactors, its recovery and recycling after use and the safe storage of all wastes generated through these operations. The facilities associated with these activities have an extensive and well documented safety record accumulated over the past 40 years by technical experts and safety authorities. This report constitutes an up-to-date analysis of the safety of the nuclear fuel cycle, based on the available experience in OECD countries. It addresses the technical aspects of fuel cycle operations, provides information on operating practices and looks ahead to future activities

  9. The future of nuclear power

    International Nuclear Information System (INIS)

    Corak, Z.

    2004-01-01

    Energy production and use will contribute to global warming through greenhouse gas emissions in the next 50 years. Although nuclear power is faced with a lot of problems to be accepted by the public, it is still a significant option for the world to meet future needs without emitting carbon dioxide (CO 2 ) and other atmospheric pollutants. In 2002, nuclear power provided approximately 17% of world energy consumption. There is belief that worldwide electricity consumption will increase in the next few years, especially in the developing countries followed by economic growth and social progress. Official forecasts shows that there will be a mere increase of 5% in nuclear electricity worldwide by 2020. There are also predictions that electricity use may increase at 75%. These predictions require a necessity for construction of new nuclear power plants. There are only a few realistic options for reducing carbon dioxide emissions from electricity generation: Increase efficiency in electricity generation and use; Expand use of renewable energy sources such as wind, solar, biomass and geothermal; Capture carbon dioxide emissions at fossil-fuelled electric generating plants and permanently sequester the carbon; Increase use of nuclear power. In spite of the advantages that nuclear power has, it is faced with stagnation and decline today. Nuclear power is faced with four critical problems that must be successfully defeat for the large expansion of nuclear power to succeed. Those problems are cost, safety, waste and proliferation. Disapproval of nuclear power is strengthened by accidents that occurred at Three Mile Island in 1979, at Chernobyl in 1986 and by accidents at fuel cycle facilities in Japan, Russia and in the United States of America. There is also great concern about the safety and security of transportation of nuclear materials and the security of nuclear facilities from terrorist attack. The paper will provide summarized review regarding cost, safety, waste and

  10. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  11. Benefits and risks of nuclear power

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.

    1977-03-01

    Discussion, in a popular form, of issues of interest for an unemotional information of the public on problems of nuclear power: 1) Energy consumption, its assumed growth, and possible ways of supply; 2) the physical fundamental and technical realisation of power generation by nuclear fission; 3) problems of the fuel cycle and possible solutions; 4) the effects of radioactive radiation; 5) the safety of nuclear power plants and the risks of nuclear power as compared to other technical and natural risks. (orig./HP) [de

  12. Nuclear power generation and nuclear non-proliferation

    International Nuclear Information System (INIS)

    Rathjens, G.

    1979-01-01

    The main points existing between nuclear energy development and nuclear non-proliferation policy are reviewed. The solar energy and other energy will replace for nuclear fission energy in the twenty first century, but it may not occur in the first half, and the structure has to be established to continue the development of nuclear fission technology, including breeder reactor technology. In the near future, it should be encouraged to use advanced thermal reactors if they are economic and operated with safety. Miserable results may be created in the worldwide scale, if a serious accident occurs anywhere or nuclear power reactors are utilized for military object. It is estimated to be possible to develop the ability of manufacturing nuclear weapons within two or three years in the countries where the industry is highly developed so as to generate nuclear power. It is also difficult to take measures so that nuclear power generation does not increase nuclear proliferation problems, and it is necessary to mitigate the motive and to establish the international organization. Concensus exists that as the minimum security action, the storage and transportation of materials, which can be directly utilized for nuclear weapons, should be decided by the international system. The most portions of sensitive nuclear fuel cycle should be put under the international management, as far as possible. This problem is discussed in INFCE. Related to the nuclear nonproliferation, the difference of policy in fuel cycle problems between USA and the other countries, the enrichment of nuclear fuel material, especially the reasons to inhibit the construction of additional enrichment facilities, nuclear fuel reprocessing problems, radioactive waste disposal, plutonium stock and plutonium recycle problems are reviewed. (Nakai, Y.)

  13. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  14. International issue: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    In this special issue a serie of short articles of informations are presented on the following topics: the EEC's medium term policy regarding the reprocessing and storage of spent fuel, France's natural uranium supply, the Pechiney Group in the nuclear field, zircaloy cladding for nuclear fuel elements, USSI: a major French nuclear engineering firm, gaseous diffusion: the only commercial enrichment process, the transport of nuclear materials in the fuel cycle, Cogema and spent fuel reprocessing, SGN: a leader in the fuel cycle, quality control of mechanical, thermal and termodynamic design in nuclear engineering, Sulzer's new pump testing station in Mantes, the new look of the Ateliers et Chantiers de Bretagne, tubes and piping in nuclear power plants, piping in pressurized water reactor. All these articles are written in English and in French [fr

  15. The Union view of back end fuel cycle provisions for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    After a long political and technical discussion, the German trade unions united in the German Federation of Labor (DGB) arrived at the finding that back end fuel cycle provisions for nuclear power plants in the Federal Republic of Germany, in addition to the present concept of the Government providing for a reprocessing plant, should also include studies of the alternative possibility to store spent fuel elements over long periods of time, perhaps with a possibility to recover them later. That decision is also based on a report by the Nuclear Technology Working Group of the Metal Workers Union (IG Metall) and the Public Workers Union (OeTV). (orig.) [de

  16. International nuclear power status 2000

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2001-03-01

    This report is the seventh in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2000, the report contains: 1. General trends in the development of nuclear power. 2. Deposition of low-level radioactive waste. 3. Statistical information on nuclear power production (in 1999). 4. An overview of safety-relevant incidents in 2000. 5. The development in Sweden. 6. The development in Eastern Europe. 7. The development in the rest of the world. 8. Trends in the development of reactor types. 9. Trends in the development of the nuclear fuel cycle. (au)

  17. Nuclear power and environmental policy

    International Nuclear Information System (INIS)

    Pershing, J.

    2000-01-01

    Nuclear power, which presently accounts for approximately 20% of global electricity generation is still beset with environmental problems. Such problems are found throughout the fuel cycle - from mining and milling to processing, to plant operation and finally to waste disposal. While projected radioactive releases for normal operation is extremely low, much of the environmental risk comes from the potential for accidents. A list of the most significant nuclear accidents that occurred between 1966 and 1999 is given. On the other hand nuclear power offers great environmental benefits particularly when compared to other energy sources: all along the fuel cycle comparatively very few wastes are produced. In a world becoming more and more aware of environmental problems, it seems that there is no definitive conclusion about nuclear energy. (A.C.)

  18. The future of nuclear power in Mexico

    International Nuclear Information System (INIS)

    Morales, A.A.

    1980-01-01

    The future of nuclear power in Mexico shows interesting aspects: the nuclear power is the source of energy that can supply large proportions of energy, that the country needs; the Kw/h of nuclear power is the most economic energy; the installation of 20 nucleoelectric plants will grant future jobs, the associated nuclear industry can be nationally integrated in the natural uranium cycle. (author)

  19. Implications of using alternate fuel cycles to meet Ontario's nuclear power demand

    International Nuclear Information System (INIS)

    Lau, J.H.K.

    1978-08-01

    The use of alternate fuel cycles to meet an assumed nuclear capacity growth rate in Ontario is examined. Two criteria are used: the ability of the alternate fuel cycles to lessen the uranium demand; and the ease of commercialization. The nuclear strategies considered assume the use of the natural uranium cycle and, starting in the year 2000, the gradual introduction of an alternate fuel cycle. The alternate fuel cycles reviewed are enriched uranium, mixed oxides, and a variety of thorium cycles. The cumulative uranium requirement to the year 2070, and the growth and size of the reprocessing and fuel fabrication industries are discussed in detail. Sensitivity analyses on nuclear capacity growth rate, recycling loss and delay time are also described. (auth)

  20. Nuclear Power, Nuclear Fuel Cycle and Waste Management 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    1995-05-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Power and Nuclear Fuel Cycle and Waste Management issued during the period 1980-1994. Most publications are issued in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. If publications are also available in other languages than English, this is noted as C for Chinese, F for French, R for Russian and S for Spanish by the relevant ISBN number. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 16 x 24 cm, paper-bound, unless otherwise stated

  1. Nuclear power in Europe

    International Nuclear Information System (INIS)

    Perera, J.

    2000-01-01

    Currently nuclear power accounts for more than 25% of total electricity production in Europe (including Eastern Europe and the former Soviet Union) However, significant new construction is planned in Central and Eastern Europe only, apart from some in France and, possibly in Finland. Many countries in Western Europe have put nuclear construction plans on hold and several have cancelled their nuclear programs. This report looks at the history of nuclear power and its current status in both Eastern and Western Europe. It provides an outline of nuclear fuel cycle facilities, from uranium procurement to final waste disposal. Economic and environmental issues are discussed, as well as the prospect of increased East-West trade and cooperation in the new poso-cold war world. Detailed profiles are provided of all the countries in Western Europe with significant nuclear power programs, as well as profiles of major energy and nuclear companies

  2. Some consideration on nuclear power development. Topics aroused by U.S. proposed 'Generation IV Nuclear Power System

    International Nuclear Information System (INIS)

    Wang Chuanying; Chen Shiqi

    2001-01-01

    U.S. proposed 'Generation IV Nuclear Power System' concept. Its origin and proposed goals for it are analyzed; goals are compared with requirements of URD. In particular, discussed issues on nuclear fuel cycle and Non-proliferation. A well-considered nuclear power development plan, paying close attention to international trend and considering comprehensively domestic situation, is expected

  3. Nuclear reactor closed Brayton cycle power conversion system optimization trends for extra-terrestrial applications

    International Nuclear Information System (INIS)

    Ashe, T.L.; Baggenstoss, W.G.; Bons, R.

    1990-01-01

    Extra-terrestrial exploration and development missions of the next century will require reliable, low-mass power generation modules of 100 kW e and more. These modules will be required to support both fixed-base and manned rover/explorer power needs. Low insolation levels at and beyond Mars and long periods of darkness on the moon make solar conversion less desirable for surface missions. For these missions, a closed Brayton cycle energy conversion system coupled with a reactor heat source is a very attractive approach. The authors conducted parametric studies to assess optimized system design trends for nuclear-Brayton systems as a function of operating environment and user requirements. The inherent design flexibility of the closed Brayton cycle energy conversion system permits ready adaptation of the system to future design constraints. This paper describes a dramatic contrast between system designs requiring man-rated shielding. The paper also considers the ramification of using indigenous materials to provide reactor shielding for a fixed-base power source

  4. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  5. Towards sustainable nuclear power development

    International Nuclear Information System (INIS)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S.

    2014-01-01

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  6. Towards sustainable nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhl, Obninsk, Kaluga Region (Russian Federation)

    2014-05-15

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  7. Quality factors in the life cycle of software oriented to safety systems in nuclear power plants

    International Nuclear Information System (INIS)

    Nunez McLeod, J.E.; Rivera, S.S.

    1997-01-01

    The inclusion of software in safety related systems for nuclear power plants, makes it necessary to include the software quality assurance concept. The software quality can be defined as the adjustment degree between the software and the specified requirements and user expectations. To guarantee a certain software quality level it is necessary to make a systematic and planned set of tasks, that constitute a software quality guaranty plan. The application of such a plan involves activities that should be performed all along the software life cycle, and that can be evaluated through the so called quality factors, due to the fact that the quality itself cannot be directly measured, but indirectly as some of it manifestations. In this work, a software life cycle model is proposed, for nuclear power plant safety related systems. A set os software quality factors is also proposed , with its corresponding classification according to the proposed model. (author) [es

  8. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Sugawara, A.

    1994-01-01

    The energy situation in Japan is briefly outlined. Vulnerability in energy structure of the country is shown by a comparison of primary energy supply patterns of Japan and Western countries. Japan's energy policy consists in reducing dependence on oil, promoting efficient use of energy and increasing use of non-fossil fuels. Nuclear power is a core of alternative energy for petroleum because of stable supply of nuclear fuel, low detrimental emissions and less dependence on the fuel. A short historical review of nuclear power development in Japan is presented. Some future issues as development of entire nuclear fuel cycle, social acceptance, reactor safety and nuclear power economics are also discussed. 6 figs. (R.T.)

  9. Closed-cycle cooling systems for nuclear power plants

    International Nuclear Information System (INIS)

    Santini, Lorenzo

    2006-01-01

    The long experience in the field of closed-cycle cooling systems and high technological level of turbo machines and heat exchangers concurs to believe in the industrial realizability of nuclear systems of high thermodynamic efficiency and intrinsic safety [it

  10. Nuclear power industry, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    The intent of this publication is to provide a single volume of resource material that offers a timely, comprehensive view of the nuclear option. Chapter 1 discusses the development of commercial nuclear power from a historical perspective, reviewing the factors and events that have and will influence its progress. Chapters 2 through 5 discuss in detail the nuclear powerplant and its supporting fuel cycle, including various aspects of each element from fuel supply to waste management. Additional dimension is brought to the discussion by Chapters 6 and 7, which cover the Federal regulation of nuclear power and the nuclear export industry. This vast body of thoroughly documented information offers the reader a useful tool in evaluating the record and potential of nuclear energy in the United States

  11. A comparison of nuclear power systems for Brazil using plutonium and binary cycles

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Fernandes, J.E.

    1985-01-01

    Nuclear power systems based on plutonium cycle and binary cycle are compared taking into account natural uranium demand and reactor combination. The systems start with PWR type reactors (U5/U8) and change to systems composed exclusively of FBR type reactors or PWR-FBR symbiotic systems. Four loading modes are considered for the PWR and two for the FBR. The FBR is either a LMFBR loaded with PU/U or a LMFBR loaded the binary way. A linear and a non-linear capacity growth and two different criteria for the FBR introduction are considered. The results show that a 100 GWe permanent system can be established in 50 years in all cases, based on 300000 t of natural uranium and in case of delay in the FBR introduction and if a thermal-fast symbiotic system is chosen, a binary cycle could be more advantageous than a plutonium cycle. (F.E.) [pt

  12. Significant incidents in nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs.

  13. Significant incidents in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs

  14. Nuclear material control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1975-06-01

    Paragraph 70.51(c) of 10 CFR Part 70 requires each licensee who is authorized to possess at any one time special nuclear material in a quantity exceeding one effective kilogram to establish, maintain, and follow written material control and accounting procedures that are sufficient to enable the licensee to account for the special nuclear material in his possession under license. While other paragraphs and sections of Part 70 provide specific requirements for nuclear material control systems for fuel cycle plants, such detailed requirements are not included for nuclear power reactors. This guide identifies elements acceptable to the NRC staff for a nuclear material control system for nuclear power reactors. (U.S.)

  15. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Cornet, S.M.; McCarthy, K.; Chauvin, N.

    2013-01-01

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

  16. Development of Czechoslovak nuclear power complex

    International Nuclear Information System (INIS)

    Rajci, T.

    1986-01-01

    The research project ''Development of the Czechoslovak nuclear power complex'' was undertaken by several Czechoslovak institutions and was coordinated by the Research Institute of the Fuel and Power Complex in Bratislava. Involved in the project was a staff of 170 people. 274 reports were pulished and the cost approached 70 mill. Czechoslovak crowns. The results are characterized of all six partial tasks. Basic information was prepared for the forecast of the solution of fuel and power problems in Czechoslovakia up to the year 2000 and their prospects up to the year 2020. Program MORNAP was written for the development of nuclear power, which models the operation of a power generation and transmission system with a selectable number of nuclear power plants. Another partial task related to the fuel cycle of nuclear power plants with respect to long-term provision and management of nuclear fuel. Nuclear safety was split into three problem groups, viz.: system safety of nuclear power plant operation; radiation problems of nuclear power plant safety; quality assurance of nuclear power plant components. The two remaining tasks were devoted to nuclear power engineering and to civil engineering. (Z.M.). 3 tabs., 1 refs

  17. Dictionary of nuclear power. January 2013 ed.

    International Nuclear Information System (INIS)

    Koelzer, Winfried

    2013-01-01

    The actualized version (January 2013) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  18. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  19. Cycle layout studies of S-CO2 cycle for the next generation nuclear system application

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Bae, Seong Jun; Kim, Minseok; Cho, Seong Kuk; Baik, Seungjoon; Lee, Jeong Ik; Cha, Jae Eun

    2014-01-01

    According to the second law of thermodynamics, the next generation nuclear reactor system efficiency can potentially be increased with higher operating temperature. Fig.1 shows several power conversion system efficiencies and heat sources with respect to the system top operating temperature. As shown in Fig.1, the steam Rankine and gas Brayton cycles have been considered as the major power conversion systems more than several decades. In the next generation reactor operating temperature region (450 - 900 .deg. C), the steam Rankine and gas Brayton cycles have limits due to material problems and low efficiency, respectively. Among the future power conversion systems, S-CO 2 cycle is receiving interests due to several benefits including high efficiency under the mild turbine inlet temperature range (450-650 .deg. C), compact turbomachinery and simple layout compared to the steam Rankine cycle. S-CO 2 cycle can show relatively high efficiency under the mild turbine inlet temperature range (450-600 .deg. C) compared to other power conversion systems. The recompression cycle shows the best efficiency among other layouts and it is suitable for the application to advanced nuclear reactor systems. As S-CO 2 cycle performance can vary depending on the layout configuration, further studies on the layouts are required to design a better performing cycle

  20. Nuclear Fuel Cycle Objectives

    International Nuclear Information System (INIS)

    2013-01-01

    . The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of the nuclear fuel cycle to ensure that the Nuclear Energy Basic Principles are satisfied. Within each of these four Objectives publications, the individual topics that make up each area are addressed. The five topics included in this publication are: resources; fuel engineering and performance; spent fuel management and reprocessing; fuel cycles; and the research reactor nuclear fuel cycle

  1. Uranium Resource Availability Analysis of Four Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Youn, S. R.; Lee, S. H.; Jeong, M. S.; Kim, S. K.; Ko, W. I.

    2013-01-01

    Making the national policy regarding nuclear fuel cycle option, the policy should be established in ways that nuclear power generation can be maintained through the evaluation on the basis of the following aspects. To establish the national policy regarding nuclear fuel cycle option, that must begin with identification of a fuel cycle option that can be best suited for the country, and the evaluation work for that should be proceeded. Like all the policy decision, however, a certain nuclear fuel cycle option cannot be superior in all aspects of sustain ability, environment-friendliness, proliferation-resistance, economics, technologies, which make the comparison of the fuel cycle options very complicated. For such a purpose, this paper set up four different fuel cycle of nuclear power generation considering 2nd Comprehensive Nuclear Energy Promotion Plan(CNEPP), and analyzed material flow and features in steady state of all four of the fuel cycle options. As a result of an analysis on material flow of each nuclear fuel cycle, it was analyzed that Pyro-SFR recycling is most effective on U resource availability among four fuel cycle option. As shown in Figure 3, OT cycle required the most amount of U and Pyro-SFR recycle consumed the least amount of U. DUPIC recycling, PWR-MOX recycling, and Pyro-SFR recycling fuel cycle appeared to consumed 8.2%, 12.4%, 39.6% decreased amount of uranium respectively compared to OT cycle. Considering spent fuel can be recycled as potential energy resources, U and TRU taken up to be 96% is efficiently used. That is, application period of limited uranium natural resources can be extended, and it brings a great influence on stable use of nuclear energy

  2. Nuclear power and the carbon dioxide problem

    International Nuclear Information System (INIS)

    Bijlsma, J.J.; Blok, K.; Turkenburg, W.C.

    1989-05-01

    This study deals with the question, which contribution can be delivered by nuclear power to the redution of the emission of carbon dioxide (CO 2 ) from the power supply. The emphasis lays upon the following aspects: the emissions of CO 2 which occur in the nuclear-power cycle (the so-called indirect emission of CO 2 power plants); the amount of uranium stocks; the change of CO 2 emission caused by replacement of fossil fuels, in particular coal, by nuclear power. First an energy-analysis of the nuclear power cycle is presented. On the base of this analysis the CO 2 uranium can be calculated. The role of nuclear power in the reduction of CO 2 emission depends on the development of the final power demand. Therefore in this study two scenarios derived from the 'IIASA-low' scenario; 'low-energy'-scenario in which the world-energy consumption remains at about the same level. In the calculations the indirect emissions of CO 2 , also dependent on the ore richness and the technology used, have always been taken into account. In the calculations two uranium-reserve variants of resp. 5.7 and 30 mln. tons have been assumed. From the results of the calculations it can be concluded that whether or not taking account of the indirect emissions of CO 2 in the nuclear power cycle, has only limited effect on the calculated contribution of nuclear power to the solution of the greenhouse effect. The uranium reserves turn out to be determining for the potential contribution of nuclear power. By putting on the surely available reserve of 5.7 mln. tons, or the speculative reserve of 30 mln. tons, with the actual technology, an emission of resp. 130-140 billion and 880 billion tons CO 2 can be avoided in replacing coal. With maximal employment of improved conversion techniques these contributions may be doubled. (H.W.). 40 refs.; 13 figs.; 10 tabs

  3. Thermal-CFD Analysis of Combined Solar-Nuclear Cycle Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, Nima [Univ. of New Mexico, Albuquerque, NM (United States); McDaniel, Patrick [Univ. of New Mexico, Albuquerque, NM (United States); Vorobieff, Peter [Univ. of New Mexico, Albuquerque, NM (United States); de Oliveira, Cassiano [Univ. of New Mexico, Albuquerque, NM (United States); Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aleyasin, Seyed Sobhan [Univ. of Manitoba (Canada)

    2015-09-01

    The aim of this paper is evaluating the efficiency of a novel combined solar-nuclear cycle. CFD-Thermal analysis is performed to apply the available surplus heat from the nuclear cycle and measure the available kinetic energy of air for the turbine of a solar chimney power plant system (SCPPS). The presented idea helps to decrease the thermal pollution and handle the water shortage supply for water plant by replacing the cooling tower by solar chimney power plant to get the surplus heat from the available warm air in the secondary loop of the reactor. By applying this idea to a typical 1000 MW nuclear power plant with a 0.33 thermal efficiency, we can increase it to 0.39.

  4. Sensitivity of nuclear fuel cycle cost to uncertainties in nuclear data

    International Nuclear Information System (INIS)

    Harris, D.R.; Becker, M.; Parvez, A.; Ryskamp, J.M.

    1979-01-01

    A sensitivity analysis system is developed for assessing the economic implications of uncertainties in nuclear data and related computational methods for light water power reactors. Results of the sensitivity analysis indicate directions for worthwhile improvements in data and methods. Benefits from improvements in data and methods are related to reduction of margins provided by designers to ensure meeting reactor and fuel objectives. Sensitivity analyses are carried out using the batch depletion code FASTCELL, the core analysis code FASTCORE, and the reactor cost code COSTR. FASTCELL depletes a cell using methods comparable to industry cell codes except for a few-group treatment of cell flux distribution. FASTCORE is used with the Haling strategy of fixed power sharing among batches in the core. COSTR computes costs using components and techniques as in industry costing codes, except that COSTR uses fixed payment schedules. Sensitivity analyses are carried out for large commercial boiling and pressurized water reactors. Each few-group nuclear parameter is changed, and initial enrichment is also changed so as to keep the end-of-cycle core multiplication factor unchanged, i.e., to preserve cycle time at the demand power. Sensitivities of equilibrium fuel cycle cost are determined with respect to approx. 300 few-group nuclear parameters, both for a normal fuel cycle and for a throwaway fuel cycle. Particularly large dollar implications are found for thermal and resonance range cross sections in fissile and fertile materials. Sensitivities constrained by adjustment of fission neutron yield so as to preserve agreement with zero exposure integral data also are computed

  5. Climate Change and Nuclear Power 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Climate change is one of the most important issues facing the world today. Nuclear power can make an important contribution to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for global socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. The accident at the Fukushima Daiichi nuclear power plant of March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. It was a wake-up call for everyone involved in nuclear power - a reminder that safety can never be taken for granted. Yet, in the wake of the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The International Atomic Energy Agency provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report has been substantially revised, updated and extended since the 2012 edition. It summarizes the potential role of nuclear power in mitigating global climate change and its contribution to other development and environmental challenges. The report also examines broader issues relevant to the climate change-nuclear energy nexus, such as cost, safety, waste management and non-proliferation. New developments in resource supply, innovative reactor technologies and related fuel cycles are also presented

  6. Nuclear power for beginners

    International Nuclear Information System (INIS)

    Croall, S.; Sempler, K.

    1978-01-01

    A 'comic strip' account of nuclear power, covering weapons and weapons proliferation, reactor accidents involving human errors, radiation hazards, radioactive waste management and the fuel cycle, fast breeder reactors and plutonium, security, public relations and sociological aspects, energy consumption patterns, energy conservation and alternative energy sources, environmental aspects and anti-nuclear activities. (U.K.)

  7. JTEC panel on nuclear power in Japan. Final report

    International Nuclear Information System (INIS)

    Hansen, K.F.; Behnke, W.B.; Cousin, S.B.; Evans, E.A.; Olander, D.R.

    1990-10-01

    The report examines the status and direction of nuclear power-related research and development in Japan in six areas: the nuclear fuel cycle, nuclear materials, instrumentation and control technology, CAD/CAM, nuclear safety research, and nuclear plant construction. Overall findings suggest that the nuclear power industry in Japan is at an advanced state of development; in particular, Japan is now technologically self-sufficient. Long-term goals of the Japanese program include closure of the complete fuel cycle and pursuit of the liquid metal fast breeder reactor as the future base system

  8. The nuclear power development policy of Taipower

    International Nuclear Information System (INIS)

    Chen, J.H.

    1987-01-01

    Taipower began its nuclear power epoch in 1978 when the first unit of its First Nuclear Power Station was synchronized to the system on November 1977. At present, Taipower has six units installed in three nuclear power plants, totalling 5144 MW in operation. These units are the mainstay of the 16,600 MW system and have played a significant role in the energy supply of Taiwan. This paper will firstly give a brief overview of Taipower's system, then introduce Taipower's nuclear power policies within the frame of issues on nuclear power economy, nuclear fuel cycle management, nuclear safety and environmental concerns, radioactive waste management, public communications and personnel training. At last, this paper will present the prospect for future nuclear power development in Taiwan with reference to the above discussion. (author)

  9. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  10. A full life cycle nuclear knowledge management framework based on digital system

    International Nuclear Information System (INIS)

    Wang, Minglu; Zheng, Mingguang; Tian, Lin; Qiu, Zhongming; Li, Xiaoyan

    2017-01-01

    Highlights: • A full life cycle nuclear power plant knowledge management framework is introduced. • This framework benefits the safe design, construction, operation and maintenance. • This framework enhances safety, economy and reliability of nuclear power plant. - Abstract: The nuclear power plant is highly knowledge-intensive facility. With the rapid advent and development of modern information and communication technology, knowledge management in nuclear industry has been provided with new approaches and possibilities. This paper introduces a full cycle nuclear power plant knowledge management framework based on digital system and tries to find solutions to knowledge creation, sharing, transfer, application and further innovation in nuclear industry. This framework utilizes information and digital technology to build top-tier object driven work environment, automatic design and analysis integration platform, digital dynamic performance Verification & Validation (V&V) platform, collaborative manufacture procedure, digital construction platform, online monitoring and configuration management which benefit knowledge management in NPP full life cycle. The suggested framework will strengthen the design basis of the nuclear power plants (NPPs) and will ensure the safety of the NPP design throughout the whole lifetime of the plant.

  11. 18-months fuel cycle engineering and its project management of the Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Fu Xiangang; Jiao Ping; Liu Yong; Wu Zhiming

    2002-01-01

    The author introduces aspects related to the performing of 18-months fuel cycle engineering evaluation to the Daya Bay nuclear power plant, including the assessment on proposed technical solutions, appointment to the contractors, breaking down and implementation of project, experience on the project management and risk control, and etc. And it also briefs the prompting to the localization of the long fuel cycle engineering technology and AFA 3G fuel manufacturing and design technology via adequate technology transferring of this project

  12. Rhodium self-powered neutron detector's lifetime for korean standard nuclear power plants

    International Nuclear Information System (INIS)

    Yoo, Choon Sung; Kim, Byoung Chul; Park, Jong Ho; Fero, Arnold H.; Anderson, S. L.

    2005-01-01

    A method to estimate the relative sensitivity of a self-powered rhodium detector for an upcoming cycle is developed by combining the rhodium depletion data from a nuclear design with the site measurement data. This method can be used both by nuclear power plant designers and by site staffs of Korean standard nuclear power plants for determining which rhodium detectors should be replaced during overhauls

  13. Nuclear plant life cycle costs

    International Nuclear Information System (INIS)

    Durante, R.W.

    1994-01-01

    Life cycle costs of nuclear power plants in the United States are discussed. The author argues that these costs have been mishandled or neglected. Decommissioning costs have escalated, e.g. from $328 per unit in 1991 to $370 in 1993 for the Sacramento Municipal Utility District, though they still only amount to less than 0.1 cent per kWh. Waste management has been complicated in the U.S. by the decision to abandon civilian reprocessing; by the year 2000, roughly 30 U.S. nuclear power units will have filled their storage pools; dry storage has been delayed, and will be an expense not originally envisaged. Some examples of costs of major component replacement are provided. No single component has caused as much operational disruption and financial penalties as the steam generator. Operation and maintenance costs have increased steadily, and now amount to more than 70% of production costs. A strategic plan by the Nuclear Power Oversight Committee (of U.S. utilities) will ensure that the ability to correctly operate and maintain a nuclear power plant is built into the original design. 6 figs

  14. Nuclear Fuel Cycle System Analysis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Yoon, Ji Sup; Park, Seong Won

    2007-04-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 2nd Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance, economics and technologies. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects of sustainability, environment-friendliness, proliferation-resistance, economics, technologies and so on, which makes the comparison of the options extremely complicated. Taking this into consideration, the paper analyzes all the four fuel cycle options using the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP), methods of Multi-Attribute Decision Making (MADM), that support systematical evaluation of the cases with multi- goals or criteria and that such goals are incompatible with each other. The analysis shows that the GEN-IV Recycle appears to be most competitive.

  15. Supply and demand estimates for the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Haussermann, W.; Hogroian, P.; Krymm, R.; Cameron, J.

    1977-01-01

    Based on the nuclear power growth forecasts described in the papers for Session I.B., estimates of requirements in the nuclear fuel cycle are given, notably concerning: - natural uranium, - enriched uranium, - fuel fabrication services, and - reprocessing services. The influence of realistic scenarios of uranium and plutonium recycling on fuel cycle requirements is discussed. Furthermore, the known plans for uranium and related fuel cycle production capacities are compared with the foreseeable demand. These estimates cover the period between now and the year 2000. However, in order to determine the influence of possible variations in reactor strategies on uranium demand, notably the introduction of breeder reactors, power growth projections and resulting fuel cycle requirements beyond the year 2000 are also briefly considered [fr

  16. Ukrainian Nuclear Society International Conference 'Strategy of the nuclear power development: The choice of Ukraine'

    International Nuclear Information System (INIS)

    Vishnevskij, I.N.; Trofimenko, A.P.

    2001-01-01

    Abstracts of the papers presented at the International Conference of the Ukrainian Nuclear Society 'Strategy of the nuclear power development'. The following problems are considered: present situation with the nuclear power and its safety; nuclear fuel cycle development; waste and spent nuclear fuel management; reactors' decommissioning issues; modernization of the NPP with WWER reactors; future reactors; economics of nuclear power; safety culture; legal and regulatory framework, state nuclear regulatory control; PR in nuclear power industry; staff training

  17. Interim report on nuclear power in Ontario

    International Nuclear Information System (INIS)

    1978-01-01

    An exhaustive report is presented on the implications of nuclear electric generation for Ontario's energy future. Such aspects as electrical demand and power planning, the CANDU fuel cycle, the nuclear debate, health, environmental and safety concerns, economics, social impacts and the status of the nuclear industry, uranium resources, ethical and political issues, nuclear weapons proliferation and plant security, and the regulation of nuclear power are dealt with in detail. (E.C.B.)

  18. Ecoloqical problems of nuclear power development

    International Nuclear Information System (INIS)

    Gerzhmansky, B.

    1980-01-01

    Vital problems of environmental impacts of the nuclear power complex are elucidated. Different stages of the nuclear fuel cycle are considered. Presented are some quantitative data on the deaths from lung cancer, comparison of cancer risks due to irradiation and a cool-fueled power plant operation, the effects of different types of power plants on the environment and additional risks for the nuclear fuel cycle plants personnel. The ore mining, milling and enrichment, uranium enrichment, fuel fabrication and normal NPP operation are concluded not to present any serious menace for the environment. Comparisons do show that the detremental effects of coal-fueled power plants are much higher. Probability of an accident resulting in release of large amounts of radionuclides is much lower for a contemporary NPP equipped with proved safety systems, than in other industries. Meanwhile it is not possible nowadays to quantitatively evaluate the effects of reprocessing plants on the environment

  19. Thermodynamic analysis and optimization of a Closed Regenerative Brayton Cycle for nuclear space power systems

    International Nuclear Information System (INIS)

    Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Guimarães, Lamartine N.F.

    2015-01-01

    Nuclear power systems turned to space electric propulsion differ strongly from usual ground-based power systems regarding the importance of overall size and mass. For propulsion power systems, size and mass are essential drivers that should be minimized during conception processes. Considering this aspect, this paper aims the development of a design-based model of a Closed Regenerative Brayton Cycle that applies the thermal conductance of the main components in order to predict the energy conversion performance, allowing its use as a preliminary tool for heat exchanger and radiator panel sizing. The centrifugal-flow turbine and compressor characterizations were achieved using algebraic equations from literature data. A binary mixture of Helium–Xenon with molecular weight of 40 g/mole is applied and the impact of the components sizing in the energy efficiency is evaluated in this paper, including the radiator panel area. Moreover, an optimization analysis based on the final mass of heat the exchangers is performed. - Highlights: • A design-based model of a Closed Brayton Cycle is proposed for nuclear space needs. • Turbomachinery efficiency presented a strong influence on the system efficiency. • Radiator area presented the highest potential to increase the system efficiency. • There is maximum system efficiency for each total mass of heat exchangers. • Size or efficiency optimization was performed by changing heat exchanger proportion.

  20. Regulation at nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the role of the UJD in regulation at nuclear fuel cycle is presented. The Nuclear Fuel Cycle (NFC) is a complex of activities linked with production of nuclear fuel for nuclear reactors as a source of energy used for production of electricity and heat, and of activities linked with spent nuclear fuel handling. Activities linked with nuclear fuel (NF) production, known as the Front-End of Nuclear Fuel Cycle, include (production of nuclear fuel from uranium as the most frequently used element). After discharging spent nuclear fuel (SNF) from nuclear reactor the activities follow linked with its storage, reprocessing and disposal known as the Back-End of Nuclear Fuel Cycle. Individual activity, which penetrates throughout the NFC, is transport of nuclear materials various forms during NF production and transport of NF and SNF. Nuclear reactors are installed in the Slovak Republic only in commercial nuclear power plants and the NFC is of the open type is imported from abroad and SNF is long-term supposed without reprocessing. The main mission of the area of NFC is supervision over: - assurance of nuclear safety throughout all NFC activities; - observance of provisions of the Treaty on Non-Proliferation of Nuclear Weapons during nuclear material handling; with an aim to prevent leakage of radioactive substances into environment (including deliberated danage of NFC sensitive facilities and misuse of nuclear materials to production of nuclear weapons. The UJD carries out this mission through: - assessment of safety documentation submitted by operators of nuclear installations at which nuclear material, NF and SNF is handled; - inspections concentrated on assurance of compliance of real conditions in NFC, i.e. storage and transport of NF and SNF; storage, transport and disposal of wastes from processing of SNF; with assumptions of the safety

  1. Modeling of Turbine Cycles Using a Neuro-Fuzzy Based Approach to Predict Turbine-Generator Output for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Yea-Kuang Chan

    2012-01-01

    Full Text Available Due to the very complex sets of component systems, interrelated thermodynamic processes and seasonal change in operating conditions, it is relatively difficult to find an accurate model for turbine cycle of nuclear power plants (NPPs. This paper deals with the modeling of turbine cycles to predict turbine-generator output using an adaptive neuro-fuzzy inference system (ANFIS for Unit 1 of the Kuosheng NPP in Taiwan. Plant operation data obtained from Kuosheng NPP between 2006 and 2011 were verified using a linear regression model with a 95% confidence interval. The key parameters of turbine cycle, including turbine throttle pressure, condenser backpressure, feedwater flow rate and final feedwater temperature are selected as inputs for the ANFIS based turbine cycle model. In addition, a thermodynamic turbine cycle model was developed using the commercial software PEPSE® to compare the performance of the ANFIS based turbine cycle model. The results show that the proposed ANFIS based turbine cycle model is capable of accurately estimating turbine-generator output and providing more reliable results than the PEPSE® based turbine cycle models. Moreover, test results show that the ANFIS performed better than the artificial neural network (ANN, which has also being tried to model the turbine cycle. The effectiveness of the proposed neuro-fuzzy based turbine cycle model was demonstrated using the actual operating data of Kuosheng NPP. Furthermore, the results also provide an alternative approach to evaluate the thermal performance of nuclear power plants.

  2. Development and management of world nuclear power in 2012

    International Nuclear Information System (INIS)

    2012-01-01

    It deals with development and management of nuclear power of foreign countries by the 1st of January 2012 with tables and figures, which includes outline of investigation, operation experience of nuclear power plant of the world, the cardinal number according to the type of operating power plant of the world, using Mox of the world and site of nuclear power plant of the world. There are list of world nuclear power plant, explanation of abbreviations, address book of nuclear power plant of the world and table and figure of major nuclear fuel cycle.

  3. POPCYCLE: a computer code for calculating nuclear and fossil plant levelized life-cycle power costs

    International Nuclear Information System (INIS)

    Hardie, R.W.

    1982-02-01

    POPCYCLE, a computer code designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants is described. Included are (1) derivations of the equations and a discussion of the methodology used by POPCYCLE, (2) a description of the input required by the code, (3) a listing of the input for a sample case, and (4) the output for a sample case

  4. The end of cheap electric power from nuclear power plants. 2. ed.

    International Nuclear Information System (INIS)

    Franke, J.; Viefhues, D.

    1984-04-01

    The economic efficiency of a nuclear power plant is compared with that of a coal-fired power plant of the same size. A technical and economic computer model was developed which took account of the power plant and all its units as well as the fuel cycle (including intermediate storage and reprocessing). It was found that future nuclear power plants will be inferior to coal-fired power plants in all economic respects. Further, there was no load range in which the cost of electric power generation was more favourable in nuclear power plants than in coal-fired power plants. (orig./HSCH) [de

  5. Nuclear power and the environment: questions and answers

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The purpose of this book is to present information and answers to questions about nuclear power and the environment, e.g., questions on its effects on public health, safety, and welfare. Information on the overall U.S. energy outlook, with emphasis on nuclear power generation, is provided. Although proponents of nuclear power, the authors have attempted to present factual information and to maintain objectivity. Included are answers to questions on these aspects of nuclear power: the energy situation and nuclear power; economics and reliability; alternative technologies; radioactivity; biological effects of radiation; transportation in the nuclear fuel cycle; fuel reprocessing and nuclear waste disposal; plutonium toxicity; nuclear plant security; thermal pollution; nuclear power plant siting--earthquakes; nuclear reactor safety; public risk and benefits; nuclear liability and insurance; breeder reactors; and thermonuclear fusion. (232 references)

  6. Datafile: [nuclear power in] Japan

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Japan is third after the USA and France in terms of the Western World's installed nuclear capacity, but it has by far the largest forward programme. Great effort is also being put into the fuel cycle and advanced reactors. There is close co-operation between the government, utilities and manufacturers, but Japan has not sought to export reactors. The government has responded to the growing public opposition to nuclear power with a massive increase in its budget for public relations. Details of the nuclear power programme are given. (author)

  7. Catalogue and classification of technical safety standards, rules and regulations for nuclear power reactors and nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Fichtner, N.; Becker, K.; Bashir, M.

    1977-01-01

    The present report is an up-dated version of the report 'Catalogue and Classification of Technical Safety Rules for Light-water Reactors and Reprocessing Plants' edited under code No EUR 5362e, August 1975. Like the first version of the report, it constitutes a catalogue and classification of standards, rules and regulations on land-based nuclear power reactors and fuel cycle facilities. The reasons for the classification system used are given and discussed

  8. International nuclear power status 1994

    International Nuclear Information System (INIS)

    Hoejerup, C.F.; Majborn, B.; Oelgaard, P.L.

    1995-02-01

    This report is the first in a planned series of annual reports covering the international development in the field of nuclear power. The report deals with: statistical information on the electricity produced by nuclear power plants; major safety-related incidents in 1994; the development in Sweden, Eastern Europe, and the rest of the world; the trends of development of a number of reactor types; the trends of development in the fuel cycle. (au)

  9. Nuclear power proliferation

    International Nuclear Information System (INIS)

    Johnson, B.

    1977-01-01

    The nuclear industry is experiencing a multiple crisis in which economic, technical and ethical aspects are blended inextricably. Nuclear hardware costs have everywhere soared far beyond inflation in the last five years, largely as a result of delays in programme completion arising from problems of reactor and fuel cycle. Meanwhile, partly as a result of this cost escalation, there is widespread and growing doubt as to whether capital will be available to finance the electricity generating levels projected by the industry and by governments for the 1990s. The nuclear industry is now in trouble at every stage of the fuel cycle. The industry's difficulties have also revealed a lack of overall - but particularly nuclear - energy strategy at either national or international levels, and a lack of will to create regulations and institutional machinery at either of these levels which might reassure both concerned publics and the energy industries themselves. This paper appraises some of the present limitations of international institutions in achieving control and management of nuclear power. (author)

  10. Waste management and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Molinari, J.

    1982-01-01

    The present lecture deals with energy needs and nuclear power, the importance of waste and its relative place in the fuel cycle, the games of controversies over nuclear waste in the strategies of energy and finally with missions and functions of the IAEA for privileging the rational approach and facilitating the transfer of technology. (RW)

  11. Nuclear Power and Safety Division activity

    International Nuclear Information System (INIS)

    Pazdera, F.

    1991-01-01

    History of the Division is briefly described. Present research is centered on reliability analyses and thermal hydraulic analyses of transients and accidents. Some results of the safety analyses have been applied at nuclear power plants. A characterization is presented of computer codes for analyzing the behavior of fuel in normal and accident conditions. Research activities in the field of water chemistry and corrosion are oriented to the corrosion process at high temperatures and high pressures, and the related mass and radioactivity transfer; the effect of some chemical processes on primary coolant circuit materials; optimization of PWR filtration systems; and the development of the requisite monitoring instrumentation. A computerized operator support system has been developed, and at present it is tested at the Dukovany nuclear power plant. A program of nuclear fuel cycle strategy and economy has been worked out for nuclear fuel performance evaluation. Various options for better fuel exploitation, alternatives for advanced fuelling, and fuel cycle costs are assessed, and out-of-reactor fuel cycle options are compared. (M.D.). 7 refs., 32 refs

  12. Steps to nuclear power

    International Nuclear Information System (INIS)

    1975-01-01

    The recent increase in oil prices will undoubtedly cause the pace at which nuclear power is introduced in developing countries to quicken in the next decade, with many new countries beginning to plan nuclear power programmes. The guidebook is intended for senior government officials, policy makers, economic and power planners, educationalists and economists. It assumes that the reader has relatively little knowledge of nuclear power systems or of nuclear physics but does have a general technical or management background. Nuclear power is described functionally from the point of view of an alternative energy source in power system expansion. The guidebook is based on an idealized approach. Variations on it are naturally possible and will doubtless be necessary in view of the different organizational structures that already exist in different countries. In particular, some countries may prefer an approach with a stronger involvement of their Atomic Energy Commission or Authority, for which this guidebook has foreseen mainly a regulatory and licensing role. It is intended to update this booklet as more experience becomes available. Supplementary guidebooks will be prepared on certain major topics, such as contracting for fuel supply and fuel cycle requirements, which the present book does not go into very deeply

  13. Synthetic fuel production via carbon neutral cycles with high temperature nuclear reactors as a power source

    Energy Technology Data Exchange (ETDEWEB)

    Konarek, E.; Coulas, B.; Sarvinis, J. [Hatch Ltd., Mississauga, Ontario (Canada)

    2016-06-15

    This paper analyzes a number of carbon neutral cycles, which could be used to produce synthetic hydrocarbon fuels. Synthetic hydrocarbons are produced via the synthesis of Carbon Monoxide and Hydrogen. The . cycles considered will either utilize Gasification processes, or carbon capture as a source of feed material. In addition the cycles will be coupled to a small modular Nuclear Reactor (SMR) as a power and heat source. The goal of this analysis is to reduce or eliminate the need to transport diesel and other fossil fuels to remote regions and to provide a carbon neutral, locally produced hydrocarbon fuel for remote communities. The technical advantages as well as the economic case are discussed for each of the cycles presented. (author)

  14. Synthetic fuel production via carbon neutral cycles with high temperature nuclear reactors as a power source

    International Nuclear Information System (INIS)

    Konarek, E.; Coulas, B.; Sarvinis, J.

    2016-01-01

    This paper analyzes a number of carbon neutral cycles, which could be used to produce synthetic hydrocarbon fuels. Synthetic hydrocarbons are produced via the synthesis of Carbon Monoxide and Hydrogen. The . cycles considered will either utilize Gasification processes, or carbon capture as a source of feed material. In addition the cycles will be coupled to a small modular Nuclear Reactor (SMR) as a power and heat source. The goal of this analysis is to reduce or eliminate the need to transport diesel and other fossil fuels to remote regions and to provide a carbon neutral, locally produced hydrocarbon fuel for remote communities. The technical advantages as well as the economic case are discussed for each of the cycles presented. (author)

  15. World warms to nuclear power

    International Nuclear Information System (INIS)

    Mortimer, N.

    1989-01-01

    The greenhouse effect and global warming is a major environmental issue. The nuclear industry has taken this opportunity to promote itself as providing clean energy without implication in either the greenhouse effect or acid rain. However, it is acknowledged that nuclear power does have its own environment concerns. Two questions are posed -does nuclear power contribute to carbon dioxide emissions and can nuclear power provide a realistic long-term solution to global warming? Although nuclear power stations do not emit carbon dioxide, emissions occur during the manufacture of reactor components, the operation of the nuclear fuel cycle and especially, during the mining and processing of the uranium ore. It is estimated that the supply of high grade ores will last only 23 years, beyond that the carbon dioxide emitted during the processing is estimated to be as great as the carbon dioxide emitted from an coal-fired reactor. Fast breeder reactors are dismissed as unable to provide an answer, so it is concluded that nuclear technology has only a very limited role to play in countering global warming.(UK)

  16. The industrial nuclear fuel cycle in Argentina

    International Nuclear Information System (INIS)

    Koll, J.H.; Kittl, J.E.; Parera, C.A.; Coppa, R.C.; Aguirre, E.J.

    1977-01-01

    The nuclear power program of Argentina for the period 1976-85 is described, as a basis to indicate fuel requirements and the consequent implementation of a national fuel cycle industry. Fuel cycle activities in Argentina were initiated as soon as 1951-2 in the prospection and mining activities through the country. Following this step, yellow-cake production was initiated in plants of limited capacity. National production of uranium concentrate has met requirements up to the present time, and will continue to do so until the Sierra Pintada Industrial Complex starts operation in 1979. Presently, there is a gap in local production of uranium dioxide and fuel elements for the Atucha power station, which are produced abroad using Argentine uranium concentrate. With its background, the argentine program for the installation of nuclear fuel cycle industries is described, and the techno-economical implications considered. Individual projects are reviewed, as well as the present and planned infrastructure needed to support the industrial effort [es

  17. Nuclear safeguards control in nuclear power stations

    International Nuclear Information System (INIS)

    Boedege, R.; Braatz, U.; Heger, H.

    1976-01-01

    The execution of the Non-Proliferation Treaty (NPT) has initiated a third phase in the efforts taken to ensure peace by limiting the number of atomic powers. In this phase it is important, above all, to turn into workable systems the conditions imposed upon technology by the different provisions of the Verification Agreement of the NPT. This is achieved mainly by elaborating annexes to the Agreement specifically geared to certain model plants, typical representatives selected for LWR power stations being the plants at Garigliano, Italy (BWR), and Stade, Federal Republic of Germany (PWR). The surveillance measures taken to prevent any diversion of special nuclear material for purposes of nuclear weapons manufacture must be effective in achieving their specific objective and must not impede the circumspect management of operations of the plants concerned. A VDEW working party has studied the technical details of the planned surveillance measures in nuclear power stations in the Federal Republic of Germany and now presents a concept of material balancing by units which meets the conditions imposed by the inspection authority and could also be accepted by the operators of nuclear power stations. The concept provides for uninterrupted control of the material balance areas of the nuclear power stations concerned, allows continuous control of the whole nuclear fuel cycle, is based exclusively on existing methods and facilities, and can be implemented at low cost. (orig.) [de

  18. Nuclear power newsletter Vol. 3, no. 1, April 2006

    International Nuclear Information System (INIS)

    2006-04-01

    The topics presented in this newsletter are: Nuclear power technology and operations databases; Message from the Director of the Division of Nuclear Power; Announcement of Mr. Atam Rao, the new Head of Nuclear Power Technology Development Section; Nuclear power plant operating performance and life cycle management; Improving human performance, quality and technical infrastructure; Technology developments and applications for advanced reactors; Recent publications; Planned meetings in 2006; Division of Nuclear Power Web site links; The 7th IAEA - FORATOM Joint Workshop on Successful Management of Organizational Change

  19. Survey of nuclear fuel cycle economics: 1970--1985

    International Nuclear Information System (INIS)

    Prince, B.E.; Peerenboom, J.P.; Delene, J.G.

    1977-03-01

    This report is intended to provide a coherent view of the diversity of factors that may affect nuclear fuel cycle economics through about 1985. The nuclear fuel cycle was surveyed as to past trends, current problems, and future considerations. Unit costs were projected for each step in the fuel cycle. Nuclear fuel accounting procedures were reviewed; methods of calculating fuel costs were examined; and application was made to Light Water Reactors (LWR) over the next decade. A method conforming to Federal Power Commission accounting procedures and used by utilities to account for backend fuel-cycle costs was described which assigns a zero net salvage value to discharged fuel. LWR fuel cycle costs of from 4 to 6 mills/kWhr (1976 dollars) were estimated for 1985. These are expected to reach 6 to 9 mills/kWr if the effect of inflation is included

  20. Nuclear power fuel cycle

    International Nuclear Information System (INIS)

    Havelka, S.; Jakesova, L.

    1982-01-01

    Economic problems are discussed of the fuel cycle (cost of the individual parts of the fuel cycle and the share of the fuel cycle in the price of 1 kWh), the technological problems of the fuel cycle (uranium ore mining and processing, uranium isotope enrichment, the manufacture of fuel elements, the building of long-term storage sites for spent fuel, spent fuel reprocessing, liquid and gaseous waste processing), and the ecologic aspects of the fuel cycle. (H.S.)

  1. Effects of degree of approval and message on utility of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2007-01-01

    It is said that the effectiveness of nuclear power generation is the greatest factor contributing to whether or not people support the nuclear power policy. The major objectives of this research are twofold: from among opinions regarding the effectiveness of the nuclear fuel cycle, to clarify what kinds of opinions people support and what kinds of opinions have influenced judgments about the pros and cons of the nuclear fuel cycle; and to measure the extent to which people's awareness of the nuclear fuel cycle is influenced by numerical information that has been added to a nuclear-fuel-cycle-related message that has been created on the basis of results of the survey conducted for the first objective mentioned above. As for the first objective, the survey results revealed that the opinion 'the establishment of a nuclear fuel cycle leads to the effective use of energy resources' did not garner much support from the public. However, it was indicated that people being for or against that opinion may have relatively great effect on their judgment regarding the pros and ons of nuclear fuel cycle establishment. For the second objective, we showed people the messages the nuclear fuel cycle enables effective use of natural uranium' and 'the nuclear fuel cycle enables tens times more effective use of natural uranium' to the latter of which numerical information was added. As a result, we found no difference in people's attitude toward the nuclear fuel cycle even if numerical information was added to a nuclear-fuel-cycle-related message. (author)

  2. International nuclear power status 2001; International kernekraftstatus 2001

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L. (eds.)

    2002-04-01

    This report is the eighth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2001, the report contains: 1) General trends in the development of nuclear power; 2) Nuclear terrorism; 3) Statistical information on nuclear power production (in 2000); 4) An overview of safety-relevant incidents in 2001; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  3. TOSHIBA CAE system for nuclear power plant

    International Nuclear Information System (INIS)

    Machiba, Hiroshi; Sasaki, Norio

    1990-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plant using Computer Aided Engineering (CAE). TOSHIBA CAE system for nuclear power plant consists of numbers of sub-systems which had been integrated centering around the Nuclear Power Plant Engineering Data Base (PDBMS) and covers all stage of engineering for nuclear power plant from project management, design, manufacturing, construction to operating plant service and preventive maintenance as it were 'Plant Life-Cycle CAE System'. In recent years, TOSHIBA has been devoting to extend the system for integrated intelligent CAE system with state-of-the-art computer technologies such as computer graphics and artificial intelligence. This paper shows the outline of CAE system for nuclear power plant in TOSHIBA. (author)

  4. French lessons in nuclear power

    International Nuclear Information System (INIS)

    Valenti, M.

    1991-01-01

    In stark contrast to the American atomic power experience is that of the French. Even the disaster at Chernobyl in 1986, which chilled nuclear programs throughout Western Europe, did not slow the pace of the nuclear program of the state-owned Electricite de France (EDF), based in Paris. Another five units are under construction and are scheduled to be connected to the French national power grid before the end of 1993. In 1989, the EDF's 58 nuclear reactors supplied 73 percent of French electrical needs, a higher percentage than any other country. In the United States, for example, only about 18 percent of electrical power is derived from the atom. Underpinning the success of nuclear energy in France is its use of standardized plant design and technology. This has been an imperative for the French nuclear power industry since 1974, when an intensive program of nuclear power plant construction began. It was then, in the aftermath of the first oil embargo, that the French government decided to reduce its dependence on imported oil by substituting atomic power sources for hydrocarbons. Other pillars supporting French nuclear success include retrofitting older plants with technological or design advances, intensive training of personnel, using robotic and computer aids to reduce downtime, controlling the entire nuclear fuel cycle, and maintaining a comprehensive public information effort about the nuclear program

  5. Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example

    International Nuclear Information System (INIS)

    Nian, Victor

    2015-01-01

    Highlights: • This paper evaluates the life cycle carbon emission of nuclear power in a scenario based approach. • It quantifies the impacts to the LCA results from the change in design parameters. • The methodology can give indications towards preferred or favorable designs. • The findings contribute to the life cycle inventories of energy systems. - Abstract: The life cycle carbon emission factor (measured by t-CO 2 /GW h) of nuclear power is much lower than those of fossil fueled power generation technologies. However, the fact of nuclear energy being a low carbon power source comes with many assumptions. These assumptions range from system and process definitions, to input–output definitions, to system boundary and cut-off criteria selections, and life cycle inventory dataset. However, there is a somewhat neglected but critical aspect – the design aspect. This refers to the impacts on the life cycle carbon emissions from the change in design parameters related to nuclear power. The design parameters identified in this paper include: (1) the uranium ore grade, (2) the critical process technologies, represented by the average initial enrichment concentration of 235 U in the reactor fuel, and (3) the size of the nuclear power reactor (measured by the generating capacity). If not properly tested, assumptions in the design aspect can lead to an erroneous estimation on the life cycle carbon emission factor of nuclear power. In this paper, a methodology is developed using the Process Chain Analysis (PCA) approach to quantify the impacts of the changes in the selected design parameters on the life cycle carbon emission factor of nuclear power. The concept of doing so broadens the scope of PCAs on energy systems from “one-off” calculation to analysis towards favorable/preferred designs. The findings from the analyses can serve as addition to the life cycle inventory database for nuclear power as well as provide indications for the sustainability of

  6. Analysis of environmental impact phase in the life cycle of a nuclear power plant; Analisis de la fase de impacto ambiental en el ciclo de vida de una central nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez del M, C.

    2015-07-01

    The life-cycle analysis covers the environmental aspects of a product throughout its life cycle. The focus of this study was to apply a methodology of life-cycle analysis for the environmental impact assessment of a nuclear power plant by analyzing international standards ISO 14040 and 14044. The methodology of life-cycle analysis established by the ISO 14044 standard was analyzed, as well as the different impact assessment methodologies of life cycle in order to choose the most appropriate for a nuclear power plant; various tools for the life-cycle analysis were also evaluated, as is the use of software and the use of databases to feed the life cycle inventory. The functional unit chosen was 1 KWh of electricity, the scope of analysis ranging from the construction and maintenance, disposal of spent fuel to the decommissioning of the plant, the manufacturing steps of the fuel were excluded because in Mexico is not done this stage. For environmental impact assessment was chosen the Recipe methodology which evaluates up to 18 impact categories depending on the project. In the case of a nuclear power plant were considered only categories of depletion of the ozone layer, climate change, ionizing radiation and formation of particulate matter. The different tools for life-cycle analysis as the methodologies of impact assessment of life cycle, different databases or use of software have been taken according to the modeling of environmental sensitivities of different regions, because in Mexico the methodology for life-cycle analysis has not been studied and still do not have all the tools necessary for the evaluation, so the uncertainty of the data supplied and results could be higher. (Author)

  7. Independent assessment of forseeable problems in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1975-01-01

    Information is presented concerning the U. S. nuclear fuel cycle business including investment requirements; nuclear power growth projection; reliability of uranium supply; enrichment facilities; plutonium recycle; safeguards; and insurance

  8. Nuclear power newsletter Vol. 3, no. 4, December 2006

    International Nuclear Information System (INIS)

    2006-12-01

    The topics presented in this newsletter are: The 1st Joint IAEA-EPRI Workshop on Modernization of Instrumentation and Control Systems in Nuclear Power Plants; Message from the Director of the Division of Nuclear Power; Nuclear power plant operation; Management system, infrastructure and training; International Project on Innovative Nuclear Reactors and Fuel Cycles; Technology developments and applications for advanced reactors; Planned meetings in 2007

  9. International nuclear power status 1999; International kernekraftstatus 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hoejerup, C.F.; Oelgaard, P.L. [eds.

    2000-03-01

    This report isthe sixth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 1999, the report contains: General trends in the development of nuclear power; The past and possible future of Barsebaeck Nuclear Power Plant; Statistical information on nuclear power production (in 1998); An overview of safety-relevant incidents in 1999; The development in Sweden; The development in Eastern Europe; The development in the rest of the world; Trends in the development of reactor types; Trends in the development of the nuclear fuel cycle. (au)

  10. Fuel Cycle Services The Heart of Nuclear Energy

    International Nuclear Information System (INIS)

    Soedyartomo-Soentono

    2007-01-01

    Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO 2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services world wide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international cooperations are central for proceeding with the utilization of nuclear energy, while this advantagous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically. (author)

  11. Fuel Cycle Services the Heart of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    S. Soentono

    2007-01-01

    Full Text Available Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant, management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services worldwide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international co-operations are central for proceeding with the utilization of nuclear energy, while this advantageous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically.

  12. The role of nuclear power and nuclear propulsion in the peaceful exploration of space

    International Nuclear Information System (INIS)

    2005-09-01

    This publication has been produced within the framework of the IAEA's innovative reactor and fuel cycle technology development activities. It elucidates the role that peaceful space related nuclear power research and development could play in terrestrial innovative reactor and fuel cycle technology development initiatives. This review is a contribution to the Inter-Agency Meeting on Outer Space Activities, and reflects the stepped up efforts of the Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space to further strengthen cooperation between international organizations in space related activities. Apart from fostering information exchange within the United Nations organizations, this publication aims at finding new potential fields for innovative reactor and fuel cycle technology development. In assessing the status and reviewing the role of nuclear power in the peaceful exploration of space, it also aims to initiate a discussion on the potential benefits of space related nuclear power technology research and development to the development of innovative terrestrial nuclear systems

  13. Is there a tomorrow for nuclear power generation?

    International Nuclear Information System (INIS)

    Kanoh, T.

    1996-01-01

    Critical comments are publicly made about nuclear power generation and the nuclear fuel cycle. This criticism is directed at three areas of concern: accidents, radioactive waste disposal, and proliferation of nuclear weapons. In addition, there are other comments that ask 'Why are there countries pushing for nuclear power generation when other countries around the world are giving it up?' and 'Will further efforts to develop new energy sources and energy conservation not eliminate the nneed for nuclear power generation?' Such critical comments appear in some media more often than those expressing other opinions. Is there really no tomorrow for nuclear power? This question is studied below. (author)

  14. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  15. Algebraic approach for the diagnosis of turbine cycles in nuclear power plants

    International Nuclear Information System (INIS)

    Heo, Gyunyoung; Chang, Soon Heung

    2005-01-01

    According to plant operating staff's practical needs, authors proposed a diagnosis model to identify the performance degradation of steam turbine cycles in nuclear power plants (NPPs). The essential idea of this study is how to identify the intrinsically degraded component which causes electric loss. Authors found that there were not so many turbine cycle diagnosis applications in NPPs currently because of technical, financial, or social characteristics of the plant. So a great part of the diagnosis has been dependent on operating staff's experience and knowledge. However as economic competition becomes severe, the efficiency staffs is asking for reliable and practical advisory tools. For the solution of these shortcomings, authors proposed a simple and intuitive diagnosis concept based on the superposition rule of degradation phenomena, which can be derived by simple algebra and correlation analysis. Though the superposition rule is not so significant statistically, almost all of the performance indices under normal operation are fairly compatible with this model. Authors developed a prototype model of quantitative root-cause diagnosis and validated the background theory using the simulated data. The turbine cycle advisory system using this model was applied to Gori NPP units 3 and 4

  16. Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Burch, W.D.; Haire, M.J.; Rainey, R.H.

    1981-01-01

    The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment

  17. Program summary. Nuclear waste management and fuel cycle programs

    International Nuclear Information System (INIS)

    1982-07-01

    This Program Summary Document describes the US Department of Energy (DOE) Nuclear Waste Management and Fuel Cycle Programs. Particular emphasis is given to near-term, specifically Fiscal Year (FY) 1982, activities. The overall objective of these programs will be achieved by the demonstration of: (1) safe radioactive waste management practices for storage and disposal of high-level waste and (2) advanced technologies necessary to close the nuclear fuel cycle on a schedule which would assure a healthy future for the development of nuclear power in this country

  18. The separation of nuclear power from nuclear proliferation

    International Nuclear Information System (INIS)

    Starr, C.

    1979-01-01

    There exists world wide a strong common desire to limit nuclear weapons proliferation so as to inhibit or remove the threat of nuclear warfare. While this is a primary international political objective, there has also developed a secondary objective to limit any potential contribution to such nuclear weapons proliferation which might arise by the diversion of weapons material from the civilian nuclear power fuel cycle. This secondary objective is the basis of the present US government policy to defer the reprocessing of nuclear fuels anywhere. This policy has been generally recognized as a temporary expedient to provide time for international reexamination of the problems of weapons proliferation associated with nuclear power. A successful development of the proposed combination of the Fast Breeder Reactor and the Civex fuel reprocessing facility would provide an economical nuclear power source for many centuries which inherently separates nuclear power from the issue of weapons material diversion and proliferation. Further, by so doing, it permits great flexibility in international and national planning for nuclear power, as the issues of fuel dependence and terrorist and subnational diversions disappear. In addition, the expansion of the FBR/Civex system would eat into the LWR spent fuel stockpile, diminishing steadily this relatively accessible plutonium source. And finally, a rapid development of the FBR/Civex for the above reasons would substantially reduce the worldwide concern as to the adequacy of uranium ore supply. (Auth.)

  19. Nuclear power : world and Australia - a long-term view

    Energy Technology Data Exchange (ETDEWEB)

    Ford, G W.K.

    1989-01-01

    Developments in world and Australian activities relating to nuclear power and the nuclear fuel cycle are reviewed. Main issues addressed include environment, energy sources, uranium mining, enrichment, reactor design, fuel reprocessing and waste disposal. The benefits for Australia through its involvement in all stages of the nuclear fuel cycle are also discussed.

  20. World nuclear capacity and fuel cycle requirements, November 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy's activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment

  1. Guidebook on the introduction of nuclear power

    International Nuclear Information System (INIS)

    1982-01-01

    This ''Guidebook on the Introduction of Nuclear Power'' has been structured into three parts. The first part contains a survey of nuclear power, with the objective of providing general background information to the reader on the present status and future prospects of nuclear power and on the technical and economic aspects of available power reactor types and nuclear fuel cycles. In the second part of the Guidebook, the special aspects and considerations relevant to the introduction of nuclear power in a country are discussed. The subject is subdivided into three main headings: the technical aspects and national requirements; the safety and environmental considerations; and the international aspects of nuclear power. Emphasis is placed on the tasks to be performed within the country introducing nuclear power, on responsibilities that cannot be delegated and on the need for adequate national infrastructures and long-term commitments. Finally, the third part of the Guidebook contains more detailed information and guidance on the planning and preparatory stages of launching a first nuclear power project, including in particular: nuclear power programme planning, siting, feasibility studies, bidding and contracting. Design, construction and operation are covered in a brief overview for the sake of completeness

  2. Fuel for the next Brazilian nuclear power plants

    International Nuclear Information System (INIS)

    Lameiras, Fernando S.; Faeda, Kelly Cristina Ferreira

    2009-01-01

    The conclusion of the Angra III nuclear power plant ends a cycle of the nuclear energy in Brazil that started about forty years ago. Nowadays the country is planning the installation of 4 GWe to 8 GWe of nuclear power up to the year 2030. The nuclear reactors considered for this new cycle should take into account the current technologic development and environment of the nuclear market. They certainly will have significant differences in relation to the Angra I, II, and III reactors. Important impacts may result on the nuclear fuel production chain, e. g., case high temperature reactors were chosen, which can deliver electricity and heat. The differences between the fuels of the candidate reactors after Angra III are analyzed and development lines are suggested to minimize these impacts. (author)

  3. Basic plan for nuclear power development and utilization in 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report presents specific measures to be carried out in 1987 to promote research, development and application of nuclear power. The first part deals with the strengthening of safety measures, centering on the improvement in regulation and administration for nuclear power safety; promotion of safety studies; improvement and strengthening of disaster prevention measures; improvement and strengthening of environmental activity surveys; improvement in exposure control measures for nuclear power operation workers; and establishment of the nuclear fuel cycle and safety in such activities as development of new reactors. The second part of the report addresses the promotion of nuclear power generation. Measures for this will be focused on the promotion of location of nuclear power plants and the development of advanced technology for light water reactors. The third part describes measures for establishing the nuclear fuel cycle, which cover the procurement of uranium resources; enrichment of uranium; reprocessing of spent fuel and utilization of plutonium and recovered uranium; and disposal of radioactive waste. Other parts presents measures to be carried out for the development of new power reactors; research on nuclear fusion; development of nuclear powered vessels; application of radiations; improvement in the infrastructure for nuclear power development and utilization; etc. (Nogami, K.)

  4. The costs of nuclear power in the Netherlands

    International Nuclear Information System (INIS)

    1978-01-01

    A study on the costs of nuclear power generation in the Netherlands is presented. Light water cooled reactors are chosen as nuclear power plants and no difference is made in calculating the costs between a PWR type reactor and a BWR type reactor. The power plants have an output of 1000 MWe. From each part of the whole fuel cycle the costs are determined, taking into account interest, investments, time of construction, labor costs, insurances etc. Also are determined from each part of the fuel cycle the energy costs; the costs per kWh. Finally a comparison is made in costs between a 1000 MWe power plant and a 600 MWe power plant

  5. Utilities' view on the fuel management of nuclear power plants

    International Nuclear Information System (INIS)

    Held, C.; Moraw, G.; Schneeberger, M.; Szeless, A.

    1977-01-01

    Utilities engagement in nuclear power requires an increasing amount of fuel management activities by the utilities in order to meet all tasks involved. These activities comprise essentially two main areas: - activities to secure the procurement of all steps of the fuel cycle from the head to the back end; - activities related to the incore fuel managment. A general survey of the different steps of the nuclear fuel cycle is presented together with the related activities and responsibilities which have to be realized by the utilities. Starting in the past, today's increasing utility involvement in the nuclear fuel management is shown, as well as future fuel management trends. The scope of utilities' fuel management activities is analyzed with respect to organizational aspects, technical aspects, safeguarding aspects, and financial aspects. Utilities taking active part in the fuel management serves to achieve high availability and flexibility of the nuclear power plant during the whole plant life as well as safe waste isolation. This can be assured by continuous optimization of all fuel management aspects of the power plant or on a larger scale of a power plant system, i.e., utility activities to minimize the effects of fuel cycle on the environment, which includes optimization of fuel behaviour, radiation exposure to public and personnel, and utility technical and economic evaluations of out- and incore fuel management. These activities of nuclear power producing utilities in the field of nuclear fuel cycle are together with a close cooperation with fuel industry as well as national and international authorities a necessary basis for the further utilization of nuclear power

  6. International Nuclear Fuel Cycle Evaluation

    International Nuclear Information System (INIS)

    Carnesale, A.

    1980-01-01

    As nuclear power expands globally, so too expands the capability for producing nuclear weapons. The International Nuclear Fuel Cycle Evaluation (INFCE) was organized in 1977 for the purpose of exploring two areas: (1) ways in which nuclear energy can be made available to help meet world energy needs, and (2) means by which the attendant risk of weapons proliferation can be held to a minimum. INFCE is designed for technical and analytical study rather than negotiation. Its organizational structure and issues under consideration are discussed. Some even broader issues that emerge from consideration of the relationships between the peaceful and military use of nuclear energy are also discussed. These are different notions of the meaning of nuclear proliferation, nuclear export policy, the need of a nuclear policy to be both a domestic as well as a foreign one, and political-military measures that can help reduce incentives of countries to acquire nuclear weapons of their own

  7. Japanese government makes the first step of the nuclear energy policy. The 'Nuclear Power Nation Plan' that shows the future of the nuclear energy policy of Japan

    International Nuclear Information System (INIS)

    Yanase, Tadao

    2006-01-01

    The Nuclear Energy Subcommittee of the METI Advisory Committee deliberated concrete actions for achieving the basic goals of the framework for nuclear energy policy, namely 1) continuing to meet at least 30 to 40% of electricity supply even after 2030 by nuclear power generation, 2) future promoting the nuclear fuel cycle, and 3) aiming at commercializing practical FBR cycle. In August 2006, the subcommittee recommendations were drawn up as a 'Nuclear Energy National Plan'. This report includes 1) building new nuclear power plants in liberalized electricity market, 2) appropriate use of existing nuclear power plants with assuring safety as a key prerequisite, 3) promoting nuclear fuel cycle and strategically reinforcing of nuclear industries, 4) early commercialization of FBR cycle, 5) assuming ample technical and human resources to support the next generation, 6) supporting for international development of Japan's nuclear industry, 7) positive involvement in creating an international framework to uphold both non-proliferation and the expansion of nuclear power generation, 8) building trust between government and local communities through detailed communication and 9) reinforcement of measures for radioactive waste disposal. (S.Y.)

  8. International nuclear power status 2002; International kernekraftstatus 2002

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L. (eds.)

    2003-03-01

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  9. International project on innovative nuclear reactors and fuel cycles

    International Nuclear Information System (INIS)

    Cherepnin, Yu.S.; Bezzubtsev, V.S.; Gabaraev, B.A.

    2002-01-01

    Positive changes are currently taking place in nuclear power in the world. Power generation at Nuclear Power Plants (NPPs) is increasing and new units construction and completion rates are growing in some of leading countries. Considerable efforts are made for improving the safety of operating NPPs, effective use of nuclear fuel and solving the spent nuclear fuel and radioactive waste problems. Simultaneously, work are undertaken to develop new reactor technologies to reduce the fundamental drawbacks of conventional nuclear power, namely: insufficient safety, spent fuel and waste handling problems, nuclear material proliferation risk and poor economic competitiveness as compared to fossil-fuel energy sources. One the most important events in this field is an international project implemented by three agencies (OECD-IEA, OECD-NEA, IAEA) for comparative evaluation of new projects, development of Generation IV reactors underway in the US in cooperation with a number of Western countries and, finally, the initiative by Russian President V.V. Putin for consolidation the efforts of interested countries under auspices of IAEA to solve the problem of energy support for sustainable development of humankind, radical solution of non-proliferation problems and environmental sanitation of the Planet of Earth. The 44-th General Conference of IAEA in September 2000 supported the Initiative of Russian President and called all interested countries to unite efforts under the Agency's auspices in the International Project on Innovative Nuclear Reactors and Fuel Cycles to consider and select the most acceptable nuclear technologies of the 21-st century with regard for the drawbacks of today's nuclear power. Main objectivities of INPRO: Promotion of the availability of nuclear power for sustainable satisfaction of the energy needs in 21-st century; Consolidation of efforts by all interested INPRO participating countries (both owners and users of technologies) for joint development of

  10. Nuclear power - international and national dimensions

    International Nuclear Information System (INIS)

    Yanev, Ya.

    1994-01-01

    A strong internationalization of nuclear problems is observed recently. International links have acted as a powerful force for improvement of safety standards and plant performance. The prospects for nuclear industry, its safety and excellent operation, its acceptance and tolerance from society in general will strongly influence the future of nuclear power generation in Bulgaria. The most important problems of Bulgarian nuclear energy are: implementation of safety upgrading program; building and operating new nuclear units; developing infrastructure which will permit safe and reliable operation of the existing units and solve the fuel cycle problems in a reliable and acceptable by the society manner. (I.P.)

  11. Reload safety evaluation report for kori nuclear power plant unit 2 cycle 9

    International Nuclear Information System (INIS)

    Cho, Beom Jin; Kim, Si Yong; Kim, Oh Hwan; Nam, Kee Il; Um, Gil Sup; Ban, Chang Hwan; Choi, Dong Uk; Yoon, Kyung Ho

    1992-04-01

    The Kori Nuclear Power Plant Unit 2 (Kori-2) is anticipated to be refuelled with 16x16 Korean Fuel Assemblies (KOFA), which are based on the KAERI design starting from Cycle 8. This report presents a reload safety evaluation for Kori-2, Cycle 9 and demonstrates that the reactor core being composed of various fuel assembly types as described below will not adversely affect the safety of the public and the plant. The evaluation of Kori-2, Cycle 9 was accomplished utilizing the methodology described in 'Reload Transition Safety Report for KORI 2' (Ref. /1-1/). The reload core for Kori-2, Cycle 9 is entirely comprised of 16x16 KOFA. In the Kori-2 licensing documentation to KEPCO the reference safety evaluation was provided for the operation of a reactor core fully loaded with KOFA as well as associated proposed changes to the Kori-2 Technical Specifications. The reload for Kori-2, Cycle 9 also introduces UO 2 /Gd 2 O 3 containing fuel rods. The use of fuel rods with Gd 2 O 3 poisoning of the fuel has been approved as a part of the above mentioned licensing documentation. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the Cycle 9 core design described herein. (Author)

  12. World nuclear fuel cycle requirements 1985

    International Nuclear Information System (INIS)

    Moden, R.; O'Brien, B.; Sanders, L.; Steinberg, H.

    1985-01-01

    Projections of uranium requirements (both yellowcake and enrichment services) and spent fuel discharges are presented, corresponding to the nuclear power plant capacity projections presented in ''Commercial Nuclear Power 1984: Prospects for the United States and the World'' (DOE/EIA-0438(85)) and the ''Annual Energy Outlook 1984:'' (DOE/EIA-0383(84)). Domestic projections are provided through the year 2020, with foreign projections through 2000. The domestic projections through 1995 are consistent with the integrated energy forecasts in the ''Annual Energy Outlook 1984.'' Projections of capacity beyond 1995 are not part of an integrated energy foreccast; the methodology for their development is explained in ''Commercial Nuclear Power 1984.'' A range of estimates is provided in order to capture the uncertainty inherent in such forward projections. The methodology and assumptions are also stated. A glossary is provided. Two appendixes present additional material. This report is of particular interest to analysts involved in long-term planning for the disposition of radioactive waste generated from the nuclear fuel cycle. 14 figs., 18 tabs

  13. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  14. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Beckurts, K.H.

    1985-01-01

    On the occasion of the retirement of the Editor-in-chief of 'atomwirtschaft', the author gave a keynote speech on the development of nuclear power in the Federal Republic of Germany at the headquarters of the Handelsblatt Verlag in Duesseldorf on October 30, 1984. He subdivided the period under discussion into five phases, the first of which comprises the 'founding years' of 1955 to 1960. This was the time when activities in nuclear research and nuclear technology in Germany, which were permitted again in mid-1955, began with the establishment of the national research centers, the first Atomic Power Program, the promulgation of the Atomic Energy Act, the foundation of government organizations, including the Federal Ministry for Atomic Energy, etc. In the second phase, between 1960 and 1970, a solid foundation was laid for the industrial peaceful uses of nuclear power in the construction of the first LWR experimental nuclear power stations, the first successful export contracts, the beginnings of the first nuclear fuel cycle plants, such as the WAK reprocessing plant, the Asse experimental repository, the Almelo agreement on centrifuge enrichment. The third phase, between 1970 and 1975, was a period of euphoria, full of programs and forecasts of a tremendous boom in nuclear generating capacities, which were further enhanced by the 1973 oil squeeze. In 1973 and 1974, construction permits for ten nuclear power plants were applied for. The fourth phase, between 1975 and 1980, became a period of crisis. The fifth phase, the eighties, give rise to hope for a return to reason. (orig./UA) [de

  15. Nuclear Production of Hydrogen Using Thermochemical Water-Splitting Cycles

    International Nuclear Information System (INIS)

    Brown, L.C.; Besenbruch, G.E.; Schultz, K.R.; Marshall, A.C.; Showalter, S.K.; Pickard, P.S.; Funk, J.F.

    2002-01-01

    The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high-temperature heat from an advanced nuclear power station in a thermochemical water-splitting cycle. We carried out a detailed literature search to create a searchable database with 115 cycles and 822 references. We developed screening criteria to reduce the list to 25 cycles. We used detailed evaluation to select two cycles that appear most promising, the Adiabatic UT-3 cycle and the Sulfur-Iodine cycle. We have selected the Sulfur-Iodine thermochemical water-splitting cycle for further development. We then assessed the suitability of various nuclear reactor types to the production of hydrogen from water using the Sulfur-Iodine cycle. A basic requirement is to deliver heat to the process interface heat exchanger at temperatures up to 900 deg. C. We considered nine categories of reactors: pressurized water-cooled, boiling water-cooled, organic-cooled, alkali metal-cooled, heavy metal-cooled, gas-cooled, molten salt-cooled, liquid-core and gas-core reactors. We developed requirements and criteria to carry out the assessment, considering design, safety, operational, economic and development issues. This assessment process led to our choice of the helium gas-cooled reactor for coupling to the Sulfur-Iodine cycle. In continuing work, we are investigating the improvements that have been proposed to the Sulfur-Iodine cycle and will generate an integrated flowsheet describing a hydrogen production plant powered by a high-temperature helium gas-cooled nuclear reactor. This will allow us to size process equipment and calculate hydrogen production efficiency and capital cost, and to estimate the cost of the hydrogen produced as a function of nuclear reactor cost. (authors)

  16. Decommissioning of nuclear fuel cycle facilities. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this Safety Guide is to provide guidance to regulatory bodies and operating organizations on planning and provision for the safe management of the decommissioning of non-reactor nuclear fuel cycle facilities. While the basic safety considerations for the decommissioning of nuclear fuel cycle facilities are similar to those for nuclear power plants, there are important differences, notably in the design and operating parameters for the facilities, the type of radioactive material and the support systems available. It is the objective of this Safety Guide to provide guidance for the shutdown and eventual decommissioning of such facilities, their individual characteristics being taken into account

  17. Nuclear power: Is the renaissance real or a mirage?

    Energy Technology Data Exchange (ETDEWEB)

    Rogner, H.-Holger; McDonald, Alan

    2010-09-15

    In 2009, in the midst of the global financial and economic crises that began in 2008, and as the nuclear power industry posted its first two-year decline in installed capacity in history, the IAEA revised its projections for future nuclear power growth upwards. This paper summarizes the status of nuclear power in the world today and the status of all steps in the nuclear fuel cycle. It summarizes nuclear power's prospects and important trends in key factors. It explains the reasons for optimism and rising expectations about nuclear power's future, and it acknowledges that there is, nonetheless, much uncertainty.

  18. In core reload design for cycle 4 of Daya Bay nuclear power station both units

    International Nuclear Information System (INIS)

    Zhang Zongyao; Liu Xudong; Xian Chunyu; Li Dongsheng; Zhang Hong; Liu Changwen; Rui Min; Wang Yingming; Zhao Ke; Zhang Hong; Xiao Min

    1998-01-01

    The basic principles and the contents of the reload design for Daya Bay nuclear power station are briefly introduced. The in core reload design results, and the comparison between the calculated values and the measured values of both units the fourth cycle are also given. The reload design results of the two units satisfy all the economic requirements and safety criteria. The experimented results shown that the predicated values are tally good with all the measurement values

  19. ALKASYS, Rankine-Cycle Space Nuclear Power System

    International Nuclear Information System (INIS)

    2001-01-01

    1 - Description of program or function: The program ALKASYS is used for the creation of design concepts of multimegawatt space power systems that employ potassium Rankine power conversion cycles. 2 - Method of solution: ALKASYS calculates performance and design characteristics and mass estimates for the major subsystems composing the total power system. Design and engineering performance characteristics are determined by detailed engineering procedures rather than by empirical algorithms. Mass estimates are developed using basic design principles augmented in some cases by empirical coefficients determined from the literature. The reactor design is based on a fast spectrum, metallic-clad rod fuel element containing UN pellets. 3 - Restrictions on the complexity of the problem: ALKASYS was developed primarily for the analysis of systems with electric power in the range from 1,000 to 25,000 kW(e) and full-power life from 1 to 10 years. The program should be used with caution in systems that are limited by heat flux (which might indicate need for extended surfaces on fuel elements) or criticality (which might indicate the need for other geometries or moderators)

  20. Membranes for H2 generation from nuclear powered thermochemical cycles

    International Nuclear Information System (INIS)

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra; Iyer, Ratnasabapathy G.; Axness, Marlene

    2006-01-01

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H 2 SO 4 into O 2 , SO 2 , and H 2 O at temperatures around 850 C. In-situ removal of O 2 from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A x Sr 1-x Co 1-y B y O 3-δ (A=La, Y; B=Cr-Ni), in particular the family La x Sr 1-x Co 1-y Mn y O 3-δ (LSCM), and doped La 2 Ni 1-x M x O 4 (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H 2 SO 4 decomposition reactor study (at Sandia), in which our membranes were tested in the actual H 2 SO 4 decomposition step

  1. World nuclear capacity and fuel cycle requirements 1992

    International Nuclear Information System (INIS)

    1992-12-01

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy's activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment for the Lower and Upper Reference case scenarios were obtained from the Office of Integrated Analysis and Forecasting, Energy Information Administration. Most of these projections were developed using the World Integrated Nuclear Evaluation System (WINES) model

  2. The roles of industry for internationalization of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Choi, Jor-Shan; Oda, Takuji; Tanaka, Satoru; Kuno, Yusuke

    2011-01-01

    To meet increasing energy demand and counter climate change, nuclear energy is expected to expand during the next decades in both developed and developing countries. The Fukushima accident in Japan in March 2011 may dampen the expansion, but it would proceed and continue when the Fukushima lessons are learned. This expansion, most visibly in Asian would be accompanied with complex and intractable challenges to global stability and nuclear security, notably, on 'how to reduce security and proliferation concerns if nuclear power is introduce and when used fuel is generated in less stable regions of the world?' The answers to the question may lie in the possibility of multilateral control of nuclear materials and technologies in the nuclear fuel cycle, including the provision of a 'cradle-to-grave' fuel cycle service, presumably by the nuclear industries and their respective governments. This paper evaluates the importance of such industry-government cooperative initiative and explores into the roles which the nuclear industry should play to ensure that the world would not be 'creating proliferation when expanding the application of nuclear power to emerging nuclear countries'. (author)

  3. Energy security strategy and nuclear power

    International Nuclear Information System (INIS)

    Toichi, Tsutomu; Shibata, Masaharu; Uchiyama, Yoji; Suzuki, Tatsujiro; Yamazaki, Kazuo

    2006-01-01

    This special edition of 'Energy security strategy and nuclear power' is abstracts of the 27 th Policy Recommendations 'The Establishment of an International Energy Security System' by the Japan Forum on International Relations, Inc on May 18 th , 2006. It consists of five papers: Energy security trend in the world and Japan strategy by Tsutomu Toichi, Establishment of energy strategy supporting Japan as the focus on energy security by Masaharu Shibata, World pays attention to Japan nuclear power policy and nuclear fuel cycle by Yoji Uchiyama, Part of nuclear power in the energy security - the basic approach and future problems by Tatsujiro Suzuki, and Drawing up the energy strategy focused on the national interests - a demand for the next government by Kazuo Yamazaki. (S.Y.)

  4. Simulation of the nuclear power economy

    International Nuclear Information System (INIS)

    Triplett, M.B.

    1977-01-01

    Evaluation of nuclear power development policies requires the ability to forecast the economic and resource impacts attributable to a given policy. A computer simulation has been used in several recent evaluations of alternate nuclear power growth scenarios for the U.S. By using a discrete event modeling approach, a flexible tool has been developed that can simulate most planned reactor systems in terms of their overall economics and their impacts upon fuel cycle industries

  5. Future regional nuclear fuel cycle cooperation in East Asia: Energy security costs and benefits

    International Nuclear Information System (INIS)

    Hippel, David von; Hayes, Peter; Kang, Jungmin; Katsuta, Tadahiro

    2011-01-01

    Economic growth in East Asia has rapidly increased regional energy, and especially, electricity needs. Many of the countries of East Asia have sought or are seeking to diversify their energy sources and bolster their energy supply and/or environmental security by developing nuclear power. Rapid development of nuclear power in East Asia brings with it concerns regarding nuclear weapons proliferation associated with uranium enrichment and spent nuclear fuel management. This article summarizes the development and analysis of four different scenarios of nuclear fuel cycle management in East Asia, including a scenario where each major nuclear power user develops uranium enrichment and reprocessing of spent fuel individually, scenarios featuring cooperation in the full fuel cycle, and a scenario where reprocessing is avoided in favor of dry cask storage of spent fuel. The material inputs and outputs and costs of key fuel cycle elements under each scenario are summarized. - Highlights: → We evaluate four scenarios of regional nuclear fuel cycle cooperation in East Asia and the Pacific. → The scenarios cover fuel supply, enrichment, transport, reprocessing, and waste management. → We evaluate nuclear material flows, energy use, costs, and qualitative energy security impacts. → Regional cooperation on nuclear fuel cycle issues can help to enhance energy security. → A regional scenario in which reprocessing is rapidly phased out shows security and cost advantages.

  6. Experience with nuclear power conference preview

    International Nuclear Information System (INIS)

    1982-01-01

    The development of nuclear energy for peaceful purposes has had a series of big international scientific and technical conferences as major milestones. The first was, of course, the United Nations Geneva Conference in 1955, which released a wealth of information which had hitherto been classified. This conference gave rise to a worldwide enthusiasm for the potential and possibilities of nuclear power. The three following Geneva Conferences in 1958, 1964, and 1971 showed a successive slow change in character reflecting the change in the nature of the information exchange which was taking place, the new role of smaller and more specialized meetings, and fast and extensive literature dissemination systems. Steadily, these conferences turned from the original role of international information exchange among scientists and technicians to one of summarizing a wealth of available information in order to present it to those who were to take planning and programming decisions in each nation, reflecting also the hopes and the great investments required in nuclear power. The IAEA, established in 1957, provided the UN with a scientific secretariat for the last two Geneva Conferences, and itself organized the Conference on Nuclear Power and its Fuel Cycle in Salzburg in 1977 at a time when the closing of the nuclear fuel cycle was a focal point of interest

  7. Radioactive waste management for German nuclear power plants

    International Nuclear Information System (INIS)

    Weh, R.; Methling, D.; Sappok, M.

    1996-01-01

    In Germany, back-end fuel cycle provisions must be made for the twenty nuclear power plants currently run by utilities with an aggregate installed power of 23.4 GWe, and the four nuclear power plants already shut down. In addition, there are the shut down nuclear power plants of the former German Democratic Republic, and a variety of decommissioned prototype nuclear power plants built with the participation of the federal government and by firms other than utilities. The nuclear power plants operated by utilities contribute roughly one third of the total electricity generation in public power plants, thus greatly ensuring a stable energy supply in Germany. The public debate in Germany, however, focuses less on the good economic performance of these plants, and the positive acceptance at their respective sites, but rather on their spent fuel and waste management which, allegedly, is not safe enough. The spent fuel and waste management of German nuclear power plants is planned on a long-term basis, and executed in a responsible way by proven technical means, in the light of the provisions of the Atomic Act. Each of the necessary steps of the back end of the fuel cycle is planned and licensed in accordance with German nuclear law provisions. The respective facilities are built, commissioned, and monitored in operation with the dedicated assistance of expert consultants and licensing authorities. Stable boundary conditions are a prerequisite in ensuring the necessary stability in planning and running waste management schemes. As producers of waste, nuclear power plants are responsible for safe waste management and remain the owners of that waste until it has been accepted by a federal repository. (orig./DG) [de

  8. The MIT report 'The future of nuclear power' and its implications

    International Nuclear Information System (INIS)

    Suzuki, Tatsujiro; Nagano, Koji

    2004-01-01

    An interdisciplinary MIT study : 'The Future of Nuclear Power' was published on 29 July, 2003. Its important points and meaning of this report are described. The object of the report is to make clear what should be played a part of nuclear power. From the growth scenario of nuclear power in the world, it concluded nuclear power had to generate 100 million kW, 19% total power generation, in 2050. Three choices for future of nuclear power are expected as followings, 1) once-through operation of the existing thermal neutron reactors and direct processing of spent fuel, 2) closed cycle operation of thermal neutron reactors and recycle burnup of MOX fuel of separated Pu (PUREX/MOX) and 3) introduction of fast reactors for closed cycle operation of both fast and thermal neutron reactors in order of material balance of the latter reactors. It is the most important part of the report that these choices were evaluated quantitatively and qualitatively on the view points of economical efficiency, waste disposal (short and long term), non-proliferation and safety (reactor and fuel cycle). Some new politics such as support of nuclear power introduction, waste disposal and development of researches are suggested. (S.Y.)

  9. Nuclear power newsletter, Vol. 5, no. 2, June 2008

    International Nuclear Information System (INIS)

    2008-06-01

    The current issue presents information about the following: Development of Nuclear Energy Series - Clickable Map; Consultants meeting, held with the participation of 13 experts at the IAEA headquarters on 11-13 March 2008 to initiate a reference base-document that defines the core knowledge on instrumentation and control in general terms, relevant to both operating NPP and future builds; Workshop on Continued Operations Beyond 60 Years in Nuclear Power Plant; the consultants meeting on development of Initiating Events database, held at the IAEA headquarters in Vienna on 11-13 December 2007 - the purpose of the meeting was to discuss suggested implementation of Initiating Event (IE) data into Power Reactor Information System (PRIS); the first draft of a new NE-Series-Report on Assessment of the National Nuclear Infrastructure Development Status; the IAEA Workshop at the World's First AP-1000 Site, Sanmen Nuclear Power Company, China; acceptance testing of full-scope simulators, held at the Tianwan Nuclear Power Station (TNPS), INPRO meeting - topics include nuclear power for small countries, nuclear fuel cycle issues, environmental impacts, safety issues, proliferation resistance, non-stationary nuclear power plants, and the global architecture of future innovative nuclear systems, including the fuel cycle; INPRO Action Plan for 2008-2009; technology advance for water, reactors, gas-cooled reactors, fast reactors and ADS and other

  10. Regeneration and localization of radioactive waste in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Egorov, N.N.; Kudryavtsev, E.G.; Nikipelov, B.V.; Polyakov, A.S.; Zakharkin, B.S.; Mamaev, L.A.

    1993-01-01

    Normal functioning of the nuclear-power industry is only possible with a closed fuel cycle, including regeneration of the spent fuel from atomic power plants, the production and recycling of the secondary fuel, and localization of the radioactive waste. Despite the diversity of contemporary attitudes toward the structure of the nuclear fuel cycle around the world, the closure of the fuel cycle has been fundamental to the atomic-power industry in the USSR since the very beginning, and has taken on even greater significance in Russia today. From the beginning, the idea of a closed fuel cycle has been based essentially on one fundamental criterion: the concept of expanded productivity on the basis of fuel regeneration, i.e., the economic factor. Important as economic factors are, safety issues have taken on great significance in recent years: not only power-station reactors but all the ancillary stages of the fuel cycle must meet fundamentally new reliability, safety, and environmental hazards. The RT-1 plant is a versatile operation, regenerating spent fuel from VVER-440, BN-350, and BN-600 reactors, nuclear icebreakers and submarines, research reactors, and other power units. The plant can reprocess 400 ton/year of basic VVER-440 fuel. World-class modern processes have been introduced at the plant, meeting the necessary quality standards: zonal planning, remote operation to eliminate direct contact of the staff with radioactive material, extensive monitoring and control systems, multistage gas-purification systems, and new waste-treatment methods

  11. Nuclear energy resources for electrical power generation

    International Nuclear Information System (INIS)

    Alder, K.F.

    1974-01-01

    'Nuclear Energy Resources' is interpreted as the nuclear power systems currently available commercially and those at an advanced stage of development, together with full and associated resources required to implement large-scale nuclear programs. Technical advantages and disadvantages of the established power reactor systems are reviewed, and the uranium fuel situation is outlined in terms of supply and demand, the relationship of resources to the requiremnts of current reactor types, and the likely future implications of the Fast Breeder Reactor (FBR). Because of its importance for the future, the problems, status, and likely time scale of the FBR are discussed in some detail. It is concluded that the most important areas for nearterm attention in Australia are the criteria and conditions that would apply to nuclear installations, and the possible development of uranium fuel cycle industries. The pattern of development of reactor and fuel cycle strategies overseas is important for uranium industry planning, and in the long term plutonium availability may be a key factor in power and energy planning. Finally, acceptance of nuclear power includes acceptance that its radioactive wastes will have to be stored on earth, and recent developments to demonstrate that this can be done safely and economically are very important in terms of longterm public attitudes. (author)

  12. The Brazilian nuclear power manpower development programme

    International Nuclear Information System (INIS)

    Barbalho, A.R.; Spitalnik, J.; Machado, J.B.

    1983-01-01

    Since the early stages of decision making, manpower availability has been recognized to be a key factor for the implementation of Brazil's nuclear power programme. Though care has been given to securing an industrial base and financial resources, the consequences of a lack of sufficient qualified manpower could be critical for the success of the whole programme. The broad scope of the Brazilian nuclear power programme which, as a main concept, aimed at establishing in the country a complete fuel cycle industry together with the construction of nuclear power plants, added another burden to the already complex task of providing appropriate human resources when advanced technologies are introduced in a developing country. Thus, not only the work-force required for nuclear power plant operation but also that needed for plant design, component manufacture, fuel cycle plant design and operation, had to be made available in number and qualification in accordance with the standards of the nuclear industry. The feasibility of the Brazilian programme depended on a complete transfer of technology, essentially achieved through personnel training. Again, the process of manpower preparation for an efficient know-how transfer required careful planning, and the great difficulty in its implementation was the lack of reliable experience at the time. (author)

  13. Nuclear power newsletter Vol. 3, no. 2, June 2006

    International Nuclear Information System (INIS)

    2006-06-01

    The topics presented in this newsletter are: The 7th IAEA - FORATOM Joint Workshop on Successful Management of Organizational Change; Message from the Director of the Division of Nuclear Power; Nuclear power plant operation; Management system, infrastructure and training; International Project on Innovative Nuclear Reactors and Fuel Cycles; Technology developments and applications for advanced reactors

  14. Implementation of ICRP recommendation in nuclear fuel cycle operations: challenges and achievements

    International Nuclear Information System (INIS)

    Gupta, V.K.

    1999-01-01

    The operating experience with regard to occupational exposure and environmental releases in Nuclear Fuel Cycle Facilities are described. The achievements of Nuclear Fuel Cycle Facilities in adhering to the revised radiological protection standards are highlighted, with particular reference to Nuclear Power Plants (NPPs). The downward trend of occupational and public doses due to nuclear power plant operation is emphasised. Some of the important radiologically significant jobs executed at NPPs are listed. With the vast experiences in the field of radiological protection, vis-a-vis stringent regulatory requirements, and design modifications envisaged in future facilities the radiological impact, both in the occupational and public domain is bound to be minimum. (author)

  15. Nuclear power newsletter Vol. 1, no. 2

    International Nuclear Information System (INIS)

    2004-12-01

    The newsletter provides information on: Nuclear Power Plant Operating Performance and Life Cycle Management; Improving Human Performance, Quality and Technical Infrastructure Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors

  16. Nuclear fuel cycle under progressing preparation of its systemisation

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Trends of nuclear development in Japan show more remarkable advancements in 2000, such as new addition of nuclear power plant, nuclear fuel cycling business, and so on. Based on an instruction of the criticality accident in JCO formed on September, 1999, government made efforts on revision of the law on regulation of nuclear reactor and so forth and establishment of a law on protection of nuclear accident as sooner, to enforce nuclear safety management and nuclear accident protective countermeasure. On the other hand, the nuclear industry field develops some new actions such as establishment of Nuclear Safety Network (NSnet)', mutual evaluation of nuclear-relative works (pier review), and so forth. And, on the high level radioactive wastes disposal of the most important subject remained in nuclear development, the Nuclear Waste Management Organization of Japan' of its main business body was established on October, 1999 together with establishment of the new law, to begin a business for embodiment of the last disposal aiming at 2030s to 2040s. On the same October, the Japan Nuclear Fuel Limited. concluded a safety agreement on premise of full-dress transportation of the used fuels to the Rokkasho Reprocessing Plant in Aomori prefecture with local government, to begin their transportation from every electric company since its year end. Here were described on development of the nuclear fuel cycling business in Japan, establishment of nuclear fuel cycling, disposal on the high level radioactive wastes, R and D on geological disposal of the high level radioactive wastes, establishment on cycle back-end of nuclear fuels, and full-dressing of nuclear fuel cycling. (G.K.)

  17. Estimation of nuclear power-related expenditures in fiscal 1982

    International Nuclear Information System (INIS)

    1981-01-01

    In fiscal 1982 (April to March, 1983), the research and development on nuclear power should be promoted actively and extensively by taking the appropriate measures. In view of the importance, the budgetary expenditures are to be estimated duly for the purpose, considering also the stringent financial situation. The budgetary expenditures for nuclear power estimated for the fiscal year 1982 are about 292,800 Million in total and the obligation act limit is about 139,900 Million. The following matters are described: nuclear power-related measures for securing nuclear power safety, promotion of nuclear power generation, establishment of the nuclear fuel cycle, development of power reactors, research on nuclear fusion, strengthening of the foundation in nuclear power research, development and utilization, promotion of international cooperation, etc.; estimated budgetary expenditures; tables of budgetary demands in various categories. (J.P.N.)

  18. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2003-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2002 was made up on bases of answers on questionnaires from 65 electric power companies and other nuclear organizations in 28 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  19. Nuclear power newsletter Vol. 2, no. 4, December 2005

    International Nuclear Information System (INIS)

    2005-12-01

    The topics presented in this newsletter are: Small and medium sized reactors for developing countries and remote applications; Message from the Director of the Division of Nuclear Power; International workshop on external flooding hazards at nuclear power plant sites; Nuclear power plant operating performance and life cycle management; Improving human performance, Quality and technical infrastructure; Technology developments and applications for advanced reactors; Recent publications; Planned meetings in 2006; WebSite link

  20. The summary of the nuclear power development in Japan

    International Nuclear Information System (INIS)

    Mizoguchi, Kenzo; Hirose, Yasuo; Fukai, Yuzo; Hada, Mikio; Ogawa, Nagao.

    1980-01-01

    A quarter of century has elapsed since the development of atomic energy was started in Japan. At present, the scale of nuclear power generation reached the operation of 22 plants with about 15.12 million kW capacity, and 12% of the total installation capacity for power generation. Efforts have been exerted to bring up the domestic technologies gradually, while importing and digesting quickly the foreign technologies. Now in LWRs, the equipments of nearly 100% can be produced by the domestic technologies, moreover, the technologies have reached such level that they can be exported to foreign countries. In the last five years, the improvement and standardization of LWR technologies have been promoted. The development of the reactors of new types has been continued by the domestic technologies. According to the long term plan, the nuclear power generation of 53 million kW is expected by 1990, but various problems such as the location of nuclear power stations and nuclear fuel cycle remain, and considerable difficulty is expected in its materialization. The history of nuclear power generation in Japan, the features and progress of LWRs, the photographs and the main specifications of notable nuclear power plants, and the future perspectives of LWRs, the reactors of new types, nuclear fusion and nuclear fuel cycle are described. (Kako, I.)

  1. Peaceful nuclear programme and front end nuclear fuel cycle activities in Pakistan

    International Nuclear Information System (INIS)

    S. Mukhtar Ahmed

    1999-01-01

    Pakistan has a modest but broad based nuclear programme related to peaceful uses of atomic energy in nuclear power, agriculture, medicine and industry. While development projects in these areas form the major segment of Pakistan Atomic Energy Commission's work, complimentary activities in basic research and human resource development are also supported. PAEC through its activities has been moving towards the goal of achieving self-reliance for its existing programme in an international atmosphere of embargoes and restrictions and in pursuit of creating an infrastructure to help sustain an indigenous nuclear power programme. To solve the local needs and requirements, radioisotopes and nuclear techniques have been applied in agriculture, medicine, hydrology and industry. PAEC has one large research and development establishment in physical sciences, three R and D centers in agriculture, one in biotechnology, and ten nuclear medical centers for diagnostics and oncology treatment. Two research reactors form nucleus of research and development activities in nuclear sciences. In the power sector a 137 Mew CANDU power reactor is in operation in Karachi since 1971. Another 300 Mew PWR is under construction and is nearing completion. Front-end fuel cycle and engineering infrastructure facilities have been established to support continued operation of Karachi Nuclear Power Plant (KANUPP). To support the engineering activities it has established facilities for precision workshops, non-destructive testing center and a welding institute. (author)

  2. Nuclear power newsletter Vol. 3, no. 3, special issue, September 2006

    International Nuclear Information System (INIS)

    2006-09-01

    The topics presented in this newsletter are: IAEA's Contribution to Peaceful Use of Nuclear Power by Mr. Sinha; IAEA's Contribution to Peaceful Use of Nuclear Power by Mr. Tipping; Message from the Director of the Division of Nuclear Power; Nuclear power plant operating performance and life cycle management; Improving organizational performance; Coordination of INPRO; Technology development for advanced reactors; Support for non-electric applications of nuclear power; Planned meetings in 2006 and 2007; Division of Nuclear Power Web site link. The first two topics have been indexed separately

  3. Economic assessment of new technology of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kim, H. S.; Song, K. D.; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lee, J. S.; Choi, H. B.

    1998-06-01

    The purpose of this study is to analyze the impact of the change in the manufacturing cost of DUPIC fuel on the power generation cost. In doing so, the installed capacity of nuclear power plants until the year 2040 were forecasted by using the trend analysis technique. This study used the NUFCAP computer code, developed by KAERI, which allows to conduct quantitative evaluation of the volumes of nuclear fuel and spent fuel as well as unit and system costs of nuclear fuel cycle. As a result of this study, it was found that there was little economic difference between the two possible options for the Korean electric system, direct disposal and DUPIC fuel cycle. The rate of discount and the manufacturing cost of DUPIC fuel were resulted in the most significant factors affecting the economics of the two options. Finally, it was expected that the result of this study provided the arguing point for the international debate on the economics of DUPIC fuel cycle technology. (author). 6 refs., 7 tabs., 8 figs

  4. Nuclear fuel cycle simulation system (VISTA)

    International Nuclear Information System (INIS)

    2007-02-01

    The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. The VISTA model needs isotopic composition of spent nuclear fuel in order to make estimations of the material arisings from the nuclear reactor operation. For this purpose, in accordance with the requirements of the VISTA code, a new module called Calculating Actinide Inventory (CAIN) was developed. CAIN is a simple fuel depletion model which requires a small number of input parameters and gives results in a very short time. VISTA has been used internally by the IAEA for the estimation of: spent fuel discharge from the reactors worldwide, Pu accumulation in the discharged spent fuel, minor actinides (MA) accumulation in the spent fuel, and in the high level waste (HLW) since its development. The IAEA decided to disseminate the VISTA tool to Member States using internet capabilities in 2003. The improvement and expansion of the simulation code and the development of the internet version was started in 2004. A website was developed to introduce the simulation system to the visitors providing a simple nuclear material flow calculation tool. This website has been made available to Member States in 2005. The development work for the full internet version is expected to be fully available to the interested parties from IAEA Member States in 2007 on its website. This publication is the accompanying text which gives details of the modelling and an example scenario

  5. Nuclear power: Financing big projects

    International Nuclear Information System (INIS)

    Raabe, G.

    1992-01-01

    Since the early seventies, the Dresdner Bank AG has been intensively engaged in financing nuclear power plants, e.g., the Muelheim-Kaerlich Nuclear Power Station currently down because of legal technicaltities. The bank has also been involved in other large-scale projects in the energy sector and, in addition, has conceptually accompanied the stages of the nuclear fuel cycle, such as enrichment, fuel element fabrication, and reprocessing. However, for political reasons it has not been possible to carry out these projects and finance them in the Federal Republic. With appropriate modifications, these financial models can also be transferred to international projects; after all, the enrichment sector has always been characterized by trilateral ventures. (orig.) [de

  6. Quantities of actinides in nuclear reactor fuel cycles

    International Nuclear Information System (INIS)

    Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000 MW reactors of the following types: water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breeder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium, and recycled uranium. The radioactivity levels of plutonium, americium, and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the United States nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium processed in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing and fuel fabrication to eliminate the off-site transport of separated plutonium. (U.S.)

  7. CO2 emissions of nuclear power supply

    International Nuclear Information System (INIS)

    Wissel, S.; Mayer-Spohn, O.; Fahl, U.; Voss, A.

    2007-01-01

    Increasingly, supported by the recent reports of the IPCC (International Panel on Climate Change), political, social and scientific institutions call for the use of atomic energy for reducing CO2 emissions. In Germany, the discussion is highly controversial. A life-cycle balance of nuclear power shows that its CO2 emissions are much lower than those of other technologies, even if changes in the nuclear fuel cycle are taken into account. (orig.)

  8. Thermo-economic performance of HTGR Brayton power cycles

    International Nuclear Information System (INIS)

    Linares, J. L.; Herranz, L. E.; Moratilla, B. Y.; Fernandez-Perez, A.

    2008-01-01

    High temperature reached in High and Very High Temperature Reactors (VHTRs) results in thermal efficiencies substantially higher than those of actual nuclear power plants. A number of studies mainly driven by achieving optimum thermal performance have explored several layout. However, economic assessments of cycle power configurations for innovative systems, although necessarily uncertain at this time, may bring valuable information in relative terms concerning power cycle optimization. This paper investigates the thermal and economic performance direct Brayton cycles. Based on the available parameters and settings of different designs of HTGR power plants (GTHTR-300 and PBMR) and using the first and second laws of thermodynamics, the effects of compressor inter-cooling and of the compressor-turbine arrangement (i.e., single vs. multiple axes) on thermal efficiency have been estimated. The economic analysis has been based on the El-Sayed methodology and on the indirect derivation of the reactor capital investment. The results of the study suggest that a 1-axis inter-cooled power cycle has a similar thermal performance to the 3-axes one (around 50%) and, what's more, it is substantially less taxed. A sensitivity study allowed assessing the potential impact of optimizing several variables on cycle performance. Further than that, the cycle components costs have been estimated and compared. (authors)

  9. Power cycle heat balance software for personal computer (PC)2TM

    International Nuclear Information System (INIS)

    Bockh, P. von; Rodriguez, H.

    1996-01-01

    This paper describes the PC-based power cycle balance of plant software (PC)trademark (Power Cycle on Personal Computer). It is designed to assist nuclear, fossil, and industrial power plants so that steam cycles can be simulated, analyzed and optimized. First, the cycle model is developed on the screen. The elements of the power cycle are taken from a tool box containing all components of a modern power cycle. The elements are connected by using a mouse. The next step is the input of the design values of the components or data taken from performance tests. This entire input sequence is guided by the program. Based on the input data, the physical behavior of each component is simulated according to established physical rules. Part load operation or other off-design conditions can be calculated. The program is designed for use by power plant engineers and power engineering firms to optimize new power cycles, perform problem-solving analyses, optimize component retrofit, and train power plant engineers and operators. It also can be used by universities to educate engineering students

  10. Trend of use and development of nuclear power in USA. Movement of recovery from 'winter age' of nuclear power

    International Nuclear Information System (INIS)

    Yamada, Eiji

    2005-01-01

    The winter age of nuclear power industry in USA has begun since the accident of Three Mile Island Nuclear Power Plant, 1979. However, the rate of operation of nuclear power plants has get better since in the middle of 1990s by these factors such as extension of operation cycle, shortening period of the periodic inspection, increase of rated output, extension of approval operating period and change of nuclear power industries. The Department of Energy (DOE) makes budget about 1.9 hundreds million dollars for 2006. The subjects, cooperation between DOE and industry and movement of private enterprise in USA are stated. 434 reactors are operating in the world in 2004. French and Finland decided to build EPR in 2004. China and Korea in The East Asia become the growth market, but Japan enters the winter age. Reorganization of nuclear power industry in the world is explained. (S.Y.)

  11. International nuclear power status 2000; International kernekraftstatus 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L. [eds.

    2001-03-01

    This report is the seventh in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2000, the report contains: 1. General trends in the development of nuclear power. 2. Deposition of low-level radioactive waste. 3. Statistical information on nuclear power production (in 1999). 4. An overview of safety-relevant incidents in 2000. 5. The development in Sweden. 6. The development in Eastern Europe. 7. The development in the rest of the world. 8. Trends in the development of reactor types. 9. Trends in the development of the nuclear fuel cycle. (au)

  12. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    Science.gov (United States)

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  13. Exposures resulting from nuclear power production. Annex F

    International Nuclear Information System (INIS)

    1982-01-01

    This Annex assesses the releases of radioactive materials from the nuclear fuel cycle and their resulting dose commitments to the public. The nuclear fuel cycle includes the mining and milling of uranium ores, conversion to nuclear fuel materials, fabrication of fuel elements, production of power in the nuclear reactor, reprocessing of irradiated fuel and recycling of fissile and fertile nuclides recovered, and disposal of radioactive wastes. This Annex also reviews reactor accidents which have led to unplanned releases of activity into the environment, together with estimates of the resulting collective doses.

  14. Preliminary study of nuclear power cogeneration system using gas turbine process

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya.

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author)

  15. Preliminary study of nuclear power cogeneration system using gas turbine process

    Energy Technology Data Exchange (ETDEWEB)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author).

  16. Nuclear power and the environment

    International Nuclear Information System (INIS)

    Mackerron, Gordon; Berkhout, Frans

    1990-01-01

    The environmental effects of nuclear power discussed in this paper are specifically the effects of radiation on human populations, either directly or through the food chain. Controlling the environmental effects of nuclear power has two dimensions, waste management and safety. Regulatory controls aim to keep the risk of death due to man-made radiation down to what is thought to be an acceptable level; the background to the establishing of such levels is examined. The scale of the nuclear industry is outlined. In industrial countries with nuclear power, with the possible exception of the USA and USSR which have extensive nuclear weapons programmes, most radioactive wastes arise in the civil nuclear fuel cycle; medical, research and industrial users of nuclear materials produce the rest. The extreme variety of materials included in radioactive wastes is highlighted. Approaches to the management of different kinds of radioactive waste are discussed; the particular problems associated with reactor decommissioning are considered. The enormous potential harm of serious accidents at nuclear power plants through a release of large quantities of radionuclides into the environment has been a dominant influence in the design of reactors. The accidents at Three Mile Island and Chernobyl underline the need for careful examination of management issues as well as design and operational failures. Finally, the catastrophic effects of a full scale nuclear war are briefly considered within the context of nuclear proliferation and international security. (UK)

  17. Voices of nuclear power 'monitors' in fiscal 1985: results of the questionnaire

    International Nuclear Information System (INIS)

    1986-01-01

    The system of nuclear power 'monitors' is to hear opinions etc. of the general people (i.e. of nuclear power monitors) on the nuclear power development and utilization and thereby to reflect the results in the nuclear power administration in Japan. The questionnairing survey by mail was made in June 1985 with 536 monitors across the country, of which 474 answered the questions. The results are described in the following: energies in the future, the development of nuclear power, the development of advanced-type reactors, the nuclear fuel cycle, nuclear power safety administration, nuclear hazard prevention, nuclear power PR activities. (Mori, K.)

  18. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2008-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2007/2008 was made up on bases of answers on questionnaires from electric power companies and other nuclear organizations around the world by JAIF. This report is comprised of 18 items, and contains generating capacity of the plants; effect of the Niigata-ken chuetsu-oki earthquake; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities, and so forth. (J.P.N.)

  19. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2004-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2003 was made up on bases of answers on questionnaires from 81 electric power companies and other nuclear organizations in 33 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  20. Nuclear power production costs

    International Nuclear Information System (INIS)

    Erramuspe, H.J.

    1988-01-01

    The economic competitiveness of nuclear power in different highly developed countries is shown, by reviewing various international studies made on the subject. Generation costs (historical values) of Atucha I and Embalse Nuclear Power Plants, which are of the type used in those countries, are also included. The results of an international study on the economic aspects of the back end of the nuclear fuel cycle are also reviewed. This study shows its relatively low incidence in the generation costs. The conclusion is that if in Argentina the same principles of economic racionality were followed, nuclear energy would be economically competitive in the future, as it is today. This is of great importance in view of its almost unavoidable character of alternative source of energy, and specially since we have to expect an important growth in the consumption of electricity, due to its low share in the total consumption of energy, and the low energy consumption per capita in Argentina. (Author) [es

  1. Fuel cycle management by the electric enterprises and spanish nuclear Power plants; Gestion del ciclo de combustible por las empresas electricas y centrales nucleares espanolas

    Energy Technology Data Exchange (ETDEWEB)

    Celma, E. M.; Gonzalez, C.; Lopez, J. V.; Melara, J.; Lopez, L.; Martinez, J. C.; Culbras, F.; Blanco, J.; Francia, L.

    2015-07-01

    The Nuclear Fuel Group reports to the Technology Committee of the UNESA Nuclear Energy Committee, and is constituted by representatives of both the Spanish Utilities and the Nuclear Power Plants. The Group addresses the nuclear plant common issues in relation to the operation and management of the nuclear fuel in their different stages of the Fuel Cycle. The article reviews the activities developed by the Group in the Front-End, mainly in the monitoring of international programs that define criteria to improve the Fuel Reliability and in the establishment of common bases for the implementation of changes in the regulation applying the nuclear fuel. Concerning the Back-End the Group focuses on those activities of coordination with third parties related to the management of used fuel. (Author)

  2. Hybrid nuclear cycles for nuclear fission sustainability

    International Nuclear Information System (INIS)

    Piera, M.; Martinez-Val, M. M.

    2007-01-01

    Nuclear fission can play and must play an important role in paving the road to Energy Sustainability. Nuclear Fission does not produce CO 2 emissions, and it is already exploited at commercial level with the current NPP (Nuclear Power Plants). Most of them are based on LWR reactors, which have a very good safety record. It must be noted, however, that all LWR (including the advanced or evolutionary ones) have some drawbacks, particularly their very poor efficiency in exploiting the natural resources of nuclear fuels. In this paper, an analysis is presented on how to maximize the energy actually generated from the potential contents of fission natural resources. The role of fertile-to-fissile breeding is highlighted, as well as the need of attaining a very high safety performance in the reactors and other installations of the fuel cycle. The proposal presented in this paper is to use advanced and evolutionary LWR as energy producing reactors, and to use subcritical fast assemblies as breeders. The main result would be to increase by two orders of magnitude the percentage of energy effectively exploited from fission natural resources, while keeping a very high level of safety standards in the full fuel cycle. Breeders would not be intended for energy production, so that safety standards could rely on very low values of the thermal magnitudes, so allowing for very large safety margins for emergency cooling. Similarly, subcriticality would offer a very large margin for not to reach prompt criticality in any event. The main drawback of this proposal is that a sizeable fraction of the energy generated in the cycle (about 1/3, maybe a little more) would not be useful for the thermodynamic cycle to produce electricity. Besides that, a fraction of the generated electricity, between 5 and 10 %, would have to be recirculated to feed the accelerator activating the neutron source. Even so, the overall result would be very positive, because more than 50 % of the natural

  3. Nuclear power newsletter Vol. 2, no. 1

    International Nuclear Information System (INIS)

    2005-03-01

    This newsletter presents information on the following topics: 7th meeting of the INPRO Steering Committee; Nuclear Power Plant Operating Performance and Life Cycle Management; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; 1st European Nuclear Assembly

  4. World nuclear power plant capacity

    International Nuclear Information System (INIS)

    1991-01-01

    This report provides the background information for statistics and analysis developed by NUKEM in its monthly Market Report on the Nuclear Fuel Cycle. The assessments in this Special Report are based on the continuous review of individual nuclear power plant projects. This Special Report begins with tables summarizing a variety of nuclear power generating capacity statistics for 1990. It continues with a brief review of the year's major events regarding each country's nuclear power program. The standard NUKEM Market Report tables on nuclear plant capacity are given on pages 24 and 25. Owing to space limitations, the first year shown is 1988. Please refer to previous Special Reports for data covering earlier years. Detailed tables for each country list all existing plants as well as those expected by NUKEM to be in commercial operation by the end of 2005. An Appendix containing a list of abbreviations can be found starting on page 56. Only nuclear power plants intended for civilian use are included in this Special Report. Reactor lifetimes are assumed to be 35 years for all light water reactors and 30 years for all other reactor types, unless other data or definite decommissioning dates have been published by the operators. (orig./UA) [de

  5. A nuclear gas turbine perspective: The indirect cycle (IDC) offers a practical solution

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1996-01-01

    The current generation of nuclear power plants are based on light water reactors and steam cycle power conversion systems. This coupling yields a power plant efficiency of less than 30% when dry-cooled. By utilizing a higher temperature heat source, and a more efficient prime-mover, the next generation of nuclear power plants have the potential for an efficiency of close to 50%, with attendant fuel savings and reduced heat rejection to the environment. The nuclear closed Brayton cycle (NCBC) gas turbine plant involves the coupling of a high temperature reactor (HTR) and a high efficiency helium gas turbine. Studies over many years have shown the merits of an indirect cycle (IDC) approach in which an intermediate heat exchanger is used to transfer the reactor thermal energy to the prime-mover. The major advantages of this include the following: (1) multipurpose nuclear heat source; (2) gas turbine operation in a clean non-nuclear environment; (3) power conversion system simplicity; and (4) maximum utilization of existing technology. An additional factor, which may dominate the above is that the IDC approach is in concert with the only active gas-cooled reactor program remaining in the world, namely a high temperature test reactor (HTTR) under construction in Japan, the culmination of which will be the demonstration of a viable high temperature nuclear heat source. The major theme of this paper is that the IDC nuclear gas turbine offers a practical NCBC power plant concept for operation in the second or third decades of the 21st century

  6. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  7. Nuclear plant life cycle management implementation guide. Final report

    International Nuclear Information System (INIS)

    Sliter, G.E.; Negin, C.A.

    1998-11-01

    Nuclear power plants, as baseload suppliers of electricity, are major corporate assets. As the nuclear industry enters its fourth decade as a major producer of clean electricity, the structure of the utility industry is undergoing a historical landmark transition from economic deregulation to a competitive, market-driven industry. An integral part of competition is to manage the operation of the key asset, the plant, in the long term, thereby enhancing its long-term profitability. Life cycle management (LCM) is a well-known technical-economic decision-making process for any large industrial facility. LCM optimizes the service life of a facility and maximizes its life-cycle asset value. LCM integrates aging management (maintaining the availability of costly-to-replace components and structures) with asset management (plant valuation and investment strategies that account for economic, performance, regulatory, and environmental uncertainties). LCM involves predicting maintenance, repair, and other capital costs for a nuclear unit far into the future, as well as planning and managing strategic issues such as waste disposal, fuel storage, decommissioning, and public acceptance. This Life Cycle Management Implementation Guide introduces the reader to the LCM concept and its benefits, describes the elements and activities associated with an LCM program (most of which already exist in all plants), gives an overview of asset and aging management, and provides key references related to life cycle management for nuclear power plants. It also summarizes the major elements of life cycle management required for license renewal or, for newer plants, keeping open the option of license renewal

  8. Evaluating the Aspect of Nuclear Material in Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Shunsuke; Pickett, Susan; Oda, Takuji; Choi, Jor-Shan; Kuno, Yusuke; Takana, Satoru [Department of Nuclear Engineering and Management, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8685 (Japan); Nagasaki, Shinya [Nuclear Professional School, The University of Tokyo (Japan)

    2009-06-15

    The increasing number of countries that wish to introduce nuclear power plants raises attention to proliferation resistance in nuclear power plants, and nuclear fuel cycle facilities. In order to achieve adequate proliferation resistance, it is important to evaluate it and to construct effective international institutional frameworks as well as technologies involving high level of proliferation resistance. Although some methods have been proposed for evaluation of the proliferation resistance, their validities have not been investigated in detail. In the present paper, therefore, we compare some of the proposed methodologies. It is essential to detect the abuse or diversion of nuclear material before the nuclear explosive device can be manufactured in order to prevent proliferation. The time needed for the detection of material primary depends on the safeguards that the country applies, and the time needed for fabrication mainly depends on the attributes of the nuclear material. Hence, we divided the proliferation resistance into two parts: the level of safeguards and the material. For examination of evaluation methods such as the one proposed by Charlton [1] or the figure of merit (FOM) [2], sensitivity analysis was performed on weighting factors and scenarios. The validity and characteristics of each method were discussed, focusing on the applicability of each method to the assessment of multi-national approaches such as GNEP. [1] W. S. Charlton, R. L. LeBouf, C. Gariazzo, D. G. Ford, C. Beard, S. Landeberger, M. Whitaker, 'Proliferation resistance assessment methodology for nuclear fuel cycles', Nuclear Technology, 157, 1 (2007). [2] C.G. Bathke et al, 'An assessment of the proliferation resistance of materials in advanced nuclear fuel cycles', 8. International Conference on Facility Operations (2008). (authors)

  9. Present status and prospects of nuclear power programme in Korea

    International Nuclear Information System (INIS)

    Wan-yong Chon; Byong-whi Lee; Chang-kun Lee

    1987-01-01

    The republic of Korea has made dramatic progress in her economic growth in the last twenty-five years, which had to be supported by annual power increase of typically fifteen (15) percent. The limited domestic energy resources available and also the bitter experience of two oil crises made it necessary that the nation pursue its national nuclear power projects vigourously. Throughout the project execution, however, problems related to nuclear safety have been given the top priority. In the forthcoming KNU Nos. 11 and 12 projects, steadily growing domestic nuclear industries will play major roles in plant design, construction, standardization, and technological self-independence. By the year 2001, the total number of nuclear power plants may reach fourteen, while construction of additional small nuclear power plants for combined cycle district heating may become a reality. Preparation for full-fledged fuel cycle is also underway and necessary amendment to the existing Atomic Energy Act has been enacted. (author)

  10. Current concept of the nuclear fuel cycle in the Czech Republic

    International Nuclear Information System (INIS)

    Priman, V.; Vesely, P.; Sedina, M.

    2001-01-01

    The article provides an overview of the major activities within the nuclear fuel cycle as practised by the Czech utility CEZ, a. s. Efforts in the fuel cycle practice are focused on the implementation of standard business principles with CEZ's contractual suppliers; application of new legislation and international design standards; and on achieving a higher technical standard of nuclear fuel and its better overall utilisation by nuclear power plants. Business activities in the procurement of nuclear materials and their diversification are discussed. The last part of the article, which is devoted to the fuel cycle back-end, describes the adopted strategy of extended spent fuel storage associated with a postponement of the final disposal. The basic principles of the CEZ's fuel cycle back-end strategy are also summarised. (author)

  11. Financing of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Wyart, P.

    1975-01-01

    Fuels account for only a modest share of the cost of nuclear energy: approximatively one-fourth whereas the capital financing charges exceed one-half. But it is necessary to take account of the combined effect of the magnitude of the needs in coming years and of the resulting acceleration due to the coming on stream of increasingly numerous nuclear power plants and to take account of the characteristics of the fuel cycle which is especially long because of technical requirements and the necessity to establish safety stocks [fr

  12. Nuclear power generation cost methodology

    International Nuclear Information System (INIS)

    Delene, J.G.; Bowers, H.I.

    1980-08-01

    A simplified calculational procedure for the estimation of nuclear power generation cost is outlined. The report contains a discussion of the various components of power generation cost and basic equations for calculating that cost. An example calculation is given. The basis of the fixed-charge rate, the derivation of the levelized fuel cycle cost equation, and the heavy water charge rate are included as appendixes

  13. A Proposal for more Effective Training in Countries Developing Nuclear Power

    International Nuclear Information System (INIS)

    Abdel-Halim, A.; Durst, P.C.; Witkin, A.L.

    2010-01-01

    The expanded use of nuclear power is being driven in today's world, because nuclear power provides high density base-load power, produces waste in a manageable and compact form, and does not emit carbon based 'green-house gases' that could be altering the world's climate. For these reasons, there is a veritable renaissance in the construction of nuclear power reactors of inherently safer designs, as well as an expansion in worldwide uranium mining, and construction of associated fuel cycle facilities. It is important to recognize that this expansion and revisiting of nuclear power is not just limited to the industrialized countries of North America, Europe, and Asia, but is also occurring in states developing their first nuclear power plant. In particular, the United Arab Emirates (UAE), Turkey, Egypt, Jordan, and Indonesia have all contracted the construction of nuclear power plants, or are planning to do so. The authors of this paper believe that all of these programs could benefit from enhanced training in the use and operation of nuclear power reactors and fuel cycle facilities, through the more effective transfer of knowledge. In particular, the authors propose the greater use of retired nuclear reactor and fuel cycle engineers, experts, and former senior staff members from the International Atomic Energy Agency (IAEA) as one way to transfer this knowledge more effectively. The transfer of nuclear knowledge between senior experts and students, young engineers and professionals in training would help bridge the significant gap that exists in today's nuclear engineering curriculum between academic instruction and the real world of industry. The need for more effective knowledge transfer is particularly acute in the areas of nuclear safety, nuclear safeguards, and security. One only has to recall the nuclear accidents at the Chernobyl nuclear power plant in the Ukraine, Three Mile Island in the United States, and the JCO uranium conversion plant in Japan, to

  14. Country Nuclear Power Profiles - 2012 Edition

    International Nuclear Information System (INIS)

    2012-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The CNPP's main objectives are to consolidate information about the nuclear power infrastructures in participating countries, and to present factors related to the effective planning, decision making and implementation of nuclear power programmes that together lead to safe and economical operations of nuclear power plants. The CNPP summarizes organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. Topics such as reactor safety, nuclear fuel cycle, radioactive waste management and research programmes are for the most part not discussed in detail. Statistical data about nuclear plant operations, population, energy and electricity use are drawn from the PRIS, EEDB, World Development Indicators (WDI) of the World Bank and the national contributions. This publication is updated and the scope of coverage expanded annually. This is the 2012 edition, issued on CD-ROM and Web pages. It contains updated country information for 51 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 29 countries that have operating nuclear power plants, as well as 22 countries with past or planned nuclear power. Each of the 51 profiles in this publication is self-standing, and contains information officially provided by the respective national authorities. For the 2012 edition, 20 countries provided updated or new profiles. These are Argentina, Armenia, Bangladesh, Chile, Germany, Ghana

  15. Analysis of changes in the fuel component of the cost of electricity in the transition to a closed fuel cycle in nuclear power system

    International Nuclear Information System (INIS)

    Gurin, Andrey V.; Alekseev, P.N.

    2017-01-01

    This paper presents a study of scenarios of transition to a closed fuel cycle in the system of nuclear power, built basing on resource availability requirements at the stage of full life-cycle reactors. Conventionally, there are three main scenarios for the development of nuclear energy: with VVER reactors operating in an open fuel cycle; with VVER reactors operating in a closed fuel cycle; and co-operating VVER and BN, operating in a closed fuel cycle. For the considered scenarios, a quantitative estimation of change in time of material balances were performed, including spent fuel balance, balance of plutonium, reprocessed and depleted uranium, radioactive waste, and the analysis of the fuel component of the cost of electricity.

  16. Analysis of changes in the fuel component of the cost of electricity in the transition to a closed fuel cycle in nuclear power system

    Energy Technology Data Exchange (ETDEWEB)

    Gurin, Andrey V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Alekseev, P.N.

    2017-09-15

    This paper presents a study of scenarios of transition to a closed fuel cycle in the system of nuclear power, built basing on resource availability requirements at the stage of full life-cycle reactors. Conventionally, there are three main scenarios for the development of nuclear energy: with VVER reactors operating in an open fuel cycle; with VVER reactors operating in a closed fuel cycle; and co-operating VVER and BN, operating in a closed fuel cycle. For the considered scenarios, a quantitative estimation of change in time of material balances were performed, including spent fuel balance, balance of plutonium, reprocessed and depleted uranium, radioactive waste, and the analysis of the fuel component of the cost of electricity.

  17. The status and prospects for the fossil-fired and nuclear power industry in Japan

    International Nuclear Information System (INIS)

    Miyahara, S.

    1994-01-01

    Power plant capacity in Japan amounts to about 200 GW, of which 180 GW belong to the electricity supply industry. 60% are installed in fossil-fired power stations, 19% in nuclear power stations and 21% in hydro-electric power stations. Key engineering techniques for power production from fossil fuels are supercritical steam conditions and combined cycle power plant technology. Crucial points for nuclear power generation are the development of the advanced light water reactor, the commericialization of the fast breeder reactor and the installation of a closed nuclear fuel cycle. (orig.) [de

  18. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  19. Ventilation-air conditioner system in nuclear power plant

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko.

    1989-01-01

    This invention concerns a ventilation-air conditioner system which enables, upon occurrence of accidents in a nuclear power plant, continuous operation for other adjacent nuclear power plants with no effect of accidents. Air supply system and exhaust system are operated during usual operaiton. If loss of coolants accidents should occur in an adjacent nuclear power plants, operation is switched from ventilation operaiton to the operation of re-cycling system based on an AND logic of three signals, that is, a pressure HIGH signal for the reactor container, a water level LOW signal for the reactor and a radioactivity signal of the ventilation-air conditioner sytem on the side of air supply in the nuclear power plant. Thus, nuclear reactor buildings of the nuclear power plant are from the external atmosphere. Therefore, the radioactivity HIGH signal for switching to the emergency air conditioner system of the nuclear power plant is not actuated due to the loss of coolant accidents in the adjacent nuclear power plant. In addition, since the atmospheric temperature in the nuclear reactor building can be maintained by a cooling device disposed to the recycling system, reactor shutdown can be prevented. (I.S.)

  20. Ion exchange technology in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1986-02-01

    The application of ion exchange has been expanded to various parts of the nuclear fuel cycle. Major applications are in uranium production facilities, nuclear power plants, spent fuel reprocessing and waste treatment. Furthermore, application to isotope separation has been under development. The appendix contains a compilation of resin data. A separate abstract was prepared for each of the 6 chapters in this technical document

  1. Nuclear power development: global challenges and strategies

    International Nuclear Information System (INIS)

    Mourogov, Victor M.; )

    1997-01-01

    This article highlights key factors that will determine today and tomorrow's optimal energy strategies. It addresses methods to utilize the high potential energy content of uranium. Plutonium used as fuel in a nuclear reactors is discussed as is the future potential of a thorium fuel cycle. Various strategies to increase the economic viability of nuclear power are brought out. Technological means to further minimize environmental impacts and to enhance safety are covered as they are a major factor in public acceptance. Also covered are advances anticipated by mid-century in nuclear reactor and fuel cycle technologies

  2. Membranes for H2 generation from nuclear powered thermochemical cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra (University of California, Davis, CA); Iyer, Ratnasabapathy G. (University of California, Davis, CA); Axness, Marlene

    2006-11-01

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

  3. Investigation of economics of nuclear fuel cycle options in the Republic of Korea based on once-through - 5468

    International Nuclear Information System (INIS)

    Cho, S.K.; Yim, M.S.

    2015-01-01

    This study performs an economic evaluation of future nuclear fuel cycle options based on once-through strategy. Various factors of the future development in Korea are also considered including nuclear phase-out, continuous use of nuclear energy at varying growth rate, and the reunification of the Korean peninsula. A spreadsheet model is developed as part of the methodology of screening material flow and economic evaluation and results are discussed for policy planning for Korea as well as for nuclear developing countries. Results indicated that economics improves as the size of nuclear power system increases. We found some significant factors that affect LCOE (levelized cost of electricity) of the back end fuel cycle. Expanded nuclear power program with further construction of nuclear power plant (continuous use and/or the reunification) is a major political variable for LCOE. To keep the cost of nuclear power as low as possible, it is very important to have a proper strategy for the back-end fuel cycle including decommissioning. For continued use of nuclear energy, the Korea needs to develop soon a long-term policy for the back-end fuel cycle rather than taking the 'sit and watch' approach to make best out of the use of nuclear power into the future

  4. Review on studies for external cost of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Korea National University of Transportation, Chungju (Korea, Republic of); Ko, Won Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    External cost is cost imposed on a third party when producing or consuming a good or service. Since the 1990s, the external costs of nuclear powered electricity production have been studied. Costs are a very important factor in policy decision and the external cost is considered for cost comparison on electricity production. As for nuclear fuel cycle, a chosen technology will determine the external cost. However, there has been little research on this issue. For this study, methods for external cost on nuclear power production have been surveyed and analyzed to develop an approach for evaluating external cost on nuclear fuel cycles. Before the Fukushima accident, external cost research had focused on damage costs during normal operation of a fuel cycle. However, accident cost becomes a major concern after the accident. Various considerations for external cost including accident cost have been used to different studies, and different methods have been applied corresponding to the considerations. In this study, the results of the evaluation were compared and analyzed to identify methodological applicability to the external cost estimation with nuclear fuel cycles.

  5. Review on studies for external cost of nuclear power generation

    International Nuclear Information System (INIS)

    Park, Byung Heung; Ko, Won Il

    2015-01-01

    External cost is cost imposed on a third party when producing or consuming a good or service. Since the 1990s, the external costs of nuclear powered electricity production have been studied. Costs are a very important factor in policy decision and the external cost is considered for cost comparison on electricity production. As for nuclear fuel cycle, a chosen technology will determine the external cost. However, there has been little research on this issue. For this study, methods for external cost on nuclear power production have been surveyed and analyzed to develop an approach for evaluating external cost on nuclear fuel cycles. Before the Fukushima accident, external cost research had focused on damage costs during normal operation of a fuel cycle. However, accident cost becomes a major concern after the accident. Various considerations for external cost including accident cost have been used to different studies, and different methods have been applied corresponding to the considerations. In this study, the results of the evaluation were compared and analyzed to identify methodological applicability to the external cost estimation with nuclear fuel cycles

  6. Developments of nuclear power in Russia

    International Nuclear Information System (INIS)

    Konowalow, V.; Tytschkow, J.; Terentjew, W.

    1994-01-01

    Since the disintegration of the Soviet Union the economy, and thus also the nuclear industry in Russia, which is supervised by the Ministry for Atomic Energy, is in a process of structural change. The process is to result in a diversification of the products manufactured for use in the power industry and the nuclear fuel cycle, and also in enhanced productivity. Science and research, which enjoy a high reputation worldwide, must be preserved and expanded. Nuclear technology in Russia is to be developed further in three stages. In the renewal phase up until 2000, older nuclear power stations will be phased out and a new generation of reactors will be developed, which will be built and connected to the power grid in the second stage, which will extend until 2010. In the third phase, after 2010, the installed capacity of the nuclear generating units equipped with new reactors is to rise to 30 or 40 million kW. (orig.) [de

  7. Research on digital system design of nuclear power valve

    Science.gov (United States)

    Zhang, Xiaolong; Li, Yuan; Wang, Tao; Dai, Ye

    2018-04-01

    With the progress of China's nuclear power industry, nuclear power plant valve products is in a period of rapid development, high performance, low cost, short cycle of design requirements for nuclear power valve is proposed, so there is an urgent need for advanced digital design method and integrated design platform to provide technical support. Especially in the background of the nuclear power plant leakage in Japan, it is more practical to improve the design capability and product performance of the nuclear power valve. The finite element numerical analysis is a common and effective method for the development of nuclear power valves. Nuclear power valve has high safety, complexity of valve chamber and nonlinearity of seal joint surface. Therefore, it is urgent to establish accurate prediction models for earthquake prediction and seal failure to meet engineering accuracy and calculation conditions. In this paper, a general method of finite element modeling for nuclear power valve assembly and key components is presented, aiming at revealing the characteristics and rules of finite element modeling of nuclear power valves, and putting forward aprecision control strategy for finite element models for nuclear power valve characteristics analysis.

  8. LDC nuclear power: Argentina

    International Nuclear Information System (INIS)

    Tweedale, D.L.

    1982-01-01

    Argentina's 31-year-old nuclear research and power program makes it a Third World leader and the preeminent Latin American country. Easily accessible uranium fuels the heavy water reactor, Atucha I, which provides 10% of the country's electric power. Atucha II and III are under construction. Several domestic and international factors combined to make Argentina's program succeed, but achieving fuel-cycle independence and the capacity to divert fissionable material to military uses is a cause for some concern. 60 references

  9. Calculation Of Recycle And Open Cycle Nuclear Fuel Cost Using Lagistase Method

    International Nuclear Information System (INIS)

    Djoko Birmano, Moch

    2002-01-01

    . To be presented the calculation of recycle and open cycle nuclear fuel cost for LWR type that have net power of 600 MWe. This calculation using LEGECOST method developed by IAEA which have characteristics,where i.e. money is stated in constant money (no inflation),discount rate is equalized with interest rate and not consider tax and depreciation.As a conclusion is that open cycle nuclear fuel cost more advantage because it is cheaper than recycle nuclear fuel cost. This is caused that at present, reprocessing process disadvantage because it has not found yet more efficient and cheaper method, besides price of fresh uranium is still cheap. In future, the cost of recycle nuclear fuel cycle will be more competitive toward the cost of open nuclear fuel cycle if is found technology of reprocessing process that more advance, efficient and cheap. Increase of Pu use for reactor fuel especially MOX type will rise Pu price that finally will decrease the cost of recycle nuclear fuel cycle

  10. Fuel cycle of nuclear power plants and safeguards system of nuclear weapon nonproliferation

    International Nuclear Information System (INIS)

    Malek, Z.

    1980-10-01

    The international safeguard system of nuclear weapon nonproliferation and the IAEA safeguard system are briefly described. In Czechoslovakia, a decree was issued in 1977 governing the accounting for and control of nuclear materials. The contents of the decree are presented. Described are computer processing of accounting data, technical criteria for the safeguard system application, containment and inspection in the IAEA safeguard system. The method is shown of the control of and accounting for nuclear materials in nuclear power plants and in fuel manufacturing, reprocessing and enrichment plants. Nondestructive and destructive methods of nuclear materials analysis are discussed. Nondestructive methods used include gamma spectrometry, neutron techniques, X-ray fluores--cence techniques. (J.P.)

  11. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    Science.gov (United States)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  12. Fission products in the spent nuclear fuel from czech nuclear power plants

    International Nuclear Information System (INIS)

    Lelek, V.; Mikisek, M.; Marek, T.

    1999-01-01

    The nuclear power is expected to become a supply able to cover a significant part of the world energetic demand in future. But its big disadvantage, the risk of the spent nuclear fuel, has to be solved. The aim of this paper is to make simple estimates of the upper limits of amounts of the most dangerous spent fuel components and their compounds produced in Czech Republic until 2040. Our estimates are independent on particular type reactor (only on its power) and so they can be carried out for any nuclear fuel cycle. (Authors)

  13. The nuclear fuel cycle, From the uranium mine to waste disposal

    International Nuclear Information System (INIS)

    2002-09-01

    Fuel is a material that can be burnt to provide heat. The most familiar fuels are wood, coal, natural gas and oil. By analogy, the uranium used in nuclear power plants is called 'nuclear fuel', because it gives off heat too, although, in this case, the heat is obtained through fission and not combustion. After being used in the reactor, spent nuclear fuel can be reprocessed to extract recyclable energy material, which is why we speak of the nuclear fuel cycle. This cycle includes all the following industrial operations: - uranium mining, - fuel fabrication, - use in the reactor, - reprocessing the fuel unloaded from the reactor, - waste treatment and disposal. 'The nuclear fuel cycle includes an array of industrial operations, from uranium mining to the disposal of radioactive waste'. Per unit or mass (e.g. per kilo), nuclear fuel supplies far more energy than a fossil fuel (coal or oil). When used in a pressurised water reactor, a kilo of uranium generates 10,000 times more energy than a kilo of coal or oil in a conventional power station. Also, the fuel will remain in the reactor for a long time (several years), unlike conventional fuels, which are burnt up quickly. Nuclear fuel also differs from others in that uranium has to undergo many processes between the time it is mined and the time it goes into the reactor. For the sake of simplicity, the following pages will only look at nuclear fuel used in pressurised water reactors (or PWRs), because nuclear power plants consisting of one or more PWRs are the most widely used around the world. (authors)

  14. Topical and working papers on nuclear power capacity projections

    International Nuclear Information System (INIS)

    As a part of the overall work programme of WG. 1, Sub-Group 1A/2A was formed jointly with WG. 2 and given the responsibility for estimating the growth of nuclear power up to the year 2025 and the associated demands for nuclear fuels, heavy water, enrichment and other fuel cycle services. In carrying out the first part of its task, the estimation of nuclear power capacity growth, sub-Group 1A/2A prepared 6 working papers which contain the following information: A critique of recent world energy demand forecasts; world energy demand and installed capacity to the year 2025; nuclear power growth projections 1977-2000 for developing countries; long range world nuclear power growth projections; INFCE forecasts of nuclear generating capacity 1985-2025

  15. Technology for Bayton-cycle powerplants using solar and nuclear energy

    Science.gov (United States)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  16. Supply, operation and radioactive waste disposal of nuclear power plants

    International Nuclear Information System (INIS)

    Mohrhauer, H.; Krey, M.; Haag, G.; Wolters, J.; Merz, E.; Sauermann, P.F.

    1981-07-01

    The subject of 'Nuclear Fuel Cycle' is treated in 5 reports: 1. Uranium supply; 2. Fabrication and characteristics of fuel elements; 3. Design, operation and safety of nuclear power plants after Harrisburg; 4. Radioactive waste disposal of nuclear power plants - changed political scenery after 1979; 5. Shutdown and dismantling of LWR-KKW - state of knowledge and feasibility. (HP) [de

  17. How is Electricity Generated from Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lajnef, D.

    2015-01-01

    Nuclear power is a proven, safe and clean source of power generation. A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As is typical in all conventional thermal power stations the heat is used to generate steam which drives a steam turbine: the energy released from continuous fission of the atoms of the fuel is harnessed as heat in either a gas or water, and is used to produce steam. Nuclear Reactors are classified by several methods. It can be classified by type of nuclear reaction, by the moderator material, by coolant or by generation. There are several components common to most types of reactors: fuel, moderator, control rods, coolant, and containment. Nuclear reactor technology has been under continuous development since the first commercial exploitation of civil nuclear power in the 1950s. We can mention seven key reactor attributes that illuminate the essential differences between the various generations of reactors: cost effectiveness, safety, security and non-proliferation, fuel cycle, grid appropriateness and Economics. Today there are about 437 nuclear power reactors that are used to generate electricity in about 30 countries around the world. (author)

  18. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    to contribute in improving the quality of life of the Brazilian people. The nuclear fuel cycle is a series of steps involved in the production and use of fuel for nuclear reactors. The Laboratories of Chemistry and Environmental Diagnosis Center, CQMA, support the demand of Nuclear Fuel Cycle Program providing chemical characterization of uranium compounds and other related materials. In this period the Research Reactor Center (CRPq) concentrated efforts on improving equipment and systems to enable the IEA-R1 research reactor to operate at higher power, increasing the capacity of radioisotopes production, samples irradiation, tests and experiments. (author)

  19. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    fulfill its mission that is to contribute in improving the quality of life of the Brazilian people. The nuclear fuel cycle is a series of steps involved in the production and use of fuel for nuclear reactors. The Laboratories of Chemistry and Environmental Diagnosis Center, CQMA, support the demand of Nuclear Fuel Cycle Program providing chemical characterization of uranium compounds and other related materials. In this period the Research Reactor Center (CRPq) concentrated efforts on improving equipment and systems to enable the IEA-R1 research reactor to operate at higher power, increasing the capacity of radioisotopes production, samples irradiation, tests and experiments. (author)

  20. Nuclear power: status, outlook, guarantees of sustainable development

    International Nuclear Information System (INIS)

    Cherkasov, A.S.

    2004-01-01

    Full text: The principal advantages of nuclear power - almost unlimited fuel resources, its high energy capacity, ecological compatibility with a possibility of high wastes concentration - determine the large-scale nuclear power development. The signs of large-scale power - a large rate (dozens of percent) in electricity production, diverse areas (electricity, heat supply, technologies, transport) and media of application (land, ocean, space), extension of number of user countries, diversified power systems (centralized, autonomous), obligatory reproduction and reuse of produced fuel - create various requirements to nuclear power installations of the future. Economic efficiency and competitiveness, safety (of reactors and fuel cycle with waste), proper characteristics of nuclear fuel reproduction, guarantees of nuclear arm's non-proliferation and, particularly, public acceptance are the conditions of such nuclear power development. The up-to-date situation is the following: the 441 nuclear power-generation units with total installed power of 377.36 GW el. (in 31 countries) supply by 1/6 part of the world electric-power consumptions. The 32 units are in stage of the construction. To the present mid-century the level of the nuclear power production, as supposed, must be increased 4-5 times at the following scenario of a regional distribution of nuclear electric powers, GW: USA, Europe and developed countries of Eastern Asia - 1000, FSU-countries - 100 and developing countries - 400

  1. Environmental aspects of nuclear power

    International Nuclear Information System (INIS)

    Feates, F.

    1981-01-01

    The subject is discussed under the headings: background (scope of paper is a consideration of the radioactive by-products that arise from normal operation of nuclear power generating facilities; how regulated and their relative significance); legislation and regulation; the fuel cycle - fuel fabrication; use (of the fuel in the reactor; wastes from a typical CEGB Magnox power station); reprocessing (wastes from reprocessing); other wastes; disposal (including sea disposal). (U.K.)

  2. Nuclear power now and in the future

    Energy Technology Data Exchange (ETDEWEB)

    Collier, J G [Nuclear Electric (United Kingdom)

    1991-08-01

    The future of the nuclear industry in the United Kingdom is considered from the perspective of the new public sector utility, Nuclear Electric, set up to retain control of nuclear power stations on the privatization of the rest of the electricity supply industry. Two major objectives are the increased nuclear generation of electricity and the cutting of costs. These are discussed in terms of life extension programmes for the magnox reactors, improved performance of AGR reactors and expectations for the Sizewell B PWR station now under construction; waste management, reactor decommissioning and fuel-cycle costs are also considered. Economic, environmental and political criteria are outlined which need to be addressed in relation to the government's review of nuclear power in 1991. Because of the marginal economic advantages of nuclear power in the United Kingdom, it will be important to quantify the environmental and diversity benefits of this source. (UK).

  3. Fast molten salt reactor-transmuter for closing nuclear fuel cycle on minor actinides

    International Nuclear Information System (INIS)

    Dudnikov, A. A.; Alekseev, P. N.; Subbotin, S. A.

    2007-01-01

    Creation fast critical molten salt reactor for burning-out minor actinides and separate long-living fission products in the closed nuclear fuel cycle is the most perspective and actual direction. The reactor on melts salts - molten salt homogeneous reactor with the circulating fuel, working as burner and transmuter long-living radioactive nuclides in closed nuclear fuel cycle, can serve as an effective ecological cordon from contamination of the nature long-living radiotoxic nuclides. High-flux fast critical molten-salt nuclear reactors in structure of the closed nuclear fuel cycle of the future nuclear power can effectively burning-out / transmute dangerous long-living radioactive nuclides, make radioisotopes, partially utilize plutonium and produce thermal and electric energy. Such reactor allows solving the problems constraining development of large-scale nuclear power, including fueling, minimization of radioactive waste and non-proliferation. Burning minor actinides in molten salt reactor is capable to facilitate work solid fuel power reactors in system NP with the closed nuclear fuel cycle and to reduce transient losses at processing and fabrications fuel pins. At substantiation MSR-transmuter/burner as solvents fuel nuclides for molten-salt reactors various salts were examined, for example: LiF - BeF2; NaF - LiF - BeF2; NaF-LiF ; NaF-ZrF4 ; LiF-NaF -KF; NaCl. RRC 'Kurchatov institute' together with other employees have developed the basic design reactor installations with molten salt reactor - burner long-living nuclides for fluoride fuel composition with the limited solubility minor actinides (MAF3 10 mol %) allows to develop in some times more effective molten salt reactor with fast neutron spectrum - burner/ transmuter of the long-living radioactive waste. In high-flux fast reactors on melts salts within a year it is possible to burn ∼300 kg minor actinides per 1 GW thermal power of reactor. The technical and economic estimation given power

  4. Nuclear power and nuclear weapons proliferation

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    An appropriate non-proliferation treaty should not discriminate among the non-weapon states, but should seek a cooperative approach with all countries seeking nuclear power and willing to accept international safeguards. Near-term proliferation problems, represented by nations already on the threshold of weapon capability, should not be confused with the long-term problem of world-wide nuclear development. The first can be handled with incentives and disincentives imposed on specific countries, while the latter involves the distribution of plutonium on the basis of alternative fuel cycles. To retain world leadership, U.S. efforts along these lines should be to encourage a dialogue between suppliers and recipients and to coordinate the economic and security issues of its own non-proliferation and foreign policies. One option is a U.S. commitment to a multinational fuel storage and reprocessing facility. Technical evaluation and demonstration of alternative fuel cycles to reach an international consensus would be a parallel activity

  5. Nuclear fuel cycle optimization - methods and modelling techniques

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1982-01-01

    This book is aimed at presenting methods applicable in the analysis of fuel cycle logistics and optimization as well as in evaluating the economics of different reactor strategies. After a succinct introduction to the phases of a fuel cycle, uranium cost trends are assessed in a global perspective and subsequent chapters deal with the fuel cycle problems faced by a power utility. A fundamental material flow model is introduced first in the context of light water reactor fuel cycles. Besides the minimum cost criterion, the text also deals with other objectives providing for a treatment of cost uncertainties and of the risk of proliferation of nuclear weapons. Methods to assess mixed reactor strategies, comprising also other reactor types than the light water reactor, are confined to cost minimization. In the final Chapter, the integration of nuclear capacity within a generating system is examined. (author)

  6. Development of a strategic plan for an international R and D project on innovative nuclear fuel cycles and power plants

    International Nuclear Information System (INIS)

    Kendall, J.; Choi, J.S.

    2002-01-01

    The long-term outlook for nuclear energy should be considered in a broader perspective of future energy needs, operational safety, proliferation and environmental impacts. An Advisory Group Meeting (AGM) on Development of a Strategic Plan for an International R and D Project on Innovative Nuclear Fuel Cycles and Power Plants was convened in Vienna in October 1999 to assess the criteria, the needs for international cooperation, and to formulate a strategic plan for project integration. (author)

  7. Present status of nuclear power safety studies in JAERI, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    Securing safety in the development and utilization of nuclear power is the prerequisite, and in order to maintain the safety of nuclear power facilities at level corresponding to the expansion and diversification of nuclear power development and utilization, it is necessary to promote the safety research. The reliable evaluation of environmental effect and the safe disposal of radioactive waste are the indispensable conditions. Japan Atomic Energy Research Institute has carried out the research on the engineering safety of nuclear reactors and nuclear fuel cycle facilities and the research on the environmental safety related to environmental radiation and the treatment and disposal of radioactive waste. In this book, the researches on the safety of reactor fuel, the reliability of reactor machinery and equipment and structures, the thermo-hydraulic behavior of reactors at the time of accidents, the behavior of reactors at the time of severe accidents, the analytical research on the safety of reactors, the researches on the safety of nuclear fuel cycle, the treatment and disposal of radioactive waste, the assessment and analysis of environmental radiation and radioactivity, and the individual researches related to nuclear power safety are reported. (K.I.)

  8. The costs of nuclear power

    International Nuclear Information System (INIS)

    Vestenhaug, O.; Sauar, T.O.; Nielsen, P.O.

    1979-01-01

    A study has been made by Scandpower A/S of the costs of nuclear power in Sweden. It is based on the known costs of existing Swedish nuclear power plants and forecasts of the expected costs of the Swedish nuclear power programme. special emphasis has been put on the fuel cycle costs and future costs of spent fuel processing, waste disposal and decommissioning. Costs are calculated in 1978 Swedish crowns, using the retail price index. An actual interest rate of 4% is used, with depreciation period of 25 years and a plant lifetime of 30 years. Power production costs are estimated to be about 7.7 oere/kWh in 1978, rising to 10.5 oere/kWh in 2000. The cost is distributed with one third each to capital costs, operating costs and fuel costs, the last rising to 40% of the total at the end of the century. The main single factor in future costs is the price of uranium. If desired, Sweden can probably be self-sufficient in uranium in 2000 at a lower cost than assumed here. National research costs which, in Scandpower's opinion, can be debited to the commercial nuclear power programme are about 0.3 oere/kWh. (JIW)

  9. Cost Probability Analysis of China's Nuclear Fuel Cycle Transition

    International Nuclear Information System (INIS)

    Gao, R. X.; Ko, W. I.; Lee, S. H.

    2015-01-01

    The Chinese government has already determined to develop the closed nuclear fuel cycle, its long-term roadmap of spent fuel management has not been decided yet. Currently, it seems that China's booming economy gives abundant financial assurance to develop nuclear programs in full play according to its near-term national plans. However, the viability and sustainability of nuclear power always depends critically on its economics. Therefore, it is necessary to conduct a well focused cost-benefit and objective analysis of China's ongoing nuclear power programs with the future prospects. In this study, we conduct a comparative analysis of electricity generation cost in four reference nuclear fuel cycle transition scenarios by 2050. Direct disposal is assumed to produce the cheapest LCT as low as 62.688 mills/kWh compared to the other options. However, after performing a relative uncertainty study, the results show that the capital cost of reactor is the key cost component which leads to the cost gap

  10. Cost Probability Analysis of China's Nuclear Fuel Cycle Transition

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R. X. [Univ. of Science and Technology, Daejeon (Korea, Republic of); Ko, W. I.; Lee, S. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The Chinese government has already determined to develop the closed nuclear fuel cycle, its long-term roadmap of spent fuel management has not been decided yet. Currently, it seems that China's booming economy gives abundant financial assurance to develop nuclear programs in full play according to its near-term national plans. However, the viability and sustainability of nuclear power always depends critically on its economics. Therefore, it is necessary to conduct a well focused cost-benefit and objective analysis of China's ongoing nuclear power programs with the future prospects. In this study, we conduct a comparative analysis of electricity generation cost in four reference nuclear fuel cycle transition scenarios by 2050. Direct disposal is assumed to produce the cheapest LCT as low as 62.688 mills/kWh compared to the other options. However, after performing a relative uncertainty study, the results show that the capital cost of reactor is the key cost component which leads to the cost gap.

  11. Nuclear-fuel-cycle optimization: methods and modelling techniques

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1982-01-01

    This book present methods applicable to analyzing fuel-cycle logistics and optimization as well as in evaluating the economics of different reactor strategies. After an introduction to the phases of a fuel cycle, uranium cost trends are assessed in a global perspective. Subsequent chapters deal with the fuel-cycle problems faced by a power utility. The fuel-cycle models cover the entire cycle from the supply of uranium to the disposition of spent fuel. The chapter headings are: Nuclear Fuel Cycle, Uranium Supply and Demand, Basic Model of the LWR (light water reactor) Fuel Cycle, Resolution of Uncertainties, Assessment of Proliferation Risks, Multigoal Optimization, Generalized Fuel-Cycle Models, Reactor Strategy Calculations, and Interface with Energy Strategies. 47 references, 34 figures, 25 tables

  12. A Conceptual Study of Using an Isothermal Compressor on a Supercritical CO2 Cycle for Various Nuclear Applications

    International Nuclear Information System (INIS)

    Heo, Jin Young; Lee, Jeong Ik

    2017-01-01

    In order to accelerate the deployment of cleaner and safer energy sources, further development of such advanced nuclear power systems is necessary. By aiming to have higher efficiency, lower costs, and reduced system size, next-generation nuclear reactors can have greater advantages which will justify their adoption. Many research efforts focus on these objectives to also propose new concepts and technologies to improve the present state of the art. To maximize the benefits of advanced reactor designs, the supercritical CO 2 (S-CO 2 ) power cycle can be adopted to enhance the performance of the power conversion systems. The potential of replacing the conventional power block with the S-CO 2 power cycle can increase the cycle efficiency and also reduce its overall system size. The potential of using the S-CO 2 power cycles in advanced nuclear reactors can be further improved by adopting an isothermal compressor to the cycle layout. This paper attempts to improve the cycle layout by replacing the conventional compressor with an isothermal compressor, of which its potential in the S-CO 2 power cycle is conceptually being evaluated. An isothermal compressor minimizes compression work and further reduces the system size by having smaller heat exchanger requirements. The study includes cycle optimization maximizing cycle efficiency with respect to different cycle design parameters. The S-CO 2 iso-Brayton cycle layouts have been effective in improving the cycle efficiencies of the next-generation nuclear reactors. By using the isothermal compressor, the net efficiency can be improved by 8% points for the simple recuperated cycle layout, and 5% points for the recompression cycle layout. It is also noted that the estimated UA values required for the iso-Brayton cycle layouts are almost the same or less compared to those of the reference cycle layouts.

  13. Life-cycle impacts from novel thorium–uranium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Fenner, R.A.; Nuttall, W.J.; Parks, G.T.

    2015-01-01

    Highlights: • LCA performed for three open cycle Th–U-fuelled nuclear energy systems. • LCA for open cycle U-fuelled nuclear energy system (Areva’s EPR) used as benchmark. • U-fuelled EPR had lowest emissions per kWh over all systems studied in this work. • LCA model developed for thorium recovered from monazitic beach sands. • LCA model developed for the production of heavy water. - Abstract: Electricity generated from nuclear power plants is generally associated with low emissions per kWh generated, an aspect that feeds into the wider debate surrounding nuclear power. This paper seeks to investigate how life-cycle emissions would be affected by including thorium in the nuclear fuel cycle, and in particular its inclusion in technologies that could prospectively operate open Th–U-based nuclear fuel cycles. Three potential Th–U-based systems operating with open nuclear fuel cycles are considered: AREVA’s European Pressurised Reactor; India’s Advanced Heavy Water Reactor; and General Atomics’ Gas-Turbine Modular Helium Reactor. These technologies are compared to a reference U-fuelled European Pressurised Reactor. A life-cycle analysis is performed that considers the construction, operation, and decommissioning of each of the reactor technologies and all of the other associated facilities in the open nuclear fuel cycle. This includes the development of life-cycle analysis models to describe the extraction of thorium from monazitic beach sands and for the production of heavy water. The results of the life-cycle impact analysis highlight that the reference U-fuelled system has the lowest overall emissions per kWh generated, predominantly due to having the second-lowest uranium ore requirement per kWh generated. The results highlight that the requirement for mined or recovered uranium (and thorium) ore is the greatest overall contributor to emissions, with the possible exception of nuclear energy systems that require heavy water. In terms of like

  14. Efficiency improvement of nuclear power plant operation: the significant role of advanced nuclear fuel technologies

    International Nuclear Information System (INIS)

    Velde Van de, A.; Burtak, F.

    2001-01-01

    Due to the increased liberalisation of the power markets, nuclear power generation is being exposed to high cost reduction pressure. In this paper we highlight the role of advanced nuclear fuel technologies to reduce the fuel cycle costs and therefore increase the efficiency of nuclear power plant operation. The key factor is a more efficient utilisation of the fuel and present developments at Siemens are consequently directed at (i) further increase of batch average burnup, (ii) improvement of fuel reliability, (iii) enlargement of fuel operation margins and (iv) improvement of methods for fuel design and core analysis. As a result, the nuclear fuel cycle costs for a typical LWR have been reduced during the past decades by about US$ 35 million per year. The estimated impact of further burnup increases on the fuel cycle costs is expected to be an additional saving of US$10 - 15 million per year. Due to the fact that the fuel will operate closer to design limits, a careful approach is required when introducing advanced fuel features in reload quantities. Trust and co-operation between the fuel vendors and the utilities is a prerequisite for the common success. (authors)

  15. Outlook of nuclear power generation and international situation

    Energy Technology Data Exchange (ETDEWEB)

    Ekulund, S [International Atomic Energy Agency, Vienna (Austria)

    1978-01-01

    Nuclear power generation is advancing at rapid rate over the world, without any major accident. For the base load of electric power, when choice is made between nuclear energy and petroleum, Nuclear energy has larger economic advantages over petroleum as compared with the days before the oil crisis. The costs of its fuel and fuel cycle technology are reasonable. However, nuclear power generation currently has a number of problems. What causes this uncertainty is not technological, but political, i.e. governmental policy changes, and this is based on the apprehension about nuclear proliferation. What is necessary is to strengthen the existing international framework of nuclear nonproliferation. In this respect, IAEA through comprehensive safeguards will make contributions largely to reduction of the political uncertainty. It is important that the new initiatives toward international nuclear cooperation should eliminate the current trends of restraint and denial.

  16. International Symposium on Nuclear Energy SIEN 2007. Nuclear Power - A New Challenge

    International Nuclear Information System (INIS)

    Stiopol, Mihaela

    2007-01-01

    The Symposium organized by Romanian Nuclear Energy Association, AREN, in co-operation with Romanian Atomic Forum, ROMATOM, was primarily targeting the expert community involved in developing new nuclear power projects and implementing the National Nuclear Program. The symposium was also open as a dicussion and information forum for scientists, engineers, technicians and students interested in scietific and technologic topics of Nuclear Power such as: - Developing the new nuclear technologies; - Identifying new avenues for developing nuclear programs; - strengthening the public confidence and support in nuclear power technology as the energy resource fulfilling most safely the environment protection requirements with the lowest cost-efficient power technology and as the most secure, sustainable solution satisfying the ever raising energy demand. Thus the main objectives was to analyse the New Challenges of Nuclear Power for near future and long-term sustainable socio-economic development. The Symposium was structured in 5 sessions covering the following topics: S1. Developing the new nuclear technologies; S2. Operation, inspection and maintenance; S3. Enhancing nuclear safety features; S4. Fuel cycle and waste management; S5. Public acceptance and confidence strengthening. A poster session of 8 presentations and a workshop completed the Symposium works. Three topics were selected for the workshop as follows: QA Management within the European Integration; Young generation 'Building the Future'; Women in Nuclear and the EU Nuclear Programs Developing

  17. Engineering experiences through nuclear power development in Japan

    International Nuclear Information System (INIS)

    Uchida, Hideo

    2004-01-01

    This keynote paper deals with: energy issues and nuclear power development in Japan, problems of radiation protection, licensing and safety regulations, research on LOCA and ECCS, stress corrosion cracks related to pressure vessels, nuclear fuel failures, steam generators, incidents, waste management and fuel cycle facilities. In conclusion it is stated that: on order to cope with global matters vitally affecting the electricity generation, taking into consideration Japanese specific energy issues, the nuclear power development has been an indispensable policy of Japan. In order to proceed with further development of nuclear power plants, it is necessary to obtain proper understanding by the public, showing assurance of the safety and reliable operation of nuclear power plants through daily plant operation. The nuclear safety issues should be considered from a global point of view. It is necessary to establish common safety standards which could harmonize the safety level of nuclear power plants in the world. The safety goal concerning severe accidents should be established as an internationally agreeable one. Japan has accumulated highly technological experience in maintenance of nuclear power plants. It is believed that the cumulative experiences in Japan can contribute to the further improvement of safety of nuclear power plants throughout the world, and for this aim a mutual information exchange should be encouraged

  18. Dictionary of nuclear power. upd. ed. January 2013; Lexikon zur Kernenergie

    Energy Technology Data Exchange (ETDEWEB)

    Koelzer, Winfried

    2013-02-01

    The actualized version (January 2013) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  19. Plant Design Nuclear Fuel Element Production Capacity Optimization to Support Nuclear Power Plant in Indonesia

    International Nuclear Information System (INIS)

    Bambang Galung Susanto

    2007-01-01

    The optimization production capacity for designing nuclear fuel element fabrication plant in Indonesia to support the nuclear power plant has been done. From calculation and by assuming that nuclear power plant to be built in Indonesia as much as 12 NPP and having capacity each 1000 MW, the optimum capacity for nuclear fuel element fabrication plant is 710 ton UO 2 /year. The optimum capacity production selected, has considered some aspects such as fraction batch (cycle, n = 3), length of cycle (18 months), discharge burn-up value (Bd) 35,000 up 50,000 MWD/ton U, enriched uranium to be used in the NPP (3.22 % to 4.51 %), future market development for fuel element, and the trend of capacity production selected by advances country to built nuclear fuel element fabrication plant type of PWR. (author)

  20. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  1. Progress on development of nuclear power in Japan

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Since three Laws on the nuclear power were published 45 years has passed. Now, development on nuclear power in Japan is at an emergent state. In Japan, 51 units of commercial nuclear reactors with 44.917 GW are in operation, occupy about 37% of total electric power generation, and is positioned at an essential basic energy source supporting economical society in Japan. However, an accident occurred at Tokai Works of the JCO Co., Ltd., one of the uranium reconversion company, on September 30, 1999, was the first critical accident in Japan, and became the worst case in history on development of nuclear power in Japan, because of forming three heavy radiation disabled persons (One of them was dead) in its operators. This was a big crisis with relation to existence on development of nuclear power in Japan, by which anxiety and distrust of the Japanese against the nuclear power were amplified rapidly. On the other side, for Japan short in energy sources and of a big energy consumption, in order to intend for a long term to carry out energy security, global environmental conservation, and sustainable maintenance of essential growth, it remains to be one of important optional methods to further promote nuclear power generation and to establish nuclear fuel cycle. Here were described on progress on peaceful applications of nuclear power in Japan, progress on the field of nuclear power in Japan (from 1955 to 1999), progress on Tokai nuclear power station, introduction of nuclear power generation and effort on its domestic production. (G.K.)

  2. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    Science.gov (United States)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    nuclear reactors and radiation protection, thermal physics, physical chemistry and technology of liquid metal coolants, and physics of radiation-induced defects, and radiation materials science. The activity of the institute is aimed at solving matters concerned with technological development of large-scale nuclear power engineering on the basis of a closed nuclear fuel cycle with the use of fast-neutron reactors (referred to henceforth as fast reactors), development of innovative nuclear and conventional technologies, and extension of their application fields.

  3. Total energy analysis of nuclear and fossil fueled power plants

    International Nuclear Information System (INIS)

    Franklin, W.D.; Mutsakis, M.; Ort, R.G.

    1971-01-01

    The overall thermal efficiencies of electrical power generation were determined for Liquid Metal Fast Breeder, High Temperature Gas Cooled, Boiling Water, and Pressurized Water Reactors and for coal-, oil-, and gas-fired systems. All important energy consuming steps from mining through processing, transporting, and reprocessing the fuels were included in the energy balance along with electrical transmission and thermal losses and energy expenditures for pollution abatement. The results of these studies show that the overall fuel cycle efficiency of the light water nuclear fueled reactors is less than the efficiency of modern fossil fuel cycles. However, the nuclear fuel cycle based on the fast breeder reactors should produce power more efficiently than the most modern supercritical fossil fuel cycles. The high temperature gas cooled reactor has a cycle efficiency comparable to the supercritical coal fuel cycle

  4. Carbon Cycling with Nuclear Power

    Science.gov (United States)

    Lackner, Klaus S.

    2011-11-01

    Liquid hydrocarbon fuels like gasoline, diesel or jet fuel are the most efficient ways of delivering energy to the transportation sector, in particular cars, ships and airplanes. Unfortunately, their use nearly unavoidably leads to the emission of carbon dioxide into the atmosphere. Unless an equivalent amount is removed from the air, the carbon dioxide will accumulate and significantly contribute to the man-made greenhouse effect. If fuels are made from biomass, the capture of carbon dioxide is a natural part of the cycle. Here, we discuss technical options for capturing carbon dioxide at much faster rates. We outline the basic concepts, discuss how such capture technologies could be made affordable and show how they could be integrated into a larger system approach. In the short term, the likely source of the hydrocarbon fuels is oil or gas; in the longer term, technologies that can provide energy to remove oxygen from carbon dioxide and water molecules and combine the remaining components into liquid fuels make it possible to recycle carbon between fuels and carbon dioxide in an entirely abiotic process. Here we focus on renewable and nuclear energy options for producing liquid fuels and show how air capture combined with fuel synthesis could be more economic than a transition to electric cars or hydrogen-fueled cars.

  5. Technical feasibility of the electrode ionization process for the makeup water treatment system of the thermal cycle of the CAREM-25 nuclear power plant

    International Nuclear Information System (INIS)

    Ramilo, Lucia B.; Chocron, Mauricio

    2003-01-01

    In thermal cycles of PWRs nuclear power plants with once-through steam generators as the CAREM-25, makeup water of very high purity is required to minimizing the induction of corrosion phenomena, fundamentally in the steam generators and other thermal cycle components. The makeup water treatment systems include several stages, of which the demineralization is the purification stage. The required makeup water purity is obtained in this stage. Historically, ultrapure water systems were based completely on ion exchange technology. Now, the electrode ionization process (EDI) has replaced the ion exchange technology used traditionally in the demineralization stage. Continuous demineralization in an EDI stack consists of three coupled processes: ion exchange, continuous ion removal by transport through the ion exchange resin and membranes into the concentrate stream, continuous regeneration by hydrogen and hydroxyl ions derived from the water splitting reaction and driven by the applied direct current. EDI process allows to obtain ultrapure water, with practically no use of chemical reagents and with technologies of continuous process. The objective of this work is the analysis of the electrode ionization process (EDI) for its implementation in the makeup water treatment system of the thermal cycle of the CAREM-25 nuclear power plant. The obtained results allow to assure the technical feasibility of implementation of the electrode ionization process, EDI, in the makeup water treatment system of the thermal cycle of this Argentinean nuclear power plant. (author)

  6. sCO2 Power Cycles Summit Summary November 2017.

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Lance, Blake

    2018-04-01

    Over the past ten years, the Department of Energy (DOE) has helped to develop components and technologies for the Supercritical Carbon Dioxide (sCO2) power cycle capable of efficient operation at high temperatures and high efficiency. The DOE Offices of Fossil Energy, Nuclear Energy, and Energy Efficiency and Renewable Energy collaborated in the planning and execution of the sCO2 Power Cycle Summit conducted in Albuquerque, NM in November 2017. The summit brought together participants from government, national laboratories, research, and industry to engage in discussions regarding the future of sCO 2 Power Cycles Technology. This report summarizes the work involved in summit planning and execution, before, during, and after the event, including the coordination between three DOE offices and technical content presented at the event.

  7. Suggested non-proliferation criteria for commercial nuclear fuel cycles

    International Nuclear Information System (INIS)

    Laney, R.V.; Heubotter, P.R.

    1978-01-01

    Based on the Administration's policy to prevent nuclear weapons proliferation through diversion of fuel from commercial reactor fuel cycles, a ''benchmark'' set of nonproliferation criteria was prepared for the commercial nuclear fuel cycle. These criteria should eliminate incremental risks of proliferation beyond those inherent in the present generation of low-enriched-uranium-fueled reactors operating in a once-through mode, with internationally safeguarded storage of spent fuel. They focus on the balanced application of technical constraints consistent with the state of the technology, with minimal requirements for institutional constraints, to provide a basis for assessing the proliferation resistance of proposed fission power systems. The paper contains: (1) our perception of the nuclear energy policy and of the baseline proliferation risk accepted under this policy; (2) objectives for a reactor and fuel cycle strategy which address the technical, political, and institutional aspects of diversion and proliferation and, at the same time, satisfy the Nation's needs for efficient, timely, and economical utilization of nuclear fuel resources; (3) criteria which are responsive to these objectives and can therefore be used to screen proposed reactor and fuel cycle strategies; and (4) a rationale for these criteria

  8. Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Lihuang Luo

    2016-01-01

    Full Text Available A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.

  9. Report of the Nuclear Fuel Cycle Study Group

    International Nuclear Information System (INIS)

    1978-01-01

    In order to establish the nuclear fuel cycle in nuclear power generation, the study group has discussed necessary measures. Japan's attitudes to the recent international situation are first expounded. Then, the steps to be taken by the Government and private enterprises respectively are recommended regarding acquisition of natural uranium, acquisition of enriched uranium, establishment of fuel reprocessing system, utilization of plutonium, management of radioactive wastes, and transport system of spent fuel. (Mori, K.)

  10. Nuclear fuel cycle information workshop

    International Nuclear Information System (INIS)

    1983-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US

  11. The nuclear fuel cycle. Light and darkness

    International Nuclear Information System (INIS)

    Giraud, A.

    1977-01-01

    In the next few decades the world consumption of energy is going to increase, and it is imperative to turn to nuclear energy in order to avoid exhausting the reserves of oil too rapidly. Nuclear energy is already a fact of life and from 1985 onwards its contribution will be appreciable, since installed capacity will be about 400GW(e) (representing an annual energy generation higher than that of Saudi Arabia at present). For the various sectors of the fuel cycle this means considerable volumes of work. But the paradox is that the fuel-cycle industry has misgivings. Why. Because a certain amount of over-investment in electricity, followed by economic stagnation, has reduced orders for nuclear power plants. The change-over from conventional to nuclear electric power calls for an increased financial effort in the transition period. The technical risks are low but the economic ones can be reduced only by planning for the nuclear system as a whole. The technicians have let themselves be caught up in the false discussion of zero risk instead of stressing the comparison of the risks and benefits of the various lines of energy production and the various branches of industry. Utilization of nuclear energy raises international problems, especially in connection with non-proliferation. France has already defined its stand on this issue. Today it is proposing a new uranium-enrichment technique which combines economic promise with safeguards for non-proliferation. Solutions can be found to all these problems, but cannot be fully effective without wide international collaboration with due regard for the interests and dignity of the different States. (author)

  12. NUFACTS-nuclear fuel cycle activity simulator: reference manual. Final report

    International Nuclear Information System (INIS)

    Triplett, M.B.; Waddell, J.D.; Breese, T.A.

    1978-01-01

    The Nuclear Fuel Cycle Activity Simulator (NUFACTS) is a package of FORTRAN subroutines which facilitate the simulation of a diversity of nuclear power growth scenarios. An approach to modeling the nuclear fuel cycle has been developed that is highly adaptive and capable of addressing a variety of problems. Being a simulation model rather than an optimization model, NUFACTS mimics the events and processes that are characteristic of the nuclear fuel cycle. This approach enables the model user to grasp the modeling approach rather quickly. Within this report descriptions of the model and its components are provided with several emphases. First, a discussion of modeling approach and basic assumptions is provided. Next, instructions are provided for generating data, inputting the data properly, and running the code. Finally, detailed descriptions of individual program element are given as an aid to modifying and extending the present capabilities

  13. Multilateral approach to the back end of the nuclear fuel cycle in Asia-Pacific?

    International Nuclear Information System (INIS)

    Lim, Eunjung

    2016-01-01

    In spite of the nearly unprecedented scale of the Fukushima Daiichi Nuclear Accident which caused countries around the world to review their nuclear power systems and to rethink their nuclear power expansion plans, nuclear power capacity continues to grow, spearheaded by the Asia-Pacific region. The Asia-Pacific has become a major emerging market for nuclear energy industry, which indicates that the management of spent nuclear fuel is likely to be a nuisance for the countries in this region in the coming decades. By reviewing the history of discussions on multilateral approaches to the back end of the nuclear fuel cycle and examining relevant empirical cases, this article aims to explore the feasibility of a multilateral approach to the back end of the nuclear fuel cycle in this region and provide some policy suggestions to enhance nuclear governance in the Asia-Pacific. - Highlights: • The Asia-Pacific has become a huge emerging market for nuclear power industry. • Asian-Pacific countries operating reactors lack solution for spent nuclear fuel. • Multilateral approach is attractive, but hard to be realized. • The main obstacle is variations in policies for SNF management among the Asia-Pacific countries. • The country that should take its initiative in this field is the United States.

  14. Nuclear power generation and nuclear fuel

    International Nuclear Information System (INIS)

    Okajima, Yasujiro

    1985-01-01

    As of June 30, 1984, in 25 countries, 311 nuclear power plants of about 209 million kW were in operation. In Japan, 27 plants of about 19 million kW were in operation, and Japan ranks fourth in the world. The present state of nuclear power generation and nuclear fuel cycle is explained. The total uranium resources in the free world which can be mined at the cost below $130/kgU are about 3.67 million t, and it was estimated that the demand up to about 2015 would be able to be met. But it is considered also that the demand and supply of uranium in the world may become tight at the end of 1980s. The supply of uranium to Japan is ensured up to about 1995, and the yearly supply of 3000 st U 3 O 8 is expected in the latter half of 1990s. The refining, conversion and enrichment of uranium are described. In Japan, a pilot enrichment plant consisting of 7000 centrifuges has the capacity of about 50 t SWU/year. UO 2 fuel assemblies for LWRs, the working of Zircaloy, the fabrication of fuel assemblies, the quality assurance of nuclear fuel, the behavior of UO 2 fuel, the grading-up of LWRs and nuclear fuel, and the nuclear fuel business in Japan are reported. The reprocessing of spent fuel and plutonium fuel are described. (Kako, I.)

  15. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    International Nuclear Information System (INIS)

    Holcomb, R.S.

    1992-01-01

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion system was carried out in the 1960's which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper

  16. U.K. policy responses to international influences - nuclear power

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1978-01-01

    An account is given of U.K. participation in international discussions directed towards the safe development and application of nuclear power. Particular attention is given to the International Fuel Cycle Evaluation (INFCE), which is stated to be looking at the whole question of proliferation and the merits and disadvantages of a range of alternative fuel cycles and nuclear power strategies. A summary is also given of U.K. participation in work on radiological protection (through the I.C.R.P.) and radioactive waste disposal. International cooperation in research and development is mentioned. Public involvement in policy making is also discussed briefly. (U.K.)

  17. Best power mix under nuclear-decreasing society

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Nakao, Kazuhide

    2012-01-01

    East Japan Great Earthquake and the subsequent failures of nuclear power plants compel Japanese to consider a new paradigm of national energy policy. In this study, we discuss the future power mix scenario considering a variety of power options; nuclear, coal fire, LNG fire, oil fire, LNG combined cycle, hydro, hydropump, battery, photovoltaic, wind, and geothermal. Future developments of installed capacity, properties such as efficiency, etc. are discussed for each type of power option. Seven sets of daily demand profile are used. Power generation mix model developed in preceding studies is used to estimate the installation and operation of each power option for representative years of 2010, 2020, 2030, 2040, and 2050. Future power mix is discussed on the basis of results from power generation mix model. (author)

  18. Country nuclear power profiles. 2000 ed

    International Nuclear Information System (INIS)

    2001-03-01

    implemented and the profiles are supporting programmatic needs within the IAEA. It is noted that there also exist other less formal profiles on specific subjects of nuclear power in the Agency, e.g. Safety Profiles (NS Safety Co-ordination), Waste Management Profiles (NEFW), Fuel Cycle Profiles (NEFW)

  19. The case for innovation in nuclear reactor and fuel cycle designs

    International Nuclear Information System (INIS)

    Mourogov, V. M.

    2000-01-01

    Nuclear power is an important contributor to the world's electricity needs. In 1999 it supplied more than one-sixth of global electricity. Due to the fact that it is a capital intensive and sophisticated technology, the larger part of world nuclear capacity, i.e. 83 %, is concentrated in the industrialized countries, mainly OECD countries and economies in transition in Central and Eastern Europe (see table I and table II). Nuclear Power plays an important role in those industrialized countries by ensuring their energy independence, helping to keep the air clean and reducing carbon emissions. The development of nuclear power in industrialized countries was reached through intensive development of reactor manufacturing capabilities and a sophisticated fuel cycle infrastructure. The competitiveness of nuclear power was reached through developing large scale reactors units, between 1000-1600 MWe and aggressive NPP construction programmes. It is understood that waste management becomes economical within national waste repository concepts when the total national nuclear capacity reaches several GWe. Nuclear power plants are introduced in large electricity grids and they are used mainly for base load electricity generation

  20. Nuclear power. Volume 2. Nuclear power project management

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 2 contains the following chapters: (1) review of nuclear power plants; (2) licensing procedures; (3) safety analysis; (4) project professional services; (5) quality assurance and project organization; (6) construction, scheduling, and operation; (7) nuclear fuel handling and fuel management; (8) plant cost management; and (9) conclusion

  1. CNEN activities and brazilian nuclear power policy

    International Nuclear Information System (INIS)

    Costa, E.M. da

    1989-01-01

    The goal of the brazilian policy in nuclear power is to provide its use in a pacific way to promote the well being of our people. It is intended, as well, to finish the construction of Angra II and III and proceed with the implementation of the nuclear fuel cycle, progressively fomenting its nationalization. (A.C.A.S.)

  2. Sustainable multilateral nuclear fuel cycle framework. (2) Models for multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Adachi, T; Tanaka, S; Tazaki, M; Akiba, M; Takashima, R; Kuno, Y

    2011-01-01

    To construct suitable models for a reliable and sustainable international/regional framework in the fields of nuclear fuel cycle, it is essential to reflect recent political situations including such that 1) a certain number of emerging countries especially in south-east Asia want to introduce and develop nuclear power in the long-terms despite the accident of the Fukushima Daiichi NPP, and 2) exposition of nuclear proliferation threats provided by North Korea and Iran. It is also to be considered that Japan is an unique country having enrichment and reprocessing facilities on commercial base among non-nuclear weapon countries. Although many models presented for the internationalization have not been realized yet, studies at the University of Tokyo aim at multilateral nuclear approach (MNA) in Asian-Pacific countries balancing between nuclear non-proliferation and nuclear fuel supply/service and presenting specific examples such as prerequisites for participating countries, scope of cooperative activities, ownership of facilities and type of agreements/frameworks. We will present a model basic agreement and several bilateral and multi-lateral agreements for the combinations of industry or government led consortia including Japan and its neighboring countries and made a preliminary evaluation for the combination of processes/facilities based on the INFCIRC/640 report for MNA. (author)

  3. World nuclear fuel cycle requirements 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  4. Nuclear power. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, W.C.

    1983-01-01

    Lay language brings an understanding of nuclear technology and nuclear politics to the non-specialist reader. The author notes that there has been little change in the technology during the four decades of the nuclear age, but mankind has still to learn how to live with it. Part One explains how reactors work, identifies different reactor types, and describes the fuel cycle. Part two follows research developments during the pre-Manhatten Project days, the war effort, and the decision to pursue commercial nuclear power. He traces the development of policies to secure fission materials and international efforts to prevent the proliferation of weapons grade material and the safe handling of radioactive wastes on a global as well as national scale. There are four appendices, including an annotated reference to other publications. 9 figures.

  5. Cooling water requirements and nuclear power plants

    International Nuclear Information System (INIS)

    Rao, T.S.

    2010-01-01

    Indian nuclear power programme is poised to scuttle the energy crisis of our time by proposing joint ventures for large power plants. Large fossil/nuclear power plants (NPPs) rely upon water for cooling and are therefore located near coastal areas. The amount of water a power station uses and consumes depends on the cooling technology used. Depending on the cooling technology utilized, per megawatt existing NPPs use and consume more water (by a factor of 1.25) than power stations using other fuel sources. In this context the distinction between 'use' and 'consume' of water is important. All power stations do consume some of the water they use; this is generally lost as evaporation. Cooling systems are basically of two types; Closed cycle and Once-through, of the two systems, the closed cycle uses about 2-3% of the water volumes used by the once-through system. Generally, water used for power plant cooling is chemically altered for purposes of extending the useful life of equipment and to ensure efficient operation. The used chemicals effluent will be added to the cooling water discharge. Thus water quality impacts on power plants vary significantly, from one electricity generating technology to another. In light of massive expansion of nuclear power programme there is a need to develop new ecofriendly cooling water technologies. Seawater cooling towers (SCT) could be a viable option for power plants. SCTs can be utilized with the proper selection of materials, coatings and can achieve long service life. Among the concerns raised about the development of a nuclear power industry, the amount of water consumed by nuclear power plants compared with other power stations is of relevance in light of the warming surface seawater temperatures. A 1000 MW power plant uses per day ∼800 ML/MW in once through cooling system; while SCT use 27 ML/MW. With the advent of new marine materials and concrete compositions SCT can be constructed for efficient operation. However, the

  6. Nuclear fuel cycle bringing about opportunity for industrial structure conversion

    International Nuclear Information System (INIS)

    Nakamura, Taiki

    1991-01-01

    Three facilities of nuclear fuel cycle, that is, uranium enrichment, fuel reprocessing and low level radioactive waste storage and burying, are being constructed by electric power industry in Rokkasho Village, Kamikita County, Aomori Prefecture. These are the large scale project of the total investment of 1.2 trillion yen. It is expected that the promotion of this project exerts not a little effect to the social economy of the surrounding districts. Agency of Natural Resources and Energy, Ministry of International Trade and Industry, carried out the social environment survey on the location of nuclear fuel cycle facilities. In this report, the outline of the economical pervasive effect due to the construction and operation of the three facilities in the report of this survey is described. The method of survey and the organization, the outline of three nuclear fuel cycle facilities, the economical pervasive effect, the effect to the local social structure, and the direction of arranging occupation, residence and leisure accompanying the location of three nuclear fuel cycle facilities are reported. (K.I.)

  7. Long-term alternatives for nuclear fuel cycles

    International Nuclear Information System (INIS)

    Vira, J.; Vieno, T.

    1981-07-01

    Several technical alternatives have been proposed to the nuclear spent fuel management but the practical experience on any of these is small or totally lacking. Since the management method is also connected with the composition of fresh fuel, the comparison of the alternatives must include the whole fuel cycle of a nuclear power plant. In the planning of the nuclear fuel cycle over a time range of several decades a consideration must be given, in addition, to the potential of the new reactor types with increased efficiency of uranium utilization. For analyses and mutual comparisons of the fuel cycle alternatives a number of computer models have been designed and implemented at the Technical Research Centre of Finland. Given the estimated boundary conditions the models can be used to study the impact of different goals and requirements on the fuel cycle decisions. Further, they facilitate cost predictions and display information on the role of the intrinsic uncertainties in the decision-making. The conclusions of the study are tied to the questions of price and availability of uranium. Hence, for instance, the benefits from the reprocessing of spent fuel might prove to be small when compared to the costs required, especially as the current reprocessing contracts do not allow the custemer to dismiss the duty of building the final disposal facilities for high level radioactive waste. For a few decades the final decisions can be postponed by extending the interim storage period. Farther in the future the decisions in the nuclear fuel cycle arrangements will more link to the introduction of the fast breeder reactors. (author)

  8. Improvements in steam cycle electric power generating plants

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1973-01-01

    The invention relates to a steam cycle electric energy generating plants of the type comprising a fossil or nuclear fuel boiler for generating steam and a turbo alternator group, the turbine of which is fed by the boiler steam. The improvement is characterized in that use is made of a second energy generating group in which a fluid (e.g. ammoniac) undergoes a condensation cycle the heat source of said cycle being obtained through a direct or indirect heat exchange with a portion of the boiler generated steam whereby it is possible without overloading the turbo-alternator group, to accomodate any increase of the boiler power resulting from the use of another fuel while maintaining a maximum energy output. This can be applied to electric power stations [fr

  9. Environmental Health Impacts of Nuclear Fuel Cycle With Emphasis to Monitoring and Radiological Safety Control System

    International Nuclear Information System (INIS)

    Gad Allah, A.A.; El- Shanshory, A.I.

    2010-01-01

    Security of energy supply and global climatic changes due to carbon dioxide gas emission of fissile fuels encouraged many developed countries for planning to introduce nuclear power for energy generation. Recently, nuclear power provides approximately 20 % of the world's electricity, which is equivalent to a reduction in carbon emissions of 0.5 Gt of C/year. This is a modest contribution to the reduction of global carbon emissions, 6.5 Gt C/year. There are three types of nuclear fuel cycles that might be utilized for the increased production of energy: open, closed, or a symbiotic combination of different reactor types (such as thermal and fast neutron reactors). Within each cycle, the volume and composition of the nuclear waste and fissile material depend on the type of nuclear fuel, the amount of burn-up, the extent of radionuclide separation during reprocessing, and the types of material used to immobilize different radionuclides. Most analyses suggest that in order to have a significant impact on carbon emissions. By the year 2050, carbon free sources, such as nuclear power, would have to expand total energy production by a factor of three to ten. A three-fold increase in nuclear power capacity would result in a projected reduction in carbon emissions of 1 to 2 Gt C/year, depending on the type of the carbon-based energy source. This paper reviews, discusses and evaluates the relation between the different types of fuel cycles and their environmental impacts. The paper investigates the environmental impacts of the nuclear fuel cycle compared to fossil fuel energy system.. It also reviews the impact of an expansion of this scale on the generation of nuclear waste and fissile material that might be diverted to the production of nuclear weapons. Investigations of different wastes fissile and fertile mater in the fuel cycle have been estimated. The paper provides an overview of the main contaminates in the waste streams and effluents from nuclear fuel cycle

  10. Nuclear power at present and in the future. Sweden and the rest of the world

    International Nuclear Information System (INIS)

    2010-06-01

    The report provides by no means a complete picture of nuclear power. There are a number of issues not covered, such as environmental impacts caused by the nuclear plants used (with the exception of the greenhouse gases that highlights some of report), the link with nuclear weapons and waste disposal. The share of nuclear power in Sweden in 2010 is higher than the average for the world The global net installed power of nuclear power in early 2010 was just over 370 GW e distributed over 436 nuclear power plants. In 2007, global electricity generation from nuclear power was about 14 percent of total electricity generation, compared with 44 percent in Sweden. The average availability for nuclear power plants was about 82 percent between 2005 and 2007. During the same period the availability in Swedish plants was lose to 84 percent. The Swedish availability has fallen, in 2004 the availability was comparable to that in Finland, which amounted to just over 94 percent between 2005 and 2007. The expansion of nuclear power may be limited by technical challenges in manufacturing infrastructure and a shortage of skilled labor. There is only a few reactor suppliers in the market and the quality demand of the material is much higher than for other major projects. Whether nuclear power is competitive with alternative investments or not is uncertain. The investment costs for building new reactors is high but the operational and maintenance costs are low compared to many other types of power sources. In an Emission Trading System nuclear power competitivity with fossil options increases. Nuclear power is a power source with low greenhouse gas emissions over its life cycle. Uranium is a limited resource and like other natural resources limited to a number of countries. Most nuclear reactors are also dependent on enrichment of the natural uranium. If an open or closed nuclear fuel cycle is used is crucial for how long the uranium reserves will last and how nuclear energy can grow

  11. International Source Book: Nuclear Fuel Cycle Research and Development Vol 1 Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lakey, L. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    1983-07-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This first volume includes the overview and the program summaries of those countries listed alphabetically from Argentina to Italy.

  12. International nuclear power status 1994; International kernekraftstatus 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hoejerup, C.F.; Majborn, B.; Oelgaard, P.L. [eds.

    1995-02-01

    This report is the first in a planned series of annual reports covering the international development in the field of nuclear power. The report deals with: statistical information on the electricity produced by nuclear power plants; major safety-related incidents in 1994; the development in Sweden, Eastern Europe, and the rest of the world; the trends of development of a number of reactor types; the trends of development in the fuel cycle. (au).

  13. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  14. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.

    1980-09-01

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U 3 O 8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  15. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  16. A review on the long-range strategy of nuclear power development

    International Nuclear Information System (INIS)

    An, Shigehiro; Kondo, Shunsuke; Ishida, Hiroshi.

    1979-01-01

    Nuclear power generation in Japan is proceeding steadily, such as the world's second in power generating capacity and the nation's own development of power reactors. Meanwhile, however, there are number of problems for future solution, like the establishment of nuclear fuel cycle, before nuclear energy is fully harnessed. Looking as far ahead as the 21st century, the long-range strategy of nuclear power development is reviewed: politics on uranium supply outlook, a compromise between uranium enrichment and nuclear nonproliferation, LWR technology with safety, FBR development scheme, uranium resources saving and heavy water reactor, HTGR development, a 2nd fuel reprocessing plant, high level wastes management, reactors decommissioning, research in nuclear energy development, and fostering of a nuclear power industry. (J.P.N.)

  17. Status of nuclear power in developing countries

    International Nuclear Information System (INIS)

    Laue, H.J.

    1982-01-01

    In the context of the world-wide energy situation and the key position energy plays and will play for the economic and social development of any country, the energy demand situation up to the year 2000 is analysed. As a result, the world-wide energy demand will continue to increase, however, mainly in the developing world. Nuclear power is one of the important component in the energy mix of today and in the future. Status of nuclear power application in developing countries up to the end of the century. Any further growth of the peaceful use of nuclear power in developing countries is closely linked with the following requirements: - qualified manpower, - industrial infrastructure, - energy demand and supply assessments, - high investments, - assurance of supply of nuclear fuel and fuel cycle services, - availability of small and medium power reactors. The possible role of the IAEA in developing countries and international measures to remove some of the limitations for the peaceful use of nuclear energy in developing countries are discussed. (orig.)

  18. Nuclear alkali metal Rankine power systems for space applications

    International Nuclear Information System (INIS)

    Moyers, J.C.; Holcomb, R.S.

    1986-01-01

    Nuclear power systems utilizing alkali metal Rankine power conversion cycles offer the potential for high efficiency, lightweight space power plants. Conceptual design studies are being carried out for both direct and indirect cycle systems for steady state space power applications. A computational model has been developed for calculating the performance, size, and weight of these systems over a wide range of design parameters. The model is described briefly and results from parametric design studies, with descriptions of typical point designs, are presented in this paper

  19. Nuclear power: the future reassessed

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, L [East Anglia Univ., Norwich (UK). Environmental Risk Assessment Unit (ERAU)

    1991-02-01

    In recommending that consent be given for the construction of a further Pressurized Water Reactor at Hinkley Point in Somerset, UK, the Inspector at the Public Inquiry underlined two major benefits: (i) the contribution an additional large nuclear plant would make to the strategic objective of diversity of supply, and (ii) the environmental benefits of nuclear power compared to many alternative forms of electricity generation. The major environmental advantages of nuclear power over fossil fuel combustion arise both because of the small amounts of fuel required - 1/18,000 compared to coal - thus minimizing transport needs and land use, and because of the virtual absence of atmospheric emissions from nuclear stations. Nuclear reactors emit no acid gases and the nuclear fuel cycle gives rise to only small amounts of carbon dioxide. An expansion of the nuclear option is often opposed on three grounds; the need to dispose of radioactive waste; the danger of the proliferation of nuclear weapons and the risk of a large scale accident. However all these doubts can be answered and the arguments supporting nuclear safety are summarized. It is argued that the contribution to primary energy demand in Europe could be doubled or trebled by 2020 with considerable benefits in overall safety environmental impacts at no extra cost. (author).

  20. Nuclear power: the future reassessed

    International Nuclear Information System (INIS)

    Roberts, L.

    1991-01-01

    In recommending that consent be given for the construction of a further Pressurized Water Reactor at Hinkley Point in Somerset, UK, the Inspector at the Public Inquiry underlined two major benefits: (i) the contribution an additional large nuclear plant would make to the strategic objective of diversity of supply, and (ii) the environmental benefits of nuclear power compared to many alternative forms of electricity generation. The major environmental advantages of nuclear power over fossil fuel combustion arise both because of the small amounts of fuel required - 1/18,000 compared to coal - thus minimizing transport needs and land use, and because of the virtual absence of atmospheric emissions from nuclear stations. Nuclear reactors emit no acid gases and the nuclear fuel cycle gives rise to only small amounts of carbon dioxide. An expansion of the nuclear option is often opposed on three grounds; the need to dispose of radioactive waste; the danger of the proliferation of nuclear weapons and the risk of a large scale accident. However all these doubts can be answered and the arguments supporting nuclear safety are summarized. It is argued that the contribution to primary energy demand in Europe could be doubled or trebled by 2020 with considerable benefits in overall safety environmental impacts at no extra cost. (author)

  1. Greenhouse gas emissions from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Taylor, M.

    1996-01-01

    Emissions of carbon dioxide and methane from the whole fuel-cycle of nuclear power generation are discussed. The low-cost, and therefore low-energy-using, uranium resources suffice to provide a large worldwide nuclear programme with fuel without producing substantial carbon dioxide. Very lower emissions of carbon dioxide can be achieved if uranium enrichment is carried out by centrifuging. Methane emissions from uranium mining are negligible or in almost any case virtually zero. (author). 9 refs, 1 tab

  2. Radiation protection and environmental surveillance programme in and around Nuclear Fuel Cycle Facilities in India

    International Nuclear Information System (INIS)

    Tripathi, R.M.

    2018-01-01

    Radiation safety is an integral part of the operation of the Indian nuclear fuel cycle facilities and safety culture has been inculcated in all the spheres of its operation. Nuclear fuel cycle comprises of mineral exploration, mining, ore processing, fuel fabrication, power plants, reprocessing, waste management and accelerator facilities. Health Physics Division of BARC is entrusted with the responsibility of radiation protection and environmental surveillance in all the nuclear fuel cycle facilities

  3. Advanced nuclear fuel cycles activities in IAEA

    International Nuclear Information System (INIS)

    Nawada, H.P.; Ganguly, C.

    2007-01-01

    Full text of publication follows. Of late several developments in reprocessing areas along with advances in fuel design and robotics have led to immense interest in partitioning and transmutation (P and T). The R and D efforts in the P and T area are being paid increased attention as potential answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. Any fuel cycle studies that integrate partitioning and transmutation are also known as ''advanced fuel cycles'' (AFC), that could incinerate plutonium and minor actinide (MA) elements (namely Am, Np, Cm, etc.) which are the main contributors to long-term radiotoxicity. The R and D efforts in developing these innovative fuel cycles as well as reactors are being co-ordinated by international initiatives such as Innovative Nuclear Power Reactors and Fuel Cycles (INPRO), the Generation IV International Forum (GIF) and the Global Nuclear Energy Partnership (GENP). For these advanced nuclear fuel cycle schemes to take shape, the development of liquid-metal-cooled reactor fuel cycles would be the most essential step for implementation of P and T. Some member states are also evaluating other concepts involving the use of thorium fuel cycle or inert-matrix fuel or coated particle fuel. Advanced fuel cycle involving novel partitioning methods such as pyrochemical separation methods to recover the transuranic elements are being developed by some member states which would form a critical stage of P and T. However, methods that can achieve a very high reduction (>99.5%) of MA and long-lived fission products in the waste streams after partitioning must be achieved to realize the goal of an improved protection of the environment. In addition, the development of MA-based fuel is also an essential and crucial step for transmutation of these transuranic elements. The presentation intends to describe progress of the IAEA activities encompassing the following subject-areas: minimization of

  4. Social Cost Assessment for Nuclear Fuel Cycle Options in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ji-eun; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    This paper will investigate the vast array of economic factors to estimate the true cost of the nuclear power. There are many studies addressing the external costs of energy production. However, it is only since the 1990s that the external costs of nuclear powered electricity production has been studied in detail. Each investigation has identified their own set of external costs and developed formulas and models using a variety of statistical techniques. The objective of this research is to broaden the scope of the parameters currently consider by adding new areas and expanding on the types of situations considered. Previously the approach to evaluating the external cost of nuclear power did not include various fuel cycle options and influencing parameters. Cost has always been a very important factor in decision-making, in particular for policy choices evaluating the alternative energy sources and electricity generation technologies. Assessment of external costs in support of decision-making should reflect timely consideration of important country specific policy objective. PWR-MOX and FR-Pyro are the best fuel cycle in parameter of environment impacts, but OT or OT-ER is proper than FR-Pyro in human beings. Using the OT fuel cycle is better than FR-Pyro to reduce the conflict cost. When energy supply is deficient, FR-Pyro fuel cycle stands longer than other fuel cycles. Proliferation resistance is shown as 'high' in all fuel cycles, so there are no difference between fuel cycles. When the severe accident occurs, FR-Pyro cycle is economical than other OT based fuel cycles.

  5. Relationship between basic nuclear data and LWR fuel cycle parameters

    International Nuclear Information System (INIS)

    Becker, M.; Harris, D.R.; Quan, B.; Ryskamp, J.M.

    1979-01-01

    An interactive system has been developed at RPI to analyze the sensitivity of water reactor fuel cycle parameters and costs to uncertainties in nuclear data. A sequence of batch depletion, core analysis, and fuel cost codes (referred to as Path B) determines the changes in fuel cycle parameters and costs for changes in few-group microscopic cross sections, in fission yields, and in decay data. For cases that are found to be significant from Part B analysis, the sensitivities of few-group data to basic nuclear data are determined by detailed calculations (referred to as Path A). Analyses of pressurized and boiling water reactors with recycle and throwaway options show substantial sensitivities of fuel cycle parameters and costs, particularly to thermal and resonance nuclear data for fissile nuclides. The results bring out the importance for power reactor sensitivity analysis of dealing with the full fuel cycle including depletion of initially-loaded fuel and the building-in of actinides and fission products

  6. Nuclear power engineering: Public understanding and public opinion

    International Nuclear Information System (INIS)

    Kryshev, A.I.; Sazykina, T.G.

    1998-01-01

    Subjective and objective reasons for the formation of public opinion about nuclear power engineering of Russia were analyzed. Some methodological errors in work with the Russian public on the problems of nuclear energy and possible methods of their correction were discussed. The social groups of the general public, which are of greatest importance in forming the attitude towards nuclear power engineering were indicated. The conclusion was reached that opinion of the ordinary population is often indicative of real drawbacks in the work of specialists in the nuclear fuel cycle. Consequently, careful surveys of public opinion about the problems of the nuclear industry should be very useful in organizing research work properly and improving the radiation safety. (author)

  7. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S. R. [University of Science and Technology, Daejeon (Korea, Republic of); Choi, S. Y. [UNIST, Ulju (Korea, Republic of); Koc, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle.

  8. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    International Nuclear Information System (INIS)

    Yoon, S. R.; Choi, S. Y.; Koc, W. I.

    2015-01-01

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle

  9. Nuclear power: An evolving scenario

    International Nuclear Information System (INIS)

    ElBaradei, Mohamed

    2004-01-01

    relevance to the future viability of nuclear power: safety performance; nuclear security; prevention of nuclear weapons proliferation; innovation - encouraging the development of new reactor and fuel cycle technologies. In conclusion, it is pointed out that the current 'holding period' for nuclear power in Europe will soon come to an end. In the near future, Europe will be faced with important energy decisions. With an increasing number of nuclear power plants reaching their original design lifetimes, Europe will have to decide how to replace its retiring nuclear power plants

  10. Fuel cycle and waste management: A perspective from British nuclear fuels plc

    International Nuclear Information System (INIS)

    Holmes, R.G.G.; Fairhall, G.A.; Robbins, R.A.

    1996-01-01

    The phrase fuel cycle and waste management implies two separate and distinct activities. British Nuclear Fuels plc (BNFL) has adopted a holistic approach to the fuel cycle that integrates the traditional fuel cycle activities of conversion to uranium hexafluoride, fuel fabrication, power generation, and reprocessing with waste arisings, its subsequent treatment, and disposal

  11. Thermodynamics of nuclear power systems

    International Nuclear Information System (INIS)

    Anno, J.

    1977-01-01

    The conversion of nuclear energy to useful work follows essentially the same course as the conversion of thermal energy from fossil fuel to work. The thermal energy released in the reactor core is first transferred to the primary coolant which then generally transfers its heat to a secondary fluid. The secondary fluid serves as the working fluid in a heat engine. The author briefly examines the thermodynamic principles governing the operation of such engines, the major thermodynamic cycles used, and their application to nuclear power plants. (Auth.)

  12. Greenhouse gas emission factor for coal power chain in China and the comparison with nuclear power chain

    International Nuclear Information System (INIS)

    Ma Zhonghai; Pan Ziqiang; He Huimin

    1999-01-01

    The Greenhouse Gas Emission for coal power chain in China is analyzed in detail and comprehensively by using the Life Cycle Analysis method. The Greenhouse Gas Emission Factors (GGEF) in each link and for the total power chain are calculated. The total GGEF for coal power chain is 1302.3 gCO 2 /kWh, about 40 times more than that for nuclear power chain. And consequently greenhouse effect could not be aggravated further by nuclear power. The energy strategy for nuclear power development is one of reality ways to retard the greenhouse effect, put resources into rational use and protect environment

  13. Nuclear power and carbon dioxide; The fallacy of the nuclear industry's new propaganda

    Energy Technology Data Exchange (ETDEWEB)

    Mortimer, N. (Sheffield City Polytechnic (UK). School of Urban and Regional Studies)

    The increasingly beleaguered nuclear industry is now highlighting the threat of global warming as a justification for its continued expansion. The industry argues that it produces no carbon dioxide and that nuclear power is therefore a key element in any plan to reduce emissions of this greenhouse gas. However an analysis of the entire nuclear fuel cycle shows that nuclear power is responsible for much larger carbon dioxide emissions than several renewable energy options and efficiency measures. Furthermore, a major expansion of nuclear generating capacity would result in huge increases in CO{sub 2} emissions from the nuclear industry due to the need to mine and process progressively lower quality uranium ores. Nuclear power is an expensive, unsustainable, dangerous and ineffective option in any realistic strategy to combat global warming. (Author).

  14. The renaissance of nuclear power. Causes and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Hillriches, Christian [AREVA NP GmbH, Erlangen (Germany)

    2008-07-01

    An increase in the use of nuclear energy for power generation is predicted worldwide. Confirmation of this trend can already be found today in extensions to nuclear power plant operating licenses and projects for nuclear plant upgrading and uprating. Numerous countries have decided to build new nuclear power plants or are planning to do so, even countries that have not used nuclear energy in the past. The reasons for this global renaissance include a growing demand for electric power all over the world, awareness that our fossil resources are limited, the desire by many countries to reduce their dependence on energy imports, and the drive to combat climate change. The nuclear industry is rising to this challenge by offering advanced reactors of the 3rd generation, by consolidating and restructuring manufacturing capacities, by building up staffing levels and investing in production facilities and the fuel cycle. Standardizing technology, progressively harmonizing safety requirements across national borders and setting up long-term cooperation agreements between vendors and plant operators are options that can help turn the global renaissance of nuclear power into a sustainable success. (orig.)

  15. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  16. Current Trends in the Nuclear Power Global Market

    Directory of Open Access Journals (Sweden)

    Mariya Mikhailovna Osetskaya

    2018-03-01

    Full Text Available The review of the nuclear energy technologies market, namely the main processes of the initial and final stages of the nuclear fuel cycle (NTC was shown. The authors reveal key players in the markets of natural uranium mining, conversion, enrichment, fabrication of nuclear fuel, direct disposal, and reprocessing as well as determine their market shares. The article shows the fundamental factors influencing the development trends of the global nuclear power market such as: units’ commissioning in China, India, the Republic of Korea and other countries, the restart of the Japanese nuclear power plants, growth of uranium supplies long-term contracting planned for the period up to 2025, volatility of world prices of the NFC initial and final stages, political, economic and environmental reasons for the nuclear power generation choice. The article presents the results of analyses of Russian and world prices on the NFC initial and final stages main processes’ allowing to draw a conclusion about the current competitiveness of Russian nuclear energy technologies

  17. The status of nuclear fuel cycle system analysis for the development of advanced nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Seong Ki; Lee, Hyo Jik; Chang, Hong Rae; Kwon, Eun Ha; Lee, Yoon Hee; Gao, Fanxing [KAERI, Daejeon (Korea, Republic of)

    2011-11-15

    The system analysis has been used with different system and objectives in various fields. In the nuclear field, the system can be applied from uranium mining to spent fuel reprocessing or disposal which is called the nuclear fuel cycle. The analysis of nuclear fuel cycle can be guideline for development of advanced fuel cycle through integrating and evaluating the technologies. For this purpose, objective approach is essential and modeling and simulation can be useful. In this report, several methods which can be applicable for development of advanced nuclear fuel cycle, such as TRL, simulation and trade analysis were explained with case study

  18. The status of nuclear power technology

    International Nuclear Information System (INIS)

    Calori, F.

    1976-01-01

    A survey is presented of the present state of development concerning nuclear power technology, and the prospects of a modified future development of nuclear energy in the world are dealt with, modification being necessary on account of altered conditions in the development of the energy economy. Projections are made for the development of the fuel market taking into account the quantities and costs for the various steps of the fuel cycle. (UA) [de

  19. The world nuclear power engineering. 1998 year

    International Nuclear Information System (INIS)

    Preobrazhenskaya, L.B.

    2000-01-01

    The purpose of this article consists in the analysis of the state and prospects of the world nuclear power engineering development. The data on the ratio and value of electrical energy obtained at the NPPs in the world in 1998, the specific capital expenditures on the NPPs construction by 2005, the forecast for the capacity of all NPPs by 2020 are presented. The progress in developing nuclear power engineering conditioned by improvement of the NPPs operation, optimization of their life-cycle and developing of new NPPs projects is noted [ru

  20. Promotion of public awareness relating nuclear power in young generation

    International Nuclear Information System (INIS)

    Kobayashi, Yoko

    2011-01-01

    Although nuclear power presents problems of waste, safety and non-proliferation, many people understand that it is an essential energy for addressing the global climate and reducing CO2. However, a vague negative-image to the radiation and nuclear power is deep-rooted among the public. Young generation is not an exception. It is very important to transfer many information from the experienced generation in the industry to young generations. In this paper, the research that applied the information intelligence to nuclear power, which involves of the nuclear fuel cycle, and the communication related activities for the social acceptance and improvement. (author)

  1. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  2. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  3. Present status and problems of nuclear power generation

    International Nuclear Information System (INIS)

    Harada, Hiroshi.

    1984-01-01

    The nuclear power generation in Japan began in 1963 with the successful power generation in the JPDR of the Japan Atomic Energy Research Institute, and since then, more than 20 years have elapsed. The Japan Atomic Power Co. started the operation of an imported Calder Hall type gas-cooled reactor with 166,000 kWe output in Tokai Nuclear Power Station in July, 1966. In 1983, the quantity of nuclear power generation was 113.1 billion kWh, which was equivalent to 21.4 % of the total power generation in Japan. As of April 1, 1984, 25 nuclear power plants with 18.28 million kW output were in operation, 12 plants of 11.8 million kW were under construction, and 7 plants of 6.05 million kW were in preparation phase. Besides, the ATR ''Fugen'' with 165,000 kW output has been in operation, and the FBR ''Monju'' with 280,000 kW output is under construction. The capacity ratio of Japanese nuclear power stations attained 71.5 % in 1983. According to the ''Long term energy demand and supply outlook'' revised in November, 1983, the nuclear power generation in 2000 will be about 62 million kW to cater for about 16 % of primary energy supply. The problems are the improvement of economy, the establishment of independent nuclear fuel cycle, the decommissioning of nuclear reactors and so on. (Kako, I.)

  4. Thermodynamic analysis of a nuclear-hydrogen power system using H2/O2 direct combustion product as a working substance in the bottom cycle

    International Nuclear Information System (INIS)

    Chen, D.Z.; Yu, C.P.

    1990-01-01

    A combined thermodynamic cycle using nuclear and hydrogen energy as heat sources was investigated in this paper. The cycle is composed of top cycle using HTGR as energy source and helium as working medium and a bottom cycle with H 2 /O 2 direct combustion product as working substance. hydrogen and oxygen are thermochemically by splitting of water produced through a part of nuclear heat recovered from the top cycle. They may be delivered to the O 2 /H 2 users or used as fuels for the high temperature bottom Rankine steam cycle. The combined cycle not only uses the new energy sources instead of conventional fossil fuels but it possess the advantages of both helium and steam cycle. It has a high thermal efficiency, large unit capacity, many-sided usage and less pollution. It may represent a new type of combined cycles for future energy conversion and power generation. Using computer diagram, a variety of schemes were calculated and analyzed. The influence of some main parameters upon the cycle performance were also studied

  5. Cost benefit analysis of recycling nuclear fuel cycle in Korea

    International Nuclear Information System (INIS)

    Lee, Jewhan; Chang, Soonheung

    2012-01-01

    Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. The importance if nuclear waste management has been the main issue since the beginning of nuclear history. The recycling nuclear fuel cycle includes the fast reactor, which can burn the nuclear wastes, and the pyro-processing technology, which can reprocess the spent nuclear fuel. In this study, a methodology using Linear Programming (LP) is employed to evaluate the cost and benefits of introducing the recycling strategy and thus, to see the competitiveness of recycling fuel cycle. The LP optimization involves tradeoffs between the fast reactor capital cost with pyro-processing cost premiums and the total system uranium price with spent nuclear fuel management cost premiums. With the help of LP and sensitivity analysis, the effect of important parameters is presented as well as the target values for each cost and price of key factors

  6. Efficient power generation from large 7500C heat sources. Application to coal-fired and nuclear power station

    International Nuclear Information System (INIS)

    Tilliette, Z.P.; Pierre, B.

    1980-03-01

    Considering the future concern about a more efficient, rational use of heat sources, and also about a greater location flexibility of power plants owing to dry cooling possibility, closed gas cycles can offer new solutions for fossil or nuclear energy. An efficient heat conversion into power is obtained by the combination of a main non-intercooled helium cycle with a flexible, superheated, low pressure bottoming steam cycle. Emphasis is placed on the matching of the two cycle; for that, a recuperator by-pass arrangement is used. The operation of the main gas turbocompressor does not depend upon the operation of the small steam cycle. Results are given for a conservative turbine inlet temperature of 750 0 C. Applications are made to a coal-fired power plant and to a gas turbine, gas-cooled nuclear reactor. Overall net plant efficiencies of 39 per cent and 46 per cent respectively are reached. For a cycle top temperature equal to 850 0 C, corresponding net efficiencies would be 42 and 49 per cent

  7. INCREASED PROLIFERATION RESISTANCE FOR 21ST CENTURY NUCLEAR POWER

    International Nuclear Information System (INIS)

    Demuth, Scott F.; Thomas, Ken E.; Wallace, Richard K.

    2007-01-01

    World energy demand and greenhouse gases are expected to significantly increase in the near future. Key developing countries have identified nuclear power as a major contributor to their future energy sources. Consequently, the US and others are currently exploring the concept of a Global Nuclear Energy Partnership (GNEP) to address the concerns of nuclear proliferation. This effort is also being encouraged by the International Atomic Energy Agency (IAEA). While the IAEA currently provides the framework for monitoring of state sponsored nuclear proliferation by way of international treaties, a complimentary action is to promote more proliferation resistant fuel cycles and advanced safeguards technology. As such, it is the responsibility of current technology owners to increase their nuclear fuel cycle proliferation resistance. For those countries that have an active and well-developed fuel cycle, it will require future enhancements. For those countries with extensive nuclear energy experience, yet less active programs, it requires re-engagement for technology development and deployment. The following paper discusses potential fuel cycle and technology changes that affect proliferation resistance; and consequently, may form the basis of future technology development efforts.

  8. Modeling of the vapor cycle of Laguna Verde with the PEPSE code to conditions of thermal power licensed at present (2027 MWt)

    International Nuclear Information System (INIS)

    Castaneda G, M. A.; Maya G, F.; Medel C, J. E.; Cardenas J, J. B.; Cruz B, H. J.; Mercado V, J. J.

    2011-11-01

    By means of the use of the performance evaluation of power system efficiencies (PEPSE) code was modeled the vapor cycle of the nuclear power station of Laguna Verde to reproduce the nuclear plant behavior to conditions of thermal power, licensed at present (2027 MWt); with the purpose of having a base line before the implementation of the project of extended power increase. The model of the gauged vapor cycle to reproduce the nuclear plant conditions makes use of the PEPSE model, design case of the vapor cycle of nuclear power station of Laguna Verde, which has as main components of the model the great equipment of the vapor cycle of Laguna Verde. The design case model makes use of information about the design requirements of each equipment for theoretically calculating the electric power of exit, besides thermodynamic conditions of the vapor cycle in different points. Starting from the design model and making use of data of the vapor cycle measured in the nuclear plant; the adjustment factors were calculated for the different equipment s of the vapor cycle, to reproduce with the PEPSE model the real vapor cycle of Laguna Verde. Once characterized the model of the vapor cycle of Laguna Verde, we can realize different sensibility studies to determine the effects macros to the vapor cycle by the variation of certain key parameters. (Author)

  9. Commercial nuclear power in Western Europe: experience and prospects

    International Nuclear Information System (INIS)

    Hart, D.

    1986-01-01

    The commercialization of nuclear power in Western Europe is likely to bring nuclear's share of electricity production from its current level of 30% to as high as 50% by the year 2000. Although France will build most of this new capacity and Denmark and Austria are abstaining, there is a clear trend in the region. Western Europe will likely decline in its share of world nuclear power as capacity increases in Eastern Europe and the Soviet Union even though its growth has been faster than that of the US. The author compares capacity changes, plant performance, and nuclear trade developments in the individual European countries with those of the US, Soviet Union, and Japan. The author also describes the nuclear fuel cycle, the commercialization of fast breeder reactors, and public opposition to the European Community's policy of expanding nuclear power. The use of nuclear heat for district heating in addition to electric power could change the prospects over the long term. 3 tables

  10. C.N. Cofrentes power up-rate up to 110 %. A challenge for cycle 14 core design

    International Nuclear Information System (INIS)

    Gomez Bernal, M.I.; Lopez Carbonell, M.T.; Garcia Delgado, L.

    2001-01-01

    C.N.Cofrentes is a GE design BWR reactor with 624 bundles in the core, a rated power of 2894 MWt and it is currently operating Cycle 13 at 104.2 % power. Commercial operation started in 1984 with 12-month cycles at rated power. Both cycle length and thermal power have been increased since then. Power has been up-rated in two steps, first at 102 % in Cycle 4 and later in Cycle 11 at 104.2%. Cycle length has been extended from the original 12-month to the currently 18-month cycles. Next cycle, Cycle 14, will be an 18-month cycle operating at 110 % power. This goal is a challenge for the in-house nuclear design team. Start up for Cycle 14 is planned for the first quarter of 2002. (author)

  11. The external cost of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Schieber, C.; Schneider, T.

    2002-01-01

    The external cost of the nuclear fuel cycle has been evaluated in the particular context of France as part of the European Commission's ExternE project. All the steps in the fuel cycle which involve the use of cutting edge technology were taken into consideration, from mining of uranium ores to waste disposal, via construction, dismantling of nuclear power plants and the transport of radioactive materials. The general methodology adopted in the study, known as the 'Impact Pathway Analysis', is based on a sequence of evaluations from source terms to the potential= effects on man and the environment, and then to their monetary evaluation, using a single framework devised for all the fuel cycles considered in the ExternE project. The resulting external cost is in the range of 2 to 3 mEuro/kWh when no discount rate is applied, and around 0.1 mEuro/kWh when a discount rate of 3% is considered. Further developments have been made on the external cost of a nuclear accident and on the integration of risk aversion in its evaluation. It appeared that the external cost of a nuclear accident would be about 0.04 mEuro/kWh, instead of 0.002 mEuro/kWh without taking risk aversion into account. (authors)

  12. Problems of nuclear power creation in the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Batyrbekov, G.A.; Makhanov, Y.M.

    2006-01-01

    Full text: A substantiation of necessity of the nuclear power development in Kazakhstan is given in this report even though rich stocks of the raw fuel of an organic origin are available in our Republic. It is caused by the following circumstances: (a) non-uniform distribution of the coal - main energy source for power stations and heating upon the of territory of Kazakhstan, causing import of the electric power to western and southern areas of Kazakhstan from neighbour countries; (b) availability of essential stocks of uranium (about 25 percent of the researched world reserves), 70 percent from which can be developed by the cheapest and non-polluting method - by uranium underground leaching; (c) availability of main enterprises of a nuclear fuel cycle in Kazakhstan: enterprises on uranium extraction and its processing. A powder - dioxide of uranium, from which tablets as a fuel for the NPP, is produced on Ulbinsk plant; (d) availability of legal base in the Republic necessary for development of nuclear engineering; (e) availability of the qualified experts working on decommission of power fast reactor BN-350 and three research nuclear reactors NNC KR, (f) availability of the scientific research institutes working in the field of atomic engineering at the National Nuclear Center of the Kazakh Republic;(g) Kazakhstan accepted the Kyoto Agreement which limits burning of organic fuel to avoid g reenhouse effect , which can cause catastrophic climate changes on the Earth. Problems of the Kazakhstan nuclear power development and its' solution are considered in this report. They are as follows: (a) a choice of the nuclear power reactor project of the maximal safety, reliability and economic competitiveness of nuclear power plants, corresponding to the highest international requirements of the twenty first century; (b) problems of the manipulation with the highly radioactive long-living waste formed in fuel assembly of reactor; (c) radio phobia, necessity of

  13. Fatigue assessments in operating nuclear power plants

    International Nuclear Information System (INIS)

    Gosselin, S.R.; Deardorff, A.F.; Peltola, D.W.

    1994-01-01

    In November 1991, the ASME Section XI Task Group on Operating Plant Fatigue Assessment was formed to develop criteria and evaluation methodology for evaluating the effects of cyclic operation in operating nuclear power plants. The objective was to develop guidelines for inclusion in Section XI that could be used by plant operators in evaluating fatigue concerns and their impact on serviceability. This paper discusses the work performed by the Task Group. It explores the concept of ''Fatigue Design Basis'' versus ''Fatigue Operating Basis'' by examining the roles of ASME Section III and ASME Section XI in the design and operation of the nuclear power plants. Guidelines are summarized that may help plant operators perform effective design transient cycle evaluations and optimize cycle counting and fatigue usage tracking. The alternative fatigue evaluation approach using flaw tolerance is also introduced

  14. Prospects for and problems of using light-water supercritical-pressure coolant in nuclear reactors in order to increase the efficiency of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Alekseev, P. N.; Semchenkov, Yu. M.; Sedov, A. A.; Subbotin, S. A.; Chibinyaev, A. V.

    2011-01-01

    Trends in the development of the power sector of the Russian and world power industries both at present time and in the near future are analyzed. Trends in the rise of prices for reserves of fossil and nuclear fuels used for electricity production are compared. An analysis of the competitiveness of electricity production at nuclear power plants as compared to the competitiveness of electricity produced at coal-fired and natural-gas-fired thermal power plants is performed. The efficiency of the open nuclear fuel cycle and various versions of the closed nuclear fuel cycle is discussed. The requirements on light-water reactors under the scenario of dynamic development of the nuclear power industry in Russia are determined. Results of analyzing the efficiency of fuel utilization for various versions of vessel-type light-water reactors with supercritical coolant are given. Advantages and problems of reactors with supercritical-pressure water are listed.

  15. Status of Chinese NPP Industry and Nuclear Fuel Cycle Policy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R. X. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, W. I.; Kim, S. K. [Univ. of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    China still extended their experiences to both domestic and overseas so far. Chinese State Council approved its 'Medium and Long-term Nuclear Power Development Plan' in November 2007, indicating further definition for nuclear energy as indispensable energy option and future self-reliance development of nuclear industry. China intends to become self-sufficient not only in NPPs capacity, but also in the fuel production for all those plants. There are currently 17 NPPs in operation, and 28 NPPs under construction. However, domestic uranium mining supplying is currently less than a quarter of nuclear fuel demands. This paper investigated and summarized the updated status of NPP industry in China and Nuclear Fuel Cycle(NFC) policy. There still remain a number of technical innovation and comprehensive challenges for this nuclear developing country in the long-term, but its large ambitions and dramatic improvements toward future should not be ignored. As shown in this paper, the most suitable approach for China to achieve both environmentally-friendly power supplying and increasing energy demands meeting simultaneously must be considered. Nuclear energy now was recognized as the most potential and optimal way of energy supply system. In addition, to accommodate such a high-speed NPP construction in China, it should also focus on when and how spent nuclear fuel should be reprocessed. Finally, the nuclear back-end fuel cycle policy should be established, taking into accounts of all costs, uranium resource security, spent fuel management, proliferation resistance and environmental impact.

  16. National Policy on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Soedyartomo, S.

    1996-01-01

    National policy on nuclear fuel cycle is aimed at attaining the expected condition, i.e. being able to support optimality the national energy policy and other related Government policies taking into account current domestic nuclear fuel cycle condition and the trend of international nuclear fuel cycle development, the national strength, weakness, thread and opportunity in the field of energy. This policy has to be followed by the strategy to accomplish covering the optimization of domestic efforts, cooperation with other countries, and or purchasing licences. These policy and strategy have to be broken down into various nuclear fuel cycle programmes covering basically assesment of the whole cycle, performing research and development of the whole cycle without enrichment and reprocessing being able for weapon, as well as programmes for industrialization of the fuel cycle stepwisery commencing with the middle part of the cycle and ending with the edge of the back-end of the cycle

  17. Opportunities and challenges for emerging nuclear power states

    International Nuclear Information System (INIS)

    Nkong-Njock, V.; Facer, R.I.; Boussaha, A.

    2009-01-01

    ) resources including financial and human, (iv) site selection and transport of radioactive materials and (vi) fuel cycle and waste management including nuclear waste storage and disposal. The proliferation risks associated with the nuclear fuel cycle are issues of concern requiring that nuclear power facilities are operated in an open and transparent manner. But above all that, the main critical and challenging issues in introducing nuclear power in a State is to ensure and maintain the necessary trust and confidence on the nuclear power programme. In this connection and in line with its mandate, the IAEA is devoting increased attention to its special role in advancing nuclear energy and safety around the globe, thus ensuring that Member States use nuclear energy efficiently, safely, securely and with minimal proliferation risk. The IAEA supports the safe and peaceful use of nuclear power by providing standards, guidance, review and assessment, inspections and assistance related to (i) Technology, (ii) Safety and security and (iii) Safeguards. (Author)

  18. Present state and prospect of nuclear power generation

    International Nuclear Information System (INIS)

    Fukushima, Akira

    1980-01-01

    Energy resources are scarce in Japan, therefore Japan depends heavily on imported petroleum. However, the international situation of petroleum became more unstable recently, and the promotion of the development and utilization of nuclear power generation was agreed upon in the summit meeting and the IEA. In order to achieve the stable growth of economy and improve the national welfare in Japan, it is urgent subject to accelerate the development of nuclear power generation. Japan depends the nuclear fuel also on import, but the stable supply is assured by the contract of long term purchase. It is not necessary to replace nuclear fuel usually for three years, and the transport and storage of nuclear fuel are easy because the quantity is not very large. By establishing the independent nuclear fuel cycle in Japan, it is possible to give the character similar to domestically produced energy to nuclear fuel. Moreover, uranium resources can be effectively utilized by the development of nuclear reactors of new types, such as FBRs. The cost of generating 1 kWh of electricity was about 8 yen in case of nuclear power and 15 yen in petroleum thermal power as of January, 1980. 21 nuclear power plants of about 15 million kW capacity are in operation in Japan, and about 30 million kW will be installed by 1985. The measures to promote the development of nuclear power generation are discussed. (Kako, I.)

  19. Viewpoint of utilities regarding fuel management of nuclear power plants

    International Nuclear Information System (INIS)

    Held, C.; Moraw, G.; Schneeberger, M.; Szeless, A.

    1977-01-01

    The engagement of utilities in nuclear power requires them to engage in an increasing amount of fuel management activities in order to carry out all the tasks involved. Essentially, these activities involve two main areas: The procurement of all steps of the fuel cycle from the head to the back end; and in-core fuel management. A general survey of the different steps of the nuclear fuel cycle is presented together with the related activities and responsibilities which have to be borne by the utilities. Today's increasing utility involvement in the nuclear fuel management is shown, as well as future fuel management trends. The fuel management activities of the utilities are analysed with respect to organizational, technical, safeguarding, and financial aspects. The active participation of the utilities in fuel management helps to achieve high availability and flexibility of the nuclear power plant during its whole life as well as safe waste isolation. This can be ensured by continuous optimization of all fuel management aspects of the power plant or, on a larger scale, of a power plant system, i.e. activities by utilities to minimize fuel-cycle effects on the environment, which include optimization of fuel behaviour, and radiation exposure to the public and personnel; and technical and economic evaluations by utilities of out- and in-core fuel management. (author)

  20. Thermodynamics of nuclear power systems

    International Nuclear Information System (INIS)

    Anno, J.

    1983-01-01

    The conversion of nuclear energy to useful work follows essentially the same course as the conversion of thermal energy from fossil fuel to work. The thermal energy released in the reactor core is first transferred to the primary coolant which then generally transfers its heat to a secondary fluid. The secondary fluid serves as the working fluid in a heat engine. In this chapter the authors briefly examine the thermodynamic principles governing the operation of such engines, the major thermodynamic cycles used, and their application to nuclear power plants

  1. Study on in-core fuel management for CNP1500 nuclear power plant

    International Nuclear Information System (INIS)

    Li Dongsheng

    2005-10-01

    CNP1500 is a four-loop PWR nuclear power plant with light water as moderator and coolant. The reactor core is composed of 205 AFA-3GXL fuel assemblies. The active core height at cold is 426.4 cm and equivalent diameter is 347.0 cm. The reactor thermal output is 4250 MW, and average linear power density is 179.5 W/cm. The cycle length of equilibrium cycle core is 470 equivalent full power days. For all cycles, the moderator temperature coefficients at all conditions are negative values, the nuclear enthalpy rise factors F ΔH at hot full power, all control rods out and equilibrium xenon are less than the limit value, the maximum discharge assembly burnup is less 55000 MW·d/tU, and the shutdown margin values at the end of life meet design criteria. The low-leakage core loading reduces radiation damage on pressure vessel and is beneficial to prolong use lifetime of it. The in-core fuel management design scheme and main calculation results for CNP1500 nuclear power plant are presented. (author)

  2. Nuclear power newsletter Vol. 2, no. 2

    International Nuclear Information System (INIS)

    2005-06-01

    The main topics in the newsletter are: International Ministerial Conference 'Nuclear Power for the 21st Century 'NPP operating performance and life cycle management; improving human performance quality and technical infrastructure; and technology development and applications for advanced reactors

  3. A feasibility study on the longer cycle operation of Yonggwang nuclear power plants 3 and 4 (3 rd quarter report)

    Energy Technology Data Exchange (ETDEWEB)

    Zee Sung Kyun; Song, Jae Woong; Ha, Young Joon; Kim, Kyu Tae [Korea Advanced Institute of Science and Technolgoy, Taejon (Korea, Republic of)

    1996-04-01

    In this report, described are results of the feasibility study on applying for the 18-month cycle in Korean Standard Nuclear Power Plants (KSNPs). This report contains results of safety and economic evaluations, radiation source analysis, an effect on changing the calibration period for each component of NSSS, and review on the related regulating codes. 12 refs., 34 tabs., 28 figs. (author)

  4. Topfuel '95: Fuel for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In early 1995, 425 nuclear power stations with an installed capacity of 360 263 MW were in operation in 30 countries of the world, and a total of 60 units with a capacity of 53 580 MWe were being cnstructed in 18 countries. The supply of nuclear fuels to these nuclear power stations was the central issue of the Topfuel '95 - Topical Meeting on Nuclear Fuel. More than 350 experts from 23 countries had been invited to Wuerzburg by the Kerntechnische Gesellschaft (KTG) and the European Nuclear Society (ENS). The conference was accompanied by an exhibition at which twelve inernational fuel cycle enterprises presented their products, processes, and problem solutions. The poster session in the hall of the Cogress Center Wuerzburg exhibited 42 contributions which are be discussed in the second part of the conference report. (orig./UA) [de

  5. Critical review of the first-law efficiency in different power combined cycle architectures

    International Nuclear Information System (INIS)

    Iglesias Garcia, Steven; Ferreiro Garcia, Ramon; Carbia Carril, Jose; Iglesias Garcia, Denis

    2017-01-01

    Highlights: • The adiabatic expansion based TC can improve the energy efficiency of CCs. • A revolutionary TC can be a starting point to develop high-performance CCs. • A theoretical thermal efficiency of 83.7% was reached in a Nuclear Power Plant using a TC as bottoming cycle. - Abstract: This critical review explores the potential of an innovative trilateral thermodynamic cycle used to transform low-grade heat into mechanical work and compares its performance with relevant traditional thermodynamic cycles in combined cycles. The aim of this work is to show that combined cycles use traditional low efficiency power cycles in their bottoming cycle, and to evaluate theoretically the implementation of alternative power bottoming cycles. Different types of combined cycles have been reviewed, highlighting their relevant characteristics. The efficiencies of power plants using combined cycles are reviewed and compared. The relevance of researching thermodynamic cycles for combined cycle applications is that a vast amount of heat energy is available at negligible cost in the bottoming cycle of a combined cycle, with the drawback that existing thermal cycles cannot make efficient use of such available low temperature heat due to their low efficiency. The first-law efficiency is used as a parameter to compare and suggest improvements in the combined cycles (CCs) reviewed. The analysis shows that trilateral cycles using closed processes are by far the most efficient published thermal cycles for combined cycles to transform low-grade heat into mechanical work. An innovative trilateral bottoming cycle is proposed to show that the application of non-traditional power cycles can increase significantly the first-law efficiency of CCs. The highest first-law efficiencies achieved are: 85.55% in a CC using LNG cool, 73.82% for a transport vehicle CC, 74.40% in a marine CC, 83.07% in a CC for nuclear power plants, 73.82% in a CC using Brayton and Rankine cycles, 78.31% in a CC

  6. Results of an analysis of in-core measurements during the first core cycle of the Greifswald nuclear power plant, unit 3

    International Nuclear Information System (INIS)

    Gehre, G.

    1982-01-01

    First results of an analysis of flux and temperature values obtained from the in-core system in the third unit of the Greifswald nuclear power plant during the first core cycle are presented. The analysis has been performed with the aid of the computer code INCA. Possibilities and limits of this code are shown. (author)

  7. Power generation from a 7700C heat source by means of a main steam cycle, a topping closed gas cycle and a ammonia bottoming cycle

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1981-03-01

    For power generation, steam cycles make an efficient use of medium temperature heat sources. They can be adapted to dry cooling, higher power ratings and output increase in winter by addition of an ammonia bottoming cycle. Active development is carried out in this field by 'Electricite de France'. As far as heat sources at higher temperatures are concerned, particularly related to coal-fired or nuclear power plants, a more efficient way of converting energy is at first to expand a hot working fluid through a gas turbine. It is shown in this paper that a satisfactory result, for heat sources of about 770 0 C, is obtained with a topping closed gas cycle of moderate power rating, rejecting its waste heat into the main steam cycle. Attention has to be paid to this gas cycle waste heat recovery and to the coupling of the gas and steam cycles. This concept drastically reduces the importance of new technology components. The use and the significance of an ammonia bottoming cycle in this case are investigated

  8. Study of greenhouse gases emission factor for nuclear power chain of China

    International Nuclear Information System (INIS)

    Ma Zhonghai; Pan Ziqiang; Xie Jianlun; Xiu Binglin

    2001-01-01

    The Greenhouse Gases Emission Factor (GGEF) for nuclear power chain of China is calculated based on Life Cycle Analysis method and the definition of full energy chain. There is no greenhouse gases released directly from nuclear power plant. The greenhouse gases emission from nuclear power plant is mainly from coal-fired electricity supply to nuclear power plant for its normal operation and the production of construction materials those are used in the nuclear power plant. The total GGEF of nuclear power chain in China is 13.71 g-co 2 /kWh. It is necessary to regulate un-rational power source mix and to use the energy sources in rational way for reducing the greenhouse gas effect. Nuclear power for electricity generation is one of effective ways to reduce greenhouse gases emission and retard the greenhouse effect

  9. Nuclear power's effects on electric rate making

    International Nuclear Information System (INIS)

    Smith, D.S.; Lancaster, A.A.

    1978-01-01

    Government and the electric utility industry are re-evaluating nuclear power's contribution to the total U.S. energy supplies. This article addresses how the recently increased nuclear plant construction and operation costs are translated into the prices that consumers pay for electricity. The electric rates that consumers pay must reflect the costs of producing electricity, as well as the costs of transmission, distribution, metering, and billing. The use of nuclear power for electric production is anticipated to grow rapidly so as to meet a larger portion of our country's electricity needs through the end of the century; so nuclear power costs are expected to be an even larger portion of the total electricity price. There are certain rate-making issues that are actively being discussed in public forums and before state and Federal regulatory bodies. These issues are not unique to nuclear power, but take on added significance when nuclear power is used by utilities to produce electricity because of the technology required and because of the type, timing, and magnitude of the costs involved. These are: (1) inclusion of construction work in progress in the rate base; (2) fuel adjustment clauses and treatment of nuclear fuel cycle costs; (3) treatment of certain taxes under the rate-making method called normalization or deferral accounting (sometimes referred to as ''phantom taxes''); and (4) rate treatment for particular nuclear expense items reflecting costs of delays, plant cancellations, and operational slowdowns

  10. Nuclear power and public opinion

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The diversity of factors involved in nuclear power development and the complexity of public attitudes towards this source of energy have raised the nuclear debate to a topic of national significance in all the OECD countries with nuclear programmes and even in some countries which have not embarked on the nuclear course. This study examines the different experiences of seventeen member countries and underlines basic approaches and practices aimed at winning greater public acceptance for nuclear power. The first part of the study is a country-by-country presentation of public acceptance activities and the role of the various public or private bodies involved. There is also a description of the background energy situation and the place of nuclear power, the evolution of the nuclear debate and a review of present public and political attitudes to nuclear energy. In the second part, some of the notable factors which determine public attitudes to, and perception of, nuclear energy have been assembled. The study points, in particular, to a number of general principles which require continuous implementation, not least because they contribute to placing nuclear energy in its proper context for the public. Vigorous government leadership in making energy choices, long term efforts in energy education, and open information policies can go a long way towards resolving many doubts about nuclear energy in the public mind. But, perhaps, above all, it is the continuing demonstration of the safe and efficient industrial operation of plants in the nuclear fuel cycle which will have the strongest influence on public opinion. In addition to these basic principles, the study calls attention to some of the most successful means of improving communication between the authorities and the public, notably at the local level. The contribution to the decision-making process of public participation is also evaluated in the light of recent national experiences.

  11. Nuclear power and public opinion

    International Nuclear Information System (INIS)

    1984-01-01

    The diversity of factors involved in nuclear power development and the complexity of public attitudes towards this source of energy have raised the nuclear debate to a topic of national significance in all the OECD countries with nuclear programmes and even in some countries which have not embarked on the nuclear course. This study examines the different experiences of seventeen member countries and underlines basic approaches and practices aimed at winning greater public acceptance for nuclear power. The first part of the study is a country-by-country presentation of public acceptance activities and the role of the various public or private bodies involved. There is also a description of the background energy situation and the place of nuclear power, the evolution of the nuclear debate and a review of present public and political attitudes to nuclear energy. In the second part, some of the notable factors which determine public attitudes to, and perception of, nuclear energy have been assembled. The study points, in particular, to a number of general principles which require continuous implementation, not least because they contribute to placing nuclear energy in its proper context for the public. Vigorous government leadership in making energy choices, long term efforts in energy education, and open information policies can go a long way towards resolving many doubts about nuclear energy in the public mind. But, perhaps, above all, it is the continuing demonstration of the safe and efficient industrial operation of plants in the nuclear fuel cycle which will have the strongest influence on public opinion. In addition to these basic principles, the study calls attention to some of the most successful means of improving communication between the authorities and the public, notably at the local level. The contribution to the decision-making process of public participation is also evaluated in the light of recent national experiences

  12. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    International Nuclear Information System (INIS)

    1992-06-01

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant

  13. Using neuro-fuzzy based method to develop nuclear turbine cycle model

    International Nuclear Information System (INIS)

    Chan Yeakuang; Chang Chinjang

    2009-01-01

    The purpose of this study is to describe a hybrid soft-computing modeling technique used to develop the steam turbine cycle model for nuclear power plants. The technique uses neuro-fuzzy model to predict the generator output. Firstly, the plant past three fuel cycles operating data above 95% load were collected and validated as the baseline performance data set. Then the signal errors for new operating data were detected by comparison with the baseline data set and their allowable range of variations. Finally, the most important parameters were selected as an input of the neuro-fuzzy based steam turbine cycle model. After training and testing with key parameters (i.e. throttle pressure, condenser backpressure, feedwater flow rate, and final feedwater temperature), the proposed model can be used to predict the generator output. The analysis results show this neuro-fuzzy based turbine cycle model can be used to predict the generator output with a good agreement. Moreover, the achievement of this study provides an alternative approach in thermal performance evaluation for nuclear power plants. (author)

  14. The role of accelerators in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1990-01-01

    The use of neutrons produced by the medium energy proton accelerator (1 GeV--3 GeV) has considerable potential in reconstructing the nuclear fuel cycle. About 1.5 ∼ 2.5 ton of fissile material can be produced annually by injecting a 450 MW proton beam directly into fertile materials. A source of neutrons, produced by a proton beam, to supply subcritical reactors could alleviate many of the safety problems associated with critical assemblies, such as positive reactivity coefficients due to coolant voiding. The transient power of the target can be swiftly controlled by controlling the power of the proton beam. Also, the use of a proton beam would allow more flexibility in the choice of fuel and structural materials which otherwise might reduce the reactivity of reactors. This paper discusses the rate of accelerators in the transmutation of radioactive wastes of the nuclear fuel cycles. 34 refs., 17 figs., 9 tabs

  15. Conceptual study of nuclear power generation facilities life-cycle support versatile engineering database. Procedure of development and consideration of fundamental functions

    International Nuclear Information System (INIS)

    Endo, Hidetoshi

    2009-05-01

    International Atomic Energy Agency (IAEA) stands out the activity of the knowledge management of nuclear safety and the movement to introduce the idea of the life cycle management into the quality control of maintenance of the nuclear power generation facilities to assure the knowledge preservation and to succeed the technology of facilities. Japan Atomic Energy Agency (JAEA) also has such activities as the knowledge preservation of research and development, and related information. The facilities' performance reliability can be easily checked with the technology of data processing in the general industry and the results of the knowledge repository, transmitting technology and knowledge management by referring to the information and knowledge if the information and knowledge at each step of the life-cycle of facilities can be built. This report shows the strategy of the construction of the engineering database to support the life cycle of facilities and the basic function of the management system. (author)

  16. Taipower's philosophy and practices for management of its nuclear power development program

    International Nuclear Information System (INIS)

    Chu, D.S.L.

    1985-01-01

    Taipower has been considered successful in nuclear power development and utilization in recent years. This paper presents Taipower's philosophy and practices in managing its nuclear power program with respect to management participation, personnel training, planning, design and construction, operation and maintenance, and the fuel cycle

  17. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  18. Energy-analysis of the total nuclear energy cycle based on light water reactors

    International Nuclear Information System (INIS)

    Kistemaker, J.

    1975-01-01

    The energy economy of the total nuclear energy cycle is investigated. Attention is paid to the importance of fossil fuel saving by using nuclear energy. The energy analysis is based on the construction and operation of power plants with an electric output of 1000MWe. Light water moderated reactors with a 2.7 - 3.2% enriched uranium core are considered. Additionally, the whole fuel cycle including ore winning and refining, enrichment and fuel element manufacturing and reprocessing has been taken into account. Neither radioactive waste storage problems nor safety problems related to the nuclear energy cycle and safeguarding have been dealt with, as exhaustive treatments can be found elswhere

  19. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  20. Climate Change and Nuclear Power 2015

    International Nuclear Information System (INIS)

    2015-09-01

    Climate change is one of the most important environmental challenges facing the world today. Nuclear power can make a significant contribution to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for growing populations and socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. Nuclear power fosters energy supply security and industrial development by providing electricity reliably at stable and foreseeable prices. The accident at the Fukushima Daiichi nuclear power plant in March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. Yet, more than four years after the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The IAEA provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report provides a comprehensive review of the potential role of nuclear power in mitigating global climate change and its contribution to other economic, energy and environmental challenges. The report also examines broader issues relevant to the climate change–nuclear energy nexus, such as costs, investments, financing, safety, waste management and non-proliferation. Recent developments in electricity generation and distribution technologies and their impacts on nuclear power are also presented. This edition has been

  1. Climate Change and Nuclear Power 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-10-15

    Climate change is the foremost global environmental issue today. Nuclear power is one of the low carbon technologies that can contribute to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for growing populations and socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. Nuclear power fosters energy supply security and industrial development by providing electricity reliably at stable and foreseeable prices. The accident at the Fukushima Daiichi nuclear power plant in March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. It was a wake-up call for everyone involved in nuclear power — a reminder that safety can never be taken for granted. Yet, more than three years after the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The IAEA provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report provides a comprehensive review of the potential role of nuclear power in mitigating global climate change and its contribution to other development and environmental challenges. The report also examines broader issues relevant to the climate change–nuclear energy nexus, such as costs, investments, financing, safety, waste management and non-proliferation. Recent developments in resource supply, changes in

  2. Climate Change and Nuclear Power 2016

    International Nuclear Information System (INIS)

    2016-09-01

    Climate change is one of the most important environmental challenges facing the world today. Nuclear power can make a significant contribution to reducing greenhouse gas (GHG) emissions while delivering energy in the increasingly large quantities needed for the socioeconomic well-being of a growing population. Nuclear power plants produce virtually no GHG emissions or air pollutants during their operation and only very low emissions over their entire life cycle. Nuclear power fosters energy supply security and industrial development by providing electricity reliably and at stable and predictable prices. The accident at the Fukushima Daiichi nuclear power plant in March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. Yet, more than five years after the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The IAEA provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This publication provides a comprehensive review of the potential role of nuclear power in mitigating global climate change and its contribution to other economic, environmental and social sustainability challenges. The report also examines broader issues relevant to the climate change–nuclear energy nexus, such as costs, financing, safety, waste management and non-proliferation. Recent and future trends in the increasing share of renewables in overall electricity generation and its effect on nuclear power are also presented

  3. Climate Change and Nuclear Power 2014

    International Nuclear Information System (INIS)

    2014-10-01

    Climate change is the foremost global environmental issue today. Nuclear power is one of the low carbon technologies that can contribute to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for growing populations and socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. Nuclear power fosters energy supply security and industrial development by providing electricity reliably at stable and foreseeable prices. The accident at the Fukushima Daiichi nuclear power plant in March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. It was a wake-up call for everyone involved in nuclear power — a reminder that safety can never be taken for granted. Yet, more than three years after the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The IAEA provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report provides a comprehensive review of the potential role of nuclear power in mitigating global climate change and its contribution to other development and environmental challenges. The report also examines broader issues relevant to the climate change–nuclear energy nexus, such as costs, investments, financing, safety, waste management and non-proliferation. Recent developments in resource supply, changes in

  4. Overall quality assurance program requirements for nuclear power plants

    International Nuclear Information System (INIS)

    1992-09-01

    This standard contains the requirements for the owner's overall quality assurance program for a nuclear power plant. This program encompasses all phases of a nuclear power plant life cycle, including site evaluation, design, procurement, manufacturing, construction and installation, commissioning, operation, and decommissioning. It covers the activities associated with specifying, directing, and administering the work to be done during these phases, and the evaluation and integrated of the activities and programs of participants

  5. Comparative of fuel cycle cost for light water nuclear power plants

    International Nuclear Information System (INIS)

    Kocic, A.; Dimitrijevic, Z.

    1978-01-01

    Starting from ost general fuel cycle scheme for light water reactors this article deals with conceptual differences of BWR, PWR and WWER as well as with the influence of certain phases of fuel cycle on economic parameters of an equivalent 1000 MWe reactor using a computer program CENA /1/ and typical parameters of each reactor type. An analysis of two particular power plants 628 MWe and 440 MWe WWER by means of the same program is given in the second part of this paper taking into account the differences of in-core fuel management. This second approach is especially interesting for the economy of the power plant itself in the period of planning. (author)

  6. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  7. Status of helium-cooled nuclear power systems. [Development potential

    Energy Technology Data Exchange (ETDEWEB)

    Melese-d' Hospital, G.; Simnad, M

    1977-09-01

    Helium-cooled nuclear power systems offer a great potential for electricity generation when their long-term economic, environmental, conservation and energy self-sufficiency features are examined. The high-temperature gas-cooled reactor (HTGR) has the unique capability of providing high-temperature steam for electric power and process heat uses and/or high-temperature heat for endothermic chemical reactions. A variation of the standard steam cycle HTGR is one in which the helium coolant flows directly from the core to one or more closed cycle gas turbines. The effective use of nuclear fuel resources for electric power and nuclear process heat will be greatly enhanced by the gas-cooled fast breeder reactor (GCFR) currently being developed. A GCFR using thorium in the radial blanket could generate sufficient U-233 to supply the fuel for three HTGRs, or enough plutonium from a depleted uranium blanket to fuel a breeder economy expanding at about 10% per year. The feasibility of utilizing helium to cool a fusion reactor is also discussed. The status of helium-cooled nuclear energy systems is summarized as a basis for assessing their prospects. 50 references.

  8. Considerable hazards to be expected by nuclear power

    International Nuclear Information System (INIS)

    Mueller, H.

    1980-01-01

    The author examines the military aspects of Pu production. As reactor-Pu is applicable for nuclear weapons the civil utilization of nuclear power provides plutonium concentrations apt for military use for the goverments when closing the fuel cycle by commercial fuel reprocessing. Whether the last threshold shall be trespassed shall depend on how the political intentions of the authorities cooperate with the developments in the international area. After having illustrated the effects on the most important formations of the conflict the author concludes that a radical - utopian - solution alone can grant safety: If the whole fuel cycle is internationalized and controlled by an international authority supported by power of police. In fact, it must be expected that diplomatic and institutional solutions shall have a slower development than political risks. (HSCH) [de

  9. The cycle of the nuclear fuel used in EDF power plants

    International Nuclear Information System (INIS)

    2011-11-01

    This document briefly indicates the different stages of the nuclear fuel cycle, from the purchase of natural uranium to waste storage. It also indicates the main responsibilities of EDF regarding this fuel cycle (to secure supplies, to organise material transportation, to process and store used fuels and associated wastes). It presents the different associated processes: uranium extraction, purification and concentration, conversion or fluoridation, enrichment. It briefly describes the fuel assembly fabrication, and indicates the main uranium producers in the world. Other addressed steps are: the transportation of fuel assembly, fuel loading, and spent fuel management, the processing of spent fuel and radioactive wastes

  10. World situation of atomic energy and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Szili, G.

    1978-01-01

    At the International Conference organized by the IAEA in May 1976, several sections dealt with problems of the production of atomic energy and of the nuclear fuel cycle. However, the whole spectrum of these problems was discussed including problems of economic policy, politics and ethical problems, too. Reports were presented on trends of the development of atomic energy in developed and developing countries. Besides the systems of nuclear power plants and the trends of their development, the Conference attached prominent importance to the supply of nuclear fuels and to the fuel cycle, respectively. Owing to important factors, the reprocessing of the spent nuclear fuel was emphasized. The problem area of the treatment of radioactive wastes, the protection of workers in immediate contact and of environment against radiations, the possibilities of ensuring nuclear safety, the degrees of hazards and the methods of protection of fast breeder reactors and up-to-date equipments were discussed. In contrast to earlier conferences the complex problem of the correlation of atomic energy to public opinion played an important role, too. (P.J.)

  11. Dynamic analysis of Korean nuclear fuel cycle with fast reactor systems

    International Nuclear Information System (INIS)

    Jeong, Chang Joon

    2004-12-01

    The Korean nuclear fuel cycle scenario was analyzed by the dynamic analysis method, including Pressurized Water Reactor (PWR), Canadian Deuterium Uranium (CANDU) and fast reactor systems. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 1%. After setting up the once-through fuel cycle model, the Korea Advanced Liquid Metal Reactor (KALIMER) scenario was modeled to investigate the fuel cycle parameters. For the analysis of the fast reactor fuel cycle, both KAILMER-150 and KALIMER-600 reactors were considered. In this analysis, the spent fuel inventory as well as the amount of plutonium, Minor Actinides (MA) and Fission Products (FP) of the recycling fuel cycle was estimated and compared to that of the once-through fuel cycle. Results of the once-through fuel cycle calculation showed that the demand grows up to 64 GWe and total amount of spent fuel would be ∼102 kt in 2100. If the KALIMER scenario is implemented, the total spent fuel inventory can be reduced by ∼80%. However it was found that the KALIMER scenario does not contribute to reduce the amount of MA and FP, which is important when designing a repository. For the further destruction of MA, an actinide burner can be considered in the future nuclear fuel cycle

  12. Nuclear power programme: development and prospects

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    1997-01-01

    The relevance of nuclear power in meeting the short and long term energy needs of India was recognised right at the beginning of the atomic energy programme. From the very beginning, as a long term strategy, the nuclear power programme, formulated by Dr Homi Jehangir Bhabha, embarked on a three stage process linking the fuel cycles of Pressurised Heavy Water Reactor (PHWR) and Fast Breeder Reactor (FBR), and was planned for judicious utilisation of the country's limited uranium ore (78,000 tonne) but vast thorium resources (>360,000 tonne). The emphasis of the programme was on self-reliance and thorium utilisation as a long term objective. India selected Pressurised Heavy Water Reactor (PHWR) because of several inherent advantages. (author)

  13. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing

  14. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing.

  15. Environmental impacts of coal and nuclear power plants

    International Nuclear Information System (INIS)

    Carvalho, W.B.D. de; Souza, J.A.M. de

    1981-01-01

    The present work analyses the environmental impacts of coal and nuclear power plants. A comparison is made on a common basis considering the various activities involving the complete fuel cycle for both cases. (Author) [pt

  16. Needs of countries with limited nuclear power programmes

    International Nuclear Information System (INIS)

    1978-01-01

    The main paper in this working group comes from Austria; it deals with the assurance of long-term supply of nuclear technology and nuclear fuel. Starting from an analysis of the structure of nuclear power programs of small industrialized countries, the paper discusses how supply of services can be assured in these countries during all steps of the fuel cycle. Detailed data and diagrams outline possible solutions under the aspect of production capacities and cost

  17. Economic evaluation of bids for nuclear power plants

    International Nuclear Information System (INIS)

    1976-01-01

    The purpose of the guidebook is to assist an organisation responsible for a nuclear power project in evaluating and establishing an economic order of merit among competing bids. An approximate overall time schedule for a first nuclear power plant project is provided. A schematic outline of technical bid evaluation is given. The basic procedure of economic bid evaluation is outlined, e.g. evaluation of the present worth of all cost items of plant capital investment, of the nuclear cycle, of O and M costs (operation and maintenance costs), and of economic corrections. All these cost items are evaluated for the economic life of the plant and corrected for escalation where applicable

  18. Transition Towards a Sustainable Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    McCarthy, K.; Romanello, V.; Schwenk-Ferrero, A.; Vezzoni, B.; Gabrielli, F.; Maschek, W.; Rineiski, A.; Salvatores, M.

    2013-01-01

    . In this respect, it is considered that the potential future scarcity of uranium resources is not at all unreasonable, but it is a very serious perspective for the regions of the world where the energy demand growth is and will very probably continue to be significant with the use of nuclear energy to meet at least partially that demand. In fact, despite the seriousness of the recent Fukushima Daiichi accident, only a few countries (essentially in the OECD region) have reacted with an abrupt decision to phase out nuclear power. Most countries, where the energy demand growth corresponds to an urgent need to achieve widely improved living standards, have launched or completed extensive reviews of their nuclear programmes, but are also continuing with ongoing construction projects. The results of this study are very much related to the hypotheses made, in particular in terms of energy demand growth. However, some general trends seem to be of a general value and can motivate further studies. It was confirmed in this investigation that a rapid development of fast reactors, especially in areas with expanding economies and strong energy demand growth, is essential for nuclear energy sustainability, for saving natural uranium resources worldwide and for reducing high-level waste generation requiring disposal. A key parameter is the fast reactor doubling time which has to be chosen appropriately in order to meet energy requirements. In the case of an open cycle, a potential increase in pressure on the uranium market could be expected towards the end of the current century. Moreover, the increase in mining needs of unequally distributed resources can be a factor of uncertainty with an impact potentially even more important of uranium cost considerations. It would, however, be a very significant challenge to develop suitable fuel cycle infrastructure especially in the world regions that presently have a limited number of (or no) nuclear power plants. In fact, the needed fuel

  19. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    Science.gov (United States)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  20. Present and future nuclear power financing schemes

    International Nuclear Information System (INIS)

    Diel, R.

    1977-01-01

    The financial requirement for nuclear power plants in the Federal Republic of Germany for the period up until 1985 was estimated to run up to some DM 100 billion already in the Nuclear Energy Study published by the Dresdner Bank in 1974. This figure is not changed in any way by the reduction the nuclear power program has suffered in the meantime, because the lower requirement for investment capital is more than offset by the price increases that have occurred meanwhile. A capital requirement in the order of DM 100 billion raises major problems for the power producing industry and the banks which, however, are not going to hamper the further expansion of nuclear power, because new financing schemes have been specially developed for the nuclear field. They include financing by leasing, the use of funds from real estate credit institutions for long term financing, borrowing of long term funds in the Euro market, and financing through subsidiaries of the utilities. The new financing schemes also apply to the large financial requirement associated with the nuclear fuel cycle, waste management in particular. In this sector the utilities agree to bear the economic risk of the companies implementing the respective projects. Accordingly, financing will not entail any major difficulties. Another area of great importance is export financing. The German-Brazilian nuclear agreement is a model of this instrument. (orig.) [de