WorldWideScience

Sample records for cycle modeling capabilities

  1. EASEWASTE-life cycle modeling capabilities for waste management technologies

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Christensen, Thomas Højlund; Hauschild, Michael Zwicky

    2010-01-01

    Background, Aims and Scope The management of municipal solid waste and the associated environmental impacts are subject of growing attention in industrialized countries. EU has recently strongly emphasized the role of LCA in its waste and resource strategies. The development of sustainable solid...... waste management systems applying a life-cycle perspective requires readily understandable tools for modelling the life cycle impacts of waste management systems. The aim of the paper is to demonstrate the structure, functionalities and LCA modelling capabilities of the PC-based life cycle oriented...... waste management model EASEWASTE, developed at the Technical University of Denmark specifically to meet the needs of the waste system developer with the objective to evaluate the environmental performance of the various elements of existing or proposed solid waste management systems. Materials...

  2. Capabilities For Modelling Of Conversion Processes In Life Cycle Assessment

    DEFF Research Database (Denmark)

    Damgaard, Anders; Zarrin, Bahram; Tonini, Davide

    considering how the biochemical parameters change through a process chain. A good example of this is bio-refinery processes where different residual biomass products are converted through different steps into the final energy product. Here it is necessary to know the stoichiometry of the different products...... little focus on the chemical composition of the functional flows, as flows in the models have mainly been tracked on a mass basis, as emphasis was the function of the product and not the chemical composition of said product. Conversely, in modelling of environmental technologies, such as wastewater...... varies considerably. To address this, EASETECH (Clavreul et al., 2014) was developed which integrates a matrix approach for the reference flow which contains the full chemical composition for different material fractions, and also the number of different material fractions present in the overall mass...

  3. The eSourcing Capability Model for Service Providers: Knowledge Manage-ment across the Sourcing Life-cycle

    OpenAIRE

    Laaksonen, Pekka

    2011-01-01

    Laaksonen, Pekka The eSourcing Capability Model for Service Providers: Knowledge Manage-ment across the Sourcing Life-cycle Jyväskylä: Jyväskylän yliopisto, 2011, 42 s. Tietojärjestelmätiede, kandidaatintutkielma Ohjaaja(t): Käkölä, Timo Tässä kandidaatintutkielmassa selvitettiin sitä, miten the eSourcing Capability Model for Service Providers-mallin käytännöt (practices) ovat liittyneet tietä-myksenhallinnan neljään prosessiin: tiedon luominen, varastointi/noutaminen, jakamine...

  4. Group Capability Model

    Science.gov (United States)

    Olejarski, Michael; Appleton, Amy; Deltorchio, Stephen

    2009-01-01

    The Group Capability Model (GCM) is a software tool that allows an organization, from first line management to senior executive, to monitor and track the health (capability) of various groups in performing their contractual obligations. GCM calculates a Group Capability Index (GCI) by comparing actual head counts, certifications, and/or skills within a group. The model can also be used to simulate the effects of employee usage, training, and attrition on the GCI. A universal tool and common method was required due to the high risk of losing skills necessary to complete the Space Shuttle Program and meet the needs of the Constellation Program. During this transition from one space vehicle to another, the uncertainty among the critical skilled workforce is high and attrition has the potential to be unmanageable. GCM allows managers to establish requirements for their group in the form of head counts, certification requirements, or skills requirements. GCM then calculates a Group Capability Index (GCI), where a score of 1 indicates that the group is at the appropriate level; anything less than 1 indicates a potential for improvement. This shows the health of a group, both currently and over time. GCM accepts as input head count, certification needs, critical needs, competency needs, and competency critical needs. In addition, team members are categorized by years of experience, percentage of contribution, ex-members and their skills, availability, function, and in-work requirements. Outputs are several reports, including actual vs. required head count, actual vs. required certificates, CGI change over time (by month), and more. The program stores historical data for summary and historical reporting, which is done via an Excel spreadsheet that is color-coded to show health statistics at a glance. GCM has provided the Shuttle Ground Processing team with a quantifiable, repeatable approach to assessing and managing the skills in their organization. They now have a common

  5. People Capability Maturity Model. SM.

    Science.gov (United States)

    1995-09-01

    tailored so it consumes less time and resources than a traditional software process assessment or CMU/SEI-95-MM-02 People Capability Maturity Model...improved reputation or customer loyalty. CMU/SEI-95-MM-02 People Capability Maturity Model ■ L5-17 Coaching Level 5: Optimizing Activity 1...Maturity Model CMU/SEI-95-MM-62 Carnegie-Mellon University Software Engineering Institute DTIC ELECTE OCT 2 7 1995 People Capability Maturity

  6. ARC System fuel cycle analysis capability, REBUS-2

    International Nuclear Information System (INIS)

    Hosteny, R.P.

    1978-10-01

    A detailed description is given of the ARC System fuel cycle modules FCI001, FCC001, FCC002, and FCC003 which form the fuel cycle analysis modules of the ARC System. These modules, in conjunction with certain other modules of the ARC System previously described in documents of this series, form the fuel cycle analysis system called REBUS-2. The physical model upon which the REBUS-2 fuel cycle modules are based and the calculational approach used in solving this model are discussed in detail. The REBUS-2 system either solves for the infinite time (i.e., equilibrium) operating conditions of a fuel recycle system under fixed fuel management conditions, or solves for the operating conditions during each of a series of explicitly specified (i.e., nonequilibrium) sequence of burn cycles. The code has the capability to adjust the fuel enrichment, the burn time, and the control poison requirements in order to satisfy user specified constraints on criticality, discharge fuel burnup, or to give the desired multiplication constant at some specified time during the reactor operation

  7. ARC System fuel cycle analysis capability, REBUS-2

    Energy Technology Data Exchange (ETDEWEB)

    Hosteny, R.P.

    1978-10-01

    A detailed description is given of the ARC System fuel cycle modules FCI001, FCC001, FCC002, and FCC003 which form the fuel cycle analysis modules of the ARC System. These modules, in conjunction with certain other modules of the ARC System previously described in documents of this series, form the fuel cycle analysis system called REBUS-2. The physical model upon which the REBUS-2 fuel cycle modules are based and the calculational approach used in solving this model are discussed in detail. The REBUS-2 system either solves for the infinite time (i.e., equilibrium) operating conditions of a fuel recycle system under fixed fuel management conditions, or solves for the operating conditions during each of a series of explicitly specified (i.e., nonequilibrium) sequence of burn cycles. The code has the capability to adjust the fuel enrichment, the burn time, and the control poison requirements in order to satisfy user specified constraints on criticality, discharge fuel burnup, or to give the desired multiplication constant at some specified time during the reactor operation.

  8. User's guide for the REBUS-3 fuel cycle analysis capability

    International Nuclear Information System (INIS)

    Toppel, B.J.

    1983-03-01

    REBUS-3 is a system of programs designed for the fuel-cycle analysis of fast reactors. This new capability is an extension and refinement of the REBUS-3 code system and complies with the standard code practices and interface dataset specifications of the Committee on Computer Code Coordination (CCCC). The new code is hence divorced from the earlier ARC System. In addition, the coding has been designed to enhance code exportability. Major new capabilities not available in the REBUS-2 code system include a search on burn cycle time to achieve a specified value for the multiplication constant at the end of the burn step; a general non-repetitive fuel-management capability including temporary out-of-core fuel storage, loading of fresh fuel, and subsequent retrieval and reloading of fuel; significantly expanded user input checking; expanded output edits; provision of prestored burnup chains to simplify user input; option of fixed-or free-field BCD input formats; and, choice of finite difference, nodal or spatial flux-synthesis neutronics in one-, two-, or three-dimensions

  9. Developing Asset Life Cycle Management capabilities through the implementation of Asset Life Cycle Plans – an Action Research project

    OpenAIRE

    Ruitenburg, Richard; Braaksma, Anne Johannes Jan

    2017-01-01

    Asset Life Cycle Management is a strategic approach to managing physical assets over their complete life cycle. However, the literature and the recent ISO 55,000 standard do not offer guidance as to how to develop such an approach. This paper investigates the main capabilities for Asset Life Cycle Management by means of a four year Action Research project implementing Asset Life Cycle Plans. Five main capabilities emerged: 1. strategic information use; 2. alignment of operations and strategy;...

  10. Towards a national cybersecurity capability development model

    CSIR Research Space (South Africa)

    Jacobs, Pierre C

    2017-06-01

    Full Text Available to be broken down into its components, a model serves as a blueprint to ensure that those building the capability considers all components, allows for cost estimation and facilitates the evaluation of trade-offs. One national cybersecurity capability...

  11. Geospatial Information System Capability Maturity Models

    Science.gov (United States)

    2017-06-01

    To explore how State departments of transportation (DOTs) evaluate geospatial tool applications and services within their own agencies, particularly their experiences using capability maturity models (CMMs) such as the Urban and Regional Information ...

  12. Developing Asset Life Cycle Management capabilities through the implementation of Asset Life Cycle Plans – an Action Research project

    NARCIS (Netherlands)

    Ruitenburg, Richard; Braaksma, Anne Johannes Jan

    2017-01-01

    Asset Life Cycle Management is a strategic approach to managing physical assets over their complete life cycle. However, the literature and the recent ISO 55,000 standard do not offer guidance as to how to develop such an approach. This paper investigates the main capabilities for Asset Life Cycle

  13. Enterprise and system of systems capability development life-cycle processes.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    This report and set of appendices are a collection of memoranda originally drafted circa 2007-2009 for the purpose of describing and detailing a models-based systems engineering approach for satisfying enterprise and system-of-systems life cycle process requirements. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. The main thrust of the material presents a rational exposâe of a structured enterprise development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of standard systems engineering processes. While the approach described invokes application of the Department of Defense Architectural Framework (DoDAF), it is suitable for use with other architectural description frameworks.

  14. Capability maturity models for offshore organisational management.

    Science.gov (United States)

    Strutt, J E; Sharp, J V; Terry, E; Miles, R

    2006-12-01

    The goal setting regime imposed by the UK safety regulator has important implications for an organisation's ability to manage health and safety related risks. Existing approaches to safety assurance based on risk analysis and formal safety assessments are increasingly considered unlikely to create the step change improvement in safety to which the offshore industry aspires and alternative approaches are being considered. One approach, which addresses the important issue of organisational behaviour and which can be applied at a very early stage of design, is the capability maturity model (CMM). The paper describes the development of a design safety capability maturity model, outlining the key processes considered necessary to safety achievement, definition of maturity levels and scoring methods. The paper discusses how CMM is related to regulatory mechanisms and risk based decision making together with the potential of CMM to environmental risk management.

  15. Experimental modeling of eddy current inspection capabilities

    International Nuclear Information System (INIS)

    Junker, W.R.; Clark, W.G.

    1984-01-01

    This chapter examines the experimental modeling of eddy current inspection capabilities based upon the use of liquid mercury samples designed to represent metal components containing discontinuities. A brief summary of past work with mercury modeling and a detailed discussion of recent experiments designed to further evaluate the technique are presented. The main disadvantages of the mercury modeling concept are that mercury is toxic and must be handled carefully, liquid mercury can only be used to represent nonferromagnetic materials, and wetting and meniscus problems can distort the effective size of artificial discontinuities. Artificial discontinuities placed in a liquid mercury sample can be used to represent discontinuities in solid metallic structures. Discontinuity size and type cannot be characterized from phase angle and signal amplitude data developed with a surface scanning, pancake-type eddy current probe. It is concluded that the mercury model approach can greatly enhance the overall understanding and applicability of eddy current inspection techniques

  16. To capabilities of heat engines with gas working medium in closed cycle

    International Nuclear Information System (INIS)

    Kotov, V.M.; Tikhomirov, L.N.; Rajkhanov, N.A.; Kotov, S.V.

    2003-01-01

    The effort gives analysis of performance of engines and heat pumps with closed cycles based on use of well practiced adiabatic and isobaric processes. Advantages of theses cycles are demonstrated as compared to Stirling engines, and capabilities of their application in piston machines. (author)

  17. Quadratic reactivity fuel cycle model

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1985-01-01

    For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper

  18. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  19. Integration of facility modeling capabilities for nuclear nonproliferation analysis

    International Nuclear Information System (INIS)

    Garcia, Humberto; Burr, Tom; Coles, Garill A.; Edmunds, Thomas A.; Garrett, Alfred; Gorensek, Maximilian; Hamm, Luther; Krebs, John; Kress, Reid L.; Lamberti, Vincent; Schoenwald, David; Tzanos, Constantine P.; Ward, Richard C.

    2012-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  20. Integration Of Facility Modeling Capabilities For Nuclear Nonproliferation Analysis

    International Nuclear Information System (INIS)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  1. Model-Based Military Scenario Management for Defence Capability

    National Research Council Canada - National Science Library

    Gori, Ronnie; Chen, Pin; Pozgay, Angela

    2004-01-01

    .... This paper describes initial work towards the development of an information model that links scenario and capability related information, and the results of capability analysis and experimentation...

  2. Numerical modeling capabilities to predict repository performance

    International Nuclear Information System (INIS)

    1979-09-01

    This report presents a summary of current numerical modeling capabilities that are applicable to the design and performance evaluation of underground repositories for the storage of nuclear waste. The report includes codes that are available in-house, within Golder Associates and Lawrence Livermore Laboratories; as well as those that are generally available within the industry and universities. The first listing of programs are in-house codes in the subject areas of hydrology, solute transport, thermal and mechanical stress analysis, and structural geology. The second listing of programs are divided by subject into the following categories: site selection, structural geology, mine structural design, mine ventilation, hydrology, and mine design/construction/operation. These programs are not specifically designed for use in the design and evaluation of an underground repository for nuclear waste; but several or most of them may be so used

  3. Conceptual Model of IT Infrastructure Capability and Its Empirical Justification

    Institute of Scientific and Technical Information of China (English)

    QI Xianfeng; LAN Boxiong; GUO Zhenwei

    2008-01-01

    Increasing importance has been attached to the value of information technology (IT) infrastructure in today's organizations. The development of efficacious IT infrastructure capability enhances business performance and brings sustainable competitive advantage. This study analyzed the IT infrastructure capability in a holistic way and then presented a concept model of IT capability. IT infrastructure capability was categorized into sharing capability, service capability, and flexibility. This study then empirically tested the model using a set of survey data collected from 145 firms. Three factors emerge from the factor analysis as IT flexibility, IT service capability, and IT sharing capability, which agree with those in the conceptual model built in this study.

  4. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    Science.gov (United States)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  5. Cross checking of the new capabilities of the fuel cycle scenario code TR-EVOL - 5229

    International Nuclear Information System (INIS)

    Merino-Rodriguez, I.; Garcia-Martinez, M.; Alvarez-Velarde, F.

    2015-01-01

    This work is intended to cross check the new capabilities of the fuel cycle scenario code TR-EVOL by means of comparing its results with those published in bibliography. This process has been divided in two stages as follows. The first stage is dedicated to check the improvements in the material management part of the fuel cycle code (the nuclear fuel mass balance estimation). The Spanish nuclear fuel cycle has been chosen as the model for the mass balance comparison given that the fuel mass per reactor is available in bibliography. The second stage has been focused in verifying the validity of the TR-EVOL economic module. The economic model verification has been carried out by making use of the ARCAS EU project and its economic assessments for advanced reactors and scenarios involving fast reactors and ADS. As conclusions, the main finding from the first stage includes that TR-EVOL provides a prediction of mass values quite accurate after the improvements and when using the proper parameters as input for the code. For the second stage, results were highly satisfactory since a difference smaller than 3% can be found regarding results published by the ARCAS project (NRG estimations). Furthermore, concerning the Decommissioning, Dismantling and Disposal cost, results are highly acceptable (7% difference in the comparison with the final disposal in a once-through scenario and around 11% in a final disposal with a reprocessing strategy) given the difficulties to find in bibliography detailed information about the costs of the final disposals and the significant uncertainties involved in design concepts and related unit costs

  6. Establishing an infrared measurement and modelling capability

    CSIR Research Space (South Africa)

    Willers, CJ

    2011-04-01

    Full Text Available The protection of own aircraft assets against infrared missile threats requires a deep understanding of the vulnerability of these assets with regard to specific threats and specific environments of operation. A key capability in the protection...

  7. Optimizing design of converters using power cycling lifetime models

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup; Munk-Nielsen, Stig

    2015-01-01

    Converter power cycling lifetime depends heavily on converter operation point. A lifetime model of a single power module switched mode power supply with wide input voltage range is shown. A lifetime model is created using a power loss model, a thermal model and a model for power cycling capability...... with a given mission profile. A method to improve the expected lifetime of the converter is presented, taking into account switching frequency, input voltage and transformer turns ratio....

  8. Modeling the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Dunzik-Gougar, Mary Lou; Juchau, Christopher A.

    2010-01-01

    A review of existing nuclear fuel cycle systems analysis codes was performed to determine if any existing codes meet technical and functional requirements defined for a U.S. national program supporting the global and domestic assessment, development and deployment of nuclear energy systems. The program would be implemented using an interconnected architecture of different codes ranging from the fuel cycle analysis code, which is the subject of the review, to fundamental physical and mechanistic codes. Four main functions are defined for the code: (1) the ability to characterize and deploy individual fuel cycle facilities and reactors in a simulation, while discretely tracking material movements, (2) the capability to perform an uncertainty analysis for each element of the fuel cycle and an aggregate uncertainty analysis, (3) the inclusion of an optimization engine able to optimize simultaneously across multiple objective functions, and (4) open and accessible code software and documentation to aid in collaboration between multiple entities and facilitate software updates. Existing codes, categorized as annualized or discrete fuel tracking codes, were assessed according to the four functions and associated requirements. These codes were developed by various government, education and industrial entities to fulfill particular needs. In some cases, decisions were made during code development to limit the level of detail included in a code to ease its use or to focus on certain aspects of a fuel cycle to address specific questions. The review revealed that while no two of the codes are identical, they all perform many of the same basic functions. No code was able to perform defined function 2 or several requirements of functions 1 and 3. Based on this review, it was concluded that the functions and requirements will be met only with development of a new code, referred to as GENIUS.

  9. Predictive Capability Maturity Model for computational modeling and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.

  10. The Hamburg oceanic carbon cycle circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Heinze, C.

    1992-02-01

    The carbon cycle model calculates the prognostic fields of oceanic geochemical carbon cycle tracers making use of a 'frozen' velocity field provided by a run of the LSG oceanic circulation model (see the corresponding manual, LSG=Large Scale Geostrophic). The carbon cycle model includes a crude approximation of interactions between sediment and bottom layer water. A simple (meridionally diffusive) one layer atmosphere model allows to calculate the CO 2 airborne fraction resulting from the oceanic biogeochemical interactions. (orig.)

  11. Capabilities and accuracy of energy modelling software

    CSIR Research Space (South Africa)

    Osburn, L

    2010-11-01

    Full Text Available Energy modelling can be used in a number of different ways to fulfill different needs, including certification within building regulations or green building rating tools. Energy modelling can also be used in order to try and predict what the energy...

  12. System Reliability Analysis Capability and Surrogate Model Application in RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Dongli [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Bei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adbel-Khalik, Hany S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pascucci, Valerio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report collect the effort performed to improve the reliability analysis capabilities of the RAVEN code and explore new opportunity in the usage of surrogate model by extending the current RAVEN capabilities to multi physics surrogate models and construction of surrogate models for high dimensionality fields.

  13. The LifeCycle model

    DEFF Research Database (Denmark)

    Krink, Thiemo; Løvbjerg, Morten

    2002-01-01

    genetic algorithms (GAs), particle swarm optimisation (PSOs), and stochastic hill climbing to create a generally well-performing search heuristics. In the LifeCycle model, we consider candidate solutions and their fitness as individuals, which, based on their recent search progress, can decide to become...... either a GA individual, a particle of a PSO, or a single stochastic hill climber. First results from a comparison of our new approach with the single search algorithms indicate a generally good performance in numerical optimization....

  14. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  15. Facility Modeling Capability Demonstration Summary Report

    International Nuclear Information System (INIS)

    Key, Brian P.; Sadasivan, Pratap; Fallgren, Andrew James; Demuth, Scott Francis; Aleman, Sebastian E.; Almeida, Valmor F. de; Chiswell, Steven R.; Hamm, Larry; Tingey, Joel M.

    2017-01-01

    A joint effort has been initiated by Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Savanah River National Laboratory (SRNL), Pacific Northwest National Laboratory (PNNL), sponsored by the National Nuclear Security Administration's (NNSA's) office of Proliferation Detection, to develop and validate a flexible framework for simulating effluents and emissions from spent fuel reprocessing facilities. These effluents and emissions can be measured by various on-site and/or off-site means, and then the inverse problem can ideally be solved through modeling and simulation to estimate characteristics of facility operation such as the nuclear material production rate. The flexible framework called Facility Modeling Toolkit focused on the forward modeling of PUREX reprocessing facility operating conditions from fuel storage and chopping to effluent and emission measurements.

  16. Facility Modeling Capability Demonstration Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Key, Brian P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sadasivan, Pratap [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aleman, Sebastian E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chiswell, Steven R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-01

    A joint effort has been initiated by Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Savanah River National Laboratory (SRNL), Pacific Northwest National Laboratory (PNNL), sponsored by the National Nuclear Security Administration’s (NNSA’s) office of Proliferation Detection, to develop and validate a flexible framework for simulating effluents and emissions from spent fuel reprocessing facilities. These effluents and emissions can be measured by various on-site and/or off-site means, and then the inverse problem can ideally be solved through modeling and simulation to estimate characteristics of facility operation such as the nuclear material production rate. The flexible framework called Facility Modeling Toolkit focused on the forward modeling of PUREX reprocessing facility operating conditions from fuel storage and chopping to effluent and emission measurements.

  17. User's guide for the REBUS-3 fuel cycle analysis capability

    Energy Technology Data Exchange (ETDEWEB)

    Toppel, B.J.

    1983-03-01

    REBUS-3 is a system of programs designed for the fuel-cycle analysis of fast reactors. This new capability is an extension and refinement of the REBUS-3 code system and complies with the standard code practices and interface dataset specifications of the Committee on Computer Code Coordination (CCCC). The new code is hence divorced from the earlier ARC System. In addition, the coding has been designed to enhance code exportability. Major new capabilities not available in the REBUS-2 code system include a search on burn cycle time to achieve a specified value for the multiplication constant at the end of the burn step; a general non-repetitive fuel-management capability including temporary out-of-core fuel storage, loading of fresh fuel, and subsequent retrieval and reloading of fuel; significantly expanded user input checking; expanded output edits; provision of prestored burnup chains to simplify user input; option of fixed-or free-field BCD input formats; and, choice of finite difference, nodal or spatial flux-synthesis neutronics in one-, two-, or three-dimensions.

  18. Computable general equilibrium model fiscal year 2014 capability development report

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Brian Keith [Los Alamos National Laboratory; Boero, Riccardo [Los Alamos National Laboratory

    2016-05-11

    This report provides an overview of the development of the NISAC CGE economic modeling capability since 2012. This capability enhances NISAC's economic modeling and analysis capabilities to answer a broader set of questions than possible with previous economic analysis capability. In particular, CGE modeling captures how the different sectors of the economy, for example, households, businesses, government, etc., interact to allocate resources in an economy and this approach captures these interactions when it is used to estimate the economic impacts of the kinds of events NISAC often analyzes.

  19. A Thermo-Optic Propagation Modeling Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Karl; Akau, Ron

    2014-10-01

    A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developed for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.

  20. Automation life-cycle cost model

    Science.gov (United States)

    Gathmann, Thomas P.; Reeves, Arlinda J.; Cline, Rick; Henrion, Max; Ruokangas, Corinne

    1992-01-01

    The problem domain being addressed by this contractual effort can be summarized by the following list: Automation and Robotics (A&R) technologies appear to be viable alternatives to current, manual operations; Life-cycle cost models are typically judged with suspicion due to implicit assumptions and little associated documentation; and Uncertainty is a reality for increasingly complex problems and few models explicitly account for its affect on the solution space. The objectives for this effort range from the near-term (1-2 years) to far-term (3-5 years). In the near-term, the envisioned capabilities of the modeling tool are annotated. In addition, a framework is defined and developed in the Decision Modelling System (DEMOS) environment. Our approach is summarized as follows: Assess desirable capabilities (structure into near- and far-term); Identify useful existing models/data; Identify parameters for utility analysis; Define tool framework; Encode scenario thread for model validation; and Provide transition path for tool development. This report contains all relevant, technical progress made on this contractual effort.

  1. Hitch code capabilities for modeling AVT chemistry

    International Nuclear Information System (INIS)

    Leibovitz, J.

    1985-01-01

    Several types of corrosion have damaged alloy 600 tubing in the secondary side of steam generators. The types of corrosion include wastage, denting, intergranular attack, stress corrosion, erosion-corrosion, etc. The environments which cause attack may originate from leaks of cooling water into the condensate, etc. When the contaminated feedwater is pumped into the generator, the impurities may concentrate first 200 to 400 fold in the bulk water, depending on the blowdown, and then further to saturation and dryness in heated tube support plate crevices. Characterization of local solution chemistries is the first step to predict and correct the type of corrosion that can occur. The pH is of particular importance because it is a major factor governing the rate of corrosion reactions. The pH of a solution at high temperature is not the same as the ambient temperature, since ionic dissociation constants, solubility and solubility products, activity coefficients, etc., all change with temperature. Because the high temperature chemistry of such solutions is not readily characterized experimentally, modeling techniques were developed under EPRI sponsorship to calculate the high temperature chemistry of the relevant solutions. In many cases, the effects of cooling water impurities on steam generator water chemistry with all volatile treatment (AVT), upon concentration by boiling, and in particular the resulting acid or base concentration can be calculated by a simple code, the HITCH code, which is very easy to use. The scope and applicability of the HITCH code are summarized

  2. Proposing a Capability Perspective on Digital Business Models

    OpenAIRE

    Bärenfänger, Rieke; Otto, Boris

    2015-01-01

    Business models comprehensively describe the functioning of businesses in contemporary economic, technological, and societal environments. This paper focuses on the characteristics of digital business models from the perspective of capability research and develops a capability model for digital businesses. Following the design science research (DSR) methodology, multiple evaluation and design iterations were performed. Contributions to the design process came from IS/IT practice and the resea...

  3. Executive Summary of Ares V: Lunar Capabilities Concept Review Through Phase A-Cycle 3

    Science.gov (United States)

    Holladay, J. B.; Baggett, K. E.; Feldman, S. M.

    2011-01-01

    This Technical Memorandum (TM) was generated as an overall Ares V summary from the Lunar Capabilities Concept Review (LCCR) through Phase A-Cycle 3 (PA-C3) with the intent that it may be coupled with separately published appendices for a more detailed, integrated narrative. The Ares V has evolved from the initial point of departure (POD) 51.00.48 LCCR configuration to the current candidate POD, PA-C3D, and the family of vehicles concept that contains vehicles PA-C3A through H. The logical progression from concept to POD vehicles is summarized in this TM and captures the trade space and performance of each. The family-of-vehicles concept was assessed during PA-C3 and offered flexibility in the path forward with the ability to add options deemed appropriate. A description of each trade space is given in addition to a summary of each Ares V element. The Ares V contributions to a Mars campaign are also highlighted with the goal of introducing Ares V capabilities within the trade space. The assessment of the Ares V vehicle as it pertains to Mars missions remained locked to the architecture presented in Mars Design Reference Authorization 5.0 using the PA-C3D vehicle configuration to assess Mars transfer vehicle options, in-space EDS capabilities, docking adaptor and propellant transfer assessments, and lunar and Mars synergistic potential.

  4. Integration of facility modeling capabilities for nuclear nonproliferation analysis

    International Nuclear Information System (INIS)

    Burr, Tom; Gorensek, M.B.; Krebs, John; Kress, Reid L.; Lamberti, Vincent; Schoenwald, David; Ward, Richard C.

    2012-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclearnonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facilitymodeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facilitymodeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facilitymodelingcapabilities and illustrates how they could be integrated and utilized for nonproliferationanalysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facilitymodeling tools. After considering a representative sampling of key facilitymodelingcapabilities, the proposed integration framework is illustrated with several examples.

  5. Enhancement of the lithium cycling capability using Li–Zn alloy substrate for lithium metal batteries

    International Nuclear Information System (INIS)

    Chen, Chen; Yang, Yifu; Shao, Huixia

    2014-01-01

    Graphical abstract: - Highlights: • Li-Zn alloy substrate is novelly formed by Li electrodeposition on the Zn substrate precursor. • The coulombic efficiency of Li deposition/stripping on the Li-Zn alloy substrate remains high at 96.7% after 400 cycles. • The SEI film formed during the formation of Li-Zn alloy is stable during Li deposition/stripping cycling on the Li-Zn substrate. • The exchange current density of Li deposition on the Li-Zn substrate is 9.21 × 10 −4 A cm −2 which is nearly eight times larger than that on the Cu substrate. - Abstract: The cycling performance of a Li metal electrode in rechargeable Li batteries is studied using a novelly formed Li–Zn alloy as a substrate. A Zn layer electrodeposited on a Cu disk with ultrasonic assistance is used as a substrate precursor. Li electrodeposition followed to form the Li–Zn alloy. The morphologies of the substrate before and after Li deposition and stripping are investigated by scanning electron microscopy (SEM), and the electrochemical properties of the substrate are investigated by galvanostatic charge-discharge and cyclic voltammetry (CV). The growth states of solid electrolyte interface (SEI) films of Li deposits on the Li–Zn alloy and Cu surfaces are compared by electrochemical impedance spectroscopy (EIS); exchange current densities of Li electrodeposition on Cu, Zn, and Li–Zn alloy substrates are also compared based on tests of constant current pulse deposition. The efficiency of Li deposition/stripping on the Li–Zn alloy substrate remains high at 96.7% after 400 cycles at a current density of 0.1 mA cm −2 and 250 cycles at the current density of 0.2 mA cm −2 . These results can be attributed to the formation of a stable SEI film on the Li–Zn substrate and the high exchange current density of Li deposition and stripping on this substrate. The Li–Zn alloy proposed in this work may be a perfect substrate for enhancing the cycling capability of Li metal electrode

  6. State-of-the-art modeling capabilities for Orimulsion modeling

    International Nuclear Information System (INIS)

    Cekirge, H.M.; Palmer, S.L.; Convery, K.; Ileri, L.

    1996-01-01

    The pollution response of Orimulsion was discussed. Orimulsion is an inexpensive alternative to fuel oil No. 6. It has the capability to heat large industrial and electric utility boilers. It is an emulsion composed of approximately 70% bitumen (a heavy hydrocarbon) and 30% water to which a surfactant has been added. It has a specific gravity of one or higher, so it is of particular concern in the event of a spill. The physical and chemical processes that would take place in an Orimulsion spill were studied and incorporated into the design of the model ORI SLIK, a fate and transport model for marine environments. The most critical decision in using ORI SLIK is the assignment of the number of parcels into which the initial spill volume will be divided since an underspecification would result in inaccurate results. However, no reliable methods for determining this, other than a decision based on trial and error, has been found. It was concluded that while many of the complex processes of Orimulsion in marine environments are approximated in currently available models, some areas still need further study. Among these are the effect of current shear, changing particle densities, and differential settling. 24 refs., 1 tab., 5 figs

  7. Are Hydrostatic Models Still Capable of Simulating Oceanic Fronts

    Science.gov (United States)

    2016-11-10

    Hydrostatic Models Still Capable of Simulating Oceanic Fronts Yalin Fan Zhitao Yu Ocean Dynamics and Prediction Branch Oceanography Division FengYan Shi...OF PAGES 17. LIMITATION OF ABSTRACT Are Hydrostatic Models Still Capable of Simulating Oceanic Fronts? Yalin Fan, Zhitao Yu, and, Fengyan Shi1 Naval...mixed layer and thermocline simulations as well as large scale circulations. Numerical experiments are conducted using hydrostatic (HY) and

  8. Neural network modeling of a dolphin's sonar discrimination capabilities

    OpenAIRE

    Andersen, Lars Nonboe; René Rasmussen, A; Au, WWL; Nachtigall, PE; Roitblat, H.

    1994-01-01

    The capability of an echo-locating dolphin to discriminate differences in the wall thickness of cylinders was previously modeled by a counterpropagation neural network using only spectral information of the echoes [W. W. L. Au, J. Acoust. Soc. Am. 95, 2728–2735 (1994)]. In this study, both time and frequency information were used to model the dolphin discrimination capabilities. Echoes from the same cylinders were digitized using a broadband simulated dolphin sonar signal with the transducer ...

  9. Evaluating the habitat capability model for Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1995-01-01

    Habitat capability (HABCAP) models for wildlife assist land managers in predicting the consequences of their management decisions. Models must be tested and refined prior to using them in management planning. We tested the predicted patterns of habitat selection of the R2 HABCAP model using observed patterns of habitats selected by radio-marked Merriam’s turkey (

  10. New measurement capabilities of mass spectrometry in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Perrin, R.E.

    1979-01-01

    Three recent developments, when combined, have the potential for greatly improving accountability measurements in the nuclear fuel cycle. The techniques are particularly valuable when measuring the contents of vessels which are difficult to calibrate by weight or volume. Input dissolver accountability measurements, inparticular, benefit from the application of these techniques. Los Alamos Scientific Laboratory has developed the capability for isotopic analysis of U and Pu samples at the nanogram level with an accuracy of 0.1 relative %. The Central Bureau for Nuclear Materials Measurement in Geel, Belgium has developed the capability of preparing mixed, solid metal U and Pu spikes with an accuracy of better than 0.1 relative %. Idaho Nuclear Energy Laboratory and C.K. Mathews at Bhabha Atomic Research have demonstrated a technique for determining the ratio of sample size to total solution measured which is independent of both the weight and the volume of the solution being measured. The advantages and limitations of these techniques are discussed. An analytical scheme which takes advantage of the special features of these techniques is proposed. 4 refs

  11. Enhanced CANDU 6 (EC6): a proven mid-sized reactor with fuel cycle capability

    International Nuclear Information System (INIS)

    Hopwood, J.; Soulard, M.; Hastings, I.J.

    2011-01-01

    Atomic Energy of Canada (AECL) is finalizing development of the Enhanced CANDU 6 (EC6), which incorporates the CANDU 6's well-proven features, and adds enhancements that make the reactor even more safe and easier to operate. The EC6 is the only mid-sized reactor (700 MWe class) with a proven pedigree that meets modern reactor expectations and regulatory standards. It is sized for smaller grids and also has outstanding fuel-cycle capability. Changes are incremental and consistent with the CANDU 6 project approach. The EC6 utilizes modern computers and a distributed control system housed in an advanced control room which, along with automated testing and on-line diagnostics, make the plant easier and safer to operate, with minimal operator intervention. Containment and seismic capability are upgraded to meet modern standards. The first deployment of the EC6 is anticipated in Canada; international markets are also being pursued. AECL is performing a comprehensive review of the EC6 design in the wake of the Fukushima accident, will review lessons learned, and incorporate any necessary improvements into new build design. (author)

  12. Enhanced CANDU 6 (EC6): a proven mid-sized reactor with fuel cycle capability

    International Nuclear Information System (INIS)

    Hopwood, J.; Soulard, M.; Hastings, I.J.

    2011-01-01

    Atomic Energy of Canada (AECL) is finalizing development of the Enhanced CANDU 6 (EC6), which incorporates the CANDU 6's well-proven features, and enhancements that make the reactor even more safe and easier to operate. The EC6 is the only mid-sized reactor (700 MWe class) with a proven pedigree that meets modern reactor expectations and regulatory standards. It is sized for smaller grids and also has outstanding fuel-cycle capability. Changes are incremental and consistent with the CANDU 6 project approach. The EC6 utilizes modern computers and a distributed control system housed in an advanced control room which, along with automated testing and on-line diagnostics, make the plant easier and safer to operate, with minimal operator intervention. Containment and seismic capability are upgraded to meet modern standards. The first deployment of the EC6 is anticipated in Canada; international markets are also being pursued. AECL is performing a comprehensive review of the EC6 design in the wake of the Fukushima accident, will review lessons learned, and incorporate any necessary improvements into new build design. (author)

  13. Constructing a justice model based on Sen's capability approach

    OpenAIRE

    Yüksel, Sevgi; Yuksel, Sevgi

    2008-01-01

    The thesis provides a possible justice model based on Sen's capability approach. For this goal, we first analyze the general structure of a theory of justice, identifying the main variables and issues. Furthermore, based on Sen (2006) and Kolm (1998), we look at 'transcendental' and 'comparative' approaches to justice and concentrate on the sufficiency condition for the comparative approach. Then, taking Rawls' theory of justice as a starting point, we present how Sen's capability approach em...

  14. Three Models of Education: Rights, Capabilities and Human Capital

    Science.gov (United States)

    Robeyns, Ingrid

    2006-01-01

    This article analyses three normative accounts that can underlie educational policies, with special attention to gender issues. These three models of education are human capital theory, rights discourses and the capability approach. I first outline five different roles that education can play. Then I analyse these three models of educational…

  15. Stochastic and simulation models of maritime intercept operations capabilities

    OpenAIRE

    Sato, Hiroyuki

    2005-01-01

    The research formulates and exercises stochastic and simulation models to assess the Maritime Intercept Operations (MIO) capabilities. The models focus on the surveillance operations of the Maritime Patrol Aircraft (MPA). The analysis using the models estimates the probability with which a terrorist vessel (Red) is detected, correctly classified, and escorted for intensive investigation and neutralization before it leaves an area of interest (AOI). The difficulty of obtaining adequate int...

  16. Integrated fuel-cycle models for fast breeder reactors

    International Nuclear Information System (INIS)

    Ott, K.O.; Maudlin, P.J.

    1981-01-01

    Breeder-reactor fuel-cycle analysis can be divided into four different areas or categories. The first category concerns questions about the spatial variation of the fuel composition for single loading intervals. Questions of the variations in the fuel composition over several cycles represent a second category. Third, there is a need for a determination of the breeding capability of the reactor. The fourth category concerns the investigation of breeding and long-term fuel logistics. Two fuel-cycle models used to answer questions in the third and fourth area are presented. The space- and time-dependent actinide balance, coupled with criticality and fuel-management constraints, is the basis for both the Discontinuous Integrated Fuel-Cycle Model and the Continuous Integrated Fuel-Cycle Model. The results of the continuous model are compared with results obtained from detailed two-dimensional space and multigroup depletion calculations. The continuous model yields nearly the same results as the detailed calculation, and this is with a comparatively insignificant fraction of the computational effort needed for the detailed calculation. Thus, the integrated model presented is an accurate tool for answering questions concerning reactor breeding capability and long-term fuel logistics. (author)

  17. Experiences with the Capability Maturity Model in a research environment

    NARCIS (Netherlands)

    Velden, van der M.J.; Vreke, J.; Wal, van der B.; Symons, A.

    1996-01-01

    The project described here was aimed at evaluating the Capability Maturity Model (CMM) in the context of a research organization. Part of the evaluation was a standard CMM assessment. It was found that CMM could be applied to a research organization, although its five maturity levels were considered

  18. Neural network modeling of a dolphin's sonar discrimination capabilities

    DEFF Research Database (Denmark)

    Andersen, Lars Nonboe; René Rasmussen, A; Au, WWL

    1994-01-01

    The capability of an echo-locating dolphin to discriminate differences in the wall thickness of cylinders was previously modeled by a counterpropagation neural network using only spectral information of the echoes [W. W. L. Au, J. Acoust. Soc. Am. 95, 2728–2735 (1994)]. In this study, both time a...

  19. Space Weather Models at the CCMC And Their Capabilities

    Science.gov (United States)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2007-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. In this presentation, we will provide an overview of the community-provided, space weather-relevant, model suite, which resides at CCMC. We will discuss current capabilities, and analyze expected future developments of space weather related modeling.

  20. Simulation modeling on the growth of firm's safety management capability

    Institute of Scientific and Technical Information of China (English)

    LIU Tie-zhong; LI Zhi-xiang

    2008-01-01

    Aiming to the deficiency of safety management measure, established simulation model about firm's safety management capability(FSMC) based on organizational learning theory. The system dynamics(SD) method was used, in which level and rate system, variable equation and system structure flow diagram was concluded. Simulation model was verified from two aspects: first, model's sensitivity to variable was tested from the gross of safety investment and the proportion of safety investment; second, variables dependency was checked up from the correlative variable of FSMC and organizational learning. The feasibility of simulation model is verified though these processes.

  1. Capability maturity models in engineering companies: case study analysis

    Directory of Open Access Journals (Sweden)

    Titov Sergei

    2016-01-01

    Full Text Available In the conditions of the current economic downturn engineering companies in Russia and worldwide are searching for new approaches and frameworks to improve their strategic position, increase the efficiency of the internal business processes and enhance the quality of the final products. Capability maturity models are well-known tools used by many foreign engineering companies to assess the productivity of the processes, to elaborate the program of business process improvement and to prioritize the efforts to optimize the whole company performance. The impact of capability maturity model implementation on cost and time are documented and analyzed in the existing research. However, the potential of maturity models as tools of quality management is less known. The article attempts to analyze the impact of CMM implementation on the quality issues. The research is based on a case study methodology and investigates the real life situation in a Russian engineering company.

  2. Simulation and Modeling Capability for Standard Modular Hydropower Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsakiris, Achilleas [Univ. of Tennessee, Knoxville, TN (United States); Mooneyham, Christian [Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Univ. of Tennessee, Knoxville, TN (United States); Ekici, Kivanc [Univ. of Tennessee, Knoxville, TN (United States); Whisenant, Matthew J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [US Department of Energy, Washington, DC (United States); Rabon, Daniel [US Department of Energy, Washington, DC (United States)

    2017-08-01

    Grounded in the stakeholder-validated framework established in Oak Ridge National Laboratory’s SMH Exemplary Design Envelope Specification, this report on Simulation and Modeling Capability for Standard Modular Hydropower (SMH) Technology provides insight into the concepts, use cases, needs, gaps, and challenges associated with modeling and simulating SMH technologies. The SMH concept envisions a network of generation, passage, and foundation modules that achieve environmentally compatible, cost-optimized hydropower using standardization and modularity. The development of standardized modeling approaches and simulation techniques for SMH (as described in this report) will pave the way for reliable, cost-effective methods for technology evaluation, optimization, and verification.

  3. Development of a fourth generation predictive capability maturity model.

    Energy Technology Data Exchange (ETDEWEB)

    Hills, Richard Guy; Witkowski, Walter R.; Urbina, Angel; Rider, William J.; Trucano, Timothy Guy

    2013-09-01

    The Predictive Capability Maturity Model (PCMM) is an expert elicitation tool designed to characterize and communicate completeness of the approaches used for computational model definition, verification, validation, and uncertainty quantification associated for an intended application. The primary application of this tool at Sandia National Laboratories (SNL) has been for physics-based computational simulations in support of nuclear weapons applications. The two main goals of a PCMM evaluation are 1) the communication of computational simulation capability, accurately and transparently, and 2) the development of input for effective planning. As a result of the increasing importance of computational simulation to SNLs mission, the PCMM has evolved through multiple generations with the goal to provide more clarity, rigor, and completeness in its application. This report describes the approach used to develop the fourth generation of the PCMM.

  4. Fuel analysis code FAIR and its high burnup modelling capabilities

    International Nuclear Information System (INIS)

    Prasad, P.S.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    A computer code FAIR has been developed for analysing performance of water cooled reactor fuel pins. It is capable of analysing high burnup fuels. This code has recently been used for analysing ten high burnup fuel rods irradiated at Halden reactor. In the present paper, the code FAIR and its various high burnup models are described. The performance of code FAIR in analysing high burnup fuels and its other applications are highlighted. (author). 21 refs., 12 figs

  5. The Aviation System Analysis Capability Airport Capacity and Delay Models

    Science.gov (United States)

    Lee, David A.; Nelson, Caroline; Shapiro, Gerald

    1998-01-01

    The ASAC Airport Capacity Model and the ASAC Airport Delay Model support analyses of technologies addressing airport capacity. NASA's Aviation System Analysis Capability (ASAC) Airport Capacity Model estimates the capacity of an airport as a function of weather, Federal Aviation Administration (FAA) procedures, traffic characteristics, and the level of technology available. Airport capacity is presented as a Pareto frontier of arrivals per hour versus departures per hour. The ASAC Airport Delay Model allows the user to estimate the minutes of arrival delay for an airport, given its (weather dependent) capacity. Historical weather observations and demand patterns are provided by ASAC as inputs to the delay model. The ASAC economic models can translate a reduction in delay minutes into benefit dollars.

  6. Off-Gas Adsorption Model Capabilities and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Kevin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, Amy K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    Off-gas treatment is required to reduce emissions from aqueous fuel reprocessing. Evaluating the products of innovative gas adsorption research requires increased computational simulation capability to more effectively transition from fundamental research to operational design. Early modeling efforts produced the Off-Gas SeParation and REcoverY (OSPREY) model that, while efficient in terms of computation time, was of limited value for complex systems. However, the computational and programming lessons learned in development of the initial model were used to develop Discontinuous Galerkin OSPREY (DGOSPREY), a more effective model. Initial comparisons between OSPREY and DGOSPREY show that, while OSPREY does reasonably well to capture the initial breakthrough time, it displays far too much numerical dispersion to accurately capture the real shape of the breakthrough curves. DGOSPREY is a much better tool as it utilizes a more stable set of numerical methods. In addition, DGOSPREY has shown the capability to capture complex, multispecies adsorption behavior, while OSPREY currently only works for a single adsorbing species. This capability makes DGOSPREY ultimately a more practical tool for real world simulations involving many different gas species. While DGOSPREY has initially performed very well, there is still need for improvement. The current state of DGOSPREY does not include any micro-scale adsorption kinetics and therefore assumes instantaneous adsorption. This is a major source of error in predicting water vapor breakthrough because the kinetics of that adsorption mechanism is particularly slow. However, this deficiency can be remedied by building kinetic kernels into DGOSPREY. Another source of error in DGOSPREY stems from data gaps in single species, such as Kr and Xe, isotherms. Since isotherm data for each gas is currently available at a single temperature, the model is unable to predict adsorption at temperatures outside of the set of data currently

  7. Synthesis of hierarchical porous honeycomb carbon for lithium-sulfur battery cathode with high rate capability and long cycling stability

    International Nuclear Information System (INIS)

    Qu, Yaohui; Zhang, Zhian; Zhang, Xiahui; Ren, Guodong; Wang, Xiwen; Lai, Yanqing; Liu, Yexiang; Li, Jie

    2014-01-01

    Highlights: • A novel HPHC was prepared by a simple template process. • The HPHC as matrix to load sulfur for Lithium-Sulfur battery cathodes. • S-HPHC cathode shows high rate capability and long cycling stability. • The sulfur-HPHC composite presents electrochemical stability up to 300 cycles at 1.5 C. - Abstract: Sulfur has a high specific capacity of 1675 mAh g −1 as lithium battery cathode, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a novel hierarchical porous honeycomb carbon (HPHC) for lithium-sulfur battery cathode with effective trapping of polysulfides. The HPHC was prepared by a simple template process, and a sulfur-carbon composite based on HPHC was synthesized for lithium-sulfur batteries by a melt-diffusion method. It is found that the elemental sulfur was dispersed inside the three-dimensionally hierarchical pores of HPHC based on the analyses. Electrochemical tests reveal that the sulfur-HPHC composite shows high rate capability and long cycling stability as cathode materials. The sulfur-HPHC composite with sulfur content of 66.3 wt% displays an initial discharge capacity of 923 mAh g −1 and a reversible discharge capacity of 564 mAh g −1 after 100 cycles at 2 C charge-discharge rate. In particular, the sulfur-HPHC composite presents a long term cycling stability up to 300 cycles at 1.5 C. The results illustrate that the electrochemical reaction constrained inside the interconnected macro/meso/micropores of HPHC would be the dominant factor for the excellent high rate capability and long cycling stability of the sulfur cathode, and the three-dimensionally honeycomb carbon network would be a promising carbon matrix structure for lithium-sulfur battery cathode

  8. Life-Cycle Models for Survivable Systems

    National Research Council Canada - National Science Library

    Linger, Richard

    2002-01-01

    .... Current software development life-cycle models are not focused on creating survivable systems, and exhibit shortcomings when the goal is to develop systems with a high degree of assurance of survivability...

  9. Climbing the ladder: capability maturity model integration level 3

    Science.gov (United States)

    Day, Bryce; Lutteroth, Christof

    2011-02-01

    This article details the attempt to form a complete workflow model for an information and communication technologies (ICT) company in order to achieve a capability maturity model integration (CMMI) maturity rating of 3. During this project, business processes across the company's core and auxiliary sectors were documented and extended using modern enterprise modelling tools and a The Open Group Architectural Framework (TOGAF) methodology. Different challenges were encountered with regard to process customisation and tool support for enterprise modelling. In particular, there were problems with the reuse of process models, the integration of different project management methodologies and the integration of the Rational Unified Process development process framework that had to be solved. We report on these challenges and the perceived effects of the project on the company. Finally, we point out research directions that could help to improve the situation in the future.

  10. Evacuation emergency response model coupling atmospheric release advisory capability output

    International Nuclear Information System (INIS)

    Rosen, L.C.; Lawver, B.S.; Buckley, D.W.; Finn, S.P.; Swenson, J.B.

    1983-01-01

    A Federal Emergency Management Agency (FEMA) sponsored project to develop a coupled set of models between those of the Lawrence Livermore National Laboratory (LLNL) Atmospheric Release Advisory Capability (ARAC) system and candidate evacuation models is discussed herein. This report describes the ARAC system and discusses the rapid computer code developed and the coupling with ARAC output. The computer code is adapted to the use of color graphics as a means to display and convey the dynamics of an emergency evacuation. The model is applied to a specific case of an emergency evacuation of individuals surrounding the Rancho Seco Nuclear Power Plant, located approximately 25 miles southeast of Sacramento, California. The graphics available to the model user for the Rancho Seco example are displayed and noted in detail. Suggestions for future, potential improvements to the emergency evacuation model are presented

  11. Capability to model reactor regulating system in RFSP

    Energy Technology Data Exchange (ETDEWEB)

    Chow, H C; Rouben, B; Younis, M H; Jenkins, D A [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Baudouin, A [Hydro-Quebec, Montreal, PQ (Canada); Thompson, P D [New Brunswick Electric Power Commission, Point Lepreau, NB (Canada). Point Lepreau Generating Station

    1996-12-31

    The Reactor Regulating System package extracted from SMOKIN-G2 was linked within RFSP to the spatial kinetics calculation. The objective is to use this new capability in safety analysis to model the actions of RRS in hypothetical events such as in-core LOCA or moderator drain scenarios. This paper describes the RRS modelling in RFSP and its coupling to the neutronics calculations, verification of the RRS control routine functions, sample applications and comparisons to SMOKIN-G2 results for the same transient simulations. (author). 7 refs., 6 figs.

  12. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  13. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  14. Heteroclinic cycles in the repressilator model

    International Nuclear Information System (INIS)

    Kuznetsov, A.; Afraimovich, V.

    2012-01-01

    Highlights: ► We conduct analysis at infinity in the phase space of the repressilator model. ► We study two models with the original linear and a new saturable degradation terms. ► We link the evolution of an oscillatory solution with a heteroclinic cycle. ► The transition studied here presents a new bifurcation scenario. - Abstract: A repressilator is a synthetic regulatory network that produces self-sustained oscillations. We analyze the evolution of the oscillatory solution in the repressilator model. We have established a connection between the evolution of the oscillatory solution and formation of a heteroclinic cycle at infinity. The convergence of the limit cycle to the heteroclinic cycle occurs very differently compared to the well-studied cases. The transition studied here presents a new bifurcation scenario.

  15. The WAM model cycle 4

    International Nuclear Information System (INIS)

    Guenther, H.; Hasselmann, S.; Janssen, P.A.E.M.

    1992-10-01

    The WAM-model is a third generation wave model which solves the wave transport equation explicitly without any presumptions on the shape of the wave spectrum. It represents the physics of the wave evolution in accordance with our knowledge today for the full set of degrees of freedom of a 2d wave spectrum. The model runs for any given regional or global grid with a prescribed topographic dataset. The grid resolution can be arbitrary in space and time. The propagation can be done on a latitudinal-longitudinal or on a carthesian grid. The model outputs the significant wave height, mean wave direction and frequency, the swell wave height and mean direction, wind stress fields corrected by including the wave induces stress and the drag coefficient at each grid point at chosen output times, and also the 2d wave spectrum at chosen grid points and output times. (orig.)

  16. Cycling indices for ecosystem models

    International Nuclear Information System (INIS)

    Carney, J.H.; Gardner, R.H.; Mankin, J.B.; DeAngelis, D.L.

    1979-01-01

    The study of ecosystems is aided by representing structural and functional groups of organisms or processes as discrete components. A complex compartment model will explicitly map pathways from one compartment to another and specify transfer rates. This quantitative description allows insight into the dynamics of flow of nutrients, toxic chemicals, radionuclides, or energy. Three new indices that calculate compartment-specific probabilities of occurrence and recycling and illustrate the problem of applying these indices to ecosystem models are presented

  17. Spent fuel reprocessing system security engineering capability maturity model

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang; Yang Xiaohua; Ouyang Zigen; Dai Jianyong

    2011-01-01

    In the field of nuclear safety, traditional work places extra emphasis on risk assessment related to technical skills, production operations, accident consequences through deterministic or probabilistic analysis, and on the basis of which risk management and control are implemented. However, high quality of product does not necessarily mean good safety quality, which implies a predictable degree of uniformity and dependability suited to the specific security needs. In this paper, we make use of the system security engineering - capability maturity model (SSE-CMM) in the field of spent fuel reprocessing, establish a spent fuel reprocessing systems security engineering capability maturity model (SFR-SSE-CMM). The base practices in the model are collected from the materials of the practice of the nuclear safety engineering, which represent the best security implementation activities, reflect the regular and basic work of the implementation of the security engineering in the spent fuel reprocessing plant, the general practices reveal the management, measurement and institutional characteristics of all process activities. The basic principles that should be followed in the course of implementation of safety engineering activities are indicated from 'what' and 'how' aspects. The model provides a standardized framework and evaluation system for the safety engineering of the spent fuel reprocessing system. As a supplement to traditional methods, this new assessment technique with property of repeatability and predictability with respect to cost, procedure and quality control, can make or improve the activities of security engineering to become a serial of mature, measurable and standard activities. (author)

  18. Human, Social, Cultural Behavior (HSCB) Modeling Workshop I: Characterizing the Capability Needs for HSCB Modeling

    Science.gov (United States)

    2008-07-01

    The expectations correspond to different roles individuals perform SocialConstructionis Social constructionism is a school of thought Peter L...HUMAN, SOCIAL , CULTURAL BEHAVIOR (HSCB) MODELING WORKSHOP I: CHARACTERIZING THE CAPABILITY NEEDS FOR HSCB MODELING FINAL REPORT... Social , Cultural Behavior (HSCB) Modeling Workshop I: Characterizing the Capability Needs for HSCB Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  19. Internal cycle modeling and environmental assessment of multiple cycle consumer products

    International Nuclear Information System (INIS)

    Tsiliyannis, C.A.

    2012-01-01

    Highlights: ► Dynamic flow models are presented for remanufactured, reused or recycled products. ► Early loss and stochastic return are included for fast and slow cycling products. ► The reuse-to-input flow ratio (Internal Cycle Factor, ICF) is determined. ► The cycle rate, which is increasing with the ICF, monitors eco-performance. ► Early internal cycle losses diminish the ICF, the cycle rate and performance. - Abstract: Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast and slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying

  20. Boiling water reactor modeling capabilities of MMS-02

    International Nuclear Information System (INIS)

    May, R.S.; Abdollahian, D.A.; Elias, E.; Shak, D.P.

    1987-01-01

    During the development period for the Modular Modeling System (MMS) library modules, the Boiling Water Reactor (BWR) has been the last major component to be addressed. The BWRX module includes models of the reactor core, reactor vessel, and recirculation loop. A pre-release version was made available for utility use in September 1983. Since that time a number of changes have been incorporated in BWRX to (1) improve running time for most transient events of interest, (2) extend its capability to include certain events of interest in reactor safety analysis, and (3) incorporate a variety of improvements to the module interfaces and user input formats. The purposes of this study were to briefly review the module structure and physical models, to point the differences between the MMS-02 BWRX module and the BWRX version previously available in the TESTREV1 library, to provide guidelines for choosing among the various user options, and to present some representative results

  1. A hybrid mammalian cell cycle model

    Directory of Open Access Journals (Sweden)

    Vincent Noël

    2013-08-01

    Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.

  2. Modeling the Rock Glacier Cycle

    Science.gov (United States)

    Anderson, R. S.; Anderson, L. S.

    2016-12-01

    Rock glaciers are common in many mountain ranges in which the ELA lies above the peaks. They represent some of the most identifiable components of today's cryosphere in these settings. Their oversteepened snouts pose often-overlooked hazards to travel in alpine terrain. Rock glaciers are supported by avalanches and by rockfall from steep headwalls. The winter's avalanche cone must be sufficiently thick not to melt entirely in the summer. The spatial distribution of rock glaciers reflects this dependence on avalanche sources; they are most common on lee sides of ridges where wind-blown snow augments the avalanche source. In the absence of rockfall, this would support a short, cirque glacier. Depending on the relationship between rockfall and avalanche patterns, "talus-derived" and "glacier-derived" rock glaciers are possible. Talus-derived: If the spatial distribution of rock delivery is similar to the avalanche pattern, the rock-ice mixture will travel an englacial path that is downward through the short accumulation zone before turning upward in the ablation zone. Advected debris is then delivered to the base of a growing surface debris layer that reduces the ice melt rate. The physics is identical to the debris-covered glacier case. Glacier-derived: If on the other hand rockfall from the headwall rolls beyond the avalanche cone, it is added directly to the ablation zone of the glacier. The avalanche accumulation zone then supports a pure ice core to the rock glacier. We have developed numerical models designed to capture the full range of glacier to debris-covered glacier to rock glacier behavior. The hundreds of meter lengths, tens of meters thicknesses, and meter per year speeds of rock glaciers are well described by the models. The model can capture both "talus-derived" and "glacier-derived" rock glaciers. We explore the dependence of glacier behavior on climate histories. As climate warms, a pure ice debris-covered glacier can transform to a much shorter rock

  3. Glacial Cycles and ice-sheet modelling

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    An attempt is made to simulate the Pleistocene glacial cycles with a numerical model of the Northern Hemisphere ice sheets. This model treats the vertically-integrated ice flow along a meridian, including computation of bedrock adjustment and temperature distribution in the ice. Basal melt water is

  4. The Need for Technology Maturity of Any Advanced Capability to Achieve Better Life Cycle Cost (LCC)

    Science.gov (United States)

    Robinson, John W.; Levack, Daniel J. H.; Rhodes, Russel E.; Chen, Timothy T.

    2009-01-01

    Programs such as space transportation systems are developed and deployed only rarely, and they have long development schedules and large development and life cycle costs (LCC). They have not historically had their LCC predicted well and have only had an effort to control the DDT&E phase of the programs. One of the factors driving the predictability, and thus control, of the LCC of a program is the maturity of the technologies incorporated in the program. If the technologies incorporated are less mature (as measured by their Technology Readiness Level - TRL), then the LCC not only increases but the degree of increase is difficult to predict. Consequently, new programs avoid incorporating technologies unless they are quite mature, generally TRL greater than or equal to 7 (system prototype demonstrated in a space environment) to allow better predictability of the DDT&E phase costs unless there is no alternative. On the other hand, technology development programs rarely develop technologies beyond TRL 6 (system/subsystem model or prototype demonstrated in a relevant environment). Currently the lack of development funds beyond TRL 6 and the major funding required for full scale development leave little or no funding available to prototype TRL 6 concepts so that hardware would be in the ready mode for safe, reliable and cost effective incorporation. The net effect is that each new program either incorporates little new technology or has longer development schedules and costs, and higher LCC, than planned. This paper presents methods to ensure that advanced technologies are incorporated into future programs while providing a greater accuracy of predicting their LCC. One method is having a dedicated organization to develop X-series vehicles or separate prototypes carried on other vehicles. The question of whether such an organization should be independent of NASA and/or have an independent funding source is discussed. Other methods are also discussed. How to make the

  5. Controllable Electrochemical Synthesis of Copper Sulfides as Sodium-Ion Battery Anodes with Superior Rate Capability and Ultralong Cycle Life.

    Science.gov (United States)

    Li, Haomiao; Wang, Kangli; Cheng, Shijie; Jiang, Kai

    2018-03-07

    Sodium-ion batteries (SIBs) are prospective alternative to lithium-ion batteries for large-scale energy-storage applications, owing to the abundant resources of sodium. Metal sulfides are deemed to be promising anode materials for SIBs due to their low-cost and eco-friendliness. Herein, for the first time, series of copper sulfides (Cu 2 S, Cu 7 S 4 , and Cu 7 KS 4 ) are controllably synthesized via a facile electrochemical route in KCl-NaCl-Na 2 S molten salts. The as-prepared Cu 2 S with micron-sized flakes structure is first investigated as anode of SIBs, which delivers a capacity of 430 mAh g -1 with a high initial Coulombic efficiency of 84.9% at a current density of 100 mA g -1 . Moreover, the Cu 2 S anode demonstrates superior capability (337 mAh g -1 at 20 A g -1 , corresponding to 50 C) and ultralong cycle performance (88.2% of capacity retention after 5000 cycles at 5 A g -1 , corresponding to 0.0024% of fade rate per cycle). Meanwhile, the pseudocapacitance contribution and robust porous structure in situ formed during cycling endow the Cu 2 S anodes with outstanding rate capability and enhanced cyclic performance, which are revealed by kinetics analysis and ex situ characterization.

  6. Systems Security Engineering Capability Maturity Model SSE-CMM Model Description Document

    National Research Council Canada - National Science Library

    1999-01-01

    The Systems Security Engineering Capability Maturity Model (SSE-CMM) describes the essential characteristics of an organization's security engineering process that must exist to ensure good security engineering...

  7. Hybrid Corporate Performance Prediction Model Considering Technical Capability

    Directory of Open Access Journals (Sweden)

    Joonhyuck Lee

    2016-07-01

    Full Text Available Many studies have tried to predict corporate performance and stock prices to enhance investment profitability using qualitative approaches such as the Delphi method. However, developments in data processing technology and machine-learning algorithms have resulted in efforts to develop quantitative prediction models in various managerial subject areas. We propose a quantitative corporate performance prediction model that applies the support vector regression (SVR algorithm to solve the problem of the overfitting of training data and can be applied to regression problems. The proposed model optimizes the SVR training parameters based on the training data, using the genetic algorithm to achieve sustainable predictability in changeable markets and managerial environments. Technology-intensive companies represent an increasing share of the total economy. The performance and stock prices of these companies are affected by their financial standing and their technological capabilities. Therefore, we apply both financial indicators and technical indicators to establish the proposed prediction model. Here, we use time series data, including financial, patent, and corporate performance information of 44 electronic and IT companies. Then, we predict the performance of these companies as an empirical verification of the prediction performance of the proposed model.

  8. Frameworks for Assessing the Quality of Modeling and Simulation Capabilities

    Science.gov (United States)

    Rider, W. J.

    2012-12-01

    The importance of assuring quality in modeling and simulation has spawned several frameworks for structuring the examination of quality. The format and content of these frameworks provides an emphasis, completeness and flow to assessment activities. I will examine four frameworks that have been developed and describe how they can be improved and applied to a broader set of high consequence applications. Perhaps the first of these frameworks was known as CSAU [Boyack] (code scaling, applicability and uncertainty) used for nuclear reactor safety and endorsed the United States' Nuclear Regulatory Commission (USNRC). This framework was shaped by nuclear safety practice, and the practical structure needed after the Three Mile Island accident. It incorporated the dominant experimental program, the dominant analysis approach, and concerns about the quality of modeling. The USNRC gave it the force of law that made the nuclear industry take it seriously. After the cessation of nuclear weapons' testing the United States began a program of examining the reliability of these weapons without testing. This program utilizes science including theory, modeling, simulation and experimentation to replace the underground testing. The emphasis on modeling and simulation necessitated attention on the quality of these simulations. Sandia developed the PCMM (predictive capability maturity model) to structure this attention [Oberkampf]. PCMM divides simulation into six core activities to be examined and graded relative to the needs of the modeling activity. NASA [NASA] has built yet another framework in response to the tragedy of the space shuttle accidents. Finally, Ben-Haim and Hemez focus upon modeling robustness and predictive fidelity in another approach. These frameworks are similar, and applied in a similar fashion. The adoption of these frameworks at Sandia and NASA has been slow and arduous because the force of law has not assisted acceptance. All existing frameworks are

  9. Modeling the hydrological cycle on Mars

    Directory of Open Access Journals (Sweden)

    Ghada Machtoub

    2012-03-01

    Full Text Available The study provides a detailed analysis of the hydrological cycle on Mars simulated with a newly developed microphysical model, incorporated in a spectral Mars General Circulation Model. The modeled hydrological cycle is compared well with simulations of other global climate models. The simulated seasonal migration ofwater vapor, circulation instability, and the high degree of temporal variability of localized water vapor outbursts are shown closely consistent with recent observations. The microphysical parameterization provides a significant improvement in the modeling of ice clouds evolved over the tropics and major ancient volcanoes on Mars. The most significant difference between the simulations presented here and other GCM results is the level at which the water ice clouds are found. The model findings also support interpretation of observed thermal anomalies in the Martian tropics during northern spring and summer seasons.

  10. Modeling of SONOS Memory Cell Erase Cycle

    Science.gov (United States)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  11. Modeling Women's Menstrual Cycles using PICI Gates in Bayesian Network.

    Science.gov (United States)

    Zagorecki, Adam; Łupińska-Dubicka, Anna; Voortman, Mark; Druzdzel, Marek J

    2016-03-01

    A major difficulty in building Bayesian network (BN) models is the size of conditional probability tables, which grow exponentially in the number of parents. One way of dealing with this problem is through parametric conditional probability distributions that usually require only a number of parameters that is linear in the number of parents. In this paper, we introduce a new class of parametric models, the Probabilistic Independence of Causal Influences (PICI) models, that aim at lowering the number of parameters required to specify local probability distributions, but are still capable of efficiently modeling a variety of interactions. A subset of PICI models is decomposable and this leads to significantly faster inference as compared to models that cannot be decomposed. We present an application of the proposed method to learning dynamic BNs for modeling a woman's menstrual cycle. We show that PICI models are especially useful for parameter learning from small data sets and lead to higher parameter accuracy than when learning CPTs.

  12. Systems Modeling to Implement Integrated System Health Management Capability

    Science.gov (United States)

    Figueroa, Jorge F.; Walker, Mark; Morris, Jonathan; Smith, Harvey; Schmalzel, John

    2007-01-01

    ISHM capability includes: detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, and user interfaces that enable integrated awareness (past, present, and future) by users. This is achieved by focused management of data, information and knowledge (DIaK) that will likely be distributed across networks. Management of DIaK implies storage, sharing (timely availability), maintaining, evolving, and processing. Processing of DIaK encapsulates strategies, methodologies, algorithms, etc. focused on achieving high ISHM Functional Capability Level (FCL). High FCL means a high degree of success in detecting anomalies, diagnosing causes, predicting future anomalies, and enabling health integrated awareness by the user. A model that enables ISHM capability, and hence, DIaK management, is denominated the ISHM Model of the System (IMS). We describe aspects of the IMS that focus on processing of DIaK. Strategies, methodologies, and algorithms require proper context. We describe an approach to define and use contexts, implementation in an object-oriented software environment (G2), and validation using actual test data from a methane thruster test program at NASA SSC. Context is linked to existence of relationships among elements of a system. For example, the context to use a strategy to detect leak is to identify closed subsystems (e.g. bounded by closed valves and by tanks) that include pressure sensors, and check if the pressure is changing. We call these subsystems Pressurizable Subsystems. If pressure changes are detected, then all members of the closed subsystem become suspect of leakage. In this case, the context is defined by identifying a subsystem that is suitable for applying a strategy. Contexts are defined in many ways. Often, a context is defined by relationships of function (e.g. liquid flow, maintaining pressure, etc.), form (e.g. part of the same component, connected to other components, etc.), or space (e.g. physically close

  13. MODELLING OF NON-ROAD TRANSIENT CYCLE

    Directory of Open Access Journals (Sweden)

    Martin Kotus

    2013-12-01

    Full Text Available The paper describes the modeling of NRTC (Non-Road Transient Cycle test procedure based on previously measured characteristics of fuel consumption, carbon monoxide (CO, carbon dioxide (CO2, hydrocarbons (HC, nitrogen oxides (NOx and particulates (PM production. It makes possible to compare the current technical condition of an internal combustion engine of an agricultural tractor with its previous state or other tractor’s engine. Based on measured characteristics, it is also possible to model any other cycle without further measurements (NRSC test procedure, cycle for specific conditions – mountain tractor, etc.. The result may thus contribute to improving the environment by reducing the production of harmful substances emitted into the air and save money due to reduced fuel consumption.

  14. Superior supercapacitors based on nitrogen and sulfur co-doped hierarchical porous carbon: Excellent rate capability and cycle stability

    Science.gov (United States)

    Zhang, Deyi; Han, Mei; Wang, Bing; Li, Yubing; Lei, Longyan; Wang, Kunjie; Wang, Yi; Zhang, Liang; Feng, Huixia

    2017-08-01

    Vastly improving the charge storage capability of supercapacitors without sacrificing their high power density and cycle performance would bring bright application prospect. Herein, we report a nitrogen and sulfur co-doped hierarchical porous carbon (NSHPC) with very superior capacitance performance fabricated by KOH activation of nitrogen and sulfur co-doped ordered mesoporous carbon (NSOMC). A high electrochemical double-layer (EDL) capacitance of 351 F g-1 was observed for the reported NSHPC electrodes, and the capacitance remains at 288 F g-1 even under a large current density of 20 A g-1. Besides the high specific capacitance and outstanding rate capability, symmetrical supercapacitor cell based on the NSHPC electrodes also exhibits an excellent cycling performance with 95.61% capacitance retention after 5000 times charge/discharge cycles. The large surface area caused by KOH activation (2056 m2 g-1) and high utilized surface area owing to the ideal micro/mesopores ratio (2.88), large micropores diameter (1.38 nm) and short opened micropores structure as well as the enhanced surface wettability induced by N and S heteroatoms doping and improved conductivity induced by KOH activation was found to be responsible for the very superior capacitance performance.

  15. Real Business-cycle Model with Habits

    DEFF Research Database (Denmark)

    Khorunzhina, Natalia

    2015-01-01

    This paper empirically investigates the ability of a real business-cycle model with nonseparabilities in consumption and leisure and external habits both in consumption and leisure to fit the postwar US data. The results indicate a strong but fast-dying habit in leisure, and a somewhat weaker...

  16. Modelling the Krebs cycle and oxidative phosphorylation.

    Science.gov (United States)

    Korla, Kalyani; Mitra, Chanchal K

    2014-01-01

    The Krebs cycle and oxidative phosphorylation are the two most important sets of reactions in a eukaryotic cell that meet the major part of the total energy demands of a cell. In this paper, we present a computer simulation of the coupled reactions using open source tools for simulation. We also show that it is possible to model the Krebs cycle with a simple black box with a few inputs and outputs. However, the kinetics of the internal processes has been modelled using numerical tools. We also show that the Krebs cycle and oxidative phosphorylation together can be combined in a similar fashion - a black box with a few inputs and outputs. The Octave script is flexible and customisable for any chosen set-up for this model. In several cases, we had no explicit idea of the underlying reaction mechanism and the rate determining steps involved, and we have used the stoichiometric equations that can be easily changed as and when more detailed information is obtained. The script includes the feedback regulation of the various enzymes of the Krebs cycle. For the electron transport chain, the pH gradient across the membrane is an essential regulator of the kinetics and this has been modelled empirically but fully consistent with experimental results. The initial conditions can be very easily changed and the simulation is potentially very useful in a number of cases of clinical importance.

  17. CFTSIM-ITER dynamic fuel cycle model

    International Nuclear Information System (INIS)

    Busigin, A.; Gierszewski, P.

    1998-01-01

    Dynamic system models have been developed for specific tritium systems with considerable detail and for integrated fuel cycles with lesser detail (e.g. D. Holland, B. Merrill, Analysis of tritium migration and deposition in fusion reactor systems, Proceedings of the Ninth Symposium Eng. Problems of Fusion Research (1981); M.A. Abdou, E. Vold, C. Gung, M. Youssef, K. Shin, DT fuel self-sufficiency in fusion reactors, Fusion Technol. (1986); G. Spannagel, P. Gierszewski, Dynamic tritium inventory of a NET/ITER fuel cycle with lithium salt solution blanket, Fusion Eng. Des. (1991); W. Kuan, M.A. Abdou, R.S. Willms, Dynamic simulation of a proposed ITER tritium processing system, Fusion Technol. (1995)). In order to provide a tool to understand and optimize the behavior of the ITER fuel cycle, a dynamic fuel cycle model called CFTSIM is under development. The CFTSIM code incorporates more detailed ITER models, specifically for the important isotope separation system, and also has an easier-to-use graphical interface. This paper provides an overview of CFTSIM Version 1.0. The models included are those with significant and varying tritium inventories over a test campaign: fueling, plasma and first wall, pumping, fuel cleanup, isotope separation and storage. An illustration of the results is shown. (orig.)

  18. A model for global cycling of tritium

    International Nuclear Information System (INIS)

    Killough, G.G.; Kocher, D.C.

    1988-01-01

    Dynamic compartment models are widely used to describe global cycling of radionuclides for purposes of dose estimation. In this paper the authors present a new global tritium model that reproduces environmental time-series data on concentrations in precipitation, ocean surface waters, and surface fresh waters in the northern hemisphere, concentrations of atmospheric tritium in the southern hemisphere, and the latitude dependence of tritium in both hemispheres. Names TRICYCLE (for TRItium CYCLE) the model is based on the global hydrologic cycle and includes hemispheric stratospheric compartments, disaggregation of the troposphere and ocean surface waters into eight latitude zones, consideration of the different concentrations of atmospheric tritium over land and over the ocean, and a diffusive model for transport in the ocean. TRICYCLE reproduces the environmental data if it is assumed that about 50% of the tritium from atmospheric weapons testing was injected directly into the northern stratosphere as HTO. The model's latitudinal disaggregation permits taking into account the distribution of population. For a uniformly distributed release of HTO into the worldwide troposphere, TRICYCLE predicts a collective dose commitment to the world population that exceeds the NCRP model's corresponding prediction by a factor of three

  19. A model for global cycling of tritium

    International Nuclear Information System (INIS)

    Killough, G.G.; Kocher, D.C.

    1988-01-01

    Dynamic compartment models are widely used to describe global cycling of radionuclides for purposes of dose estimation. In this paper, we present a new global tritium model that reproduces environmental time-series data on concentrations in precipitation, ocean surface waters, and surface fresh waters in the northern hemisphere, concentrations of atmospheric tritium in the soutehrn hemisphere, and the latitude dependence of tritium in both hemispheres. Named TRICYCLE for Tritium CYCLE, the model is based on the global hydrologic cycle and includes hemisphereic stratospheric compartments, disaggregation of the troposphere and ocean surface waters into eight latitudezones, consideration of the different concentrations of atmospheric tritium over land and over the ocean, and a diffusive model for transport in the ocean. TRICYCLE reproduces the environmental data if we assume that about 50% of the tritium from atmospheric weapons testing was injected directly into the northern stratosphere as HTO. The models latitudinal disaggregation permits taking into account the distribution of population. For a unfiormaly distributed release of HTO into the worldwide troposphere, TRICYCLE predicts a collective dose commitment to the world population that exceeds the corresponding prediction by the NCRP model by about a factor of 3. 11 refs., 5 figs., 1 tab

  20. Modeling Cycle Dependence in Credit Insurance

    Directory of Open Access Journals (Sweden)

    Anisa Caja

    2014-03-01

    Full Text Available Business and credit cycles have an impact on credit insurance, as they do on other businesses. Nevertheless, in credit insurance, the impact of the systemic risk is even more important and can lead to major losses during a crisis. Because of this, the insurer surveils and manages policies almost continuously. The management actions it takes limit the consequences of a downturning cycle. However, the traditional modeling of economic capital does not take into account this important feature of credit insurance. This paper proposes a model aiming to estimate future losses of a credit insurance portfolio, while taking into account the insurer’s management actions. The model considers the capacity of the credit insurer to take on less risk in the case of a cycle downturn, but also the inverse, in the case of a cycle upturn; so, losses are predicted with a more dynamic perspective. According to our results, the economic capital is over-estimated when not considering the management actions of the insurer.

  1. Limit Cycles in Predator-Prey Models

    OpenAIRE

    Puchuri Medina, Liliana

    2017-01-01

    The classic Lotka-Volterra model belongs to a family of differential equations known as “Generalized Lotka-Volterra”, which is part of a classification of four models of quadratic fields with center. These models have been studied to address the Hilbert infinitesimal problem, which consists in determine the number of limit cycles of a perturbed hamiltonian system with center. In this work, we first present an alternative proof of the existence of centers in Lotka-Volterra predator-prey models...

  2. The Information Warfare Life Cycle Model

    Directory of Open Access Journals (Sweden)

    Brett van Niekerk

    2011-11-01

    Full Text Available Information warfare (IW is a dynamic and developing concept, which constitutes a number of disciplines. This paper aims to develop a life cycle model for information warfare that is applicable to all of the constituent disciplines. The model aims to be scalable and applicable to civilian and military incidents where information warfare tactics are employed. Existing information warfare models are discussed, and a new model is developed from the common aspects of these existing models. The proposed model is then applied to a variety of incidents to test its applicability and scalability. The proposed model is shown to be applicable to multiple disciplines of information warfare and is scalable, thus meeting the objectives of the model.

  3. The Information Warfare Life Cycle Model

    Directory of Open Access Journals (Sweden)

    Brett van Niekerk

    2011-03-01

    Full Text Available Information warfare (IW is a dynamic and developing concept, which constitutes a number of disciplines. This paper aims to develop a life cycle model for information warfare that is applicable to all of the constituent disciplines. The model aims to be scalable and applicable to civilian and military incidents where information warfare tactics are employed. Existing information warfare models are discussed, and a new model is developed from the common aspects of these existing models. The proposed model is then applied to a variety of incidents to test its applicability and scalability. The proposed model is shown to be applicable to multiple disciplines of information warfare and is scalable, thus meeting the objectives of the model.

  4. A model based lean approach to capability management

    CSIR Research Space (South Africa)

    Venter, Jacobus P

    2017-09-01

    Full Text Available It is argued that the definition of the required operational capabilities in the short and long term is an essential element of command. Defence Capability Management can be a cumbersome, long and very resource intensive activity. Given the new...

  5. Modeling and analysis of advanced binary cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, K.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  6. Quantitative Model for Supply Chain Visibility: Process Capability Perspective

    Directory of Open Access Journals (Sweden)

    Youngsu Lee

    2016-01-01

    Full Text Available Currently, the intensity of enterprise competition has increased as a result of a greater diversity of customer needs as well as the persistence of a long-term recession. The results of competition are becoming severe enough to determine the survival of company. To survive global competition, each firm must focus on achieving innovation excellence and operational excellence as core competency for sustainable competitive advantage. Supply chain management is now regarded as one of the most effective innovation initiatives to achieve operational excellence, and its importance has become ever more apparent. However, few companies effectively manage their supply chains, and the greatest difficulty is in achieving supply chain visibility. Many companies still suffer from a lack of visibility, and in spite of extensive research and the availability of modern technologies, the concepts and quantification methods to increase supply chain visibility are still ambiguous. Based on the extant researches in supply chain visibility, this study proposes an extended visibility concept focusing on a process capability perspective and suggests a more quantitative model using Z score in Six Sigma methodology to evaluate and improve the level of supply chain visibility.

  7. Innovation and dynamic capabilities of the firm: Defining an assessment model

    Directory of Open Access Journals (Sweden)

    André Cherubini Alves

    2017-05-01

    Full Text Available Innovation and dynamic capabilities have gained considerable attention in both academia and practice. While one of the oldest inquiries in economic and strategy literature involves understanding the features that drive business success and a firm’s perpetuity, the literature still lacks a comprehensive model of innovation and dynamic capabilities. This study presents a model that assesses firms’ innovation and dynamic capabilities perspectives based on four essential capabilities: development, operations, management, and transaction capabilities. Data from a survey of 1,107 Brazilian manufacturing firms were used for empirical testing and discussion of the dynamic capabilities framework. Regression and factor analyses validated the model; we discuss the results, contrasting with the dynamic capabilities’ framework. Operations Capability is the least dynamic of all capabilities, with the least influence on innovation. This reinforces the notion that operations capabilities as “ordinary capabilities,” whereas management, development, and transaction capabilities better explain firms’ dynamics and innovation.

  8. Physical model of the nuclear fuel cycle simulation code SITON

    International Nuclear Information System (INIS)

    Brolly, Á.; Halász, M.; Szieberth, M.; Nagy, L.; Fehér, S.

    2017-01-01

    Finding answers to main challenges of nuclear energy, like resource utilisation or waste minimisation, calls for transient fuel cycle modelling. This motivation led to the development of SITON v2.0 a dynamic, discrete facilities/discrete materials and also discrete events fuel cycle simulation code. The physical model of the code includes the most important fuel cycle facilities. Facilities can be connected flexibly; their number is not limited. Material transfer between facilities is tracked by taking into account 52 nuclides. Composition of discharged fuel is determined using burnup tables except for the 2400 MW thermal power design of the Gas-Cooled Fast Reactor (GFR2400). For the GFR2400 the FITXS method is used, which fits one-group microscopic cross-sections as polynomial functions of the fuel composition. This method is accurate and fast enough to be used in fuel cycle simulations. Operation of the fuel cycle, i.e. material requests and transfers, is described by discrete events. In advance of the simulation reactors and plants formulate their requests as events; triggered requests are tracked. After that, the events are simulated, i.e. the requests are fulfilled and composition of the material flow between facilities is calculated. To demonstrate capabilities of SITON v2.0, a hypothetical transient fuel cycle is presented in which a 4-unit VVER-440 reactor park was replaced by one GFR2400 that recycled its own spent fuel. It is found that the GFR2400 can be started if the cooling time of its spent fuel is 2 years. However, if the cooling time is 5 years it needs an additional plutonium feed, which can be covered from the spent fuel of a Generation III light water reactor.

  9. Soil Carbon and Nitrogen Cycle Modeling

    Science.gov (United States)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased

  10. Systems Security Engineering Capability Maturity Model (SSECMM), Model Description, Version 1.1

    National Research Council Canada - National Science Library

    1997-01-01

    This document is designed to acquaint the reader with the SSE-CMM Project as a whole and present the project's major work product - the Systems Security Engineering Capability Maturity Model (SSE- CMM...

  11. An isopycnic ocean carbon cycle model

    Directory of Open Access Journals (Sweden)

    K. M. Assmann

    2010-02-01

    Full Text Available The carbon cycle is a major forcing component in the global climate system. Modelling studies, aiming to explain recent and past climatic changes and to project future ones, increasingly include the interaction between the physical and biogeochemical systems. Their ocean components are generally z-coordinate models that are conceptually easy to use but that employ a vertical coordinate that is alien to the real ocean structure. Here, we present first results from a newly-developed isopycnic carbon cycle model and demonstrate the viability of using an isopycnic physical component for this purpose. As expected, the model represents well the interior ocean transport of biogeochemical tracers and produces realistic tracer distributions. Difficulties in employing a purely isopycnic coordinate lie mainly in the treatment of the surface boundary layer which is often represented by a bulk mixed layer. The most significant adjustments of the ocean biogeochemistry model HAMOCC, for use with an isopycnic coordinate, were in the representation of upper ocean biological production. We present a series of sensitivity studies exploring the effect of changes in biogeochemical and physical processes on export production and nutrient distribution. Apart from giving us pointers for further model development, they highlight the importance of preformed nutrient distributions in the Southern Ocean for global nutrient distributions. The sensitivity studies show that iron limitation for biological particle production, the treatment of light penetration for biological production, and the role of diapycnal mixing result in significant changes of nutrient distributions and liniting factors of biological production.

  12. Modeling of the Global Water Cycle - Analytical Models

    Science.gov (United States)

    Yongqiang Liu; Roni Avissar

    2005-01-01

    Both numerical and analytical models of coupled atmosphere and its underlying ground components (land, ocean, ice) are useful tools for modeling the global and regional water cycle. Unlike complex three-dimensional climate models, which need very large computing resources and involve a large number of complicated interactions often difficult to interpret, analytical...

  13. Improvement of Cycle Dependent Core Model for NPP Simulator

    International Nuclear Information System (INIS)

    Song, J. S.; Koo, B. S.; Kim, H. Y. and others

    2003-11-01

    The purpose of this study is to establish automatic core model generation system and to develop 4 cycle real time core analysis methodology with 5% power distribution and 500 pcm reactivity difference criteria for nuclear power plant simulator. The standardized procedure to generate database from ROCS and ANC, which are used for domestic PWR core design, was established for the cycle specific simulator core model generation. An automatic data interface system to generate core model also established. The system includes ARCADIS which edits group constant and DHCGEN which generates interface coupling coefficient correction database. The interface coupling coefficient correction method developed in this study has 4 cycle real time capability and accuracies of which the maximum differences between core design results are within 103 pcm reactivity, 1% relative power distribution and 6% control rod worth. A nuclear power plant core simulation program R-MASTER was developed using the methodology and applied by the concept of distributed client system in simulator. The performance was verified by site acceptance test in Simulator no. 2 in Kori Training Center for 30 initial condition generation and 27 steady state, transient and postulated accident situations

  14. Improvement of Cycle Dependent Core Model for NPP Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Song, J. S.; Koo, B. S.; Kim, H. Y. and others

    2003-11-15

    The purpose of this study is to establish automatic core model generation system and to develop 4 cycle real time core analysis methodology with 5% power distribution and 500 pcm reactivity difference criteria for nuclear power plant simulator. The standardized procedure to generate database from ROCS and ANC, which are used for domestic PWR core design, was established for the cycle specific simulator core model generation. An automatic data interface system to generate core model also established. The system includes ARCADIS which edits group constant and DHCGEN which generates interface coupling coefficient correction database. The interface coupling coefficient correction method developed in this study has 4 cycle real time capability and accuracies of which the maximum differences between core design results are within 103 pcm reactivity, 1% relative power distribution and 6% control rod worth. A nuclear power plant core simulation program R-MASTER was developed using the methodology and applied by the concept of distributed client system in simulator. The performance was verified by site acceptance test in Simulator no. 2 in Kori Training Center for 30 initial condition generation and 27 steady state, transient and postulated accident situations.

  15. Interannual Variability of the Tropical Water Cycle: Capabilities in the TRMM Era and Challenges for GPM

    Science.gov (United States)

    Robertson, Franklin R.

    2003-01-01

    closely with the TMI time series, yet the PR rainfall interannual variability (and attenuation derived predominantly from reflectivity) differs even in sign. We will explore these apparent inconsistencies and detail their impact on estimates of how ENSO events perturb the tropical rainfall. We will place these results in perspective by considering requirements for precipitation accuracy for global climate variability and change studies involving ENSO, monsoon dynamics and variations, and climate model improvement and validation. The discussion will conclude with an assessment of the implications of these findings for Global Precipitation Mission (GPM) requirements.

  16. Validation of a mathematical model of the bovine estrous cycle for cows with different estrous cycle characteristics.

    Science.gov (United States)

    Boer, H M T; Butler, S T; Stötzel, C; Te Pas, M F W; Veerkamp, R F; Woelders, H

    2017-11-01

    A recently developed mechanistic mathematical model of the bovine estrous cycle was parameterized to fit empirical data sets collected during one estrous cycle of 31 individual cows, with the main objective to further validate the model. The a priori criteria for validation were (1) the resulting model can simulate the measured data correctly (i.e. goodness of fit), and (2) this is achieved without needing extreme, probably non-physiological parameter values. We used a least squares optimization procedure to identify parameter configurations for the mathematical model to fit the empirical in vivo measurements of follicle and corpus luteum sizes, and the plasma concentrations of progesterone, estradiol, FSH and LH for each cow. The model was capable of accommodating normal variation in estrous cycle characteristics of individual cows. With the parameter sets estimated for the individual cows, the model behavior changed for 21 cows, with improved fit of the simulated output curves for 18 of these 21 cows. Moreover, the number of follicular waves was predicted correctly for 18 of the 25 two-wave and three-wave cows, without extreme parameter value changes. Estimation of specific parameters confirmed results of previous model simulations indicating that parameters involved in luteolytic signaling are very important for regulation of general estrous cycle characteristics, and are likely responsible for differences in estrous cycle characteristics between cows.

  17. Evaluation of the Predictive Capabilities of a Phenomenological Combustion Model for Natural Gas SI Engine

    Directory of Open Access Journals (Sweden)

    Toman Rastislav

    2017-12-01

    Full Text Available The current study evaluates the predictive capabilities of a new phenomenological combustion model, available as a part of the GT-Suite software package. It is comprised of two main sub-models: 0D model of in-cylinder flow and turbulence, and turbulent SI combustion model. The 0D in-cylinder flow model (EngCylFlow uses a combined K-k-ε kinetic energy cascade approach to predict the evolution of the in-cylinder charge motion and turbulence, where K and k are the mean and turbulent kinetic energies, and ε is the turbulent dissipation rate. The subsequent turbulent combustion model (EngCylCombSITurb gives the in-cylinder burn rate; based on the calculation of flame speeds and flame kernel development. This phenomenological approach reduces significantly the overall computational effort compared to the 3D-CFD, thus allowing the computation of full engine operating map and the vehicle driving cycles. Model was calibrated using a full map measurement from a turbocharged natural gas SI engine, with swirl intake ports. Sensitivity studies on different calibration methods, and laminar flame speed sub-models were conducted. Validation process for both the calibration and sensitivity studies was concerning the in-cylinder pressure traces and burn rates for several engine operation points achieving good overall results.

  18. Comparative analysis of Goodwin's business cycle models

    Science.gov (United States)

    Antonova, A. O.; Reznik, S.; Todorov, M. D.

    2016-10-01

    We compare the behavior of solutions of Goodwin's business cycle equation in the form of neutral delay differential equation with fixed delay (NDDE model) and in the form of the differential equations of 3rd, 4th and 5th orders (ODE model's). Such ODE model's (Taylor series expansion of NDDE in powers of θ) are proposed in N. Dharmaraj and K. Vela Velupillai [6] for investigation of the short periodic sawthooth oscillations in NDDE. We show that the ODE's of 3rd, 4th and 5th order may approximate the asymptotic behavior of only main Goodwin's mode, but not the sawthooth modes. If the order of the Taylor series expansion exceeds 5, then the approximate ODE becomes unstable independently of time lag θ.

  19. Modeling closed nuclear fuel cycles processes

    Energy Technology Data Exchange (ETDEWEB)

    Shmidt, O.V. [A.A. Bochvar All-Russian Scientific Research Institute for Inorganic Materials, Rogova, 5a street, Moscow, 123098 (Russian Federation); Makeeva, I.R. [Zababakhin All-Russian Scientific Research Institute of Technical Physics, Vasiliev street 13, Snezhinsk, Chelyabinsk region, 456770 (Russian Federation); Liventsov, S.N. [Tomsk Polytechnic University, Tomsk, Lenin Avenue, 30, 634050 (Russian Federation)

    2016-07-01

    Computer models of processes are necessary for determination of optimal operating conditions for closed nuclear fuel cycle (NFC) processes. Computer models can be quickly changed in accordance with new and fresh data from experimental research. 3 kinds of process simulation are necessary. First, the VIZART software package is a balance model development used for calculating the material flow in technological processes. VIZART involves taking into account of equipment capacity, transport lines and storage volumes. Secondly, it is necessary to simulate the physico-chemical processes that are involved in the closure of NFC. The third kind of simulation is the development of software that allows the optimization, diagnostics and control of the processes which implies real-time simulation of product flows on the whole plant or on separate lines of the plant. (A.C.)

  20. Models of life: epigenetics, diversity and cycles

    Science.gov (United States)

    Sneppen, Kim

    2017-04-01

    This review emphasizes aspects of biology that can be understood through repeated applications of simple causal rules. The selected topics include perspectives on gene regulation, phage lambda development, epigenetics, microbial ecology, as well as model approaches to diversity and to punctuated equilibrium in evolution. Two outstanding features are repeatedly described. One is the minimal number of rules to sustain specific states of complex systems for a long time. The other is the collapse of such states and the subsequent dynamical cycle of situations that restitute the system to a potentially new metastable state.

  1. Three-dimensional graphene foam supported Fe₃O₄ lithium battery anodes with long cycle life and high rate capability.

    Science.gov (United States)

    Luo, Jingshan; Liu, Jilei; Zeng, Zhiyuan; Ng, Chi Fan; Ma, Lingjie; Zhang, Hua; Lin, Jianyi; Shen, Zexiang; Fan, Hong Jin

    2013-01-01

    Fe3O4 has long been regarded as a promising anode material for lithium ion battery due to its high theoretical capacity, earth abundance, low cost, and nontoxic properties. However, up to now no effective and scalable method has been realized to overcome the bottleneck of poor cyclability and low rate capability. In this article, we report a bottom-up strategy assisted by atomic layer deposition to graft bicontinuous mesoporous nanostructure Fe3O4 onto three-dimensional graphene foams and directly use the composite as the lithium ion battery anode. This electrode exhibits high reversible capacity and fast charging and discharging capability. A high capacity of 785 mAh/g is achieved at 1C rate and is maintained without decay up to 500 cycles. Moreover, the rate of up to 60C is also demonstrated, rendering a fast discharge potential. To our knowledge, this is the best reported rate performance for Fe3O4 in lithium ion battery to date.

  2. An Empirical Competence-Capability Model of Supply Chain Innovation

    OpenAIRE

    Mandal, Santanu

    2016-01-01

    Supply chain innovation has become the new pre-requisite for the survival of firms in developing capabilities and strategies for sustaining their operations and performance in the market. This study investigates the influence of supply and demand competence on supply chain innovation and its influence on a firm’s operational and relational performance. While the former competence refers to production and supply management related activities, the latter refers to distribution and demand manage...

  3. Modeling the element cycle of aquatic plants

    International Nuclear Information System (INIS)

    Asaeda, Takashi

    2007-01-01

    Aquatic plants play an important role in element cycles in wetlands and the efficiency of the process is extremely related to their proportional biomass allocation to above- and belowground organs. Therefore, the framework of most macrophyte productivity models is usually similar with a mass-balance approach consisting of gross production, respiration and mortality losses and the translocation between organs. These growth models are incorporated with decomposition models to evaluate the annual cycle of elements. Perennial emergent macrophytes with a relatively large biomass have a particularly important role in element cycles. Their phenological stages, such as the beginning of hibernation of belowground rhizome systems, emergence of new shoots in spring with resources stocked in the rhizomes, flowering, downward translocation of photosynthetic products later on and then the mortality of the aboveground system in late autumn, depend on the environmental conditions, basically the nutrients, water depth, climatic variations, etc. Although some species retain standing dead shoots for a long time, dead shoots easily fall into water, starting to decompose in the immediate aftermath. However, their decomposition rates in the water are relatively low, causing to accumulate large amounts of organic sediments on the bottom. Together with the deposition of allochthonous suspended matters in the stand, this process decreases the water depth, transforming wetlands gradually into land. The depth of penetration of roots into the sediments to uptake nutrients and water is extremely site specific, however, in water-logged areas, the maximum penetrable depth may be approximately estimated by considering the ability of oxygen transport into the rhizome system. The growth of perennial submerged plants is also estimated by a process similar to that of emergent macrophytes. However, compared with emergent macrophytes, the root system of submerged macrophytes is weaker, and the nutrient

  4. Modeling of a combined cycle power plant

    International Nuclear Information System (INIS)

    Faridah Mohamad Idris

    2001-01-01

    The combined cycle power plant is a non-linear, closed loop system, which consists of high-pressure (HP) superheater, HP evaporator, HP economizer, low-pressure (LP) evaporator, HP drum, HP deaerator, condenser, HP and LP steam turbine and gas turbine. The two types of turbines in the plant for example the gas turbine and the HP and LP steam turbines operate concurrently to generate power to the plant. The exhaust gas which originate from the combustion chamber drives the gas turbine, after which it flows into the heat recovery steam generator (HRSG) to generate superheated steam to be used in driving the HP and LP steam turbines. In this thesis, the combined cycle power plant is modeled at component level using the physical method. Assuming that there is delay in transport, except for the gas turbine system, the mass and heat balances are applied on the components of the plant to derive the governing equations of the components. These time dependent equations, which are of first order differential types, are then solved for the mass and enthalpy of the components. The solutions were simulated using Matlab Simulink using measured plant data. Where necessary there is no plant data available, approximated data were used. The generalized regression neural networks are also used to generate extra sets of simulation data for the HRSG system. Comparisons of the simulation results with its corresponding plant data showed good agreements between the two and indicated that the models developed for the components could be used to represent the combined cycle power plant under study. (author)

  5. Capabilities and requirements for modelling radionuclide transport in the geosphere

    International Nuclear Information System (INIS)

    Paige, R.W.; Piper, D.

    1989-02-01

    This report gives an overview of geosphere flow and transport models suitable for use by the Department of the Environment in the performance assessment of radioactive waste disposal sites. An outline methodology for geosphere modelling is proposed, consisting of a number of different types of model. A brief description of each of the component models is given, indicating the purpose of the model, the processes being modelled and the methodologies adopted. Areas requiring development are noted. (author)

  6. Evaluation of environmental management cost estimating capabilities for the subject area ''Life-cycle economics for radioactive waste management and environmental remediation''

    International Nuclear Information System (INIS)

    Hombach, W.G.

    1995-01-01

    This paper provides a comprehensive perspective on the scope of Environmental Management (EM) activities and on the existing capability to estimate their costs. The scope is defined in terms of both activities and associated cost driving factors. The capability to estimate this scope was determined by evaluating existing cost estimating tools identified through a survey of the US Department of Energy (DOE), the US Department of Defense (DoD), the US Environmental Protection Agency, and private industry. This paper is largely based on the results of a report produced for the Office of the Secretary of Defense, US Department of Defense, entitled, Evaluation of Environmental Management Cost-Estimating Capabilities of Major Defense Acquisition Programs, March 22, 1995. The DoD sponsored report was designed to have a broad application relevant not only to DoD, but to other government agencies, and industry. In addition to DoD, it has particular application to DOE because significant portions of the analyses and data were derived from DOE environmental management databases, cost models, reports, and work breakdown structures. This paper provides the basis used and methodology employed to conduct an evaluations of selected EM cost estimating tools. The following topics are discussed: Life Cycle of EM Activities; Major Elements of EM Activities; Cost Tool Evaluation Matrix; Results of Cost Tool Evaluations; Cost Tool Development Plan

  7. Dynamic Simulation of Human Gait Model With Predictive Capability.

    Science.gov (United States)

    Sun, Jinming; Wu, Shaoli; Voglewede, Philip A

    2018-03-01

    In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.

  8. NGNP Data Management and Analysis System Modeling Capabilities

    International Nuclear Information System (INIS)

    Gentillon, Cynthia D.

    2009-01-01

    Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and identifying relationships among the measured quantities that contribute to their understanding.

  9. NGNP Data Management and Analysis System Modeling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Cynthia D. Gentillon

    2009-09-01

    Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and identifying relationships among the measured quantities that contribute to their understanding.

  10. Advanced capabilities for materials modelling with Quantum ESPRESSO

    Science.gov (United States)

    Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A., Jr.; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S.

    2017-11-01

    Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

  11. Advanced capabilities for materials modelling with Quantum ESPRESSO.

    Science.gov (United States)

    Andreussi, Oliviero; Brumme, Thomas; Bunau, Oana; Buongiorno Nardelli, Marco; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Cococcioni, Matteo; Colonna, Nicola; Carnimeo, Ivan; Dal Corso, Andrea; de Gironcoli, Stefano; Delugas, Pietro; DiStasio, Robert; Ferretti, Andrea; Floris, Andrea; Fratesi, Guido; Fugallo, Giorgia; Gebauer, Ralph; Gerstmann, Uwe; Giustino, Feliciano; Gorni, Tommaso; Jia, Junteng; Kawamura, Mitsuaki; Ko, Hsin-Yu; Kokalj, Anton; Küçükbenli, Emine; Lazzeri, Michele; Marsili, Margherita; Marzari, Nicola; Mauri, Francesco; Nguyen, Ngoc Linh; Nguyen, Huy-Viet; Otero-de-la-Roza, Alberto; Paulatto, Lorenzo; Poncé, Samuel; Giannozzi, Paolo; Rocca, Dario; Sabatini, Riccardo; Santra, Biswajit; Schlipf, Martin; Seitsonen, Ari Paavo; Smogunov, Alexander; Timrov, Iurii; Thonhauser, Timo; Umari, Paolo; Vast, Nathalie; Wu, Xifan; Baroni, Stefano

    2017-09-27

    Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software. © 2017 IOP Publishing Ltd.

  12. Long-term predictive capability of erosion models

    Science.gov (United States)

    Veerabhadra, P.; Buckley, D. H.

    1983-01-01

    A brief overview of long-term cavitation and liquid impingement erosion and modeling methods proposed by different investigators, including the curve-fit approach is presented. A table was prepared to highlight the number of variables necessary for each model in order to compute the erosion-versus-time curves. A power law relation based on the average erosion rate is suggested which may solve several modeling problems.

  13. A user's guide to the SASSYS-1 control system modeling capability

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1987-06-01

    This report describes a control system modeling capability that has been developed for the analysis of control schemes for advanced liquid metal reactors. The general class of control equations that can be represented using the modeling capability is identified, and the numerical algorithms used to solve these equations are described. The modeling capability has been implemented in the SASSYS-1 systems analysis code. A description of the card input, a sample input deck and some guidelines for running the code are given

  14. sensitivity analysis on flexible road pavement life cycle cost model

    African Journals Online (AJOL)

    user

    of sensitivity analysis on a developed flexible pavement life cycle cost model using varying discount rate. The study .... organizations and specific projects needs based. Life-cycle ... developed and completed urban road infrastructure corridor ...

  15. Integrated corporate structure life cycle management modeling and organization

    OpenAIRE

    Naumenko, M.; Morozova, L.

    2011-01-01

    Integrated business structure presented as complementary pool of its participants skills. The methodical approach to integrated business structure life cycle modeling proposed. Recommendations of enterprises life cycles stages correlate are submitted.

  16. The effect of varying plyometric volume on stretch-shortening cycle capability in collegiate male rugby players.

    Science.gov (United States)

    Jeffreys, Mark; De Ste Croix, Mark; Lloyd, Rhodri S; Oliver, Jon L; Hughes, Jonathan

    2017-03-25

    The purpose of this study was to identify the effectiveness of low and high volume plyometric loads on developing stretch shortening cycle capability in collegiate rugby players. A between- group repeated measures design was used. Thirty six subjects (age 20.3 ±1.6 yrs, mass 91.63 ±10.36kg, stature 182.03 ±5.24cm) were randomly assigned to one of three groups, a control group (CG), a low volume plyometric group (LPG) or a high volume plyometric group (HPG). Data were collected from a force plate, and measures of reactive strength index (RSI) and leg stiffness were calculated from jump height, contact time and flight time. A significant between group × time (F = 4.01, P plyometric program. The low volume program elicited the same performance improvement in RSI as a high volume program whilst undertaking a lower dose. This suggests that strength and conditioning coaches may be able to benefit from the ability to develop more time efficient and effective plyometric programs.

  17. The Creation and Use of an Analysis Capability Maturity Model (trademark) (ACMM)

    National Research Council Canada - National Science Library

    Covey, R. W; Hixon, D. J

    2005-01-01

    .... Capability Maturity Models (trademark) (CMMs) are being used in several intellectual endeavors, such as software engineering, software acquisition, and systems engineering. This Analysis CMM (ACMM...

  18. On the predictive capabilities of multiphase Darcy flow models

    KAUST Repository

    Icardi, Matteo; Prudhomme, Serge

    2016-01-01

    Darcy s law is a widely used model and the limit of its validity is fairly well known. When the flow is sufficiently slow and the porosity relatively homogeneous and low, Darcy s law is the homogenized equation arising from the Stokes and Navier- Stokes equations and depends on a single effective parameter (the absolute permeability). However when the model is extended to multiphase flows, the assumptions are much more restrictive and less realistic. Therefore it is often used in conjunction with empirical models (such as relative permeability and capillary pressure curves), derived usually from phenomenological speculations and experimental data fitting. In this work, we present the results of a Bayesian calibration of a two-phase flow model, using high-fidelity DNS numerical simulation (at the pore-scale) in a realistic porous medium. These reference results have been obtained from a Navier-Stokes solver coupled with an explicit interphase-tracking scheme. The Bayesian inversion is performed on a simplified 1D model in Matlab by using adaptive spectral method. Several data sets are generated and considered to assess the validity of this 1D model.

  19. On the predictive capabilities of multiphase Darcy flow models

    KAUST Repository

    Icardi, Matteo

    2016-01-09

    Darcy s law is a widely used model and the limit of its validity is fairly well known. When the flow is sufficiently slow and the porosity relatively homogeneous and low, Darcy s law is the homogenized equation arising from the Stokes and Navier- Stokes equations and depends on a single effective parameter (the absolute permeability). However when the model is extended to multiphase flows, the assumptions are much more restrictive and less realistic. Therefore it is often used in conjunction with empirical models (such as relative permeability and capillary pressure curves), derived usually from phenomenological speculations and experimental data fitting. In this work, we present the results of a Bayesian calibration of a two-phase flow model, using high-fidelity DNS numerical simulation (at the pore-scale) in a realistic porous medium. These reference results have been obtained from a Navier-Stokes solver coupled with an explicit interphase-tracking scheme. The Bayesian inversion is performed on a simplified 1D model in Matlab by using adaptive spectral method. Several data sets are generated and considered to assess the validity of this 1D model.

  20. The FIT Model - Fuel-cycle Integration and Tradeoffs

    International Nuclear Information System (INIS)

    Piet, Steven J.; Soelberg, Nick R.; Bays, Samuel E.; Pereira, Candido; Pincock, Layne F.; Shaber, Eric L.; Teague, Melissa C.; Teske, Gregory M.; Vedros, Kurt G.

    2010-01-01

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria - fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the 'system losses study' team that developed it (Shropshire2009, Piet2010) are an initial step by the FCR and D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R and D needs and set longer-term goals. The question originally posed to the 'system losses study' was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for 'minimum fuel treatment' approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.

  1. Development and Use of Life-Cycle Analysis Capabilities To Evaluate, Select, and Implement Plans to Accelerate Hanford Site Cleanup

    International Nuclear Information System (INIS)

    Shay, Michael R.; Johnson, Wayne L.; Frey, Jeffrey A.

    2004-01-01

    Over the past year the U.S. Department of Energy (DOE) has made significant progress in developing and executing plans to transform and accelerate cleanup of the Hanford Site. Notable progress has been in the cleanup of the River Corridor, including the relocation of spent nuclear fuel to the Central Plateau, and the stabilization of plutonium materials. However, difficult work still remains. DOE has already accelerated the completion of the Environmental Management (EM) cleanup mission from 2070 to 2035 and believes its completion can be achieved even sooner by reducing excess conservatism, substantively changing technical strategy and management approach, and making new front-end investments. Work is well under way in the detailed planning, analyses and decision making required to implement and support the execution of the accelerated cleanup program at Hanford. Various cleanup, contract, and regulatory approaches are being explored. DOE has instituted a process that allows DOE to efficiently explore and test alternative cleanup approaches using a life-cycle model. This paper provides a means to share the planning approach and the life-cycle modeling and analysis tools used with other sites and interested parties. This paper will be of particular interest to analysts performing similar planning and evaluations at other sites as well as provide insight into the current status of Hanford's cleanup program and DOE's plans for the future

  2. Lattice Boltzmann model capable of mesoscopic vorticity computation

    Science.gov (United States)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  3. Computable general equilibrium model fiscal year 2013 capability development report

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    This report documents progress made on continued developments of the National Infrastructure Simulation and Analysis Center (NISAC) Computable General Equilibrium Model (NCGEM), developed in fiscal year 2012. In fiscal year 2013, NISAC the treatment of the labor market and tests performed with the model to examine the properties of the solutions computed by the model. To examine these, developers conducted a series of 20 simulations for 20 U.S. States. Each of these simulations compared an economic baseline simulation with an alternative simulation that assumed a 20-percent reduction in overall factor productivity in the manufacturing industries of each State. Differences in the simulation results between the baseline and alternative simulations capture the economic impact of the reduction in factor productivity. While not every State is affected in precisely the same way, the reduction in manufacturing industry productivity negatively affects the manufacturing industries in each State to an extent proportional to the reduction in overall factor productivity. Moreover, overall economic activity decreases when manufacturing sector productivity is reduced. Developers ran two additional simulations: (1) a version of the model for the State of Michigan, with manufacturing divided into two sub-industries (automobile and other vehicle manufacturing as one sub-industry and the rest of manufacturing as the other subindustry); and (2) a version of the model for the United States, divided into 30 industries. NISAC conducted these simulations to illustrate the flexibility of industry definitions in NCGEM and to examine the simulation properties of in more detail.

  4. Nuclear-fuel-cycle optimization: methods and modelling techniques

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1982-01-01

    This book present methods applicable to analyzing fuel-cycle logistics and optimization as well as in evaluating the economics of different reactor strategies. After an introduction to the phases of a fuel cycle, uranium cost trends are assessed in a global perspective. Subsequent chapters deal with the fuel-cycle problems faced by a power utility. The fuel-cycle models cover the entire cycle from the supply of uranium to the disposition of spent fuel. The chapter headings are: Nuclear Fuel Cycle, Uranium Supply and Demand, Basic Model of the LWR (light water reactor) Fuel Cycle, Resolution of Uncertainties, Assessment of Proliferation Risks, Multigoal Optimization, Generalized Fuel-Cycle Models, Reactor Strategy Calculations, and Interface with Energy Strategies. 47 references, 34 figures, 25 tables

  5. The Aviation System Analysis Capability Air Carrier Cost-Benefit Model

    Science.gov (United States)

    Gaier, Eric M.; Edlich, Alexander; Santmire, Tara S.; Wingrove, Earl R.., III

    1999-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. Therefore, NASA is developing the ability to evaluate the potential impact of various advanced technologies. By thoroughly understanding the economic impact of advanced aviation technologies and by evaluating how the new technologies will be used in the integrated aviation system, NASA aims to balance its aeronautical research program and help speed the introduction of high-leverage technologies. To meet these objectives, NASA is building the Aviation System Analysis Capability (ASAC). NASA envisions ASAC primarily as a process for understanding and evaluating the impact of advanced aviation technologies on the U.S. economy. ASAC consists of a diverse collection of models and databases used by analysts and other individuals from the public and private sectors brought together to work on issues of common interest to organizations in the aviation community. ASAC also will be a resource available to the aviation community to analyze; inform; and assist scientists, engineers, analysts, and program managers in their daily work. The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. Commercial air carriers, in particular, are an important stakeholder in this community. Therefore, to fully evaluate the implications of advanced aviation technologies, ASAC requires a flexible financial analysis tool that credibly links the technology of flight with the financial performance of commercial air carriers. By linking technical and financial information, NASA ensures that its technology programs will continue to benefit the user community. In addition, the analysis tool must be capable of being incorporated into the

  6. Capabilities for modelling of conversion processes in LCA

    DEFF Research Database (Denmark)

    Damgaard, Anders; Zarrin, Bahram; Tonini, Davide

    2015-01-01

    substances themselves change through a process chain. A good example of this is bio-refinery processes where different residual biomass products are converted through different steps into the final energy product. Here it is necessary to know the stoichiometry of the different products going in, and being...... little focus on the chemical composition of the functional flows, as flows in the models have mainly been tracked on a mass basis, as focus was on the function of the product and not the chemical composition of said product. Conversely modelling environmental technologies, such as wastewater treatment......, EASETECH (Clavreul et al., 2014) was developed which integrates a matrix approach for the functional unit which contains the full chemical composition for different material fractions, and also the number of different material fractions present in the overall mass being handled. These chemical substances...

  7. Research Opportunities from Emerging Atmospheric Observing and Modeling Capabilities.

    Science.gov (United States)

    Dabberdt, Walter F.; Schlatter, Thomas W.

    1996-02-01

    The Second Prospectus Development Team (PDT-2) of the U.S. Weather Research Program was charged with identifying research opportunities that are best matched to emerging operational and experimental measurement and modeling methods. The overarching recommendation of PDT-2 is that inputs for weather forecast models can best be obtained through the use of composite observing systems together with adaptive (or targeted) observing strategies employing both in situ and remote sensing. Optimal observing systems and strategies are best determined through a three-part process: observing system simulation experiments, pilot field measurement programs, and model-assisted data sensitivity experiments. Furthermore, the mesoscale research community needs easy and timely access to the new operational and research datasets in a form that can readily be reformatted into existing software packages for analysis and display. The value of these data is diminished to the extent that they remain inaccessible.The composite observing system of the future must combine synoptic observations, routine mobile observations, and targeted observations, as the current or forecast situation dictates. High costs demand fuller exploitation of commercial aircraft, meteorological and navigation [Global Positioning System (GPS)] satellites, and Doppler radar. Single observing systems must be assessed in the context of a composite system that provides complementary information. Maintenance of the current North American rawinsonde network is critical for progress in both research-oriented and operational weather forecasting.Adaptive sampling strategies are designed to improve large-scale and regional weather prediction but they will also improve diagnosis and prediction of flash flooding, air pollution, forest fire management, and other environmental emergencies. Adaptive measurements can be made by piloted or unpiloted aircraft. Rawinsondes can be launched and satellites can be programmed to make

  8. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ames, David E.,

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  9. Atomic scale modelling of materials of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Bertolus, M.

    2011-10-01

    This document written to obtain the French accreditation to supervise research presents the research I conducted at CEA Cadarache since 1999 on the atomic scale modelling of non-metallic materials involved in the nuclear fuel cycle: host materials for radionuclides from nuclear waste (apatites), fuel (in particular uranium dioxide) and ceramic cladding materials (silicon carbide). These are complex materials at the frontier of modelling capabilities since they contain heavy elements (rare earths or actinides), exhibit complex structures or chemical compositions and/or are subjected to irradiation effects: creation of point defects and fission products, amorphization. The objective of my studies is to bring further insight into the physics and chemistry of the elementary processes involved using atomic scale modelling and its coupling with higher scale models and experimental studies. This work is organised in two parts: on the one hand the development, adaptation and implementation of atomic scale modelling methods and validation of the approximations used; on the other hand the application of these methods to the investigation of nuclear materials under irradiation. This document contains a synthesis of the studies performed, orientations for future research, a detailed resume and a list of publications and communications. (author)

  10. In-vessel retention modeling capabilities in MAAP5

    International Nuclear Information System (INIS)

    Paik, Chan Y.; Lee, Sung Jin; Zhou, Quan; Luangdilok, W.; Reeves, R.W.; Henry, R.E.; Plys, M.; Scobel, J.H.

    2012-01-01

    Modular Accident Analysis Program (MAAP) is an integrated severe accident analysis code for both light water and heavy water reactors. New and improved models to address the complex phenomena associated with in-vessel retention (IVR) were incorporated into MAAP5.01. They include: -a) time-dependent volatile and non-volatile decay heat, -b) material properties at high temperatures, -c) finer vessel wall nodalization, -d) new correlations for natural convection heat transfer in the oxidic pool, -e) refined metal layer heat transfer to the reactor vessel wall and surroundings, -f) formation of a heavy metal layer, and -g) insulation cooling channel model and associated ex-vessel heat transfer and critical heat flux correlations. In this paper, the new and improved models in MAAP5.01 are described and sample calculation results are presented for the AP1000 passive plant. For the IVR evaluation, a transient calculation is useful because the timing of corium relocation, decaying heat load, and formation of separate layers in the lower plenum all affect integrity of the lower head. The key parameters affecting the IVR success are the metal layer emissivity and thickness of the top metal layer, which depends on the amount of steel in the oxidic pool and in the heavy metal layer. With the best estimate inputs for the debris mixing parameters in a conservative IVR scenario, the AP1000 plant results show that the maximum ex-vessel heat flux to CHF ratio is about 0.7, which occurs before 10.000 seconds when the decay heat is high. The AP1000 plant results demonstrate how MAAP5.01 can be used to evaluate IVR and to gain insight into responses of the lower head during a severe accident

  11. NASA Air Force Cost Model (NAFCOM): Capabilities and Results

    Science.gov (United States)

    McAfee, Julie; Culver, George; Naderi, Mahmoud

    2011-01-01

    NAFCOM is a parametric estimating tool for space hardware. Uses cost estimating relationships (CERs) which correlate historical costs to mission characteristics to predict new project costs. It is based on historical NASA and Air Force space projects. It is intended to be used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels and estimates development and production costs. NAFCOM is applicable to various types of missions (crewed spacecraft, uncrewed spacecraft, and launch vehicles). There are two versions of the model: a government version that is restricted and a contractor releasable version.

  12. TRANSFORMATION OF THE STUDENTS’ INQUIRY CAPABILITY THROUGH MINDMAP EDUCATIVE BY USING GAME OBSERVATION NORMATIVELY (MEGONO LEARNING MODEL

    Directory of Open Access Journals (Sweden)

    Tasiwan Tasiwan

    2016-04-01

    Full Text Available This classroom action research was conducted to analyze the development of the students’ inquiry abilities in science learning by a learning model of mindmap educative by using game observation normatively (Megono. The study was conducted in three cycles. In each cycle, the students were divided into five groups, each groups consisted of seven students. Each group was mandated to observe and to analyze the images/photos. After the image observations, they were asked to discuss, write and compile the information into a concept map.  One of the students was act as a representative of the group in a game of observation. Data were obtained through the pre-test, post-test, and observation by the observers as well as from the photo and video recording. The results showed that the students’ inquiry ability increased by 63.27% at the end of the cycle. At the initial conditions, the ability of the student was low (0.49. After the first cycle, it increased to 0.63 (medium, and then increased to 0.68 (moderate on the second cycle, and finally it increased to 0.80 (high in the third cycle. The average increase in every aspect was 68.59%.  The highest inquiry capability was achieved in aspects of reasoning amounted to 89.29 (very high. It was suggested to use the observation games fairly and needed more time adjustment to obtain higher learning outcomes.

  13. A comparison of production system life cycle models

    Science.gov (United States)

    Attri, Rajesh; Grover, Sandeep

    2012-09-01

    Companies today need to keep up with the rapidly changing market conditions to stay competitive. The main issues in this paper are related to a company's market and its competitors. The prediction of market behavior is helpful for a manufacturing enterprise to build efficient production systems. However, these predictions are usually not reliable. A production system is required to adapt to changing markets, but such requirement entails higher cost. Hence, analyzing different life cycle models of the production system is necessary. In this paper, different life cycle models of the production system are compared to evaluate the distinctive features and the limitations of each model. Furthermore, the difference between product life cycle and production life cycle is summarized, and the effect of product life cycle on production life cycle is explained. Finally, a production system life cycle model, along with key activities to be performed in each stage, is proposed specifically for the manufacturing sector.

  14. Modeling transit bus fuel consumption on the basis of cycle properties.

    Science.gov (United States)

    Delgado, Oscar F; Clark, Nigel N; Thompson, Gregory J

    2011-04-01

    A method exists to predict heavy-duty vehicle fuel economy and emissions over an "unseen" cycle or during unseen on-road activity on the basis of fuel consumption and emissions data from measured chassis dynamometer test cycles and properties (statistical parameters) of those cycles. No regression is required for the method, which relies solely on the linear association of vehicle performance with cycle properties. This method has been advanced and examined using previously published heavy-duty truck data gathered using the West Virginia University heavy-duty chassis dynamometer with the trucks exercised over limited test cycles. In this study, data were available from a Washington Metropolitan Area Transit Authority emission testing program conducted in 2006. Chassis dynamometer data from two conventional diesel buses, two compressed natural gas buses, and one hybrid diesel bus were evaluated using an expanded driving cycle set of 16 or 17 different driving cycles. Cycle properties and vehicle fuel consumption measurements from three baseline cycles were selected to generate a linear model and then to predict unseen fuel consumption over the remaining 13 or 14 cycles. Average velocity, average positive acceleration, and number of stops per distance were found to be the desired cycle properties for use in the model. The methodology allowed for the prediction of fuel consumption with an average error of 8.5% from vehicles operating on a diverse set of chassis dynamometer cycles on the basis of relatively few experimental measurements. It was found that the data used for prediction should be acquired from a set that must include an idle cycle along with a relatively slow transient cycle and a relatively high speed cycle. The method was also applied to oxides of nitrogen prediction and was found to have less predictive capability than for fuel consumption with an average error of 20.4%.

  15. Capabilities of current wildfire models when simulating topographical flow

    Science.gov (United States)

    Kochanski, A.; Jenkins, M.; Krueger, S. K.; McDermott, R.; Mell, W.

    2009-12-01

    Accurate predictions of the growth, spread and suppression of wild fires rely heavily on the correct prediction of the local wind conditions and the interactions between the fire and the local ambient airflow. Resolving local flows, often strongly affected by topographical features like hills, canyons and ridges, is a prerequisite for accurate simulation and prediction of fire behaviors. In this study, we present the results of high-resolution numerical simulations of the flow over a smooth hill, performed using (1) the NIST WFDS (WUI or Wildland-Urban-Interface version of the FDS or Fire Dynamic Simulator), and (2) the LES version of the NCAR Weather Research and Forecasting (WRF-LES) model. The WFDS model is in the initial stages of development for application to wind flow and fire spread over complex terrain. The focus of the talk is to assess how well simple topographical flow is represented by WRF-LES and the current version of WFDS. If sufficient progress has been made prior to the meeting then the importance of the discrepancies between the predicted and measured winds, in terms of simulated fire behavior, will be examined.

  16. Stable cycling in discrete-time genetic models.

    OpenAIRE

    Hastings, A

    1981-01-01

    Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.

  17. Stable cycling in discrete-time genetic models.

    Science.gov (United States)

    Hastings, A

    1981-11-01

    Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.

  18. Expanding the modeling capabilities of the cognitive environment simulation

    International Nuclear Information System (INIS)

    Roth, E.M.; Mumaw, R.J.; Pople, H.E. Jr.

    1991-01-01

    The Nuclear Regulatory Commission has been conducting a research program to develop more effective tools to model the cognitive activities that underlie intention formation during nuclear power plant (NPP) emergencies. Under this program an artificial intelligence (AI) computer simulation called Cognitive Environment Simulation (CES) has been developed. CES simulates the cognitive activities involved in responding to a NPP accident situation. It is intended to provide an analytic tool for predicting likely human responses, and the kinds of errors that can plausibly arise under different accident conditions to support human reliability analysis. Recently CES was extended to handle a class of interfacing loss of coolant accidents (ISLOCAs). This paper summarizes the results of these exercises and describes follow-on work currently underway

  19. Coupling a groundwater model with a land surface model to improve water and energy cycle simulation

    Directory of Open Access Journals (Sweden)

    W. Tian

    2012-12-01

    Full Text Available Water and energy cycles interact, making these two processes closely related. Land surface models (LSMs can describe the water and energy cycles on the land surface, but their description of the subsurface water processes is oversimplified, and lateral groundwater flow is ignored. Groundwater models (GWMs describe the dynamic movement of the subsurface water well, but they cannot depict the physical mechanisms of the evapotranspiration (ET process in detail. In this study, a coupled model of groundwater flow with a simple biosphere (GWSiB is developed based on the full coupling of a typical land surface model (SiB2 and a 3-D variably saturated groundwater model (AquiferFlow. In this coupled model, the infiltration, ET and energy transfer are simulated by SiB2 using the soil moisture results from the groundwater flow model. The infiltration and ET results are applied iteratively to drive the groundwater flow model. After the coupled model is built, a sensitivity test is first performed, and the effect of the groundwater depth and the hydraulic conductivity parameters on the ET are analyzed. The coupled model is then validated using measurements from two stations located in shallow and deep groundwater depth zones. Finally, the coupled model is applied to data from the middle reach of the Heihe River basin in the northwest of China to test the regional simulation capabilities of the model.

  20. Petri Net Modeling of Computer Virus Life Cycle | Ikekonwu ...

    African Journals Online (AJOL)

    Virus life cycle, which refers to the stages of development of a computer virus, is presented as a suitable area for the application of Petri nets. Petri nets a powerful modeling tool in the field of dynamic system analysis is applied to model the virus life cycle. Simulation of the derived model is also presented. The intention of ...

  1. PETRI NET MODELING OF COMPUTER VIRUS LIFE CYCLE

    African Journals Online (AJOL)

    Dr Obe

    dynamic system analysis is applied to model the virus life cycle. Simulation of the derived model ... Keywords: Virus lifecycle, Petri nets, modeling. simulation. .... complex process. Figure 2 .... by creating Matlab files for five different computer ...

  2. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    International Nuclear Information System (INIS)

    Dunford, Gary; Williams, David; Smith, Rick

    2013-01-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  3. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    Energy Technology Data Exchange (ETDEWEB)

    Dunford, Gary [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, WA 99352 (United States); Williams, David [WIT, Inc., 11173 Oak Fern Court, San Diego, CA 92131 (United States); Smith, Rick [Knowledge Systems Design, Inc., 13595 Quaker Hill Cross Rd, Nevada City, CA 95959 (United States)

    2013-07-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  4. Improving National Capability in Biogeochemical Flux Modelling: the UK Environmental Virtual Observatory (EVOp)

    Science.gov (United States)

    Johnes, P.; Greene, S.; Freer, J. E.; Bloomfield, J.; Macleod, K.; Reaney, S. M.; Odoni, N. A.

    2012-12-01

    The best outcomes from watershed management arise where policy and mitigation efforts are underpinned by strong science evidence, but there are major resourcing problems associated with the scale of monitoring needed to effectively characterise the sources rates and impacts of nutrient enrichment nationally. The challenge is to increase national capability in predictive modelling of nutrient flux to waters, securing an effective mechanism for transferring knowledge and management tools from data-rich to data-poor regions. The inadequacy of existing tools and approaches to address these challenges provided the motivation for the Environmental Virtual Observatory programme (EVOp), an innovation from the UK Natural Environment Research Council (NERC). EVOp is exploring the use of a cloud-based infrastructure in catchment science, developing an exemplar to explore N and P fluxes to inland and coastal waters in the UK from grid to catchment and national scale. EVOp is bringing together for the first time national data sets, models and uncertainty analysis into cloud computing environments to explore and benchmark current predictive capability for national scale biogeochemical modelling. The objective is to develop national biogeochemical modelling capability, capitalising on extensive national investment in the development of science understanding and modelling tools to support integrated catchment management, and supporting knowledge transfer from data rich to data poor regions, The AERC export coefficient model (Johnes et al., 2007) has been adapted to function within the EVOp cloud environment, and on a geoclimatic basis, using a range of high resolution, geo-referenced digital datasets as an initial demonstration of the enhanced national capacity for N and P flux modelling using cloud computing infrastructure. Geoclimatic regions are landscape units displaying homogenous or quasi-homogenous functional behaviour in terms of process controls on N and P cycling

  5. The Martian Water Cycle Based on 3-D Modeling

    Science.gov (United States)

    Houben, H.; Haberle, R. M.; Joshi, M. M.

    1999-01-01

    Understanding the distribution of Martian water is a major goal of the Mars Surveyor program. However, until the bulk of the data from the nominal missions of TES, PMIRR, GRS, MVACS, and the DS2 probes are available, we are bound to be in a state where much of our knowledge of the seasonal behavior of water is based on theoretical modeling. We therefore summarize the results of this modeling at the present time. The most complete calculations come from a somewhat simplified treatment of the Martian climate system which is capable of simulating many decades of weather. More elaborate meteorological models are now being applied to study of the problem. The results show a high degree of consistency with observations of aspects of the Martian water cycle made by Viking MAWD, a large number of ground-based measurements of atmospheric column water vapor, studies of Martian frosts, and the widespread occurrence of water ice clouds. Additional information is contained in the original extended abstract.

  6. HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1980-04-01

    The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation

  7. Multi-Hypothesis Modelling Capabilities for Robust Data-Model Integration

    Science.gov (United States)

    Walker, A. P.; De Kauwe, M. G.; Lu, D.; Medlyn, B.; Norby, R. J.; Ricciuto, D. M.; Rogers, A.; Serbin, S.; Weston, D. J.; Ye, M.; Zaehle, S.

    2017-12-01

    Large uncertainty is often inherent in model predictions due to imperfect knowledge of how to describe the mechanistic processes (hypotheses) that a model is intended to represent. Yet this model hypothesis uncertainty (MHU) is often overlooked or informally evaluated, as methods to quantify and evaluate MHU are limited. MHU is increased as models become more complex because each additional processes added to a model comes with inherent MHU as well as parametric unceratinty. With the current trend of adding more processes to Earth System Models (ESMs), we are adding uncertainty, which can be quantified for parameters but not MHU. Model inter-comparison projects do allow for some consideration of hypothesis uncertainty but in an ad hoc and non-independent fashion. This has stymied efforts to evaluate ecosystem models against data and intepret the results mechanistically because it is not simple to interpret exactly why a model is producing the results it does and identify which model assumptions are key as they combine models of many sub-systems and processes, each of which may be conceptualised and represented mathematically in various ways. We present a novel modelling framework—the multi-assumption architecture and testbed (MAAT)—that automates the combination, generation, and execution of a model ensemble built with different representations of process. We will present the argument that multi-hypothesis modelling needs to be considered in conjunction with other capabilities (e.g. the Predictive Ecosystem Analyser; PecAn) and statistical methods (e.g. sensitivity anaylsis, data assimilation) to aid efforts in robust data model integration to enhance our predictive understanding of biological systems.

  8. Models of the Organizational Life Cycle: Applications to Higher Education.

    Science.gov (United States)

    Cameron, Kim S.; Whetten, David A.

    1983-01-01

    A review of models of group and organization life cycle development is provided and the applicability of those models for institutions of higher education are discussed. An understanding of the problems and characteristics present in different life cycle stages can help institutions manage transitions more effectively. (Author/MLW)

  9. A variable capacitance based modeling and power capability predicting method for ultracapacitor

    Science.gov (United States)

    Liu, Chang; Wang, Yujie; Chen, Zonghai; Ling, Qiang

    2018-01-01

    Methods of accurate modeling and power capability predicting for ultracapacitors are of great significance in management and application of lithium-ion battery/ultracapacitor hybrid energy storage system. To overcome the simulation error coming from constant capacitance model, an improved ultracapacitor model based on variable capacitance is proposed, where the main capacitance varies with voltage according to a piecewise linear function. A novel state-of-charge calculation approach is developed accordingly. After that, a multi-constraint power capability prediction is developed for ultracapacitor, in which a Kalman-filter-based state observer is designed for tracking ultracapacitor's real-time behavior. Finally, experimental results verify the proposed methods. The accuracy of the proposed model is verified by terminal voltage simulating results under different temperatures, and the effectiveness of the designed observer is proved by various test conditions. Additionally, the power capability prediction results of different time scales and temperatures are compared, to study their effects on ultracapacitor's power capability.

  10. Guidelines for Applying the Capability Maturity Model Analysis to Connected and Automated Vehicle Deployment

    Science.gov (United States)

    2017-11-23

    The Federal Highway Administration (FHWA) has adapted the Transportation Systems Management and Operations (TSMO) Capability Maturity Model (CMM) to describe the operational maturity of Infrastructure Owner-Operator (IOO) agencies across a range of i...

  11. A Stochastic Model for the Landing Dispersion of Hazard Detection and Avoidance Capable Flight Systems

    Science.gov (United States)

    Witte, L.

    2014-06-01

    To support landing site assessments for HDA-capable flight systems and to facilitate trade studies between the potential HDA architectures versus the yielded probability of safe landing a stochastic landing dispersion model has been developed.

  12. An Adjusted Discount Rate Model for Fuel Cycle Cost Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. K.; Kang, G. B.; Ko, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Owing to the diverse nuclear fuel cycle options available, including direct disposal, it is necessary to select the optimum nuclear fuel cycles in consideration of the political and social environments as well as the technical stability and economic efficiency of each country. Economic efficiency is therefore one of the significant evaluation standards. In particular, because nuclear fuel cycle cost may vary in each country, and the estimated cost usually prevails over the real cost, when evaluating the economic efficiency, any existing uncertainty needs to be removed when possible to produce reliable cost information. Many countries still do not have reprocessing facilities, and no globally commercialized HLW (High-level waste) repository is available. A nuclear fuel cycle cost estimation model is therefore inevitably subject to uncertainty. This paper analyzes the uncertainty arising out of a nuclear fuel cycle cost evaluation from the viewpoint of a cost estimation model. Compared to the same discount rate model, the nuclear fuel cycle cost of a different discount rate model is reduced because the generation quantity as denominator in Equation has been discounted. Namely, if the discount rate reduces in the back-end process of the nuclear fuel cycle, the nuclear fuel cycle cost is also reduced. Further, it was found that the cost of the same discount rate model is overestimated compared with the different discount rate model as a whole.

  13. An Adjusted Discount Rate Model for Fuel Cycle Cost Estimation

    International Nuclear Information System (INIS)

    Kim, S. K.; Kang, G. B.; Ko, W. I.

    2013-01-01

    Owing to the diverse nuclear fuel cycle options available, including direct disposal, it is necessary to select the optimum nuclear fuel cycles in consideration of the political and social environments as well as the technical stability and economic efficiency of each country. Economic efficiency is therefore one of the significant evaluation standards. In particular, because nuclear fuel cycle cost may vary in each country, and the estimated cost usually prevails over the real cost, when evaluating the economic efficiency, any existing uncertainty needs to be removed when possible to produce reliable cost information. Many countries still do not have reprocessing facilities, and no globally commercialized HLW (High-level waste) repository is available. A nuclear fuel cycle cost estimation model is therefore inevitably subject to uncertainty. This paper analyzes the uncertainty arising out of a nuclear fuel cycle cost evaluation from the viewpoint of a cost estimation model. Compared to the same discount rate model, the nuclear fuel cycle cost of a different discount rate model is reduced because the generation quantity as denominator in Equation has been discounted. Namely, if the discount rate reduces in the back-end process of the nuclear fuel cycle, the nuclear fuel cycle cost is also reduced. Further, it was found that the cost of the same discount rate model is overestimated compared with the different discount rate model as a whole

  14. Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Piet, Steven J.; Matthern, Gretchen E.; Shropshire, David E.; Jeffers, Robert F.; Yacout, A.M.; Schweitzer, Tyler

    2010-01-01

    The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

  15. Models to enhance research capacity and capability in clinical nurses: a narrative review.

    Science.gov (United States)

    O'Byrne, Louise; Smith, Sheree

    2011-05-01

    To identify models used as local initiatives to build capability and capacity in clinical nurses. The National Health Service, Nursing and Midwifery Council and the United Kingdom Clinical Research Collaboration all support the development of the building of research capability and capacity in clinical nurses in the UK. Narrative review. A literature search of databases (including Medline and Pubmed) using the search terms nursing research, research capacity and research capability combined with building, development, model and collaboration. Publications which included a description or methodological study of a structured initiative to tackle research capacity and capability development in clinical nurses were selected. Three models were found to be dominant in the literature. These comprised evidence-based practice, facilitative and experiential learning models. Strong leadership, organisational need and support management were elements found in all three models. Methodological issues were evident and pertain to small sample sizes, inconsistent and poorly defined outcomes along with a lack of data. Whilst the vision of a research ready and active National Health Service is to be applauded to date, there appears to be limited research on the best approach to support local initiatives for nurses that build research capability and capacity. Future studies will need to focus on well-defined objectives and outcomes to enable robust evidence to support local initiatives. To build research capability and capacity in clinical nurses, there is a need to evaluate models and determine the best approach that will provide clinical nurses with research opportunities. © 2010 Blackwell Publishing Ltd.

  16. INTERACTION BETWEEN MODELS OF THE LIFE CYCLE OF INDUSTRIAL ENTERPRISE AND CYCLE OF ITS REORGANIZATION

    Directory of Open Access Journals (Sweden)

    Chulkov Vitaliy Olegovich

    2012-10-01

    Full Text Available The objective of this scientific research is to develop a theoretical model of organizational and technology-related processes of reorganization of industrial enterprises, as well as their interaction. Multipoint logic notions of growth and interaction phases are used as research methods. The author describes the basic stages of reorganization, the life cycle of industrial enterprises and the cycle of their transformation. The processes are presented as an infographical image that represents a concentric model of interaction. This concentric model represents interaction between two or more phases. The process is entitled infografical modeling on the polyfunctional level. The concentric model moves both clockwise and anti-clockwise. Basic organizational and technological processes of reorganization of industrial enterprises that include decision making in terms of expediency of reorganization, design, construction, and performance of industrial enterprises at full capacity, and further operation of the industrial enterprise are described in the paper. Attainment of this objective, namely, reorganization of an industrial enterprise, involves a huge amount of resources, including labour resources that need interaction with all parties of reorganization; therefore, the concentric model of interaction describing the basic cycle of reorganization, the life cycle of an industrial enterprise and the cycle of its conversion is a trustworthy representation of this process. The proposed concentric model of interaction should be used in the design of organizational and technology-related processes for integrated consideration of reorganization of enterprises required to understand and improve the efficiency of reorganizations and to control the reorganization of industrial facilities.

  17. Tritium fuel cycle modeling and tritium breeding analysis for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Pan, Lei; Lv, Zhongliang; Li, Wei; Zeng, Qin, E-mail: zengqin@ustc.edu.cn

    2016-05-15

    Highlights: • A modified tritium fuel cycle model with more detailed subsystems was developed. • The mean residence time method applied to tritium fuel cycle calculation was updated. • Tritium fuel cycle analysis for CFETR was carried out. - Abstract: Attaining tritium self-sufficiency is a critical goal for fusion reactor operated on the D–T fuel cycle. The tritium fuel cycle models were developed to describe the characteristic parameters of the various elements of the tritium cycle as a tool for evaluating the tritium breeding requirements. In this paper, a modified tritium fuel cycle model with more detailed subsystems and an updated mean residence time calculation method was developed based on ITER tritium model. The tritium inventory in fueling system and in plasma, supposed to be important for part of the initial startup tritium inventory, was considered in the updated mean residence time method. Based on the model, the tritium fuel cycle analysis of CFETR (Chinese Fusion Engineering Testing Reactor) was carried out. The most important two parameters, the minimum initial startup tritium inventory (I{sub m}) and the minimum tritium breeding ratio (TBR{sub req}) were calculated. The tritium inventories in steady state and tritium release of subsystems were obtained.

  18. Static and dynamic modelling of gas turbines in advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jan-Olof

    1998-12-01

    Gas turbines have been in operation for at least 50 years. The engine is used for propulsion of aircraft and high speed ships. It is used for power production in remote locations and for peak load and emergency situations. Gas turbines have been used in combined cycles for 20 to 30 years. Highly efficient power plants based on gas turbines are a competitive option for the power industry today. The thermal efficiency of the simple cycle gas turbine has increased due to higher turbine inlet temperatures and improved compressor and expander designs. Equally important are the improved cycles in which the gas turbine operates. One example is the combined cycle that uses steam for turbine cooling. Steam is extracted from the bottoming cycle, then used as airfoil coolant in a closed loop and returned to the bottoming cycle. The Evaporative Gas Turbine (EvGT), also known as the Humid Air Turbine (HAT), is another advanced cycle. A mixture of air and water vapour is used as working media. Air from the compressor outlet is humidified and then preheated in a recuperator prior to combustion. The static and dynamic performance is changed when the gas turbine is introduced in an evaporative cycle. The cycle is gaining in popularity, but so far it has not been demonstrated. A Swedish joint program to develop the cycle has been in operation since 1993. As part of the program, a small pilot plant is being erected at the Lund Institute of Technology (LTH). The plant is based on a 600 kW gas turbine, and demonstration of the EvGT cycle started autumn 1998 and will continue, in the present phase, for one year. This thesis presents static and dynamic models for traditional gas turbine components, such as, the compressor, combustor, expander and recuperator. A static model for the humidifier is presented, based on common knowledge for atmospheric humidification. All models were developed for the pilot plant at LTH with the objective to support evaluation of the process and individual

  19. Galactic cosmic ray spectra during solar cycle 23 and 24. Measurement capabilities of the electron proton helium telescope on board SOHO

    Energy Technology Data Exchange (ETDEWEB)

    Kuehl, Patrick; Dresing, Nina; Gieseler, Jan; Heber, Bernd; Klassen, Andreas [Christian-Albrechts Universitaet zu Kiel (Germany)

    2016-07-01

    The solar modulation of galactic cosmic rays (GCR) can be studied in detail by long term variations of the GCR energy spectrum (e.g. on the scales of a solar cycle). With almost 20 years of data, the Electron Proton Helium INstrument (EPHIN) aboard SOHO is well suited for these kind of investigations. Although the design of the instrument is optimized to measure proton and helium isotope spectra up to 50 MeV/nucleon the capability exist that allow to determine energy spectra above 1.5 GeV/nucleon. Therefore we developed a sophisticated inversion method to calculate such proton spectra. The method relies on a GEANT4 Monte Carlo simulation of the instrument and a simplified spacecraft model that calculates the energy response function of EPHIN for electrons, protons and heavier ions. As a result we present galactic cosmic ray spectra from 1995 to 2015. For validation, the derived spectra are compared to AMS, BESS and PAMELA data. Furthermore we discuss the spectra with respect to the solar modulation.

  20. Security Process Capability Model Based on ISO/IEC 15504 Conformant Enterprise SPICE

    Directory of Open Access Journals (Sweden)

    Mitasiunas Antanas

    2014-07-01

    Full Text Available In the context of modern information systems, security has become one of the most critical quality attributes. The purpose of this paper is to address the problem of quality of information security. An approach to solve this problem is based on the main assumption that security is a process oriented activity. According to this approach, product quality can be achieved by means of process quality - process capability. Introduced in the paper, SPICE conformant information security process capability model is based on process capability modeling elaborated by world-wide software engineering community during the last 25 years, namely ISO/IEC 15504 that defines the capability dimension and the requirements for process definition and domain independent integrated model for enterprise-wide assessment and Enterprise SPICE improvement

  1. Cycle life performance of rechargeable lithium ion batteries and mathematical modeling

    Science.gov (United States)

    Ning, Gang

    Capacity fade of commercial Sony US 18650 Li-ion batteries cycled at high discharge rates was studied at ambient temperature. Battery cycled at the highest discharge rate (3 C) shows the largest internal resistance increase of 27.7% relative to the resistance of fresh battery. It's been observed anode carbon loses 10.6% of its capability to intercalate or deintercalate Li+ after it was subjected to 300 cycles at discharge rate of 3 C. This loss dominates capacity fade of full battery. A mechanism considering continuous parasitic reaction at anode/electrolyte interface and film thickening has been proposed. First principles based charge-discharge models to simulate cycle life behavior of rechargeable Li-ion batteries have been developed. In the generalized model, transport in both electrolyte phase and solid phase were simultaneously taken into account. Under mild charge-discharge condition, transport of lithium in the electrolyte phase has been neglected in the simplified model. Both models are based on loss of the active lithium ions due to the electrochemical parasitic reaction at anode/electrolyte interface and on rise of the anode film resistance. The effect of parameters such as depth of discharge (DOD), end of charge voltage (EOCV) and overvoltage of the parasitic reaction on the cycle life behavior of a battery has been analyzed. The experimental results obtained at a charge rate of 1 C, discharge rate of 0.5 C, EOCV of 4.0 V and DOD of 0.4 have been used to validate cycle life models. Good agreement between the simulations and the experiments has been achieved up to 1968 cycles with both models. Simulation of cycle life of battery under multiple cycling regimes has also been demonstrated.

  2. Fuel cycle assessment: A compendium of models, methodologies, and approaches

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

  3. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-01-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  4. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-05-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  5. Modelling of diurnal cycle under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, A V; Bezmenov, K V; Demchenko, P F; Mokhov, I I; Petoukhov, V K [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1996-12-31

    The observed diurnal temperature range (DTR) displays remarkable change during last 30 years. Land air DTR generally decreases under global climate warming due to more significant night minimum temperature increase in comparison with day maximum temperature increase. Atmosphere hydrological cycle characteristics change under global warming and possible background aerosol atmosphere content change may cause essential errors in the estimation of DTR tendencies of change under global warming. The result of this study is the investigation of cloudiness effect on the DTR and blackbody radiative emissivity diurnal range. It is shown that in some cases (particularly in cold seasons) it results in opposite change in DTR and BD at doubled CO{sub 2} atmosphere content. The influence of background aerosol is the same as the cloudiness one

  6. Modelling of diurnal cycle under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, A.V.; Bezmenov, K.V.; Demchenko, P.F.; Mokhov, I.I.; Petoukhov, V.K. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1995-12-31

    The observed diurnal temperature range (DTR) displays remarkable change during last 30 years. Land air DTR generally decreases under global climate warming due to more significant night minimum temperature increase in comparison with day maximum temperature increase. Atmosphere hydrological cycle characteristics change under global warming and possible background aerosol atmosphere content change may cause essential errors in the estimation of DTR tendencies of change under global warming. The result of this study is the investigation of cloudiness effect on the DTR and blackbody radiative emissivity diurnal range. It is shown that in some cases (particularly in cold seasons) it results in opposite change in DTR and BD at doubled CO{sub 2} atmosphere content. The influence of background aerosol is the same as the cloudiness one

  7. Surface Modeling, Solid Modeling and Finite Element Modeling. Analysis Capabilities of Computer-Assisted Design and Manufacturing Systems.

    Science.gov (United States)

    Nee, John G.; Kare, Audhut P.

    1987-01-01

    Explores several concepts in computer assisted design/computer assisted manufacturing (CAD/CAM). Defines, evaluates, reviews and compares advanced computer-aided geometric modeling and analysis techniques. Presents the results of a survey to establish the capabilities of minicomputer based-systems with the CAD/CAM packages evaluated. (CW)

  8. Nitrogen cycling models and their application to forest harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.W.; Dale, V.H.

    1986-01-01

    The characterization of forest nitrogen- (N-) cycling processes by several N-cycling models (FORCYTE, NITCOMP, FORTNITE, and LINKAGES) is briefly reviewed and evaluated against current knowledge of N cycling in forests. Some important processes (e.g., translocation within trees, N dynamics in decaying leaf litter) appear to be well characterized, whereas others (e.g., N mineralization from soil organic matter, N fixation, N dynamics in decaying wood, nitrification, and nitrate leaching) are poorly characterized, primarily because of a lack of knowledge rather than an oversight by model developers. It is remarkable how well the forest models do work in the absence of data on some key processes. For those systems in which the poorly understood processes could cause major changes in N availability or productivity, the accuracy of model predictions should be examined. However, the development of N-cycling models represents a major step beyond the much simpler, classic conceptual models of forest nutrient cycling developed by early investigators. The new generation of computer models will surely improve as research reveals how key nutrient-cycling processes operate.

  9. Co-firing biomass and coal-progress in CFD modelling capabilities

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Yin, Chungen

    2005-01-01

    This paper discusses the development of user defined FLUENT™ sub models to improve the modelling capabilities in the area of large biomass particle motion and conversion. Focus is put on a model that includes the influence from particle size and shape on the reactivity by resolving intra-particle......This paper discusses the development of user defined FLUENT™ sub models to improve the modelling capabilities in the area of large biomass particle motion and conversion. Focus is put on a model that includes the influence from particle size and shape on the reactivity by resolving intra......-particle gradients. The advanced reaction model predicts moisture and volatiles release characteristics that differ significantly from those found from a 0-dimensional model partly due to the processes occurring in parallel rather than sequentially. This is demonstrated for a test case that illustrates single...

  10. The Role of Mining in an Australian Business Cycle Model

    OpenAIRE

    Veroude, Alexandra

    2012-01-01

    The purpose of this paper is to evaluate a business cycle model that includes a mining sector, with the cyclical variations of the Australian Economy. Large quantities of mineral deposits are found in Australia and there exists high demand for these minerals from developing nations. This results in the mining sector contributing to a high proportion of GDP. Surprisingly, the inclusion of a mining sector has not previously been studied in a business cycle model. Australia is a small open econo...

  11. Modelling asymmetric persistence over the business cycle

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)

    1998-01-01

    textabstractWe address the issue of time varying persistence of shocks to macroeconomic time series variables by proposing a new and parsimonious time series model. Our model assumes that this time varying persistence depends on a linear combination of lagged explanatory variables, where this

  12. Modeling Operating Modes during Plant Life Cycle

    DEFF Research Database (Denmark)

    Jørgensen, Sten Bay; Lind, Morten

    2012-01-01

    Modelling process plants during normal operation requires a set a basic assumptions to define the desired functionalities which lead to fullfillment of the operational goal(-s) for the plant. However during during start-up and shut down as well as during batch operation an ensemble of interrelated...... modes are required to cover the whole operational window of a processs plant including intermediary operating modes. Development of such an model ensemble for a plant would constitute a systematic way of defining the possible plant operating modes and thus provide a platform for also defining a set...... of candidate control structures. The present contribution focuses on development of a model ensemble for a plant with an illustartive example for a bioreactor. Starting from a functional model a process plant may be conceptually designed and qualitative operating models may be developed to cover the different...

  13. The capability and constraint model of recoverability: An integrated theory of continuity planning.

    Science.gov (United States)

    Lindstedt, David

    2017-01-01

    While there are best practices, good practices, regulations and standards for continuity planning, there is no single model to collate and sort their various recommended activities. To address this deficit, this paper presents the capability and constraint model of recoverability - a new model to provide an integrated foundation for business continuity planning. The model is non-linear in both construct and practice, thus allowing practitioners to remain adaptive in its application. The paper presents each facet of the model, outlines the model's use in both theory and practice, suggests a subsequent approach that arises from the model, and discusses some possible ramifications to the industry.

  14. Analytical model for Stirling cycle machine design

    Energy Technology Data Exchange (ETDEWEB)

    Formosa, F. [Laboratoire SYMME, Universite de Savoie, BP 80439, 74944 Annecy le Vieux Cedex (France); Despesse, G. [Laboratoire Capteurs Actionneurs et Recuperation d' Energie, CEA-LETI-MINATEC, Grenoble (France)

    2010-10-15

    In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined. (author)

  15. The many faces of the mathematical modeling cycle

    NARCIS (Netherlands)

    Perrenet, J.C.; Zwaneveld, B.

    2012-01-01

    In literature about mathematical modeling a diversity can be seen in ways of presenting the modeling cycle. Every year, students in the Bachelor’s program Applied Mathematics of the Eindhoven University of Technology, after having completed a series of mathematical modeling projects, have been

  16. An Observation Capability Metadata Model for EO Sensor Discovery in Sensor Web Enablement Environments

    Directory of Open Access Journals (Sweden)

    Chuli Hu

    2014-10-01

    Full Text Available Accurate and fine-grained discovery by diverse Earth observation (EO sensors ensures a comprehensive response to collaborative observation-required emergency tasks. This discovery remains a challenge in an EO sensor web environment. In this study, we propose an EO sensor observation capability metadata model that reuses and extends the existing sensor observation-related metadata standards to enable the accurate and fine-grained discovery of EO sensors. The proposed model is composed of five sub-modules, namely, ObservationBreadth, ObservationDepth, ObservationFrequency, ObservationQuality and ObservationData. The model is applied to different types of EO sensors and is formalized by the Open Geospatial Consortium Sensor Model Language 1.0. The GeosensorQuery prototype retrieves the qualified EO sensors based on the provided geo-event. An actual application to flood emergency observation in the Yangtze River Basin in China is conducted, and the results indicate that sensor inquiry can accurately achieve fine-grained discovery of qualified EO sensors and obtain enriched observation capability information. In summary, the proposed model enables an efficient encoding system that ensures minimum unification to represent the observation capabilities of EO sensors. The model functions as a foundation for the efficient discovery of EO sensors. In addition, the definition and development of this proposed EO sensor observation capability metadata model is a helpful step in extending the Sensor Model Language (SensorML 2.0 Profile for the description of the observation capabilities of EO sensors.

  17. Terrestrial nitrogen cycling in Earth system models revisited

    Science.gov (United States)

    Stocker, Benjamin D; Prentice, I. Colin; Cornell, Sarah; Davies-Barnard, T; Finzi, Adrien; Franklin, Oskar; Janssens, Ivan; Larmola, Tuula; Manzoni, Stefano; Näsholm, Torgny; Raven, John; Rebel, Karin; Reed, Sasha C.; Vicca, Sara; Wiltshire, Andy; Zaehle, Sönke

    2016-01-01

    Understanding the degree to which nitrogen (N) availability limits land carbon (C) uptake under global environmental change represents an unresolved challenge. First-generation ‘C-only’vegetation models, lacking explicit representations of N cycling,projected a substantial and increasing land C sink under rising atmospheric CO2 concentrations. This prediction was questioned for not taking into account the potentially limiting effect of N availability, which is necessary for plant growth (Hungate et al.,2003). More recent global models include coupled C and N cycles in land ecosystems (C–N models) and are widely assumed to be more realistic. However, inclusion of more processes has not consistently improved their performance in capturing observed responses of the global C cycle (e.g. Wenzel et al., 2014). With the advent of a new generation of global models, including coupled C, N, and phosphorus (P) cycling, model complexity is sure to increase; but model reliability may not, unless greater attention is paid to the correspondence of model process representations ande mpirical evidence. It was in this context that the ‘Nitrogen Cycle Workshop’ at Dartington Hall, Devon, UK was held on 1–5 February 2016. Organized by I. Colin Prentice and Benjamin D. Stocker (Imperial College London, UK), the workshop was funded by the European Research Council,project ‘Earth system Model Bias Reduction and assessing Abrupt Climate change’ (EMBRACE). We gathered empirical ecologists and ecosystem modellers to identify key uncertainties in terrestrial C–N cycling, and to discuss processes that are missing or poorly represented in current models.

  18. Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model

    International Nuclear Information System (INIS)

    Omar, Noshin; Monem, Mohamed Abdel; Firouz, Yousef; Salminen, Justin; Smekens, Jelle; Hegazy, Omar; Gaulous, Hamid; Mulder, Grietus; Van den Bossche, Peter; Coosemans, Thierry; Van Mierlo, Joeri

    2014-01-01

    Highlights: • Extended life cycle tests. • Investigation of the battery life cycle at different working conditions. • Investigation of the impact fast charging on the battery performances. • Extraction all required relationship for development of a cycle life model. • Development of a new life cycle model. - Abstract: This paper represents the evaluation of ageing parameters in lithium iron phosphate based batteries, through investigating different current rates, working temperatures and depths of discharge. From these analyses, one can derive the impact of the working temperature on the battery performances over its lifetime. At elevated temperature (40 °C), the performances are less compared to at 25 °C. The obtained mathematical expression of the cycle life as function of the operating temperature reveals that the well-known Arrhenius law cannot be applied to derive the battery lifetime from one temperature to another. Moreover, a number of cycle life tests have been performed to illustrate the long-term capabilities of the proposed battery cells at different discharge constant current rates. The results reveal the harmful impact of high current rates on battery characteristics. On the other hand, the cycle life test at different depth of discharge levels indicates that the battery is able to perform 3221 cycles (till 80% DoD) compared to 34,957 shallow cycles (till 20% DoD). To investigate the cycle life capabilities of lithium iron phosphate based battery cells during fast charging, cycle life tests have been carried out at different constant charge current rates. The experimental analysis indicates that the cycle life of the battery degrades the more the charge current rate increases. From this analysis, one can conclude that the studied lithium iron based battery cells are not recommended to be charged at high current rates. This phenomenon affects the viability of ultra-fast charging systems. Finally, a cycle life model has been developed, which

  19. Capability-based Access Control Delegation Model on the Federated IoT Network

    DEFF Research Database (Denmark)

    Anggorojati, Bayu; Mahalle, Parikshit N.; Prasad, Neeli R.

    2012-01-01

    Flexibility is an important property for general access control system and especially in the Internet of Things (IoT), which can be achieved by access or authority delegation. Delegation mechanisms in access control that have been studied until now have been intended mainly for a system that has...... no resource constraint, such as a web-based system, which is not very suitable for a highly pervasive system such as IoT. To this end, this paper presents an access delegation method with security considerations based on Capability-based Context Aware Access Control (CCAAC) model intended for federated...... machine-to-machine communication or IoT networks. The main idea of our proposed model is that the access delegation is realized by means of a capability propagation mechanism, and incorporating the context information as well as secure capability propagation under federated IoT environments. By using...

  20. Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions

    Science.gov (United States)

    Carlsen, Robert W.

    Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors

  1. Software Platform Evaluation - Verifiable Fuel Cycle Simulation (VISION) Model

    International Nuclear Information System (INIS)

    J. J. Jacobson; D. E. Shropshire; W. B. West

    2005-01-01

    The purpose of this Software Platform Evaluation (SPE) is to document the top-level evaluation of potential software platforms on which to construct a simulation model that satisfies the requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). See the Software Requirements Specification for Verifiable Fuel Cycle Simulation (VISION) Model (INEEL/EXT-05-02643, Rev. 0) for a discussion of the objective and scope of the VISION model. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies. This document will serve as a guide for selecting the most appropriate software platform for VISION. This is a ''living document'' that will be modified over the course of the execution of this work

  2. Testing an integrated model of operations capabilities An empirical study of Australian airlines

    NARCIS (Netherlands)

    Nand, Alka Ashwini; Singh, Prakash J.; Power, Damien

    2013-01-01

    Purpose - The purpose of this paper is to test the integrated model of operations strategy as proposed by Schmenner and Swink to explain whether firms trade-off or accumulate capabilities, taking into account their positions relative to their asset and operating frontiers.

  3. University-Industry Research Collaboration: A Model to Assess University Capability

    Science.gov (United States)

    Abramo, Giovanni; D'Angelo, Ciriaco Andrea; Di Costa, Flavia

    2011-01-01

    Scholars and policy makers recognize that collaboration between industry and the public research institutions is a necessity for innovation and national economic development. This work presents an econometric model which expresses the university capability for collaboration with industry as a function of size, location and research quality. The…

  4. Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability.

    Science.gov (United States)

    Zhang, Qian; Huang, Shao-Zhuan; Jin, Jun; Liu, Jing; Li, Yu; Wang, Hong-En; Chen, Li-Hua; Wang, Bin-Jie; Su, Bao-Lian

    2016-05-16

    A highly crystalline three dimensional (3D) bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite constructed by nanoparticles in the range of 50~100 nm via a rapid microwave assisted solvothermal process followed by carbon coating have been synthesized as cathode material for high performance lithium-ion batteries. The abundant 3D macropores allow better penetration of electrolyte to promote Li(+) diffusion, the mesopores provide more electrochemical reaction sites and the carbon layers outside LiFePO4 nanoparticles increase the electrical conductivity, thus ultimately facilitating reverse reaction of Fe(3+) to Fe(2+) and alleviating electrode polarization. In addition, the particle size in nanoscale can provide short diffusion lengths for the Li(+) intercalation-deintercalation. As a result, the 3D macro-mesoporous nanosized LiFePO4/C electrode exhibits excellent rate capability (129.1 mA h/g at 2 C; 110.9 mA h/g at 10 C) and cycling stability (87.2% capacity retention at 2 C after 1000 cycles, 76.3% at 5 C after 500 cycles and 87.8% at 10 C after 500 cycles, respectively), which are much better than many reported LiFePO4/C structures. Our demonstration here offers the opportunity to develop nanoscaled hierarchically porous LiFePO4/C structures for high performance lithium-ion batteries through microwave assisted solvothermal method.

  5. Day/Night Cycle: Mental Models of Primary School Children

    Science.gov (United States)

    Chiras, Andreas

    2008-01-01

    The study investigated the mental models of primary school children related to the day/night cycle. Semi-structure interviews were conducted with 40 fourth-grade and 40 sixth-grade children. Qualitative and quantitative analysis of the data indicated that the majority of the children were classified as having geocentric models. The results also…

  6. A comparison of major petroleum life cycle models | Science ...

    Science.gov (United States)

    Many organizations have attempted to develop an accurate well-to-pump life cycle model of petroleum products in order to inform decision makers of the consequences of its use. Our paper studies five of these models, demonstrating the differences in their predictions and attempting to evaluate their data quality. Carbon dioxide well-to-pump emissions for gasoline showed a variation of 35 %, and other pollutants such as ammonia and particulate matter varied up to 100 %. Differences in allocation do not appear to explain differences in predictions. Effects of these deviations on well-to-wheels passenger vehicle and truck transportation life cycle models may be minimal for effects such as global warming potential (6 % spread), but for respiratory effects of criteria pollutants (41 % spread) and other impact categories, they can be significant. A data quality assessment of the models’ documentation revealed real differences between models in temporal and geographic representativeness, completeness, as well as transparency. Stakeholders may need to consider carefully the tradeoffs inherent when selecting a model to conduct life cycle assessments for systems that make heavy use of petroleum products. This is a qualitative and quantitative comparison of petroleum LCA models intended for an expert audience interested in better understanding the data quality of existing petroleum life cycle models and the quantitative differences between these models.

  7. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    Science.gov (United States)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  8. IT-enabled dynamic capability on performance: An empirical study of BSC model

    Directory of Open Access Journals (Sweden)

    Adilson Carlos Yoshikuni

    2017-05-01

    Full Text Available ew studies have investigated the influence of “information capital,” through IT-enabled dynamic capability, on corporate performance, particularly in economic turbulence. Our study investigates the causal relationship between performance perspectives of the balanced scorecard using partial least squares path modeling. Using data on 845 Brazilian companies, we conduct a quantitative empirical study of firms during an economic crisis and observe the following interesting results. Operational and analytical IT-enabled dynamic capability had positive effects on business process improvement and corporate performance. Results pertaining to mediation (endogenous variables and moderation (control variables clarify IT’s role in and benefits for corporate performance.

  9. A model for a knowledge-based system's life cycle

    Science.gov (United States)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a Committee on Standards for Artificial Intelligence. Presented here are the initial efforts of one of the working groups of that committee. The purpose here is to present a candidate model for the development life cycle of Knowledge Based Systems (KBS). The intent is for the model to be used by the Aerospace Community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are detailed as are and the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  10. A cellular automata model for traffic flow based on kinetics theory, vehicles capabilities and driver reactions

    Science.gov (United States)

    Guzmán, H. A.; Lárraga, M. E.; Alvarez-Icaza, L.; Carvajal, J.

    2018-02-01

    In this paper, a reliable cellular automata model oriented to faithfully reproduce deceleration and acceleration according to realistic reactions of drivers, when vehicles with different deceleration capabilities are considered is presented. The model focuses on describing complex traffic phenomena by coding in its rules the basic mechanisms of drivers behavior, vehicles capabilities and kinetics, while preserving simplicity. In particular, vehiclés kinetics is based on uniform accelerated motion, rather than in impulsive accelerated motion as in most existing CA models. Thus, the proposed model calculates in an analytic way three safe preserving distances to determine the best action a follower vehicle can take under a worst case scenario. Besides, the prediction analysis guarantees that under the proper assumptions, collision between vehicles may not happen at any future time. Simulations results indicate that all interactions of heterogeneous vehicles (i.e., car-truck, truck-car, car-car and truck-truck) are properly reproduced by the model. In addition, the model overcomes one of the major limitations of CA models for traffic modeling: the inability to perform smooth approach to slower or stopped vehicles. Moreover, the model is also capable of reproducing most empirical findings including the backward speed of the downstream front of the traffic jam, and different congested traffic patterns induced by a system with open boundary conditions with an on-ramp. Like most CA models, integer values are used to make the model run faster, which makes the proposed model suitable for real time traffic simulation of large networks.

  11. Damage and failure modeling of lotus-type porous material subjected to low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    J. Kramberger

    2016-01-01

    Full Text Available The investigation of low-cycle fatigue behaviour of lotus-type porous material is presented in this paper. Porous materials exhibit some unique features which are useful for a number of various applications. This paper evaluates a numerical approach for determining of damage initiation and evolution of lotus-type porous material with computational simulations, where the considered computational models have different pore topology patterns. The low-cycle fatigue analysis was performed by using a damage evolution law. The damage state was calculated and updated based on the inelastic hysteresis energy for stabilized cycle. Degradation of the elastic stifness was modeled using scalar damage variable. In order to examine crack propagation path finite elements with severe damage were deleted and removed from the mesh during simulation. The direct cyclic analysis capability in Abaqus/Standard was used for low-cycle fatigue analysis to obtain the stabilized response of a model subjected to the periodic loading. The computational results show a qualitative understanding of pores topology influence on low-cycle fatigue under transversal loading conditions in relation to pore orientation.

  12. A CASKCOM: A cask life cycle cost model

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    CASKCOM (cask cost model) is a computerized model which calculates the life cycle costs (LCC) associated with specific transportation cask designs and discounts those costs, if the user so chooses, to a net present value. The model has been used to help analyze and compare the life cycle economics of burnup credit and nonburnup credit cask designs being considered as conditions for a new generation of spent fuel transportation casks. CASKCOM is parametric in the sense that its input data can be easily changed in order to analyze and compare the life cycle cost implications arising from alternative assumptions. The input data themselves are organized into two main groupings. The first grouping comprises a set of data which is independent of cask design. This first grouping does not change from the analysis of one cask design to another. The second grouping of data is specific to each individual cask design. This second grouping thus changes each time a new cask design is analyzed

  13. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A: Turbine Model

    Directory of Open Access Journals (Sweden)

    Andrea Meroni

    2016-04-01

    Full Text Available Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary turbine design model, the details of the validation and a sensitivity analysis on the main parameters, in order to minimize the number of decision variables in the subsequent turbine design optimization. Part B analyzes the application of the combined turbine and cycle designs on a selected case study, which was performed in order to show the advantages of the adopted methodology. Part A presents a one-dimensional turbine model and the results of the validation using two experimental test cases from literature. The first case is a subsonic turbine operated with air and investigated at the University of Hannover. The second case is a small, supersonic turbine operated with an organic fluid and investigated by Verneau. In the first case, the results of the turbine model are also compared to those obtained using computational fluid dynamics simulations. The results of the validation suggest that the model can predict values of efficiency within ± 1.3%-points, which is in agreement with the reliability of classic turbine loss models such as the Craig and Cox correlations used in the present study. Values similar to computational fluid dynamics simulations at the midspan were obtained in the first case of validation. Discrepancy below 12 % was obtained in the estimation of the flow velocities and turbine geometry. The values are considered to be within a

  14. Nuclear fuel cycle optimization - methods and modelling techniques

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1982-01-01

    This book is aimed at presenting methods applicable in the analysis of fuel cycle logistics and optimization as well as in evaluating the economics of different reactor strategies. After a succinct introduction to the phases of a fuel cycle, uranium cost trends are assessed in a global perspective and subsequent chapters deal with the fuel cycle problems faced by a power utility. A fundamental material flow model is introduced first in the context of light water reactor fuel cycles. Besides the minimum cost criterion, the text also deals with other objectives providing for a treatment of cost uncertainties and of the risk of proliferation of nuclear weapons. Methods to assess mixed reactor strategies, comprising also other reactor types than the light water reactor, are confined to cost minimization. In the final Chapter, the integration of nuclear capacity within a generating system is examined. (author)

  15. How do dynamic capabilities transform external technologies into firms’ renewed technological resources? – A mediation model

    DEFF Research Database (Denmark)

    Li-Ying, Jason; Wang, Yuandi; Ning, Lutao

    2016-01-01

    microfoundations of dynamic technological capabilities, mediate the relationship between external technology breadth and firms’ technological innovation performance, based on the resource-based view and dynamic capability view. Using a sample of listed Chinese licensee firms, we find that firms must broadly......How externally acquired resources may become valuable, rare, hard-to-imitate, and non-substitute resource bundles through the development of dynamic capabilities? This study proposes and tests a mediation model of how firms’ internal technological diversification and R&D, as two distinctive...... explore external technologies to ignite the dynamism in internal technological diversity and in-house R&D, which play their crucial roles differently to transform and reconfigure firms’ technological resources....

  16. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    Science.gov (United States)

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; hide

    2016-01-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users.The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.

  17. Nutrient cycle benchmarks for earth system land model

    Science.gov (United States)

    Zhu, Q.; Riley, W. J.; Tang, J.; Zhao, L.

    2017-12-01

    Projecting future biosphere-climate feedbacks using Earth system models (ESMs) relies heavily on robust modeling of land surface carbon dynamics. More importantly, soil nutrient (particularly, nitrogen (N) and phosphorus (P)) dynamics strongly modulate carbon dynamics, such as plant sequestration of atmospheric CO2. Prevailing ESM land models all consider nitrogen as a potentially limiting nutrient, and several consider phosphorus. However, including nutrient cycle processes in ESM land models potentially introduces large uncertainties that could be identified and addressed by improved observational constraints. We describe the development of two nutrient cycle benchmarks for ESM land models: (1) nutrient partitioning between plants and soil microbes inferred from 15N and 33P tracers studies and (2) nutrient limitation effects on carbon cycle informed by long-term fertilization experiments. We used these benchmarks to evaluate critical hypotheses regarding nutrient cycling and their representation in ESMs. We found that a mechanistic representation of plant-microbe nutrient competition based on relevant functional traits best reproduced observed plant-microbe nutrient partitioning. We also found that for multiple-nutrient models (i.e., N and P), application of Liebig's law of the minimum is often inaccurate. Rather, the Multiple Nutrient Limitation (MNL) concept better reproduces observed carbon-nutrient interactions.

  18. REQUIREMENTS FOR SYSTEMS DEVELOPMENT LIFE CYCLE MODELS FOR LARGE-SCALE DEFENSE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kadir Alpaslan DEMIR

    2015-10-01

    Full Text Available TLarge-scale defense system projects are strategic for maintaining and increasing the national defense capability. Therefore, governments spend billions of dollars in the acquisition and development of large-scale defense systems. The scale of defense systems is always increasing and the costs to build them are skyrocketing. Today, defense systems are software intensive and they are either a system of systems or a part of it. Historically, the project performances observed in the development of these systems have been signifi cantly poor when compared to other types of projects. It is obvious that the currently used systems development life cycle models are insuffi cient to address today’s challenges of building these systems. Using a systems development life cycle model that is specifi cally designed for largescale defense system developments and is effective in dealing with today’s and near-future challenges will help to improve project performances. The fi rst step in the development a large-scale defense systems development life cycle model is the identifi cation of requirements for such a model. This paper contributes to the body of literature in the fi eld by providing a set of requirements for system development life cycle models for large-scale defense systems. Furthermore, a research agenda is proposed.

  19. Konsep Tingkat Kematangan penerapan Internet Protokol versi 6 (Capability Maturity Model for IPv6 Implementation

    Directory of Open Access Journals (Sweden)

    Riza Azmi

    2015-03-01

    Full Text Available Internet Protocol atau IP merupakan standar penomoran internet di dunia yang jumlahnya terbatas. Di dunia, alokasi IP diatur oleh Internet Assignd Number Authority (IANA dan didelegasikan ke melalui otoritas masing-masing benua. IP sendiri terdiri dari 2 jenis versi yaitu IPv4 dan IPv6 dimana alokasi IPv4 dinyatakan habis di tingkat IANA pada bulan April 2011. Oleh karena itu, penggunaan IP diarahkan kepada penggunaan IPv6. Untuk melihat bagaimana kematangan suatu organisasi terhadap implementasi IPv6, penelitian ini mencoba membuat sebuah model tingkat kematangan penerapan IPv6. Konsep dasar dari model ini mengambil konsep Capability Maturity Model Integrated (CMMI, dengan beberapa tambahan yaitu roadmap migrasi IPv6 di Indonesia, Request for Comment (RFC yang terkait dengan IPv6 serta beberapa best-practice implementasi dari IPv6. Dengan konsep tersebut, penelitian ini menghasilkan konsep Capability Maturity for IPv6 Implementation.

  20. Numerical Model of a Variable-Combined-Cycle Engine for Dual Subsonic and Supersonic Cruise

    Directory of Open Access Journals (Sweden)

    Victor Fernandez-Villace

    2013-02-01

    Full Text Available Efficient high speed propulsion requires exploiting the cooling capability of the cryogenic fuel in the propulsion cycle. This paper presents the numerical model of a combined cycle engine while in air turbo-rocket configuration. Specific models of the various heat exchanger modules and the turbomachinery elements were developed to represent the physical behavior at off-design operation. The dynamic nature of the model allows the introduction of the engine control logic that limits the operation of certain subcomponents and extends the overall engine operational envelope. The specific impulse and uninstalled thrust are detailed while flying a determined trajectory between Mach 2.5 and 5 for varying throttling levels throughout the operational envelope.

  1. Integration of Life Cycle Assessment Into Agent-Based Modeling : Toward Informed Decisions on Evolving Infrastructure Systems

    NARCIS (Netherlands)

    Davis, C.B.; Nikoli?, I.; Dijkema, G.P.J.

    2009-01-01

    A method is presented that allows for a life cycle assessment (LCA) to provide environmental information on an energy infrastructure system while it evolves. Energy conversion facilities are represented in an agent-based model (ABM) as distinct instances of technologies with owners capable of making

  2. Modelling the CDK-dependent transcription cycle in fission yeast.

    Science.gov (United States)

    Sansó, Miriam; Fisher, Robert P

    2013-12-01

    CDKs (cyclin-dependent kinases) ensure directionality and fidelity of the eukaryotic cell division cycle. In a similar fashion, the transcription cycle is governed by a conserved subfamily of CDKs that phosphorylate Pol II (RNA polymerase II) and other substrates. A genetic model organism, the fission yeast Schizosaccharomyces pombe, has yielded robust models of cell-cycle control, applicable to higher eukaryotes. From a similar approach combining classical and chemical genetics, fundamental principles of transcriptional regulation by CDKs are now emerging. In the present paper, we review the current knowledge of each transcriptional CDK with respect to its substrate specificity, function in transcription and effects on chromatin modifications, highlighting the important roles of CDKs in ensuring quantity and quality control over gene expression in eukaryotes.

  3. Modeling of the global carbon cycle - isotopic data requirements

    International Nuclear Information System (INIS)

    Ciais, P.

    1994-01-01

    Isotopes are powerful tools to constrain carbon cycle models. For example, the combinations of the CO 2 and the 13 C budget allows to calculate the net-carbon fluxes between atmosphere, ocean, and biosphere. Observations of natural and bomb-produced radiocarbon allow to estimate gross carbon exchange fluxes between different reservoirs and to deduce time scales of carbon overturning in important reservoirs. 18 O in CO 2 is potentially a tool to make the deconvolution of C fluxes within the land biosphere (assimilation vs respirations). The scope of this article is to identify gaps in our present knowledge about isotopes in the light of their use as constraint for the global carbon cycle. In the following we will present a list of some future data requirements for carbon cycle models. (authors)

  4. Effect of pedaling rates and myosin heavy chain composition in the vastus lateralis muscle on the power generating capability during incremental cycling in humans.

    Science.gov (United States)

    Majerczak, J; Szkutnik, Z; Duda, K; Komorowska, M; Kolodziejski, L; Karasinski, J; Zoladz, J A

    2008-01-01

    In this study, we have determined power output reached at maximal oxygen uptake during incremental cycling exercise (P(I, max)) performed at low and at high pedaling rates in nineteen untrained men with various myosin heavy chain composition (MyHC) in the vastus lateralis muscle. On separate days, subjects performed two incremental exercise tests until exhaustion at 60 rev min(-1) and at 120 rev min(-1). In the studied group of subjects P(I, max) reached during cycling at 60 rev min(-1) was significantly higher (p=0.0001) than that at 120 rev min(-1) (287+/-29 vs. 215+/-42 W, respectively for 60 and 120 rev min(-1)). For further comparisons, two groups of subjects (n=6, each) were selected according to MyHC composition in the vastus lateralis muscle: group H with higher MyHC II content (56.8+/-2.79 %) and group L with lower MyHC II content in this muscle (28.6+/-5.8 %). P(I, max) reached during cycling performed at 60 rev min(-1) in group H was significantly lower than in group L (p=0.03). However, during cycling at 120 rev min(-1), there was no significant difference in P(I, max) reached by both groups of subjects (p=0.38). Moreover, oxygen uptake (VO(2)), blood hydrogen ion [H(+)], plasma lactate [La(-)] and ammonia [NH(3)] concentrations determined at the four highest power outputs completed during the incremental cycling performed at 60 as well as 120 rev min(-1), in the group H were significantly higher than in group L. We have concluded that during an incremental exercise performed at low pedaling rates the subjects with lower content of MyHC II in the vastus lateralis muscle possess greater power generating capabilities than the subjects with higher content of MyHC II. Surprisingly, at high pedaling rate, power generating capabilities in the subjects with higher MyHC II content in the vastus lateralis muscle did not differ from those found in the subjects with lower content of MyHC II in this muscle, despite higher blood [H(+)], [La(-)] and [NH(3

  5. Absorption Cycle Heat Pump Model for Control Design

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based on an act......Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based...... to operational data and different scenarios are simulated to investigate the operational stability of the heat pump. Finally, this paper provides suggestions and examples of derivation of lower order linear models for control design. © Copyright IEEE - All rights reserved....

  6. Simulated Carbon Cycling in a Model Microbial Mat.

    Science.gov (United States)

    Decker, K. L.; Potter, C. S.

    2006-12-01

    We present here the novel addition of detailed organic carbon cycling to our model of a hypersaline microbial mat ecosystem. This ecosystem model, MBGC (Microbial BioGeoChemistry), simulates carbon fixation through oxygenic and anoxygenic photosynthesis, and the release of C and electrons for microbial heterotrophs via cyanobacterial exudates and also via a pool of dead cells. Previously in MBGC, the organic portion of the carbon cycle was simplified into a black-box rate of accumulation of simple and complex organic compounds based on photosynthesis and mortality rates. We will discuss the novel inclusion of fermentation as a source of carbon and electrons for use in methanogenesis and sulfate reduction, and the influence of photorespiration on labile carbon exudation rates in cyanobacteria. We will also discuss the modeling of decomposition of dead cells and the ultimate release of inorganic carbon. The detailed modeling of organic carbon cycling is important to the accurate representation of inorganic carbon flux through the mat, as well as to accurate representation of growth models of the heterotrophs under different environmental conditions. Because the model ecosystem is an analog of ancient microbial mats that had huge impacts on the atmosphere of early earth, this MBGC can be useful as a biological component to either early earth models or models of other planets that potentially harbor life.

  7. SMAFS, Steady-state analysis Model for Advanced Fuel cycle Schemes

    International Nuclear Information System (INIS)

    LEE, Kwang-Seok

    2006-01-01

    1 - Description of program or function: The model was developed as a part of the study, 'Advanced Fuel Cycles and Waste Management', which was performed during 2003-2005 by an ad-hoc expert group under the Nuclear Development Committee in the OECD/NEA. The model was designed for an efficient conduct of nuclear fuel cycle scheme cost analyses. It is simple, transparent and offers users the capability to track down the cost analysis results. All the fuel cycle schemes considered in the model are represented in a graphic format and all values related to a fuel cycle step are shown in the graphic interface, i.e., there are no hidden values embedded in the calculations. All data on the fuel cycle schemes considered in the study including mass flows, waste generation, cost data, and other data such as activities, decay heat and neutron sources of spent fuel and high-level waste along time are included in the model and can be displayed. The user can modify easily the values of mass flows and/or cost parameters and see the corresponding changes in the results. The model calculates: front-end fuel cycle mass flows such as requirements of enrichment and conversion services and natural uranium; mass of waste based on the waste generation parameters and the mass flow; and all costs. It performs Monte Carlo simulations with changing the values of all unit costs within their respective ranges (from lower to upper bounds). 2 - Methods: In Monte Carlo simulation, it is assumed that all unit costs follow a triangular probability distribution function, i.e., the probability that the unit cost has a value increases linearly from its lower bound to the nominal value and then decreases linearly to its upper bound. 3 - Restrictions on the complexity of the problem: The limit for the Monte Carlo iterations is the one of an Excel worksheet, i.e. 65,536

  8. Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Lindley, B.A.; Parks, G.T.; Nuttall, W.J.; Gregg, R.; Hesketh, K.W.; Kannan, U.; Krishnani, P.D.; Singh, B.; Thakur, A.; Cowper, M.; Talamo, A.

    2014-01-01

    Highlights: • We study three open cycle Th–U-fuelled nuclear energy systems. • Comparison of these systems is made to a reference U-fuelled EPR. • Fuel cycle modelling is performed with UK NNL code “ORION”. • U-fuelled system is economically favourable and needs least separative work per kWh. • Th–U-fuelled systems offer negligible waste and proliferation resistance advantages. - Abstract: In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium–uranium-fuelled (Th–U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to ∼20% 235 U, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory’s fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th–U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of ∼6% in the required uranium ore per kWh was seen for one of the Th–U-fuelled systems compared to the reference U-fuelled system, the other two Th–U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th–U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little

  9. The Community WRF-Hydro Modeling System Version 4 Updates: Merging Toward Capabilities of the National Water Model

    Science.gov (United States)

    McAllister, M.; Gochis, D.; Dugger, A. L.; Karsten, L. R.; McCreight, J. L.; Pan, L.; Rafieeinasab, A.; Read, L. K.; Sampson, K. M.; Yu, W.

    2017-12-01

    The community WRF-Hydro modeling system is publicly available and provides researchers and operational forecasters a flexible and extensible capability for performing multi-scale, multi-physics options for hydrologic modeling that can be run independent or fully-interactive with the WRF atmospheric model. The core WRF-Hydro physics model contains very high-resolution descriptions of terrestrial hydrologic process representations such as land-atmosphere exchanges of energy and moisture, snowpack evolution, infiltration, terrain routing, channel routing, basic reservoir representation and hydrologic data assimilation. Complementing the core physics components of WRF-Hydro are an ecosystem of pre- and post-processing tools that facilitate the preparation of terrain and meteorological input data, an open-source hydrologic model evaluation toolset (Rwrfhydro), hydrologic data assimilation capabilities with DART and advanced model visualization capabilities. The National Center for Atmospheric Research (NCAR), through collaborative support from the National Science Foundation and other funding partners, provides community support for the entire WRF-Hydro system through a variety of mechanisms. This presentation summarizes the enhanced user support capabilities that are being developed for the community WRF-Hydro modeling system. These products and services include a new website, open-source code repositories, documentation and user guides, test cases, online training materials, live, hands-on training sessions, an email list serve, and individual user support via email through a new help desk ticketing system. The WRF-Hydro modeling system and supporting tools which now include re-gridding scripts and model calibration have recently been updated to Version 4 and are merging toward capabilities of the National Water Model.

  10. PENGARUH MODEL PEMBELAJARAN LEARNING CYCLE TERHADAP KETERAMPILAN BERPIKIR KRITIS SISWA

    Directory of Open Access Journals (Sweden)

    Aryani Novianti

    2015-03-01

    Full Text Available Tujuan dari penelitian ini adalah untuk mengetahui pengaruh model pembelajaran Learning Cycle pada konsep Sistem Pencernaan pada Manusia terhadap keterampilan berpikir kritis siswa. Adapun model pembelajaran Learning Cycle yang diterapkan adalah jenis 5E (Engangement, Exploration, Explanation, Elaboration dan Evaluation. Populasi dari penelitian ini adalah seluruh siswa kelas VIII SMP N 9 Kota Tangerang Selatan sedangkan sampelnya adalah seluruh siswa di kelas VIII 7 (38 orang dan VIII 8 (38 orang SMP N 9 Kota Tangsel. Teknik pengambilan sampel dalam penelitian ini dilakukan dengan teknik Sampling Purposive. Metode penelitian yang digunakan dalam penelitian ini adalah metode penelitian Quasi-eksperimental design dengan desain penelitian berupa nonequivalent control group design. Instrumen yang digunakan berupa tes tertulis berupa pilihan ganda dan esai yang ditujukan untuk mengukur keterampilan berpikir kritis. Sedangkan lembar observasi digunakan untuk mengamati keterlaksanaan model pembelajaran Learning Cycle oleh guru dan keterampilan berpikir kritis yang tergali oleh siswa. Analisis data menggunakan uji-t diperoleh hasil thitung 3,703 dan ttabel pada taraf signifikansi 5 % sebesar 2, maka thitung > ttabel. Hal ini dapat disimpulkan bahwa penerapan model pembelajaran Learning Cycle pada konsep Sistem Pencernaan pada Manusia berpengaruh terhadap keterampilan berpikir kritis siswa.

  11. Spectral analysis and markov switching model of Indonesia business cycle

    Science.gov (United States)

    Fajar, Muhammad; Darwis, Sutawanir; Darmawan, Gumgum

    2017-03-01

    This study aims to investigate the Indonesia business cycle encompassing the determination of smoothing parameter (λ) on Hodrick-Prescott filter. Subsequently, the components of the filter output cycles were analyzed using a spectral method useful to know its characteristics, and Markov switching regime modeling is made to forecast the probability recession and expansion regimes. The data used in the study is real GDP (1983Q1 - 2016Q2). The results of the study are: a) Hodrick-Prescott filter on real GDP of Indonesia to be optimal when the value of the smoothing parameter is 988.474, b) Indonesia business cycle has amplitude varies between±0.0071 to±0.01024, and the duration is between 4 to 22 quarters, c) the business cycle can be modelled by MSIV-AR (2) but regime periodization is generated this model not perfect exactly with real regime periodzation, and d) Based on the model MSIV-AR (2) obtained long-term probabilities in the expansion regime: 0.4858 and in the recession regime: 0.5142.

  12. Anticipated growth and business cycles in matching models

    NARCIS (Netherlands)

    den Haan, W.J.; Kaltenbrunner, G.

    2009-01-01

    In a business cycle model that incorporates a standard matching framework, employment increases in response to news shocks, even though the wealth effect associated with the increase in expected productivity reduces labor force participation. The reason is that the matching friction induces

  13. Nuclear weapons data for use in carbon cycle modelling

    International Nuclear Information System (INIS)

    Enting, I.G.

    1982-01-01

    This report contains tables of atmospheric explosions for use in carbon cycle modelling studies. Descriptions of the sources of the data and the manner in which it can be used are given. The essential requirement is for a specification of the amount of 14 C injected into the atmosphere as a function of time, height, latitude and longitude

  14. Design and Modelling of Small Scale Low Temperature Power Cycles

    DEFF Research Database (Denmark)

    Wronski, Jorrit

    he work presented in this report contributes to the state of the art within design and modelling of small scale low temperature power cycles. The study is divided into three main parts: (i) fluid property evaluation, (ii) expansion device investigations and (iii) heat exchanger performance......-oriented Modelica code and was included in the thermo Cycle framework for small scale ORC systems. Special attention was paid to the valve system and a control method for variable expansion ratios was introduced based on a cogeneration scenario. Admission control based on evaporator and condenser conditions...

  15. A Simulation Model for the Waterfall Software Development Life Cycle

    OpenAIRE

    Bassil, Youssef

    2012-01-01

    Software development life cycle or SDLC for short is a methodology for designing, building, and maintaining information and industrial systems. So far, there exist many SDLC models, one of which is the Waterfall model which comprises five phases to be completed sequentially in order to develop a software solution. However, SDLC of software systems has always encountered problems and limitations that resulted in significant budget overruns, late or suspended deliveries, and dissatisfied client...

  16. Hopf bifurcation of the stochastic model on business cycle

    International Nuclear Information System (INIS)

    Xu, J; Wang, H; Ge, G

    2008-01-01

    A stochastic model on business cycle was presented in thas paper. Simplifying the model through the quasi Hamiltonian theory, the Ito diffusion process was obtained. According to Oseledec multiplicative ergodic theory and singular boundary theory, the conditions of local and global stability were acquired. Solving the stationary FPK equation and analyzing the stationary probability density, the stochastic Hopf bifurcation was explained. The result indicated that the change of parameter awas the key factor to the appearance of the stochastic Hopf bifurcation

  17. Fluctuations in a mixed IS-LM business cycle model

    Directory of Open Access Journals (Sweden)

    Hamad Talibi Alaoui

    2008-09-01

    Full Text Available In the present paper, we extend a delayed IS-LM business cycle model by introducing an additional advance (anticipated capital stock in the investment function. The resulting model is represented in terms of mixed differential equations. For the deviating argument $au$ (advance and delay being a bifurcation parameter we investigate the local stability and the local Hopf bifurcation. Also some numerical simulations are given to support the theoretical analysis.

  18. Spatial Preference Modelling for equitable infrastructure provision: an application of Sen's Capability Approach

    Science.gov (United States)

    Wismadi, Arif; Zuidgeest, Mark; Brussel, Mark; van Maarseveen, Martin

    2014-01-01

    To determine whether the inclusion of spatial neighbourhood comparison factors in Preference Modelling allows spatial decision support systems (SDSSs) to better address spatial equity, we introduce Spatial Preference Modelling (SPM). To evaluate the effectiveness of this model in addressing equity, various standardisation functions in both Non-Spatial Preference Modelling and SPM are compared. The evaluation involves applying the model to a resource location-allocation problem for transport infrastructure in the Special Province of Yogyakarta in Indonesia. We apply Amartya Sen's Capability Approach to define opportunity to mobility as a non-income indicator. Using the extended Moran's I interpretation for spatial equity, we evaluate the distribution output regarding, first, `the spatial distribution patterns of priority targeting for allocation' (SPT) and, second, `the effect of new distribution patterns after location-allocation' (ELA). The Moran's I index of the initial map and its comparison with six patterns for SPT as well as ELA consistently indicates that the SPM is more effective for addressing spatial equity. We conclude that the inclusion of spatial neighbourhood comparison factors in Preference Modelling improves the capability of SDSS to address spatial equity. This study thus proposes a new formal method for SDSS with specific attention on resource location-allocation to address spatial equity.

  19. Landscape capability models as a tool to predict fine-scale forest bird occupancy and abundance

    Science.gov (United States)

    Loman, Zachary G.; DeLuca, William; Harrison, Daniel J.; Loftin, Cynthia S.; Rolek, Brian W.; Wood, Petra B.

    2018-01-01

    ContextSpecies-specific models of landscape capability (LC) can inform landscape conservation design. Landscape capability is “the ability of the landscape to provide the environment […] and the local resources […] needed for survival and reproduction […] in sufficient quantity, quality and accessibility to meet the life history requirements of individuals and local populations.” Landscape capability incorporates species’ life histories, ecologies, and distributions to model habitat for current and future landscapes and climates as a proactive strategy for conservation planning.ObjectivesWe tested the ability of a set of LC models to explain variation in point occupancy and abundance for seven bird species representative of spruce-fir, mixed conifer-hardwood, and riparian and wooded wetland macrohabitats.MethodsWe compiled point count data sets used for biological inventory, species monitoring, and field studies across the northeastern United States to create an independent validation data set. Our validation explicitly accounted for underestimation in validation data using joint distance and time removal sampling.ResultsBlackpoll warbler (Setophaga striata), wood thrush (Hylocichla mustelina), and Louisiana (Parkesia motacilla) and northern waterthrush (P. noveboracensis) models were validated as predicting variation in abundance, although this varied from not biologically meaningful (1%) to strongly meaningful (59%). We verified all seven species models [including ovenbird (Seiurus aurocapilla), blackburnian (Setophaga fusca) and cerulean warbler (Setophaga cerulea)], as all were positively related to occupancy data.ConclusionsLC models represent a useful tool for conservation planning owing to their predictive ability over a regional extent. As improved remote-sensed data become available, LC layers are updated, which will improve predictions.

  20. Numerical simulation of the hair formation -modeling of hair cycle

    Science.gov (United States)

    Kajihara, Narumichi; Nagayama, Katsuya

    2018-01-01

    In the recent years, the fields of study of anti-aging, health and beauty, cosmetics, and hair diseases have attracted significant attention. In particular, human hair is considered to be an important aspect with regard to an attractive appearance. To this end, many workers have sought to understand the formation mechanism of the hair root. However, observing growth in the hair root is difficult, and a detailed mechanism of the process has not yet been elucidated. Hair repeats growth, retraction, and pause cycles (hair cycle) in a repetitive process. In the growth phase, hair is formed through processes of cell proliferation and differentiation (keratinization). During the retraction phase, hair growth stops, and during the resting period, hair fall occurs and new hair grows. This hair cycle is believed to affect the elongation rate, thickness, strength, and shape of hair. Therefore, in this study, we introduce a particle model as a new method to elucidate the unknown process of hair formation, and to model the hair formation process accompanying the proliferation and differentiation of the hair root cells in all three dimensions. In addition, to the growth period, the retraction and the resting periods are introduced to realize the hair cycle using this model.

  1. Cycle length maximization in PWRs using empirical core models

    International Nuclear Information System (INIS)

    Okafor, K.C.; Aldemir, T.

    1987-01-01

    The problem of maximizing cycle length in nuclear reactors through optimal fuel and poison management has been addressed by many investigators. An often-used neutronic modeling technique is to find correlations between the state and control variables to describe the response of the core to changes in the control variables. In this study, a set of linear correlations, generated by two-dimensional diffusion-depletion calculations, is used to find the enrichment distribution that maximizes cycle length for the initial core of a pressurized water reactor (PWR). These correlations (a) incorporate the effect of composition changes in all the control zones on a given fuel assembly and (b) are valid for a given range of control variables. The advantage of using such correlations is that the cycle length maximization problem can be reduced to a linear programming problem

  2. Forecasting Macedonian Business Cycle Turning Points Using Qual Var Model

    Directory of Open Access Journals (Sweden)

    Petrovska Magdalena

    2016-09-01

    Full Text Available This paper aims at assessing the usefulness of leading indicators in business cycle research and forecast. Initially we test the predictive power of the economic sentiment indicator (ESI within a static probit model as a leading indicator, commonly perceived to be able to provide a reliable summary of the current economic conditions. We further proceed analyzing how well an extended set of indicators performs in forecasting turning points of the Macedonian business cycle by employing the Qual VAR approach of Dueker (2005. In continuation, we evaluate the quality of the selected indicators in pseudo-out-of-sample context. The results show that the use of survey-based indicators as a complement to macroeconomic data work satisfactory well in capturing the business cycle developments in Macedonia.

  3. Chaotic and stable perturbed maps: 2-cycles and spatial models

    Science.gov (United States)

    Braverman, E.; Haroutunian, J.

    2010-06-01

    As the growth rate parameter increases in the Ricker, logistic and some other maps, the models exhibit an irreversible period doubling route to chaos. If a constant positive perturbation is introduced, then the Ricker model (but not the classical logistic map) experiences period doubling reversals; the break of chaos finally gives birth to a stable two-cycle. We outline the maps which demonstrate a similar behavior and also study relevant discrete spatial models where the value in each cell at the next step is defined only by the values at the cell and its nearest neighbors. The stable 2-cycle in a scalar map does not necessarily imply 2-cyclic-type behavior in each cell for the spatial generalization of the map.

  4. Externalities in a life cycle model with endogenous survival☆

    Science.gov (United States)

    Kuhn, Michael; Wrzaczek, Stefan; Prskawetz, Alexia; Feichtinger, Gustav

    2011-01-01

    We study socially vs individually optimal life cycle allocations of consumption and health, when individual health care curbs own mortality but also has a spillover effect on other persons’ survival. Such spillovers arise, for instance, when health care activity at aggregate level triggers improvements in treatment through learning-by-doing (positive externality) or a deterioration in the quality of care through congestion (negative externality). We combine an age-structured optimal control model at population level with a conventional life cycle model to derive the social and private value of life. We then examine how individual incentives deviate from social incentives and how they can be aligned by way of a transfer scheme. The age-patterns of socially and individually optimal health expenditures and the transfer rate are derived. Numerical analysis illustrates the working of our model. PMID:28298810

  5. Thermodynamic Modeling for Open Combined Regenerative Brayton and Inverse Brayton Cycles with Regeneration before the Inverse Cycle

    Directory of Open Access Journals (Sweden)

    Lingen Chen

    2012-01-01

    Full Text Available A thermodynamic model of an open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle is established in this paper by using thermodynamic optimization theory. The flow processes of the working fluid with the pressure drops and the size constraint of the real power plant are modeled. There are 13 flow resistances encountered by the working fluid stream for the cycle model. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining nine flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, regenerator inlet and outlet, combustion chamber inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle, and control the air flow rate, the net power output and the thermal efficiency. The analytical formulae about the power output, efficiency and other coefficients are derived with 13 pressure drop losses. It is found that the combined cycle with regenerator can reach higher thermal efficiency but smaller power output than those of the base combined cycle at small compressor inlet relative pressure drop of the top cycle.

  6. IMPACT OF CO-CREATION ON INNOVATION CAPABILITY AND FIRM PERFORMANCE: A STRUCTURAL EQUATION MODELING

    Directory of Open Access Journals (Sweden)

    FATEMEH HAMIDI

    Full Text Available ABSTRACT Traditional firms used to design products, evaluate marketing messages and control product distribution channels with no costumer interface. With the advancements in interaction technologies, however, users can easily make impacts on firms; the interaction between costumers and firms is now in peak condition in comparison to the past and is no longer controlled by firms. Customers are playing two roles of value creators and consumers simultaneously. We examine the role of co-creation on the influences of innovation capability and firm performance. We develop hypotheses and test them using researcher survey data. The results suggest that implement of co-creation partially mediate the effect of process innovation capability. We discuss the implications of these findings for research and practice on the depict and implement of unique value co-creation model.

  7. Building a Conceptual Model of Routines, Capabilities, and Absorptive Capacity Interplay

    Directory of Open Access Journals (Sweden)

    Ivan Stefanovic

    2014-05-01

    Full Text Available Researchers have often used constructs such as routines, operational capability, dynamic capability, absorptive capacity, etc., to explain various organizational phenomena, especially a competitive advantage of firms. As a consequence of their frequent use in different contexts, these constructs have become extremely broad and blurred, thus making a void in strategic management literature. In this paper we attempt to bring a sense of holistic perspective on these constructs by briefly reviewing the current state of the research and presenting a conceptual model that provides an explanation for the causal relationships between them. The final section of the paper sheds some light on this topic from the econophysics perspective. Authors hope that findings in this paper may serve as a foundation for other research endeavours related to the topic of how firms achieve competitive advantage and thrive in their environments.

  8. A Computational Model of the SC Multisensory Neurons: Integrative Capabilities, Maturation, and Plasticity

    Directory of Open Access Journals (Sweden)

    Cristiano Cuppini

    2011-10-01

    Full Text Available Different cortical and subcortical structures present neurons able to integrate stimuli of different sensory modalities. Among the others, one of the most investigated integrative regions is the Superior Colliculus (SC, a midbrain structure whose aim is to guide attentive behaviour and motor responses toward external events. Despite the large amount of experimental data in the literature, the neural mechanisms underlying the SC response are not completely understood. Moreover, recent data indicate that multisensory integration ability is the result of maturation after birth, depending on sensory experience. Mathematical models and computer simulations can be of value to investigate and clarify these phenomena. In the last few years, several models have been implemented to shed light on these mechanisms and to gain a deeper comprehension of the SC capabilities. Here, a neural network model (Cuppini et al., 2010 is extensively discussed. The model considers visual-auditory interaction, and is able to reproduce and explain the main physiological features of multisensory integration in SC neurons, and their acquisition during postnatal life. To reproduce a neonatal condition, the model assumes that during early life: 1 cortical-SC synapses are present but not active; 2 in this phase, responses are driven by non-cortical inputs with very large receptive fields (RFs and little spatial tuning; 3 a slight spatial preference for the visual inputs is present. Sensory experience is modeled by a “training phase” in which the network is repeatedly exposed to modality-specific and cross-modal stimuli at different locations. As results, Cortical-SC synapses are crafted during this period thanks to the Hebbian rules of potentiation and depression, RFs are reduced in size, and neurons exhibit integrative capabilities to cross-modal stimuli, such as multisensory enhancement, inverse effectiveness, and multisensory depression. The utility of the modelling

  9. Transitioning Enhanced Land Surface Initialization and Model Verification Capabilities to the Kenya Meteorological Department (KMD)

    Science.gov (United States)

    Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Zavodsky, Bradley T.; Srikishen, Jayanthi; Limaye, Ashutosh; Blankenship, Clay B.

    2016-01-01

    Flooding, severe weather, and drought are key forecasting challenges for the Kenya Meteorological Department (KMD), based in Nairobi, Kenya. Atmospheric processes leading to convection, excessive precipitation and/or prolonged drought can be strongly influenced by land cover, vegetation, and soil moisture content, especially during anomalous conditions and dry/wet seasonal transitions. It is thus important to represent accurately land surface state variables (green vegetation fraction, soil moisture, and soil temperature) in Numerical Weather Prediction (NWP) models. The NASA SERVIR and the Short-term Prediction Research and Transition (SPoRT) programs in Huntsville, AL have established a working partnership with KMD to enhance its regional modeling capabilities. SPoRT and SERVIR are providing experimental land surface initialization datasets and model verification capabilities for capacity building at KMD. To support its forecasting operations, KMD is running experimental configurations of the Weather Research and Forecasting (WRF; Skamarock et al. 2008) model on a 12-km/4-km nested regional domain over eastern Africa, incorporating the land surface datasets provided by NASA SPoRT and SERVIR. SPoRT, SERVIR, and KMD participated in two training sessions in March 2014 and June 2015 to foster the collaboration and use of unique land surface datasets and model verification capabilities. Enhanced regional modeling capabilities have the potential to improve guidance in support of daily operations and high-impact weather and climate outlooks over Eastern Africa. For enhanced land-surface initialization, the NASA Land Information System (LIS) is run over Eastern Africa at 3-km resolution, providing real-time land surface initialization data in place of interpolated global model soil moisture and temperature data available at coarser resolutions. Additionally, real-time green vegetation fraction (GVF) composites from the Suomi-NPP VIIRS instrument is being incorporated

  10. Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ma, Lianbo; Zhang, Wenjun; Wang, Lei; Hu, Yi; Zhu, Guoyin; Wang, Yanrong; Chen, Renpeng; Chen, Tao; Tie, Zuoxiu; Liu, Jie; Jin, Zhong

    2018-05-22

    The development of flexible lithium-sulfur (Li-S) batteries with high energy density and long cycling life are very appealing for the emerging flexible, portable, and wearable electronics. However, the progress on flexible Li-S batteries was limited by the poor flexibility and serious performance decay of existing sulfur composite cathodes. Herein, we report a freestanding and highly flexible sulfur host that can simultaneously meet the flexibility, stability, and capacity requirements of flexible Li-S batteries. The host consists of a crisscrossed network of carbon nanotubes reinforced CoS nanostraws (CNTs/CoS-NSs). The CNTs/CoS-NSs with large inner space and high conductivity enable high loading and efficient utilization of sulfur. The strong capillarity effect and chemisorption of CNTs/CoS-NSs to sulfur species were verified, which can efficiently suppress the shuttle effect and promote the redox kinetics of polysulfides. The sulfur-encapsulated CNTs/CoS-NSs (S@CNTs/CoS-NSs) cathode in Li-S batteries exhibits superior performance, including high discharge capacity, rate capability (1045 mAh g -1 at 0.5 C and 573 mAh g -1 at 5.0 C), and cycling stability. Intriguingly, the soft-packed Li-S batteries based on S@CNTs/CoS-NSs cathode show good flexibility and stability upon bending.

  11. A CONCEPTUAL MODEL OF THE LIFE CYCLE OF THE PROGRAM

    Directory of Open Access Journals (Sweden)

    Марія Костянтинівна СУХОНОС

    2016-02-01

    Full Text Available A conceptual model of the life cycle of the program is proposed. This model is based on the value approach. As a resulting index, it uses a category of complex structural value. This model renders the process of the life cycle of the program in the context of time/result. It assumes the presence of four basic phases of the life cycle, namely, initiation, planning, executing and closing. Also, this model formalizes interconnection of management processes of integration of program and management of its community and subprocesses. Selection of a value approach for the forming of a resulting index of a program determines by a variety of results of the program. This is a result of its variety and complexity in the process of finding a criterion for evaluation. Worked out a mechanism for assessing the value of the program. It consists of four steps and involves using of conventional methods (decomposition and expert estimates. As a unit of measurement assumes to use points and rating scale with the maximum score a hundred points. A complex value, which is evaluated at one hundred points, is a result of the program. It is critically important in the process of current and final evaluation of the program.

  12. eWaterCycle: A global operational hydrological forecasting model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  13. The study of capability natural uranium as fuel cycle input for long life gas cooled fast reactors with helium as coolant

    Energy Technology Data Exchange (ETDEWEB)

    Ariani, Menik, E-mail: menikariani@gmail.com; Satya, Octavianus Cakra; Monado, Fiber [Department of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University, jl Palembang-Prabumulih km 32 Indralaya OganIlir, South of Sumatera (Indonesia); Su’ud, Zaki [Nuclear and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, jlGanesha 10, Bandung (Indonesia); Sekimoto, Hiroshi [CRINES, Tokyo Institute of Technology, 2-12-11N1-17 Ookayama, Meguro-Ku, Tokyo (Japan)

    2016-03-11

    The objective of the present research is to assess the feasibility design of small long-life Gas Cooled Fast Reactor with helium as coolant. GCFR included in the Generation-IV reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. This reactor can be operated without enrichment and reprocessing forever, once it starts. To obtain the capability of consuming natural uranium as fuel cycle input modified CANDLE burn-up scheme was adopted in this system with different core design. This study has compared the core with three designs of core reactors with the same thermal power 600 MWth. The fuel composition each design was arranged by divided core into several parts of equal volume axially i.e. 6, 8 and 10 parts related to material burn-up history. The fresh natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions, i.e. shifted the core of the region (i) into region (i+1) region after the end of 10 years burn-up cycle. The calculation results shows that for the burn-up strategy on “Region-8” and “Region-10” core designs, after the reactors start-up the operation furthermore they only needs natural uranium supply to the next life operation until one period of refueling (10 years).

  14. Hybrid modeling approach to improve the forecasting capability for the gaseous radionuclide in a nuclear site

    International Nuclear Information System (INIS)

    Jeong, Hyojoon; Hwang, Wontae; Kim, Eunhan; Han, Moonhee

    2012-01-01

    Highlights: ► This study is to improve the reliability of air dispersion modeling. ► Tracer experiments assumed gaseous radionuclides were conducted at a nuclear site. ► The performance of a hybrid modeling combined ISC with ANFIS was investigated.. ► Hybrid modeling approach shows better performance rather than a single ISC model. - Abstract: Predicted air concentrations of radioactive materials are important for an environmental impact assessment for the public health. In this study, the performance of a hybrid modeling combined with the industrial source complex (ISC) model and an adaptive neuro-fuzzy inference system (ANFIS) for predicting tracer concentrations was investigated. Tracer dispersion experiments were performed to produce the field data assuming the accidental release of radioactive material. ANFIS was trained in order that the outputs of the ISC model are similar to the measured data. Judging from the higher correlation coefficients between the measured and the calculated ones, the hybrid modeling approach could be an appropriate technique for an improvement of the modeling capability to predict the air concentrations for radioactive materials.

  15. Status Report on Modelling and Simulation Capabilities for Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Epiney, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, J. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yigitoglu, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, S. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ganda, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Maronati, G. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-01

    This report summarizes the current status of the modeling and simulation capabilities developed for the economic assessment of Nuclear-Renewable Hybrid Energy Systems (N-R HES). The increasing penetration of variable renewables is altering the profile of the net demand, with which the other generators on the grid have to cope. N-R HES analyses are being conducted to determine the potential feasibility of mitigating the resultant volatility in the net electricity demand by adding industrial processes that utilize either thermal or electrical energy as stabilizing loads. This coordination of energy generators and users is proposed to mitigate the increase in electricity cost and cost volatility through the production of a saleable commodity. Overall, the financial performance of a system that is comprised of peaking units (i.e. gas turbine), baseload supply (i.e. nuclear power plant), and an industrial process (e.g. hydrogen plant) should be optimized under the constraint of satisfying an electricity demand profile with a certain level of variable renewable (wind) penetration. The optimization should entail both the sizing of the components/subsystems that comprise the system and the optimal dispatch strategy (output at any given moment in time from the different subsystems). Some of the capabilities here described have been reported separately in [1, 2, 3]. The purpose of this report is to provide an update on the improvement and extension of those capabilities and to illustrate their integrated application in the economic assessment of N-R HES.

  16. Codimension-2 bifurcations of the Kaldor model of business cycle

    International Nuclear Information System (INIS)

    Wu, Xiaoqin P.

    2011-01-01

    Research highlights: → The conditions are given such that the characteristic equation may have purely imaginary roots and double zero roots. → Purely imaginary roots lead us to study Hopf and Bautin bifurcations and to calculate the first and second Lyapunov coefficients. → Double zero roots lead us to study Bogdanov-Takens (BT) bifurcation. → Bifurcation diagrams for Bautin and BT bifurcations are obtained by using the normal form theory. - Abstract: In this paper, complete analysis is presented to study codimension-2 bifurcations for the nonlinear Kaldor model of business cycle. Sufficient conditions are given for the model to demonstrate Bautin and Bogdanov-Takens (BT) bifurcations. By computing the first and second Lyapunov coefficients and performing nonlinear transformation, the normal forms are derived to obtain the bifurcation diagrams such as Hopf, homoclinic and double limit cycle bifurcations. Some examples are given to confirm the theoretical results.

  17. A deterministic model of nettle caterpillar life cycle

    Science.gov (United States)

    Syukriyah, Y.; Nuraini, N.; Handayani, D.

    2018-03-01

    Palm oil is an excellent product in the plantation sector in Indonesia. The level of palm oil productivity is very potential to increase every year. However, the level of palm oil productivity is lower than its potential. Pests and diseases are the main factors that can reduce production levels by up to 40%. The existence of pests in plants can be caused by various factors, so the anticipation in controlling pest attacks should be prepared as early as possible. Caterpillars are the main pests in oil palm. The nettle caterpillars are leaf eaters that can significantly decrease palm productivity. We construct a deterministic model that describes the life cycle of the caterpillar and its mitigation by using a caterpillar predator. The equilibrium points of the model are analyzed. The numerical simulations are constructed to give a representation how the predator as the natural enemies affects the nettle caterpillar life cycle.

  18. Adaptive Planning: Understanding Organizational Workload to Capability/ Capacity through Modeling and Simulation

    Science.gov (United States)

    Hase, Chris

    2010-01-01

    In August 2003, the Secretary of Defense (SECDEF) established the Adaptive Planning (AP) initiative [1] with an objective of reducing the time necessary to develop and revise Combatant Commander (COCOM) contingency plans and increase SECDEF plan visibility. In addition to reducing the traditional plan development timeline from twenty-four months to less than twelve months (with a goal of six months)[2], AP increased plan visibility to Department of Defense (DoD) leadership through In-Progress Reviews (IPRs). The IPR process, as well as the increased number of campaign and contingency plans COCOMs had to develop, increased the workload while the number of planners remained fixed. Several efforts from collaborative planning tools to streamlined processes were initiated to compensate for the increased workload enabling COCOMS to better meet shorter planning timelines. This paper examines the Joint Strategic Capabilities Plan (JSCP) directed contingency planning and staffing requirements assigned to a combatant commander staff through the lens of modeling and simulation. The dynamics of developing a COCOM plan are captured with an ExtendSim [3] simulation. The resulting analysis provides a quantifiable means by which to measure a combatant commander staffs workload associated with development and staffing JSCP [4] directed contingency plans with COCOM capability/capacity. Modeling and simulation bring significant opportunities in measuring the sensitivity of key variables in the assessment of workload to capability/capacity analysis. Gaining an understanding of the relationship between plan complexity, number of plans, planning processes, and number of planners with time required for plan development provides valuable information to DoD leadership. Through modeling and simulation AP leadership can gain greater insight in making key decisions on knowing where to best allocate scarce resources in an effort to meet DoD planning objectives.

  19. Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Don Shirey

    2008-02-28

    EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper

  20. Spiral model of procedural cycle of educational process management

    Directory of Open Access Journals (Sweden)

    Bezrukov Valery I.

    2016-01-01

    Full Text Available The article analyzes the nature and characteristics of the spiral model Procedure educational systems management cycle. The authors identify patterns between the development of information and communication technologies and the transformation of the education management process, give the characteristics of the concept of “information literacy” and “Media Education”. Consider the design function, determine its potential in changing the traditional educational paradigm to the new - information.

  1. Software life cycle dynamic simulation model: The organizational performance submodel

    Science.gov (United States)

    Tausworthe, Robert C.

    1985-01-01

    The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces.

  2. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    Science.gov (United States)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  3. Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)

    2014-12-15

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.

  4. Initiative-taking, Improvisational Capability and Business Model Innovation in Emerging Market

    DEFF Research Database (Denmark)

    Cao, Yangfeng

    Business model innovation plays a very important role in developing competitive advantage when multinational small and medium-sized enterprises (SMEs) from developed country enter into emerging markets because of the large contextual distances or gaps between the emerging and developed economies....... Many prior researches have shown that the foreign subsidiaries play important role in shaping the overall strategy of the parent company. However, little is known about how subsidiary specifically facilitates business model innovation (BMI) in emerging markets. Adopting the method of comparative...... innovation in emerging markets. We find that high initiative-taking and strong improvisational capability can accelerate the business model innovation. Our research contributes to the literatures on international and strategic entrepreneurship....

  5. Entry into new markets: the development of the business model and dynamic capabilities

    Directory of Open Access Journals (Sweden)

    Victor Wolowski Kenski

    2017-12-01

    Full Text Available This work shows the path through which companies enter new markets or bring new propositions to established ones. It presents the market analysis process, the strategical decisions that determine the company’s position on it and the required changes in the configurations for this new action. It also studies the process of selecting the business model and the conditions for its definition the adoption and subsequent development of resources and capabilities required to conquer this new market. It is presented the necessary conditions to remain and maintain its market position. These concepts are presented through a case study of a business group that takes part in different franchises.

  6. Mathematical modeling of the complete thermodynamic cycle of a new Atkinson cycle gas engine

    International Nuclear Information System (INIS)

    Shojaeefard, Mohammad Hassan; Keshavarz, Mojtaba

    2015-01-01

    The Atkinson cycle provides the potential to increase the efficiency of SI engines using overexpansion concept. This also will suggest decrease in CO_2 generation by internal combustion engine. In this study a mathematical modeling of complete thermodynamic cycle of a new two-stroke Atkinson cycle SI engine will be presented. The mathematical modeling is carried out using two-zone combustion analysis in order to make the model predict exhaust emission so that its values could be compared with the values of conventional SI engine. The model also is validated against experimental tests in that increase in efficiency is achieved compared to conventional SI engines. - Highlights: • The complete cycle model for the rotary Atkinson engine was developed. • Comparing the results with experimental data shows good model validity. • The model needs further improvement for the scavenging phase. • There is 5% increment in thermal efficiency with new engine compared to conventional SI engines.

  7. Modeling of Turbine Cycles Using a Neuro-Fuzzy Based Approach to Predict Turbine-Generator Output for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Yea-Kuang Chan

    2012-01-01

    Full Text Available Due to the very complex sets of component systems, interrelated thermodynamic processes and seasonal change in operating conditions, it is relatively difficult to find an accurate model for turbine cycle of nuclear power plants (NPPs. This paper deals with the modeling of turbine cycles to predict turbine-generator output using an adaptive neuro-fuzzy inference system (ANFIS for Unit 1 of the Kuosheng NPP in Taiwan. Plant operation data obtained from Kuosheng NPP between 2006 and 2011 were verified using a linear regression model with a 95% confidence interval. The key parameters of turbine cycle, including turbine throttle pressure, condenser backpressure, feedwater flow rate and final feedwater temperature are selected as inputs for the ANFIS based turbine cycle model. In addition, a thermodynamic turbine cycle model was developed using the commercial software PEPSE® to compare the performance of the ANFIS based turbine cycle model. The results show that the proposed ANFIS based turbine cycle model is capable of accurately estimating turbine-generator output and providing more reliable results than the PEPSE® based turbine cycle models. Moreover, test results show that the ANFIS performed better than the artificial neural network (ANN, which has also being tried to model the turbine cycle. The effectiveness of the proposed neuro-fuzzy based turbine cycle model was demonstrated using the actual operating data of Kuosheng NPP. Furthermore, the results also provide an alternative approach to evaluate the thermal performance of nuclear power plants.

  8. Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model

    International Nuclear Information System (INIS)

    Govindasamy, B.; Thompson, S.; Mirin, A.; Wickett, M.; Caldeira, K.; Delire, C.

    2005-01-01

    Coupled climate and carbon cycle modelling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in greater warming. In this paper we investigate the sensitivity of this feedback for year 2100 global warming in the range of 0 to 8 K. Differing climate sensitivities to increased CO 2 content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA), the NCAR/DOE Parallel Climate Model coupled to the IBIS terrestrial biosphere model and a modified OCMIP ocean biogeochemistry model. In our integrated model, for scenarios with year 2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO 2 emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO 2 concentration increases are 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO 2 content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K

  9. Models for waste life cycle assessment: Review of technical assumptions

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Damgaard, Anders; Hauschild, Michael Zwicky

    2010-01-01

    A number of waste life cycle assessment (LCA) models have been gradually developed since the early 1990s, in a number of countries, usually independently from each other. Large discrepancies in results have been observed among different waste LCA models, although it has also been shown that results...... from different LCA studies can be consistent. This paper is an attempt to identify, review and analyse methodologies and technical assumptions used in various parts of selected waste LCA models. Several criteria were identified, which could have significant impacts on the results......, such as the functional unit, system boundaries, waste composition and energy modelling. The modelling assumptions of waste management processes, ranging from collection, transportation, intermediate facilities, recycling, thermal treatment, biological treatment, and landfilling, are obviously critical when comparing...

  10. Predictive capabilities of a two-dimensional model in the ground water transport of radionuclides

    International Nuclear Information System (INIS)

    Gureghian, A.B.; Beskid, N.J.; Marmer, G.J.

    1978-01-01

    The discharge of low-level radioactive waste into tailings ponds is a potential source of ground water contamination. The estimation of the radiological hazards related to the ground water transport of radionuclides from tailings retention systems depends on reasonably accurate estimates of the movement of both water and solute. A two-dimensional mathematical model having predictive capability for ground water flow and solute transport has been developed. The flow equation has been solved under steady-state conditions and the mass transport equation under transient conditions. The simultaneous solution of both equations is achieved through the finite element technique using isoparametric elements, based on the Galerkin formulation. However, in contrast to the flow equation solution, the weighting functions used in the solution of the mass transport equation have a non-symmetric form. The predictive capability of the model is demonstrated using an idealized case based on analyses of field data obtained from the sites of operating uranium mills. The pH of the solution, which regulates the variation of the distribution coefficient (K/sub d/) in a particular site, appears to be the most important factor in the assessment of the rate of migration of the elements considered herein

  11. Full optical model of micro-endoscope with optical coherence microscopy, multiphoton microscopy and visible capabilities

    Science.gov (United States)

    Vega, David; Kiekens, Kelli C.; Syson, Nikolas C.; Romano, Gabriella; Baker, Tressa; Barton, Jennifer K.

    2018-02-01

    While Optical Coherence Microscopy (OCM), Multiphoton Microscopy (MPM), and narrowband imaging are powerful imaging techniques that can be used to detect cancer, each imaging technique has limitations when used by itself. Combining them into an endoscope to work in synergy can help achieve high sensitivity and specificity for diagnosis at the point of care. Such complex endoscopes have an elevated risk of failure, and performing proper modelling ensures functionality and minimizes risk. We present full 2D and 3D models of a multimodality optical micro-endoscope to provide real-time detection of carcinomas, called a salpingoscope. The models evaluate the endoscope illumination and light collection capabilities of various modalities. The design features two optical paths with different numerical apertures (NA) through a single lens system with a scanning optical fiber. The dual path is achieved using dichroic coatings embedded in a triplet. A high NA optical path is designed to perform OCM and MPM while a low NA optical path is designed for the visible spectrum to navigate the endoscope to areas of interest and narrowband imaging. Different tests such as the reflectance profile of homogeneous epithelial tissue were performed to adjust the models properly. Light collection models for the different modalities were created and tested for efficiency. While it is challenging to evaluate the efficiency of multimodality endoscopes, the models ensure that the system is design for the expected light collection levels to provide detectable signal to work for the intended imaging.

  12. A static VAR compensator model for improved ride-through capability of wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, V.; Soebrink, K.

    2004-12-01

    Dynamic reactive compensation is associated with reactive power and voltage control of induction generator based wind turbines. With regard to wind power, application areas of dynamic reactive compensation can be improvement of the power quality and the voltage stability, the control of the reactive power exchange between the wind farm and the power grid in the wind farm connection point as well as improvement of the ride-through capability of the wind farm. This article presents a model of a Static VAR Compensator (SVC) with dynamic generic control that is a kind of dynamic reactive compensation device. The term 'generic' implies that the model is general and must cover a variety of the SVC units and their specific controls from different manufacturers. The SVC model with dynamic generic control is implemented by Eltra in the simulation tool Powerfactory and validated from the SVC model in the tool PSCAD/EMTDC. Implementation in the tool Powerfactory makes it possible to apply the SVC model with dynamic generic control in investigations of power system stability with regard to establishment of large wind farms without restrictions on the model size of the power grid. (Author)

  13. Functional capabilities of the breadboard model of SIDRA satellite-borne instrument

    International Nuclear Information System (INIS)

    Dudnik, O.V.; Kurbatov, E.V.; Titov, K.G.; Prieto, M.; Sanchez, S.; Sylwester, J.; Gburek, S.; Podgorski, P.

    2013-01-01

    This paper presents the structure, principles of operation and functional capabilities of the breadboard model of SIDRA compact satellite-borne instrument. SIDRA is intended for monitoring fluxes of high-energy charged particles under outer-space conditions. We present the reasons to develop a particle spectrometer and we list the main objectives to be achieved with the help of this instrument. The paper describes the major specifications of the analog and digital signal processing units of the breadboard model. A specially designed and developed data processing module based on the Actel ProAsic3E A3PE3000 FPGA is presented and compared with the all-in one digital processing signal board based on the Xilinx Spartan 3 XC3S1500 FPGA.

  14. Present capabilities and new developments in antenna modeling with the numerical electromagnetics code NEC

    Energy Technology Data Exchange (ETDEWEB)

    Burke, G.J.

    1988-04-08

    Computer modeling of antennas, since its start in the late 1960's, has become a powerful and widely used tool for antenna design. Computer codes have been developed based on the Method-of-Moments, Geometrical Theory of Diffraction, or integration of Maxwell's equations. Of such tools, the Numerical Electromagnetics Code-Method of Moments (NEC) has become one of the most widely used codes for modeling resonant sized antennas. There are several reasons for this including the systematic updating and extension of its capabilities, extensive user-oriented documentation and accessibility of its developers for user assistance. The result is that there are estimated to be several hundred users of various versions of NEC world wide. 23 refs., 10 figs.

  15. Programming with models: modularity and abstraction provide powerful capabilities for systems biology.

    Science.gov (United States)

    Mallavarapu, Aneil; Thomson, Matthew; Ullian, Benjamin; Gunawardena, Jeremy

    2009-03-06

    Mathematical models are increasingly used to understand how phenotypes emerge from systems of molecular interactions. However, their current construction as monolithic sets of equations presents a fundamental barrier to progress. Overcoming this requires modularity, enabling sub-systems to be specified independently and combined incrementally, and abstraction, enabling generic properties of biological processes to be specified independently of specific instances. These, in turn, require models to be represented as programs rather than as datatypes. Programmable modularity and abstraction enables libraries of modules to be created, which can be instantiated and reused repeatedly in different contexts with different components. We have developed a computational infrastructure that accomplishes this. We show here why such capabilities are needed, what is required to implement them and what can be accomplished with them that could not be done previously.

  16. Concerns over modeling and warning capabilities in wake of Tohoku Earthquake and Tsunami

    Science.gov (United States)

    Showstack, Randy

    2011-04-01

    Improved earthquake models, better tsunami modeling and warning capabilities, and a review of nuclear power plant safety are all greatly needed following the 11 March Tohoku earthquake and tsunami, according to scientists at the European Geosciences Union's (EGU) General Assembly, held 3-8 April in Vienna, Austria. EGU quickly organized a morning session of oral presentations and an afternoon panel discussion less than 1 month after the earthquake and the tsunami and the resulting crisis at Japan's Fukushima nuclear power plant, which has now been identified as having reached the same level of severity as the 1986 Chernobyl disaster. Many of the scientists at the EGU sessions expressed concern about the inability to have anticipated the size of the earthquake and the resulting tsunami, which appears likely to have caused most of the fatalities and damage, including damage to the nuclear plant.

  17. The inherent complexity in nonlinear business cycle model in resonance

    International Nuclear Information System (INIS)

    Ma Junhai; Sun Tao; Liu Lixia

    2008-01-01

    Based on Abraham C.-L. Chian's research, we applied nonlinear dynamic system theory to study the first-order and second-order approximate solutions to one category of the nonlinear business cycle model in resonance condition. We have also analyzed the relation between amplitude and phase of second-order approximate solutions as well as the relation between outer excitements' amplitude, frequency approximate solutions, and system bifurcation parameters. Then we studied the system quasi-periodical solutions, annulus periodical solutions and the path leading to system bifurcation and chaotic state with different parameter combinations. Finally, we conducted some numerical simulations for various complicated circumstances. Therefore this research will lay solid foundation for detecting the complexity of business cycles and systems in the future

  18. Geochemical isotope compartment model of the nitrogen cycle

    International Nuclear Information System (INIS)

    Weise, G.; Wetzel, K.; Stiehl, G.

    1981-01-01

    A model of the global cycle of nitrogen and its isotopes is described. It takes into account geochemical reservoirs (nitrogen in magmatic metamorphic, and sedimentary rocks and in the atmosphere) and the nitrogen exchange between magmatic rocks and the outer mantle, the transition of nitrogen exchange between sedimentary rocks and the atmosphere. With the aid of the mathematical formalisms of the compartment theory and on the basis of all available delta 11 N values assumptions regarding the isotope effects in forming these nitrogen fluxes data have been obtained on the degree of the nitrogen exchange between the earth crust and the outer mantle and on other nitrogen fluxes characterizing the global nitrogen cycle. (author)

  19. Process integrated modelling for steelmaking Life Cycle Inventory analysis

    International Nuclear Information System (INIS)

    Iosif, Ana-Maria; Hanrot, Francois; Ablitzer, Denis

    2008-01-01

    During recent years, strict environmental regulations have been implemented by governments for the steelmaking industry in order to reduce their environmental impact. In the frame of the ULCOS project, we have developed a new methodological framework which combines the process integrated modelling approach with Life Cycle Assessment (LCA) method in order to carry out the Life Cycle Inventory of steelmaking. In the current paper, this new concept has been applied to the sinter plant which is the most polluting steelmaking process. It has been shown that this approach is a powerful tool to make the collection of data easier, to save time and to provide reliable information concerning the environmental diagnostic of the steelmaking processes

  20. Overdeterminacy and endogenous cycles: Trygve Haavelmo’s business cycle model and its implications for monetary policy

    OpenAIRE

    Kallåk Anundsen , André; Sigurd Holmsen Krogh, Tord; Nymoen, Ragnar; Vislie, Jon

    2011-01-01

    This paper presents the business cycle model that Trygve Haavelmo developed as part of his research program in macroeconomic and monetary theory. Driven by a mismatch between the marginal return to capital and the rate of return required by capital owners, this model generates endogenous cycles. The theory leads to a distinct analysis of the scope and limitations of monetary policy. A main message of the model is that care should be taken when conducting 'autonomous' monetary policy and that ...

  1. Methodological Aspects of the IAEA State Level Concept and Acquisition Path Analysis: A State’s Nuclear Fuel Cycle, Related Capabilities, and the Quantification of Acquisition Paths

    International Nuclear Information System (INIS)

    Lance, K. Kim; Renda, Guido; Cojazzi, Giacomo G. M.

    2015-01-01

    Within its State Level Concept (SLC), the International Atomic Energy Agency (IAEA) envisions a State Level Approach (SLA) for safeguards implementation that considers, inter alia, a State’s nuclear and nuclear-related activities and capabilities as a whole when developing an annual implementation plan. Based on the assessed nuclear fuel cycle and related capabilities of a State, Acquisition Path Analysis (APA) identifies, characterizes, and prioritizes plausible routes for acquiring weapons-usable material to aid in safeguards implementation planning. A review of proposed APA methods and historical evidence indicates that assessments of pathway completion time can be fraught with uncertainty and subject to bias, potentially undermining safeguards effectiveness and efficiency. Based on considerations of theory and evidence, a number of methodological insights are identified to support consistent implementation and ongoing APA development. The use of algorithms to support APA and SLA processes in lieu of human judgement is a contentious issue requiring an evidence- based assessment and is also briefly discussed. This paper captures concepts derived primarily from open sources of information, including publications, presentations, and workshops on on-going APA development by the IAEA and various Member States Support Programs (MSSP) as well as relevant work found in the open literature. While implementation of the SLA has begun for a number of States, these SLAs are being updated and developed for other States. In light of these ongoing developments, the topics covered here should be considered a snapshot in time that does not reflect finished products and does not necessarily reflect official views.

  2. Evolutive Masing model, cycling plasticity, ageing and memory effects

    International Nuclear Information System (INIS)

    Sidoroff, F.

    1987-01-01

    Many models are proposed for the mechanical description of the cyclic behaviour of metals and used for structure analysis under cyclic loading. The evolutive Masing model has been proposed (Fougeres, Sidoroff, Vincent and Waille 1985) to combine - the accuracy of hereditary models for the description of hysteresis on each cycle, - the versatility of internal variables for the state description and evolution, - a sufficient microstructural basis to make the interaction easier with microstructural investigations. The purpose of the present work is to discuss this model and to compare different evolution assumptions with respect to some memory effects (cyclic hardening and softening, multilevel tests, ageing). Attention is limited to uniaxial, rate independent elasto-plastic behaviour. (orig./GL)

  3. INFORMATION MODELING OF LIFE CYCLE OF HIGH-RISE CONSTRUCTION PROJECTS

    Directory of Open Access Journals (Sweden)

    Gusakova Elena Aleksandrovna

    2018-02-01

    cycle of high-rise buildings, which, unlike the systems being currently used, is not targeted at the company or production but on the project. The topicality of organizational reengineering of schemes of information interaction between the project’s participants is substantiated. It is shown that consolidation of methods and technologies for data management and project management should become the basis for strategic management of the project’s full life cycle. Conclusions: analysis of the accumulated experience in the development of unique and large-scale projects of high-rise buildings shows that managing the life cycle of the high-rise development project is a topical and unsolved problem that requires serious scientific and project research. The existing concepts and schemes for the project’s life cycle management and the interaction between all participants of the high-rise construction project should be substantially modernized taking into account the use of capabilities of digital modeling of the project (BIM - Building Information Modeling together with technologies for support of its life cycle (Continuous Acquisition and Life Cycle Support. At the same time, the development of an integrated information environment for the project’s life cycle should be based on the integration of data management and project management, which will ensure a multiple increase in the efficiency and competitiveness of a high-rise building project at all stages of its life cycle.

  4. Mathematical model of the reformer sponge iron cycle

    International Nuclear Information System (INIS)

    Fraser, S.; Hacker, V.; Evers, B.; Hierzer, J.; Besenhard, J.O.

    2003-01-01

    A mathematical model of the Reformer Sponge Iron Cycle (RESC), an innovative hydrogen production process based on redox reactions of iron ore pellets is presented. In the oxidation stage of the RESC, hydrogen is produced by blowing steam over hot iron pellets, hence oxidizing the iron. In the reduction stage, synthesis gas coming from a reformer mixed with a fraction of recycled off-gas is used to reduce the iron oxide pellets (wuestite and/or magnetite) back into iron again. A mathematical model of the complete RESC was developed and verified with experimental data. The model is based on calculations of the equilibrium gas concentrations for reformer and Sponge Iron Reactor (SIR). The current model computes mass fluxes, molar fluxes, partial pressures and variations of the respective throughout the complete cycle. The recycle rate, determining the fraction of SIR off-gas recycled and added to the input gas stream was subsequently optimized in order to maximize the amount of iron oxide reduced for a certain input gas flow. (author)

  5. Thermal modeling of cylindrical lithium ion battery during discharge cycle

    International Nuclear Information System (INIS)

    Jeon, Dong Hyup; Baek, Seung Man

    2011-01-01

    Highlights: → Transient and thermo-electric finite element analysis (FEA) of cylindrical lithium ion (Li-ion) battery was presented. → This model provides the thermal behavior of Li-ion battery during discharge cycle. → A LiCoO 2 /C battery at various discharge rates was investigated. → The contribution of heat source due to joule heating was significant at a high discharge rate. → The contribution of heat source due to entropy change was dominant at a low discharge rate. - Abstract: Transient and thermo-electric finite element analysis (FEA) of cylindrical lithium ion (Li-ion) battery was presented. The simplified model by adopting a cylindrical coordinate was employed. This model provides the thermal behavior of Li-ion battery during discharge cycle. The mathematical model solves conservation of energy considering heat generations due to both joule heating and entropy change. A LiCoO 2 /C battery at various discharge rates was investigated. The temperature profile from simulation had similar tendency with experiment. The temperature profile was decomposed with contributions of each heat sources and was presented at several discharge rates. It was found that the contribution of heat source due to joule heating was significant at a high discharge rate, whereas that due to entropy change was dominant at a low discharge rate. Also the effect of cooling condition and the LiNiCoMnO 2 /C battery were analyzed for the purpose of temperature reduction.

  6. Modeling Instruction of David Hestenes: a proposal of thematic modeling cycle and discussion of scientific literacy

    Directory of Open Access Journals (Sweden)

    Ednilson Sergio Ramalho de Souza

    2016-07-01

    Full Text Available The pedagogical work with mathematical modeling assumes investigate situations of reality. However, mental models formed from the contact with the experiential world are generally incompatible with the conceptual models. So David Hestenes supports the view that one of the biggest challenges of teaching and learning in science and mathematics is to coordinate conceptual models with mental models, which led to the elaboration of a didactic in mathematical modeling: Modeling Instruction. Our goal is to present a proposal for thematic modeling cycle drawn up in hestenesianos assumptions and discuss possibilities for scientific literacy. The main question was to know how to emerge indicators for scientific literacy for the proposed cycle. This is a bibliographic research in order to identify the available literature contributions on the subject and raise the possibility and challenges for the brazilian teaching science and mathematics. Preliminary results indicate that the proposed modeling cycle can develop indicators for scientific literacy of different natures.

  7. Modelling nutrient cycling in forest ecosystems; Modellering av naeringssyklus i skogoekosystemer

    Energy Technology Data Exchange (ETDEWEB)

    Kvindesland, Sheila H.S.B.

    1997-12-31

    Acid deposition`s threat to fresh water and forest environments became an issue in the late 1960s. Acid deposition and forest nutrient cycling then began to be researched in greater co-operation. This thesis studies nutrient cycling processes in Norway spruce forests, emphasizing the effects on soil chemical properties, soil solution chemistry and streamwater chemistry. It investigates the effects of different aged stands on nutrient cycling and sets up nutrient budgets of the base cations and nitrogen at two sites in Norway. It also selects, documents, calibrates, tests and improves nutrient cycling models for use in Norwegian forests. 84 refs., 44 figs., 46 tabs.

  8. Quasi-dynamic model for an organic Rankine cycle

    International Nuclear Information System (INIS)

    Bamgbopa, Musbaudeen O.; Uzgoren, Eray

    2013-01-01

    Highlights: • Study presents a simplified transient modeling approach for an ORC under variable heat input. • The ORC model is presented as a synthesis of its models of its sub-components. • The model is compared to benchmark numerical simulations and experimental data at different stages. - Abstract: When considering solar based thermal energy input to an organic Rankine cycle (ORC), intermittent nature of the heat input does not only adversely affect the power output but also it may prevent ORC to operate under steady state conditions. In order to identify reliability and efficiency of such systems, this paper presents a simplified transient modeling approach for an ORC operating under variable heat input. The approach considers that response of the system to heat input variations is mainly dictated by the evaporator. Consequently, overall system is assembled using dynamic models for the heat exchangers (evaporator and condenser) and static models of the pump and the expander. In addition, pressure drop within heat exchangers is neglected. The model is compared to benchmark numerical and experimental data showing that the underlying assumptions are reasonable for cases where thermal input varies in time. Furthermore, the model is studied on another configuration and mass flow rates of both the working fluid and hot water and hot water’s inlet temperature to the ORC unit are shown to have direct influence on the system’s response

  9. Past and present of sediment and carbon biogeochemical cycling models

    Directory of Open Access Journals (Sweden)

    F. T. Mackenzie

    2004-01-01

    Full Text Available The global carbon cycle is part of the much more extensive sedimentary cycle that involves large masses of carbon in the Earth's inner and outer spheres. Studies of the carbon cycle generally followed a progression in knowledge of the natural biological, then chemical, and finally geological processes involved, culminating in a more or less integrated picture of the biogeochemical carbon cycle by the 1920s. However, knowledge of the ocean's carbon cycle behavior has only within the last few decades progressed to a stage where meaningful discussion of carbon processes on an annual to millennial time scale can take place. In geologically older and pre-industrial time, the ocean was generally a net source of CO2 emissions to the atmosphere owing to the mineralization of land-derived organic matter in addition to that produced in situ and to the process of CaCO3 precipitation. Due to rising atmospheric CO2 concentrations because of fossil fuel combustion and land use changes, the direction of the air-sea CO2 flux has reversed, leading to the ocean as a whole being a net sink of anthropogenic CO2. The present thickness of the surface ocean layer, where part of the anthropogenic CO2 emissions are stored, is estimated as of the order of a few hundred meters. The oceanic coastal zone net air-sea CO2 exchange flux has also probably changed during industrial time. Model projections indicate that in pre-industrial times, the coastal zone may have been net heterotrophic, releasing CO2 to the atmosphere from the imbalance between gross photosynthesis and total respiration. This, coupled with extensive CaCO3 precipitation in coastal zone environments, led to a net flux of CO2 out of the system. During industrial time the coastal zone ocean has tended to reverse its trophic status toward a non-steady state situation of net autotrophy, resulting in net uptake of anthropogenic CO2 and storage of carbon in the coastal ocean, despite the significant calcification

  10. Extending the Lunar Mapping and Modeling Portal - New Capabilities and New Worlds

    Science.gov (United States)

    Day, B. H.; Law, E.; Arevalo, E.; Bui, B.; Chang, G.; Dodge, K.; Kim, R. M.; Malhotra, S.; Sadaqathullah, S.

    2015-12-01

    NASA's Lunar Mapping and Modeling Portal (LMMP) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions (http://lmmp.nasa.gov). During the past year, the capabilities and data served by LMMP have been significantly expanded. New interfaces are providing improved ways to access and visualize data. Many of the recent enhancements to LMMP have been specifically in response to the requirements of NASA's proposed Resource Prospector lunar rover, and as such, provide an excellent example of the application of LMMP to mission planning. At the request of NASA's Science Mission Directorate, LMMP's technology and capabilities are now being extended to additional planetary bodies. New portals for Vesta and Mars are the first of these new products to be released. On March 31, 2015, the LMMP team released Vesta Trek (http://vestatrek.jpl.nasa.gov), a web-based application applying LMMP technology to visualizations of the asteroid Vesta. Data gathered from multiple instruments aboard Dawn have been compiled into Vesta Trek's user-friendly set of tools, enabling users to study the asteroid's features. With an initial release on July 1, 2015, Mars Trek replicates the functionality of Vesta Trek for the surface of Mars. While the entire surface of Mars is covered, higher levels of resolution and greater numbers of data products are provided for special areas of interest. Early releases focus on past, current, and future robotic sites of operation. Future releases will add many new data products and analysis tools as Mars Trek has been selected for use in site selection for the Mars 2020 rover and in identifying potential human landing sites on Mars. Other destinations will follow soon. The user community is invited to provide suggestions and requests as the development team continues to expand the capabilities of LMMP

  11. Multi model and data analysis of terrestrial carbon cycle in Asia: From 2001 to 2006

    Science.gov (United States)

    Ichii, K.; Takahashi, K.; Suzuki, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.

    2009-12-01

    Accurate monitoring and modeling of the current status and their causes of interannual variations in terrestrial carbon cycle are important. Recently, many studies analyze using multiple methods (e.g. satellite data and ecosystem models) to clarify the underlain mechanisms and recent trend since each single methodology contains its own biases. The multi-model and data ensemble approach is a powerful method to clarify the current status and their underlain mechanisms. So far, many studies using multiple sources of data and models are conducted in North America, Europe, Africa, Amazon, and Japan, however, studies in monsoon Asia are lacking. In this study, we analyzed interannual variations in terrestrial carbon cycles in monsoon Asia, and evaluated current capability of remote sensing and ecosystem model to capture them based on multiple model and data sources; flux observations, remote sensing (e.g. MODIS, AVHRR, and VGT), and ecosystem models (e.g. SVM, BEAMS, CASA, Biome-BGC, LPJ, and TRIFFID). The satellite observation and ecosystem models show clear characteristics in interannual variabilities in satellite-based NDVI and model-based GPP. These are characterized by (1) spring NDVI and modeled GPP anomalies related to temperature anomaly in mid and high latitudinal areas (positive anomalies in 2002 and 2005 and negative one in 2006), (2) NDVI and GPP anomalies in southeastern and central Asia related to precipitation (e.g. India from 2003-2006), and (3) summer NDVI and GPP anomalies in 2003 related to strong anomalies in solar radiations. NDVI anomalies related to radiation ones (2003 summer) were not accurately captured by terrestrial ecosystem models. For example, LPJ model rather shows GPP positive anomalies in Far East Asia regions probably caused by positive precipitation anomalies. Further analysis requires improvement of models to reproduce more consistent spatial patterns in NDVI anomaly, and longer term analysis (e.g. after 1982).

  12. Model of environmental life cycle assessment for coal mining operations.

    Science.gov (United States)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Sustainable multilateral nuclear fuel cycle framework. (2) Models for multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Adachi, T; Tanaka, S; Tazaki, M; Akiba, M; Takashima, R; Kuno, Y

    2011-01-01

    To construct suitable models for a reliable and sustainable international/regional framework in the fields of nuclear fuel cycle, it is essential to reflect recent political situations including such that 1) a certain number of emerging countries especially in south-east Asia want to introduce and develop nuclear power in the long-terms despite the accident of the Fukushima Daiichi NPP, and 2) exposition of nuclear proliferation threats provided by North Korea and Iran. It is also to be considered that Japan is an unique country having enrichment and reprocessing facilities on commercial base among non-nuclear weapon countries. Although many models presented for the internationalization have not been realized yet, studies at the University of Tokyo aim at multilateral nuclear approach (MNA) in Asian-Pacific countries balancing between nuclear non-proliferation and nuclear fuel supply/service and presenting specific examples such as prerequisites for participating countries, scope of cooperative activities, ownership of facilities and type of agreements/frameworks. We will present a model basic agreement and several bilateral and multi-lateral agreements for the combinations of industry or government led consortia including Japan and its neighboring countries and made a preliminary evaluation for the combination of processes/facilities based on the INFCIRC/640 report for MNA. (author)

  14. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    Science.gov (United States)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  15. The SCEC Community Modeling Environment (SCEC/CME) - An Overview of its Architecture and Current Capabilities

    Science.gov (United States)

    Maechling, P. J.; Jordan, T. H.; Minster, B.; Moore, R.; Kesselman, C.; SCEC ITR Collaboration

    2004-12-01

    The Southern California Earthquake Center (SCEC), in collaboration with the San Diego Supercomputer Center, the USC Information Sciences Institute, the Incorporated Research Institutions for Seismology, and the U.S. Geological Survey, is developing the Southern California Earthquake Center Community Modeling Environment (CME) under a five-year grant from the National Science Foundation's Information Technology Research (ITR) Program jointly funded by the Geosciences and Computer and Information Science & Engineering Directorates. The CME system is an integrated geophysical simulation modeling framework that automates the process of selecting, configuring, and executing models of earthquake systems. During the Project's first three years, we have performed fundamental geophysical and information technology research and have also developed substantial system capabilities, software tools, and data collections that can help scientist perform systems-level earthquake science. The CME system provides collaborative tools to facilitate distributed research and development. These collaborative tools are primarily communication tools, providing researchers with access to information in ways that are convenient and useful. The CME system provides collaborators with access to significant computing and storage resources. The computing resources of the Project include in-house servers, Project allocations on USC High Performance Computing Linux Cluster, as well as allocations on NPACI Supercomputers and the TeraGrid. The CME system provides access to SCEC community geophysical models such as the Community Velocity Model, Community Fault Model, Community Crustal Motion Model, and the Community Block Model. The organizations that develop these models often provide access to them so it is not necessary to use the CME system to access these models. However, in some cases, the CME system supplements the SCEC community models with utility codes that make it easier to use or access

  16. Mathematical model of the reformer sponge iron cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, S.; Hacker, V.; Evers, B.; Hierzer, J.; Besenhard, J.O. [Graz University of Technology, Graz (Austria). Inst. for Chemical Technology of Inorganic Materials Christian Doppler Pilot-Lab. for Fuel Cell Systems

    2003-07-01

    An innovative hydrogen production process called the Reformer Sponge Iron Cycle (RESC), based on redox reactions of iron ore pellets, was mathematically modeled. The hydrogen is produced by blowing steam over hot iron pellets in the oxidation stage, resulting in the oxidation of the iron. Synthesis gas coming from a reformer mixed with a fraction of recycled off-gas was used to reduce the iron oxide pellets (wuestite and-or magnetite) in the reduction stage, leading once more to iron . Once the mathematical model was developed, it was verified utilizing experimental data. Based on calculations of the equilibrium gas concentrations for reformer and sponge iron reactor (SIR), the model computes mass fluxes, molar fluxes, partial pressures, and variations of them throughout the complete cycle. The recycle rate, which determines the fraction of SIR off-gas recycled and added to the input gas stream, was optimized to maximize the amount of iron oxide reduced for a certain input gas flow. 5 refs., 4 figs.

  17. Development of a system emulating the global carbon cycle in Earth system models

    Science.gov (United States)

    Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Oka, A.; Abe-Ouchi, A.; Kawamiya, M.

    2010-08-01

    Recent studies have indicated that the uncertainty in the global carbon cycle may have a significant impact on the climate. Since state of the art models are too computationally expensive for it to be possible to explore their parametric uncertainty in anything approaching a comprehensive fashion, we have developed a simplified system for investigating this problem. By combining the strong points of general circulation models (GCMs), which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs), which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM) which can represent the outputs of a GCM-based Earth system model, using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite) which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean (COCO) including an ocean carbon cycle (an NPZD-type marine ecosystem model); a state of the art vegetation model (Sim-CYCLE); and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario. By adjusting the effective climate sensitivity (equivalent to the equilibrium climate sensitivity for an energy balance model) of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (with an equilibrium climate sensitivity of 4.0 K

  18. Development of a system emulating the global carbon cycle in Earth system models

    Directory of Open Access Journals (Sweden)

    K. Tachiiri

    2010-08-01

    Full Text Available Recent studies have indicated that the uncertainty in the global carbon cycle may have a significant impact on the climate. Since state of the art models are too computationally expensive for it to be possible to explore their parametric uncertainty in anything approaching a comprehensive fashion, we have developed a simplified system for investigating this problem. By combining the strong points of general circulation models (GCMs, which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs, which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM which can represent the outputs of a GCM-based Earth system model, using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean (COCO including an ocean carbon cycle (an NPZD-type marine ecosystem model; a state of the art vegetation model (Sim-CYCLE; and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario.

    By adjusting the effective climate sensitivity (equivalent to the equilibrium climate sensitivity for an energy balance model of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (with an equilibrium

  19. Overview of the development of a biosphere modelling capability for UK DoE (HMIP)

    International Nuclear Information System (INIS)

    Nancarrow, D.J.; Ashton, J.; Little, R.H.

    1990-01-01

    A programme of research has been funded, since 1982, by the United Kingdom Department of the Environment (Her Majesty's Inspectorate of Pollution, HMIP), to develop a procedure for post-closure radiological assessment of underground disposal facilities for low and intermediate level radioactive wastes. It is conventional to regard the disposal system as comprising the engineered barriers of the repository, the geological setting which provides natural barriers to migration, and the surface environment or biosphere. The requirement of a biosphere submodel, therefore, is to provide estimates, for given radionuclide inputs, of the dose or probability distribution function of dose to a maximally exposed individual as a function of time. This paper describes the development of the capability for biosphere modelling for HMIP in the context of the development of other assessment procedures. 11 refs., 3 figs., 2 tabs

  20. New Modelling Capabilities in Commercial Software for High-Gain Antennas

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Lumholt, Michael; Meincke, Peter

    2012-01-01

    characterization of the reflectarray element, an initial phaseonly synthesis, followed by a full optimization procedure taking into account the near-field from the feed and the finite extent of the array. Another interesting new modelling capability is made available through the DIATOOL software, which is a new...... type of EM software tool aimed at extending the ways engineers can use antenna measurements in the antenna design process. The tool allows reconstruction of currents and near fields on a 3D surface conformal to the antenna, by using the measured antenna field as input. The currents on the antenna...... surface can provide valuable information about the antenna performance or undesired contributions, e.g. currents on a cable,can be artificially removed. Finally, the CHAMP software will be extended to cover reflector shaping and more complex materials,which combined with a much faster execution speed...

  1. A NEW SIMPLE DYNAMO MODEL FOR STELLAR ACTIVITY CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, N.; Hamba, F. [Institute of Industrial Science, University of Tokyo, Tokyo 153-8505 (Japan); Schmitt, D. [Max-Planck Institut für Sonnensystemforschung, Göttingen D-37077 (Germany); Pipin, V., E-mail: nobyokoi@iis.u-tokyo.ac.jp [Institute of Solar–Terrestrial Physics, Russian Academy of Science, Irkutsk 664033 (Russian Federation)

    2016-06-20

    A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity–magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α –Ω-type models in two main ways. First, in addition to the usual helicity ( α ) and turbulent magnetic diffusivity ( β ) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solved simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.

  2. Design, Manufacture and Test of a 1.3 T / 10 Hz dipole model for Rapid Cycling Synchrotrons

    CERN Document Server

    Newborough, A

    2013-01-01

    The construction of a compact rapid cycling synchrotron has recently been studied at CERN to replace the first stage of its accelerator complex, the proton synchrotron booster. Although currently there are no plans to build this machine, fast cycled accelerator magnets are of general interest for numerous reasons. This has led to the design, manufacture and testing of a scaled model dipole as detailed in this paper to show the capability of producing and characterising a magnet design based on high-silicon content grain-oriented steel able to operate up to 1.3 T at 10 Hz.

  3. Research Capabilities Directed to all Electric Engineering Teachers, from an Alternative Energy Model

    Directory of Open Access Journals (Sweden)

    Víctor Hugo Ordóñez Navea

    2017-08-01

    Full Text Available The purpose of this work was to contemplate research capabilities directed to all electric engineering teachers from an alternative energy model intro the explanation of a semiconductor in the National Training Program in Electricity. Some authors, such as. Vidal (2016, Atencio (2014 y Camilo (2012 point out to technological applications with semiconductor electrical devices. In this way; a diagnostic phase is presented, held on this field research as a descriptive type about: a how to identify the necessities of alternative energies, and b The research competences in the alternatives energies of researcher from a solar cell model, to boost and innovate the academic praxis and technologic ingenuity. Themselves was applied a survey for a group of 15 teachers in the National Program of Formation in electricity to diagnose the deficiencies in the research area of alternatives energies. The process of data analysis was carried out through descriptive statistic. Later the conclusions are presented the need to generate strategies for stimulate and propose exploration of alternatives energies to the development of research competences directed to the teachers of electrical engineering for develop the research competences in the enforcement of the teachers exercise for the electric engineering, from an alternative energy model and boost the technologic research in the renewal energies field.

  4. Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling

    Science.gov (United States)

    Galelli, S.; Castelletti, A.

    2013-07-01

    Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modelling. In this paper, we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modelling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalisation property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analysed on two real-world case studies - Marina catchment (Singapore) and Canning River (Western Australia) - representing two different morphoclimatic contexts. The evaluation is performed against other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation.

  5. Gas Generation in Radioactive Wastes - MAGGAS Predictive Life Cycle Model

    International Nuclear Information System (INIS)

    Streatfield, R.E.; Hebditch, D.J.; Swift, B.T.; Hoch, A.R.; Constable, M.

    2006-01-01

    Gases may form from radioactive waste in quantities posing different potential hazards throughout the waste package life cycle. The latter includes surface storage, transport, placing in an operating repository, storage in the repository prior to backfill, closure and the post-closure stage. Potentially hazardous situations involving gas include fire, flood, dropped packages, blocked package vents and disruption to a sealed repository. The MAGGAS (Magnox Gas generation) model was developed to assess gas formation for safety assessments during all stages of the waste package life cycle. This is a requirement of the U.K. regulatory authorities and Nirex and progress in this context is discussed. The processes represented in the model include: Corrosion, microbial degradation, radiolysis, solid-state diffusion, chemico-physical degradation and pressurisation. The calculation was split into three time periods. First the 'aerobic phase' is used to model the periods of surface storage, transport and repository operations including storage in the repository prior to backfill. The second and third periods were designated 'anaerobic phase 1' and 'anaerobic phase 2' and used to model the waste packages in the post-closure phase of the repository. The various significant gas production processes are modeled in each phase. MAGGAS (currently Version 8) is mounted on an Excel spreadsheet for ease of use and speed, has 22 worksheets and is operated routinely for assessing waste packages (e.g. for ventilation of stores and pressurisation of containers). Ten operational and decommissioning generic nuclear power station waste streams were defined as initial inputs, which included ion exchange materials, sludges and concentrates, fuel element debris, graphite debris, activated components, contaminated items, desiccants and catalysts. (authors)

  6. Toward a unifying model for the late Neoproterozoic sulfur cycle

    Science.gov (United States)

    Johnston, D. T.; Gill, B. C.; Ries, J. B.; OBrien, T.; Macdonald, F. A.

    2011-12-01

    of the oxidative sulfur cycle). Much of this added interpretability comes from an accompanying quantitative modeling treatment. In closing, a unified picture of the late Neoproterozoic sulfur cycle, and how it evolved through time, must provide a quantitative and coherent solution to each of these seemingly disparate observations (paleontology requiring increases in O2, remineralization requiring the consumption of oxidants). This work presents a step toward such a solution.

  7. VISION User Guide - VISION (Verifiable Fuel Cycle Simulation) Model

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Jeffers, Robert F.; Matthern, Gretchen E.; Piet, Steven J.; Baker, Benjamin A.; Grimm, Joseph

    2009-01-01

    The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R and D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating 'what if' scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level for U.S. nuclear power. The model is not intended as a tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., 'reactor types' not individual reactors and 'separation types' not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation of disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. Note that recovered uranium is itself often partitioned: some RU flows with recycled transuranic elements, some flows with wastes, and the rest is designated RU. RU comes out of storage if needed to correct the U/TRU ratio in new recycled fuel. Neither RU nor DU are designated as wastes. VISION is comprised of several Microsoft

  8. A model for high-cycle fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Marcela Angela [Rosario National Univ. (Argentina); National Council of Scientific Research and Technology (CONICET) (Argentina)

    2017-02-01

    This paper deals with the prediction of high-cycle fatigue behavior for four different materials (7075-T6 alloy, Ti-6Al-4 V alloy, JIS S10C steel and 0.4 wt.-% C steel) using Chapetti's approach to estimate the fatigue crack propagation curve. In the first part of the paper, a single integral equation for studying the entire propagation process is determined using the recent results of Santus and Taylor, which consider a double regime of propagation (short and long cracks) characterized by the model of El Haddad. The second part of the paper includes a comparison of the crack propagation behavior model proposed by Navarro and de los Rios with the one mentioned in the first half of this work. The results allow us to conclude that the approach presented in this paper is a good and valid estimation of high-cycle fatigue crack propagation using a single equation to describe the entire fatigue crack regime.

  9. Gas turbine cooling modeling - Thermodynamic analysis and cycle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jordal, Kristin

    1999-02-01

    Considering that blade and vane cooling are a vital point in the studies of modern gas turbines, there are many ways to include cooling in gas turbine models. Thermodynamic methods for doing this are reviewed in this report, and, based on some of these methods, a number of model requirements are set up and a Cooled Gas Turbine Model (CGTM) for design-point calculations of cooled gas turbines is established. Thereafter, it is shown that it is possible to simulate existing gas turbines with the CGTM. Knowledge of at least one temperature in the hot part of the turbine (TET, TRIT or possibly TIT) is found to be vital for a complete heat balance over the turbine. The losses, which are caused by the mixing of coolant and main flow, are in the CGTM considered through a polytropic efficiency reduction factor S. Through the study of S, it can be demonstrated that there is more to gain from coolant reduction in a small and/or old turbine with poor aerodynamics, than there is to gain in a large, modern turbine, where the losses due to interaction between coolant and main flow are, relatively speaking, small. It is demonstrated, at the design point (TET=1360 deg C, {pi}=20) for the simple-cycle gas turbine, that heat exchanging between coolant and fuel proves to have a large positive impact on cycle efficiency, with an increase of 0.9 percentage points if all of the coolant passes through the heat exchanger. The corresponding improvement for humidified coolant is 0.8 percentage points. A design-point study for the HAT cycle shows that if all of the coolant is extracted after the humidification tower, there is a decrease in coolant requirements of 7.16 percentage points, from 19.58% to 12.52% of the compressed air, and an increase in thermal efficiency of 0.46 percentage points, from 53.46% to 53.92%. Furthermore, it is demonstrated with a TET-parameter variation, that the cooling of a simple-cycle gas turbine with humid air can have a positive effect on thermal efficiency

  10. The Global Modeling Test Bed - Building a New National Capability for Advancing Operational Global Modeling in the United States.

    Science.gov (United States)

    Toepfer, F.; Cortinas, J. V., Jr.; Kuo, W.; Tallapragada, V.; Stajner, I.; Nance, L. B.; Kelleher, K. E.; Firl, G.; Bernardet, L.

    2017-12-01

    NOAA develops, operates, and maintains an operational global modeling capability for weather, sub seasonal and seasonal prediction for the protection of life and property and fostering the US economy. In order to substantially improve the overall performance and accelerate advancements of the operational modeling suite, NOAA is partnering with NCAR to design and build the Global Modeling Test Bed (GMTB). The GMTB has been established to provide a platform and a capability for researchers to contribute to the advancement primarily through the development of physical parameterizations needed to improve operational NWP. The strategy to achieve this goal relies on effectively leveraging global expertise through a modern collaborative software development framework. This framework consists of a repository of vetted and supported physical parameterizations known as the Common Community Physics Package (CCPP), a common well-documented interface known as the Interoperable Physics Driver (IPD) for combining schemes into suites and for their configuration and connection to dynamic cores, and an open evidence-based governance process for managing the development and evolution of CCPP. In addition, a physics test harness designed to work within this framework has been established in order to facilitate easier like-to-like comparison of physics advancements. This paper will present an overview of the design of the CCPP and test platform. Additionally, an overview of potential new opportunities of how physics developers can engage in the process, from implementing code for CCPP/IPD compliance to testing their development within an operational-like software environment, will be presented. In addition, insight will be given as to how development gets elevated to CPPP-supported status, the pre-cursor to broad availability and use within operational NWP. An overview of how the GMTB can be expanded to support other global or regional modeling capabilities will also be presented.

  11. Elevated temperature alters carbon cycling in a model microbial community

    Science.gov (United States)

    Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.

    2013-12-01

    Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other

  12. A thermal model for the seasonal nitrogen cycle on Triton

    Science.gov (United States)

    Hansen, Candice J.; Paige, David A.

    1992-01-01

    The seasonal N2-cycle model presently used to characterize such observed phenomena on Triton as atmospheric pressure and surface albedo features at the time of the Voyager encounter incorporates diurnal and seasonal subsurface heat conduction, and can account for the heat capacity of N2 frost deposits. The results obtained by this model differ from those of previous studies in that they do not predict the seasonal freezing-out of the Triton atmosphere; even for a wide range of input parameters, the bright southern polar cap is seen as rather unlikely to be N2. The results support the microphysical arguments for the presence of either dark or smooth translucent N2 frosts on the Triton surface.

  13. Braking System Modeling and Brake Temperature Response to Repeated Cycle

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2014-12-01

    Full Text Available Braking safety is crucial while driving the passenger or commercial vehicles. Large amount of kinetic energy is absorbed by four brakes fitted in the vehicle. If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature. First, brake characteristic and vehicle dynamic model were generated to estimate friction force and dissipated heat. Next, Arduino based prototype brake temperature monitoring was developed and tested on the road. From the experiment, it was found that brake temperature tends to increase steadily in long repeated deceleration and acceleration cycle.

  14. Life cycle models of conventional and alternative-fueled automobiles

    Science.gov (United States)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology

  15. National Research Council Dialogue to Assess Progress on NASA's Advanced Modeling, Simulation and Analysis Capability and Systems Engineering Capability Roadmap Development

    Science.gov (United States)

    Aikins, Jan

    2005-01-01

    Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  16. Modeling Business Cycle with Financial Shocks Basing on Kaldor-Kalecki Model

    Directory of Open Access Journals (Sweden)

    Zhenghui Li

    2017-04-01

    Full Text Available The effects of financial factors on real business cycle is rising to one of the most popular discussions in the field of macro business cycle theory. The objective of this paper is to discuss the features of business cycle under financial shocks by quantitative technology. More precisely, we introduce financial shocks into the classical Kaldor-Kalecki business cycle model and study dynamics of the model. The shocks include external shock and internal shock, both of which are expressed as noises. The dynamics of the model can help us understand the effects of financial shocks on business cycle and improve our knowledge about financial business cycle. In the case of external shock, if the intensity of shock is less than some threshold value, the economic system behaves randomly periodically. If the intensity of shock is beyond the threshold value, the economic system will converge to a normalcy. In the case of internal shock, if the intensity of shock is less than some threshold value, the economic system behaves periodically as the case without shock. If the intensity of shock exceeds the threshold value, the economic system either behaves periodically or converges to a normalcy. It is uncertain. The case with both two kinds of shocks is more complicated. We find conditions of the intensities of shocks under which the economic system behaves randomly periodically or disorderly, or converges to normalcy. Discussions about the effects of financial shocks on the business cycle are presented.

  17. Developing Materials Processing to Performance Modeling Capabilities and the Need for Exascale Computing Architectures (and Beyond)

    Energy Technology Data Exchange (ETDEWEB)

    Schraad, Mark William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Physics and Engineering Models; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Advanced Simulation and Computing

    2016-09-06

    Additive Manufacturing techniques are presenting the Department of Energy and the NNSA Laboratories with new opportunities to consider novel component production and repair processes, and to manufacture materials with tailored response and optimized performance characteristics. Additive Manufacturing technologies already are being applied to primary NNSA mission areas, including Nuclear Weapons. These mission areas are adapting to these new manufacturing methods, because of potential advantages, such as smaller manufacturing footprints, reduced needs for specialized tooling, an ability to embed sensing, novel part repair options, an ability to accommodate complex geometries, and lighter weight materials. To realize the full potential of Additive Manufacturing as a game-changing technology for the NNSA’s national security missions; however, significant progress must be made in several key technical areas. In addition to advances in engineering design, process optimization and automation, and accelerated feedstock design and manufacture, significant progress must be made in modeling and simulation. First and foremost, a more mature understanding of the process-structure-property-performance relationships must be developed. Because Additive Manufacturing processes change the nature of a material’s structure below the engineering scale, new models are required to predict materials response across the spectrum of relevant length scales, from the atomistic to the continuum. New diagnostics will be required to characterize materials response across these scales. And not just models, but advanced algorithms, next-generation codes, and advanced computer architectures will be required to complement the associated modeling activities. Based on preliminary work in each of these areas, a strong argument for the need for Exascale computing architectures can be made, if a legitimate predictive capability is to be developed.

  18. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint.

    Science.gov (United States)

    Naghibi Beidokhti, Hamid; Janssen, Dennis; van de Groes, Sebastiaan; Hazrati, Javad; Van den Boogaard, Ton; Verdonschot, Nico

    2017-12-08

    In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Enhancing Interoperability and Capabilities of Earth Science Data using the Observations Data Model 2 (ODM2

    Directory of Open Access Journals (Sweden)

    Leslie Hsu

    2017-02-01

    Full Text Available Earth Science researchers require access to integrated, cross-disciplinary data in order to answer critical research questions. Partially due to these science drivers, it is common for disciplinary data systems to expand from their original scope in order to accommodate collaborative research. The result is multiple disparate databases with overlapping but incompatible data. In order to enable more complete data integration and analysis, the Observations Data Model Version 2 (ODM2 was developed to be a general information model, with one of its major goals to integrate data collected by 'in situ' sensors with those by 'ex-situ' analyses of field specimens. Four use cases with different science drivers and disciplines have adopted ODM2 because of benefits to their users. The disciplines behind the four cases are diverse – hydrology, rock geochemistry, soil geochemistry, and biogeochemistry. For each case, we outline the benefits, challenges, and rationale for adopting ODM2. In each case, the decision to implement ODM2 was made to increase interoperability and expand data and metadata capabilities. One of the common benefits was the ability to use the flexible handling and comprehensive description of specimens and data collection sites in ODM2’s sampling feature concept. We also summarize best practices for implementing ODM2 based on the experience of these initial adopters. The descriptions here should help other potential adopters of ODM2 implement their own instances or to modify ODM2 to suit their needs.

  20. Multi-phase model development to assess RCIC system capabilities under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kirkland, Karen Vierow [Texas A & M Univ., College Station, TX (United States); Ross, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beeny, Bradley [Texas A & M Univ., College Station, TX (United States); Luthman, Nicholas [Texas A& M Engineering Experiment Station, College Station, TX (United States); Strater, Zachary [Texas A & M Univ., College Station, TX (United States)

    2017-12-23

    The Reactor Core Isolation Cooling (RCIC) System is a safety-related system that provides makeup water for core cooling of some Boiling Water Reactors (BWRs) with a Mark I containment. The RCIC System consists of a steam-driven Terry turbine that powers a centrifugal, multi-stage pump for providing water to the reactor pressure vessel. The Fukushima Dai-ichi accidents demonstrated that the RCIC System can play an important role under accident conditions in removing core decay heat. The unexpectedly sustained, good performance of the RCIC System in the Fukushima reactor demonstrates, firstly, that its capabilities are not well understood, and secondly, that the system has high potential for extended core cooling in accident scenarios. Better understanding and analysis tools would allow for more options to cope with a severe accident situation and to reduce the consequences. The objectives of this project were to develop physics-based models of the RCIC System, incorporate them into a multi-phase code and validate the models. This Final Technical Report details the progress throughout the project duration and the accomplishments.

  1. Model of environmental life cycle assessment for coal mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Burchart-Korol, Dorota, E-mail: dburchart@gig.eu; Fugiel, Agata, E-mail: afugiel@gig.eu; Czaplicka-Kolarz, Krystyna, E-mail: kczaplicka@gig.eu; Turek, Marian, E-mail: mturek@gig.eu

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  2. Model of environmental life cycle assessment for coal mining operations

    International Nuclear Information System (INIS)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-01-01

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  3. Capability Paternalism

    NARCIS (Netherlands)

    Claassen, R.J.G.|info:eu-repo/dai/nl/269266224

    A capability approach prescribes paternalist government actions to the extent that it requires the promotion of specific functionings, instead of the corresponding capabilities. Capability theorists have argued that their theories do not have much of these paternalist implications, since promoting

  4. Earthquake cycles and physical modeling of the process leading up to a large earthquake

    Science.gov (United States)

    Ohnaka, Mitiyasu

    2004-08-01

    A thorough discussion is made on what the rational constitutive law for earthquake ruptures ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid facts observed in the laboratory. From this standpoint, it is concluded that the constitutive law should be a slip-dependent law with parameters that may depend on slip rate or time. With the long-term goal of establishing a rational methodology of forecasting large earthquakes, the entire process of one cycle for a typical, large earthquake is modeled, and a comprehensive scenario that unifies individual models for intermediate-and short-term (immediate) forecasts is presented within the framework based on the slip-dependent constitutive law and the earthquake cycle model. The earthquake cycle includes the phase of accumulation of elastic strain energy with tectonic loading (phase II), and the phase of rupture nucleation at the critical stage where an adequate amount of the elastic strain energy has been stored (phase III). Phase II plays a critical role in physical modeling of intermediate-term forecasting, and phase III in physical modeling of short-term (immediate) forecasting. The seismogenic layer and individual faults therein are inhomogeneous, and some of the physical quantities inherent in earthquake ruptures exhibit scale-dependence. It is therefore critically important to incorporate the properties of inhomogeneity and physical scaling, in order to construct realistic, unified scenarios with predictive capability. The scenario presented may be significant and useful as a necessary first step for establishing the methodology for forecasting large earthquakes.

  5. Uncertainty quantification's role in modeling and simulation planning, and credibility assessment through the predictive capability maturity model

    Energy Technology Data Exchange (ETDEWEB)

    Rider, William J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Witkowski, Walter R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mousseau, Vincent Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-04-13

    The importance of credible, trustworthy numerical simulations is obvious especially when using the results for making high-consequence decisions. Determining the credibility of such numerical predictions is much more difficult and requires a systematic approach to assessing predictive capability, associated uncertainties and overall confidence in the computational simulation process for the intended use of the model. This process begins with an evaluation of the computational modeling of the identified, important physics of the simulation for its intended use. This is commonly done through a Phenomena Identification Ranking Table (PIRT). Then an assessment of the evidence basis supporting the ability to computationally simulate these physics can be performed using various frameworks such as the Predictive Capability Maturity Model (PCMM). There were several critical activities that follow in the areas of code and solution verification, validation and uncertainty quantification, which will be described in detail in the following sections. Here, we introduce the subject matter for general applications but specifics are given for the failure prediction project. In addition, the first task that must be completed in the verification & validation procedure is to perform a credibility assessment to fully understand the requirements and limitations of the current computational simulation capability for the specific application intended use. The PIRT and PCMM are tools used at Sandia National Laboratories (SNL) to provide a consistent manner to perform such an assessment. Ideally, all stakeholders should be represented and contribute to perform an accurate credibility assessment. PIRTs and PCMMs are both described in brief detail below and the resulting assessments for an example project are given.

  6. Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models

    Directory of Open Access Journals (Sweden)

    B. Schneider

    2008-04-01

    Full Text Available Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP and export production (EP of particulate organic carbon (POC. Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006 with stronger stratification (higher sea surface temperature; SST being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL also reproduces the inverse relationship between stratification (SST and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.

  7. Total life cycle cost model for electric power stations

    International Nuclear Information System (INIS)

    Cardullo, M.W.

    1995-01-01

    The Total Life Cycle Cost (TLCC) model for electric power stations was developed to provide a technology screening model. The TLCC analysis involves normalizing cost estimates with respect to performance standards and financial assumptions and preparing a profile of all costs over the service life of the power station. These costs when levelized present a value in terms of a utility electricity rate. Comparison of cost and the pricing of the electricity for a utility shows if a valid project exists. Cost components include both internal and external costs. Internal costs are direct costs associated with the purchase, and operation of the power station and include initial capital costs, operating and maintenance costs. External costs result from societal and/or environmental impacts that are external to the marketplace and can include air quality impacts due to emissions, infrastructure costs, and other impacts. The cost stream is summed (current dollars) or discounted (constant dollars) to some base year to yield a overall TLCC of each power station technology on a common basis. While minimizing life cycle cost is an important consideration, it may not always be a preferred method for some utilities who may prefer minimizing capital costs. Such consideration does not always result in technology penetration in a marketplace such as the utility sector. Under various regulatory climates, the utility is likely to heavily weigh initial capital costs while giving limited consideration to other costs such as societal costs. Policy makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. The TLCC analysis model for power stations was developed to facilitate consideration of all perspectives

  8. Integrated Process Modeling-A Process Validation Life Cycle Companion.

    Science.gov (United States)

    Zahel, Thomas; Hauer, Stefan; Mueller, Eric M; Murphy, Patrick; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph

    2017-10-17

    During the regulatory requested process validation of pharmaceutical manufacturing processes, companies aim to identify, control, and continuously monitor process variation and its impact on critical quality attributes (CQAs) of the final product. It is difficult to directly connect the impact of single process parameters (PPs) to final product CQAs, especially in biopharmaceutical process development and production, where multiple unit operations are stacked together and interact with each other. Therefore, we want to present the application of Monte Carlo (MC) simulation using an integrated process model (IPM) that enables estimation of process capability even in early stages of process validation. Once the IPM is established, its capability in risk and criticality assessment is furthermore demonstrated. IPMs can be used to enable holistic production control strategies that take interactions of process parameters of multiple unit operations into account. Moreover, IPMs can be trained with development data, refined with qualification runs, and maintained with routine manufacturing data which underlines the lifecycle concept. These applications will be shown by means of a process characterization study recently conducted at a world-leading contract manufacturing organization (CMO). The new IPM methodology therefore allows anticipation of out of specification (OOS) events, identify critical process parameters, and take risk-based decisions on counteractions that increase process robustness and decrease the likelihood of OOS events.

  9. Gamma-Ray Emission Tomography: Modeling and Evaluation of Partial-Defect Testing Capabilities

    International Nuclear Information System (INIS)

    Jacobsson Svard, S.; Jansson, P.; Davour, A.; Grape, S.; White, T.A.; Smith, L.E.; Deshmukh, N.; Wittman, R.S.; Mozin, V.; Trellue, H.

    2015-01-01

    Gamma emission tomography (GET) for spent nuclear fuel verification is the subject for IAEA MSP project JNT1955. In line with IAEA Safeguards R&D plan 2012-2023, the aim of this effort is to ''develop more sensitive and less intrusive alternatives to existing NDA instruments to perform partial defect test on spent fuel assembly prior to transfer to difficult to access storage''. The current viability study constitutes the first phase of three, with evaluation and decision points between each phase. Two verification objectives have been identified; (1) counting of fuel pins in tomographic images without any a priori knowledge of the fuel assembly under study, and (2) quantitative measurements of pinby- pin properties, e.g., burnup, for the detection of anomalies and/or verification of operator-declared data. Previous measurements performed in Sweden and Finland have proven GET highly promising for detecting removed or substituted fuel rods in BWR and VVER-440 fuel assemblies even down to the individual fuel rod level. The current project adds to previous experiences by pursuing a quantitative assessment of the capabilities of GET for partial defect detection, across a broad range of potential IAEA applications, fuel types and fuel parameters. A modelling and performance-evaluation framework has been developed to provide quantitative GET performance predictions, incorporating burn-up and cooling-time calculations, Monte Carlo radiation-transport and detector-response modelling, GET instrument definitions (existing and notional) and tomographic reconstruction algorithms, which use recorded gamma-ray intensities to produce images of the fuel's internal source distribution or conclusive rod-by-rod data. The framework also comprises image-processing algorithms and performance metrics that recognize the inherent tradeoff between the probability of detecting missing pins and the false-alarm rate. Here, the modelling and analysis framework is

  10. How can a life cycle inventory parametric model streamline life cycle assessment in the wooden pallet sector?

    DEFF Research Database (Denmark)

    Niero, Monia; Di Felice, Francesco; Ren, Jingzheng

    2014-01-01

    , as the information required for fulfilling the LCI are standard information about the features of the wooden pallet and its manufacturing process. The contribution analysis on the reference product revealed that the most contributing life cycle stages are wood and nails extraction and manufacturing (positive value......This study discusses the use of parameterization within the life cycle inventory (LCI) in the wooden pallet sector, in order to test the effectiveness of LCI parametric models to calculate the environmental impacts of similar products. Starting from a single case study, the objectives of this paper......; these correlations can be used to improve the design of new wooden pallets.The conceptual scheme for defining the model is based on ISO14040-44 standards. First of all, the product system was defined identifying the life cycle of a generic wood pallet, as well as its life cycle stages. A list of independent...

  11. Integrating the augmented SCOR model and the ISO 15288 life cycle model into a single logistic model

    CSIR Research Space (South Africa)

    Schmitz, Peter MU

    2010-07-01

    Full Text Available using the Supply Chain Operations Reference (SCOR) model. The SANDF indicated that the augmented SCOR model (Bean, Schmitz and Engelbrecht, 2009) should be extended into a single logistics process which should include a life-cycle perspective...

  12. Modelling of a LWR open fuel cycle using the message

    Energy Technology Data Exchange (ETDEWEB)

    Estanislau, Fidéllis B.G.L. e; Jonusan, Raoni A.S.; Costa, Antonella L.; Pereira, Claubia, E-mail: fidellis01@hotmail.com, E-mail: rjonusan@gmail.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    The main goal of the national energy planning is the development of a short and long-term strategies based on a holistic evaluation of all available energy sources guiding trends and delimiting expansion alternatives in the energetic sector. For a better understanding of the future possibilities, energy systems analyses are indispensable and support in the decision making related to the long term strategy and energy planning. Due to the projections for increased energy consumption according to the Energy Decennial Plan (year 2015) and the need to reduce greenhouse gas emissions presented by Brazil in the UNFCCC (United Nations Framework Convention on Climate Change), alternative energy sources such as solar, wind, nuclear and biomass sources have played an important role in the world energy matrix. In this way, since the nuclear energy is an option for the national energy mix, the present work aims to use the modelling tool MESSAGE (Model for Energy Supply System Alternatives and Their General Environmental Impact) to analyze and evaluate a nuclear power plant in an energy system. This tool is an optimization model for medium and long-term energy planning taking into account conversion and distribution technologies, energy policies and scenarios to satisfy a determined demand and systems constraints. In this work, a reproduction of results considering an LWR (Light Water Reactor) open-cycle are presented using a model in the MESSAGE code. (author)

  13. A Neuron-Based Model of Sleep-Wake Cycles

    Science.gov (United States)

    Postnova, Svetlana; Peters, Achim; Braun, Hans

    2008-03-01

    In recent years it was discovered that a neuropeptide orexin/hypocretin plays a main role in sleep processes. This peptide is produced by the neurons in the lateral hypothalamus, which project to almost all brain areas. We present a computational model of sleep-wake cycles, which is based on the Hodgkin-Huxley type neurons and considers reciprocal glutaminergic projections between the lateral hypothalamus and the prefrontal cortex. Orexin is released as a neuromodulator and is required to keep the neurons firing, which corresponds to the wake state. When orexin is depleted the neurons are getting silent as observed in the sleep state. They can be reactivated by the circadian signal from the suprachiasmatic nucleus and/or external stimuli (alarm clock). Orexin projections to the thalamocortical neurons also can account for their transition from tonic firing activity during wakefulness to synchronized burst discharges during sleep.

  14. Vehicle modeling and duty cycle analysis to validate technology feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, S. [National Centre for Advanced Transportation, Saint-Jerome, PQ (Canada)

    2010-07-01

    The National Centre for Advanced Transportation (CNTA) is a non-profit organization with a board consisting of representatives from the transportation industry, public service and public transit organizations, research and teaching institutions, and from municipal and economic development organizations. The objectives of the CNTA are to accelerate the introduction of electric and hybrid vehicles; act as a catalyst in projects; assist in increasing Canadian technology assets; initiate and support electric vehicle conversion projects; increase Canadian business for electric vehicles, hybrid vehicles, and plug-in electric vehicles; and provide a cost-effective solution and aggressive payback for road/off-road vehicles. This presentation provided an overview of the objectives and services of the CNTA. It discussed various road and off-road vehicles, duty cycle and technology of electric vehicles. Specific topics related to the technology were discussed, including configuration; controls and interface; efficiency maps; models and simulation; validation; and support. figs.

  15. Model-based Assessment for Balancing Privacy Requirements and Operational Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Knirsch, Fabian [Salzburg Univ. (Austria); Engel, Dominik [Salzburg Univ. (Austria); Frincu, Marc [Univ. of Southern California, Los Angeles, CA (United States); Prasanna, Viktor [Univ. of Southern California, Los Angeles, CA (United States)

    2015-02-17

    The smart grid changes the way energy is produced and distributed. In addition both, energy and information is exchanged bidirectionally among participating parties. Therefore heterogeneous systems have to cooperate effectively in order to achieve a common high-level use case, such as smart metering for billing or demand response for load curtailment. Furthermore, a substantial amount of personal data is often needed for achieving that goal. Capturing and processing personal data in the smart grid increases customer concerns about privacy and in addition, certain statutory and operational requirements regarding privacy aware data processing and storage have to be met. An increase of privacy constraints, however, often limits the operational capabilities of the system. In this paper, we present an approach that automates the process of finding an optimal balance between privacy requirements and operational requirements in a smart grid use case and application scenario. This is achieved by formally describing use cases in an abstract model and by finding an algorithm that determines the optimum balance by forward mapping privacy and operational impacts. For this optimal balancing algorithm both, a numeric approximation and – if feasible – an analytic assessment are presented and investigated. The system is evaluated by applying the tool to a real-world use case from the University of Southern California (USC) microgrid.

  16. Immune Modulating Capability of Two Exopolysaccharide-Producing Bifidobacterium Strains in a Wistar Rat Model

    Directory of Open Access Journals (Sweden)

    Nuria Salazar

    2014-01-01

    Full Text Available Fermented dairy products are the usual carriers for the delivery of probiotics to humans, Bifidobacterium and Lactobacillus being the most frequently used bacteria. In this work, the strains Bifidobacterium animalis subsp. lactis IPLA R1 and Bifidobacterium longum IPLA E44 were tested for their capability to modulate immune response and the insulin-dependent glucose homeostasis using male Wistar rats fed with a standard diet. Three intervention groups were fed daily for 24 days with 10% skimmed milk, or with 109 cfu of the corresponding strain suspended in the same vehicle. A significant increase of the suppressor-regulatory TGF-β cytokine occurred with both strains in comparison with a control (no intervention group of rats; the highest levels were reached in rats fed IPLA R1. This strain presented an immune protective profile, as it was able to reduce the production of the proinflammatory IL-6. Moreover, phosphorylated Akt kinase decreased in gastroctemius muscle of rats fed the strain IPLA R1, without affecting the glucose, insulin, and HOMA index in blood, or levels of Glut-4 located in the membrane of muscle and adipose tissue cells. Therefore, the strain B. animalis subsp. lactis IPLA R1 is a probiotic candidate to be tested in mild grade inflammation animal models.

  17. In-Vessel Retention Modeling Capabilities of SCDAP/RELAP5-3DC

    International Nuclear Information System (INIS)

    Knudson, D.L.; Rempe, J.L.

    2002-01-01

    Molten core materials may relocate to the lower head of a reactor vessel in the latter stages of a severe accident. Under such circumstances, in-vessel retention (IVR) of the molten materials is a vital step in mitigating potential severe accident consequences. Whether IVR occurs depends on the interactions of a number of complex processes including heat transfer inside the accumulated molten pool, heat transfer from the molten pool to the reactor vessel (and to overlying fluids), and heat transfer from exterior vessel surfaces. SCDAP/RELAP5-3D C has been developed at the Idaho National Engineering and Environmental Laboratory to facilitate simulation of the processes affecting the potential for IVR, as well as processes involved in a wide variety of other reactor transients. In this paper, current capabilities of SCDAP/RELAP5-3D C relative to IVR modeling are described and results from typical applications are provided. In addition, anticipated developments to enhance IVR simulation with SCDAP/RELAP5-3D C are outlined. (authors)

  18. A Model-Model and Data-Model Comparison for the Early Eocene Hydrological Cycle

    Science.gov (United States)

    Carmichael, Matthew J.; Lunt, Daniel J.; Huber, Matthew; Heinemann, Malte; Kiehl, Jeffrey; LeGrande, Allegra; Loptson, Claire A.; Roberts, Chris D.; Sagoo, Navjit; Shields, Christine

    2016-01-01

    A range of proxy observations have recently provided constraints on how Earth's hydrological cycle responded to early Eocene climatic changes. However, comparisons of proxy data to general circulation model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised. In this work, we undertake an intercomparison of GCM-derived precipitation and P - E distributions within the extended EoMIP ensemble (Eocene Modelling Intercomparison Project; Lunt et al., 2012), which includes previously published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure, and precipitation-relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to the preindustrial conditions. This is primarily due to elevated atmospheric paleo-CO2, resulting in elevated temperatures, although the effects of differences in paleogeography and ice sheets are also important in some models. For a given CO2 level, globally averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP=dT ) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa, and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that GCMs generally underestimate precipitation rates at high latitudes, although a possible seasonal bias of the proxies cannot be excluded. Models which warm these regions, either via elevated CO2 or by varying poorly constrained model parameter values, are most successful in simulating a

  19. Integrating repositories with fuel cycles: The airport authority model

    International Nuclear Information System (INIS)

    Forsberg, C.

    2012-01-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members

  20. Integrating repositories with fuel cycles: The airport authority model

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2012-07-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members

  1. eWaterCycle: A high resolution global hydrological model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2014-05-01

    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global

  2. Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Anthony Halog

    2011-02-01

    Full Text Available The need for integrated methodological framework for sustainability assessment has been widely discussed and is urgent due to increasingly complex environmental system problems. These problems have impacts on ecosystems and human well-being which represent a threat to economic performance of countries and corporations. Integrated assessment crosses issues; spans spatial and temporal scales; looks forward and backward; and incorporates multi-stakeholder inputs. This study aims to develop an integrated methodology by capitalizing the complementary strengths of different methods used by industrial ecologists and biophysical economists. The computational methodology proposed here is systems perspective, integrative, and holistic approach for sustainability assessment which attempts to link basic science and technology to policy formulation. The framework adopts life cycle thinking methods—LCA, LCC, and SLCA; stakeholders analysis supported by multi-criteria decision analysis (MCDA; and dynamic system modelling. Following Pareto principle, the critical sustainability criteria, indicators and metrics (i.e., hotspots can be identified and further modelled using system dynamics or agent based modelling and improved by data envelopment analysis (DEA and sustainability network theory (SNT. The framework is being applied to development of biofuel supply chain networks. The framework can provide new ways of integrating knowledge across the divides between social and natural sciences as well as between critical and problem-solving research.

  3. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  4. Generalized fish life-cycle poplulation model and computer program

    International Nuclear Information System (INIS)

    DeAngelis, D.L.; Van Winkle, W.; Christensen, S.W.; Blum, S.R.; Kirk, B.L.; Rust, B.W.; Ross, C.

    1978-03-01

    A generalized fish life-cycle population model and computer program have been prepared to evaluate the long-term effect of changes in mortality in age class 0. The general question concerns what happens to a fishery when density-independent sources of mortality are introduced that act on age class 0, particularly entrainment and impingement at power plants. This paper discusses the model formulation and computer program, including sample results. The population model consists of a system of difference equations involving age-dependent fecundity and survival. The fecundity for each age class is assumed to be a function of both the fraction of females sexually mature and the weight of females as they enter each age class. Natural mortality for age classes 1 and older is assumed to be independent of population size. Fishing mortality is assumed to vary with the number and weight of fish available to the fishery. Age class 0 is divided into six life stages. The probability of survival for age class 0 is estimated considering both density-independent mortality (natural and power plant) and density-dependent mortality for each life stage. Two types of density-dependent mortality are included. These are cannibalism of each life stage by older age classes and intra-life-stage competition

  5. New Approaches in Reuseable Booster System Life Cycle Cost Modeling

    Science.gov (United States)

    Zapata, Edgar

    2013-01-01

    This paper presents the results of a 2012 life cycle cost (LCC) study of hybrid Reusable Booster Systems (RBS) conducted by NASA Kennedy Space Center (KSC) and the Air Force Research Laboratory (AFRL). The work included the creation of a new cost estimating model and an LCC analysis, building on past work where applicable, but emphasizing the integration of new approaches in life cycle cost estimation. Specifically, the inclusion of industry processes/practices and indirect costs were a new and significant part of the analysis. The focus of LCC estimation has traditionally been from the perspective of technology, design characteristics, and related factors such as reliability. Technology has informed the cost related support to decision makers interested in risk and budget insight. This traditional emphasis on technology occurs even though it is well established that complex aerospace systems costs are mostly about indirect costs, with likely only partial influence in these indirect costs being due to the more visible technology products. Organizational considerations, processes/practices, and indirect costs are traditionally derived ("wrapped") only by relationship to tangible product characteristics. This traditional approach works well as long as it is understood that no significant changes, and by relation no significant improvements, are being pursued in the area of either the government acquisition or industry?s indirect costs. In this sense then, most launch systems cost models ignore most costs. The alternative was implemented in this LCC study, whereby the approach considered technology and process/practices in balance, with as much detail for one as the other. This RBS LCC study has avoided point-designs, for now, instead emphasizing exploring the trade-space of potential technology advances joined with potential process/practice advances. Given the range of decisions, and all their combinations, it was necessary to create a model of the original model

  6. New Approaches in Reusable Booster System Life Cycle Cost Modeling

    Science.gov (United States)

    Zapata, Edgar

    2013-01-01

    This paper presents the results of a 2012 life cycle cost (LCC) study of hybrid Reusable Booster Systems (RBS) conducted by NASA Kennedy Space Center (KSC) and the Air Force Research Laboratory (AFRL). The work included the creation of a new cost estimating model and an LCC analysis, building on past work where applicable, but emphasizing the integration of new approaches in life cycle cost estimation. Specifically, the inclusion of industry processes/practices and indirect costs were a new and significant part of the analysis. The focus of LCC estimation has traditionally been from the perspective of technology, design characteristics, and related factors such as reliability. Technology has informed the cost related support to decision makers interested in risk and budget insight. This traditional emphasis on technology occurs even though it is well established that complex aerospace systems costs are mostly about indirect costs, with likely only partial influence in these indirect costs being due to the more visible technology products. Organizational considerations, processes/practices, and indirect costs are traditionally derived ("wrapped") only by relationship to tangible product characteristics. This traditional approach works well as long as it is understood that no significant changes, and by relation no significant improvements, are being pursued in the area of either the government acquisition or industry?s indirect costs. In this sense then, most launch systems cost models ignore most costs. The alternative was implemented in this LCC study, whereby the approach considered technology and process/practices in balance, with as much detail for one as the other. This RBS LCC study has avoided point-designs, for now, instead emphasizing exploring the trade-space of potential technology advances joined with potential process/practice advances. Given the range of decisions, and all their combinations, it was necessary to create a model of the original model

  7. ENHANCED MODELING OF REMOTELY SENSED ANNUAL LAND SURFACE TEMPERATURE CYCLE

    Directory of Open Access Journals (Sweden)

    Z. Zou

    2017-09-01

    Full Text Available Satellite thermal remote sensing provides access to acquire large-scale Land surface temperature (LST data, but also generates missing and abnormal values resulting from non-clear-sky conditions. Given this limitation, Annual Temperature Cycle (ATC model was employed to reconstruct the continuous daily LST data over a year. The original model ATCO used harmonic functions, but the dramatic changes of the real LST caused by the weather changes remained unclear due to the smooth sine curve. Using Aqua/MODIS LST products, NDVI and meteorological data, we proposed enhanced model ATCE based on ATCO to describe the fluctuation and compared their performances for the Yangtze River Delta region of China. The results demonstrated that, the overall root mean square errors (RMSEs of the ATCE was lower than ATCO, and the improved accuracy of daytime was better than that of night, with the errors decreased by 0.64 K and 0.36 K, respectively. The improvements of accuracies varied with different land cover types: the forest, grassland and built-up areas improved larger than water. And the spatial heterogeneity was observed for performance of ATC model: the RMSEs of built-up area, forest and grassland were around 3.0 K in the daytime, while the water attained 2.27 K; at night, the accuracies of all types significantly increased to similar RMSEs level about 2 K. By comparing the differences between LSTs simulated by two models in different seasons, it was found that the differences were smaller in the spring and autumn, while larger in the summer and winter.

  8. Modeling Phosphorus Transport and Cycling in the Greater Everglades Ecosystem

    Science.gov (United States)

    James, A. I.; Grace, K. A.; Jawitz, J. W.; Muller, S.; Munoz-Carpena, R.; Flaig, E. G.

    2005-12-01

    A solute transport model was used to predict phosphorus mobility in the northern Everglades. Over the past several decades, agricultural drainage waters discharged into the northern Everglades, have been enriched in phosphorus (P) relative to the historic rainfall-driven inputs. While methods of reducing total P concentrations in the discharge water have been actively pursued through implementation of agricultural Best Management Practices (BMPs), a major parallel effort has focused on the construction of a network of constructed wetlands for P removal before these waters enter the Everglades. This study describes the development of a water quality model for P transport and cycling and its application to a large constructed wetland: Stormwater Treatment Area 1 West (STA 1W), located southeast of Lake Okeechobee on the eastern perimeter of the Everglades Agricultural Area (EAA). In STA 1W agricultural nutrients such as phosphorus (P) are removed from EAA runoff before entering the adjacent Water Conservation Areas (WCAs) and the Everglades. STA 1W is divided by levees into 4 cells, which are flooded for most of the year; thus the dominant mechanism for flow and transport is overland flow. P is removed either through deposition into sediments or is taken up by plants; in either case the soils end up being significantly enriched in P. The model has been applied and calibrated to several years of water quality data from Cell 4 within STA 1W. Most existing P models have been applied to agricultural/upland systems, with only a few relevant to treatment wetlands such as STA 1W. To ensure sufficient flexibility in selecting appropriate system components and reactions, the model has been designed to incorporate a wide range of user-selectable mechanisms for P uptake and release parameters between soils and inflowing water. The model can track a large number of mobile and nonmobile components and utilizes a Godunov-style operator-splitting technique for the transported

  9. Simulating the convective precipitation diurnal cycle in a North American scale convection-permitting model

    Science.gov (United States)

    Scaff, L.; Li, Y.; Prein, A. F.; Liu, C.; Rasmussen, R.; Ikeda, K.

    2017-12-01

    A better representation of the diurnal cycle of convective precipitation is essential for the analysis of the energy balance and the water budget components such as runoff, evaporation and infiltration. Convection-permitting regional climate modeling (CPM) has been shown to improve the models' performance of summer precipitation, allowing to: (1) simulate the mesoscale processes in more detail and (2) to provide more insights in future changes in convective precipitation under climate change. In this work we investigate the skill of the Weather Research and Forecast model (WRF) in simulating the summer precipitation diurnal cycle over most of North America. We use 4 km horizontal grid spacing in a 13-years long current and future period. The future scenario is assuming no significant changes in large-scale weather patterns and aims to answer how the weather of the current climate would change if it would reoccur at the end of the century under a high-end emission scenario (Pseudo Global Warming). We emphasize on a region centered on the lee side of the Canadian Rocky Mountains, where the summer precipitation amount shows a regional maximum. The historical simulations are capable to correctly represent the diurnal cycle. At the lee-side of the Canadian Rockies the increase in the convective available potential energy as well as pronounced low-level moisture flux from the southeast Prairies explains the local maximum in summer precipitation. The PGW scenario shows an increase in summer precipitation amount and intensity in this region, consistently with a stronger source of moisture and convective energy.

  10. Modelling the soil carbon cycle of pine ecosystems

    International Nuclear Information System (INIS)

    Nakane, K.

    1994-01-01

    Soil carbon cycling rates and carbon budgets were calculated for stands of four pine species. Pinus sylvestris (at Jaedraaas, Sweden), P. densiflora (Hiroshima, Japan), P. elliottii (Florida, USA) and P. radiata (Canberra, Australia), using a simulation model driven by daily observations of mean air temperature and precipitation. Inputs to soil carbon through litterfall differ considerably among the four pine forests, but the accumulation of the A 0 layer and humus in mineral soil is less variable. Decomposition of the A 0 layer and humus is fastest for P. densiflora and slowest for P. sylvestris stands with P. radiata and P. elliottii intermediate. The decomposition rate is lower for the P. elliottii stand than for P. densiflora in spite of its higher temperatures and slightly higher precipitation. Seasonal changes in simulated soil carbon are observed only for the A 0 layer at the P. densiflora site. Simulated soil respiration rates vary seasonally in three stands (P. sylvestris, P. densiflora and P. radiata). In simulations for pine trees planted on bare soil, all soil organic matter fractions except the humus in mineral soil recover to half their asymptotic values within 30 to 40 years of planting for P. sylvestris and P. densiflora, compared with 10 to 20 years for P. radiata and P. elliottii. The simulated recovery of soil carbon following clear-cutting is fastest for the P. elliottii stand and slowest for P. sylvestris. Management of P. elliottii and P. radiata stands on 40-years rotations is sustainable because carbon removed through harvest is restored in the interval between successive clear-cuts. However p. densiflora and P. sylvestris stands may be unable to maintain soil carbon under such a short rotation. High growth rates of P. elliottii and p. radiata stands in spite of relatively poor soil conditions and slow carbon cycling may be related to the physiological responses of species to environmental conditions. (Abstract Truncated)

  11. Computational Modeling of the Catalytic Cycle of Glutathione Peroxidase Nanomimic.

    Science.gov (United States)

    Kheirabadi, Ramesh; Izadyar, Mohammad

    2016-12-29

    To elucidate the role of a derivative of ebselen as a mimic of the antioxidant selenoenzyme glutathione peroxidase, density functional theory and solvent-assisted proton exchange (SAPE) were applied to model the reaction mechanism in a catalytic cycle. This mimic plays the role of glutathione peroxidase through a four-step catalytic cycle. The first step is described as the oxidation of 1 in the presence of hydrogen peroxide, while selenoxide is reduced by methanthiol at the second step. In the third step of the reaction, the reduction of selenenylsulfide occurs by methanthiol, and the selenenic acid is dehydrated at the final step. Based on the kinetic parameters, step 4 is the rate-determining step (RDS) of the reaction. The bond strength of the atoms involved in the RDS is discussed with the quantum theory of atoms in molecules (QTAIM). Low value of electron density, ρ(r), and positive Laplacian values are the evidence for the covalent nature of the hydrogen bonds rupture (O 30 -H 31 , O 33 -H 34 ). A change in the sign of the Laplacian, L(r), from the positive value in the reactant to a negative character at the transition state indicates the depletion of the charge density, confirming the N 5 -H 10 and O 11 -Se 1 bond breaking. The analysis of electron location function (ELF) and localized orbital locator (LOL) of the Se 1 -N 5 and Se 1 -O 11 bonds have been done by multi-WFN program. High values of ELF and LOL at the transition state regions between the Se, N, and O atoms display the bond formation. Finally, the main donor-acceptor interaction energies were analyzed using the natural bond orbital analysis for investigation of their stabilization effects on the critical bonds at the RDS.

  12. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    Science.gov (United States)

    Joshi, D. M.; Patel, H. K.

    2015-10-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant.

  13. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    International Nuclear Information System (INIS)

    Joshi, D.M.; Patel, H.K.

    2015-01-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant

  14. The Object Oriented Model of the AD Cycle and its Implementation

    CERN Document Server

    Mulder, H

    1999-01-01

    Central to the control and operation of the CERN Antiproton Decelerator (AD) is the deceleration cycle which involves accelerator sub-systems such as magnet current, timing, RF systems etc. It is fundamental to AD operation that these sub-system cycles are coherent and an integrated AD Cycle Editor has been proposed to guarantee this coherence. In the object oriented model of the AD, the highest level of abstraction is the class "AD Cycle" which is described in physical terms with an associated set of operations. The accelerator sub-systems inherit from this class thus guaranteeing coherence. The model is implemented in the AD Cycle Editor, which acts on the AD Cycle class and implicitly therefore also on the sub-systems. In this paper the model of the AD Cycle and sub-systems are discussed. The AD Cycle Editor is also presented with comments on the results of the commissioned system.

  15. Comparative analysis of methods and tools for open and closed fuel cycles modeling: MESSAGE and DESAE

    International Nuclear Information System (INIS)

    Andrianov, A.A.; Korovin, Yu.A.; Murogov, V.M.; Fedorova, E.V.; Fesenko, G.A.

    2006-01-01

    Comparative analysis of optimization and simulation methods by the example of MESSAGE and DESAE programs is carried out for nuclear power prospects and advanced fuel cycles modeling. Test calculations for open and two-component nuclear power and closed fuel cycle are performed. Auxiliary simulation-dynamic model is developed to specify MESSAGE and DESAE modeling approaches difference. The model description is given [ru

  16. The Cycle of Warfare - Analysis of an Analytical Model

    DEFF Research Database (Denmark)

    Jensen, Mikkel Storm

    2016-01-01

    by its economic, political and ideological characteristics. With the single assumption of economic rationality in human behaviour, Cycle of Warfare is not only coherent, it is applicable to all entities engaged in competition anywhere in the world at any point in history. The Cycle of Warfare can be used...

  17. Updates on Modeling the Water Cycle with the NASA Ames Mars Global Climate Model

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Montmessin, F.; Brecht, A. S.; Urata, R.; Klassen, D. R.; Wolff, M. J.

    2017-01-01

    Global Circulation Models (GCMs) have made steady progress in simulating the current Mars water cycle. It is now widely recognized that clouds are a critical component that can significantly affect the nature of the simulated water cycle. Two processes in particular are key to implementing clouds in a GCM: the microphysical processes of formation and dissipation, and their radiative effects on heating/ cooling rates. Together, these processes alter the thermal structure, change the dynamics, and regulate inter-hemispheric transport. We have made considerable progress representing these processes in the NASA Ames GCM, particularly in the presence of radiatively active water ice clouds. We present the current state of our group's water cycle modeling efforts, show results from selected simulations, highlight some of the issues, and discuss avenues for further investigation.­

  18. Tracking the business cycle of the Euro area: A multivariate model-based band-pass filter

    NARCIS (Netherlands)

    Azevedo, J.M.; Koopman, S.J.; Rua, A.

    2006-01-01

    This article proposes a multivariate bandpass filter based on the trend plus cycle decomposition model. The underlying multivariate dynamic factor model relies on specific formulations for trend and cycle components and produces smooth business cycle indicators with bandpass filter properties.

  19. Modelling of pesticide emissions for Life Cycle Inventory analysis: Model development, applications and implications

    DEFF Research Database (Denmark)

    Dijkman, Teunis Johannes

    with variations in the climates and soils present in Europe. Emissions of pesticides to surface water and groundwater calculated by PestLCI 2.0 were compared with models used for risk assessment. Compared to the MACRO module in SWASH 3.1 model, which calculates surface water emissions by runoff and drainage...... chromatographic flow of water through the soil), which was attributed to the omission of emissions via macropore flow in the latter model. The comparison was complicated by the fact that the scenarios used were not fully identical. In order to quantify the implications of using PestLCI 2.0, human toxicity......The work presented in this thesis deals with quantification of pesticide emissions in the Life Cycle Inventory (LCI) analysis phase of Life Cycle Assessment (LCA). The motivation to model pesticide emissions is that reliable LCA results not only depend on accurate impact assessment models, but also...

  20. Core-state models for fuel management of equilibrium and transition cycles in pressurized water reactors

    International Nuclear Information System (INIS)

    Aragones, J.M.; Martinez-Val, J.M.; Corella, M.R.

    1977-01-01

    Fuel management requires that mass, energy, and reactivity balance be satisfied in each reload cycle. Procedures for selection of alternatives, core-state models, and fuel cost calculations have been developed for both equilibrium and transition cycles. Effective cycle lengths and fuel cycle variables--namely, reload batch size, schedule of incore residence for the fuel, feed enrichments, energy sharing cycle by cycle, and discharge burnup and isotopics--are the variables being considered for fuel management planning with a given energy generation plan, fuel design, recycling strategy, and financial assumptions

  1. PWR-to-PWR fuel cycle model using dry process

    International Nuclear Information System (INIS)

    Iqbal, M.; Jeong, Chang Joon; Rho, Gyu Hong

    2002-03-01

    PWR-to-PWR fuel cycle model has been developed to recycle the spent fuel using the dry fabrication process. Two types of fuels were considered; first fuel was based on low initial enrichment with low discharge burnup and second one was based on more initial enrichment with high discharge burnup in PWR. For recycling calculations, the HELIOS code was used, in which all of the available fission products were considered. The decay of 10 years was applied for reuse of the spent fuel. Sensitivity analysis for the fresh feed material enrichment has also been carried out. If enrichment of the mixing material is increased the saving of uranium reserves would be decreased. The uranium saving of low burned fuel increased from 4.2% to 7.4% in fifth recycling step for 5 wt% to 19.00wt% mixing material enrichment. While for high burned fuel, there was no uranium saving, which implies that higher uranium enrichment required than 5 wt%. For mixing of 15 wt% enriched fuel, the required mixing is about 21.0% and 37.0% of total fuel volume for low and high burned fuel, respectively. With multiple recycling, reductions in waste for low and high burned fuel became 80% and 60%, for first recycling, respectively. In this way, waste can be reduced more and the cost of the waste disposal reduction can provide the economic balance

  2. Leveraging this Golden Age of Remote Sensing and Modeling of Terrestrial Hydrology to Understand Water Cycling in the Water Availability Grand Challenge for North America

    Science.gov (United States)

    Painter, T. H.; Famiglietti, J. S.; Stephens, G. L.

    2016-12-01

    We live in a time of increasing strains on our global fresh water availability due to increasing population, warming climate, changes in precipitation, and extensive depletion of groundwater supplies. At the same time, we have seen enormous growth in capabilities to remotely sense the regional to global water cycle and model complex systems with physically based frameworks. The GEWEX Water Availability Grand Challenge for North America is poised to leverage this convergence of remote sensing and modeling capabilities to answer fundamental questions on the water cycle. In particular, we envision an experiment that targets the complex and resource-critical Western US from California to just into the Great Plains, constraining physically-based hydrologic modeling with the US and international remote sensing capabilities. In particular, the last decade has seen the implementation or soon-to-be launch of water cycle missions such as GRACE and GRACE-FO for groundwater, SMAP for soil moisture, GPM for precipitation, SWOT for terrestrial surface water, and the Airborne Snow Observatory for snowpack. With the advent of convection-resolving mesoscale climate and water cycle modeling (e.g. WRF, WRF-Hydro) and mesoscale models capable of quantitative assimilation of remotely sensed data (e.g. the JPL Western States Water Mission), we can now begin to test hypotheses on the nature and changes in the water cycle of the Western US from a physical standpoint. In turn, by fusing water cycle science, water management, and ecosystem management while addressing these hypotheses, this golden age of remote sensing and modeling can bring all fields into a markedly less uncertain state of present knowledge and decadal scale forecasts.

  3. A new model of the Earth system nitrogen cycle: how plates and life affect the atmosphere

    Science.gov (United States)

    Johnson, B. W.; Goldblatt, C.

    2017-12-01

    Nitrogen is the main component of Earth's atmosphere. It plays a key role in the evolution of the biosphere and surface of Earth [1]. There are contrasting views, however, on how N has evolved on the surface of the Earth over time. Some modeling efforts [e.g., 2] indicate a steady-state level of N in the atmosphere over geologic time, while geochemical [e.g., 3], other proxies [e.g., 4], and more recent models [5] indicate the mass of N in the atmosphere can change dramatically over Earth history. This conundrum, and potential solutions to it, present distinct interpretations of the history of Earth, and teleconnections between the surface and interior of the planet have applications to other terrestrial bodies as well. To help investigate this conundrum, we have constructed an Earth-system N cycle box model. To our knowledge, this is the most capable model for addressing evolution of the N reservoirs of Earth through time. The model combines biologic and geologic processes, driven by a mantle cooling history, to more fully describe the N cycle through geologic history. In addition to a full biologic N cycle (fixing, nitrification, denitrification), we also dynamically solve for PO4 through time and we have a prescribed O2 history. Results indicate that the atmosphere of Earth could have experienced major changes in mass over geologic time. Importantly, the amount of N in the atmosphere today appears to be directly related to the total N budget of the silicate Earth. For example, high initial atmospheric mass, suggested as a solution to the Faint Young Sun Paradox [1], is drawn down over time. This supports work that indicates the mantle has significantly more N than the atmosphere does today [6]. Contrastingly, model runs with low total N result in a crash in atmospheric mass. In nearly all model runs the bulk silicate Earth contains the majority of the planet's N. [1] Goldblatt et al. (2009) Nat. Geosci., 2, 891-896. [2] Berner, R. (2006) Geology., 34, 413

  4. Development and applications of GREET 2.7 -- The Transportation Vehicle-Cycle Model

    International Nuclear Information System (INIS)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-01-01

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results

  5. Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-12-20

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

  6. Re-framing Inclusive Education Through the Capability Approach: An Elaboration of the Model of Relational Inclusion

    Directory of Open Access Journals (Sweden)

    Maryam Dalkilic

    2016-09-01

    Full Text Available Scholars have called for the articulation of new frameworks in special education that are responsive to culture and context and that address the limitations of medical and social models of disability. In this article, we advance a theoretical and practical framework for inclusive education based on the integration of a model of relational inclusion with Amartya Sen’s (1985 Capability Approach. This integrated framework engages children, educators, and families in principled practices that acknowledge differences, rather than deficits, and enable attention to enhancing the capabilities of children with disabilities in inclusive educational environments. Implications include the development of policy that clarifies the process required to negotiate capabilities and valued functionings and the types of resources required to permit children, educators, and families to create relationally inclusive environments.

  7. Modelling of powder die compaction for press cycle optimization

    Directory of Open Access Journals (Sweden)

    Bayle Jean-Philippe

    2016-01-01

    Full Text Available A new electromechanical press for fuel pellet manufacturing was built last year in partnership between CEA-Marcoule and ChampalleAlcen. This press was developed to shape pellets in a hot cell via remote handling. It has been qualified to show its robustness and to optimize the compaction cycle, thus obtaining a better sintered pellet profile and limiting damage. We will show you how 400 annular pellets have been produced with good geometry's parameters, based on press settings management. These results are according to a good phenomenological pressing knowledge with Finite Element Modeling calculation. Therefore, during die pressing, a modification in the punch displacement sequence induces fluctuation in the axial distribution of frictional forces. The green pellet stress and density gradients are based on these frictional forces between powder and tool, and between grains in the powder, influencing the shape of the pellet after sintering. The pellet shape and diameter tolerances must be minimized to avoid the need for grinding operations. To find the best parameters for the press settings, which enable optimization, FEM calculations were used and different compaction models compared to give the best calculation/physical trial comparisons. These simulations were then used to predict the impact of different parameters when there is a change in the type of powder and the pellet size, or when the behavior of the press changes during the compaction time. In 2016, it is planned to set up the press in a glove box for UO2 manufacturing qualification based on our simulation methodology, before actual hot cell trials in the future.

  8. A model-free approach to eliminate autocorrelation when testing for process capability

    DEFF Research Database (Denmark)

    Vanmann, Kerstin; Kulahci, Murat

    2008-01-01

    There is an increasing use of on-line data acquisition systems in industry. This usually leads to autocorrelated data and implies that the assumption of independent observations has to be re-examined. Most decision procedures for capability analysis assume independent data. In this article we pre...

  9. A Model for a Single Unmanned Aircraft Systems (UAS) Program Office Managing Joint ISR Capabilities

    Science.gov (United States)

    2017-10-01

    managing the efforts of medium and high altitude UAS assets from a Joint perspective while employing agile principles versus the duplicative efforts... managed using agile principles , could provide greater capability to the warfighter. Consolidation cost efficiencies became an independent variable...ensure quality and value are delivered. Senior leadership buy in is needed, along with an understanding of agile principles and management style that

  10. Employing the intelligence cycle process model within the Homeland Security Enterprise

    OpenAIRE

    Stokes, Roger L.

    2013-01-01

    CHDS State/Local The purpose of this thesis was to examine the employment and adherence of the intelligence cycle process model within the National Network of Fusion Centers and the greater Homeland Security Enterprise by exploring the customary intelligence cycle process model established by the United States Intelligence Community (USIC). This thesis revealed there are various intelligence cycle process models used by the USIC and taught to the National Network. Given the numerous differ...

  11. Modeling endocrine regulation of the menstrual cycle using delay differential equations.

    Science.gov (United States)

    Harris, Leona A; Selgrade, James F

    2014-11-01

    This article reviews an effective mathematical procedure for modeling hormonal regulation of the menstrual cycle of adult women. The procedure captures the effects of hormones secreted by several glands over multiple time scales. The specific model described here consists of 13 nonlinear, delay, differential equations with 44 parameters and correctly predicts blood levels of ovarian and pituitary hormones found in the biological literature for normally cycling women. In addition to this normal cycle, the model exhibits another stable cycle which may describe a biologically feasible "abnormal" condition such as polycystic ovarian syndrome. Model simulations illustrate how one cycle can be perturbed to the other cycle. Perturbations due to the exogenous administration of each ovarian hormone are examined. This model may be used to test the effects of hormone therapies on abnormally cycling women as well as the effects of exogenous compounds on normally cycling women. Sensitive parameters are identified and bifurcations in model behavior with respect to parameter changes are discussed. Modeling various aspects of menstrual cycle regulation should be helpful in predicting successful hormone therapies, in studying the phenomenon of cycle synchronization and in understanding many factors affecting the aging of the female reproductive endocrine system. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Analysis of stochastic effects in Kaldor-type business cycle discrete model

    Science.gov (United States)

    Bashkirtseva, Irina; Ryashko, Lev; Sysolyatina, Anna

    2016-07-01

    We study nonlinear stochastic phenomena in the discrete Kaldor model of business cycles. A numerical parametric analysis of stochastically forced attractors (equilibria, closed invariant curves, discrete cycles) of this model is performed using the stochastic sensitivity functions technique. A spatial arrangement of random states in stochastic attractors is modeled by confidence domains. The phenomenon of noise-induced transitions ;chaos-order; is discussed.

  13. Introduction of an Evaluation Tool to Predict the Probability of Success of Companies: The Innovativeness, Capabilities and Potential Model (ICP

    Directory of Open Access Journals (Sweden)

    Michael Lewrick

    2009-05-01

    Full Text Available Successful innovation requires management and in this paper a model to help manage the innovation process is presented. This model can be used to audit the management capability to innovate and to monitor how sales increase is related to innovativeness. The model was developed from a study of companies in the high technology cluster around Munich and validated using statistical procedures. The model was found to be effective at predicting the success or otherwise of the innovation strategy pursued by the company. The use of this model and how it can be used to identify areas for improvement are documented in this paper.

  14. Field Investigation and Modeling Development for Hydrological and Carbon Cycles in Southwest Karst Region of China

    Science.gov (United States)

    Hu, X. B.

    2017-12-01

    It is required to understanding water cycle and carbon cycle processes for water resource management and pollution prevention and global warming influence in southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models. Our study focus on the karst springshed in Mao village, the mechanisms coupling carbon cycle and water cycle are explored. This study provides basic theory and simulation method for water resource management and groundwater pollution prevention in China karst region.

  15. A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings

    NARCIS (Netherlands)

    Petersen, A.M.; Rotolo, D.; Leydesdorff, L.

    We develop a model of innovation that enables us to trace the interplay among three key dimensions of the innovation process: (i) demand of and (ii) supply for innovation, and (iii) technological capabilities available to generate innovation in the forms of products, processes, and services.

  16. TO THE MODELING ISSUES OF LIFE CYCLE OF DEFORMATION WORK OF THE RAILWAY TRACK ELEMENTS

    Directory of Open Access Journals (Sweden)

    I. O. Bondarenko

    2014-12-01

    process of the railway track is prepared and assayed, but also its consequences. In addition, such models are flat, that also adds some complexity to compare the results with the experiment, since the process is not easy to distinguish the bulk of its limited influence in parts. The application of numerical methods extends the capabilities, and makes it impossible to consider the dynamic process, because it is impossible to introduce the processes that govern the response to the load. Therefore, the proposed modeling makes it possible to examine directly the dynamic process and evaluate the process due to the new criterion, the operational cycle of the strain gauge.

  17. Towards a Cyberterrorism Life-Cycle (CLC) Model

    CSIR Research Space (South Africa)

    Veerasamy, N

    2012-08-01

    Full Text Available Cyberterrorism has emerged as a new threat in the Information and Communication Technology (ICT) landscape. The ease of use, affordability, remote capabilities and access to critical targets makes cyberterrorism a potential threat to cause wide...

  18. Data engineering systems: Computerized modeling and data bank capabilities for engineering analysis

    Science.gov (United States)

    Kopp, H.; Trettau, R.; Zolotar, B.

    1984-01-01

    The Data Engineering System (DES) is a computer-based system that organizes technical data and provides automated mechanisms for storage, retrieval, and engineering analysis. The DES combines the benefits of a structured data base system with automated links to large-scale analysis codes. While the DES provides the user with many of the capabilities of a computer-aided design (CAD) system, the systems are actually quite different in several respects. A typical CAD system emphasizes interactive graphics capabilities and organizes data in a manner that optimizes these graphics. On the other hand, the DES is a computer-aided engineering system intended for the engineer who must operationally understand an existing or planned design or who desires to carry out additional technical analysis based on a particular design. The DES emphasizes data retrieval in a form that not only provides the engineer access to search and display the data but also links the data automatically with the computer analysis codes.

  19. From one to two – a possible model of organizational development and development of organizational capabilities

    OpenAIRE

    M. Somosi Veres

    2013-01-01

    The business management of most successful companies is a result of the coordinated operation of the processes, organizational structure, supporting systems and employees which make up the organizational capabilities of the company. Within the business processes, this includes development and continuous improvement of key internal rules and regulations, the division of spheres of power and responsibility, the requirements and the operation of fundamental checkpoints for organizational units, ...

  20. Capability ethics

    OpenAIRE

    Robeyns, Ingrid

    2012-01-01

    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological theories, virtue ethics, or pragmatism. As I will argue in this chapter, at present the core of the capability approach is an account of value, which together with some other (more minor) normative comm...

  1. Argonne Fuel Cycle Facility ventilation system -- modeling and results

    International Nuclear Information System (INIS)

    Mohr, D.; Feldman, E.E.; Danielson, W.F.

    1995-01-01

    This paper describes an integrated study of the Argonne-West Fuel Cycle Facility (FCF) interconnected ventilation systems during various operations. Analyses and test results include first a nominal condition reflecting balanced pressures and flows followed by several infrequent and off-normal scenarios. This effort is the first study of the FCF ventilation systems as an integrated network wherein the hydraulic effects of all major air systems have been analyzed and tested. The FCF building consists of many interconnected regions in which nuclear fuel is handled, transported and reprocessed. The ventilation systems comprise a large number of ducts, fans, dampers, and filters which together must provide clean, properly conditioned air to the worker occupied spaces of the facility while preventing the spread of airborne radioactive materials to clean am-as or the atmosphere. This objective is achieved by keeping the FCF building at a partial vacuum in which the contaminated areas are kept at lower pressures than the other worker occupied spaces. The ventilation systems of FCF and the EBR-II reactor are analyzed as an integrated totality, as demonstrated. We then developed the network model shown in Fig. 2 for the TORAC code. The scope of this study was to assess the measured results from the acceptance/flow balancing testing and to predict the effects of power failures, hatch and door openings, single-failure faulted conditions, EBR-II isolation, and other infrequent operations. The studies show that the FCF ventilation systems am very controllable and remain stable following off-normal events. In addition, the FCF ventilation system complex is essentially immune to reverse flows and spread of contamination to clean areas during normal and off-normal operation

  2. State-of-the-Art Solid Waste Management Life-Cycle Modeling Workshop

    DEFF Research Database (Denmark)

    Damgaard, Anders; Levis, James W.

    There are many alternatives for the management of solid waste including recycling, biological treatment, thermal treatment and landfill disposal. In many cases, solid waste management systems include the use of several of these processes. Solid waste life-cycle assessment models are often used...... to evaluate the environmental consequences of various waste management strategies. The foundation of every life-cycle model is the development and use of process models to estimate the emissions from solid waste unit processes. The objective of this workshop is to describe life-cycle modeling of the solid...... waste processes and systems. The workshop will begin with an introduction to solid waste life-cycle modeling and available models, which will be followed by sessions on life-cycle process modeling for individual processes (e.g., landfills, biological treatment, and thermal treatment). The first part...

  3. Carbonate-silicate cycle models of the long-term carbon cycle, carbonate accumulation in the oceans, and climate

    International Nuclear Information System (INIS)

    Caldeira, K.G.

    1991-01-01

    Several models of the long-term carbon cycle, incorporating models of the carbonate-silicate cycle, were developed and utilized to investigate issues relating to global climate and the causes and consequences of changes in calcium carbonate accumulation in the oceans. Model results indicate that the marked mid-Cretaceous (120 Ma) global warming could be explained by increased rates of release of carbon dioxide from subduction-zone metamorphism and mid-ocean-ridges, in conjunction with paleogeographic factors. Since the mid-Cretaceous, the primary setting for calcium carbonate accumulation in the oceans has shifted from shallow-water to deep-water environments. Model results suggest that this shift could have major consequences for the carbonate-silicate cycle and climate, and lead to significant increases in the flux of metamorphic carbon dioxide to the atmosphere. Increases in pelagic carbonate productivity, and decreases in tropical shallow-water area available for neritic carbonate accumulation, have both been proposed as the primary cause of this shift. Two lines of evidence developed here (one involving a statistical analysis of Tertiary carbonate-accumulation and oxygen-isotope data, and another based on modeling the carbonate-silicate cycle and ocean chemistry) suggest that a decrease in tropical shallow-water area was more important than increased pelagic productivity in explaining this shift. Model investigations of changes in ocean chemistry at the Cretaceous/Tertiary (K/T) boundary (66 Ma) indicate that variations in deep-water carbonate productivity may affect shallow-water carbonate accumulation rates through a mechanism involving surface-water carbonate-ion concentration. In the aftermath of the K/T boundary event, deep-water carbonate production and accumulation were significantly reduced as a result of the extinction of calcareous plankton

  4. Evaluation of prediction capability, robustness, and sensitivity in non-linear landslide susceptibility models, Guantánamo, Cuba

    Science.gov (United States)

    Melchiorre, C.; Castellanos Abella, E. A.; van Westen, C. J.; Matteucci, M.

    2011-04-01

    This paper describes a procedure for landslide susceptibility assessment based on artificial neural networks, and focuses on the estimation of the prediction capability, robustness, and sensitivity of susceptibility models. The study is carried out in the Guantanamo Province of Cuba, where 186 landslides were mapped using photo-interpretation. Twelve conditioning factors were mapped including geomorphology, geology, soils, landuse, slope angle, slope direction, internal relief, drainage density, distance from roads and faults, rainfall intensity, and ground peak acceleration. A methodology was used that subdivided the database in 3 subsets. A training set was used for updating the weights. A validation set was used to stop the training procedure when the network started losing generalization capability, and a test set was used to calculate the performance of the network. A 10-fold cross-validation was performed in order to show that the results are repeatable. The prediction capability, the robustness analysis, and the sensitivity analysis were tested on 10 mutually exclusive datasets. The results show that by means of artificial neural networks it is possible to obtain models with high prediction capability and high robustness, and that an exploration of the effect of the individual variables is possible, even if they are considered as a black-box model.

  5. An assessment system for the system safety engineering capability maturity model in the case of spent fuel reprocessing

    International Nuclear Information System (INIS)

    Yang Xiaohua; Liu Zhenghai; Liu Zhiming; Wan Yaping; Bai Xiaofeng

    2012-01-01

    We can improve the processing, the evaluation of capability and promote the user's trust by using system security engineering capability maturity model (SSE-CMM). SSE-CMM is the common method for organizing and implementing safety engineering, and it is a mature method for system safety engineering. Combining capability maturity model (CMM) with total quality management and statistic theory, SSE-CMM turns systems security engineering into a well-defined, mature, measurable, advanced engineering discipline. Lack of domain knowledge, the size of data, the diversity of evidences, the cumbersomeness of processes, and the complexity of matching evidences with problems are the main issues that SSE-CMM assessment has to face. To improve effectively the efficiency of assessment of spent fuel reprocessing system security engineering capability maturity model (SFR-SSE-CMM), in this paper we de- signed an intelligent assessment software based on domain ontology and that uses methods such as ontology, evidence theory, semantic web, intelligent information retrieval and intelligent auto-matching techniques. This software includes four subsystems, which are domain ontology creation and management system, evidence auto collection system, and a problem and evidence matching system. The architecture of the software is divided into five layers: a data layer, an oncology layer, a knowledge layer, a service layer arid a presentation layer. (authors)

  6. HYDROïD humanoid robot head with perception and emotion capabilities :Modeling, Design and Experimental Results

    Directory of Open Access Journals (Sweden)

    Samer eAlfayad

    2016-04-01

    Full Text Available In the framework of the HYDROïD humanoid robot project, this paper describes the modeling and design of an electrically actuated head mechanism. Perception and emotion capabilities are considered in the design process. Since HYDROïD humanoid robot is hydraulically actuated, the choice of electrical actuation for the head mechanism addressed in this paper is justified. Considering perception and emotion capabilities leads to a total number of 15 degrees of freedom for the head mechanism which are split on four main sub-mechanisms: the neck, the mouth, the eyes and the eyebrows. Biological data and kinematics performances of human head are taken as inputs of the design process. A new solution of uncoupled eyes is developed to possibly address the master-slave process that links the human eyes as well as vergence capabilities. Modeling each sub-system is carried out in order to get equations of motion, their frequency responses and their transfer functions. The neck pitch rotation is given as a study example. Then, the head mechanism performances are presented through a comparison between model and experimental results validating the hardware capabilities. Finally, the head mechanism is integrated on the HYDROïD upper-body. An object tracking experiment coupled with emotional expressions is carried out to validate the synchronization of the eye rotations with the body motions.

  7. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  8. Modeling the nitrogen cycling and plankton productivity in the Black Sea using a three-dimensional interdisciplinary model

    NARCIS (Netherlands)

    Grégoire, M.; Soetaert, K.E.R.; Nezlin, N.; Kostianoy, A.

    2004-01-01

    A six-compartment ecosystem model defined by a simple nitrogen cycle is coupled with a general circulation model in the Black Sea so as to examine the seasonal variability of the ecohydrodynamics. Model results show that the annual cycle of the biological productivity of the whole basin is

  9. Dynamic Capabilities

    DEFF Research Database (Denmark)

    Grünbaum, Niels Nolsøe; Stenger, Marianne

    2013-01-01

    The findings reveal a positive relationship between dynamic capabilities and innovation performance in the case enterprises, as we would expect. It was, however, not possible to establish a positive relationship between innovation performance and profitability. Nor was there any positive...... relationship between dynamic capabilities and profitability....

  10. Capability ethics

    NARCIS (Netherlands)

    I.A.M. Robeyns (Ingrid)

    2012-01-01

    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological

  11. Burnup effect on nuclear fuel cycle cost using an equilibrium model

    International Nuclear Information System (INIS)

    Youn, S. R.; Kim, S. K.; Ko, W. I.

    2014-01-01

    The degree of fuel burnup is an important technical parameter to the nuclear fuel cycle, being sensitive and progressive to reduce the total volume of process flow materials and eventually cut the nuclear fuel cycle costs. This paper performed the sensitivity analysis of the total nuclear fuel cycle costs to changes in the technical parameter by varying the degree of burnups in each of the three nuclear fuel cycles using an equilibrium model. Important as burnup does, burnup effect was used among the cost drivers of fuel cycle, as the technical parameter. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once Through Cycle(PWR-OT), PWR-MOX Recycle, Pyro-SFR Recycle. These fuel cycles are most likely to be adopted in the foreseeable future. As a result of the sensitivity analysis on burnup effect of each three different nuclear fuel cycle costs, PWR-MOX turned out to be the most influenced by burnup changes. Next to PWR-MOX cycle, in the order of Pyro-SFR and PWR-OT cycle turned out to be influenced by the degree of burnup. In conclusion, the degree of burnup in the three nuclear fuel cycles can act as the controlling driver of nuclear fuel cycle costs due to a reduction in the volume of spent fuel leading better availability and capacity factors. However, the equilibrium model used in this paper has a limit that time-dependent material flow and cost calculation is impossible. Hence, comparative analysis of the results calculated by dynamic model hereafter and the calculation results using an equilibrium model should be proceed. Moving forward to the foreseeable future with increasing burnups, further studies regarding alternative material of high corrosion resistance fuel cladding for the overall

  12. Predictive digital peak current mode controller for DC-DC converters capable of operating over the full 0-100% duty cycle range

    DEFF Research Database (Denmark)

    Andersen, Karsten Holm; Nymand, Morten

    2017-01-01

    ) and discontinuous conduction mode (DCM) and supports high switching frequencies even with low cost A/D converters. The proposed controller is implemented in a Field Programmable Gate Array (FPGA) to control a 450 W buck converter and the experimental results verify the controller's capability to operate in the full...

  13. The Twin-Cycle Experiential Learning Model: Reconceptualising Kolb's Theory

    Science.gov (United States)

    Bergsteiner, Harald; Avery, Gayle C.

    2014-01-01

    Experiential learning styles remain popular despite criticisms about their validity, usefulness, fragmentation and poor definitions and categorisation. After examining four prominent models and building on Bergsteiner, Avery, and Neumann's suggestion of a dual cycle, this paper proposes a twin-cycle experiential learning model to overcome…

  14. A Simple Model to Teach Business Cycle Macroeconomics for Emerging Market and Developing Economies

    Science.gov (United States)

    Duncan, Roberto

    2015-01-01

    The canonical neoclassical model is insufficient to understand business cycle fluctuations in emerging market and developing economies. The author reformulates the model proposed by Aguiar and Gopinath (2007) in a simple setting that can be used to teach business cycle macroeconomics for emerging market and developing economies at the…

  15. A Life-Cycle Model of Outmigration and Economic Assimilation of Immigrants in Germany

    NARCIS (Netherlands)

    Bellemare, C.

    2004-01-01

    This paper estimates a structural dynamic life-cycle model of outmigration where, in each period, immigrants choose whether to work in the host country, not to work but remain in the host country, or outmigrate.The model incorporates several features of existing life-cycle theories of outmigration

  16. Advanced fuel cycle cost estimation model and its cost estimation results for three nuclear fuel cycles using a dynamic model in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungki, E-mail: sgkim1@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ko, Wonil [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Youn, Saerom; Gao, Ruxing [University of Science and Technology, 217 Gajungro, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Bang, Sungsig, E-mail: ssbang@kaist.ac.kr [Korea Advanced Institute of Science and Technology, Department of Business and Technology Management, 291 Deahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2015-11-15

    Highlights: • The nuclear fuel cycle cost using a new cost estimation model was analyzed. • The material flows of three nuclear fuel cycle options were calculated. • The generation cost of once-through was estimated to be 66.88 mills/kW h. • The generation cost of pyro-SFR recycling was estimated to be 78.06 mills/kW h. • The reactor cost was identified as the main cost driver of pyro-SFR recycling. - Abstract: The present study analyzes advanced nuclear fuel cycle cost estimation models such as the different discount rate model and its cost estimation results. To do so, an analysis of the nuclear fuel cycle cost of three options (direct disposal (once through), PWR–MOX (Mixed OXide fuel), and Pyro-SFR (Sodium-cooled Fast Reactor)) from the viewpoint of economic sense, focusing on the cost estimation model, was conducted using a dynamic model. From an analysis of the fuel cycle cost estimation results, it was found that some cost gap exists between the traditional same discount rate model and the advanced different discount rate model. However, this gap does not change the priority of the nuclear fuel cycle option from the viewpoint of economics. In addition, the fuel cycle costs of OT (Once-Through) and Pyro-SFR recycling based on the most likely value using a probabilistic cost estimation except for reactor costs were calculated to be 8.75 mills/kW h and 8.30 mills/kW h, respectively. Namely, the Pyro-SFR recycling option was more economical than the direct disposal option. However, if the reactor cost is considered, the economic sense in the generation cost between the two options (direct disposal vs. Pyro-SFR recycling) can be changed because of the high reactor cost of an SFR.

  17. Implementation of a dry process fuel cycle model into the DYMOND code

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Jeong, Chang Joon; Choi, Hang Bok

    2004-01-01

    For the analysis of a dry process fuel cycle, new modules were implemented into the fuel cycle analysis code DYMOND, which was developed by the Argonne National Laboratory. The modifications were made to the energy demand prediction model, a Canada Deuterium Uranium (CANDU) reactor, direct use of spent Pressurized Water Reactor (PWR) fuel in CANDU reactors (DUPIC) fuel cycle model, the fuel cycle calculation module, and the input/output modules. The performance of the modified DYMOND code was assessed for the postulated once-through fuel cycle models including both the PWR and CANDU reactor. This paper presents modifications of the DYMOND code and the results of sample calculations for the PWR once-through and DUPIC fuel cycles

  18. Comparison of air-standard rectangular cycles with different specific heat models

    International Nuclear Information System (INIS)

    Wang, Chao; Chen, Lingen; Ge, Yanlin; Sun, Fengrui

    2016-01-01

    Highlights: • Air-standard rectangular cycle models are built and investigated. • Finite-time thermodynamics is applied. • Different dissipation models and variable specific heats models are adopted. • Performance characteristics of different cycle models are compared. - Abstract: In this paper, performance comparison of air-standard rectangular cycles with constant specific heat (SH), linear variable SH and non-linear variable SH are conducted by using finite time thermodynamics. The power output and efficiency of each cycle model and the characteristic curves of power output versus compression ratio, efficiency versus compression ratio, as well as power output versus efficiency are obtained by taking heat transfer loss (HTL) and friction loss (FL) into account. The influences of HTL, FL and SH on cycle performance are analyzed by detailed numerical examples.

  19. Conceptual model for simulating the water cycle of the Copenhagen area, Denmark

    DEFF Research Database (Denmark)

    Jeppesen, Jan; Christensen, Steen; Ladekarl, Ulla Lyngs

    2008-01-01

    A complete water cycle model has been constructed for the Copenhagen area (966 km2) in order to study the development of the water cycle during the period 1850-2003. The urban water cycle is quantified in terms of root zone water balance, water supply, waste water, storm water, groundwater flow......, and the interactions between these systems. The water cycle is simulated by combining a root-zone model, a grid distribution tool, and a modified Modflow-2000 model using existing flow packages and a new sewer package that simulates the interactions between ground water and sewers (or rain drains). Long time series...... cycle. It is also the hope that the model will provide a better and more complete overview of the consequences of different water management scenarios. The model concept and selected simulation results is presented....

  20. Interictal spike frequency varies with ovarian cycle stage in a rat model of epilepsy.

    Science.gov (United States)

    D'Amour, James; Magagna-Poveda, Alejandra; Moretto, Jillian; Friedman, Daniel; LaFrancois, John J; Pearce, Patrice; Fenton, Andre A; MacLusky, Neil J; Scharfman, Helen E

    2015-07-01

    In catamenial epilepsy, seizures exhibit a cyclic pattern that parallels the menstrual cycle. Many studies suggest that catamenial seizures are caused by fluctuations in gonadal hormones during the menstrual cycle, but this has been difficult to study in rodent models of epilepsy because the ovarian cycle in rodents, called the estrous cycle, is disrupted by severe seizures. Thus, when epilepsy is severe, estrous cycles become irregular or stop. Therefore, we modified kainic acid (KA)- and pilocarpine-induced status epilepticus (SE) models of epilepsy so that seizures were rare for the first months after SE, and conducted video-EEG during this time. The results showed that interictal spikes (IIS) occurred intermittently. All rats with regular 4-day estrous cycles had IIS that waxed and waned with the estrous cycle. The association between the estrous cycle and IIS was strong: if the estrous cycles became irregular transiently, IIS frequency also became irregular, and when the estrous cycle resumed its 4-day pattern, IIS frequency did also. Furthermore, when rats were ovariectomized, or males were recorded, IIS frequency did not show a 4-day pattern. Systemic administration of an estrogen receptor antagonist stopped the estrous cycle transiently, accompanied by transient irregularity of the IIS pattern. Eventually all animals developed severe, frequent seizures and at that time both the estrous cycle and the IIS became irregular. We conclude that the estrous cycle entrains IIS in the modified KA and pilocarpine SE models of epilepsy. The data suggest that the ovarian cycle influences more aspects of epilepsy than seizure susceptibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The models of the life cycle of a computer system

    Directory of Open Access Journals (Sweden)

    Sorina-Carmen Luca

    2006-01-01

    Full Text Available The paper presents a comparative study on the patterns of the life cycle of a computer system. There are analyzed the advantages of each pattern and presented the graphic schemes that point out each stage and step in the evolution of a computer system. In the end the classifications of the methods of projecting the computer systems are discussed.

  2. Scientific Models Help Students Understand the Water Cycle

    Science.gov (United States)

    Forbes, Cory; Vo, Tina; Zangori, Laura; Schwarz, Christina

    2015-01-01

    The water cycle is a large, complex system that encompasses ideas across the K-12 science curriculum. By the time students leave fifth grade, they should understand "that a system is a group of related parts that make up a whole and can carry out functions its individual parts cannot" and be able to describe both components and processes…

  3. Multimodal Science Teachers' Discourse in Modeling the Water Cycle

    Science.gov (United States)

    Marquez, Conxita; Izquierdo, Merce; Espinet, Mariona

    2006-01-01

    The paper presents an intensive study of a micro-event aiming at the characterization of teacher's discourse from a multimodal communication perspective in a secondary school science classroom dealing with the topic of "water cycle." The research addresses the following questions: (a) What communicative modes are used by the teacher?, (b) what…

  4. Induction generator model in phase coordinates for fault ride-through capability studies of wind turbines

    DEFF Research Database (Denmark)

    Fajardo, L.A.; Iov, F.; Medina, R.J.A.

    2007-01-01

    A phase coordinates induction generator model with time varying electrical parameters as influenced by magnetic saturation and rotor deep bar effects, is presented in this paper. The model exhibits a per-phase formulation, uses standard data sheet for characterization of the electrical parameters...... are conducted in a representative sized system and results show aptness of the proposed model over other two models. This approach is also constructive to support grid code requirements....

  5. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey; Kelly, Kenneth

    2015-10-13

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

  6. Developing the Practising Model in Physical Education: An Expository Outline Focusing on Movement Capability

    Science.gov (United States)

    Barker, D. M.; Aggerholm, K.; Standal, O.; Larsson, H.

    2018-01-01

    Background: Physical educators currently have a number of pedagogical (or curricular) models at their disposal. While existing models have been well-received in educational contexts, these models seek to extend students' capacities within a limited number of "human activities" (Arendt, 1958). The activity of "human practising,"…

  7. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.).

    Science.gov (United States)

    Auinger, Hans-Jürgen; Schönleben, Manfred; Lehermeier, Christina; Schmidt, Malthe; Korzun, Viktor; Geiger, Hartwig H; Piepho, Hans-Peter; Gordillo, Andres; Wilde, Peer; Bauer, Eva; Schön, Chris-Carolin

    2016-11-01

    Genomic prediction accuracy can be significantly increased by model calibration across multiple breeding cycles as long as selection cycles are connected by common ancestors. In hybrid rye breeding, application of genome-based prediction is expected to increase selection gain because of long selection cycles in population improvement and development of hybrid components. Essentially two prediction scenarios arise: (1) prediction of the genetic value of lines from the same breeding cycle in which model training is performed and (2) prediction of lines from subsequent cycles. It is the latter from which a reduction in cycle length and consequently the strongest impact on selection gain is expected. We empirically investigated genome-based prediction of grain yield, plant height and thousand kernel weight within and across four selection cycles of a hybrid rye breeding program. Prediction performance was assessed using genomic and pedigree-based best linear unbiased prediction (GBLUP and PBLUP). A total of 1040 S 2 lines were genotyped with 16 k SNPs and each year testcrosses of 260 S 2 lines were phenotyped in seven or eight locations. The performance gap between GBLUP and PBLUP increased significantly for all traits when model calibration was performed on aggregated data from several cycles. Prediction accuracies obtained from cross-validation were in the order of 0.70 for all traits when data from all cycles (N CS  = 832) were used for model training and exceeded within-cycle accuracies in all cases. As long as selection cycles are connected by a sufficient number of common ancestors and prediction accuracy has not reached a plateau when increasing sample size, aggregating data from several preceding cycles is recommended for predicting genetic values in subsequent cycles despite decreasing relatedness over time.

  8. Bacteria in the greenhouse: Modeling the role of oceanic plankton in the global carbon cycle

    International Nuclear Information System (INIS)

    Ducklow, H.W.; Fasham, M.J.R.

    1992-01-01

    To plan effectively to deal with the greenhouse effect, a fundamental understanding is needed of the biogeochemical and physical machinery that cycles carbon in the global system; in addition, models are needed of the carbon cycle to project the effects of increasing carbon dioxide. In this chapter, a description is given of efforts to simulate the cycling of carbon and nitrogen in the upper ocean, concentrating on the model's treatment of marine phytoplankton, and what it reveals of their role in the biogeochemical cycling of carbon between the ocean and atmosphere. The focus is on the upper ocean because oceanic uptake appears to regulate the level of carbon dioxide in the atmosphere

  9. In-situ grown CNTs modified SiO2/C composites as anode with improved cycling stability and rate capability for lithium storage

    Science.gov (United States)

    Wang, Siqi; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; He, Fang; Ma, Liying

    2018-03-01

    Silica (SiO2) is regarded as one of the most promising anode materials for lithium ion batteries owing to its high theoretical specific capacity, relatively low operation potentials, abundance, environmental benignity and low cost. However, the low intrinsic electrical conductivity and large volume change of SiO2 during the discharge/charge cycles usually results in poor electrochemical performance. In this work, carbon nanotubes (CNTs) modified SiO2/C composites have been fabricated through an in-situ chemical vapor deposition method. The results show that the electrical conductivity of the SiO2/C/CNTs is visibly enhanced through a robust connection between the CNTs and SiO2/C particles. Compared with the pristine SiO2 and SiO2/C composites, the SiO2/C/CNTs composites display a high initial capacity of 1267.2 mA h g-1. Besides, an excellent cycling stability with the capacity of 315.7 mA h g-1 is achieved after 1000th cycles at a rate of 1 A g-1. The significantly improved electrochemical properties of the SiO2/C/CNTs composites are mainly attributed to the formation of three dimensional CNT networks in the SiO2/C substrate, which can not only shorten the Li-ion diffusion path but also relieve the volume change during the lithium-ion insertion/extraction processes.

  10. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  11. Gossiping Capabilities

    DEFF Research Database (Denmark)

    Mogensen, Martin; Frey, Davide; Guerraoui, Rachid

    Gossip-based protocols are now acknowledged as a sound basis to implement collaborative high-bandwidth content dissemination: content location is disseminated through gossip, the actual contents being subsequently pulled. In this paper, we present HEAP, HEterogeneity Aware gossip Protocol, where...... nodes dynamically adjust their contribution to gossip dissemination according to their capabilities. Using a continuous, itself gossip-based, approximation of relative capabilities, HEAP dynamically leverages the most capable nodes by (a) increasing their fanouts (while decreasing by the same proportion...... declare a high capability in order to augment their perceived quality without contributing accordingly. We evaluate HEAP in the context of a video streaming application on a 236 PlanetLab nodes testbed. Our results shows that HEAP improves the quality of the streaming by 25% over a standard gossip...

  12. Identifying extensions required by RUP (Rational Unified Process) to comply with CMM (Capability Maturity Model) levels 2 and 3

    OpenAIRE

    Manzoni, Lisandra Vielmo; Price, Roberto Tom

    2003-01-01

    This paper describes an assessment of the Rational Unified Process (RUP) based on the Capability Maturity Model (CMM). For each key practice (KP) identified in each key process area (KPA) of CMM levels 2 and 3, the Rational Unified Process was assessed to determine whether it satisfied the KP or not. For each KPA, the percentage of the key practices supported was calculated, and the results were tabulated. The report includes considerations about the coverage of each key process area, describ...

  13. Behavioural models for cycling - Case studies of the Copenhagen Region

    DEFF Research Database (Denmark)

    Halldórsdóttir, Katrín

    , and having a public transport monthly pass) and their household characteristics (i.e., number of cars and family composition). Finally, the results showed that the mode choice is also related to the trip characteristics (i.e., hilliness, temperature, trip purpose, urban characteristics, and parking...... such as car parking availability, park & ride opportunities, bicycle parking availability and type, and the possibility of carrying bicycles on trains. The choices between five alternative transport modes was analysed (i.e., walking, cycling, being a car driver, being a car passenger, and riding a bus) for 2...... of bicycle parking and the possibility of carrying bicycles on trains to the choice of cycling to the train station. Most importantly, the results showed that travellers’ have heterogeneous preferences with regard to travel time and perception of the alternatives, as well as their preference structure...

  14. Modelling carbon cycle in boreal wetlands with the Earth System Model ECHAM6/MPIOM

    Science.gov (United States)

    Getzieh, Robert J.; Brovkin, Victor; Kleinen, Thomas; Raivonen, Maarit; Sevanto, Sanna

    2010-05-01

    Wetlands of the northern high latitudes provide excellent conditions for peat accumulation and methanogenesis. High moisture and low O2 content in the soils lead to effective preservation of soil organic matter and methane emissions. Boreal Wetlands contain about 450 PgC and currently constitute a significant natural source of methane (CH4) even though they cover only 3% of the global land surface. While storing carbon and removing CO2 from the atmosphere, boreal wetlands have contributed to global cooling on millennial timescales. Undisturbed boreal wetlands are likely to continue functioning as a net carbon sink. On the other hand these carbon pools might be destabilised in future since they are sensitive to climate change. Given that processes of peat accumulation and decay are closely dependent on hydrology and temperature, this balance may be altered significantly in the future. As a result, northern wetlands could have a large impact on carbon cycle-climate feedback mechanisms and therefore play an important role in global carbon cycle dynamics. However global biogeochemistry models used for simulations of CO2 dynamics in past and future climates usually neglect carbon cycle in wetlands. We investigate the potential for positive or negative feedbacks to the climate system through fluxes of greenhouse gases (CO2 and CH4) with the general circulation model ECHAM6/MPIOM. A generic model of peat accumulation and decay has been developed and implemented into the land surface module JSBACH. We consider anaerobic biogeochemical processes which lead to formation of thick organic soils. Furthermore we consider specific wetland plant functional types (PFTs) in our model such as vascular plants (sedges) which impact methane transport and oxidation processes and non vascular plants (sphagnum mosses) which are promoting peat growth. As prototypes we use the modelling approaches by Frolking et al. (2001) as well as Walter & Heimann (2001) for the peat dynamics, and the

  15. Rules of thumb in life-cycle savings models

    OpenAIRE

    Rodepeter, Ralf; Winter, Joachim

    1999-01-01

    We analyze life-cycle savings decisions when households use simple heuristics, or rules of thumb, rather than solve the underlying intertemporal optimization problem. The decision rules we explore are a simple Keynesian rule where consumption follows income; a simple consumption rule where only a fraction of positive income shocks is saved; a rule that corresponds to the permanent income hypothesis; and two rules that have been found in experimental studies. Using these rules, we simulate lif...

  16. Modelling aging effects on a thermal cycling absorption process column

    Energy Technology Data Exchange (ETDEWEB)

    Laquerbe, C.; Contreras, S. [Commissariat a l' Energie Atomique - CEA/Valduc, F-21121 Is sur Tille (France); Baudouin, O. [ProSim SA, Stratege Bat. A, BP 27210, F-31672 Labege Cedex (France); Demoment, J. [Commissariat a l' Energie Atomique - CEA/Valduc, F-21121 Is sur Tille (France)

    2008-07-15

    Palladium coated on alumina is used in hydrogen separation systems operated at CEA/Valduc, and more particularly in Thermal Cycling Absorption Process columns. With such materials, tritium decay is known to induce aging effects which have direct side effects on hydrogen isotopes absorption isotherms. Furthermore in a TCAP column, aging occurs in an heterogeneous way. The possible impacts of these intrinsic material evolutions on the separation performances are investigated here through a numerical approach. (authors)

  17. Semantic Model of Variability and Capabilities of IoT Applications for Embedded Software Ecosystems

    DEFF Research Database (Denmark)

    Tomlein, Matus; Grønbæk, Kaj

    2016-01-01

    reasoning to resolve context requirements. We present the implications on the architecture of the ecosystem and the concepts defined in the model. Finally, we discuss the evaluation of the model and its benefits and liabilities. Although the approach results in more complex descriptions of applications, we...

  18. Automated modelling of complex refrigeration cycles through topological structure analysis

    International Nuclear Information System (INIS)

    Belman-Flores, J.M.; Riesco-Avila, J.M.; Gallegos-Munoz, A.; Navarro-Esbri, J.; Aceves, S.M.

    2009-01-01

    We have developed a computational method for analysis of refrigeration cycles. The method is well suited for automated analysis of complex refrigeration systems. The refrigerator is specified through a description of flows representing thermodynamic sates at system locations; components that modify the thermodynamic state of a flow; and controls that specify flow characteristics at selected points in the diagram. A system of equations is then established for the refrigerator, based on mass, energy and momentum balances for each of the system components. Controls specify the values of certain system variables, thereby reducing the number of unknowns. It is found that the system of equations for the refrigerator may contain a number of redundant or duplicate equations, and therefore further equations are necessary for a full characterization. The number of additional equations is related to the number of loops in the cycle, and this is calculated by a matrix-based topological method. The methodology is demonstrated through an analysis of a two-stage refrigeration cycle.

  19. Simulating the impacts of disturbances on forest carbon cycling in North America: Processes, data, models, and challenges

    Science.gov (United States)

    Liu, Shuguang; Bond-Lamberty, Ben; Hicke, Jeffrey A.; Vargas, Rodrigo; Zhao, Shuqing; Chen, Jing; Edburg, Steven L.; Hu, Yueming; Liu, Jinxun; McGuire, A. David; Xiao, Jingfeng; Keane, Robert; Yuan, Wenping; Tang, Jianwu; Luo, Yiqi; Potter, Christopher; Oeding, Jennifer

    2011-01-01

    Forest disturbances greatly alter the carbon cycle at various spatial and temporal scales. It is critical to understand disturbance regimes and their impacts to better quantify regional and global carbon dynamics. This review of the status and major challenges in representing the impacts of disturbances in modeling the carbon dynamics across North America revealed some major advances and challenges. First, significant advances have been made in representation, scaling, and characterization of disturbances that should be included in regional modeling efforts. Second, there is a need to develop effective and comprehensive process‐based procedures and algorithms to quantify the immediate and long‐term impacts of disturbances on ecosystem succession, soils, microclimate, and cycles of carbon, water, and nutrients. Third, our capability to simulate the occurrences and severity of disturbances is very limited. Fourth, scaling issues have rarely been addressed in continental scale model applications. It is not fully understood which finer scale processes and properties need to be scaled to coarser spatial and temporal scales. Fifth, there are inadequate databases on disturbances at the continental scale to support the quantification of their effects on the carbon balance in North America. Finally, procedures are needed to quantify the uncertainty of model inputs, model parameters, and model structures, and thus to estimate their impacts on overall model uncertainty. Working together, the scientific community interested in disturbance and its impacts can identify the most uncertain issues surrounding the role of disturbance in the North American carbon budget and develop working hypotheses to reduce the uncertainty

  20. Petroleum system modeling capabilities for use in oil and gas resource assessments

    Science.gov (United States)

    Higley, Debra K.; Lewan, Michael; Roberts, Laura N.R.; Henry, Mitchell E.

    2006-01-01

    Summary: Petroleum resource assessments are among the most highly visible and frequently cited scientific products of the U.S. Geological Survey. The assessments integrate diverse and extensive information on the geologic, geochemical, and petroleum production histories of provinces and regions of the United States and the World. Petroleum systems modeling incorporates these geoscience data in ways that strengthen the assessment process and results are presented visually and numerically. The purpose of this report is to outline the requirements, advantages, and limitations of one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) petroleum systems modeling that can be applied to the assessment of oil and gas resources. Primary focus is on the application of the Integrated Exploration Systems (IES) PetroMod? software because of familiarity with that program as well as the emphasis by the USGS Energy Program on standardizing to one modeling application. The Western Canada Sedimentary Basin (WCSB) is used to demonstrate the use of the PetroMod? software. Petroleum systems modeling quantitatively extends the 'total petroleum systems' (TPS) concept (Magoon and Dow, 1994; Magoon and Schmoker, 2000) that is employed in USGS resource assessments. Modeling allows integration of state-of-the-art analysis techniques, and provides the means to test and refine understanding of oil and gas generation, migration, and accumulation. Results of modeling are presented visually, numerically, and statistically, which enhances interpretation of the processes that affect TPSs through time. Modeling also provides a framework for the input and processing of many kinds of data essential in resource assessment, including (1) petroleum system elements such as reservoir, seal, and source rock intervals; (2) timing of depositional, hiatus, and erosional events and their influences on petroleum systems; (3) incorporation of vertical and lateral distribution and lithologies of

  1. Evaluation of the 3d Urban Modelling Capabilities in Geographical Information Systems

    Science.gov (United States)

    Dogru, A. O.; Seker, D. Z.

    2010-12-01

    Geographical Information System (GIS) Technology, which provides successful solutions to basic spatial problems, is currently widely used in 3 dimensional (3D) modeling of physical reality with its developing visualization tools. The modeling of large and complicated phenomenon is a challenging problem in terms of computer graphics currently in use. However, it is possible to visualize that phenomenon in 3D by using computer systems. 3D models are used in developing computer games, military training, urban planning, tourism and etc. The use of 3D models for planning and management of urban areas is very popular issue of city administrations. In this context, 3D City models are produced and used for various purposes. However the requirements of the models vary depending on the type and scope of the application. While a high level visualization, where photorealistic visualization techniques are widely used, is required for touristy and recreational purposes, an abstract visualization of the physical reality is generally sufficient for the communication of the thematic information. The visual variables, which are the principle components of cartographic visualization, such as: color, shape, pattern, orientation, size, position, and saturation are used for communicating the thematic information. These kinds of 3D city models are called as abstract models. Standardization of technologies used for 3D modeling is now available by the use of CityGML. CityGML implements several novel concepts to support interoperability, consistency and functionality. For example it supports different Levels-of-Detail (LoD), which may arise from independent data collection processes and are used for efficient visualization and efficient data analysis. In one CityGML data set, the same object may be represented in different LoD simultaneously, enabling the analysis and visualization of the same object with regard to different degrees of resolution. Furthermore, two CityGML data sets

  2. Experimental modeling of weld thermal cycle of the heat affected zone (HAZ

    Directory of Open Access Journals (Sweden)

    J. Kulhánek

    2016-10-01

    Full Text Available Contribution deals with experimental modeling of quick thermal cycles of metal specimens. In the introduction of contribution will be presented measured graphs of thermal cycle of heat affected zone (HAZ of weld. Next will be presented experimental simulation of measured thermal cycle on the standard specimens, useable for material testing. This approach makes possible to create material structures of heat affected zone of weld, big enough for standard material testing.

  3. Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities

    Directory of Open Access Journals (Sweden)

    F. Løvholt

    2013-06-01

    Full Text Available Tsunamis induced by rock slides plunging into fjords constitute a severe threat to local coastal communities. The rock slide impact may give rise to highly non-linear waves in the near field, and because the wave lengths are relatively short, frequency dispersion comes into play. Fjord systems are rugged with steep slopes, and modeling non-linear dispersive waves in this environment with simultaneous run-up is demanding. We have run an operational Boussinesq-type TVD (total variation diminishing model using different run-up formulations. Two different tests are considered, inundation on steep slopes and propagation in a trapezoidal channel. In addition, a set of Lagrangian models serves as reference models. Demanding test cases with solitary waves with amplitudes ranging from 0.1 to 0.5 were applied, and slopes were ranging from 10 to 50°. Different run-up formulations yielded clearly different accuracy and stability, and only some provided similar accuracy as the reference models. The test cases revealed that the model was prone to instabilities for large non-linearity and fine resolution. Some of the instabilities were linked with false breaking during the first positive inundation, which was not observed for the reference models. None of the models were able to handle the bore forming during drawdown, however. The instabilities are linked to short-crested undulations on the grid scale, and appear on fine resolution during inundation. As a consequence, convergence was not always obtained. It is reason to believe that the instability may be a general problem for Boussinesq models in fjords.

  4. Initializing carbon cycle predictions from the Community Land Model by assimilating global biomass observations

    Science.gov (United States)

    Fox, A. M.; Hoar, T. J.; Smith, W. K.; Moore, D. J.

    2017-12-01

    The locations and longevity of terrestrial carbon sinks remain uncertain, however it is clear that in order to predict long-term climate changes the role of the biosphere in surface energy and carbon balance must be understood and incorporated into earth system models (ESMs). Aboveground biomass, the amount of carbon stored in vegetation, is a key component of the terrestrial carbon cycle, representing the balance of uptake through gross primary productivity (GPP), losses from respiration, senescence and mortality over hundreds of years. The best predictions of current and future land-atmosphere fluxes are likely from the integration of process-based knowledge contained in models and information from observations of changes in carbon stocks using data assimilation (DA). By exploiting long times series, it is possible to accurately detect variability and change in carbon cycle dynamics through monitoring ecosystem states, for example biomass derived from vegetation optical depth (VOD), and use this information to initialize models before making predictions. To make maximum use of information about the current state of global ecosystems when using models we have developed a system that combines the Community Land Model (CLM) with the Data Assimilation Research Testbed (DART), a community tool for ensemble DA. This DA system is highly innovative in its complexity, completeness and capabilities. Here we described a series of activities, using both Observation System Simulation Experiments (OSSEs) and real observations, that have allowed us to quantify the potential impact of assimilating VOD data into CLM-DART on future land-atmosphere fluxes. VOD data are particularly suitable to use in this activity due to their long temporal coverage and appropriate scale when combined with CLM, but their absolute values rely on many assumptions. Therefore, we have had to assess the implications of the VOD retrieval algorithms, with an emphasis on detecting uncertainty due to

  5. Modeling the Multinationality and Other Socio-Political Aspects of the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Nguyen, Viet Phuong; Yim, Man Sung

    2016-01-01

    Nuclear fuel cycle is a complex process with numerous steps, which are influenced by both engineering and socio-economic factors. Therefore, as an interdisciplinary tool developed to study the dynamic complexity of a system, system dynamics has been used to simulate nuclear fuel cycle and to support the development of nuclear policies. A number of studies have been done in this area providing comprehensive view of nuclear fuel cycle in respect to the energy scenarios, material flows, and pricing mechanism. However, the effect of other socio-economic aspects like public acceptance, proliferation risks, or the transboundary nature of the nuclear fuel cycle have not been well illustrated by those previous researches. In order to inform decision makers of the suitability and sustainability of any nuclear fuel cycle option, a modeling tool has to adequately cover such issues. A system dynamics model of nuclear fuel cycle was developed in order to examine the trans-boundary and domestic effects related to the socio-economic aspect of the fuel cycle. The significance and coefficient of the socio-economic factors were determined using statistical analysis of historical data. Preliminary results show the definitive effect of such factors on the net benefit of the nuclear fuel cycle and its expansion in relation with the nuclear cooperation between the service provider and the end-user. Thus, future models need to incorporate such features in order to provide a more comprehensive look of the fuel cycle

  6. Modeling the Multinationality and Other Socio-Political Aspects of the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Viet Phuong; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Nuclear fuel cycle is a complex process with numerous steps, which are influenced by both engineering and socio-economic factors. Therefore, as an interdisciplinary tool developed to study the dynamic complexity of a system, system dynamics has been used to simulate nuclear fuel cycle and to support the development of nuclear policies. A number of studies have been done in this area providing comprehensive view of nuclear fuel cycle in respect to the energy scenarios, material flows, and pricing mechanism. However, the effect of other socio-economic aspects like public acceptance, proliferation risks, or the transboundary nature of the nuclear fuel cycle have not been well illustrated by those previous researches. In order to inform decision makers of the suitability and sustainability of any nuclear fuel cycle option, a modeling tool has to adequately cover such issues. A system dynamics model of nuclear fuel cycle was developed in order to examine the trans-boundary and domestic effects related to the socio-economic aspect of the fuel cycle. The significance and coefficient of the socio-economic factors were determined using statistical analysis of historical data. Preliminary results show the definitive effect of such factors on the net benefit of the nuclear fuel cycle and its expansion in relation with the nuclear cooperation between the service provider and the end-user. Thus, future models need to incorporate such features in order to provide a more comprehensive look of the fuel cycle.

  7. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application

    Directory of Open Access Journals (Sweden)

    A. Elshorbagy

    2010-10-01

    Full Text Available In this second part of the two-part paper, the data driven modeling (DDM experiment, presented and explained in the first part, is implemented. Inputs for the five case studies (half-hourly actual evapotranspiration, daily peat soil moisture, daily till soil moisture, and two daily rainfall-runoff datasets are identified, either based on previous studies or using the mutual information content. Twelve groups (realizations were randomly generated from each dataset by randomly sampling without replacement from the original dataset. Neural networks (ANNs, genetic programming (GP, evolutionary polynomial regression (EPR, Support vector machines (SVM, M5 model trees (M5, K-nearest neighbors (K-nn, and multiple linear regression (MLR techniques are implemented and applied to each of the 12 realizations of each case study. The predictive accuracy and uncertainties of the various techniques are assessed using multiple average overall error measures, scatter plots, frequency distribution of model residuals, and the deterioration rate of prediction performance during the testing phase. Gamma test is used as a guide to assist in selecting the appropriate modeling technique. Unlike two nonlinear soil moisture case studies, the results of the experiment conducted in this research study show that ANNs were a sub-optimal choice for the actual evapotranspiration and the two rainfall-runoff case studies. GP is the most successful technique due to its ability to adapt the model complexity to the modeled data. EPR performance could be close to GP with datasets that are more linear than nonlinear. SVM is sensitive to the kernel choice and if appropriately selected, the performance of SVM can improve. M5 performs very well with linear and semi linear data, which cover wide range of hydrological situations. In highly nonlinear case studies, ANNs, K-nn, and GP could be more successful than other modeling techniques. K-nn is also successful in linear situations, and it

  8. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application

    Science.gov (United States)

    Elshorbagy, A.; Corzo, G.; Srinivasulu, S.; Solomatine, D. P.

    2010-10-01

    In this second part of the two-part paper, the data driven modeling (DDM) experiment, presented and explained in the first part, is implemented. Inputs for the five case studies (half-hourly actual evapotranspiration, daily peat soil moisture, daily till soil moisture, and two daily rainfall-runoff datasets) are identified, either based on previous studies or using the mutual information content. Twelve groups (realizations) were randomly generated from each dataset by randomly sampling without replacement from the original dataset. Neural networks (ANNs), genetic programming (GP), evolutionary polynomial regression (EPR), Support vector machines (SVM), M5 model trees (M5), K-nearest neighbors (K-nn), and multiple linear regression (MLR) techniques are implemented and applied to each of the 12 realizations of each case study. The predictive accuracy and uncertainties of the various techniques are assessed using multiple average overall error measures, scatter plots, frequency distribution of model residuals, and the deterioration rate of prediction performance during the testing phase. Gamma test is used as a guide to assist in selecting the appropriate modeling technique. Unlike two nonlinear soil moisture case studies, the results of the experiment conducted in this research study show that ANNs were a sub-optimal choice for the actual evapotranspiration and the two rainfall-runoff case studies. GP is the most successful technique due to its ability to adapt the model complexity to the modeled data. EPR performance could be close to GP with datasets that are more linear than nonlinear. SVM is sensitive to the kernel choice and if appropriately selected, the performance of SVM can improve. M5 performs very well with linear and semi linear data, which cover wide range of hydrological situations. In highly nonlinear case studies, ANNs, K-nn, and GP could be more successful than other modeling techniques. K-nn is also successful in linear situations, and it should

  9. Using Marketing Capability Maturity Model to Measure Marketing Processes at Iran Transfo Corporation

    OpenAIRE

    Arman Ahmadizad; Seyyed Mojtaba Akhavan Hejazi; Amirhossein Sabourtinat

    2011-01-01

    Abstract In this study marketing maturity model has been used in Iran Transfo Corporation. For this purpose, the five levels process maturity model has been applied. The statistical population includes managers, supervisors and experts of marketing and sales at Iran Transfo Corporation and due to its small size, the entire population has been studied as the sample of research. 11 questionnaires have been used for data collection its validity has been confirmed by content validity analysis ...

  10. Becker meets Ricardo: A social and cognitive skills model of human capabilities

    OpenAIRE

    Xianwen Shi; Ronald Wolthoff; Aloysius Siow; Robert McCann

    2012-01-01

    This paper studies an equilibrium model of social and cognitive skills interactions in school, work and marriage. The model uses a common team production function in each sector which integrates the complementarity concerns of Becker with the task assigment and comparative advantage concerns of Ricardo. The theory delivers full task specialization in the labor and education markets, incomplete task specialization in marriage. It rationalizes many to one matching, a common feature in labor mar...

  11. Comparison of Fuzzy AHP Buckley and ANP Models in Forestry Capability Evaluation (Case Study: Behbahan City Fringe

    Directory of Open Access Journals (Sweden)

    V. Rahimi

    2015-12-01

    Full Text Available The area of Zagros forests is continuously in danger of destruction. Therefore, the remaining forests should be carefully managed based on ecological capability evaluation. In fact, land evaluation includes prediction or assessment of land quality for a special land use with regard to production, vulnerability and management requirements. In this research, we studied the ecological capability of Behbahan city fringe for forestry land use. After the basic studies were completed and the thematic maps such as soil criteria, climate, physiography, vegetation and bedrock were prepared, the fuzzy multi-criteria decision-making methods of Fuzzy AHP Buckley and ANP were used to standardize and determine the weights of criteria. Finally, the ecological model of the region’s capability was generated to prioritize forestry land use and prepare the final map of evaluation using WLC model in seven classes. The results showed that in ANP method, 55.58% of the area is suitable for forestry land use which is more consistent with the reality, while in the Fuzzy AHP method, 95.23% of the area was found suitable. Finally, it was concluded that the ANP method shows more flexibility and ability to determine suitable areas for forestry land use in the study area.

  12. A Simplified Ab Initio Cosmic-ray Modulation Model with Simulated Time Dependence and Predictive Capability

    Science.gov (United States)

    Moloto, K. D.; Engelbrecht, N. E.; Burger, R. A.

    2018-06-01

    A simplified ab initio approach is followed to model cosmic-ray proton modulation, using a steady-state three-dimensional stochastic solver of the Parker transport equation that simulates some effects of time dependence. Standard diffusion coefficients based on Quasilinear Theory and Nonlinear Guiding Center Theory are employed. The spatial and temporal dependences of the various turbulence quantities required as inputs for the diffusion, as well as the turbulence-reduced drift coefficients, follow from parametric fits to results from a turbulence transport model as well as from spacecraft observations of these turbulence quantities. Effective values are used for the solar wind speed, magnetic field magnitude, and tilt angle in the modulation model to simulate temporal effects due to changes in the large-scale heliospheric plasma. The unusually high cosmic-ray intensities observed during the 2009 solar minimum follow naturally from the current model for most of the energies considered. This demonstrates that changes in turbulence contribute significantly to the high intensities during that solar minimum. We also discuss and illustrate how this model can be used to predict future cosmic-ray intensities, and comment on the reliability of such predictions.

  13. Computable General Equilibrium Model Fiscal Year 2013 Capability Development Report - April 2014

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National Infrastructure Simulation and Analysis Center (NISAC); Rivera, Michael K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National Infrastructure Simulation and Analysis Center (NISAC); Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National Infrastructure Simulation and Analysis Center (NISAC)

    2014-04-01

    This report documents progress made on continued developments of the National Infrastructure Simulation and Analysis Center (NISAC) Computable General Equilibrium Model (NCGEM), developed in fiscal year 2012. In fiscal year 2013, NISAC the treatment of the labor market and tests performed with the model to examine the properties of the solutions computed by the model. To examine these, developers conducted a series of 20 simulations for 20 U.S. States. Each of these simulations compared an economic baseline simulation with an alternative simulation that assumed a 20-percent reduction in overall factor productivity in the manufacturing industries of each State. Differences in the simulation results between the baseline and alternative simulations capture the economic impact of the reduction in factor productivity. While not every State is affected in precisely the same way, the reduction in manufacturing industry productivity negatively affects the manufacturing industries in each State to an extent proportional to the reduction in overall factor productivity. Moreover, overall economic activity decreases when manufacturing sector productivity is reduced. Developers ran two additional simulations: (1) a version of the model for the State of Michigan, with manufacturing divided into two sub-industries (automobile and other vehicle manufacturing as one sub-industry and the rest of manufacturing as the other subindustry); and (2) a version of the model for the United States, divided into 30 industries. NISAC conducted these simulations to illustrate the flexibility of industry definitions in NCGEM and to examine the simulation properties of in more detail.

  14. Cycling empirical antibiotic therapy in hospitals: meta-analysis and models.

    Directory of Open Access Journals (Sweden)

    Pia Abel zur Wiesch

    2014-06-01

    Full Text Available The rise of resistance together with the shortage of new broad-spectrum antibiotics underlines the urgency of optimizing the use of available drugs to minimize disease burden. Theoretical studies suggest that coordinating empirical usage of antibiotics in a hospital ward can contain the spread of resistance. However, theoretical and clinical studies came to different conclusions regarding the usefulness of rotating first-line therapy (cycling. Here, we performed a quantitative pathogen-specific meta-analysis of clinical studies comparing cycling to standard practice. We searched PubMed and Google Scholar and identified 46 clinical studies addressing the effect of cycling on nosocomial infections, of which 11 met our selection criteria. We employed a method for multivariate meta-analysis using incidence rates as endpoints and find that cycling reduced the incidence rate/1000 patient days of both total infections by 4.95 [9.43-0.48] and resistant infections by 7.2 [14.00-0.44]. This positive effect was observed in most pathogens despite a large variance between individual species. Our findings remain robust in uni- and multivariate metaregressions. We used theoretical models that reflect various infections and hospital settings to compare cycling to random assignment to different drugs (mixing. We make the realistic assumption that therapy is changed when first line treatment is ineffective, which we call "adjustable cycling/mixing". In concordance with earlier theoretical studies, we find that in strict regimens, cycling is detrimental. However, in adjustable regimens single resistance is suppressed and cycling is successful in most settings. Both a meta-regression and our theoretical model indicate that "adjustable cycling" is especially useful to suppress emergence of multiple resistance. While our model predicts that cycling periods of one month perform well, we expect that too long cycling periods are detrimental. Our results suggest that

  15. Transient Mathematical Modeling for Liquid Rocket Engine Systems: Methods, Capabilities, and Experience

    Science.gov (United States)

    Seymour, David C.; Martin, Michael A.; Nguyen, Huy H.; Greene, William D.

    2005-01-01

    The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.

  16. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model

    Directory of Open Access Journals (Sweden)

    O. Gagliardini

    2013-08-01

    Full Text Available The Fourth IPCC Assessment Report concluded that ice sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice flow models, and as a result a significant number of new ice sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger-scale problems, earning the status of an ice sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations, for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the ice, the strain rate or stress, can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.

  17. Implications of a More Comprehensive Nitrogen Cycle in a Global Biogeochemical Ocean Model

    Science.gov (United States)

    Six, K. D.; Ilyina, T.

    2016-02-01

    Nitrogen plays a crucial role for nearly all living organisms in the Earth system. Changes in the marine nitrogen cycle not only alter the marine biota, but will also have an impact on the marine carbon cycle and, in turn, on climate due to the close coupling of the carbon-nitrogen cycle. The understanding of processes and controls of the marine nitrogen cycle is therefore a prerequisite to reduce uncertainties in the prediction of future climate. Nevertheless, most ocean biogeochemical components of modern Earth system models have a rather simplistic representation of marine N-cycle mainly focusing on nitrate. Here we present results of the HAMburg Ocean Carbon Cycle model (HAMOCC) as part of the MPI-ESM which was extended by a prognostic representation of ammonium and nitrite to resolve important processes of the marine N-cycle such as nitrification and anaerobic ammonium oxidation (anammox). Additionally, we updated the production of nitrous oxide, an important greenhouse gas, allowing for two sources from oxidation of ammonium (nitrification) and from reduction of nitrite (nitrifier-denitrification) at low oxygen concentrations. Besides an extended model data comparison we discuss the following aspects of the N-cycle by model means: (1) contribution of anammox to the loss of fixed nitrogen, and (2) production and emission of marine nitrous oxide.

  18. Including an ocean carbon cycle model into iLOVECLIM (v1.0)

    NARCIS (Netherlands)

    Bouttes, N.; Roche, D.M.V.A.P.; Mariotti, V.; Bopp, L.

    2015-01-01

    The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a

  19. A unified model of combined energy systems with different cycle modes and its optimum performance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yue [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); College of Information Science and Engineering, Huaqiao University, Quanzhou 362021 (China); Hu, Weiqiang [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Ou Congjie [College of Information Science and Engineering, Huaqiao University, Quanzhou 362021 (China); Chen Jincan [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China)], E-mail: jcchen@xmu.edu.cn

    2009-06-15

    A unified model is presented for a class of combined energy systems, in which the systems mainly consist of a heat engine, a combustor and a counter-flow heat exchanger and the heat engine in the systems may have different thermodynamic cycle modes such as the Brayton cycle, Carnot cycle, Stirling cycle, Ericsson cycle, and so on. Not only the irreversibilities of the heat leak and finite-rate heat transfer but also the different cycle modes of the heat engine are considered in the model. On the basis of Newton's law, expressions for the overall efficiency and power output of the combined energy system with an irreversible Brayton cycle are derived. The maximum overall efficiency and power output and other relevant parameters are calculated. The general characteristic curves of the system are presented for some given parameters. Several interesting cases are discussed in detail. The results obtained here are very general and significant and can be used to discuss the optimal performance characteristics of a class of combined energy systems with different cycle modes. Moreover, it is significant to point out that not only the important conclusions obtained in Bejan's first combustor model and Peterson's general combustion driven model but also the optimal performance of a class of solar-driven heat engine systems can be directly derived from the present paper under some limit conditions.

  20. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models

    Science.gov (United States)

    W. R. L. Anderegg; C. Schwalm; F. Biondi; J. J. Camarero; G. Koch; M. Litvak; K. Ogle; J. D. Shaw; E. Shevliakova; A. P. Williams; A. Wolf; E. Ziaco; S. Pacala

    2015-01-01

    The impacts of climate extremes on terrestrial ecosystems are poorly understood but important for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with the understanding of basic plant physiology. We examined the recovery of...

  1. A unified model of combined energy systems with different cycle modes and its optimum performance characteristics

    International Nuclear Information System (INIS)

    Zhang Yue; Hu, Weiqiang; Ou Congjie; Chen Jincan

    2009-01-01

    A unified model is presented for a class of combined energy systems, in which the systems mainly consist of a heat engine, a combustor and a counter-flow heat exchanger and the heat engine in the systems may have different thermodynamic cycle modes such as the Brayton cycle, Carnot cycle, Stirling cycle, Ericsson cycle, and so on. Not only the irreversibilities of the heat leak and finite-rate heat transfer but also the different cycle modes of the heat engine are considered in the model. On the basis of Newton's law, expressions for the overall efficiency and power output of the combined energy system with an irreversible Brayton cycle are derived. The maximum overall efficiency and power output and other relevant parameters are calculated. The general characteristic curves of the system are presented for some given parameters. Several interesting cases are discussed in detail. The results obtained here are very general and significant and can be used to discuss the optimal performance characteristics of a class of combined energy systems with different cycle modes. Moreover, it is significant to point out that not only the important conclusions obtained in Bejan's first combustor model and Peterson's general combustion driven model but also the optimal performance of a class of solar-driven heat engine systems can be directly derived from the present paper under some limit conditions

  2. Oscillating in synchrony with a metronome: serial dependence, limit cycle dynamics, and modeling.

    Science.gov (United States)

    Torre, Kjerstin; Balasubramaniam, Ramesh; Delignières, Didier

    2010-07-01

    We analyzed serial dependencies in periods and asynchronies collected during oscillations performed in synchrony with a metronome. Results showed that asynchronies contain 1/f fluctuations, and the series of periods contain antipersistent dependence. The analysis of the phase portrait revealed a specific asymmetry induced by synchronization. We propose a hybrid limit cycle model including a cycle-dependent stiffness parameter provided with fractal properties, and a parametric driving function based on velocity. This model accounts for most experimentally evidenced statistical features, including serial dependence and limit cycle dynamics. We discuss the results and modeling choices within the framework of event-based and emergent timing.

  3. The stability problem in the Kaldor-Kalecki business cycle model

    International Nuclear Information System (INIS)

    SzydIowski, Marek; Krawiec, Adam

    2005-01-01

    We consider the Kaldor-Kalecki model of the business cycle which is the modified Kaldor model with the Kalecki time delay in investment. The model is formulated in terms of a second-order nonlinear delay differential equation with a negative feedback. We investigate the problem of stability of cycles caused by retarded action. The method of a centre manifold is used to find the conditions for the Hopf bifurcation. The conditions for stability of limit cycles on the centre manifold is given

  4. Oyster Creek cycle 10 nodal model parameter optimization study using PSMS

    International Nuclear Information System (INIS)

    Dougher, J.D.

    1987-01-01

    The power shape monitoring system (PSMS) is an on-line core monitoring system that uses a three-dimensional nodal code (NODE-B) to perform nodal power calculations and compute thermal margins. The PSMS contains a parameter optimization function that improves the ability of NODE-B to accurately monitor core power distributions. This functions iterates on the model normalization parameters (albedos and mixing factors) to obtain the best agreement between predicted and measured traversing in-core probe (TIP) reading on a statepoint-by-statepoint basis. Following several statepoint optimization runs, an average set of optimized normalization parameters can be determined and can be implemented into the current or subsequent cycle core model for on-line core monitoring. A statistical analysis of 19 high-power steady-state state-points throughout Oyster Creek cycle 10 operation has shown a consistently poor virgin model performance. The normalization parameters used in the cycle 10 NODE-B model were based on a cycle 8 study, which evaluated only Exxon fuel types. The introduction of General Electric (GE) fuel into cycle 10 (172 assemblies) was a significant fuel/core design change that could have altered the optimum set of normalization parameters. Based on the need to evaluate a potential change in the model normalization parameters for cycle 11 and in an attempt to account for the poor cycle 10 model performance, a parameter optimization study was performed

  5. Soil carbon model alternatives for ECHAM5/JSBACH climate model: Evaluation and impacts on global carbon cycle estimates

    DEFF Research Database (Denmark)

    Thum, T.; Raisanen, P.; Sevanto, S.

    2011-01-01

    The response of soil organic carbon to climate change might lead to significant feedbacks affecting global warming. This response can be studied by coupled climate-carbon cycle models but so far the description of soil organic carbon cycle in these models has been quite simple. In this work we used...... the coupled climate-carbon cycle model ECHAM5/JSBACH (European Center/Hamburg Model 5/Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg) with two different soil carbon modules, namely (1) the original soil carbon model of JSBACH called CBALANCE and (2) a new soil carbon model Yasso07, to study...... the interaction between climate variability and soil organic carbon. Equivalent ECHAM5/JSBACH simulations were conducted using both soil carbon models, with freely varying atmospheric CO2 for the last 30 years (1977-2006). In this study, anthropogenic CO2 emissions and ocean carbon cycle were excluded. The new...

  6. Seasonal Characteristics of Widespread Ozone Pollution in China and India: Current Model Capabilities and Source Attributions

    Science.gov (United States)

    Gao, M.; Song, S.; Beig, G.; Zhang, H.; Hu, J.; Ying, Q.; McElroy, M. B.

    2017-12-01

    Fast urbanization and industrialization in China and India have led to severe ozone pollution, threatening public health in these densely populated countries. We show the spatial and seasonal characteristics of ozone concentrations using nation-wide observations for these two countries in 2013. We used the Weather Research and Forecasting model coupled to chemistry (WRF-Chem) to conduct one-year simulations and to evaluate how current models capture the important photochemical processes using the exhaustive available datasets in China and India, including surface measurements, ozonesonde data and satellite retrievals. We also employed the factor separation approach to distinguish the contributions of different sectors to ozone during different seasons. The back trajectory model FLEXPART was applied to investigate the role of transport in highly polluted regions (e.g., North China Plain, Yangtze River delta, and Pearl River Delta) during different seasons. Preliminary results indicate that the WRF-Chem model provides a satisfactory representation of the temporal and spatial variations of ozone for both China and India. The factor separation approach offers valuable insights into relevant sources of ozone for both countries providing valuable guidance for policy options designed to mitigate the related problem.

  7. Effect of radar rainfall time resolution on the predictive capability of a distributed hydrologic model

    Science.gov (United States)

    Atencia, A.; Llasat, M. C.; Garrote, L.; Mediero, L.

    2010-10-01

    The performance of distributed hydrological models depends on the resolution, both spatial and temporal, of the rainfall surface data introduced. The estimation of quantitative precipitation from meteorological radar or satellite can improve hydrological model results, thanks to an indirect estimation at higher spatial and temporal resolution. In this work, composed radar data from a network of three C-band radars, with 6-minutal temporal and 2 × 2 km2 spatial resolution, provided by the Catalan Meteorological Service, is used to feed the RIBS distributed hydrological model. A Window Probability Matching Method (gage-adjustment method) is applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation in both convective and stratiform Z/R relations used over Catalonia. Once the rainfall field has been adequately obtained, an advection correction, based on cross-correlation between two consecutive images, was introduced to get several time resolutions from 1 min to 30 min. Each different resolution is treated as an independent event, resulting in a probable range of input rainfall data. This ensemble of rainfall data is used, together with other sources of uncertainty, such as the initial basin state or the accuracy of discharge measurements, to calibrate the RIBS model using probabilistic methodology. A sensitivity analysis of time resolutions was implemented by comparing the various results with real values from stream-flow measurement stations.

  8. Assessing the capability of CORDEX models in simulating onset of rainfall in West Africa

    Science.gov (United States)

    Mounkaila, Moussa S.; Abiodun, Babatunde J.; `Bayo Omotosho, J.

    2015-01-01

    Reliable forecasts of rainfall-onset dates (RODs) are crucial for agricultural planning and food security in West Africa. This study evaluates the ability of nine CORDEX regional climate models (RCMs: ARPEGE, CRCM5, RACMO, RCA35, REMO, RegCM3, PRECIS, CCLM and WRF) in simulating RODs over the region. Four definitions are used to compute RODs, and two observation datasets (GPCP and TRMM) are used in the model evaluation. The evaluation considers how well the RCMs, driven by ERA-Interim reanalysis (ERAIN), simulate the observed mean, standard deviation and inter-annual variability of RODs over West Africa. It also investigates how well the models link RODs with the northward movement of the monsoon system over the region. The model performances are compared to that of the driving reanalysis—ERAIN. Observations show that the mean RODs in West Africa have a zonal distribution, and the dates increase from the Guinea coast northward. ERAIN fails to reproduce the spatial distribution of the RODs as observed. The performance of some RCMs in simulating the RODs depends on the ROD definition used. For instance, ARPEGE, RACMO, PRECIS and CCLM produce a better ROD distribution than that of ERAIN when three of the ROD definitions are used, but give a worse ROD distribution than that of ERAIN when the fourth definition is used. However, regardless of the definition used, CCRM5, RCA35, REMO, RegCM3 and WRF show a remarkable improvement over ERAIN. The study shows that the ability of the RCMs in simulating RODs over West Africa strongly depends on how well the models reproduce the northward movement of the monsoon system and the associated features. The results show that there are some differences in the RODs obtained between the two observation datasets and RCMs, and the differences are magnified by differences in the ROD definitions. However, the study shows that most CORDEX RCMs have remarkable skills in predicting the RODs in West Africa.

  9. Conceptual Model-based Systems Biology: mapping knowledge and discovering gaps in the mRNA transcription cycle.

    Directory of Open Access Journals (Sweden)

    Judith Somekh

    2012-12-01

    Full Text Available We propose a Conceptual Model-based Systems Biology framework for qualitative modeling, executing, and eliciting knowledge gaps in molecular biology systems. The framework is an adaptation of Object-Process Methodology (OPM, a graphical and textual executable modeling language. OPM enables concurrent representation of the system's structure-the objects that comprise the system, and behavior-how processes transform objects over time. Applying a top-down approach of recursively zooming into processes, we model a case in point-the mRNA transcription cycle. Starting with this high level cell function, we model increasingly detailed processes along with participating objects. Our modeling approach is capable of modeling molecular processes such as complex formation, localization and trafficking, molecular binding, enzymatic stimulation, and environmental intervention. At the lowest level, similar to the Gene Ontology, all biological processes boil down to three basic molecular functions: catalysis, binding/dissociation, and transporting. During modeling and execution of the mRNA transcription model, we discovered knowledge gaps, which we present and classify into various types. We also show how model execution enhances a coherent model construction. Identification and pinpointing knowledge gaps is an important feature of the framework, as it suggests where research should focus and whether conjectures about uncertain mechanisms fit into the already verified model.

  10. A data integration approach for cell cycle analysis oriented to model simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Mosca Ettore

    2007-08-01

    Full Text Available Abstract Background The cell cycle is one of the biological processes most frequently investigated in systems biology studies and it involves the knowledge of a large number of genes and networks of protein interactions. A deep knowledge of the molecular aspect of this biological process can contribute to making cancer research more accurate and innovative. In this context the mathematical modelling of the cell cycle has a relevant role to quantify the behaviour of each component of the systems. The mathematical modelling of a biological process such as the cell cycle allows a systemic description that helps to highlight some features such as emergent properties which could be hidden when the analysis is performed only from a reductionism point of view. Moreover, in modelling complex systems, a complete annotation of all the components is equally important to understand the interaction mechanism inside the network: for this reason data integration of the model components has high relevance in systems biology studies. Description In this work, we present a resource, the Cell Cycle Database, intended to support systems biology analysis on the Cell Cycle process, based on two organisms, yeast and mammalian. The database integrates information about genes and proteins involved in the cell cycle process, stores complete models of the interaction networks and allows the mathematical simulation over time of the quantitative behaviour of each component. To accomplish this task, we developed, a web interface for browsing information related to cell cycle genes, proteins and mathematical models. In this framework, we have implemented a pipeline which allows users to deal with the mathematical part of the models, in order to solve, using different variables, the ordinary differential equation systems that describe the biological process. Conclusion This integrated system is freely available in order to support systems biology research on the cell cycle and

  11. The Life Cycle Application of Intelligent Software Modeling for the First Materials Science Research Rack

    Science.gov (United States)

    Rice, Amanda; Parris, Frank; Nerren, Philip

    2000-01-01

    Marshall Space Flight Center (MSFC) has been funding development of intelligent software models to benefit payload ground operations for nearly a decade. Experience gained from simulator development and real-time monitoring and control is being applied to engineering design, testing, and operation of the First Material Science Research Rack (MSRR-1). MSRR-1 is the first rack in a suite of three racks comprising the Materials Science Research Facility (MSRF) which will operate on the International Space Station (ISS). The MSRF will accommodate advanced microgravity investigations in areas such as the fields of solidification of metals and alloys, thermo-physical properties of polymers, crystal growth studies of semiconductor materials, and research in ceramics and glasses. The MSRR-1 is a joint venture between NASA and the European Space Agency (ESA) to study the behavior of different materials during high temperature processing in a low gravity environment. The planned MSRR-1 mission duration is five (5) years on-orbit and the total design life is ten (IO) years. The MSRR-1 launch is scheduled on the third Utilization Flight (UF-3) to ISS, currently in February of 2003). The objective of MSRR-1 is to provide an early capability on the ISS to conduct material science, materials technology, and space product research investigations in microgravity. It will provide a modular, multi-user facility for microgravity research in materials crystal growth and solidification. An intelligent software model of MSRR-1 is under development and will serve multiple purposes to support the engineering analysis, testing, training, and operational phases of the MSRR-1 life cycle development. The G2 real-time expert system software environment developed by Gensym Corporation was selected as the intelligent system shell for this development work based on past experience gained and the effectiveness of the programming environment. Our approach of multi- uses of the simulation model and

  12. Capability approach

    DEFF Research Database (Denmark)

    Jensen, Niels Rosendal; Kjeldsen, Christian Christrup

    Lærebogen er den første samlede danske præsentation af den af Amartya Sen og Martha Nussbaum udviklede Capability Approach. Bogen indeholder en præsentation og diskussion af Sen og Nussbaums teoretiske platform. I bogen indgår eksempler fra såvel uddannelse/uddannelsespolitik, pædagogik og omsorg....

  13. Fuel cycle model and the cost of a recycling thorium in the CANDU reactor

    International Nuclear Information System (INIS)

    Choi, Hangbok; Park, Chang Je

    2005-01-01

    The dry process fuel technology has a high proliferation-resistance, which allows applications not only to the existing but also to the future nuclear fuel cycle systems. In this study, the homogeneous ThO 2 -UO 2 recycling fuel cycle in a Canada deuterium uranium (CANDU) reactor was assessed for a fuel cycle cost evaluation. A series of parametric calculations were performed for the uranium fraction, enrichment of the initial uranium fuel, and the fission product removal rated of the recycled fuel. The fuel cycle cost was estimated by the levelized lifetime cost model provided by the Organization for Economic Cooperation and Development/Nuclear Energy Agency. Though it is feasible to recycle the homogeneous ThO 2 -UO 2 fuel in the CANDU reactor from the viewpoint of a mass balance, the recycling fuel cycle cost is much higher than the conventional natural uranium fuel cycle cost for most cases due to the high fuel fabrication cost. (author)

  14. Proposing a Qualitative Approach for Corporate Competitive Capability Modeling in High-Tech Business (Case study: Software Industry

    Directory of Open Access Journals (Sweden)

    Mahmoud Saremi Saremi

    2010-09-01

    Full Text Available The evolution of global business trend for ICT-based products in recent decades shows the intensive activity of pioneer developing countries to gain a powerful competitive position in global software industry. In this research, with regard to importance of competition issue for top managers of Iranian software companies, a conceptual model has been developed for Corporate Competitive Capability concept. First, after describing the research problem, we present a comparative review of recent theories of firm and competition that has been applied by different researchers in the High-Tech and Knowledge Intensive Organization filed. Afterwards, with a detailed review of literature and previous research papers, an initial research framework and applied research method has been proposed. The main and final section of paper assigned to describing the result of research in different steps of qualitative modeling process. The agreed concepts are related to corporate competitive capability, the elicited and analyzed experts Cause Map, the elicited collective causal maps, and the final proposed model for software industry are the modeling results for this paper.

  15. The Cyber Defense (CyDef) Model for Assessing Countermeasure Capabilities.

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Margot [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DeVries, Troy Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Susanna P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Cybersecurity is essential to maintaining operations, and is now a de facto cost of business. Despite this, there is little consensus on how to systematically make decisions about cyber countermeasures investments. Identifying gaps and determining the expected return on investment (ROI) of adding a new cybersecurity countermeasure is frequently a hand-waving exercise at best. Worse, cybersecurity nomenclature is murky and frequently over-loaded, which further complicates issues by inhibiting clear communication. This paper presents a series of foundational models and nomenclature for discussing cybersecurity countermeasures, and then introduces the Cyber Defense (CyDef) model, which provides a systematic and intuitive way for decision-makers to effectively communicate with operations and device experts.

  16. A machine learning model with human cognitive biases capable of learning from small and biased datasets.

    Science.gov (United States)

    Taniguchi, Hidetaka; Sato, Hiroshi; Shirakawa, Tomohiro

    2018-05-09

    Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap between human beings and machines in this type of inference by utilizing cognitive biases. We implemented a human cognitive model into machine learning algorithms and compared their performance with the currently most popular methods, naïve Bayes, support vector machine, neural networks, logistic regression and random forests. We focused on the task of spam classification, which has been studied for a long time in the field of machine learning and often requires a large amount of data to obtain high accuracy. Our models achieved superior performance with small and biased samples in comparison with other representative machine learning methods.

  17. Modeling the Cloud to Enhance Capabilities for Crises and Catastrophe Management

    Science.gov (United States)

    2016-11-16

    through support by a prior DOD grant, and in this project, we focused on how to effectively adapt this for the cloud catastrophe environment. The...the effects of varying cloud resources and the cloud architecture on L, o, and g values, we will be able to formulate realistic analytical models of...variation in computing and communication costs of test problems due to varying loads in the cloud environment. We used the parallel matrix multiplication

  18. Preliminary Modeling of Acoustic Detection Capability for the Drifting Arctic Monitoring System

    Science.gov (United States)

    2015-02-01

    Sedimentary Basins in the Arctic, Polarforschung, 69, 243–249. [22] Poore, Richard Z, Ishman, Scott E, Phillips, R Lawrence, and McNeil, David H (1994...93, 1784. [28] Metzler, Adam M, Collis , Jon M, and Siegmann, William L (2012), Modeling low-frequency seismo-acoustic propagation in the Arctic using a...Atlantic. [50] Shnidman, David A (1998), Binary integration for Swerling target fluctuations, Aerospace and Electronic Systems, IEEE Transactions on

  19. The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology: Capabilities and Applications

    Science.gov (United States)

    Evers, Ken H.; Bachert, Robert F.

    1987-01-01

    The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology has been formulated and applied over a five-year period. It has proven to be a unique, integrated approach utilizing a top-down, structured technique to define and document the system of interest; a knowledge engineering technique to collect and organize system descriptive information; a rapid prototyping technique to perform preliminary system performance analysis; and a sophisticated simulation technique to perform in-depth system performance analysis.

  20. AeroPropulsoServoElasticity: Dynamic Modeling of the Variable Cycle Propulsion System

    Science.gov (United States)

    Kopasakis, George

    2012-01-01

    This presentation was made at the 2012 Fundamental Aeronautics Program Technical Conference and it covers research work for the Dynamic Modeling of the Variable cycle Propulsion System that was done under the Supersonics Project, in the area of AeroPropulsoServoElasticity. The presentation covers the objective for the propulsion system dynamic modeling work, followed by the work that has been done so far to model the variable Cycle Engine, modeling of the inlet, the nozzle, the modeling that has been done to model the affects of flow distortion, and finally presenting some concluding remarks and future plans.

  1. A hybrid model of QFD, SERVQUAL and KANO to increase bank's capabilities

    Directory of Open Access Journals (Sweden)

    Hasan Rajabi

    2012-10-01

    Full Text Available In global market, factors such as precedence of competitors extending shave on market, promoting quality of services and identifying customers' needs are important. This paper attempts to identify strategic services in one of the biggest governmental banks in Iran called Melli bank for getting competition merit using Kano and SERVQUAL compound models and to extend operation quality and to provide suitable strategies. The primary question of this paper is on how to introduce high quality services in this bank. The proposed model of this paper uses a hybrid of three quality-based methods including SERVQUAL, QFD and Kano models. Statistical society in this article is all clients and customers of Melli bank who use this banks' services and based on random sampling method, 170 customers were selected. The study was held in one of provinces located in west part of Iran called Semnan. Research findings show that Melli banks' customers are dissatisfied from the quality of services and to solve this problem the bank should do some restructuring to place some special characteristics to reach better operation at the heed of its affairs. The characteristics include, in terms of their priorities, possibility of transferring money by sale terminal, possibility of creating wireless pos, accelerating in doing bank works, getting special merits to customers who use electronic services, eliminating such bank commission, solving problems in least time as disconnecting system, possibility of receiving foreign exchange by ATM and suitable parking in city.

  2. DESTINY: A Comprehensive Tool with 3D and Multi-Level Cell Memory Modeling Capability

    Directory of Open Access Journals (Sweden)

    Sparsh Mittal

    2017-09-01

    Full Text Available To enable the design of large capacity memory structures, novel memory technologies such as non-volatile memory (NVM and novel fabrication approaches, e.g., 3D stacking and multi-level cell (MLC design have been explored. The existing modeling tools, however, cover only a few memory technologies, technology nodes and fabrication approaches. We present DESTINY, a tool for modeling 2D/3D memories designed using SRAM, resistive RAM (ReRAM, spin transfer torque RAM (STT-RAM, phase change RAM (PCM and embedded DRAM (eDRAM and 2D memories designed using spin orbit torque RAM (SOT-RAM, domain wall memory (DWM and Flash memory. In addition to single-level cell (SLC designs for all of these memories, DESTINY also supports modeling MLC designs for NVMs. We have extensively validated DESTINY against commercial and research prototypes of these memories. DESTINY is very useful for performing design-space exploration across several dimensions, such as optimizing for a target (e.g., latency, area or energy-delay product for a given memory technology, choosing the suitable memory technology or fabrication method (i.e., 2D v/s 3D for a given optimization target, etc. We believe that DESTINY will boost studies of next-generation memory architectures used in systems ranging from mobile devices to extreme-scale supercomputers. The latest source-code of DESTINY is available from the following git repository: https://bitbucket.org/sparshmittal/destinyv2.

  3. Linear collider capabilities for supersymmetry in dark matter allowed regions of the mSUGRA model

    International Nuclear Information System (INIS)

    Baer, Howard; Belyaev, Alexander; Krupovnickas, Tadas; Tata, Xerxes

    2004-01-01

    Recent comparisons of minimal supergravity (mSUGRA) model predictions with WMAP measurements of the neutralino relic density point to preferred regions of model parameter space. We investigate the reach of linear colliders (LC) with (s) 1/2 = 0.5 and 1 TeV for SUSY in the framework of the mSUGRA model. We find that LCs can cover the entire stau co-annihilation region provided tan βalt30. In the hyperbolic branch/focus point (HB/FP) region of parameter space, specialized cuts are suggested to increase the reach in this important 'dark matter allowed' area. In the case of the HB/FP region, the reach of a LC extends well past the reach of the CERN LHC. We examine a case study in the HB/FP region, and show that the MSSM parameters μ and M 2 can be sufficiently well-measured to demonstrate that one would indeed be in the HB/FP region, where the lightest chargino and neutralino have a substantial higgsino component. (author)

  4. SRGULL - AN ADVANCED ENGINEERING MODEL FOR THE PREDICTION OF AIRFRAME INTEGRATED SCRAMJET CYCLE PERFORMANCE

    Science.gov (United States)

    Walton, J. T.

    1994-01-01

    The development of a single-stage-to-orbit aerospace vehicle intended to be launched horizontally into low Earth orbit, such as the National Aero-Space Plane (NASP), has concentrated on the use of the supersonic combustion ramjet (scramjet) propulsion cycle. SRGULL, a scramjet cycle analysis code, is an engineer's tool capable of nose-to-tail, hydrogen-fueled, airframe-integrated scramjet simulation in a real gas flow with equilibrium thermodynamic properties. This program facilitates initial estimates of scramjet cycle performance by linking a two-dimensional forebody, inlet and nozzle code with a one-dimensional combustor code. Five computer codes (SCRAM, SEAGUL, INLET, Progam HUD, and GASH) originally developed at NASA Langley Research Center in support of hypersonic technology are integrated in this program to analyze changing flow conditions. The one-dimensional combustor code is based on the combustor subroutine from SCRAM and the two-dimensional coding is based on an inviscid Euler program (SEAGUL). Kinetic energy efficiency input for sidewall area variation modeling can be calculated by the INLET program code. At the completion of inviscid component analysis, Program HUD, an integral boundary layer code based on the Spaulding-Chi method, is applied to determine the friction coefficient which is then used in a modified Reynolds Analogy to calculate heat transfer. Real gas flow properties such as flow composition, enthalpy, entropy, and density are calculated by the subroutine GASH. Combustor input conditions are taken from one-dimensionalizing the two-dimensional inlet exit flow. The SEAGUL portions of this program are limited to supersonic flows, but the combustor (SCRAM) section can handle supersonic and dual-mode operation. SRGULL has been compared to scramjet engine tests with excellent results. SRGULL was written in FORTRAN 77 on an IBM PC compatible using IBM's FORTRAN/2 or Microway's NDP386 F77 compiler. The program is fully user interactive, but can

  5. Numerical Simulation Procedure for Modeling TGO Crack Propagation and TGO Growth in Thermal Barrier Coatings upon Thermal-Mechanical Cycling

    Directory of Open Access Journals (Sweden)

    Ding Jun

    2014-01-01

    Full Text Available This paper reports a numerical simulation procedure to model crack propagation in TGO layer and TGO growth near a surface groove in metal substrate upon multiple thermal-mechanical cycles. The material property change method is employed to model TGO formation cycle by cycle, and the creep properties for constituent materials are also incorporated. Two columns of repeated nodes are placed along the interface of the potential crack, and these nodes are bonded together as one node at a geometrical location. In terms of critical crack opening displacement criterion, onset of crack propagation in TGO layer has been determined by finite element analyses in comparison with that without predefined crack. Then, according to the results from the previous analyses, the input values for the critical failure parameters for the subsequent analyses can be decided. The robust capabilities of restart analysis in ABAQUS help to implement the overall simulation for TGO crack propagation. The comparison of the TGO final deformation profile between numerical and experimental observation shows a good agreement indicating the correctness and effectiveness of the present procedure, which can guide the prediction of the failure in TGO for the future design and optimization for TBC system.

  6. Thermodynamic modelling of a recompression CO_2 power cycle for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Banik, Shubham; Ray, Satyaki; De, Sudipta

    2016-01-01

    Highlights: • Thermodynamic model for recompression T-CO_2 is developed. • Energetic and exergetic analysis compared with S-CO_2 and Reg. Brayton cycle. • Maximum efficiency of 13.6% is obtained for T-CO_2 cycle. • Optimum recompression ratio of 0.48 is obtained for minimum irreversibility. • Reg. Brayton has better efficiency, T-CO_2 offers minimum irreversibility. - Abstract: Due to the rising prices of conventional fossil fuels, increasing the overall thermal efficiency of a power plant is essential. One way of doing this is waste heat recovery. This recovery is most difficult for low temperature waste heat, below 240 °C, which also covers majority of the waste heat source. Carbon dioxide, with its low critical temperature and pressure, offers an advantage over ozone-depleting refrigerants used in Organic Rankine Cycles (ORCs) and hence is most suitable for the purpose. This paper introduces parametric optimization of a transcritical carbon dioxide (T-CO_2) power cycle which recompresses part of the total mass flow of working fluid before entering the precooler, thereby showing potential for higher cycle efficiency. Thermodynamic model for a recompression T-CO_2 power cycle has been developed with waste heat source of 2000 kW and at a temperature of 200 °C. Results obtained from this model are analysed to estimate effects on energetic and exergetic performances of the power cycle with varying pressure and mass recompression ratio. Higher pressure ratio always improves thermodynamic performance of the cycle – both energetic and exergetic. Higher recompression ratio also increases exergetic efficiency of the cycle. However, it increases energy efficiency, only if precooler inlet temperature remains constant. Maximum thermal efficiency of the T-CO_2 cycle with a recompression ratio of 0.26 has been found to be 13.6%. To minimize total irreversibility of the cycle, an optimum ratio of 0.48 was found to be suitable.

  7. A Performance Evaluation for IT/IS Implementation in Organisation: Preliminary New IT/IS Capability Evaluation (NICE Model

    Directory of Open Access Journals (Sweden)

    Hafez Salleh

    2011-12-01

    Full Text Available Most of the traditional IT/IS performance measures are based on productivity and process, which mainly focus on method of investment appraisal. There is a need to produce alternative holistic measurement models that enable soft and hard issues to be measured qualitatively. A New IT/IS Capability Evaluation (NICE framework has been designed to measure the capability of organisations to'successfully implement IT systems' and it is applicable across industries.The idea is to provide managers with measurement tools to enable them to identify where improvements are required within their organisations and to indicate their readiness prior to IT investment. The NICE framework investigates four organisational key elements: IT, Environment, Process and People, and is composed of six progressive stages of maturity that a company can achieve its IT/IS capabilities. For each maturity stage, the NICE framework describes a set of critical success factors that must be in place for the company to achieve each stage.

  8. Bumetanide is not capable of terminating status epilepticus but enhances phenobarbital efficacy in different rat models.

    Science.gov (United States)

    Töllner, Kathrin; Brandt, Claudia; Erker, Thomas; Löscher, Wolfgang

    2015-01-05

    In about 20-40% of patients, status epilepticus (SE) is refractory to standard treatment with benzodiazepines, necessitating second- and third-line treatments that are not always successful, resulting in increased mortality. Rat models of refractory SE are instrumental in studying the changes underlying refractoriness and to develop more effective treatments for this severe medical emergency. Failure of GABAergic inhibition is a likely cause of the development of benzodiazepine resistance during SE. In addition to changes in GABAA receptor expression, trafficking, and function, alterations in Cl(-) homeostasis with increased intraneuronal Cl(-) levels may be involved. Bumetanide, which reduces intraneuronal Cl(-) by inhibiting the Cl(-) intruding Na(+), K(+), Cl(-) cotransporter NKCC1, has been reported to interrupt SE induced by kainate in urethane-anesthetized rats, indicating that this diuretic drug may be an interesting candidate for treatment of refractory SE. In this study, we evaluated the effects of bumetanide in the kainate and lithium-pilocarpine models of SE as well as a model in which SE is induced by sustained electrical stimulation of the basolateral amygdala. Unexpectedly, bumetanide alone was ineffective to terminate SE in both conscious and anesthetized adult rats. However, it potentiated the anticonvulsant effect of low doses of phenobarbital, although this was only seen in part of the animals; higher doses of phenobarbital, particularly in combination with diazepam, were more effective to terminate SE than bumetanide/phenobarbital combinations. These data do not suggest that bumetanide, alone or in combination with phenobarbital, is a valuable option in the treatment of refractory SE in adult patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Rapid architecture alternative modeling (RAAM): A framework for capability-based analysis of system of systems architectures

    Science.gov (United States)

    Iacobucci, Joseph V.

    problem domain by establishing an effective means to communicate the semantics from the RAAM framework. These techniques make it possible to include diverse multi-metric models within the RAAM framework in addition to system and operational level trades. A canonical example was used to explore the uses of the methodology. The canonical example contains all of the features of a full system of systems architecture analysis study but uses fewer tasks and systems. Using RAAM with the canonical example it was possible to consider both system and operational level trades in the same analysis. Once the methodology had been tested with the canonical example, a Suppression of Enemy Air Defenses (SEAD) capability model was developed. Due to the sensitive nature of analyses on that subject, notional data was developed. The notional data has similar trends and properties to realistic Suppression of Enemy Air Defenses data. RAAM was shown to be traceable and provided a mechanism for a unified treatment of a variety of metrics. The SEAD capability model demonstrated lower computer runtimes and reduced model creation complexity as compared to methods currently in use. To determine the usefulness of the implementation of the methodology on current computing hardware, RAAM was tested with system of system architecture studies of different sizes. This was necessary since system of systems may be called upon to accomplish thousands of tasks. It has been clearly demonstrated that RAAM is able to enumerate and evaluate the types of large, complex design spaces usually encountered in capability based design, oftentimes providing the ability to efficiently search the entire decision space. The core algorithms for generation and evaluation of alternatives scale linearly with expected problem sizes. The SEAD capability model outputs prompted the discovery a new issue, the data storage and manipulation requirements for an analysis. Two strategies were developed to counter large data sizes, the use

  10. 3CE Methodology for Conducting a Modeling, Simulation, and Instrumentation Tool Capability Analysis

    Science.gov (United States)

    2010-05-01

    flRmurn I F )T:Ir,tir)l! MCr)lto.-lng DHin nttbli..’"Ollc:~ E,;m:a..liut .!,)’l’lt’Mn:l’lll.ll~ t Managemen t F unction a l Arem 1 .5 Toola na...a modeling, simulation, and instrumentation (MS&I) environment. This methodology uses the DoDAF product set to document operational and systems...engineering process were identified and resolved, such as duplication of data elements derived from DoDAF operational and system views used to

  11. QMU as an approach to strengthening the predictive capabilities of complex models.

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Genetha Anne.; Boggs, Paul T.; Grace, Matthew D.

    2010-09-01

    Complex systems are made up of multiple interdependent parts, and the behavior of the entire system cannot always be directly inferred from the behavior of the individual parts. They are nonlinear and system responses are not necessarily additive. Examples of complex systems include energy, cyber and telecommunication infrastructures, human and animal social structures, and biological structures such as cells. To meet the goals of infrastructure development, maintenance, and protection for cyber-related complex systems, novel modeling and simulation technology is needed. Sandia has shown success using M&S in the nuclear weapons (NW) program. However, complex systems represent a significant challenge and relative departure from the classical M&S exercises, and many of the scientific and mathematical M&S processes must be re-envisioned. Specifically, in the NW program, requirements and acceptable margins for performance, resilience, and security are well-defined and given quantitatively from the start. The Quantification of Margins and Uncertainties (QMU) process helps to assess whether or not these safety, reliability and performance requirements have been met after a system has been developed. In this sense, QMU is used as a sort of check that requirements have been met once the development process is completed. In contrast, performance requirements and margins may not have been defined a priori for many complex systems, (i.e. the Internet, electrical distribution grids, etc.), particularly not in quantitative terms. This project addresses this fundamental difference by investigating the use of QMU at the start of the design process for complex systems. Three major tasks were completed. First, the characteristics of the cyber infrastructure problem were collected and considered in the context of QMU-based tools. Second, UQ methodologies for the quantification of model discrepancies were considered in the context of statistical models of cyber activity. Third

  12. A Dynamic Analysis of the Business Cycle Model with a Fixed-time Delay

    Directory of Open Access Journals (Sweden)

    Yuhang Zheng

    2017-07-01

    Full Text Available In business activities, there is a certain time lag effect in investment and capital stock, which would affect the dynamic behavior of the business cycle model and then complicate the economic stability adjustment made through investment policies. Considering the influence on investment activities caused by the expectation time about capital stock, this paper, employing the Hopf bifurcation theory, with the delay in investment as the bifurcation parameter, not only studies the equilibrium stability of the business cycle model with a fixed-time delay, but also discusses the formation conditions of the business cycle. The research discovers that the investment lag during the investing process and the expectation time about the capital stock are two crucial incentives of the business cycle; meanwhile, the expecting equilibrium target can be met through the adjustment of the government investment policies. These findings may serve as guidelines in stabilizing the business cycle and making relative economic policies. The conclusion is verified through numerical simulation.

  13. Sustainable solar energy capability studies by using S2H model in treating groundwater supply

    Science.gov (United States)

    Musa, S.; Anuar, M. F.; Shahabuddin, M. M.; Ridzuan, M. B.; Radin Mohamed, R. M. S.; Madun, M. A.

    2018-04-01

    Groundwater extracted in Research Centre for Soft Soil Malaysia (RECESS) contains a number of pollutants that exceed the safe level for consumption. A Solar-Hydro (S2H) model which is a practical prototype has been introduced to treat the groundwater sustainably by solar energy process (evaporation method). Selected parameters was tested which are sulphate, nitrate, chloride, fluoride, pH and dissolved oxygen. The water quality result shows that all parameters have achieved 100% of the drinking water quality standard issued by the Ministry of Health Malaysia. Evaporation method was proven that this solar energy can be applied in sustainably treating groundwater quality with up to 90% effectiveness. On the other hand, the quantitative analysis has shown that the production of clean water is below than 2% according to time constraints and design factors. Thus, this study can be generate clean and fresh water from groundwater by using a simplified model and it has huge potential to be implemented by the local communities with a larger scale and affordable design.

  14. Investigating Integration Capabilities Between Ifc and Citygml LOD3 for 3d City Modelling

    Science.gov (United States)

    Floros, G.; Pispidikis, I.; Dimopoulou, E.

    2017-10-01

    Smart cities are applied to an increasing number of application fields. This evolution though urges data collection and integration, hence major issues arise that need to be tackled. One of the most important challenges is the heterogeneity of collected data, especially if those data derive from different standards and vary in terms of geometry, topology and semantics. Another key challenge is the efficient analysis and visualization of spatial data, which due to the complexity of the physical reality in modern world, 2D GIS struggles to cope with. So, in order to facilitate data analysis and enhance the role of smart cities, the 3rd dimension needs to be implemented. Standards such as CityGML and IFC fulfill that necessity but they present major differences in their schemas that render their integration a challenging task. This paper focuses on addressing those differences, examining the up to date research work and investigates an alternative methodology in order to bridge the gap between those Standards. Within this framework, a generic IFC model is generated and converted to a CityGML Model, which is validated and evaluated on its geometrical correctness and semantical coherence. General results as well as future research considerations are presented.

  15. Modelling cheetah relocation success in southern Africa using an iterative Bayesian network development cycle

    CSIR Research Space (South Africa)

    Johnson, S

    2010-02-01

    Full Text Available metapopulations was the focus of a Bayesian Network (BN) modelling workshop in South Africa. Using a new heuristics, Iterative Bayesian Network Development Cycle (IBNDC), described in this paper, several networks were formulated to distinguish between the unique...

  16. Modeling of Complex Life Cycle Prediction Based on Cell Division

    Directory of Open Access Journals (Sweden)

    Fucheng Zhang

    2017-01-01

    Full Text Available Effective fault diagnosis and reasonable life expectancy are of great significance and practical engineering value for the safety, reliability, and maintenance cost of equipment and working environment. At present, the life prediction methods of the equipment are equipment life prediction based on condition monitoring, combined forecasting model, and driven data. Most of them need to be based on a large amount of data to achieve the problem. For this issue, we propose learning from the mechanism of cell division in the organism. We have established a moderate complexity of life prediction model across studying the complex multifactor correlation life model. In this paper, we model the life prediction of cell division. Experiments show that our model can effectively simulate the state of cell division. Through the model of reference, we will use it for the equipment of the complex life prediction.

  17. BUSINESS MODELS FOR EXTENDING OF 112 EMERGENCY CALL CENTER CAPABILITIES WITH E-CALL FUNCTION INSERTION

    Directory of Open Access Journals (Sweden)

    Pop Dragos Paul

    2010-12-01

    Full Text Available The present article concerns present status of implementation in Romania and Europe of eCall service and the proposed business models regarding eCall function implementation in Romania. eCall system is used for reliable transmission in case of crush between In Vehicle System and Public Service Answering Point, via the voice channel of cellular and Public Switched Telephone Network (PSTN. eCall service could be initiated automatically or manual the driver. All data presented in this article are part of researches made by authors in the Sectorial Contract Implementation study regarding eCall system, having as partners ITS Romania and Electronic Solution, with the Romanian Ministry of Communication and Information Technology as beneficiary.

  18. A Grid Connected Transformerless Inverter and its Model Predictive Control Strategy with Leakage Current Elimination Capability

    Directory of Open Access Journals (Sweden)

    J. Fallah Ardashir

    2017-06-01

    Full Text Available This paper proposes a new single phase transformerless Photovoltaic (PV inverter for grid connected systems. It consists of six power switches, two diodes, one capacitor and filter at the output stage. The neutral of the grid is directly connected to the negative terminal of the source. This results in constant common mode voltage and zero leakage current. Model Predictive Controller (MPC technique is used to modulate the converter to reduce the output current ripple and filter requirements. The main advantages of this inverter are compact size, low cost, flexible grounding configuration. Due to brevity, the operating principle and analysis of the proposed circuit are presented in brief. Simulation and experimental results of 200W prototype are shown at the end to validate the proposed topology and concept. The results obtained clearly verifies the performance of the proposed inverter and its practical application for grid connected PV systems.

  19. ENTREPRENEURIAL CAPABILITIES

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Nielsen, Thorkild

    2003-01-01

    The aim of this article is to analyse entrepreneurship from an action research perspective. What is entrepreneurship about? Which are the fundamental capabilities and processes of entrepreneurship? To answer these questions the article includes a case study of a Danish entrepreneur and his networ....... Finally, the article discuss, how more long term action research methods could be integrated into the entrepreneurial processes and the possible impacts of such an implementation?...

  20. A fourth order spline collocation approach for a business cycle model

    Science.gov (United States)

    Sayfy, A.; Khoury, S.; Ibdah, H.

    2013-10-01

    A collocation approach, based on a fourth order cubic B-splines is presented for the numerical solution of a Kaleckian business cycle model formulated by a nonlinear delay differential equation. The equation is approximated and the nonlinearity is handled by employing an iterative scheme arising from Newton's method. It is shown that the model exhibits a conditionally dynamical stable cycle. The fourth-order rate of convergence of the scheme is verified numerically for different special cases.

  1. Validation of foF2 and TEC Modeling During Geomagnetic Disturbed Times: Preliminary Outcomes of International Forum for Space Weather Modeling Capabilities Assessment

    Science.gov (United States)

    Shim, J. S.; Tsagouri, I.; Goncharenko, L. P.; Kuznetsova, M. M.

    2017-12-01

    To address challenges of assessment of space weather modeling capabilities, the CCMC (Community Coordinated Modeling Center) is leading the newly established "International Forum for Space Weather Modeling Capabilities Assessment." This presentation will focus on preliminary outcomes of the International Forum on validation of modeled foF2 and TEC during geomagnetic storms. We investigate the ionospheric response to 2013 Mar. geomagnetic storm event using ionosonde and GPS TEC observations in North American and European sectors. To quantify storm impacts on foF2 and TEC, we first quantify quiet-time variations of foF2 and TEC (e.g., the median and the average of the five quietest days for the 30 days during quiet conditions). It appears that the quiet time variation of foF2 and TEC are about 10% and 20-30%, respectively. Therefore, to quantify storm impact, we focus on foF2 and TEC changes during the storm main phase larger than 20% and 50%, respectively, compared to 30-day median. We find that in European sector, both foF2 and TEC response to the storm are mainly positive phase with foF2 increase of up to 100% and TEC increase of 150%. In North America sector, however, foF2 shows negative effects (up to about 50% decrease), while TEC shows positive response (the largest increase is about 200%). To assess modeling capability of reproducing the changes of foF2 and TEC due to the storm, we use various model simulations, which are obtained from empirical, physics-based, and data assimilation models. The performance of each model depends on the selected metrics, therefore, only one metrics is not enough to evaluate the models' predictive capabilities in capturing the storm impact. The performance of the model also varies with latitude and longitude.

  2. Dynamic capabilities, Marketing Capability and Organizational Performance

    Directory of Open Access Journals (Sweden)

    Adriana Roseli Wünsch Takahashi

    2017-01-01

    Full Text Available The goal of the study is to investigate the influence of dynamic capabilities on organizational performance and the role of marketing capabilities as a mediator in this relationship in the context of private HEIs in Brazil. As a research method we carried out a survey with 316 IES and data analysis was operationalized with the technique of structural equation modeling. The results indicate that the dynamic capabilities have influence on organizational performance only when mediated by marketing ability. The marketing capability has an important role in the survival, growth and renewal on educational services offerings for HEIs in private sector, and consequently in organizational performance. It is also demonstrated that mediated relationship is more intense for HEI with up to 3,000 students and other organizational profile variables such as amount of courses, the constitution, the type of institution and type of education do not significantly alter the results.

  3. Dynamic modeling and analysis of alternative fuel cycle scenarios in Korea

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    2007-01-01

    The Korean nuclear fuel cycle was modeled by the dynamic analysis method, which was applied to the once-through and alternative fuel cycles. First, the once-through fuel cycle was analyzed based on the Korean nuclear power plant construction plan up to 2015 and a postulated nuclear demand growth rate of zero after 2015. Second, alternative fuel cycles including the direct use of spent pressurized water reactor fuel in Canada deuterium reactors (DUPIC), a sodium-cooled fast reactor and an accelerator driven system were assessed and the results were compared with those of the once-through fuel cycle. The once-through fuel cycle calculation showed that the nuclear power demand would be 25 GWe and the amount of the spent fuel will be ∼65000 tons by 2100. The alternative fuel cycle analyses showed that the spent fuel inventory could be reduced by more than 30% and 90% through the DUPIC and fast reactor fuel cycles, respectively, when compared with the once-through fuel cycle. The results of this study indicate that both spent fuel and uranium resources can be effectively managed if alternative reactor systems are timely implemented along with the existing reactors

  4. Development Life Cycle and Tools for XML Content Models

    Energy Technology Data Exchange (ETDEWEB)

    Kulvatunyou, Boonserm [ORNL; Morris, Katherine [National Institute of Standards and Technology (NIST); Buhwan, Jeong [POSTECH University, South Korea; Goyal, Puja [National Institute of Standards and Technology (NIST)

    2004-11-01

    Many integration projects today rely on shared semantic models based on standards represented using Extensible Mark up Language (XML) technologies. Shared semantic models typically evolve and require maintenance. In addition, to promote interoperability and reduce integration costs, the shared semantics should be reused as much as possible. Semantic components must be consistent and valid in terms of agreed upon standards and guidelines. In this paper, we describe an activity model for creation, use, and maintenance of a shared semantic model that is coherent and supports efficient enterprise integration. We then use this activity model to frame our research and the development of tools to support those activities. We provide overviews of these tools primarily in the context of the W3C XML Schema. At the present, we focus our work on the W3C XML Schema as the representation of choice, due to its extensive adoption by industry.

  5. Comparative evaluation of life cycle assessment models for solid waste management

    International Nuclear Information System (INIS)

    Winkler, Joerg; Bilitewski, Bernd

    2007-01-01

    This publication compares a selection of six different models developed in Europe and America by research organisations, industry associations and governmental institutions. The comparison of the models reveals the variations in the results and the differences in the conclusions of an LCA study done with these models. The models are compared by modelling a specific case - the waste management system of Dresden, Germany - with each model and an in-detail comparison of the life cycle inventory results. Moreover, a life cycle impact assessment shows if the LCA results of each model allows for comparable and consecutive conclusions, which do not contradict the conclusions derived from the other models' results. Furthermore, the influence of different level of detail in the life cycle inventory of the life cycle assessment is demonstrated. The model comparison revealed that the variations in the LCA results calculated by the models for the case show high variations and are not negligible. In some cases the high variations in results lead to contradictory conclusions concerning the environmental performance of the waste management processes. The static, linear modelling approach chosen by all models analysed is inappropriate for reflecting actual conditions. Moreover, it was found that although the models' approach to LCA is comparable on a general level, the level of detail implemented in the software tools is very different

  6. Moving forward in circles: Challenges and opportunities in modeling population cycles

    Science.gov (United States)

    Barraquand, Frederic; Louca, Stilianos; Abbott, Karen C; Cobbold, Christina A; Cordoleani, Flora; DeAngelis, Donald L.; Elderd, Bret D; Fox, Jeremy W; Greenwood, Priscilla; Hilker, Frank M; Murray, Dennis; Stieha, Christopher R; Taylor, Rachel A; Vitense, Kelsey; Wolkowicz, Gail; Tyson, Rebecca C

    2017-01-01

    Population cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer–resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non-intuitive ways, the high-dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco-evolutionary dynamics. An inclusive theory for population cycles, ranging from ecosystem-level to demographic modelling, grounded in observational or experimental data, is therefore necessary to better understand observed cyclical patterns. In turn, by gaining better insight into the drivers of population cycles, we can begin to understand the causes of cycle gain and loss, how biodiversity interacts with population cycling, and how to effectively manage wildly fluctuating populations, all of which are growing domains of ecological research.

  7. SCANAIR a transient fuel performance code Part two: Assessment of modelling capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Georgenthum, Vincent, E-mail: vincent.georgenthum@irsn.fr; Moal, Alain; Marchand, Olivier

    2014-12-15

    Highlights: • The SCANAIR code is devoted to the study of irradiated fuel rod behaviour during RIA. • The paper deals with the status of the code validation for PWR rods. • During the PCMI stage there is a good agreement between calculations and experiments. • The boiling crisis occurrence is rather well predicted. • The code assessment during the boiling crisis has still to be improved. - Abstract: In the frame of their research programmes on fuel safety, the French Institut de Radioprotection et de Sûreté Nucléaire develops the SCANAIR code devoted to the study of irradiated fuel rod behaviour during reactivity initiated accident. A first paper was focused on detailed modellings and code description. This second paper deals with the status of the code validation for pressurised water reactor rods performed thanks to the available experimental results. About 60 integral tests carried out in CABRI and NSRR experimental reactors and 24 separated tests performed in the PATRICIA facility (devoted to the thermal-hydraulics study) have been recalculated and compared to experimental data. During the first stage of the transient, the pellet clad mechanical interaction phase, there is a good agreement between calculations and experiments: the clad residual elongation and hoop strain of non failed tests but also the failure occurrence and failure enthalpy of failed tests are correctly calculated. After this first stage, the increase of cladding temperature can lead to the Departure from Nucleate Boiling. During the film boiling regime, the clad temperature can reach a very high temperature (>700 °C). If the boiling crisis occurrence is rather well predicted, the calculation of the clad temperature and the clad hoop strain during this stage have still to be improved.

  8. Evidence on a Real Business Cycle Model with Neutral and Investment-Specific Technology Shocks using Bayesian Model Averaging

    NARCIS (Netherlands)

    R.W. Strachan (Rodney); H.K. van Dijk (Herman)

    2010-01-01

    textabstractThe empirical support for a real business cycle model with two technology shocks is evaluated using a Bayesian model averaging procedure. This procedure makes use of a finite mixture of many models within the class of vector autoregressive (VAR) processes. The linear VAR model is

  9. Development and Application of a Life Cycle-Based Model to Evaluate Greenhouse Gas Emissions of Oil Sands Upgrading Technologies.

    Science.gov (United States)

    Pacheco, Diana M; Bergerson, Joule A; Alvarez-Majmutov, Anton; Chen, Jinwen; MacLean, Heather L

    2016-12-20

    A life cycle-based model, OSTUM (Oil Sands Technologies for Upgrading Model), which evaluates the energy intensity and greenhouse gas (GHG) emissions of current oil sands upgrading technologies, is developed. Upgrading converts oil sands bitumen into high quality synthetic crude oil (SCO), a refinery feedstock. OSTUM's novel attributes include the following: the breadth of technologies and upgrading operations options that can be analyzed, energy intensity and GHG emissions being estimated at the process unit level, it not being dependent on a proprietary process simulator, and use of publicly available data. OSTUM is applied to a hypothetical, but realistic, upgrading operation based on delayed coking, the most common upgrading technology, resulting in emissions of 328 kg CO 2 e/m 3 SCO. The primary contributor to upgrading emissions (45%) is the use of natural gas for hydrogen production through steam methane reforming, followed by the use of natural gas as fuel in the rest of the process units' heaters (39%). OSTUM's results are in agreement with those of a process simulation model developed by CanmetENERGY, other literature, and confidential data of a commercial upgrading operation. For the application of the model, emissions are found to be most sensitive to the amount of natural gas utilized as feedstock by the steam methane reformer. OSTUM is capable of evaluating the impact of different technologies, feedstock qualities, operating conditions, and fuel mixes on upgrading emissions, and its life cycle perspective allows easy incorporation of results into well-to-wheel analyses.

  10. Analytical Model for LLC Resonant Converter With Variable Duty-Cycle Control

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    are identified and discussed. The proposed model enables a better understanding of the operation characteristics and fast parameter design of the LLC converter, which otherwise cannot be achieved by the existing simulation based methods and numerical models. The results obtained from the proposed model......In LLC resonant converters, the variable duty-cycle control is usually combined with a variable frequency control to widen the gain range, improve the light-load efficiency, or suppress the inrush current during start-up. However, a proper analytical model for the variable duty-cycle controlled LLC...... converter is still not available due to the complexity of operation modes and the nonlinearity of steady-state equations. This paper makes the efforts to develop an analytical model for the LLC converter with variable duty-cycle control. All possible operation models and critical operation characteristics...

  11. The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model

    OpenAIRE

    Drew Creal; Siem Jan Koopman; Eric Zivot

    2008-01-01

    In this paper we investigate whether the dynamic properties of the U.S. business cycle have changed in the last fifty years. For this purpose we develop a flexible business cycle indicator that is constructed from a moderate set of macroeconomic time series. The coincident economic indicator is based on a multivariate trend-cycle decomposition model that accounts for time variation in macroeconomic volatility, known as the great moderation. In particular, we consider an unobserved components ...

  12. Mathematical Models of the Circadian Sleep-Wake Cycle.

    Science.gov (United States)

    1984-05-01

    circadian geber , 97,98 system precision, 4 Form factor Damped oscillators, mutual excitation of, and relationship to ratio of deviations, 37 self-sustainment...rhythms, 5-6 Forced internal desynebronization, by Zeit- incorporation of, into models of circadian geber , 97,98 system precision, 4 Form factor Damped...equation, for modeling of circadian geber phase, and modification by fre- rhythms, 19 quency coefficient, 54,55,56 Oscillatory range, effects of

  13. Friction induced hunting limit cycles : a comparison between the LuGre and switch friction model

    NARCIS (Netherlands)

    Hensen, R.H.A.; Molengraft, van de M.J.G.; Steinbuch, M.

    2003-01-01

    In this paper, friction induced limit cycles are predicted for a simple motion system consisting of a motor-driven inertia subjected to friction and a PID-controlled regulator task. The two friction models used, i.e., (i) the dynamic LuGre friction model and (ii) the static switch friction model,

  14. Predicting cycle time distributions for integrated processing workstations : an aggregate modeling approach

    NARCIS (Netherlands)

    Veeger, C.P.L.; Etman, L.F.P.; Lefeber, A.A.J.; Adan, I.J.B.F.; Herk, van J.; Rooda, J.E.

    2011-01-01

    To predict cycle time distributions of integrated processing workstations, detailed simulation models are almost exclusively used; these models require considerable development and maintenance effort. As an alternative, we propose an aggregate model that is a lumped-parameter representation of the

  15. The Adult Life Spiral: A Critique of the Life Cycle Model.

    Science.gov (United States)

    Stein, Peter; Etzkowitz, Henry

    We can identify and describe alternate paths of adulthood utilizing data from interviews with single adults. Our review of major models used in adulthood studies suggests that a developmental model, such as Daniel Levinson's life cycle model, is too tied to the notion of the imminent unfolding of the life course. The age-stratification theory…

  16. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Shun-Peng Zhu

    2017-06-01

    Full Text Available Combined high and low cycle fatigue (CCF generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF resulting from high frequency vibrations and low cycle fatigue (LCF from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  17. Benchmarking LWR codes capability to model radionuclide deposition within SFR containments: An analysis of the Na ABCOVE tests

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, Luis E., E-mail: luisen.herranz@ciemat.es [CIEMAT, Unit of Nuclear Safety Research, Av. Complutense, 40, 28040 Madrid (Spain); Garcia, Monica, E-mail: monica.gmartin@ciemat.es [CIEMAT, Unit of Nuclear Safety Research, Av. Complutense, 40, 28040 Madrid (Spain); Morandi, Sonia, E-mail: sonia.morandi@rse-web.it [Nuclear and Industrial Plant Safety Team, Power Generation System Department, RSE, via Rubattino 54, 20134 Milano (Italy)

    2013-12-15

    Highlights: • Assessment of LWR codes capability to model aerosol deposition within SFR containments. • Original hypotheses proposed to partially accommodate drawbacks from Na oxidation reactions. • A defined methodology to derive a more accurate characterization of Na-based particles. • Key missing models in LWR codes for SFR applications are identified. - Abstract: Postulated BDBAs in SFRs might result in contaminated-coolant discharge at high temperature into the containment. A full scope safety analysis of this reactor type requires computation tools properly validated in all the related fields. Radionuclide transport, particularly within the containment, is one of those fields. This sets two major challenges: to have reliable codes available and to build up a sound data base. Development of SFR source term codes was abandoned in the 80's and few data are available at present. The ABCOVE experimental programme conducted in the 80's is still a reference in the field. Postulated BDBAs in SFRs might result in contaminated-coolant discharge at high temperature into the containment. A full scope safety analysis of this reactor type requires computation tools properly validated in all the related fields. Radionuclide deposition, particularly within the containment, is one of those fields. This sets two major challenges: to have reliable codes available and to build up a sound data base. Development of SFR source term codes was abandoned in the 80's and few data are available at present. The ABCOVE experimental programme conducted in the 80's is still a reference in the field. The present paper is aimed at assessing the current capability of LWR codes to model aerosol deposition within a SFR containment under BDBA conditions. Through a systematic application of the ASTEC, ECART and MELCOR codes to relevant ABCOVE tests, insights have been gained into drawbacks and capabilities of these computation tools. Hypotheses and approximations have

  18. Benchmarking LWR codes capability to model radionuclide deposition within SFR containments: An analysis of the Na ABCOVE tests

    International Nuclear Information System (INIS)

    Herranz, Luis E.; Garcia, Monica; Morandi, Sonia

    2013-01-01

    Highlights: • Assessment of LWR codes capability to model aerosol deposition within SFR containments. • Original hypotheses proposed to partially accommodate drawbacks from Na oxidation reactions. • A defined methodology to derive a more accurate characterization of Na-based particles. • Key missing models in LWR codes for SFR applications are identified. - Abstract: Postulated BDBAs in SFRs might result in contaminated-coolant discharge at high temperature into the containment. A full scope safety analysis of this reactor type requires computation tools properly validated in all the related fields. Radionuclide transport, particularly within the containment, is one of those fields. This sets two major challenges: to have reliable codes available and to build up a sound data base. Development of SFR source term codes was abandoned in the 80's and few data are available at present. The ABCOVE experimental programme conducted in the 80's is still a reference in the field. Postulated BDBAs in SFRs might result in contaminated-coolant discharge at high temperature into the containment. A full scope safety analysis of this reactor type requires computation tools properly validated in all the related fields. Radionuclide deposition, particularly within the containment, is one of those fields. This sets two major challenges: to have reliable codes available and to build up a sound data base. Development of SFR source term codes was abandoned in the 80's and few data are available at present. The ABCOVE experimental programme conducted in the 80's is still a reference in the field. The present paper is aimed at assessing the current capability of LWR codes to model aerosol deposition within a SFR containment under BDBA conditions. Through a systematic application of the ASTEC, ECART and MELCOR codes to relevant ABCOVE tests, insights have been gained into drawbacks and capabilities of these computation tools. Hypotheses and approximations have been adopted so that

  19. A practical method to assess model sensitivity and parameter uncertainty in C cycle models

    Science.gov (United States)

    Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy

    2015-04-01

    The carbon cycle combines multiple spatial and temporal scales, from minutes to hours for the chemical processes occurring in plant cells to several hundred of years for the exchange between the atmosphere and the deep ocean and finally to millennia for the formation of fossil fuels. Together with our knowledge of the transformation processes involved in the carbon cycle, many Earth Observation systems are now available to help improving models and predictions