WorldWideScience

Sample records for cycle ipgcc power

  1. Power Plant Cycling Costs

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  2. Optical cycle power meter

    DEFF Research Database (Denmark)

    2014-01-01

    A bicycle power meter for measuring power generated when riding a bicycle, the power meter comprising a position-sensitive radiation detector (409) attachable to a component of a crank set (404) of bicycle, and a radiation source (408) attachable to the component of the crank set and configured...

  3. Advanced power cycles for concentrated solar power

    OpenAIRE

    Stein, W. H.; Buck, Reiner

    2017-01-01

    This paper provides a review of advanced power cycles under consideration for CSP. As variable renewables make rapid commercial progress, CSP with thermal energy storage is in an excellent position to provide low cost stability and reliability to the grid, however higher efficiency and lower costs are critical. Steam turbines provide a robust commercial option for today but more advanced power cycles offering greater agility and flexibility are needed. Supercritical steam turbines are attract...

  4. Exercise efficiency of low power output cycling.

    Science.gov (United States)

    Reger, M; Peterman, J E; Kram, R; Byrnes, W C

    2013-12-01

    Exercise efficiency at low power outputs, energetically comparable to daily living activities, can be influenced by homeostatic perturbations (e.g., weight gain/loss). However, an appropriate efficiency calculation for low power outputs used in these studies has not been determined. Fifteen active subjects (seven females, eight males) performed 14, 5-min cycling trials: two types of seated rest (cranks vertical and horizontal), passive (motor-driven) cycling, no-chain cycling, no-load cycling, cycling at low (10, 20, 30, 40 W), and moderate (50, 60, 80, 100, 120 W) power outputs. Mean delta efficiency was 57% for low power outputs compared to 41.3% for moderate power outputs. Means for gross (3.6%) and net (5.7%) efficiencies were low at the lowest power output. At low power outputs, delta and work efficiency values exceeded theoretical values. In conclusion, at low power outputs, none of the common exercise efficiency calculations gave values comparable to theoretical muscle efficiency. However, gross efficiency and the slope and intercept of the metabolic power vs mechanical power output regression provide insights that are still valuable when studying homeostatic perturbations. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Closed power cycles thermodynamic fundamentals and applications

    CERN Document Server

    Invernizzi, Costante Mario

    2013-01-01

    With the growing attention to the exploitation of renewable energies and heat recovery from industrial processes, the traditional steam and gas cycles are showing themselves often inadequate. The inadequacy is due to the great assortment of the required sizes power and of the large kind of heat sources. Closed Power Cycles: Thermodynamic Fundamentals and Applications offers an organized discussion about the strong interaction between working fluids, the thermodynamic behavior of the cycle using them and the technological design aspects of the machines. A precise treatment of thermal engines op

  6. Modern geothermal power: Binary cycle geothermal power plants

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2017-04-01

    In the second part of the review of modern geothermal power plant technologies and equipment, a role, a usage scale, and features of application of binary cycle plants in the geothermal economy are considered. Data on the use of low-boiling fluids, their impact on thermal parameters and performance of geothermal binary power units are presented. A retrospective of the use of various low-boiling fluids in industrial binary power units in the world since 1965 is shown. It is noted that the current generating capacity of binary power units running on hydrocarbons is equal to approximately 82.7% of the total installed capacity of all the binary power units in the world. At the same time over the past 5 years, the total installed capacity of geothermal binary power units in 25 countries increased by more than 50%, reaching nearly 1800 MW (hereinafter electric power is indicated), by 2015. A vast majority of the existing binary power plants recovers heat of geothermal fluid in the range of 100-200°C. Binary cycle power plants have an average unit capacity of 6.3 MW, 30.4 MW at single-flash power plants, 37.4 MW at double-flash plants, and 45.4 MW at power plants working on superheated steam. The largest binary cycle geothermal power plants (GeoPP) with an installed capacity of over 60 MW are in operation in the United States and the Philippines. In most cases, binary plants are involved in the production process together with a steam cycle. Requirements to the fluid ensuring safety, reliability, and efficiency of binary power plants using heat of geothermal fluid are determined, and differences and features of their technological processes are shown. Application of binary cycle plants in the technological process of combined GeoPPs makes it possible to recover geothermal fluid more efficiently. Features and advantages of binary cycle plants using multiple fluids, including a Kalina Cycle, are analyzed. Technical characteristics of binary cycle plants produced by various

  7. Comparison of geothermal power conversion cycles

    Science.gov (United States)

    Elliott, D. G.

    1976-01-01

    Geothermal power conversion cycles are compared with respect to recovery of the available wellhead power. The cycles compared are flash steam, in which steam turbines are driven by steam separated from one or more flash stages; binary, in which heat is transferred from the brine to an organic turbine cycle; flash binary, in which heat is transferred from flashed steam to an organic turbine cycle; and dual steam, in which two-phase expanders are driven by the flashing steam-brine mixture and steam turbines by the separated steam. Expander efficiencies assumed are 0.7 for steam turbines, 0.8 for organic turbines, and 0.6 for two-phase expanders. The fraction of available wellhead power delivered by each cycle is found to be about the same at all brine temperatures: 0.65 with one stage and 0.7 with four stages for dual stream; 0.4 with one stage and 0.6 with four stages for flash steam; 0.5 for binary; and 0.3 with one stage and 0.5 with four stages for flash binary.

  8. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    Science.gov (United States)

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  9. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    Energy Technology Data Exchange (ETDEWEB)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  10. 47 CFR 27.50 - Power limits and duty cycle.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Power limits and duty cycle. 27.50 Section 27... MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.50 Power limits and duty cycle. (a) The following power limits and related requirements apply to stations transmitting in the 2305-2320 MHz band or...

  11. Optimizing design of converters using power cycling lifetime models

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup; Munk-Nielsen, Stig

    2015-01-01

    Converter power cycling lifetime depends heavily on converter operation point. A lifetime model of a single power module switched mode power supply with wide input voltage range is shown. A lifetime model is created using a power loss model, a thermal model and a model for power cycling capability...... with a given mission profile. A method to improve the expected lifetime of the converter is presented, taking into account switching frequency, input voltage and transformer turns ratio....

  12. Time course of learning to produce maximum cycling power.

    Science.gov (United States)

    Martin, J C; Diedrich, D; Coyle, E F

    2000-10-01

    The purpose of this investigation was to determine the time course and magnitude of learning effects associated with repeated maximum cycling power tests and to determine if cycle-trained men exhibit different learning effects than active men who are not cycle-trained. Cycle-trained (N = 13) and active men (N = 35) performed short maximal cycling bouts 4 times per day for 4 consecutive days. Inertial load cycle ergometry was used to measure maximum power and pedaling rate at maximum power. Maximum power of the cycle-trained men did not differ across days or bouts. Maximum power of the active men increased 7 % within the first day and 7 % from the mean of day one to day three. Pedaling rate at maximum power did not differ across days or bouts in either the cycle-trained or active men. These results demonstrate that valid and reliable results for maximum cycling power can be obtained from cycle-trained men in a single day, whereas active men require at least 2 days of practice in order to produce valid and reliable values.

  13. Electrofishing power requirements in relation to duty cycle

    Science.gov (United States)

    Miranda, L.E.; Dolan, C.R.

    2004-01-01

    Under controlled laboratory conditions we measured the electrical peak power required to immobilize (i.e., narcotize or tetanize) fish of various species and sizes with duty cycles (i.e., percentage of time a field is energized) ranging from 1.5% to 100%. Electrofishing effectiveness was closely associated with duty cycle. Duty cycles of 10-50% required the least peak power to immobilize fish; peak power requirements increased gradually above 50% duty cycle and sharply below 10%. Small duty cycles can increase field strength by making possible higher instantaneous peak voltages that allow the threshold power needed to immobilize fish to radiate farther away from the electrodes. Therefore, operating within the 10-50% range of duty cycles would allow a larger radius of immobilization action than operating with higher duty cycles. This 10-50% range of duty cycles also coincided with some of the highest margins of difference between the electrical power required to narcotize and that required to tetanize fish. This observation is worthy of note because proper use of duty cycle could help reduce the mortality associated with tetany documented by some authors. Although electrofishing with intermediate duty cycles can potentially increase effectiveness of electrofishing, our results suggest that immobilization response is not fully accounted for by duty cycle because of a potential interaction between pulse frequency and duration that requires further investigation.

  14. Noncircular Chainrings Do Not Influence Maximum Cycling Power.

    Science.gov (United States)

    Leong, Chee-Hoi; Elmer, Steven J; Martin, James C

    2017-12-01

    Noncircular chainrings could increase cycling power by prolonging the powerful leg extension/flexion phases, and curtailing the low-power transition phases. We compared maximal cycling power-pedaling rate relationships, and joint-specific kinematics and powers across 3 chainring eccentricities (CON = 1.0; LOW ecc  = 1.13; HIGH ecc  = 1.24). Part I: Thirteen cyclists performed maximal inertial-load cycling under 3 chainring conditions. Maximum cycling power and optimal pedaling rate were determined. Part II: Ten cyclists performed maximal isokinetic cycling (120 rpm) under the same 3 chainring conditions. Pedal and joint-specific powers were determined using pedal forces and limb kinematics. Neither maximal cycling power nor optimal pedaling rate differed across chainring conditions (all p > .05). Peak ankle angular velocity for HIGH ecc was less than CON (p < .05), while knee and hip angular velocities were unaffected. Self-selected ankle joint-center trajectory was more eccentric than HIGH ecc with an opposite orientation that increased velocity during extension/flexion and reduced velocity during transitions. Joint-specific powers did not differ across chainring conditions, with a small increase in power absorbed during ankle dorsiflexion with HIGH ecc . Multiple degrees of freedom in the leg, crank, and pedal system allowed cyclists to manipulate ankle angular velocity to maintain their preferred knee and hip actions, suggesting maximizing extension/flexion and minimizing transition phases may be counterproductive for maximal power.

  15. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.

    2015-01-01

    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy...

  16. Liquid-metal binary cycles for stationary power

    Science.gov (United States)

    Gutstein, M.; Furman, E. R.; Kaplan, G. M.

    1975-01-01

    The use of topping cycles to increase electric power plant efficiency is discussed, with particular attention to mercury and alkali metal Rankine cycle systems that could be considered for topping cycle applications. An overview of this technology, possible system applications, the required development, and possible problem areas is presented.

  17. Finite time thermodynamics of power and refrigeration cycles

    CERN Document Server

    Kaushik, Shubhash C; Kumar, Pramod

    2017-01-01

    This book addresses the concept and applications of Finite Time Thermodynamics to various thermal energy conversion systems including heat engines, heat pumps, and refrigeration and air-conditioning systems. The book is the first of its kind, presenting detailed analytical formulations for the design and optimisation of various power producing and cooling cycles including but not limited to: • Vapour power cycles • Gas power cycles • Vapour compression cycles • Vapour absorption cycles • Rankine cycle coupled refrigeration systems Further, the book addresses the thermoeconomic analysis for the optimisation of thermal cycles, an important field of study in the present age and which is characterised by multi-objective optimization regarding energy, ecology, the environment and economics. Lastly, the book provides the readers with key techniques associated with Finite Time Thermodynamics, allowing them to understand the relevance of irreversibilitie s associated with real processes and the scientific r...

  18. On q-power cycles in cubic graphs

    DEFF Research Database (Denmark)

    Bensmail, Julien

    2017-01-01

    In the context of a conjecture of Erdos and Gyárfás, we consider, for any q ≥ 2, the existence of q-power cycles (i.e. with length a power of q) in cubic graphs. We exhibit constructions showing that, for every q ≥ 3, there exist arbitrarily large cubic graphs with no q-power cycles. Concerning...... the remaining case q = 2 (which corresponds to the conjecture of Erdos and Gyárfás), we show that there exist arbitrarily large cubic graphs whose only 2-power cycles have length 4 only, or 8 only....

  19. On q-Power Cycles in Cubic Graphs

    OpenAIRE

    Bensmail Julien

    2017-01-01

    International audience; In the context of a conjecture of Erdős and Gyárfás, we consider, for any $q ≥ 2$, the existence of q-power cycles (i.e. with length a power of q) in cubic graphs. We exhibit constructions showing that, for every $q ≥ 3$, there exist arbitrarily large cubic graphs with no q-power cycles. Concerning the remaining case $q = 2$ (which corresponds to the conjecture of Erdős and Gyárfás), we show that there exist arbitrarily large cubic graphs whose only 2-power cycles have...

  20. Life Cycle Assessment of a Natural Gas Combined Cycle Power Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P.L.; Mann, M.K.

    2000-12-27

    Natural gas is used for steam and heat production in industrial processes, residential and commercial heating, and electric power generation. Because of its importance in the power mix, a life cycle assessment on electricity generation via a natural gas combined cycle system has been performed.

  1. Impact of Altitude on Power Output during Cycling Stage Racing.

    Directory of Open Access Journals (Sweden)

    Laura A Garvican-Lewis

    Full Text Available The purpose of this study was to quantify the effects of moderate-high altitude on power output, cadence, speed and heart rate during a multi-day cycling tour.Power output, heart rate, speed and cadence were collected from elite male road cyclists during maximal efforts of 5, 15, 30, 60, 240 and 600 s. The efforts were completed in a laboratory power-profile assessment, and spontaneously during a cycling race simulation near sea-level and an international cycling race at moderate-high altitude. Matched data from the laboratory power-profile and the highest maximal mean power output (MMP and corresponding speed and heart rate recorded during the cycling race simulation and cycling race at moderate-high altitude were compared using paired t-tests. Additionally, all MMP and corresponding speeds and heart rates were binned per 1000 m (3000 m according to the average altitude of each ride. Mixed linear modelling was used to compare cycling performance data from each altitude bin.Power output was similar between the laboratory power-profile and the race simulation, however MMPs for 5-600 s and 15, 60, 240 and 600 s were lower (p ≤ 0.005 during the race at altitude compared with the laboratory power-profile and race simulation, respectively. Furthermore, peak power output and all MMPs were lower (≥ 11.7%, p ≤ 0.001 while racing >3000 m compared with rides completed near sea-level. However, speed associated with MMP 60 and 240 s was greater (p < 0.001 during racing at moderate-high altitude compared with the race simulation near sea-level.A reduction in oxygen availability as altitude increases leads to attenuation of cycling power output during competition. Decrement in cycling power output at altitude does not seem to affect speed which tended to be greater at higher altitudes.

  2. Impact of Altitude on Power Output during Cycling Stage Racing.

    Science.gov (United States)

    Garvican-Lewis, Laura A; Clark, Bradley; Martin, David T; Schumacher, Yorck Olaf; McDonald, Warren; Stephens, Brian; Ma, Fuhai; Thompson, Kevin G; Gore, Christopher J; Menaspà, Paolo

    2015-01-01

    The purpose of this study was to quantify the effects of moderate-high altitude on power output, cadence, speed and heart rate during a multi-day cycling tour. Power output, heart rate, speed and cadence were collected from elite male road cyclists during maximal efforts of 5, 15, 30, 60, 240 and 600 s. The efforts were completed in a laboratory power-profile assessment, and spontaneously during a cycling race simulation near sea-level and an international cycling race at moderate-high altitude. Matched data from the laboratory power-profile and the highest maximal mean power output (MMP) and corresponding speed and heart rate recorded during the cycling race simulation and cycling race at moderate-high altitude were compared using paired t-tests. Additionally, all MMP and corresponding speeds and heart rates were binned per 1000 m (3000 m) according to the average altitude of each ride. Mixed linear modelling was used to compare cycling performance data from each altitude bin. Power output was similar between the laboratory power-profile and the race simulation, however MMPs for 5-600 s and 15, 60, 240 and 600 s were lower (p ≤ 0.005) during the race at altitude compared with the laboratory power-profile and race simulation, respectively. Furthermore, peak power output and all MMPs were lower (≥ 11.7%, p ≤ 0.001) while racing >3000 m compared with rides completed near sea-level. However, speed associated with MMP 60 and 240 s was greater (p cycling power output during competition. Decrement in cycling power output at altitude does not seem to affect speed which tended to be greater at higher altitudes.

  3. Effects of thermal cycling on aluminum metallization of power diodes

    DEFF Research Database (Denmark)

    Brincker, Mads; Pedersen, Kristian Bonderup; Kristensen, Peter Kjær

    2015-01-01

    Reconstruction of aluminum metallization on top of power electronic chips is a well-known wear out phenomenon under power cycling conditions. However, the origins of reconstruction are still under discussion. In the current study, a method for carrying out passive thermal cycling of power diodes...... is controlled and the device is not subjected to a current load the observed degradation of metallization and corresponding increase of resistance is purely induced by thermo-mechanical stress. A correlation between number of cycles, micro-structural evolution, and sheet resistance is found and conclusions...

  4. Multi-layer canard cycles and translated power functions

    OpenAIRE

    Dumortier, Freddy; Roussarie, Robert

    2008-01-01

    The paper deals with two-dimensional slow-fast systems and more specifically with multi-layer canard cycles. These are canard cycles passing through n layers of fast orbits, with n >= 2. The canard cycles are subject to n generic breaking mechanisms and we study the limit cycles that can be perturbed from the generic canard cycles of codimension n. We prove that this study can be reduced to the investigation of the fixed points of iterated translated power functions. (c) 2007 El...

  5. Maximum power for a power plant with two Carnot-like cycles

    Science.gov (United States)

    Aragón-González, G.; León-Galicia, A.

    2017-01-01

    A stationary power plant with two Carnot-like cycles is optimized. Each cycle has the following irreversibilities: finite rate heat transfer between the working fluid and the external heat sources, internal dissipation of the working fluid, and heat leak between reservoirs. The optimal allocation or effectiveness of the heat exchangers for this power plant is determined by applying, two alternating design rules: fixed internal thermal conductance or fixed areas. The optimal relations obtained are substituted in the power and the maximum power, according to the isentropic ratio of each one of the Carnot-like cycles of the power plant, is calculated. Additionally, the efficiency to maximum power is presented.

  6. HEAT RECOVERY FROM A NATURAL GAS POWERED INTERNAL COMBUSTION ENGINE BY CO2 TRANSCRITICAL POWER CYCLE

    Directory of Open Access Journals (Sweden)

    Mahmood Farzaneh-Gord

    2010-01-01

    Full Text Available The present work provides details of energy accounting of a natural gas powered internal combustion engine and achievable work of a utilized CO2 power cycle. Based on experimental performance analysis of a new designed IKCO (Iran Khodro Company 1.7 litre natural gas powered engine, full energy accounting of the engine were carried out on various engine speeds and loads. Further, various CO2 transcritical power cycle configurations have been appointed to take advantages of exhaust and coolant water heat lost. Based on thermodynamic analysis, the amount of recoverable work obtainable by CO2 transcritical power cycles have been calculated on various engine conditions. The results show that as much as 18 kW power could be generated by the power cycle. This would be considerable amount of power especially if compared with the engine brake power.

  7. Modular Trough Power Plant Cycle and Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Price, H.; Hassani, V.

    2002-01-01

    This report summarizes an analysis to reduce the cost of power production from modular concentrating solar power plants through a relatively new and exciting concept that merges two mature technologies to produce distributed modular electric power in the range of 500 to 1,500 kWe. These are the organic Rankine cycle (ORC) power plant and the concentrating solar parabolic (CSP) trough technologies that have been developed independent of each other over many years.

  8. Intermediate Fidelity Closed Brayton Cycle Power Conversion Model

    Science.gov (United States)

    Lavelle, Thomas M.; Khandelwal, Suresh; Owen, Albert K.

    2006-01-01

    This paper describes the implementation of an intermediate fidelity model of a closed Brayton Cycle power conversion system (Closed Cycle System Simulation). The simulation is developed within the Numerical Propulsion Simulation System architecture using component elements from earlier models. Of particular interest, and power, is the ability of this new simulation system to initiate a more detailed analysis of compressor and turbine components automatically and to incorporate the overall results into the general system simulation.

  9. Preliminary Modelling Results for an Otto Cycle/Stirling Cycle Hybrid-engine-based Power Generation System

    OpenAIRE

    Cullen, Barry; McGovern, Jim; Feidt, Michel; Petrescu, Stoian

    2009-01-01

    This paper presents preliminary data and results for a system mathematical model for a proposed Otto Cycle / Stirling Cycle hybrid-engine-based power generation system. The system is a combined cycle system with the Stirling cycle machine operating as a bottoming cycle on the Otto cycle exhaust. The application considered is that of a stationary power generation scenario wherein the Stirling cycle engine operates as a waste heat recovery device on the exhaust stream of the Otto cycle engine. ...

  10. On Hamiltonian cycles of power graphs of abelian groups

    OpenAIRE

    Mukherjee, Himadri

    2015-01-01

    In this article we discuss the question of presence of Hamiltonian cycle in the un-directed power graph of a group. In the process we develop weighted Hamiltonian cycle concept and prove a few general results regarding the Hamiltonian question.

  11. Solar powered Stirling cycle electrical generator

    Science.gov (United States)

    Shaltens, Richard K.

    1991-01-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  12. Comparative analysis of CCMHD power plants. [Closed Cycle MHD

    Science.gov (United States)

    Alyea, F. N.; Marston, C. H.; Mantri, V. B.; Geisendorfer, B. G.; Doss, H.

    1981-01-01

    A study of Closed Cycle MHD (CCMHD) power generation systems has been conducted which emphasizes both advances in component conceptual design and overall system performance. New design data are presented for the high temperature, regenerative argon heaters (HTRH) and the heat recovery/seed recovery (HRSR) subsystem. Contamination of the argon by flue gas adsorbed in the HTRH is examined and a model for estimation of contamination effects in operating systems is developed. System performance and cost data have been developed for the standard CCMHD/steam cycle as powered by both direct fired cyclone combustors and selected coal gasifiers. In addition, a new CCMHD thermodynamic cycle has been identified.

  13. Organic flash cycles for efficient power production

    Science.gov (United States)

    Ho, Tony; Mao, Samuel S.; Greif, Ralph

    2016-03-15

    This disclosure provides systems, methods, and apparatus related to an Organic Flash Cycle (OFC). In one aspect, a modified OFC system includes a pump, a heat exchanger, a flash evaporator, a high pressure turbine, a throttling valve, a mixer, a low pressure turbine, and a condenser. The heat exchanger is coupled to an outlet of the pump. The flash evaporator is coupled to an outlet of the heat exchanger. The high pressure turbine is coupled to a vapor outlet of the flash evaporator. The throttling valve is coupled to a liquid outlet of the flash evaporator. The mixer is coupled to an outlet of the throttling valve and to an outlet of the high pressure turbine. The low pressure turbine is coupled to an outlet of the mixer. The condenser is coupled to an outlet of the low pressure turbine and to an inlet of the pump.

  14. Reversible thermodynamic cycle for AMTEC power conversion

    Science.gov (United States)

    Vining, Cronin B.; Williams, Roger M.; Underwood, Mark L.; Ryan, M. A.; Suitor, Jerry W.

    1992-01-01

    The thermodynamic cycle appropriate to an AMTEC (alkali metal thermal-to-electric converter) cell is discussed for both liquid- and vapor-fed modes of operation, under the assumption that all processes can be performed reversibly. In the liquid-fed mode, the reversible efficiency is greater than 89.6 percent of Carnot efficiency for heat input and rejection temperatures (900-1300 K and 400-800 K, respectively) typical of practical devices. Vapor-fed cells can approach the efficiency of liquid-fed cells. Quantitative estimates confirm that the efficiency is insensitive to either the work required to pressurize the sodium liquid or the details of the state changes associated with cooling the low pressure sodium gas to the heat rejection temperature.

  15. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Many homes in Nigeria are in remote locations where grid electricity supply could not be extended. This paper attempts to present a concise life-cycle-cost comparison of diesel generator power supply system and photovoltaic power system for a remote rural application. In this comparative analysis, conceptual designs ...

  16. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A

    DEFF Research Database (Denmark)

    Meroni, Andrea; La Seta, Angelo; Andreasen, Jesper Graa

    2016-01-01

    Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary......Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic...... turbine design model, the details of the validation and a sensitivity analysis on the main parameters, in order to minimize the number of decision variables in the subsequent turbine design optimization. Part B analyzes the application of the combined turbine and cycle designs on a selected case study...

  17. Determining power outputs for cycle ergometers with different sized flywheels.

    Science.gov (United States)

    Gledhill, N; Jamnik, R

    1995-01-01

    A number of cycle ergometers are presently being used in a variety of laboratory applications for which the quantification of power output is required. To calculate the power output of cycle ergometers with varying sized flywheels, the circumference of the resistance track on the flywheel is multiplied by the number of flywheel revolutions produced with one complete revolution of the pedal. This provides the "effective distance travelled," and by selecting an appropriate combination of pedalling rate plus flywheel resistance, any desired power output can be produced.

  18. Advanced Accelerated Power Cycling Test for Reliability Investigation of Power Device Modules

    DEFF Research Database (Denmark)

    Choi, Uimin; Jørgensen, Søren; Blaabjerg, Frede

    2016-01-01

    This paper presents an apparatus and methodology for an advanced accelerated power cycling test of insulated-gate bipolar transistor (IGBT) modules. In this test, the accelerated power cycling test can be performed under more realistic electrical operating conditions with online wear-out monitori...

  19. Gas--steam turbine combined cycle power plants

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1978-10-01

    The purpose of this technology evaluation is to provide performance and cost characteristics of the combined gas and steam turbine, cycle system applied to an Integrated Community Energy System (ICES). To date, most of the applications of combined cycles have been for electric power generation only. The basic gas--steam turbine combined cycle consists of: (1) a gas turbine-generator set, (2) a waste-heat recovery boiler in the gas turbine exhaust stream designed to produce steam, and (3) a steam turbine acting as a bottoming cycle. Because modification of the standard steam portion of the combined cycle would be necessary to recover waste heat at a useful temperature (> 212/sup 0/F), some sacrifice in the potential conversion efficiency is necessary at this temperature. The total energy efficiency ((electric power + recovered waste heat) divided by input fuel energy) varies from about 65 to 73% at full load to 34 to 49% at 20% rated electric power output. Two major factors that must be considered when installing a gas--steam turbine combines cycle are: the realiability of the gas turbine portion of the cycle, and the availability of liquid and gas fuels or the feasibility of hooking up with a coal gasification/liquefaction process.

  20. Power cycles with ammonia-water mixtures as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Thorin, Eva

    2000-05-01

    It is of great interest to improve the efficiency of power generating processes, i.e. to convert more of the energy in the heat source to power. This is favorable from an environmental point of view and can also be an economic advantage. To use an ammonia-water mixture instead of water as working fluid is a possible way to improve the efficiency of steam turbine processes. This thesis includes studies of power cycles with ammonia-water mixtures as working fluid utilizing different kinds of heat sources for power and heat generation. The thermophysical properties of the mixture are also studied. They play an important role in the calculations of the process performance and for the design of its components, such as heat exchangers. The studies concern thermodynamic simulations of processes in applications suitable for Swedish conditions. Available correlations for the thermophysical properties are compared and their influence on simulations and heat exchanger area predictions is investigated. Measurements of ammonia-water mixture viscosities using a vibrating wire viscometer are also described. The studies performed show that power cycles with ammonia-water mixtures as the working fluid are well suited for utilization of waste heat from industry and from gas engines. The ammonia-water power cycles can give up to 32 % more power in the industrial waste heat application and up to 54 % more power in the gas engine bottoming cycle application compared to a conventional Rankine steam cycle. However, ammonia-water power cycles in small direct-fired biomass-fueled cogeneration plants do not show better performance than a conventional Rankine steam cycle. When different correlations for the thermodynamic properties are used in simulations of a simple ammonia-water power cycle the difference in efficiency is not larger than 4 %, corresponding to about 1.3 percentage points. The differences in saturation properties between the correlations are, however, considerable at high

  1. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  2. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  3. Optimization of closed Brayton cycles for space power generation

    Science.gov (United States)

    Hanlon, James C.

    1992-01-01

    A development status evaluation is presented for methods that allow accurate preliminary design and optimization of closed Brayton cycle engines for space electrical power generation. The basis for such work is the Closed Cycle Engine Performance simulation code, in conjunction with the optimization code COPES/ADS; the joining of the two codes has greatly expedited the optimization process. Attention is given to a variety of other model-versatility enhancers.

  4. Simulation and parametric optimisation of thermal power plant cycles

    Directory of Open Access Journals (Sweden)

    P. Ravindra Kumar

    2016-09-01

    Full Text Available The objective of the paper is to analyse parametric studies and optimum steam extraction pressures of three different (subcritical, supercritical and ultra-supercritical coal fired power plant cycles at a particular main steam temperature of 600 °C by keeping the reheat temperature at 537 °C and condenser pressure at 0.09 bar as constant. In order to maximize the heat rate gain possible with supercritical and ultra-supercritical steam conditions, eight stages of feed water heater arrangement with single reheater is considered. The system is optimized in such a way that the percentage exergetic losses are reduced for the increase of the exergetic efficiency and higher fuel utilization. The plant cycles are simulated and optimized by using Cycle Tempo 5.0 simulation software tool. From the simulation study, it is observed that the thermal efficiency of the three different power plant cycles obtained as 41.40, 42.48 and 43.03%, respectively. The specific coal consumption for three different power plant cycles are 0.56, 0.55 and 0.54 Tonnes/MWh. The improvement in feed water temperatures at the inlet of steam generator of respective cycles are 291, 305 and 316 °C.

  5. Pros and cons of power combined cycle in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, C.; Hernandez, S. [Tecnoconsult/Tecnofluor, Caracas (Venezuela)

    1997-09-01

    In Venezuela combined cycle power has not been economically attractive to electric utility companies, mainly due to the very low price of natural gas. Savings in cost of natural gas due to a higher efficiency, characteristic of this type of cycle, does not compensate additional investments required to close the simple cycle (heat recovery steam generator (HRSG) and steam turbine island). Low gas prices have contributed to create a situation characterized by investors` reluctance to commit capital in gas pipe lines and associated equipment. The Government is taking measures to improve economics. Recently (January 1, 1997), the Ministry of Energy and Mines raised the price of natural gas, and established a formula to tie its price to the exchange rate variation (dollar/bolivar) in an intent to stimulate investments in this sector. This is considered a good beginning after a price freeze for about three years. Another measure that has been announced is the implementation of a corporate policy of outsourcing to build new gas facilities such as pipe lines and measuring and regulation stations. Under these new circumstances, it seems that combined cycle will play an important role in the power sector. In fact, some power generation projects are considering building new plants using this technology. An economical comparative study is presented between simple and combined cycles power plant. Screening curves are showed with a gas price forecast based on the government decree recently issued, as a function of plant capacity factor.

  6. Performance evaluation of ejector expansion combined cooling and power cycles

    Science.gov (United States)

    Ghaebi, Hadi; Rostamzadeh, Hadi; Matin, Pouria Seyed

    2017-09-01

    This paper studies performance characteristics of a basic ejector expansion combined cooling and power cycle (EECCPC) as well as three modified ones. These modified cycles are EECCPC incorporating turbine bleeding, regenerative EECCP cycle, and EECCP cycle incorporating with both turbine bleeding and regeneration. The expansion valve has been replaced by a two-phase ejector-expander in the traditional CCP cycle to improve the first and second-law efficiencies. Furthermore, the exergy destruction for components of the systems as well as the whole systems has been calculated, leading to determination of the main source of irreversibility in different cycles. The results of the exergy analysis reveals that the generator has the major contribution role in the overall losses of the systems. The results also show that the EECCP cycle surpasses the TCCP cycle in terms of thermal and exergy efficiencies. As a matter of fact, the thermal and exergy efficiencies are improved by 6.02, and 5.44%, respectively, throughout this successive modification. At last, sensitivity analysis of different key parameters on performance of the cycles has been investigated. It is shown that one can obtain higher thermal efficiency by increasing of the generator and evaporator temperatures or decreasing of the condenser temperature.

  7. Is fossil cycle chemistry the Cinderella of power plant chemistry?

    Energy Technology Data Exchange (ETDEWEB)

    Bursik, L. [BHT GmbH, Kusterdingen-Wankheim (Germany); Bursik, A. [PowerPlant Chemistry GmbH, Neulussheim (Germany)

    2008-01-15

    A survey of the topics addressed at three major European power plant chemistry conferences has revealed that fossil cycle chemistry, like the neglected stepsister Cinderella, is not getting the attention it deserves. Boiler tube failures are the leading cause of forced outages in the conventional fossil plant utility industry, and heat recovery steam generator tube failures are the major cause of damage in the multiple-pressure combined-cycle plants. While other topics are surely important, more honest and open discussion of chemistry-related problems in fossil cycles is imperative to achieving operational benefits like higher reliability, availability, and efficiency. (orig.)

  8. Optimization of the triple-pressure combined cycle power plant

    Directory of Open Access Journals (Sweden)

    Alus Muammer

    2012-01-01

    Full Text Available The aim of this work was to develop a new system for optimization of parameters for combined cycle power plants (CCGTs with triple-pressure heat recovery steam generator (HRSG. Thermodynamic and thermoeconomic optimizations were carried out. The objective of the thermodynamic optimization is to enhance the efficiency of the CCGTs and to maximize the power production in the steam cycle (steam turbine gross power. Improvement of the efficiency of the CCGT plants is achieved through optimization of the operating parameters: temperature difference between the gas and steam (pinch point P.P. and the steam pressure in the HRSG. The objective of the thermoeconomic optimization is to minimize the production costs per unit of the generated electricity. Defining the optimal P.P. was the first step in the optimization procedure. Then, through the developed optimization process, other optimal operating parameters (steam pressure and condenser pressure were identified. The developed system was demonstrated for the case of a 282 MW CCGT power plant with a typical design for commercial combined cycle power plants. The optimized combined cycle was compared with the regular CCGT plant.

  9. Performance and degradation evaluation of a combined cycle power plant

    OpenAIRE

    Başaran, Tuğrul; Basaran, Tugrul

    2010-01-01

    The performance of the power plants became an important consideration for energy industry in recent years. Many factors such as the deregulation of the energy market, latest strict environmental rules, depletion of the fossil fuels, continuously increasing high fuel prices and growing energy demand increase pressure on authorities to further consider the power plant performance. Although there are many studies concerning thermodynamic cycles and theoretical performance of various combined cyc...

  10. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  11. Advanced power cycling test for power module with on-line on-state VCE measurement

    DEFF Research Database (Denmark)

    Choi, Ui-min; Trintis, Ionut; Blaabjerg, Frede

    2015-01-01

    estimation of power semiconductor devices and capacitors have been done. Accelerated power cycling test is one of the common tests to assess the power device module and develop the lifetime model considering the physics of failure. In this paper, a new advanced power cycling test setup is proposed for power......Recent research has made an effort to improve the reliability of power electronic systems to comply with more stringent constraints on cost, safety, predicted lifetime and availability in many applications. For this, studies about failure mechanisms of power electronic components and lifetime...... module. The proposed concept can perform various stress conditions which is valid in a real mission profile and it is using a real power converter application with small loss. The concept of the proposed test setup is first presented. Then, the on-line on-state collector-emitter voltage VCE measurement...

  12. Investment and operating costs of binary cycle geothermal power plants

    Science.gov (United States)

    Holt, B.; Brugman, J.

    1974-01-01

    Typical investment and operating costs for geothermal power plants employing binary cycle technology and utilizing the heat energy in liquid-dominated reservoirs are discussed. These costs are developed as a function of reservoir temperature. The factors involved in optimizing plant design are discussed. A relationship between the value of electrical energy and the value of the heat energy in the reservoir is suggested.

  13. Fast thermal cycling-enhanced electromigration in power metallization

    NARCIS (Netherlands)

    Nguyen, Van Hieu; Salm, Cora; Krabbenborg, B.H.; Krabbenborg, B.H.; Bisschop, J.; Mouthaan, A.J.; Kuper, F.G.

    Fast thermal nterconnects used in power ICs are susceptible to short circuit failure due to a combination of fast thermal cycling and electromigration stresses. In this paper, we present a study of electromigration-induced extrusion short-circuit failure in a standard two level metallization

  14. Changes in muscle coordination and power output during sprint cycling.

    Science.gov (United States)

    O'Bryan, Steven J; Brown, Nicholas A T; Billaut, François; Rouffet, David M

    2014-07-25

    This study investigated the changes in muscle coordination associated to power output decrease during a 30-s isokinetic (120rpm) cycling sprint. Modifications in EMG amplitude and onset/offset were investigated from eight muscles [gluteus maximus (EMGGMAX), vastus lateralis and medialis obliquus (EMGVAS), medial and lateral gastrocnemius (EMGGAS), rectus femoris (EMGRF), biceps femoris and semitendinosus (EMGHAM)]. Changes in co-activation of four muscle pairs (CAIGMAX/GAS, CAIVAS/GAS, CAIVAS/HAM and CAIGMAX/RF) were also calculated. Substantial power reduction (60±6%) was accompanied by a decrease in EMG amplitude for all muscles other than HAM, with the greatest deficit identified for EMGRF (31±16%) and EMGGAS (20±14%). GASonset, HAMonset and GMAXonset shifted later in the pedalling cycle and the EMG offsets of all muscles (except GASoffset) shifted earlier as the sprint progressed (Pfatiguing sprint cycling is accompanied by marked reductions in the EMG activity of bi-articular GAS and RF and co-activation level between GAS and main power producer muscles (GMAX and VAS). The observed changes in RF and GAS EMG activity are likely to result in a redistribution of the joint powers and alterations in the orientation of the pedal forces. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Cycles of judicial and executive power in irregular migration.

    Science.gov (United States)

    Marmo, Marinella; Giannacopoulos, Maria

    2017-01-01

    This article argues that power struggles between judiciaries and executives are fuelled by tensions of securitisation, border control and human rights over the issue of irregular migration. The article juxtaposes three paradigm court cases to render the argument concrete, focusing on two Australian High Court decisions (M70 v Minister for Immigration and Citizenship and CPCF v. Minister for Immigration and Border Protection & Anor) and one decision from the European Court of Human Rights (Hirsi Jamaa and Others v. Italy). An examination of these cases reveals each step of this cycle: the executive attempts to produce a buffer to avoid or minimise migrants' protections and judicial review, yet such manoeuvring is countered by the judges. Following this, new steps of the cycle occur: governments display disappointment to courts' interventions in an effort to discredit the exercise of judicial power while the judiciaries maintain the focus on the rule of law. And so the cycle continues. The key argument of this paper rests on the paradox resulting from the executive's attempts to curb judicial intervention, because such attempts actually empower judiciaries. Comparing different jurisdictions highlights how this cyclical power struggle is a defining element between these two arms of power across distinct legal-geographical boundaries. By tracing this development in Australia and in Europe, this article demonstrates that the argument has global significance.

  16. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  17. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    Science.gov (United States)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  18. Reactive power influence on the thermal cycling of multi-MW wind power inverter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    In this paper the reactive power influence on the thermal cycling of power devices in grid-connected inverter for 10 MW wind turbines is investigated. Restrained by the grid codes, the allowable reactive power ranges in relation to amplitude and phase angle of the load current for a single...... converter system are first presented at different wind speeds. Furthermore, the interaction between paralleled converter systems in a wind park is also considered and analyzed. By controlling the reactive power circulated among paralleled converters, a new concept is then proposed to stabilize the thermal...... fluctuation of the power devices during wind gusts. It is concluded that the reactive power may change the thermal distribution of power devices. By properly controlling the reactive power, it is possible to achieve a more stable junction temperature in the power devices during the fluctuation of wind speed...

  19. Reactive power influence on the thermal cycling of multi-MW wind power inverter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    In this paper the reactive power influence on the thermal cycling of power devices in grid-connected inverter for 10 MW wind turbines is investigated. Restrained by the grid codes, the allowable reactive power ranges in relation to amplitude and phase angle of the load current for a single...... converter system are first presented at different wind speeds. Furthermore, the interaction between paralleled converter systems in a wind park is also considered and analyzed. By controlling the reactive power circulated among paralleled converters, a new concept is then proposed to stabilize the thermal...... fluctuation of the power devices during wind gusts. It is concluded that the reactive power may change the thermal distribution of power devices. By properly controlling the reactive power, it is possible to achieve a more stable junction temperature in the power devices during the fluctuation of wind speed...

  20. Life Cycle Assessment of Coal-fired Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).

  1. Status of Brayton Cycle Power Conversion Development at NASA GRC

    Science.gov (United States)

    Mason, Lee S.; Shaltens, Richard K.; Dolce, James L.; Cataldo, Robert L.

    2002-01-01

    The NASA Glenn Research Center (GRC) is pursuing the development of Brayton cycle power conversion for various NASA initiatives. Brayton cycle power systems offer numerous advantages for space power generation including high efficiency, long life, high maturity, and broad scalability. Candidate mission applications include surface rovers and bases, advanced propulsion vehicles, and earth orbiting satellites. A key advantage is the ability for Brayton converters to span the wide range of power demands of future missions from several kilowatts to multi-megawatts using either solar, isotope, or reactor heat sources. Brayton technology has been under development by NASA since the early 1960's resulting in engine prototypes in the 2 to 15 kW-class that have demonstrated conversion efficiency of almost 30% and cumulative operation in excess of 40,000 hours. Present efforts at GRC are focusing on a 2 kW testbed as a proving ground for future component advances and operational strategies, and a 25 kW engine design as a modular building block for 100 kW-class electric propulsion and Mars surface power applications.

  2. Design and Modelling of Small Scale Low Temperature Power Cycles

    DEFF Research Database (Denmark)

    Wronski, Jorrit

    he work presented in this report contributes to the state of the art within design and modelling of small scale low temperature power cycles. The study is divided into three main parts: (i) fluid property evaluation, (ii) expansion device investigations and (iii) heat exchanger performance. The t...... scale plate heat exchanger. Working towards a validation of heat transfer correlations for ORC conditions, a new test rig was designed and built. The test facility can be used to study heat transfer in both ORC and high temperature heat pump systems.......he work presented in this report contributes to the state of the art within design and modelling of small scale low temperature power cycles. The study is divided into three main parts: (i) fluid property evaluation, (ii) expansion device investigations and (iii) heat exchanger performance...

  3. Power generation costs for alternate reactor fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Smolen, G.R.; Delene, J.G.

    1980-09-01

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U/sub 3/O/sub 8/ price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions.

  4. Organic Rankine Cycle and its application in renewable power engineering

    Directory of Open Access Journals (Sweden)

    G. V. Belov

    2014-01-01

    Full Text Available A considerable part of energy consumed in the world is thermal power that is produced due to burning of hydrocarbon fuels and as a result of controlled course of nuclear reactions. Thus rather large part of thermal power is used ultrainefficiently, often simply dissipates in environment. The rise in prices for energy compels to use low-grade one to be released in large quantities in environment. To utilize the low-grade energy Renkin's cycle with with alternative working bodies is often applied. The corresponding cycle was called Renkin's organic cycle (ROC. A substance with lower boiling temperature, than that of water is used in ROC as a working body to utilize low-grade energy.The review of literature shows that thrust on power sector related to utilization of residual heat (thermal waste and use of alternative energy sources, recently, intensively develops. However there is, essentially, a lack of publications on this subject in Russian. The objective of given article is to analyse modern sources of information (mainly, foreign ones which consider various aspects of ROC and its application potential in alternative power engineering. The article focuses much attention on the choice of ROC working body. It presents a list of main requirements for a working body. The article studies the matters of ROC simulation.It is shown that ROC application enables using the low-grade power of exhaust gases, geothermal sources, other thermal streams with rather low temperature. Integration of ROC with ICE (internal combustion engine is in position to increase an efficiency of used fuel energy and to reduce amount of toxic impurity in exhaust gases. Essential influence of working body properties on its characteristics of ROC is noted.

  5. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  6. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  7. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  8. Solar power satellite life-cycle energy recovery consideration

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, S.; Blumenberg, J. [Deutsche Aerospace AG, Munich (Germany)]|[Technical Univ. of Munich, Munich (Germany)

    1994-12-31

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  9. LNG combined cycle power plant for stable power supply for Kiheung semiconductor plant

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choong Koo [Samsung Electronic, Seoul (Korea, Republic of); Park, Hyo Jeong [Samsung Electronics, Kiheung (Korea, Republic of); Kim, In Chool [Samsung Heavy Industries, Seoul (Korea, Republic of)

    1995-12-31

    Reserve margins of Korea Electric Power Corporation (KEPCO) was 12% in 1993, however it was reduced to less than 3% in the summer of 1994 due to increase of electric power consumption caused by life style change based on economic growth. Therefore stable supply of electric power to industrial plant was threatened during last summer`s peak. The process of semiconductor manufacturing is very precious and full processing time reaches several months. Furthermore interruption of power supply to the process causes abortion of every product in the process. Therefore, power failure of less than one (1) second, may result in enormous loss of capital. In order to protect disaster caused by power shortage during summer peaks. Samsung Electronics Co., Ltd (SEC) planned to construct LNG combined cycle power plant for the Klheung semiconductor plant which is the world`s leading maker of dynamic random access memory (DRAM) chips.

  10. Studies of cycles for liquid-metal magnetohydrodynamic generation of power

    Science.gov (United States)

    Lee, K.; Petrick, M.

    1969-01-01

    Studies of liquid-metal magnetohydrodynamic power cycles indicate that the overall efficiency of a binary cycle, employing a liquid-metal topping cycle and a bottoming steam cycle, may reach 60 percent. Details of analyses and data on cycles are presented, and the commercial potential of the binary cycle is discussed.

  11. Extended Pulse-Powered Humidity-Freeze Cycling for Testing Module-Level Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kempe, Michael D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Repins, Ingrid L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-28

    An EMI suppression capacitor (polypropylene film type) failed by 'popcorning' due to vapor outgassing in pulse powered humidity-freeze cycles. No shorts or shunts could be detected despite mildly corroded metallization visible in the failed capacitor. Humidity-freeze cycling is optimized to break into moisture barriers. However, further studies will be required on additional module level power electronic (MLPE) devices to optimize the stress testing for condensation to precipitate any weakness to short circuiting and other humidity/bias failure modes.

  12. Simulation and parametric optimisation of thermal power plant cycles

    OpenAIRE

    Kumar, P. Ravindra; Raju, V. Ramachandra; Kumar, N. Ravi

    2016-01-01

    The objective of the paper is to analyse parametric studies and optimum steam extraction pressures of three different (subcritical, supercritical and ultra-supercritical) coal fired power plant cycles at a particular main steam temperature of 600 °C by keeping the reheat temperature at 537 °C and condenser pressure at 0.09 bar as constant. In order to maximize the heat rate gain possible with supercritical and ultra-supercritical steam conditions, eight stages of feed water heater arrangement...

  13. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  14. Combined Cycle Power Generation Employing Pressure Gain Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holley, Adam [United Technologies Corporation, East Hartford, CT (United States). Research Center

    2017-05-15

    The Phase I program assessed the potential benefit of applying pressure gain combustion (PGC) technology to a natural gas combined cycle power plant. A conceptual design of the PGC integrated gas turbine was generated which was simulated in a detailed system modeling tool. The PGC integrated system was 1.93% more efficient, produced 3.09% more power, and reduced COE by 0.58%. Since the PGC system used had the same fuel flow rate as the baseline system, it also reduced CO2 emissions by 3.09%. The PGC system did produce more NOx than standard systems, but even with the performanceand cost penalties associated with the cleanup system it is better in every measure. This technology benefits all of DOE’s stated program goals to improve plant efficiency, reduce CO2 production, and reduce COE.

  15. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    Science.gov (United States)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  16. Brayton-Cycle Baseload Power Tower CSP System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce [Wilson Solarpower Corporation, Boston, MA (United States)

    2013-12-31

    The primary objectives of Phase 2 of this Project were:1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system. This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components.

  17. The nuclear power cycle; Le cycle de l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Fifty years after the first nuclear reactor come on-line, nuclear power is fourth among the world's primary energy sources, after oil, coal and gas. In 2002, there were 441 reactors in operation worldwide. The United States led the world with 104 reactors and an installed capacity of 100,000 MWe, or more than one fourth of global capacity. Electricity from nuclear energy represents 78% of the production in France, 57% in Belgium, 46% in Sweden, 40% in Switzerland, 39% in South Korea, 34% in Japan, 30% in Germany, 30% in Finland, 26% in Spain, 22% in Great Britain, 20% in the United States and 16% in Russia. Worldwide, 32 reactors are under construction, including 21 in Asia. This information document presents the Areva activities in the nuclear power cycle: the nuclear fuel, the nuclear reactors, the spent fuel reprocessing and recycling and nuclear cleanup and dismantling. (A.L.B.)

  18. Impinging jet separators for liquid metal magnetohydrodynamic power cycles

    Science.gov (United States)

    Bogdanoff, D. W.

    1973-01-01

    In many liquid metal MHD power, cycles, it is necessary to separate the phases of a high-speed liquid-gas flow. The usual method is to impinge the jet at a glancing angle against a solid surface. These surface separators achieve good separation of the two phases at a cost of a large velocity loss due to friction at the separator surface. This report deals with attempts to greatly reduce the friction loss by impinging two jets against each other. In the crude impinging jet separators tested to date, friction losses were greatly reduced, but the separation of the two phases was found to be much poorer than that achievable with surface separators. Analyses are presented which show many lines of attack (mainly changes in separator geometry) which should yield much better separation for impinging jet separators).

  19. Utilization of recently developed codes for high power Brayton and Rankine cycle power systems

    Science.gov (United States)

    Doherty, Michael P.

    1993-01-01

    Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided.

  20. Estimation of crank angle for cycling with a powered prosthesis.

    Science.gov (United States)

    Lawson, B E; Shultz, A; Ledoux, E; Goldfarb, M

    2014-01-01

    In order for a prosthesis to restore power generation during cycling, it must supply torque in a manner that is coordinated with the motion of the bicycle crank. This paper outlines an algorithm for the real time estimation of the angular position of a bicycle crankshaft using only measurements internal to an intelligent knee and ankle prosthesis. The algorithm assumes that the rider/prosthesis/bicycle system can be modeled as a four-bar mechanism. Assuming that a prosthesis can generate two independent angular measurements of the mechanism (in this case the knee angle and the absolute orientation of the shank), Freudenstein's equation can be used to synthesize the mechanism continuously. A recursive least-squares algorithm is implemented to estimate the Freudenstein coefficients, and the resulting link lengths are used to reformulate the equation in terms of input-output relationships mapping both measured angles to the crank angle. Using two independent measurements allows the algorithm to uniquely determine the crank angle from multi-valued functions. In order to validate the algorithm, a bicycle was mounted on a trainer and configured with the prosthesis using an artificial hip joint attached to the seat post. Motion capture was used to monitor the mechanism for forward and backward pedaling and the results are compared to the output of the presented algorithm. Once the parameters have converged, the algorithm is shown to predict the crank angle within 15° of the externally measured value throughout the entire crank cycle during forward rotation.

  1. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Eileen Tortora

    2013-03-01

    Full Text Available The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting transient simulations with an hourly distribution. The study of the load matching of the proposed renewable power technology and the final user has been carried out by comparing two different load tracking scenarios, i.e., the thermal and the electric demands. As a result, the power output follows fairly well the given load curves, supplying, on a selected winter day, about 50 GJ/d of thermal energy and the 6 GJ/d of electric energy, with reduced energy dumps when matching the load.

  2. Contraction-specific differences in maximal muscle power during stretch-shortening cycle movements in elderly males and females

    DEFF Research Database (Denmark)

    Caserotti, Paolo; Aagaard, Per; Simonsen, Erik Bruun

    2001-01-01

    Aging, muscle power, stretch-shortening cycle, eccentric muscle actions, concentric contractions......Aging, muscle power, stretch-shortening cycle, eccentric muscle actions, concentric contractions...

  3. Membranes for H2 generation from nuclear powered thermochemical cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra (University of California, Davis, CA); Iyer, Ratnasabapathy G. (University of California, Davis, CA); Axness, Marlene

    2006-11-01

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

  4. 78 FR 47012 - Developing Software Life Cycle Processes Used in Safety Systems of Nuclear Power Plants

    Science.gov (United States)

    2013-08-02

    ... COMMISSION Developing Software Life Cycle Processes Used in Safety Systems of Nuclear Power Plants AGENCY... Software Life Cycle Processes for Digital Computer Software used in Safety Systems of Nuclear Power Plants... design quality in software used in safety systems in nuclear power plants. ADDRESSES: Please refer to...

  5. Exergoeconomic optimal performance of an irreversible closed Brayton cycle combined cooling, heating and power plant

    National Research Council Canada - National Science Library

    Feng, Huijun; Chen, Lingen; Sun, Fengrui

    2011-01-01

    A combined cooling, heating and power (CCHP) plant model composed of an irreversible closed Brayton cycle and an endoreversible four-heat-reservoir absorption refrigeration cycle is established by using finite time thermodynamic...

  6. Weight and power optimization of steam bottoming cycle for offshore oil and gas installations

    OpenAIRE

    Nord, Lars O.; Martelli, Emanuele; Bolland, Olav

    2014-01-01

    Offshore oil and gas installations are mostly powered by simple cycle gas turbines. To increase the efficiency, a steam bottoming cycle could be added to the gas turbine. One of the keys to the implementation of combined cycles on offshore oil and gas installations is for the steam cycle to have a low weight-to-power ratio. In this work, a detailed combined cycle model and numerical optimization tools were used to develop designs with minimum weight-to-power ratio. Within the work, single-obj...

  7. Multi-layer canard cycles and translated power functions (vol 244, pg 1329, 2008) Correction

    OpenAIRE

    Dumortier, Freddy; Roussarie, Robert

    2008-01-01

    The paper deals with two-dimensional slow-fast systems and more specifically with multi-layer canard cycles. These are canard cycles passing through n layers of fast orbits, with n⩾2. The canard cycles are subject to n generic breaking mechanisms and we study the limit cycles that can be perturbed from the generic canard cycles of codimension n. We prove that this study can be reduced to the investigation of the fixed points of iterated translated power functions.

  8. Supercapacitor Degradation Assesment by Power Cycling and Calendar Life Tests

    Directory of Open Access Journals (Sweden)

    Sedlakova Vlasta

    2016-09-01

    Full Text Available Degradation of Supercapacitors (SC is quantified by accelerated ageing tests. Energy cycling tests and calendar life tests are used since they address the real operating modes. The periodic characterization is used to analyse evolution of the SC parameters as a whole, and its Helmholtz and diffusion capacitances. These parameters are determined before the ageing tests and during 3 × 105 cycles of both 75% and 100% energy cycling, respectively. Precise evaluation of the capacitance and Equivalent Series Resistance (ESR is based on fitting the experimental data by an exponential function of voltage vs. time. The ESR increases linearly with the number (No of cycles for both 75% and 100% energy cycling, whereas a super-linear increase of ESR vs. time of cycling is observed for the 100% energy cycling. A decrease of capacitance in time had been evaluated for 2000 hours of ageing of SC. A relative change of capacitance is ΔC/C0 = 16% for the 75% energy cycling test and ΔC/C0 = 20% for the 100% energy cycling test at temperature 25°C, while ΔC/C0 = 6% for the calendar test at temperature 22°C for a voltage bias V = 1.0 Vop. The energy cycling causes a greater decrease of capacitance in comparison with the calendar test; such results may be a consequence of increasing the temperature due to the Joule heat created in the SC structure. The charge/discharge current value is the same for both 75% and 100% energy cycling tests, so it is the Joule heat created on both the equivalent series resistance and time-dependent diffuse resistance that should be the source of degradation of the SC structure. The diffuse resistance reaches a value of up to 30Ω within each 75% energy cycle and up to about 43Ω within each 100% energy cycle.

  9. Power cycling test and failure analysis of molded Intelligent Power IGBT Module under different temperature swing durations

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, Søren

    2016-01-01

    on the lifetime of 600 V, 30 A, 3-phase molded Intelligent PowerModules (IPM) and their failuremechanismsare investigated. The study is based on the accelerated power cycling test results of 36 samples under 6 different conditions and tests are performed under realistic electrical conditions by an advanced power...... cycling test setup. The results show that the temperature swing duration has a significant effect on the lifetime of IGBTmodules. Longer temperature swing duration leads to the smaller number of cycles to failure. Further, it also shows that the bond-wire crack is the main failuremechanismof the tested...

  10. A comparison of advanced heat recovery power cycles in a combined cycle for large ships

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Sigthorsson, Oskar; Haglind, Fredrik

    2014-01-01

    in the literature. In the present work we compare these cycles in a combined cycle application with a large marine two-stroke diesel engine. We present an evaluation of the efficiency and the environmental impact, safety concerns and practical aspects of each of the cycles. A previously validated numerical engine...... model is combined with a turbocharger model and bottoming cycle models written in Matlab. Genetic algorithm optimisation results suggest that the Kalina cycle possess no significant advantages compared to the ORC or the steam cycle. While contributing to very high efficiencies, the organic working...

  11. Indirect-fired gas turbine dual fuel cell power cycle

    Science.gov (United States)

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  12. Power conversion cycles study for He-cooled reactor concepts for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, M. [EURATOM-CIEMAT Association for Fusion, Avda. Complutense, 22, Madrid 28040 (Spain)], E-mail: mercedes.medrano@ciemat.es; Puente, D.; Arenaza, E.; Herrazti, B.; Paule, A. [IBERTEF Magallanes 22, Madrid 28015 (Spain); Branas, B. [EURATOM-CIEMAT Association for Fusion, Avda. Complutense, 22, Madrid 28040 (Spain); Orden, A.; Dominguez, M. [IBERTEF Magallanes 22, Madrid 28015 (Spain); Stainsby, R. [AMEC-NNC, Booths Hall, Chelford Road, Knutsford, Cheshire WA16 8QZ (United Kingdom); Maisonnier, D.; Sardain, P. [EFDA-Close Support Unit Garching, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2007-10-15

    The study of different power conversion cycles have been performed in the framework of the DEMO scoping studies to provide technical information focused on the selection of DEMO parameters. The purpose of this study has been the investigation of 'advanced cycles' in order to get an improvement on the thermodynamic efficiency. Starting from the 'near term' He-cooled blanket concepts (HCLL, HCPB), developed within the Power Plant Conceptual Studies (PPCS) and currently considered for DEMO, conversion cycles based on a standard Rankine cycle were shown to yield net efficiencies (net power/thermal power) of approximately 28%. Two main features limit these efficiencies. Firstly, the heat sources in the reactor: the blanket which provides over 80% of the total thermal power, only produces moderate coolant temperatures (300-500 deg. C). The remaining thermal power is deposited in the divertor with a more respectable coolant temperature (540-717 deg. C). Secondly, the low inlet temperature of blanket coolant limits the possibilities to achieve efficient heat exchange with cycle. The parameters of HCLL model AB have been used for the analysis of the following cycles: (a) supercritical steam Rankine, (b) supercritical CO{sub 2} indirect Brayton and (c) separate cycles: independent cycles for the blanket and divertor. A comparison of the gross and net efficiencies obtained from these alternative cycles alongside the standard superheated Rankine cycle will be discussed in the paper.

  13. Increasing of Manoeuvrability of Cogeneration Combined Cycle Power Plants Owing to the Usage of Electric Boilers

    Directory of Open Access Journals (Sweden)

    S. Kachan

    2013-01-01

    Full Text Available The paper contains the results of efficiency evaluation  of using the electric boilers to improve maneuver capabilities of the cogeneration combined cycle power plants (as an example, 230 MW combined cycle unit of Minsk CHP-3 in comparison with the traditional steam-turbine units of cogeneration power plants.

  14. Consequences of ankle joint fixation on FES cycling power output: a simulation study

    NARCIS (Netherlands)

    van Soest, A.J.; Gfohler, M.; Casius, L.J.R.

    2005-01-01

    Introduction: During fixed-ankle FES cycling in paraplegics, in which the leg position is completely determined by the crank angle, mechanical power output is low. This low power output limits the cardiovascular load that could be realized during FES ergometer cycling, and limits possibilities for

  15. Optimisation of sampling system for a faster start-up of cycling power plants

    Energy Technology Data Exchange (ETDEWEB)

    Soellner, Anke [Siemens AG Energy Solution, Erlangen (Germany). Center of Technology; Rziha, Michael [Siemens AG Energy Solution, Erlangen (Germany). Plant Cleaning and Chemistry; Wuhrmann, Peter [Swan Analytische Instrumente AG, Hinwil (Switzerland)

    2010-07-01

    Due to the ongoing liberalisation of the power market, combined cycle power plants operate frequently in cycling mode (approximately 200 hot starts, 50 warm starts per year). The Siemens turbine guideline allows an earlier start of the steam turbine (ST) under restricted conditions. Test results showed that about 100 minutes start-up time can be gained. (orig.)

  16. Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, Jesper Graa

    2016-01-01

    with direct vapour generation and without storage. The use of the ammonia-water mixture as the power cycle working fluid with non-isothermal evaporation and condensation presents the potential to improve the overall performance of the plant. This however comes at a price of requiring larger heat exchangers......Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. This paper evaluates the use of a high temperature Kalina cycle for a central receiver concentrating solar power plant...... because of lower thermal pinch and heat transfer degradation for mixtures as compared with using a pure fluid in a conventional steam Rankine cycle, and the necessity to use a complex cycle arrangement. Most of the previous studies on the Kalina cycle focused solely on the thermodynamic aspects...

  17. The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles

    CERN Document Server

    Qin Xiao Yong; Sun Feng Rui; Wu Chih

    2003-01-01

    The performance of irreversible reciprocating heat engine cycles with heat transfer loss and friction-like term loss is analysed using finite-time thermodynamics. The universal relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, and the optimal relation between power output and the efficiency of the cycles are derived. Moreover, analysis and optimization of the model were carried out in order to investigate the effect of cycle processes on the performance of the cycle using numerical examples. The results obtained herein include the performance characteristics of irreversible reciprocating Diesel, Otto, Atkinson and Brayton cycles.

  18. System studies of coal fired-closed cycle MHD for central station power plants

    Science.gov (United States)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed-cycle MHD results obtained in a recent study of various advanced energy-conversion power systems. The direct coal-fired MHD topping-steam bottoming cycle was established as the current choice for central station power generation. Emphasis is placed on the background assumptions and the conclusions that can be drawn from the closed-cycle MHD analysis. It is concluded that closed-cycle MHD has efficiencies comparable to that of open-cycle MHD. Its cost will possibly be slightly higher than that of the open-cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower-cost electricity than conventional steam power plants. Suggestions for further work in closed-cycle MHD components and systems are made.

  19. Economic optimization of a Kalina cycle for a parabolic trough solar thermal power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, J. G.

    2015-01-01

    technology for the conversion of solar thermal energy into electricity. In this paper, a Kalina cycle and a steam Rankine cycle are compared in terms of the total capital investment cost for use in a parabolic trough solar thermal power plant without storage. In order to minimize the total capital investment...... cost of the Kalina cycle power plant (the solar field plus the power cycle), an optimization was performed by varying the turbine outlet pressure, the separator inlet temperature and the separator inlet ammonia mass fraction. All the heat exchangers were modelled as shell and tube type using suitable......The Kalina cycle has recently seen increased interest as a replacement for the more traditional steam Rankine cycle for geothermal, solar, ocean thermal energy conversion and waste heat recovery applications. The Kalina cycle uses a mixture of ammonia and water as the working fluid. The ammonia...

  20. Influence of Menstrual Cycle on Maximal Aerobic Power of Young ...

    African Journals Online (AJOL)

    The purpose of this study was to determine the exercise response to various stages of the menstrual cycle in young female African adults. Fifteen volunteer, sedentary young female adults with a regular 28-day menstrual cycle and no history of premenstrual syndrome or abnormality participated in this study. A repeated ...

  1. Vce-based methods for temperature estimation of high power IGBT modules during power cycling - A comparison

    DEFF Research Database (Denmark)

    Amoiridis, Anastasios; Anurag, Anup; Ghimire, Pramod

    2015-01-01

    Temperature estimation is of great importance for performance and reliability of IGBT power modules in converter operation as well as in active power cycling tests. It is common to be estimated through Thermo-Sensitive Electrical Parameters such as the forward voltage drop (Vce) of the chip....... This experimental work evaluates the validity and accuracy of two Vce based methods applied on high power IGBT modules during power cycling tests. The first method estimates the chip temperature when low sense current is applied and the second method when normal load current is present. Finally, a correction factor...

  2. Numerical evaluation of the Kalina cycle for concentrating solar power plants

    DEFF Research Database (Denmark)

    Modi, Anish

    of using a Kalina cycle is evaluated with a thermoeconomic optimization with a turbine inlet temperature of 500 C for a central receiver solar power plant with direct vapour generation, and 370 C for a parabolic trough solar power plant with Therminol VP-1 as the solar field heat transfer fluid. No thermal...... a higher specific capital investment cost and a higher levelized cost of electricity than the state-of-the-art steam Rankine cycle for both the central receiver and the parabolic trough plants. This is mainly because of worse power cycle design point efficiency than the corresponding steam Rankine cycle......Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. One of the key challenges currently faced by the solar industry is the high cost of electricity production...

  3. Conceptual design and analysis of ITM oxy-combustion power cycles.

    Science.gov (United States)

    Mancini, N D; Mitsos, A

    2011-12-28

    Ion transport membrane (ITM)-based oxy-combustion systems could potentially provide zero-emissions power generation with a significantly reduced thermodynamic penalty compared to conventional carbon capture applications. This article investigates ITM-based oxy-combustion power cycles using an intermediate-fidelity model that captures the complex physical coupling between the two systems and accurately accounts for operational constraints. Coupled ITM-cycle simulation reveals hidden design challenges, facilitates the development of novel cycle concepts, and enables accurate assessment of new and existing power cycles. Simulations of various ITM-based zero and partial-emissions power cycles are performed using an intermediate-fidelity ITM model coupled to power cycle models created in ASPEN Plus®. The objectives herein are to analyze the prevalent ITM-based power cycle designs, develop novel design modifications, and evaluate the implementation of reactive ITMs. An assessment of the potential for these ITM power cycles to reduce both the thermodynamic penalty and reactor size associated with ITM air separation technology is conducted. The power cycle simulation and analysis demonstrate the various challenges associated with implementing reactive ITMs; hybridization (the use of both reactive and separation-only ITMs) is necessary in order to effectively utilize the advantages of reactive ITMs. The novel hybrid cycle developed herein displays the potential to reduce the size of the ITM compared to the best separation-only concept while maintaining a comparable First Law efficiency. Next, the merit of implementing partial-emissions cycles is explored based on a proposed linear-combination metric. The results indicate that the tradeoff between the main thermodynamic performance metrics efficiency and CO(2) emissions does not appear to justify the use of partial-emissions cycles.

  4. Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel

    2017-06-01

    The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.

  5. Design and modelling of a novel compact power cycle for low temperature heat sources

    DEFF Research Database (Denmark)

    Wronski, Jorrit; Skovrup, Morten Juel; Elmegaard, Brian

    2012-01-01

    Power cycles for the efficient use of low temperature heat sources experience increasing attention. This paper describes an alternative cycle design that offers potential advantages in terms of heat source exploitation. A concept for a reciprocating expander is presented that performs both, work...... calculation results for use with a steady state cycle evaluation. An organic Rankine cycle model is developed and used for a comparison. The performance of the expander itself and the different requirements regarding heat source and temperature levels are studied....

  6. Valuing Flexibility: The case of an Integrated Gasification Combined Cycle Power Plant

    OpenAIRE

    Abadie, Luis M.; Chamorro Gómez, José Manuel

    2005-01-01

    In this paper we analyze the valuation of options stemming from the flexibility in an Integrated Gasification Combined Cycle (IGCC) Power Plant. First we use as a base case the opportunity to invest in a Natural Gas Combined Cycle (NGCC) Power Plant, deriving the optimal investment rule as a function of fuel price and the remaining life of the right to invest. Additionally, the analytical solution for a perpetual option is obtained. Second, the valuation of an operating IGCC Power Plant is st...

  7. Development tendencies in cycle chemistry of fossil fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Daucik, K. [Skaerbaekvaerket, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    The development of cycle chemistry during the past 50 years is described and the main tendencies are pointed out. Improvement of cycle purity is the most dominant evolution, which introduces more freedom with respect to pH and redox potential control. Units with once-through boilers have profited most from this development. The development of boiler water chemistry in drum boilers also tends towards higher purity and less chemicals, which raises possibilities for oxygenated treatment. (au)

  8. Estimate for interstage water injection in air compressor incorporated into gas-turbine cycles and combined power plants cycles

    Science.gov (United States)

    Kler, A. M.; Zakharov, Yu. B.; Potanina, Yu. M.

    2017-05-01

    The objects of study are the gas turbine (GT) plant and combined cycle power plant (CCPP) with opportunity for injection between the stages of air compressor. The objective of this paper is technical and economy optimization calculations for these classes of plants with water interstage injection. The integrated development environment "System of machine building program" was a tool for creating the mathematic models for these classes of power plants. Optimization calculations with the criterion of minimum for specific capital investment as a function of the unit efficiency have been carried out. For a gas-turbine plant, the economic gain from water injection exists for entire range of power efficiency. For the combined cycle plant, the economic benefit was observed only for a certain range of plant's power efficiency.

  9. Joint-specific power-pedaling rate relationships during maximal cycling.

    Science.gov (United States)

    McDaniel, John; Behjani, N Scott; Elmer, Steven J; Brown, N A; Martin, James C

    2014-06-01

    Previous authors have reported power-pedaling rate relationships for maximal cycling. However, the joint-specific power-pedaling rate relationships that contribute to pedal power have not been reported. We determined absolute and relative contributions of joint-specific powers to pedal power across a range of pedaling rates during maximal cycling. Ten cyclists performed maximal 3 s cycling trials at 60, 90, 120, 150, and 180 rpm. Joint-specific powers were averaged over complete pedal cycles, and extension and flexion actions. Effects of pedaling rate on relative joint-specific power, velocity, and excursion were assessed with regression analyses and repeated-measures ANOVA. Relative ankle plantar flexion power (25 to 8%; P = .01; R(2) = .90) decreased with increasing pedaling rate, whereas relative hip extension power (41 to 59%; P power (34 to 49%; P powers did not differ across pedaling rates. Ankle joint angular excursion decreased with increasing pedaling rate (48 to 20 deg) whereas hip joint excursion increased (42 to 48 deg). These results demonstrate that the often-reported quadratic power-pedaling rate relationship arises from combined effects of dissimilar joint-specific power-pedaling rate relationships. These dissimilar relationships are likely influenced by musculoskeletal constraints (ie, muscle architecture, morphology) and/or motor control strategies.

  10. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; Michael G. McKellar

    2011-05-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal

  11. C.N. Cofrentes power up-rate up to 110 %. A challenge for cycle 14 core design

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Bernal, M.I.; Lopez Carbonell, M.T.; Garcia Delgado, L. [Iberdrola, Nuclear Fuel Dept., Madrid (Spain)

    2001-07-01

    C.N.Cofrentes is a GE design BWR reactor with 624 bundles in the core, a rated power of 2894 MWt and it is currently operating Cycle 13 at 104.2 % power. Commercial operation started in 1984 with 12-month cycles at rated power. Both cycle length and thermal power have been increased since then. Power has been up-rated in two steps, first at 102 % in Cycle 4 and later in Cycle 11 at 104.2%. Cycle length has been extended from the original 12-month to the currently 18-month cycles. Next cycle, Cycle 14, will be an 18-month cycle operating at 110 % power. This goal is a challenge for the in-house nuclear design team. Start up for Cycle 14 is planned for the first quarter of 2002. (author)

  12. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature

  13. 10-75-kWe-reactor-powered organic Rankine-cycle electric power systems (ORCEPS) study. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-30

    This 10-75 kW(e) Reactor-ORCEPS study was concerned with the evaluation of several organic Rankine cycle energy conversion systems which utilized a /sup 235/U-ZrH reactor as a heat source. A liquid metal (NaK) loop employing a thermoelectric converter-powered EM pump was used to transfer the reactor energy to the organic working fluid. At moderate peak cycle temperatures (750/sup 0/F), power conversion unit cycle efficiencies of up to 25% and overall efficiencies of 20% can be obtained. The required operating life of seven years should be readily achievable. The CP-25 (toluene) working fluid cycle was found to provide the highest performance levels at the lowest system weights. Specific weights varies from 100 to 50 lb/kW(e) over the power level range 10 to 75 kW(e). (DLC)

  14. COMBINED CYCLE GAS TURBINE FOR THERMAL POWER STATIONS: EXPERIENCE IN DESIGNING AND OPERATION, PROSPECTS IN APPLICATION

    Directory of Open Access Journals (Sweden)

    N. V. Karnitsky

    2014-01-01

    Full Text Available The paper has reviewed main world tendencies in power consumption and power system structure. Main schemes of combined cycle gas turbines have been considered in the paper. The paper contains an operational analysis of CCGT blocks that are operating within the Belarusian energy system. The analysis results have been given in tables showing main operational indices of power blocks

  15. Nuclear power generation and fuel cycle report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  16. Potassium topping cycles for stationary power. [conceptual analysis

    Science.gov (United States)

    Rossbach, R. J.

    1975-01-01

    A design study was made of the potassium topping cycle powerplant for central station use. Initially, powerplant performance and economics were studied parametrically by using an existing steam plant as the bottom part of the cycle. Two distinct powerplants were identified which had good thermodynamic and economic performance. Conceptual designs were made of these two powerplants in the 1200 MWe size, and capital and operating costs were estimated for these powerplants. A technical evaluation of these plants was made including conservation of fuel resources, environmental impact, technology status, and degree of development risk. It is concluded that the potassium topping cycle could have a significant impact on national goals such as air and water pollution control and conservation of natural resources because of its higher energy conversion efficiency.

  17. Development of an Organic Rankine-Cycle power module for a small community solar thermal power experiment

    Science.gov (United States)

    Kiceniuk, T.

    1985-01-01

    An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.

  18. Test results of an organic Rankine-cycle power module for a small community solar thermal power experiment

    Science.gov (United States)

    Clark, T. B.

    1985-01-01

    The organic Rankine-cycle (ORC) power conversion assembly was tested. Qualification testing of the electrical transport subsystem was also completed. Test objectives were to verify compatibility of all system elements with emphasis on control of the power conversion assembly, to evaluate the performance and efficiency of the components, and to validate operating procedures. After 34 hours of power generation under a wide range of conditions, the net module efficiency exceeded 18% after accounting for all parasitic losses.

  19. Power Conversion with a Stirling Cycle for Venus Surface Mission

    Science.gov (United States)

    Mellott, Ken

    2004-01-01

    The light-filtering characteristic of the dense, mostly-CO2 atmosphere of Venus, combined with the high atmospheric cloud cover, relegates the surface mission use of photovoltaic power systems and beckons for the independence and reliability of a nuclear-powered energy source. A multi-faceted Venus mission study was completed at NASA GRC in December of 2003 that resulted in the preliminary design of a helium- charged, kinematic Stirling converter, which is powered by nuclear, General Purpose Heat Source (GPHS) modules. The kinematic, Stirling power converter is configured to drive an electronics and sensor cooler in addition to a generator for electrical power. This paper briefly describes the design process and also describes and summarizes key features of the Stirling power converter preliminary design concept. With an estimated total efficiency of 23.4%, the power converter drives the electronics and sensor cooler, and also produces 100 watts of electricity. The converter rejects waste heat at a hot sink temperature of 500 C.

  20. Advanced power cycles and configurations for solar towers: Modeling and optimization of the decoupled solar combined cycle concept

    Science.gov (United States)

    García-Barberena, Javier; Olcoz, Asier; Sorbet, Fco. Javier

    2017-06-01

    CSP technologies are essential to allow large shares of renewables into the grid due to their unique ability to cope with the large variability of the energy resource by means of technically and economically feasible thermal energy storage (TES) systems. However, there is still the need and sought to achieve technological breakthroughs towards cost reductions and increased efficiencies. For this, research on advanced power cycles, like the Decoupled Solar Combined Cycle (DSCC) is, are regarded as a key objective. The DSCC concept is, basically, a Combined Brayton-Rankine cycle in which the bottoming cycle is decoupled from the operation of the topping cycle by means of an intermediate storage system. According to this concept, one or several solar towers driving a solar air receiver and a Gas Turbine (Brayton cycle) feed through their exhaust gasses a single storage system and bottoming cycle. This general concept benefits from a large flexibility in its design. On the one hand, different possible schemes related to number and configuration of solar towers, storage systems media and configuration, bottoming cycles, etc. are possible. On the other, within a specific scheme a large number of design parameters can be optimized, including the solar field size, the operating temperatures and pressures of the receiver, the power of the Brayton and Rankine cycles, the storage capacity and others. Heretofore, DSCC plants have been analyzed by means of simple steady-state models with pre-stablished operating parameters in the power cycles. In this work, a detailed transient simulation model for DSCC plants has been developed and is used to analyze different DSCC plant schemes. For each of the analyzed plant schemes, a sensitivity analysis and selection of the main design parameters is carried out. Results show that an increase in annual solar to electric efficiency of 30% (from 12.91 to 16.78) can be achieved by using two bottoming Rankine cycles at two different

  1. Effect of Menstrual Cycle on Maximal Aerobic Power of Normal ...

    African Journals Online (AJOL)

    Lamina

    (Chapman et al., 1997; Cullinane et al., 1995; Pahwa, Seth. & Seith, 1998; Vellar, 1974). The pulmonary ... maximal exercise performance (Moore, 1997; Brutsaert et al, 2002). There seems to be no consensus ..... Jurkowski, J.E., Jones N.L., Toews C.J. and Sutton J.R. 1981. 2. Effects of menstrual cycle on blood lactate, ...

  2. Test bench for thermal cycling of 10 kV silicon carbide power modules

    DEFF Research Database (Denmark)

    Sønderskov, Simon Dyhr; Jørgensen, Asger Bjørn; Maarbjerg, Anders Eggert

    2016-01-01

    This paper presents a test bench for lifetime investigation of 10 kV silicon carbide power modules. The test bench subjects high voltage switching operation to the modules while power cycling. Thus both a thermal and electrical operating point is emulated. The power cycling setup features offline...... made to validate the performance of the on-state voltage measurement and the thermal model. Issues are revealed in the form of common mode currents in gate drive supply, which should be remedied. Finally a new operating point for power cycling is suggested to better stress the power modules....... measurement of on-state voltages and direct real-time measurement of die surface temperatures, enabled by fiber optical sensors, which are built into the power modules. A thermal model of the module prototypes, based on the temperature measurements, is established. Independent verification steps have been...

  3. Connection between maximum-work and maximum-power thermal cycles.

    Science.gov (United States)

    Gonzalez-Ayala, Julian; Arias-Hernandez, L A; Angulo-Brown, F

    2013-11-01

    A new connection between maximum-power Curzon-Ahlborn thermal cycles and maximum-work reversible cycles is proposed. This linkage is built through a mapping between the exponents of a class of heat transfer laws and the exponents of a family of heat capacities depending on temperature. This connection leads to the recovery of known results and to a wide and interesting set of results for a class of thermal cycles. Among other results it was found that it is possible to use analytically closed expressions for maximum-work efficiencies to calculate good approaches to maximum-power efficiencies. Behind the proposed connection is an interpretation of endoreversibility hypothesis. Additionally, we suggest that certain reversible maximum-work cycles depending on working substance can be used as reversible landmarks for FTT maximum-power cycles, which also depend on working substance properties.

  4. Thermonuclear inverse magnetic pumping power cycle for stellarator reactor

    Science.gov (United States)

    Ho, Darwin D.; Kulsrud, Russell M.

    1991-01-01

    The plasma column in a stellarator is compressed and expanded alternatively in minor radius. First a plasma in thermal balance is compressed adiabatically. The volume of the compressed plasma is maintained until the plasma reaches a new thermal equilibrium. The plasma is then expanded to its original volume. As a result of the way a stellarator works, the plasma pressure during compression is less than the corresponding pressure during expansion. Therefore, negative work is done on the plasma over a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils. Direct electrical energy is obtained from this voltage. Alternatively, after the compression step, the plasma can be expanded at constant pressure. The cycle can be made self-sustaining by operating a system of two stellarator reactors in tandem. Part of the energy derived from the expansion phase of a first stellarator reactor is used to compress the plasma in a second stellarator reactor.

  5. Cycle water chemistry based on film forming amines at power plants: evaluation of technical guidance documents

    Science.gov (United States)

    Dyachenko, F. V.; Petrova, T. I.

    2017-11-01

    Efficiency and reliability of the equipment in fossil power plants as well as in combined cycle power plants depend on the corrosion processes and deposit formation in steam/water circuit. In order to decrease these processes different water chemistries are used. Today the great attention is being attracted to the application of film forming amines and film forming amine products. The International Association for the Properties of Water and Steam (IAPWS) consolidated the information from all over the World, and based on the research studies and operating experience of researchers and engineers from 21 countries, developed and authorized the Technical Guidance Document: “Application of Film Forming Amines in Fossil, Combined Cycle, and Biomass Power Plants” in 2016. This article describe Russian and International technical guidance documents for the cycle water chemistries based on film forming amines at fossil and combined cycle power plants.

  6. Internet Enabled Remote Driving of a Combat Hybrid Electric Power System for Duty Cycle Measurement

    National Research Council Canada - National Science Library

    Goodell, Jarrett; Compere, Marc; Smith, Wilford; Holtz, Dale; Brudnak, Mark; Pozolo, Mike; Paul, Victor; Mohammad, Syed; Mortsfield, Todd; Shvartsman, Andrey

    2007-01-01

    This paper describes a human-in-the-loop motion-based simulator interfaced to hybrid-electric power system hardware, both of which were used to measure the duty cycle of a combat vehicle in a virtual...

  7. Estimation of Oxygen Cost of Internal Power during Cycling Exercise with Changing Pedal Rate

    National Research Council Canada - National Science Library

    Tokui, Masato; Hirakoba, Kohji

    2008-01-01

    ...) exerted in exercising muscle itself would be larger than for an external power output (Pext) calculated from external load and pedal rate during cycling exercise under various conditions of Pint and Pext in a large range of pedal rates...

  8. Underwater Cycle Ergometry: Power Requirements With and Without Diver Thermal Dress

    National Research Council Canada - National Science Library

    Shykoff, B

    2009-01-01

    .... An ongoing problem has been that, although the power requirement of cycling in the water is known to be greater than that in air for the same ergometer setting, the magnitude of the difference...

  9. Modelling and Improvement of Thermal Cycling in Power Electronics for Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    cycling of power devices in a motor drive application and modelling their impact on the thermal stress. The motor drive system together with the thermal cycling in the power semiconductors have been modelled, and after investigating the dynamic behavior of the system, adverse temperature swings......It is well known that the dynamical change of the thermal stress in the power devices is one of the major factors that have influences on the overall efficiency and reliability of power electronics. The main objective of this paper consists of identifying the main parameters that affect the thermal...... are identified during the acceleration and deceleration periods of the motor. The main causes for these adverse thermal cycles have been presented and, consequently, the influence of the deceleration slope, modulation technique and reactive current on the thermal cycles has been analyzed. Finally, the improved...

  10. Prospective Analysis of Life-Cycle Indicators through Endogenous Integration into a National Power Generation Model

    National Research Council Canada - National Science Library

    García-Gusano, Diego; Martín-Gamboa, Mario; Iribarren, Diego; Dufour, Javier

    2016-01-01

      Given the increasing importance of sustainability aspects in national energy plans, this article deals with the prospective analysis of life-cycle indicators of the power generation sector through...

  11. Similar substrate oxidation rates in concentric and eccentric cycling matched for aerobic power output.

    Science.gov (United States)

    Isacco, Laurie; Ritter, Ophélie; Tordi, Nicolas; Laroche, Davy; Degano, Bruno; Bouhaddi, Malika; Rakobowchuk, Mark; Mourot, Laurent

    2016-11-01

    This study investigated substrate oxidation in concentric and eccentric cycling matched for aerobic power output in the postprandial state. Energy expenditure, respiratory exchange ratio, and fat and carbohydrate oxidation rates were measured at rest and after 15, 30, and 45 min of eccentric and concentric cycling in 12 men. Absolute and relative aerobic power output and energy expenditure were similar during concentric and eccentric exercise. No effect of exercise modality was observed for substrate metabolism.

  12. Limits and Optimization of Power Input or Output of Actual Thermal Cycles

    OpenAIRE

    Emin Açıkkalp; Hasan Yamık

    2013-01-01

    In classical thermodynamic, maximum power obtained from system (or minimum power supplied to system) defined as availability (exergy), but availability term is only used for reversible systems. In reality, there is no reversible system, all systems are irreversible, because reversible cycles doesn’t include constrains like time or size and they operates in quasi-equilibrium state. Purpose of this study is to define limits of the all basic thermodynamic cycles and to provide finite-time exergy...

  13. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mugerwa, Michael [Technip USA, Inc., Claremont, CA (United States)

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  14. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    This paper presents the results of calculations for CANDU reactor operation in thorium fuel cycle. Calculations are performed to estimate the feasibility of operation of heavy-water thermal neutron power reactor in self-sufficient thorium cycle. Parameters of active core and scheme of fuel reloading were considered to be the ...

  15. Dynamics of Perceived Exertion in Constant-Power Cycling: Time- and Workload-Dependent Thresholds

    Science.gov (United States)

    Balagué, Natàlia; Hristovski, Robert; García, Sergi; Aguirre, Cecilia; Vázquez, Pablo; Razon, Selen; Tenenbaum, Gershon

    2015-01-01

    Purpose: The purpose of this study was to test the dynamics of perceived exertion shifts (PES) as a function of time and workload during constant-power cycling. Method: Fifty-two participants assigned to 4 groups performed a cycling task at 4 different constant workloads corresponding to their individual rates of perceived exertion (RPEs = 13, 15,…

  16. A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems

    NARCIS (Netherlands)

    Wognsen, Erik Ramsgaard; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.; Hansen, René Rydhof; Larsen, K.G.; Sankaranarayanan, Sriram; Vicario, Enrico

    An ever increasing share of embedded systems is powered by rechargeable batteries. These batteries deteriorate with the number of charge/discharge cycles they are subjected to, the so-called cycle life. In this paper, we propose the wear score function to compare and evaluate the relative impact of

  17. Generating power at high efficiency combined cycle technology for sustainable energy production

    CERN Document Server

    Jeffs, E

    2008-01-01

    Combined cycle technology is used to generate power at one of the highest levels of efficiency of conventional power plants. It does this through primary generation from a gas turbine coupled with secondary generation from a steam turbine powered by primary exhaust heat. Generating power at high efficiency thoroughly charts the development and implementation of this technology in power plants and looks to the future of the technology, noting the advantages of the most important technical features - including gas turbines, steam generator, combined heat and power and integrated gasification com

  18. Closed-cycle power supply for fluidic control systems

    Science.gov (United States)

    Fiet, O.; Mangion, C.

    1972-01-01

    Power supply utilizes small quantities of two-phase fluid of suitable thermodynamic properties for circulation in a capillary-pumped heat transfer loop. Fluid is vaporized in evaporator, passed through fluidic system load, condensed, pumped by multistage capillary pump, and returned to the evaporator.

  19. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B

    DEFF Research Database (Denmark)

    La Seta, Angelo; Meroni, Andrea; Andreasen, Jesper Graa

    2016-01-01

    due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly-loaded...... variables affecting the turbine design. Part B of this two-part paper presents the first application of a design method where the thermodynamic cycle optimization is combined with calculations of the maximum expander performance using the mean-line design tool described in part A. The high computational...

  20. Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland

    DEFF Research Database (Denmark)

    Turconi, Roberto; O'Dwyer, C.; Flynn, D.

    2014-01-01

    demand. The environmental impacts related to potential future energy systems in Ireland for 2025 with high shares of wind power were evaluated using life cycle assessment (LCA), focusing on cycling emissions (due to part-load operation and start-ups) from dispatchable generators. Part-load operations......-load electricity production shifts to a cleaner source than coal. Finally, the present study indicates that, in terms of emission reductions, the priority for Ireland is to phase out coal-based power plants. While investing in new storage capacity reduces system operating costs at high wind penetrations and limits...... significantly affect the average power plant efficiency, with all units seeing an average yearly efficiency noticeably less than optimal. In particular, load following units, on average, saw an 11% reduction. Given that production technologies are typically modeled assuming steady-state operation at full load...

  1. Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort

    Science.gov (United States)

    Ensworth, Clint B., III; McKissock, David B.

    1998-01-01

    NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.

  2. Pressurized fluidized bed - A technology for combined cycle power generation

    Science.gov (United States)

    Moskowitz, S.; Geffken, J.

    1981-01-01

    The production of electric power using high sulfur coal in an environmentally clean and efficient manner is a major element in this country's goal for energy independence. One coal combustion technique which has had demonstrable progress toward accomplishing this goal is the pressurized fluidized bed process. A pilot plant program sponsored by the Department of Energy to design a power generation system of 13 MWe size has been instrumental in developing the PFB technology. The paper describes the technology test programs that have been conducted to establish the design criteria and to select the design configurations and materials for the pilot plant. Over 10,000 hours of tests have demonstrated adequate fluid bed combustion characteristics, gaseous emissions levels at one-third the level permitted by EPA for NO(x) and SO2, and durability for the in-bed heat exchanger and the turbine blade materials.

  3. Evaluation of the ECAS open cycle MHD power plant design

    Science.gov (United States)

    Seikel, G. R.; Staiger, P. J.; Pian, C. C. P.

    1978-01-01

    The Energy Conversion Alternatives Study (ECAS) MHD/steam power plant is described. The NASA critical evaluation of the design is summarized. Performance of the MHD plant is compared to that of the other type ECAS plant designs on the basis of efficiency and the 30-year levelized cost of electricity. Techniques to improve the plant design and the potential performance of lower technology plants requiring shorter development time and lower development cost are then discussed.

  4. A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems

    DEFF Research Database (Denmark)

    Wognsen, Erik Ramsgaard; Haverkort, Boudewijn; Jongerden, Marijn

    2015-01-01

    An ever increasing share of embedded systems is powered by rechargeable batteries. These batteries deteriorate with the number of charge/discharge cycles they are subjected to, the so-called cycle life. In this paper, we propose the wear score function to compare and evaluate the relative impact...... of usage (charge and discharge) profiles on cycle life. The wear score function can not only be used to rank different usage profiles, these rankings can also be used as a criterion for optimizing the overall lifetime of a battery-powered system. We perform such an optimization on a nano-satellite case...

  5. Adaptation to Climate Change: The Case of A Combined Cycle Power Plant

    OpenAIRE

    Asian Development Bank (ADB)

    2012-01-01

    This report aims to demonstrate how a rapid climate change impact assessment can be used to identify the possible impacts of climate change on a thermal power investment project. For this demonstration, the O MON IV Combined Cycle Power Station Project in Southern Viet Nam is used for illustrative purposes.

  6. Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle

    Directory of Open Access Journals (Sweden)

    Jacek D. Wojcik

    2017-02-01

    Full Text Available The current load balance in the grid is managed mainly through peaking fossil-fuelled power plants that respond passively to the load changes. Intermittency, which comes from renewable energy sources, imposes additional requirements for even more flexible and faster responses from conventional power plants. A major challenge is to keep conventional generation running closest to the design condition with higher load factors and to avoid switching off periods if possible. Thermal energy storage (TES integration into the power plant process cycle is considered as a possible solution for this issue. In this article, a technical feasibility study of TES integration into a 375-MW subcritical oil-fired conventional power plant is presented. Retrofitting is considered in order to avoid major changes in the power plant process cycle. The concept is tested based on the complete power plant model implemented in the ProTRAX software environment. Steam and water parameters are assessed for different TES integration scenarios as a function of the plant load level. The best candidate points for heat extraction in the TES charging and discharging processes are evaluated. The results demonstrate that the integration of TES with power plant cycle is feasible and provide a provisional guidance for the design of the TES system that will result in the minimal influence on the power plant cycle.

  7. The optimization air separation plants for combined cycle MHD-power plant applications

    Science.gov (United States)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  8. [Paraplegic cycling using functional electrical stimulation. Experimental and model-based study of power output].

    Science.gov (United States)

    Szecsi, J; Krafczyk, S; Quintern, J; Fiegel, M; Straube, A; Brandt, T

    2004-12-01

    Cycling using functional electrical stimulation offers paraplegics the possibility of muscle and cardiovascular training as well as the chance for independent locomotion. To investigate whether this method might be suitable for a large group of paraplegics, the first German feasibility study of functional electrical stimulation (FES) cycling with seven paraplegic patients was started at the beginning of 2003. Even at the beginning of the study, and without training, these patients were able to drive distances of 0.5-1.6 km. To stimulate cardiovascular adaptation processes in the case of FES ergometer training or to cover useful distances in the case of FES cycling, a minimum amount of generated mechanical output power is required, which as a rule cannot be achieved yet. In this study, we point out two particular aspects of FES cycling, which impair power output: prolonged fatigue mode and viscous joint friction of the paraplegic FES cyclist. We discuss current possibilities for increasing output power and endurance.

  9. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2018-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering......-butane yields the best compromise in terms of cycle net power output, turbine cost and efficiency for the considered case study. When a conservative design approach is adopted, the turbine features a two-stage configuration with supersonic converging nozzles and post-expansion. Conversely, a single...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  10. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2017-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering......-butane yields the best compromise in terms of cycle net power output, turbine cost and efficiency for the considered case study. When a conservative design approach is adopted, the turbine features a two-stage configuration with supersonic converging nozzles and post-expansion. Conversely, a single...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  11. Analysis of the binary cycle for geothermal power generation

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, W.W.; Ingvarsson, I.J.

    1975-12-01

    Exchanging heat from hot geothermal fluid to a secondary working fluid which is then expanded through a turbine appears to be the best way of producing electrical power from a medium temperature geothermal resource. A study has been made to determine the conceptual design state points for a dual boiling system which utilizes isobutane as the working fluid. The results of this work and the sensitivity of plant performance to variations from nominal design points are presented. In addition, variations due to tolerances applied to thermodynamic properties and other key factors are included. (auth)

  12. Analysis of engineering cycles power, refrigerating and gas liquefaction plant

    CERN Document Server

    Haywood, R W

    1991-01-01

    Extensively revised, updated and expanded, the fourth edition of this popular text provides a rigorous analytical treatment of modern energy conversion plant. Notable for both its theoretical and practical treatment of conventional and nuclear power plant, and its studies of refrigerating and gas-liquefaction plant. This fourth edition now includes material on topics of increasing concern in the fields of energy 'saving' and reduction of environmental pollution. This increased coverage deals specifically with the following areas: CHP (cogeneration) plant, studies of both gas and coal burning p

  13. Estimation of oxygen cost of internal power during cycling exercise with changing pedal rate

    OpenAIRE

    Tokui, Masato; Hirakoba, Kohji

    2008-01-01

    It has been reported that oxygen uptake (VO2) increases exponentially with levels of the pedal rate during cycling. The purpose of this study was therefore to test the hypothesis that the O2 cost for internal power output (Pint) exerted in exercising muscle itself would be larger than for an external power output (Pext) calculated from external load and pedal rate during cycling exercise under various conditions of Pint and Pext in a large range of pedal rates. The O2 cost (ΔVO2/ Δpower outpu...

  14. Technology Concept for a Near-Term Closed Brayton Cycle Power Conversion Unit

    Science.gov (United States)

    Foti, John; Halsey, Dave; Bauch, Tim; Smith, Glen

    2003-01-01

    There is a need in the space science community for nuclear-powered electric propulsion systems to enable high-value, deep space and planetary exploration. Certain missions are driven by once-in-a-lifetime or highly infrequent occurrences that require the near-term development of a flight-capable nuclear space power and electric propulsion system in order to take advantage of the scientific opportunity. The broader applicability of Brayton power systems to the commercial and military aircraft markets has provided fertile ground for the continued development and implementation of new technologies applicable to a closed Brayton cycle space Power Conversion Unit (PCU). One concept for effectively achieving a near-term Brayton space power capability is based on the development work associated with the Integrated Power Unit (IPU). This unit embodies the state of the art in turbomachinery, generators, bearing systems and electric power management and distribution capability that can readily be evolved into a closed Brayton cycle PCU. This paper provides an overview of aircraft-based Brayton power system technologies, their implementation into the IPU and one approach for leveraging this capability into a near-term closed Brayton cycle space power conversion unit.

  15. Staging Rankine Cycles Using Ammonia for OTEC Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.

    2011-03-01

    Recent focus on renewable power production has renewed interest in looking into ocean thermal energy conversion (OTEC) systems. Early studies in OTEC applicability indicate that the island of Hawaii offers a potential market for a nominal 40-MWe system. a 40-MWe system represents a large leap in the current state of OTEC technology. Lockheed Martin Inc. is currently pursuing a more realistic goal of developing a 10-MWe system under U.S. Navy funding (Lockheed 2009). It is essential that the potential risks associated with the first-of-its-kind plant should be minimized for the project's success. Every means for reducing costs must also be pursued without increasing risks. With this in mind, the potential for increasing return on the investment is assessed both in terms of effective use of the seawater resource and of reducing equipment costs.

  16. Optimizing power plant cycling operations while reducing generating plant damage and costs

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S.A.; Besuner, P.H.; Grimsrud, P. [Aptech Engineering Services, Inc., Sunnyvale, CA (United States); Bissel, A. [Electric Supply Board, Dublin (Ireland)

    1998-12-31

    This presentation describes a method for analyzing, quantifying, and minimizing the total cost of fossil, combined cycle, and pumped hydro power plant cycling operation. The method has been developed, refined, and applied during engineering studies at some 160 units in the United States and 8 units at the Irish Electric Supply Board (ESB) generating system. The basic premise of these studies was that utilities are underestimating the cost of cycling operation. The studies showed that the cost of cycling conventional boiler/turbine fossil power plants can range from between $2,500 and $500,000 per start-stop cycle. It was found that utilities typically estimate these costs by factors of 3 to 30 below actual costs and, thus, often significantly underestimate their true cycling costs. Knowledge of the actual, or total, cost of cycling will reduce power production costs by enabling utilities to more accurately dispatch their units to manage unit life expectancies, maintenance strategies and reliability. Utility management responses to these costs are presented and utility cost savings have been demonstrated. (orig.) 7 refs.

  17. Thermodynamic analysis of heat recovery steam generator in combined cycle power plant

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Naradasu

    2007-01-01

    Full Text Available Combined cycle power plants play an important role in the present energy sector. The main challenge in designing a combined cycle power plant is proper utilization of gas turbine exhaust heat in the steam cycle in order to achieve optimum steam turbine output. Most of the combined cycle developers focused on the gas turbine output and neglected the role of the heat recovery steam generator which strongly affects the overall performance of the combined cycle power plant. The present paper is aimed at optimal utilization of the flue gas recovery heat with different heat recovery steam generator configurations of single pressure and dual pressure. The combined cycle efficiency with different heat recovery steam generator configurations have been analyzed parametrically by using first law and second law of thermodynamics. It is observed that in the dual cycle high pressure steam turbine pressure must be high and low pressure steam turbine pressure must be low for better heat recovery from heat recovery steam generator.

  18. Stability measurements in the German nuclear power plant Wuergassen during cycle 14

    Energy Technology Data Exchange (ETDEWEB)

    Pollmann, E. (PreussenElektra, Beverungen (Germany). Kernkraftwerk Wuergassen); Schulze, J.; Kreuter, D. (Siemens AG Offenbach (Germany))

    1994-12-01

    In a boiling water reactor, nuclear-thermal-hydraulic instabilities can occur if extreme operating conditions prevail. In various nuclear reactors, stability measurements have been carried out during which the location and the shape of the stability threshold was measured at a certain exposure point during the cycle. Earlier sensitivity studies have already shown that fuel assembly parameters have only a small influence on stability compared with plant parameters. The influence of plant parameters has been verified by measurements that were carried out in the German boiling water reactor Wuergassen every 4 to 6 weeks during cycle 14. The results of the measurements showed for the single-loop operation point (least stable point in the core map) a strong variation of the stability threshold power during the cycle. From the beginning of cycle to the middle of cycle, the stability threshold power decreases by [approximately]16% (relative). After the minimum was reached, the stability threshold power increased again. Smaller variations of the stability threshold power in the core map at natural circulation indicate that not only the stability threshold varies during the cycle, but also the shape of the stability threshold is changed. Analyses with the code system STAIF have shown that the stability behavior during the cycle can clearly be correlated with the variation of the axial and radial power density profile due to control rod maneuvering and fuel burnup. Furthermore, it could be shown that for the estimation of the neutronic feedback not only the density coefficient must be taken into account but also the void variation caused by a power perturbation.

  19. Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy.

    Science.gov (United States)

    Fintelman, D M; Sterling, M; Hemida, H; Li, F-X

    2014-06-03

    The aerodynamic drag of a cyclist in time trial (TT) position is strongly influenced by the torso angle. While decreasing the torso angle reduces the drag, it limits the physiological functioning of the cyclist. Therefore the aims of this study were to predict the optimal TT cycling position as function of the cycling speed and to determine at which speed the aerodynamic power losses start to dominate. Two models were developed to determine the optimal torso angle: a 'Metabolic Energy Model' and a 'Power Output Model'. The Metabolic Energy Model minimised the required cycling energy expenditure, while the Power Output Model maximised the cyclists׳ power output. The input parameters were experimentally collected from 19 TT cyclists at different torso angle positions (0-24°). The results showed that for both models, the optimal torso angle depends strongly on the cycling speed, with decreasing torso angles at increasing speeds. The aerodynamic losses outweigh the power losses at cycling speeds above 46km/h. However, a fully horizontal torso is not optimal. For speeds below 30km/h, it is beneficial to ride in a more upright TT position. The two model outputs were not completely similar, due to the different model approaches. The Metabolic Energy Model could be applied for endurance events, while the Power Output Model is more suitable in sprinting or in variable conditions (wind, undulating course, etc.). It is suggested that despite some limitations, the models give valuable information about improving the cycling performance by optimising the TT cycling position. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Agreement of Power Measures between Garmin Vector and SRM Cycle Power Meters

    Science.gov (United States)

    Novak, Andrew R.; Dascombe, Benjamin J.

    2016-01-01

    This study aimed to determine if the Garmin Vector (Schaffhausen, Switzerland) power meter produced acceptable measures when compared with the Schoberer Rad Messetechnik (SRM; Julich, Germany) power meter across a range of high-intensity efforts. Twenty-one well-trained cyclists completed power profiles (seven maximal mean efforts between 5 and…

  1. GTA-based framework for evaluating the role of design parameters in cogeneration cycle power plant efficiency

    OpenAIRE

    Dev, Nikhil; Samsher,; Kachhwaha, S.S.; Attri, Rajesh

    2013-01-01

    This paper presents a methodology based on graph theoretic approach (GTA) to design a new cogeneration cycle power plant (CGCPP), improvement of existing plant and comparison of two real life operating cogeneration cycle power plants. Different combinations may be suggested by a manufacturer to an organization for selecting or improving the efficiency of a power plant. This paper identifies various design parameters affecting cogeneration cycle power plant efficiency. All these parameters are...

  2. Performance and Mass Modeling Subtleties in Closed-Brayton-Cycle Space Power Systems

    Science.gov (United States)

    Barrett, Michael J.; Johnson, Paul K.

    2006-01-01

    A number of potential NASA missions could benefit from closed-Brayton-cycle (CBC) power conversion systems. The human and robotic mission power applications include spacecraft, surface base, and rover scenarios. Modeling of CBC subsystems allows system engineers, mission planners and project managers to make informed decisions regarding power conversion system characteristics and capabilities. To promote thorough modeling efforts, a critical review of CBC modeling techniques is presented. Analysis of critical modeling elements, component influences and cycle sensitivities is conducted. The analysis leads to quantitative results addressing projections on converter efficiency and overall power conversion system mass. Even moderate modeling errors are shown to easily over-predict converter efficiencies by 30% and underestimate mass estimates by 20%. Both static and dynamic modeling regimes are evaluated. Key considerations in determining model fidelity requirements are discussed. Conclusions and recommendations are presented that directly address ongoing modeling efforts in solar and nuclear space power systems.

  3. Life cycle management. Condition monitoring of wind power plants; Life-cycle-management. Zustandsueberwachung von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, R. [cmc GmbH, Kiel (Germany)

    2013-06-01

    The author of the contribution under consideration reports on maintenance strategies and condition monitoring in the field of wind energy. Beside the components in the drive train of wind turbines under consideration, the condition monitoring of the hardware systems and their software is explained. A brief overview of the field of machinery diagnosis and an explanation of the transmission of the measured data follow. Additional sensors such as sensors for the rotor blade monitoring, oil particles counter or oil quality sensors are described. In the field of diagnostic certainty, special follow-up studies such as video endoscopy, analysis of oil or grease, filter testing and material testing are discussed. The information from these thematic fields is used in the life-cycle management database for operationally relevant evaluations and considerations of economy of condition monitoring systems.

  4. Influence of the type of working fluid in the lower cycle and superheated steam parameters in the upper cycle on effectiveness of operation of binary power plant

    OpenAIRE

    Stachel Aleksander A.; Wiśniewski Sławomir

    2015-01-01

    In the paper presented have been the results of the analysis of effectiveness of operation of binary power plant consisting of combined two Clausius-Rankine cycles, namely the binary cycle with water as a working fluid in the upper cycle and organic substance as a working fluid in the lower cycle, as well as a single fluid component power plant operating also in line with the C-R cycle for superheated steam, with water as a working fluid. The influence of the parameters of superheated steam i...

  5. Optimization of Brayton Cycle Power Generation for In-Space Electric Propulsion Application

    Science.gov (United States)

    Woodcock, Gordon

    2003-01-01

    A Brayton cycle was analyzed and optimized over the power range 60 - 140 kWe, for application to electric propulsion systems. A gas-cooled reactor heat source with exit temperature 1150 K was assumed. Power generation system specific masses (alpha) from 36 kg/kWe at 60 kWe to 22 kg/kWe at 140 kWe were obtained. These masses do not include the thrust production system, which is predicted to add 6 to 8 kg/kWe. Cycle efficiencies varied from 32% at 60 kWe to 36% at 140 kWe. Cycle minimum temperature, cycle pressure ratio, and heat exchanger design parameters were varied for the optimization. Optimization parameters and methods are described.

  6. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Kærn, Martin Ryhl; Pierobon, Leonardo

    2016-01-01

    For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers......, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important...... to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low...

  7. HTR-Based Power Plants’ Performance Analysis Applied on Conventional Combined Cycles

    OpenAIRE

    José Carbia Carril; Álvaro Baaliña Insua; Javier Romero Gómez; Manuel Romero Gómez

    2015-01-01

    In high temperature reactors including gas cooled fast reactors and gas turbine modular helium reactors (GT-MHR) specifically designed to operate as power plant heat sources, efficiency enhancement at effective cost under safe conditions can be achieved. Mentioned improvements concern the implementation of two cycle structures: (a), a stand alone Brayton operating with helium and a stand alone Rankine cycle (RC) with regeneration, operating with carbon dioxide at ultrasupercritical pressure a...

  8. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  9. Influence of the type of working fluid in the lower cycle and superheated steam parameters in the upper cycle on effectiveness of operation of binary power plant

    Directory of Open Access Journals (Sweden)

    Stachel Aleksander A.

    2015-03-01

    Full Text Available In the paper presented have been the results of the analysis of effectiveness of operation of binary power plant consisting of combined two Clausius-Rankine cycles, namely the binary cycle with water as a working fluid in the upper cycle and organic substance as a working fluid in the lower cycle, as well as a single fluid component power plant operating also in line with the C-R cycle for superheated steam, with water as a working fluid. The influence of the parameters of superheated steam in the upper cycle has been assessed as well as the type of working fluid in the lower cycle. The results of calculations have been referred to the single-cycle classical steam power plant operating at the same parameters of superheated steam and the same mass flow rate of water circulating in both cycles. On the basis of accomplished analysis it has been shown that the binary power plant shows a greater power with respect to the reference power plant.

  10. Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant

    Science.gov (United States)

    Raiji, A. M.; Renfroe, D. A.; Lalk, T. R.

    Power is generated by exploiting the natural atmospheric temperature gradient. A low grade energy source is used to vaporize a fluid which rises in a pipe to a higher elevation where it is condensed. The cycle is completed by passing the condensed liquid through a turbine as it returns to the lower elevation. A digital computer model was developed and used to simulate the operation of the cycle and to conduct a parameteric study. Life cycle cost analysis and energy analyses were conducted for the specific case of a TGUC using the ambient air at the lower elevation as an energy source. Although the cycle has a low thermal efficiency and is site specific, it is technically feasible. Variations in mass flow rate of the working fluid and elevation were found to affect the cycle power output to a large extent. The investment cost of a hypothetical 10 megawatt TGUC power plant was determined to be $3,080 per kilowatt, with life cycle busbar costs of electricity ranging from 47 to 55 Mills per kilowatt hour depending on the method of financing.

  11. The Measurement of Maximal (Anaerobic Power Output on a Cycle Ergometer: A Critical Review

    Directory of Open Access Journals (Sweden)

    Tarak Driss

    2013-01-01

    Full Text Available The interests and limits of the different methods and protocols of maximal (anaerobic power ( assessment are reviewed: single all-out tests versus force-velocity tests, isokinetic ergometers versus friction-loaded ergometers, measure of during the acceleration phase or at peak velocity. The effects of training, athletic practice, diet and pharmacological substances upon the production of maximal mechanical power are not discussed in this review mainly focused on the technical (ergometer, crank length, toe clips, methodological (protocols and biological factors (muscle volume, muscle fiber type, age, gender, growth, temperature, chronobiology and fatigue limiting in cycling. Although the validity of the Wingate test is questionable, a large part of the review is dedicated to this test which is currently the all-out cycling test the most often used. The biomechanical characteristics specific of maximal and high speed cycling, the bioenergetics of the all-out cycling exercises and the influence of biochemical factors (acidosis and alkalosis, phosphate ions… are recalled at the beginning of the paper. The basic knowledge concerning the consequences of the force-velocity relationship upon power output, the biomechanics of sub-maximal cycling exercises and the study on the force-velocity relationship in cycling by Dickinson in 1928 are presented in Appendices.

  12. Energy expenditure of constant- and variable-intensity cycling: power meter estimates.

    Science.gov (United States)

    Haakonssen, Eric C; Martin, David T; Burke, Louise M; Jenkins, David G

    2013-09-01

    The objective of this study is to compare the effects of constant- and variable-intensity cycling on gross efficiency (GE) and to compare estimates of energy expenditure (EE) made using indirect calorimetry (CAL) with estimates derived from commercially available power meters. Nine national team female road cyclists completed a GE test (GEtest = 4 min at approximately 45%, approximately 55%, approximately 65%, and approximately 75% maximal aerobic power (MAP)) before and after 10.5 min of either constant- (CON)- or variable- (VAR)-intensity cycling averaging approximately 55% MAP. GE measured before, after, and during CON and VAR cycling was compared. Total EE (kJ) for 10.5 min of VAR cycling was estimated using indirect CAL and compared with estimates on the basis of mechanical power [Schoberer Rad Messtechnik (SRM)] using the group mean GE, each athlete's mean GE, and each athlete's power to GE regression. There was no effect of VAR on GEtests (P = 0.74). GE reduced from 19.1% ± 0.4% (mean ± SE) during the pretrial GEtests to 18.7% ± 0.4% during the posttrial GEtests (P Equation is included in full-text article.)(%) ± 90% CI, 0.3 ± 0.8; R 0.98, P intensity cycling <75% MAP, although determining each athlete's GE improves accuracy greatly.

  13. Thermodynamic Study of Multi Pressure HRSG in Gas/Steam Combined Cycle Power Plant

    Science.gov (United States)

    Sharma, Meeta; Singh, Onkar

    2018-01-01

    Combined cycle power plants have a combination of gas based topping cycle and steam based bottoming cycle through the use of Heat Recovery Steam Generator (HRSG). These HRSG may be either of single pressure (SP) or dual pressure (DP) or multiple pressure type. Here in this study thermodynamic analysis is carried out for optimal performance of HRSG using different types of HRSG layout for combined cycle efficiency improvement. Performance of single pressure HRSG and dual pressure HRSG, utilized in gas/steam combined cycle is analyzed and presented here. In comparison to single pressure, dual pressure HRSG offers 10 to 15% higher reduction in stack temperature due to greater heat recovery and thus improved plant efficiency.

  14. Connection between maximum-work and maximum-power thermal cycles

    OpenAIRE

    Gonzalez-Ayala, Julian; Arias-Hernandez, L. A.; Angulo-Brown, F.

    2013-01-01

    We propose a new connection between maximum-power Curzon-Ahlborn thermal cycles and maximum-work reversible cycles. This linkage is built through a mapping between the exponents of a class of heat transfer laws and the exponents of a family of heat capacities depending on temperature. This connection leads to the recovery of known results and to a wide and interesting set of new results for a class of thermal cycles. Among other results we find that it is possible to use analytically closed e...

  15. Evaluation testing of a closed Brayton-cycle electrical-power-conversion system.

    Science.gov (United States)

    Redding, T. E.; Mcgee, J. M.; Luksa, N. C.

    1972-01-01

    Description of the design and testing of a recuperated, closed Brayton-cycle, electrical power conversion system designated the Brayton Cycle Demonstrator (BCD). The system uses electrical heaters as a heat source, argon as the cycle working fluid, and gas-lubricated foil-type bearings. Objectives of the test program include (1) evaluation of the overall system performance characteristics and influences on spacecraft integration, (2) familiarization of personnel with operational methods, and (3) determination of system flexibility by operating at a number of off-design conditions. Results obtained to date are discussed.

  16. Analyze and Improve Lifetime in 3L-NPC Inverter from Power Cycle and Thermal Balance

    DEFF Research Database (Denmark)

    Chen, Quan; Chen, Zhe; Wang, Qunjing

    2014-01-01

    Three-level Neutral-point-clamped (3L-NPC) topology is becoming a realistic alternative to the conventional one in high-voltage and high-power application. Studies show that the power cycling mean time to failure (MTTF) of the semiconductor bond wire in 3L-NPC inverter system may be very short...... and load voltage is applied to reduce power cycle and switching losses. And then, three-level active neutral point-clamped topology is taken into account to wake the most thermo stressed device. In order to validate the improve lifetime method in this paper, a 2MW 3L-NPC converter used in wind energy has...... under some common conditions. Firstly, this paper shows the impact of some key parameters on power electronic system lifetime according the analysis of semiconductor failure mechanism. Secondly, a switching frequency reduction method based on the position relationship between the flowing current...

  17. Raft River binary-cycle geothermal pilot power plant final report

    Energy Technology Data Exchange (ETDEWEB)

    Bliem, C.J.; Walrath, L.F.

    1983-04-01

    The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

  18. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    Science.gov (United States)

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  19. Influence of duty cycle on the power-duration relationship: observations and potential mechanisms.

    Science.gov (United States)

    Broxterman, R M; Ade, C J; Wilcox, S L; Schlup, S J; Craig, J C; Barstow, T J

    2014-02-01

    The highest sustainable rate of aerobic metabolism [critical power (CP)] and the finite amount of work that can be performed above CP (W' [curvature constant]) were determined under two muscle contraction duty cycles. Eight men completed at least three constant-power handgrip tests to exhaustion to determine CP and W' for 50% and 20% duty cycles, while brachial artery blood flow (Q̇BA) and deoxygenated-[hemoglobin + myoglobin] (deoxy-[Hb+Mb]) were measured. CP was lower for the 50% duty cycle (3.9 ± 0.9 W) than the 20% duty cycle (5.1 ± 0.8 W; p cycle: 452 ± 141 J vs. 20% duty cycle: 432 ± 130 J; p > 0.05). At the same power output, Q̇BA and deoxy-[Hb + Mb] achieved higher end-exercise values for the 20% duty cycle (9.87 ± 1.73 ml·s(-1); 51.7 ± 4.7 μM) than the 50% duty cycle (7.37 ± 1.76 ml·s(-1), p < 0.001; 44.3 ± 2.4 μM, p < 0.03). These findings indicate that blood flow influences CP, but not W'. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    Directory of Open Access Journals (Sweden)

    Jesper G. Andreasen

    2016-04-01

    Full Text Available For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low-temperature heat at 90 ∘ C to produce electrical power at around 500 kW. The primary outcomes of the study are Pareto fronts, illustrating the power/cost relations for R32, R134a and R32/R134a (0.65/0.35 mole . The results indicate that R32/R134a is the best of these fluids, with 3.4 % higher net power than R32 at the same total cost of 1200 k$.

  1. Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma

    Science.gov (United States)

    Litchford, R. J.; Harada, N.

    2005-01-01

    A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.

  2. A study of power cycles using supercritical carbon dioxide as the working fluid

    Science.gov (United States)

    Schroder, Andrew Urban

    A real fluid heat engine power cycle analysis code has been developed for analyzing the zero dimensional performance of a general recuperated, recompression, precompression supercritical carbon dioxide power cycle with reheat and a unique shaft configuration. With the proposed shaft configuration, several smaller compressor-turbine pairs could be placed inside of a pressure vessel in order to avoid high speed, high pressure rotating seals. The small compressor-turbine pairs would share some resemblance with a turbocharger assembly. Variation in fluid properties within the heat exchangers is taken into account by discretizing zero dimensional heat exchangers. The cycle analysis code allows for multiple reheat stages, as well as an option for the main compressor to be powered by a dedicated turbine or an electrical motor. Variation in performance with respect to design heat exchanger pressure drops and minimum temperature differences, precompressor pressure ratio, main compressor pressure ratio, recompression mass fraction, main compressor inlet pressure, and low temperature recuperator mass fraction have been explored throughout a range of each design parameter. Turbomachinery isentropic efficiencies are implemented and the sensitivity of the cycle performance and the optimal design parameters is explored. Sensitivity of the cycle performance and optimal design parameters is studied with respect to the minimum heat rejection temperature and the maximum heat addition temperature. A hybrid stochastic and gradient based optimization technique has been used to optimize critical design parameters for maximum engine thermal efficiency. A parallel design exploration mode was also developed in order to rapidly conduct the parameter sweeps in this design space exploration. A cycle thermal efficiency of 49.6% is predicted with a 320K [47°C] minimum temperature and 923K [650°C] maximum temperature. The real fluid heat engine power cycle analysis code was expanded to study a

  3. Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M. (Energy Systems)

    2012-02-08

    A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

  4. Life-cycle consequences of internalising socio-environmental externalities of power generation.

    Science.gov (United States)

    García-Gusano, Diego; Istrate, I Robert; Iribarren, Diego

    2018-01-15

    Current national energy sectors are generally unsustainable. Within this context, energy policy-makers face the need to move from economy- to sustainability-oriented schemes. Beyond the integration of the sustainability concept into energy policies through the implementation of techno-economic, environmental and/or social restrictions, other approaches propose the use of externalities -based on life-cycle emissions- to deeply take into account sustainability in the design of the future energy system. In this sense, this work evaluates the consequences of internalising socio-environmental externalities associated with power generation. Besides the calculation of external costs of power generation technologies and their implementation in an energy systems optimisation model for Spain, the life-cycle consequences of this internalisation are explored. This involves the prospective analysis of the evolution of the sustainability indicators on which the externalities are founded, i.e. climate change and human health. For the first time, this is done by endogenously integrating the life-cycle indicators into the energy systems optimisation model. The results show that the internalisation of externalities highly influences the evolution of the electricity production mix as well as the corresponding life-cycle profile, hastening the decarbonisation of the power generation system and thus leading to a significant decrease in life-cycle impacts. This effect is observed both when internalising only climate change externalities and when internalising additionally human health external costs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Prospective Analysis of Life-Cycle Indicators through Endogenous Integration into a National Power Generation Model

    Directory of Open Access Journals (Sweden)

    Diego García-Gusano

    2016-11-01

    Full Text Available Given the increasing importance of sustainability aspects in national energy plans, this article deals with the prospective analysis of life-cycle indicators of the power generation sector through the case study of Spain. A technology-rich, optimisation-based model for power generation in Spain is developed and provided with endogenous life-cycle indicators (climate change, resources, and human health to assess their evolution to 2050. Prospective performance indicators are analysed under two energy scenarios: a business-as-usual one, and an alternative scenario favouring the role of carbon dioxide capture in the electricity production mix by 2050. Life-cycle impacts are found to decrease substantially when existing fossil technologies disappear in the mix (especially coal thermal power plants. In the long term, the relatively high presence of natural gas arises as the main source of impact. When the installation of new fossil options without CO2 capture is forbidden by 2030, both renewable technologies and—to a lesser extent—fossil technologies with CO2 capture are found to increase their contribution to electricity production. The endogenous integration of life-cycle indicators into energy models proves to boost the usefulness of both life cycle assessment and energy systems modelling in order to support decision- and policy-making.

  6. Modeling and analysis of a transcritical rankine power cycle with a low grade heat source

    DEFF Research Database (Denmark)

    Nguyen, Chan; Veje, Christian

    efficiency, exergetic efficiency and specific net power output. A generic cycle configuration has been used for analysis of a geothermal energy heat source. This model has been validated against similar calculations using industrial waste heat as the energy source. Calculations are done with fixed...

  7. Squat Jump Performance during Growth in Both Sexes: Comparison with Cycling Power

    Science.gov (United States)

    Dore, Eric; Bedu, Mario; Van Praagh, Emmanuel

    2008-01-01

    The purpose of this cross-sectional study was to investigate leg muscle power and compare two activities (jumping and cycling) in 383 girls and 407 boys ages 9-19 years. Results in anthropometric characteristics and jumping performance were comparable until midadolescence, and sex differences were observed. Lean leg volume (LLV) was the reason for…

  8. Median power frequency of the surface electromyogram and blood lactate concentration in incremental cycle ergometry

    NARCIS (Netherlands)

    Jansen, R; Ament, W; Verkerke, GJ; Hof, AL

    The electromyogram (EMG) median power frequency of the vastus lateralis and flexor digitorum superficialis muscles was measured in 12 subjects during cycle ergometry with step-wise increasing exercise intensities up to 100% of VO2max. Blood lactate concentration was measured to investigate the

  9. Menstrual Cycle Effects on Anaerobic Power, Muscular Strength, and Muscular Endurance in Trained and Untrained Females.

    Science.gov (United States)

    Rosenburg, Beth S.; And Others

    A study determined if anaerobic power, isometric strength, and isometric endurance are affected by the menstrual cycle and if endurance trained females and untrained females are affected in the same manner on these performance parameters. Subjects were healthy, normally menstruating females, ages 18-34 years who were classified as either trained…

  10. Power cycle assessment of nuclear high temperature gas-cooled reactors

    OpenAIRE

    Herranz, L.E.; Linares, J.I.; Moratilla, B.Y.

    2009-01-01

    Power cycle assessment of nuclear high temperature gas-cooled reactors correspondance: Corresponding author. Tel.: +34 91 346 62 36; fax: +34 91 346 62 33. (Herranz, L.E.) (Herranz, L.E.) Unit of Nuclear Safety Research (CIEMAT) Avda. Complutense--> , 22 - 28040 Madrid - Spain--> - (Herranz, L.E.) Unit of Nuclear Safety Research (CIEMAT) Avda. Complutense--> , 22 - 28040 Madrid - Spain--...

  11. Electric power generating plant having direct-coupled steam and compressed-air cycles

    Science.gov (United States)

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  12. Electric power generating plant having direct coupled steam and compressed air cycles

    Science.gov (United States)

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  13. A simple performance calculation method for LH2/LOX engines with different power cycles

    Science.gov (United States)

    Schmucker, R. H.

    1973-01-01

    A simple method for the calculation of the specific impulse of an engine with a gas generator cycle is presented. The solution is obtained by a power balance between turbine and pump. Approximate equations for the performance of the combustion products of LH2/LOX are derived. Performance results are compared with solutions of different engine types.

  14. Method of optimizing performance of Rankine cycle power plants. [US DOE Patent

    Science.gov (United States)

    Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

    1980-06-23

    A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

  15. GHG-emissions for cars with different power trains over the whole life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The method of life-cycle assessment (LCA) has been applied to cars with different power trains. As an example, the results for greenhouse gas (GHG) emissions are presented. They show possibilities and limits for the reduction of these emissions in the transportation sector by means of advanced technology. (author) 2 figs., 4 refs.

  16. Stretch-shortening cycle muscle power in women and men aged 18-81 years

    DEFF Research Database (Denmark)

    Edwén, C E; Thorlund, Jonas Bloch; Magnusson, Stig Peter

    2014-01-01

    This study explored the age-related deterioration in stretch-shortening cycle (SSC) muscle power and concurrent force-velocity properties in women and men across the adult life span. A total of 315 participants (women: n = 188; men: n = 127) aged 18-81 years performed maximal countermovement jumps...

  17. Prospects of the use of nanofluids as working fluids for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Mondejar, Maria E.; Andreasen, Jesper G.; Regidor, Maria

    2017-01-01

    The search of novel working fluids for organic Rankine cycle power systems is driven by the recent regulations imposing additional phase-out schedules for substances with adverse environmental characteristics. Recently, nanofluids (i.e. colloidal suspensions of nanoparticles in fluids) have been...... suggested as potential working fluids for organic Rankine cycle power systems due to their enhanced thermal properties, potentially giving advantages with respect to the design of the components and the cycle performance. Nevertheless, a number of challenges concerning the use of nanofluids must...... be investigated prior to their practical use. Among other things, the trade-off between enhanced heat transfer and increased pressure drop in heat exchangers, and the impact of the nanoparticles on the working fluid thermophysical properties, must be carefully analyzed. This paper is aimed at evaluating...

  18. COMPARISON OF S-CO2 POWER CYCLES FOR NUCLEAR ENERGY

    Directory of Open Access Journals (Sweden)

    Ladislav Vesely

    2016-12-01

    Full Text Available The supercritical carbon dioxide (S-CO2 is a possible cooling system for the new generations of nuclear reactors and fusion reactors. The S-CO2 power cycles have several advantages over other possible coolants such as water and helium. The advantages are the compression work, which is lower than in the case of helium, near the critical point and the S-CO2 is more compact than water and helium. The disadvantage is so called Pinch point which occurs in the regenerative heat exchanger. The pinch point can be eliminated by an arrangement of the cycle or using a mixture of CO2. This paper describes the S-CO2 power cycles for nuclear fission and fusion reactors.

  19. Comparison of real driving cycles and consumed braking power in suburban Slovakian driving

    Directory of Open Access Journals (Sweden)

    Gechev Tsvetomir

    2017-01-01

    Full Text Available The paper compares the features of suburban real driving cycles performed with CORRSYS DATRON measurement equipment on routes in the region of Žilina, Slovakia. It observes differences in the maximum and average vehicle velocities and the amount of braking in relation to the elevation profile of each individual cycle. Consumed braking power was also calculated in the different cycles in order to review the potential electricity regeneration capabilities of hybrid electric vehicles, operating on the same routes. The change in braking energy depending on vehicle mass and presence of grade on the routes in the measured cycles was also assessed. The calculations and plotting were done by using Matlab software.

  20. Nuclear design report for Yonggwang nuclear power plant unit 1 cycle 9

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young chul; Kim, Jae Hak; Song, Jae Woong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-03-01

    This report presents nuclear design calculations for Cycle 6 of Yonggwng Unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 4.00 w/o U{sub 235}. Among the KOFA`s, 60 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 9 amounts to 434 EFPD corresponding to a cycle burnup of 17470 MWD/MTU. (Author) 8 refs., 55 figs., 19 tabs.

  1. Nuclear design report for Ulchin nuclear power plant unit 1, cycle 6

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Kim, Yong Rae; Park, Yong Soo; Cho, Byeong Ho; Lee, Sang Keun; Ahn, Dawk Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-12-01

    This report presents nuclear design calculations for cycle 6 of Ulchin unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 64 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 32 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 6 amounts to 369 EFPD corresponding to a cycle burnup of 14850 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  2. Nuclear design report for Kori nuclear power plant unit 1, cycle 13

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Moon, Bok Ja; Cho, Byeong Ho; Jung, Yil Sup [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-04-01

    This report presents nuclear design calculations for cycle 13 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 44 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 16 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 13 amounts to 355 EFPD corresponding to a cycle burnup of 13240 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs.

  3. Nuclear design report for Ulchin nuclear power plant unit 1, cycle 7

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Rae; Park, Yong soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-04-01

    This report presents nuclear design calculations for Cycle 7 of Ulchin Unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 56 KOFA`s enriched by nominally 4.00 w/o U{sub 235}. Among the KOFA`s 36 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 7 amounts to 355 EFPD corresponding to a cycle burnup of 14280 MWD/MTU. (Author) 8 refs., 55 figs., 21 tabs.

  4. Nuclear design report for Yonggwang nuclear power plant unit 3 cycle 2

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Song, Jae Woong; Song, Jae Seung; Park, Sang Yoon; Yoo, Choon Sung; Baek, Byung Chan; Ryu, Hyo Sang; Park, Jin Ha; Cho, Young Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    This report presents nuclear design calculations for Cycle 2 of Yonggwang Unit 3. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths, and operational limits. In addition, the report contains necessary data for the startup tests and for the assurance of shutdown margin during reactor operation. The reload core consists of 48 fresh Korean Standard Fuel Assemblies (KSFAs)and 129 burned KSFAs. Among the 48 fresh KSFAs, 32 fuel assemblies contain burnable poison rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 2 amounts to 276 EFPD corresponding to a cycle burnup of 10,160 MWD/MTU. 95 figs., 31 tabs., 7 refs. (Author) .new.

  5. Synthetic fuel production via carbon neutral cycles with high temperature nuclear reactors as a power source

    Energy Technology Data Exchange (ETDEWEB)

    Konarek, E.; Coulas, B.; Sarvinis, J. [Hatch Ltd., Mississauga, Ontario (Canada)

    2016-06-15

    This paper analyzes a number of carbon neutral cycles, which could be used to produce synthetic hydrocarbon fuels. Synthetic hydrocarbons are produced via the synthesis of Carbon Monoxide and Hydrogen. The . cycles considered will either utilize Gasification processes, or carbon capture as a source of feed material. In addition the cycles will be coupled to a small modular Nuclear Reactor (SMR) as a power and heat source. The goal of this analysis is to reduce or eliminate the need to transport diesel and other fossil fuels to remote regions and to provide a carbon neutral, locally produced hydrocarbon fuel for remote communities. The technical advantages as well as the economic case are discussed for each of the cycles presented. (author)

  6. Nuclear design report for Yonggwang nuclear power plant unit 1, cycle 8

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Chul; Kim, Jae Hak; Park, Sang Yoon; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-10-01

    This report presents nuclear design calculations for cycle 8 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 56 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 8 amounts to 447 EFPD corresponding to a cycle burnup of 18020 MWD/MTU. (Author) 8 refs., 39 figs., 17 tabs.

  7. Conversion of coal-fired power plants to cogeneration and combined-cycle thermal and economic effectiveness

    CERN Document Server

    Bartnik, Ryszard

    2014-01-01

    This book covers methodology, calculation procedures and tools to support enterprise planning for adapting power stations to cogeneration and combined-cycle forms. It examines the optimum selection of the structure of heat exchangers in a 370 MW power block.

  8. Experimental Study of a Low-Temperature Power Generation System in an Organic Rankine Cycle

    DEFF Research Database (Denmark)

    Mu, Yongchao; Zhang, Yufeng; Deng, Na

    2015-01-01

    as the engine of the power generator. The style of the preheater was a shell and tube heat exchanger, which could provide a long path for the working fluid. A flooded heat exchanger with a high heat transfer coefficient was taken as the evaporator. R134a was used as working fluid for the Rankine cycle......This paper presents a new power generation system under the principle of organic Rankine cycle which can generate power with a low-temperature heat source. A prototype was built to investigate the proposed system. In the prototype, an air screw compressor was converted into an expander and used...... in the system. This study compared and analyzed the experimental performance of the prototype at different heat source temperatures. The results show that the preheater and flooded evaporator was used for sensible heating and latent heating of the working fluid, respectively, as expected. When the temperature...

  9. Effects of superpositions of quantum states on quantum isoenergetic cycles: Efficiency and maximum power output

    Science.gov (United States)

    Niu, X. Y.; Huang, X. L.; Shang, Y. F.; Wang, X. Y.

    2015-04-01

    Superposition principle plays a crucial role in quantum mechanics, thus its effects on thermodynamics is an interesting topic. Here, the effects of superpositions of quantum states on isoenergetic cycle are studied. We find superposition can improve the heat engine efficiency and release the positive work condition in general case. In the finite time process, we find the efficiency at maximum power output in superposition case is lower than the nonsuperposition case. This efficiency depends on one index of the energy spectrum of the working substance. This result does not mean the superposition discourages the heat engine performance. For fixed efficiency or fixed power, the superposition improves the power or efficiency respectively. These results show how quantum mechanical properties affect the thermodynamical cycle.

  10. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  11. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Science.gov (United States)

    Fic, Adam; Składzień, Jan; Gabriel, Michał

    2015-03-01

    Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  12. Analysis of closed cycle megawatt class space power systems with nuclear reactor heat sources

    Science.gov (United States)

    Juhasz, A. J.; Jones, B. I.

    1987-01-01

    The analysis and integration studies of multimegawatt nuclear power conversion systems for potential SDI applications is presented. A study is summarized which considered 3 separate types of power conversion systems for steady state power generation with a duty requirement of 1 yr at full power. The systems considered are based on the following conversion cycles: direct and indirect Brayton gas turbine, direct and indirect liquid metal Rankine, and in core thermionic. A complete mass analysis was performed for each system at power levels ranging from 1 to 25 MWe for both heat pipe and liquid droplet radiator options. In the modeling of common subsystems, reactor and shield calculations were based on multiparameter correlation and an in-house analysis for the heat rejection and other subsystems.

  13. Gasification/combined-cycle power generation: environmental assessment of alternative systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This report provides a basis for the comparative assessment of the potential performance capability, technological development, and economic and environmental impact associated with the operation of integrated low-Btu coal-gasification/combined-cycle power systems. Characterization of the integrated power system in terms of fuel processing, power production, and auxiliary systems is followed up with comparisons of alternative integrated-plant-design/fuel combinations with reference to the conventional coal-fired power plant, taking into account both economic and environmental factors. The report includes an assessment of the effects of recent regulatory changes on the prospects for integrated power systems and establishes a timetable for the probable commercial development of such systems by the utilities.

  14. Microfabricated rankine cycle steam turbine for power generation and methods of making the same

    Science.gov (United States)

    Frechette, Luc (Inventor); Muller, Norbert (Inventor); Lee, Changgu (Inventor)

    2009-01-01

    In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.

  15. High-temperature nuclear closed Brayton cycle power conversion system for the space exploration initiative

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, D.J. (Allied-Signal Aerospace Company, Garrett Fluid Systems Division, 1300 West Warner Road, Tempe, Arizona 85284-2896 (US))

    1991-01-05

    The Space Exploration Initiative (SEI) has stated goals of colonizing the moon and conducting manned exploration of the planet Mars. Unlike previous ventures into space, both manned and unmanned, large quantities of electrical power will be required to provide the energy for lunar base sustenance and for highly efficient propulsion systems for the long trip to mars and return. Further, the requirement for electrical power of several megawatts will necessitate the use of nuclear reactor driven power conversion systems. This paper discusses a particle bed reactor closed Brayton cycle space power system that uses advanced materials technology to achieve a high-temperature, low-specific-weight modular system capable of providing the requisite electrical power for both a lunar base and a Mars flight vehicle propulsion system.

  16. Life cycle assessment of coal-fired power plants and sensitivity analysis of CO2 emissions from power generation side

    Science.gov (United States)

    Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian

    2017-05-01

    The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.

  17. Fundamental-frequency and load-varying thermal cycles effects on lifetime estimation of DFIG power converter

    DEFF Research Database (Denmark)

    Zhang, Guanguan; Zhou, Dao; Yang, Jian

    2017-01-01

    In respect to a Doubly-Fed Induction Generator (DFIG) system, its corresponding time scale varies from microsecond level of power semiconductor switching to second level of the mechanical response. In order to map annual thermal profile of the power semiconductors, different approaches have been...... adopted to handle the fundamental-frequency thermal cycles and load-varying thermal cycles. Their effects on lifetime estimation of the power device in the Back-to-Back (BTB) power converter are evaluated....

  18. Ideal cycle analysis of a regenerative pulse detonation engine for power production

    Science.gov (United States)

    Bellini, Rafaela

    Over the last few decades, considerable research has been focused on pulse detonation engines (PDEs) as a promising replacement for existing propulsion systems with potential applications in aircraft ranging from the subsonic to the lower hypersonic regimes. On the other hand, very little attention has been given to applying detonation for electric power production. One method for assessing the performance of a PDE is through thermodynamic cycle analysis. Earlier works have adopted a thermodynamic cycle for the PDE that was based on the assumption that the detonation process could be approximated by a constant volume process, called the Humphrey cycle. The Fickett-Jacob cycle, which uses the one--dimensional Chapman--Jouguet (CJ) theory of detonation, has also been used to model the PDE cycle. However, an ideal PDE cycle must include a detonation based compression and heat release processes with a finite chemical reaction rate that is accounted for in the Zeldovich -- von Neumann -- Doring model of detonation where the shock is considered a discontinuous jump and is followed by a finite exothermic reaction zone. This work presents a thermodynamic cycle analysis for an ideal PDE cycle for power production. A code has been written that takes only one input value, namely the heat of reaction of a fuel-oxidizer mixture, based on which the program computes all the points on the ZND cycle (both p--v and T--s plots), including the von Neumann spike and the CJ point along with all the non-dimensionalized state properties at each point. In addition, the program computes the points on the Humphrey and Brayton cycles for the same input value. Thus, the thermal efficiencies of the various cycles can be calculated and compared. The heat release of combustion is presented in a generic form to make the program usable with a wide variety of fuels and oxidizers and also allows for its use in a system for the real time monitoring and control of a PDE in which the heat of reaction

  19. Effect of sex and menstrual cycle in women on starting speed, anaerobic endurance and muscle power.

    Science.gov (United States)

    Wiecek, M; Szymura, J; Maciejczyk, M; Cempla, J; Szygula, Z

    2016-03-01

    The aim of our study was to compare the indicators of starting speed, anaerobic endurance and power in women as well as men, and to investigate whether the values of these indicators differ in women during the follicular and luteal phases of the menstrual cycle. The studied group included 16 men and 16 women. The subjects performed the 20-second maximal cycling sprint test. The men performed the test twice at 14-day intervals. The women undertook the test 4 times: twice during the middle of follicular phase and twice in the middle of luteal phase in separate menstrual cycles. Hormonal changes during the menstrual cycle do not influence anaerobic performance, starting speed or anaerobic endurance in women. Anaerobic performance in men is higher than in women with similar aerobic performance expressed as VO2max/LBM (lean body mass). A lower power decrease with time was noted for women than men, with a similar time of maintaining power in both groups. This is evidence of women's better anaerobic endurance compared to men. At the same time, the men had significantly better starting speed rates than women.

  20. Heat sink design considerations in medium power electronic applications with long power cycles

    OpenAIRE

    Asimakopoulos, Panagiotis; Papastergiou, Konstantinos; Thiringer, Torbjörn; Bongiorno, Massimo

    2015-01-01

    The aim of this work is to investigate the impact of the heat sink thickness and material, as well as, of the convection coefficient of the water cooling system on the power-electronics module thermal stressing. The heat extraction capability of different thicknesses is tested. It is concluded that the thickest heat sink results in marginally lower temperature variation at the junction level compared to the second thickest one. In the thickest heat sink case, the linear dependence of the ther...

  1. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Nuclear Space Power Systems: A Feasibility Assessment

    Science.gov (United States)

    Barrett, Michael J.; Johnson, Paul K.

    2004-01-01

    The feasibility of using carbon-carbon recuperators in closed-Brayton-cycle (CBC) nuclear space power conversion systems (PCS) was assessed. Recuperator performance expectations were forecast based on projected thermodynamic cycle state values for a planetary mission. Resulting thermal performance, mass and volume for a plate-fin carbon-carbon recuperator were estimated and quantitatively compared with values for a conventional offset-strip-fin metallic design. Material compatibility issues regarding carbon-carbon surfaces exposed to the working fluid in the CBC PCS were also discussed.

  2. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    Science.gov (United States)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  3. Optimal Power and Efficiency of Quantum Thermoacoustic Micro-cycle Working in 1D Harmonic Trap

    Science.gov (United States)

    E, Qing; Wu, Feng; Yin, Yong; Liu, XiaoWei

    2017-10-01

    Thermoacoustic engines (including heat engines and refrigerators) are energy conversion devices without moving part. They have great potential in aviation, new energy utilization, power technology, refrigerating and cryogenics. The thermoacoustic parcels, which compose the working fluid of a thermoacoustic engine, oscillate within the sound channel with a temperature gradient. The thermodynamic foundation of a thermoacoustic engine is the thermoacoustic micro-cycle (TAMC). In this paper, the theory of quantum mechanics is applied to the study of the actual thermoacoustic micro-cycle for the first time. A quantum mechanics model of the TAMC working in a 1D harmonic trap, which is named as a quantum thermoacoustic micro-cycle (QTAMC), is established. The QTAMC is composed of two constant force processes connected by two straight line processes. Analytic expressions of the power output and the efficiency for QTAMC have been derived. The effects of the trap width and the temperature amplitude on the power output and the thermal efficiency have been discussed. Some optimal characteristic curves of power output versus efficiency are plotted, and then the optimization region of QTAMC is given in this paper. The results obtained here not only enrich the thermoacoustic theory but also expand the application of quantum thermodynamics.

  4. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the

  5. Development of the First Gas-Fired Combined Cycle Heat and Power Plant in the Republic of Macedonia

    OpenAIRE

    CINGOSKI, Vlatko

    2002-01-01

    In this paper is talking about: 1. Background of the project 2. First Gas-Fired Combined Cycle Heat and Power Plant in the Republic of Macedonia 3. Basic Plan of the Gas Fired Combined Cycle Heat and Power Plant 4. Implementation plan 5. Required Funds and Financing 6. Environmental Contributions 7. Recommendations and Conclusions

  6. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing

    Science.gov (United States)

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal-fired, closed-cycle magnetohydrodynamic (MHD) power generation are reported. A user's manual for a two-dimensional MHD generator code and performance estimates for a nominal 30 MW argon segmented heater are given. The feedwater cooled Brayton cycle is discussed as well as the application of closed cycle MHD in an industrial cogeneration environment. Preliminary design for shell and tube primary heat exchanger and plant efficiency as a function of output power for open and closed cycle MHD power plants are also discussed.

  7. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...... for a central receiver solar thermal power plant with direct steam generation. The variation in the cycle performance with respect to the turbine inlet ammonia mass fraction and pressure and a comparison of the initial investment with that of the basic Rankine cycle are also presented. Only high live steam...... for such plants for improved performance. This approach can also be combined with using advanced power cycles like the Kalina cycle, which uses a zeotropic mixture of ammonia and water instead of pure water as the working fluid. This paper presents the optimisation of a particular Kalina cycle layout...

  8. Validity and Reliability of the Garmin Vector Power Meter in Laboratory and Field Cycling.

    Science.gov (United States)

    Nimmerichter, Alfred; Schnitzer, Lukas; Prinz, Bernhard; Simon, Dieter; Wirth, Klaus

    2017-06-01

    To assess the validity and reliability of the Garmin Vector against the SRM power meter, 6 cyclists completed 3 continuous trials at power outputs from 100-300 W at 50-90 rev·min-1 and a 5-min time trial in laboratory and field conditions. In field conditions only, a 30-s sprint was performed. Data were compared with paired samples t-tests, with the 95% limits of agreement (LoA) and the typical error. Reliability was calculated as the coefficient of variation (CV). There was no significant difference between the devices in power output in laboratory (p=0.245) and field conditions (p=0.312). 1-s peak power was significantly different between the devices (p=0.043). The LoA were ~1.0±5.0 W and ~0.5±0.5 rev·min-1 in both conditions. The LoA during the 30-s sprint was 6.3±38.9 W and for 1-s peak power it was 18.8±17.1 W. The typical error for power output was 2.9%, while during sprint cycling it was 7.4% for 30-s and 2.7% for 1-s peak power. For cadence, the typical error was below 1.0%. The mean CVs were ~1.0% and ~3.0% for the SRM and Garmin, respectively. These findings suggest, that the Garmin Vector is a valid alternative for training. However, during sprint cycling there is lower agreement with the SRM power meter. Both devices provide good reliability (CV<3.0%). © Georg Thieme Verlag KG Stuttgart · New York.

  9. The simulation of organic rankine cycle power plant with n-pentane working fluid

    Science.gov (United States)

    Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi

    2016-02-01

    In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.

  10. Research on Chinese life cycle-based wind power plant environmental influence prevention measures.

    Science.gov (United States)

    Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian

    2014-08-19

    The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development.

  11. Research on Chinese Life Cycle-Based Wind Power Plant Environmental Influence Prevention Measures

    Directory of Open Access Journals (Sweden)

    Hanxi Wang

    2014-08-01

    Full Text Available The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development.

  12. Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output.

    Science.gov (United States)

    Guo, Juncheng; Wang, Junyi; Wang, Yuan; Chen, Jincan

    2013-01-01

    Based on the assumption of weak dissipation introduced by Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)], analytic expressions for the efficiency bounds of several classes of typical thermodynamic cycles at the maximum power output are derived. The results obtained are of universal significance. They can be used to conveniently reveal the general characteristics of not only Carnot heat engines, but also isothermal chemical engines, non-Carnot heat engines, flux flow engines, gravitational engines, quantum Carnot heat engines, and two-level quantum Carnot engines at the maximum power output and to directly draw many important conclusions in the literature.

  13. Computer modeling of a regenerative solar-assisted Rankine power cycle

    Science.gov (United States)

    Lansing, F. L.

    1977-01-01

    A detailed interpretation of the computer program that describes the performance of one of these cycles; namely, a regenerative Rankine power cycle is presented. Water is used as the working medium throughout the cycle. The solar energy collected at relatively low temperature level presents 75 to 80% of the total heat demand and provides mainly the latent heat of vaporization. Another energy source at high temperature level superheats the steam and supplements the solar energy share. A program summary and a numerical example showing the sequency of computations are included. The outcome from the model comprises line temperatures, component heat rates, specific steam consumption, percentage of solar energy contribution, and the overall thermal efficiency.

  14. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    Science.gov (United States)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  15. Effect of concurrent training, flexible nonlinear periodization, and maximal-effort cycling on strength and power.

    Science.gov (United States)

    McNamara, John M; Stearne, David J

    2013-06-01

    Although there is considerable research on concurrent training, none has integrated flexible nonlinear periodization and maximal-effort cycling in the same design. The purpose of this investigation was to test outcome measures of strength and power using a pretest-posttest randomized groups design. A strength and endurance (SE) group was compared with a strength, endurance, and maximal-effort cycling (SEC) group. Both groups used a flexible nonlinear periodization design. Thirteen male and 7 female students (mean ± SD: age, 22.5 ± 4.1 years; height, 173.5 ± 12.4 cm; weight, 79.4 ± 20.2 kg; strength training experience, 2.4 ± 2.2 years) participated in this study. Groups were not matched for age, height, weight, strength training experience, or sex, but were randomly assigned to an SE (n = 10) or SEC (n = 10) group. All training was completed within 45 minutes, twice per week (Monday and Wednesday), over 12 consecutive weeks. Both groups were assigned 6.75 total hours of aerobic conditioning, and 13.5 hours of free weight and machine exercises totaling 3,188 repetitions ranging from 5 to 20 repetition maximums. The SEC group performed 2 cycling intervals per workout ranging from 10 to 45 seconds. Pretest and posttest measures included chest press and standing broad jump. Analysis of variance showed that there were no significant differences between the SE and SEC groups on measures of chest press or standing broad jump performance (p, not significant). Paired sample t-tests (p = 0.05) showed significant improvement in strength and power in all groups (pretest to posttest), except for SE jump performance (p, not significant). In conclusion, adding maximal-effort cycling does not provide additional strength or power benefits to a concurrent flexible nonlinear training program. However, an exercise professional can take confidence that a concurrent flexible nonlinear training program can increase strength and power in healthy individuals.

  16. Nuclear Power and Justice between Generations. A Moral Analysis of Fuel Cycles

    OpenAIRE

    Taebi, B.

    2010-01-01

    When we produce nuclear power we are depleting a non-renewable resource (uranium) that will eventually not be available to future generations. Furthermore the ensuing nuclear waste needs to be isolated from the biosphere for long periods of time to come. This gives rise to the problem of justice to posterity or intergenerational justice. Different production methods or nuclear fuel cycles address these issues differently which is why we first need to carefully scrutinize all the possibilities...

  17. Life cycle environmental impacts of decommissioning Magnox nuclear power plants in the UK

    OpenAIRE

    Wallbridge, Steve; Banford, Anthony; Azapagic, Adisa

    2013-01-01

    Purpose: Full life cycle assessment (LCA) impacts from decommissioning have rarely been assessed, largely because few sites have been decommissioned so that the impacts of decommissioning are currently uncertain. This paper presents the results of an LCA study of the ongoing decommissioning of the Magnox power plant at Trawsfynydd in the UK. These results have been used to estimate the potential environmental impacts for the whole UK Magnox fleet of 11 reactors that will have to be decommissi...

  18. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  19. Evaluating the impacts of climate change on diurnal wind power cycles using multiple regional climate models

    KAUST Repository

    Goddard, Scott D.

    2015-05-01

    Electrical utility system operators must plan resources so that electricity supply matches demand throughout the day. As the proportion of wind-generated electricity in the US grows, changes in daily wind patterns have the potential either to disrupt the utility or increase the value of wind to the system over time. Wind power projects are designed to last many years, so at this timescale, climate change may become an influential factor on wind patterns. We examine the potential effects of climate change on the average diurnal power production cycles at 12 locations in North America by analyzing averaged and individual output from nine high-resolution regional climate models comprising historical (1971–1999) and future (2041–2069) periods. A semi-parametric mixed model is fit using cubic B-splines, and model diagnostics are checked. Then, a likelihood ratio test is applied to test for differences between the time periods in the seasonal daily averaged cycles, and agreement among the individual regional climate models is assessed. We investigate the significant changes by combining boxplots with a differencing approach and identify broad categories of changes in the amplitude, shape, and position of the average daily cycles. We then discuss the potential impact of these changes on wind power production.

  20. Performance of an oxy-fuel combustion CO{sub 2} power cycle including blade cooling

    Energy Technology Data Exchange (ETDEWEB)

    Fiaschi, Daniele; Manfrida, Giampaolo; Tempesti, Duccio [Dipartimento di Energetica ' ' Sergio Stecco' ' , University of Florence, Via C. Lombroso, 6/17 - 50134 Firenze (Italy); Mathieu, Philippe [University of Liege, Department of Aerospace and Mechanical Engineering, Chemin des Chevreuils, 1, Liege (Belgium)

    2009-12-15

    The guiding idea behind oxy-fuel combustion power cycles is guaranteeing a high level of performance as can be obtained by today's advanced power plants, together with CO{sub 2} separation in conditions ready for transport and final disposal. In order to achieve all these goals, oxy-combustion - allowing CO{sub 2} separation by simple cooling of the combustion products - is combined with large heat recovery and staged expansions/compressions, making use of new components, technology and materials upgraded from modern gas turbine engines. In order to provide realistic results, the power plant performance should include the effects of blade cooling. In the present work an advanced cooled expansion model has been included in the model of the MATIANT cycle in order to assess the effects of blade cooling on the cycle efficiency. The results show that the penalty in efficiency due to blade cooling using steam from the heat recovery boiler is about 1.4 percentage points, mainly due to the reheat of the steam, which, on the other hand, leads to an improvement in specific work of about 6%. (author)

  1. A power and load priority control concept as applied to a Brayton cycle turbo-electric generator.

    Science.gov (United States)

    Kelsey, E. L.; Young, R. N.

    1972-01-01

    This paper describes a system to regulate the speed and power output of a Brayton Cycle Power System under varying load. A typical user load profile is applied and a simple load priority and parasitic load is used for system regulation. Power storage is provided by batteries with charge and discharge converters to demonstrate support capability. The breadboard system is tested with the Brayton Cycle Demonstrator at the National Aeronautics and Space Administration, Manned Space Craft Center, Houston, Texas.

  2. Effect of caffeine intake on critical power model parameters determined on a cycle ergometer

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius Machado

    2010-01-01

    Full Text Available The aim of this study was to evaluate the effect of caffeine intake on critical power model parameters determined on a cycle ergometer. Eight male subjects participated in this study. A double-blind protocol consisting of the intake of pure caffeine (6 mg/kg or placebo (maltodextrin 60 min before testing was used. Subjects were submitted to four constant-load tests on a cycle ergometer. These tests were conducted randomly in the caffeine and placebo groups [checar] at intensities of 80, 90, 100 and 110% maximum power at a rate of 70 rpm until exhaustion to determine the critical power. As a criterion for stopping the test was adopted any rate fall without recovery by more than five seconds. The critical power and anaerobic work capacity were obtained by nonlinear regression and fitting of the curve to a hyperbolic power-time model. The Shapiro-Wilk test and paired Student t-test were used for statistical analysis. No significant differences in critical power were observed between the caffeine and placebo groups (192.9 ± 31.3 vs 197.7 ± 29.4 W, respectively. The anaerobic work capacity was significantly higher in the caffeine group (20.1 ± 5.2 vs 16.3 ± 4.2 W, p< 0.01. A high association (r2 was observed between the caffeine and placebo conditions (0.98 ± 0.02 and 0.99 ± 0.0, respectively. We conclude that caffeine intake did not improve critical power performance but increased anaerobic work capacity by influencing performance at loads of higher intensity and shorter duration.

  3. Heat sink design considerations in medium power electronic applications with long power cycles

    CERN Document Server

    AUTHOR|(SzGeCERN)744611; Papastergiou, Konstantinos; Thiringer, Torbjörn; Bongiorno, Massimo

    2015-01-01

    The aim of this work is to investigate the impact of the heat sink thickness and material, as well as, of the convection coefficient of the water cooling system on the power-electronics module thermal stressing. The heat extraction capability of different thicknesses is tested. It is concluded that the thickest heat sink results in marginally lower temperature variation at the junction level compared to the second thickest one. In the thickest heat sink case, the linear dependence of the thermal resistance on the thickness counteracts the benefit of the increased thermal capacitance. The increase in the cooling medium flow rate, which corresponds to an increase in the convection coefficient between the heat sink bottom surface and the water, can be avoided by increasing the thickness of the heat sink. In this way, the energy consumption of the cooling system is reduced. The increase in the flow rate drastically reduces the thermal stressing in the thinnest heat sink case. The increase of the heat sink thickne...

  4. HTR-Based Power Plants’ Performance Analysis Applied on Conventional Combined Cycles

    Directory of Open Access Journals (Sweden)

    José Carbia Carril

    2015-01-01

    Full Text Available In high temperature reactors including gas cooled fast reactors and gas turbine modular helium reactors (GT-MHR specifically designed to operate as power plant heat sources, efficiency enhancement at effective cost under safe conditions can be achieved. Mentioned improvements concern the implementation of two cycle structures: (a, a stand alone Brayton operating with helium and a stand alone Rankine cycle (RC with regeneration, operating with carbon dioxide at ultrasupercritical pressure as working fluid (WF, where condensation is carried out at quasicritical conditions, and (b, a combined cycle (CC, in which the topping closed Brayton cycle (CBC operates with helium as WF, while the bottoming RC is operated with one of the following WFs: carbon dioxide, xenon, ethane, ammonia, or water. In both cases, an intermediate heat exchanger (IHE is proposed to provide thermal energy to the closed Brayton or to the Rankine cycles. The results of the case study show that the thermal efficiency, through the use of a CC, is slightly improved (from 45.79% for BC and from 50.17% for RC to 53.63 for the proposed CC with He-H2O operating under safety standards.

  5. Correlation between thermodynamic efficiency and ecological cyclicity for thermodynamic power cycles.

    Directory of Open Access Journals (Sweden)

    Astrid Layton

    Full Text Available A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical ("closed loop" resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems.

  6. Correlation between thermodynamic efficiency and ecological cyclicity for thermodynamic power cycles.

    Science.gov (United States)

    Layton, Astrid; Reap, John; Bras, Bert; Weissburg, Marc

    2012-01-01

    A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical ("closed loop") resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems.

  7. Integrated gasification combined cycle versus supercritical pulverized coal for power generation from coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Integrated Gasification Combined Cycle (IGCC) plants provide potential performance, environmental, and fuel flexibility advantages over more conventional combustion technologies such as Supercritical Pulverized Coal (SCPC) plants. Projected pollutant emissions from IGCC plants are the lowest of all coal power generation technologies. Mercury and carbon dioxide emissions reductions can be achieved at a much lower cost for IGCC plants than for conventional pulverized coal-fired power plants. Future IGCC developments, such as improvements in process technologies and development of larger, more efficient combustion turbines, offer the potential to further increase the competitiveness and performance of IGCC. For these reasons, IGCC is likely to evolve as the future technology of choice for generation of electricity from coal. An overview is presented of the components of an IGCC plant, along with a discussion of integration options and commercial status. IGCC plant performance and economics are compared against SCPC power generation for Chinese coals. 1 fig., 4 tabs.

  8. Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation

    Energy Technology Data Exchange (ETDEWEB)

    Lytle, J.M.; Marchant, D.D.

    1980-11-01

    The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

  9. EASETECH Energy: Life Cycle Assessment of current and future Danish power systems

    DEFF Research Database (Denmark)

    Turconi, Roberto; Damgaard, Anders; Bisinella, Valentina

    A new life cycle assessment (LCA) model software has been developed by DTU Environment, to facilitate detailed LCA of energy technologies. The model, EASETECH Energy, is dedicated to the specific technologies needed to assess energy production and energy systems and provides an unprecedented...... flexibility with respect to LCA modeling of these technologies. To illustrate the functionality of the model, preliminary results from a LCA of the Danish power system in 2010 as well as two future scenarios for 2030 are presented. In addition to providing a general overview of the environmental profile...... of a renewable based power system, specific focus is placed on the typical challenges encountered when performing an LCA of a power system. Further, the key characteristics of EASETECH Energy that can expedite the set-up of multiple scenarios and enhance transparency in the modelling are explained....

  10. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy.

    Science.gov (United States)

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m(-2) and 7.61 kg m(-2) day(-1) at the generation temperature of 140 °C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  11. Distribution of power output during the cycling stage of a Triathlon World Cup.

    Science.gov (United States)

    Bernard, Thierry; Hausswirth, Christophe; Le Meur, Yann; Bignet, Frank; Dorel, Sylvain; Brisswalter, Jeanick

    2009-06-01

    The aim of this study was to evaluate the power output (PO) during the cycle phase of the Beijing World Cup test event of the Olympic triathlon in China 2008. Ten elite triathletes (5 females, 5 males) performed two laboratory tests: an incremental cycling test during which PO, HR at ventilatory thresholds (VT1 and VT2), and maximal aerobic power (MAP) were assessed, and a brief all-out test to determine maximal anaerobic power output (MAnP). During the cycle part of competition, PO and HR were measured directly with portable device. The amount of time spent below PO at VT1 (zone 1), between PO at VT1 and VT2 (zone 2), between PO at VT2 and MAP (zone 3) and above MAP (zone 4) was analyzed. A significant decrease in PO, speed, and HR values was observed during the race. The distribution of time was 51 +/- 9% for zone 1, 17 +/- 6% for zone 2, 15 +/- 3% for zone 3, and 17 +/- 6% was performed at workloads higher than MAP (zone 4). From HR values, the triathletes spent 27 +/- 12% in zone 1, 26 +/- 8% in zone 2, and 48 +/- 14% above VT2. This study indicates a progressive reduction in speed, PO, and HR, coupled with an increase in variability during the event. The Olympic distance triathlon requires a higher aerobic and anaerobic involvement than constant-workload cycling exercises classically analyzed in laboratory settings (i.e., time trial) or Ironman triathlons. Furthermore, monitoring direct PO could be more suitable to quantify the intensity of a race with pacing strategies than classic HR measurements.

  12. Changes of whole-body power, muscle function, and jump performance with prolonged cycling to exhaustion.

    Science.gov (United States)

    McIntyre, Jordan P R; Mawston, Grant A; Cairns, Simeon P

    2012-12-01

    To quantify how whole-body power, muscle-function, and jump-performance measures change during prolonged cycling and recovery and determine whether there are relationships between the different fatigue measures. Ten competitive or recreationally active male cyclists underwent repeated 20-min stages of prolonged cycling at 70% VO2peak until exhaustion. Whole-body peak power output (PPO) was assessed using an all-out 30-s sprint 17 min into each cycle stage. Ratings of perceived exertion (RPE) were recorded throughout. Isometric and isokinetic muscle-function tests were made between cycle stages, over ~6 min, and during 30-min recovery. Drop-jump measures were tested at exhaustion and during recovery. PPO initially increased or was maintained in some subjects but fell to 81% of maximum at exhaustion. RPE was near maximal (18.7) at exhaustion, with the time to exhaustion related to the rate of rise of RPE. PPO first started to decline only when RPE exceeded 16 (ie, hard). Peak isometric and concentric isokinetic torque (180°/s) for the quadriceps fell to 86% and 83% of pretest at exhaustion, respectively. In contrast, the peak concentric isokinetic torque (180°/s) of the hamstrings increased by 10% before declining to 93% of maximum. Jump height fell to 92% of pretest at exhaustion and was correlated with the decline in PPO (r = .79). Muscle-function and jump-performance measures did not recover over the 30-min postexercise rest period. At exhaustion, whole-body power, muscle-function, and jump-performance measures had all fallen by 7-19%. PPO and drop-jump decrements were linearly correlated and are appropriate measures of maximal performance.

  13. The Thorium-Cycle: safe, abundant power for the new millennium

    Science.gov (United States)

    Don, May; George, Kim; Peter, Mcintyre; Charles, Meitzler; Robert, Rogers; Akhdior, Sattarov; Mustafa, Yavuz

    2001-10-01

    A design has been developed for using accelerator-driven thorium fission to produce electric power. A thorium-cycle reactor works by electro-breeding. A pattern of thorium fuel rods is supported in a vessel containing molten lead. A beam of high-energy (1 GeV) protons is targeted in the center of the vessel, and produces a copious flux of energetic neutrons by spallation. The neutrons transmute the thorium nuclei two steps up the periodic table to U233, which fissions rapidly to produce thermal energy. The lead serves as the spallation target, the moderator, and the heat exchange medium to transfer heat from the core to steam exchangers above the core. The thorium cycle has several important advantages over current uranium-cycle fission technology: it is intrinsically stable it cannot melt down; it eats its own waste; it cannot produce bomb-grade isotopes; and there are sufficient thorium reserves to supply the entire Earth’s energy economy for the next millennium. The concept of a thorium-cycle power reactor was first proposed by Rubbia in 1995. Key problems in the original concept were the proton injector (15 MW beam power), reliability of accelerator systems, and parasitic absorption of neutrons by fission products during the life of the core. We have addressed all three problems in a design for a flux-coupled stack of isochronous cyclotrons, delivering a pattern of 7 independent beams to the core. An interdisciplinary collaboration is being formed to develop the concept to a serious design.

  14. Externality costs of the coal-fuel cycle: The case of Kusile Power Station

    Directory of Open Access Journals (Sweden)

    Nonophile P. Nkambule

    2017-09-01

    Full Text Available Coal-based electricity is an integral part of daily life in South Africa and globally. However, the use of coal for electricity generation carries a heavy cost for social and ecological systems that goes far beyond the price we pay for electricity. We developed a model based on a system dynamics approach for understanding the measurable and quantifiable coal-fuel cycle burdens and externality costs, over the lifespan of a supercritical coal-fired power station that is fitted with a flue-gas desulfurisation device (i.e. Kusile Power Station. The total coal-fuel cycle externality cost on both the environment and humans over Kusile's lifespan was estimated at ZAR1 449.9 billion to ZAR3 279 billion or 91c/kWh to 205c/kWh sent out (baseline: ZAR2 172.7 billion or 136c/kWh. Accounting for the life-cycle burdens and damages of coal-derived electricity conservatively, doubles to quadruples the price of electricity, making renewable energy sources such as wind and solar attractive alternatives. Significance: The use of coal for electricity generation carries a heavy cost for social and ecological systems that goes far beyond the price we pay for electricity. The estimation of social costs is particularly important to the electric sector because of non-differentiation of electricity prices produced from a variety of sources with potentially very dissimilar environmental and human health costs. Because all electricity generation technologies are associated with undesirable side effects in their fuelcycle and lifespan, comprehensive comparative analyses of life-cycle costs of all power generation technologies is indispensable to guide the development of future energy policies in South Africa.

  15. Economic evaluation of solar-powered triple-fluid Einstein refrigeration cycle

    Energy Technology Data Exchange (ETDEWEB)

    Qenawy, A.M.; El-Dib, A.W.F.; Ghoraba, M.M. [Cairo Univ., Giza (Egypt). Mechanical Power Dept., Faculty of Engineering

    2006-07-01

    The renewed interest in solar cooling systems can be attributed to rising energy prices and environmental concerns. However, the controlling factor for successful commercialization of such systems is their economic feasibility. In response, systems using solar energy are being actively developed. An alternative to vapor compression systems is the absorption refrigerator cycle which can be driven by low grade energy such as solar energy. Single pressure absorption systems are characterized by absorbing and refrigerant mediums as well as by a pressure-equalizing medium. Two cycles of this type exist, namely the ammonia-water-hydrogen (AWH) and the Einstein cycles. In the Einstein refrigeration cycle, the generator produces ammonia, the pressure-equalizing fluid that lowers the liquid butane partial pressure in the evaporator, thereby producing a cooling effect. In the proposed system, the solar collector acts as the generator. This paper investigated the economics of solar powered Einstein refrigeration system for use in the food industry or for ice production in isolated fish villages in Egypt. Such an icemaker could be used to refrigerate vaccines, meat, dairy products or vegetables. The ice can be sold as a commercial product, or used in a cooler or icebox refrigerator. Solar energy is required to produce the cooling effect in the solar powered Einstein refrigeration cycle. Although solar radiant energy is free, the equipment required to convert it to a useful cooling is not. The system ice production cost was found to be approximately 50 per cent more than other conventional refrigeration systems. Although the initial cost of the solar refrigerator was found to be relatively high, it could be an acceptable solution if this equipment is mass produced. The use of the system is essential in rural areas which do not have electric service. 12 refs., 4 figs.

  16. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma

    Science.gov (United States)

    Litchford, Ron J.; Harada, Nobuhiro

    2011-01-01

    Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.

  17. Valuing flexibility: The case of an Integrated Gasification Combined Cycle power plant

    Energy Technology Data Exchange (ETDEWEB)

    Abadie, L.M.; Chamorro, J.M. [University of the Basque Country, Bilbao (Spain)

    2008-07-15

    In this paper we analyze the choice between two technologies for producing electricity. In particular, the firm has to decide whether and when to invest either in a Natural Gas Combined Cycle (NGCC) power plant or in an Integrated Gasification Combined Cycle (IGCC) power plant, which may burn either coal or natural gas. Instead of assuming that fuel prices follow standard geometric Brownian motions' here they are assumed to show mean reversion, specifically to follow an inhomogeneous geometric Brownian motion. First we consider the opportunity to invest in a NGCC power plant. We derive the optimal investment rule as a function of natural gas price and the remaining life of the right to invest. In addition, the analytical solution for a perpetual option to invest is obtained. Then we turn to the IGCC power plant. We analyse the valuation of an operating plant when there are switching costs between modes of operation, and the choice of the best operation mode. This serves as an input to evaluate the option to invest in this plant. Finally we derive the value of an opportunity to invest either in a NGCC or IGCC power plant, i.e. to choose between an inflexible and a flexible technology, respectively. Depending on the opportunity's time to maturity, we derive the pairs of coal and gas prices for which it is optimal to invest in NGCC, in IGCC, or simply not to invest. Numerical computations involve the use of one- and two-dimensional binomial lattices that support a mean-reverting process for coal and gas prices. Basic parameter values are taken from an actual IGCC power plant currently in operation. sensitivity of some results with respect to the underlying stochastic process for fuel price is also checked.

  18. Closed-Cycle Engine Program Used to Study Brayton Power Conversion

    Science.gov (United States)

    Johnson, Paul K.

    2005-01-01

    One form of power conversion under consideration in NASA Glenn Research Center's Thermal Energy Conversion Branch is the closed-Brayton-cycle engine. In the tens-of-kilowatts to multimegawatt class, the Brayton engine lends itself to potential space nuclear power applications such as electric propulsion or surface power. The Thermal Energy Conversion Branch has most recently concentrated its Brayton studies on electric propulsion for Prometheus. One piece of software used for evaluating such designs over a limited tradeoff space has been the Closed Cycle Engine Program (CCEP). The CCEP originated in the mid-1980s from a Fortran aircraft engine code known as the Navy/NASA Engine Program (NNEP). Components such as a solar collector, heat exchangers, ducting, a pumped-loop radiator, a nuclear heat source, and radial turbomachinery were added to NNEP, transforming it into a high-fidelity design and performance tool for closed-Brayton-cycle power conversion and heat rejection. CCEP was used in the 1990s in conjunction with the Solar Dynamic Ground Test Demonstration conducted at Glenn. Over the past year, updates were made to CCEP to adapt it for an electric propulsion application. The pumped-loop radiator coolant can now be n-heptane, water, or sodium-potassium (NaK); liquid-metal pump design tables were added to accommodate the NaK fluid. For the reactor and shield, a user can now elect to calculate a higher fidelity mass estimate. In addition, helium-xenon working-fluid properties were recalculated and updated.

  19. Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2011-04-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  20. The role of sense of effort on self-selected cycling power output

    Directory of Open Access Journals (Sweden)

    Ryan James Christian

    2014-03-01

    Full Text Available Purpose: We explored the effects of the sense of effort and accompanying perceptions of peripheral discomfort on self-selected cycle power output under two different inspired O2 fractions.Methods: On separate days, eight trained males cycled for 5 minutes at a constant subjective effort (sense of effort of ‘3’ on a modified Borg CR10 scale, immediately followed by five 4-s progressive submaximal (sense of effort of 4, 5, 6, 7 and 8; 40 s between bouts and two 4-s maximal (sense of effort of 10; 3 min between bouts bouts under normoxia (NM: fraction of inspired O2 [FiO2] 0.21 and hypoxia (HY: [FiO2] 0.13. Physiological (Heart Rate, arterial oxygen saturation (SpO2 and quadriceps Root Mean Square (RMS electromyographical activity and perceptual responses (overall peripheral discomfort, difficulty breathing and limb discomfort were recorded.Results: Power output and normalized quadriceps RMS activity were not different between conditions during any exercise bout (p > 0.05 and remained unchanged across time during the constant-effort cycling. SpO2 was lower, while heart rate and ratings of perceived difficulty breathing were higher under HY, compared to NM, at all time points (p

  1. A high-power and fast charging Li-ion battery with outstanding cycle-life.

    Science.gov (United States)

    Agostini, M; Brutti, S; Navarra, M A; Panero, S; Reale, P; Matic, A; Scrosati, B

    2017-04-24

    Electrochemical energy storage devices based on Li-ion cells currently power almost all electronic devices and power tools. The development of new Li-ion cell configurations by incorporating innovative functional components (electrode materials and electrolyte formulations) will allow to bring this technology beyond mobile electronics and to boost performance largely beyond the state-of-the-art. Here we demonstrate a new full Li-ion cell constituted by a high-potential cathode material, i.e. LiNi0.5Mn1.5O4, a safe nanostructured anode material, i.e. TiO2, and a composite electrolyte made by a mixture of an ionic liquid suitable for high potential applications, i.e. Pyr1,4PF6, a lithium salt, i.e. LiPF6, and standard organic carbonates. The final cell configuration is able to reversibly cycle lithium for thousands of cycles at 1000 mAg-1 and a capacity retention of 65% at cycle 2000.

  2. Online Junction Temperature Cycle Recording of an IGBT Power Module in a Hybrid Car

    Directory of Open Access Journals (Sweden)

    Marco Denk

    2015-01-01

    Full Text Available The accuracy of the lifetime calculation approach of IGBT power modules used in hybrid-electric powertrains suffers greatly from the inaccurate knowledge of application typical load-profiles. To verify the theoretical load-profiles with data from the field this paper presents a concept to record all junction temperature cycles of an IGBT power module during its operation in a test vehicle. For this purpose the IGBT junction temperature is measured with a modified gate driver that determines the temperature sensitive IGBT internal gate resistor by superimposing the negative gate voltage with a high-frequency identification signal. An integrated control unit manages the TJ measurement during the regular switching operation, the exchange of data with the system controller, and the automatic calibration of the sensor system. To calculate and store temperature cycles on a microcontroller an online Rainflow counting algorithm was developed. The special feature of this algorithm is a very accurate extraction of lifetime relevant information with a significantly reduced calculation and storage effort. Until now the recording concept could be realized and tested within a laboratory voltage source inverter. Currently the IGBT driver with integrated junction temperature measurement and the online cycle recording algorithm is integrated in the voltage source inverter of first test vehicles. Such research will provide representative load-profiles to verify and optimize the theoretical load-profiles used in today’s lifetime calculation.

  3. A study of operational cycle of terminal distributed power supply based on Big-data

    Science.gov (United States)

    Nie, Erbao; Liu, Zhoubin; He, Jinhong; Li, Chao

    2018-01-01

    In China, the distributed power supply industry enjoys a rapid development trend. For the users’ side of the distributed power mode of operation, there are various types. This paper, take rural as an example, mainly studies the all round life cycle operation mode of rural distributed solar power plant, including the feasibility study plan and investment suggestion of the initial construction of the rural power station, and the operation and maintenance in the middle period. China’s vast rural areas, areas per capita is large, average households have independent housing and courtyards, available building area is no problem. Compared with the urban areas, the return rate of investment is low, the investment options is rare, the collective is strong, the risk tolerance is weak and so on. Aiming at the characteristics of the rural areas in the above rural areas, three kinds of investment schemes of rural distributed photovoltaic power plants are put forward, and their concrete implementation plans are analyzed in detail. Especially the second option, for the farmers to consider the risk of investment, given their principal security, which greatly reduces the farmers into the power plant loss of funds risk. At the same time, according to the respective risk of farmers, given the corresponding investment advice. Rural income is generally low, the expected benefits of distributed photovoltaic power plant can significantly improve the income of farmers, improve the quality of life of farmers, coupled with the strong rural collective farmers, rural distributed photovoltaic power plants will mushroom, which On China’s photovoltaic construction and even the supply of clean energy is of great significance, so as to truly benefit the national energy strategy and rural construction.

  4. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200°C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200°C and 40 bar was found to be acceptable after 399

  5. The Spallator and APEX Nuclear Fuel Cycle a New Option for Nuclear Power

    Science.gov (United States)

    Steinberg, M.

    1983-02-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high energy (1 to 2 GeV) protons on a heavy metal target. The neutrons are absorbed in a surrounding natural uranium or thorium blanket in which fissile Pu-239 or U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high beam current continuous wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of the short-lived fission products external to the fuel cycle eliminates the need for long-term geological age storage of fission product waste.

  6. Optimization of the self-sufficient thorium fuel cycle for CANDU power reactors

    Directory of Open Access Journals (Sweden)

    Bergelson Boris R.

    2008-01-01

    Full Text Available The results of optimization calculations for CANDU reactors operating in the thorium cycle are presented in this paper. Calculations were performed to validate the feasibility of operating a heavy-water thermal neutron power reactor in a self-sufficient thorium cycle. Two modes of operation were considered in the paper: the mode of preliminary accumulation of 233U in the reactor itself and the mode of operation in a self-sufficient cycle. For the mode of accumulation of 233U, it was assumed that enriched uranium or plutonium was used as additional fissile material to provide neutrons for 233U production. In the self-sufficient mode of operation, the mass and isotopic composition of heavy nuclei unloaded from the reactor should provide (after the removal of fission products the value of the multiplication factor of the cell in the following cycle K>1. Additionally, the task was to determine the geometry and composition of the cell for an acceptable burn up of 233U. The results obtained demonstrate that the realization of a self-sufficient thorium mode for a CANDU reactor is possible without using new technologies. The main features of the reactor ensuring a self-sufficient mode of operation are a good neutron balance and moving of fuel through the active core.

  7. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    Science.gov (United States)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  8. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  9. Draft report: application of organic Rankine cycle heat recovery systems to diesel powered marine vessels

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-15

    The analysis and results of an investigation of the application of organic Rankine cycle heat recovery systems to diesel-powered marine vessels are described. The program under which this study was conducted was sponsored jointly by the US Energy Research and Development Administration, the US Navy, and the US Maritime Administration. The overall objective of this study was to investigate diesel bottoming energy recovery systems, currently under development by three US concerns, to determine the potential for application to marine diesel propulsion and auxiliary systems. The study primarily focused on identifying the most promising vessel applications (considering vessel type, size, population density, operational duty cycle, etc.) so the relative economic and fuel conservation merits of energy recovery systems could be determined and assessed. Vessels in the current fleet and the projected 1985 fleet rated at 1000 BHP class and above were investigated.

  10. Sensitivity analysis of molecular design problem for the development of novel working fluids for power cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    technology to convert such waste heat sources into usable energy. So far the low-temperature heat is not utilized efficiently for electricity generation. To optimize the heat transfer process and the power generation, the influence of the working fluid, the cycle designs and the operating conditions is vital....... Multi-criteria database search and Computer Aided Molecular Design (CAMD) can be applied to generate, test and evaluate promising pure component/mixture candidate as process fluids to help optimize cycle design and performance [1]. The problem formulation for the development of novel working fluids......, environmental and safety properties such as the ozone depletion potential (ODP), the global warming potential (GWP) as well as flammability limits are taken into account to give a multi-criteria framework. Furthermore, a process optimization with respect to the properties is performed to identify the optimal...

  11. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Space Power Systems

    Science.gov (United States)

    Barrett, Michael J.; Johnson, Paul K.; Naples, Andrew G.

    2006-01-01

    The feasibility of using carbon-carbon (C-C) recuperators in conceptual closed-Brayton-cycle space power conversion systems was assessed. Recuperator performance expectations were forecast based on notional thermodynamic cycle state values for potential planetary missions. Resulting thermal performance, mass and volume for plate-fin C-C recuperators were estimated and quantitatively compared with values for conventional offset-strip-fin metallic designs. Mass savings of 30 to 60 percent were projected for C-C recuperators with effectiveness greater than 0.9 and thermal loads from 25 to 1400 kWt. The smaller thermal loads corresponded with lower mass savings; however, 60 percent savings were forecast for all loads above 300 kWt. System-related material challenges and compatibility issues were also discussed.

  12. Study of toluene stability for an Organic Rankine Cycle (ORC) space-based power system

    Science.gov (United States)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    The design, fabrication, assembly, and endurance operation of a dynamic test loop, built to evaluate the thermal stability of a proposed Organic Rankine Cycle (ORC) working fluid, is discussed. The test fluid, toluene, was circulated through a heater, simulated turbine, regenerator, condenser and pump to duplicate an actual ORC system. The maximum nominal fluid temperature, 750 F, was at the turbine simulator inlet. Samples of noncondensible gases and liquid toluene were taken periodically during the test. The samples were analyzed to identify the degradation products formed and the quantity of these products. From these data it was possible to determine the degradation rate of the working fluid and the generation rate of noncondensible gases. A further goal of this work was to relate the degradation observed in the dynamic operating loop to degradation obtained in isothermal capsule tests. This relationship was the basis for estimating the power loop degradation in the Space Station Organic Rankine Cycle system.

  13. Radiation and Thermal Cycling Effects on EPC1001 Gallium Nitride Power Transistors

    Science.gov (United States)

    Patterson, Richard L.; Scheick, Leif Z.; Lauenstein, Jean M.; Casey, Megan C.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Information pertaining to performance of electronic parts and systems under hostile environments is very scarce, especially for new devices. Such data is very critical so that proper design is implemented in order to ensure mission success and to mitigate risks associated with exposure of on-board systems to the operational environment. In this work, newly-developed enhancement-mode field effect transistors (FET) based on gallium nitride (GaN) technology were exposed to various particles of ionizing radiation and to long-term thermal cycling over a wide temperature range. Data obtained on control (un-irradiated) and irradiated samples of these power transistors are presented and the results are discussed.

  14. Brayton-Cycle Power-Conversion Unit Tested With Ion Thruster

    Science.gov (United States)

    Hervol, David S.

    2005-01-01

    Nuclear electric propulsion has been identified as an enabling technology for future NASA space science missions, such as the Jupiter Icy Moons Orbiter (JIMO) now under study. An important element of the nuclear electric propulsion spacecraft is the power conversion system, which converts the reactor heat to electrical power for use by the ion propulsion system and other spacecraft loads. The electrical integration of the power converter and ion thruster represents a key technical challenge in making nuclear electric propulsion technology possible. This technical hurdle was addressed extensively on December 1, 2003, when a closed- Brayton-cycle power-conversion unit was tested with a gridded ion thruster at the NASA Glenn Research Center. The test demonstrated end-to-end power throughput and marked the first-ever coupling of a Brayton turbo alternator and a gridded ion thruster, both of which are candidates for use on JIMO-type missions. The testing was conducted at Glenn's Vacuum Facility 6, where the Brayton unit was installed in the 3-m-diameter vacuum test port and the ion thruster was installed in the 7.6-m-diameter main chamber.

  15. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    Energy Technology Data Exchange (ETDEWEB)

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  16. Optimization of power-cycle arrangements for Supercritical Water cooled Reactors (SCWRs)

    Science.gov (United States)

    Lizon-A-Lugrin, Laure

    The world energy demand is continuously rising due to the increase of both the world population and the standard of life quality. Further, to assure both a healthy world economy as well as adequate social standards, in a relatively short term, new energy-conversion technologies are mandatory. Within this framework, a Generation IV International Forum (GIF) was established by the participation of 10 countries to collaborate for developing nuclear power reactors that will replace the present technology by 2030. The main goals of these nuclear-power reactors are: economic competitiveness, sustainability, safety, reliability and resistance to proliferation. As a member of the GIF, Canada has decided to orient its efforts towards the design of a CANDU-type Super Critical Water-cooled Reactor (SCWR). Such a system must run at a coolant outlet temperature of about 625°C and at a pressure of 25 MPa. It is obvious that at such conditions the overall efficiency of this kind of Nuclear Power Plant (NPP) will compete with actual supercritical water-power boilers. In addition, from a heat-transfer viewpoint, the use of a supercritical fluid allows the limitation imposed by Critical Heat Flux (CHF) conditions, which characterize actual technologies, to be removed. Furthermore, it will be also possible to use direct thermodynamic cycles where the supercritical fluid expands right away in a turbine without the necessity of using intermediate steam generators and/or separators. This work presents several thermodynamic cycles that could be appropriate to run SCWR power plants. Improving both thermal efficiency and mechanical power constitutes a multi-objective optimization problem and requires specific tools. To this aim, an efficient and robust evolutionary algorithm, based on genetic algorithm, is used and coupled to an appropriate power plant thermodynamic simulation model. The results provide numerous combinations to achieve a thermal efficiency higher than 50% with a

  17. EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF NEW POWER CYCLES AND ADVANCED FALLING FILM HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    Arsalan Razani; Kwang J. Kim

    2000-10-28

    The annual progress report for the period of October 1, 1999 to September 30, 2000 on DOE/UNM grant number DE-FG26-98FT40148 discusses the progress on both the theoretical analysis of advanced power cycles and the experimental investigation of advanced falling film heat exchangers. The previously developed computer program for the triple cycle, based on the air standard cycle assumption, was modified to include actual air composition (%77.48 N{sub 2}, %20.59 O{sub 2}, %1.9 H{sub 2}O, and %0.03 CO{sub 2}). The actual combustion products were used in exergy analysis of the triple cycle. The effect of steam injection into the combustion chamber on its irreversibility, and the irreversibility of the entire cycle, was evaluated. A more practical fuel inlet condition and a better position of the feedwater heater in the steam cycle were used in the modified cycle. The effect of pinch point and the temperature difference between the combustion products, as well as the steam in the heat recovery steam generator on irreversibility of the cycle were evaluated. Design, construction, and testing of the multitube horizontal falling film condenser facility were completed. Two effective heat transfer additives (2-ethyl-1-hexanol and alkyl amine) were identified and tested for steam condensation. The test results are included. The condenser was designed with twelve tubes in an array of three horizontals and four verticals, with a 2-inch horizontal and 1.5-inch vertical in-line pitch. By using effective additives, the condensation heat transfer rate can be augmented as much as 30%, as compared to a heat transfer that operated without additives under the same operating condition. When heat transfer additives function effectively, the condensate-droplets become more dispersed and have a smaller shape than those produced without additives. These droplets, unlike traditional turbulence, start at the top portion of the condenser tubes and cover most of the tubes. Such a flow behavior can

  18. Advanced Rankine and Brayton cycle power systems: Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long time property data must be obtained under environments of interest to assure high component reliability.

  19. Advanced Rankine and Brayton cycle power systems - Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long-time property data must be obtained under environments of interest to assure high component reliability.

  20. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  1. The Influence of Serial Carbohydrate Mouth Rinsing on Power Output during a Cycle Sprint.

    Science.gov (United States)

    Phillips, Shaun M; Findlay, Scott; Kavaliauskas, Mykolas; Grant, Marie Clare

    2014-05-01

    The objective of the study was to investigate the influence of serial administration of a carbohydrate (CHO) mouth rinse on performance, metabolic and perceptual responses during a cycle sprint. Twelve physically active males (mean (± SD) age: 23.1 (3.0) years, height: 1.83 (0.07) m, body mass (BM): 86.3 (13.5) kg) completed the following mouth rinse trials in a randomized, counterbalanced, double-blind fashion; 1. 8 x 5 second rinses with a 25 ml CHO (6% w/v maltodextrin) solution, 2. 8 x 5 second rinses with a 25 ml placebo (PLA) solution. Following mouth rinse administration, participants completed a 30 second sprint on a cycle ergometer against a 0.075 g·kg(-1) BM resistance. Eight participants achieved a greater peak power output (PPO) in the CHO trial, resulting in a significantly greater PPO compared with PLA (13.51 ± 2.19 vs. 13.20 ± 2.14 W·kg(-1), p 0.05). No significant between-trials difference was reported for fatigue index, perceived exertion, arousal and nausea levels, or blood lactate and glucose concentrations. Serial administration of a CHO mouth rinse may significantly improve PPO during a cycle sprint. This improvement appears confined to the first 5 seconds of the sprint, and may come at a greater relative cost for the remainder of the sprint. Key pointsThe paper demonstrates that repeated administration of a carbohydrate mouth rinse can significantly improve peak power output during a single 30 second cycle sprint.The ergogenic effect of the carbohydrate mouth rinse may relate to the duration of exposure of the oral cavity to the mouth rinse, and associated greater stimulation of oral carbohydrate receptors.The significant increase in peak power output with the carbohydrate mouth rinse may come at a relative cost for the remainder of the sprint, evidenced by non-significantly lower mean power output and a greater fatigue index in the carbohydrate vs. placebo trial.Serial administration of a carbohydrate mouth rinse may be beneficial for

  2. Aging precursors and degradation effects of SiC-MOSFET modules under highly accelerated power cycling conditions

    DEFF Research Database (Denmark)

    Luo, Haoze; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    A highly accelerated power cycling test platform using current source converter for SiC-MOSFET power modules is proposed. The control principles of delta and average junction temperatures are introduced. By using isolated thermal fibers, the junction temperature (Tj) variations can be monitored...... during the test process without removal of silicone gel. The power module is tested in the conditions of ΔTj=60 °C, mean temperature Tjm=145 °C and the maximum Tj=175 °C. By means of device analyzer, the degraded conditions of electrical parameters after power cycling test are fully investigated...

  3. Study of a Combined Power and Ejector Refrigeration Cycle with Low-temperature Heat Sources by Applying Various Working Fluids

    Science.gov (United States)

    Jafarmadar, S.; Habibzadeh, A.

    2017-08-01

    A power and cooling cycle which combines the organic Rankine cycle and the ejector refrigeration cycle supplied by waste heat energy sources is discussed in this paper. Thirteen working fluids including one wet, eight dry and four isentropic fluids are studied in order to find their performances on the combined cycle. First and second law analysis has been performed by using a computer program in order to investigate various operating conditions’ effects on the proposed cycle by fixing power/refrigeration ratio and varying waste heat source and evaporator temperature. According to the results, in general, dry and isentropic ORC fluids have better performance compared with wet fluids. The increase in evaporator temperature leads to the decrease in exergy efficiency. On the other hand, exergy efficiency rises with the turbine inlet temperature decrease and an increase of heat source temperature. Rising expansion ratio and inlet temperature of the turbine causes an increase in the thermal efficiency of the cycle.

  4. Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Conboy, Thomas M.

    2012-02-01

    A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

  5. Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Pei, Yingying

    2016-01-01

    and regional power grids. Marginal electricity generation technology is pivotal in assessing impacts related to additional consumption of electricity. China covers a large geographical area with regional supply grids; these are arguably equally or less integrated. Meanwhile, it is also a country with internal......Electricity consumption is often the hotspot of life cycle assessment (LCA) of products, industrial activities, or services. The objective of this paper is to provide a consistent, scientific, region-specific electricity-supply-based inventory of electricity generation technology for national...... imbalances in regional energy supply and demand. Therefore, we suggest an approach to achieve a geographical subdivision of the Chinese electricity grid, corresponding to the interprovincial regional power grids, namely the North, the Northeast, the East, the Central, the Northwest, and the Southwest China...

  6. Analysis of trace anions in the water-steam cycle in power plants

    Directory of Open Access Journals (Sweden)

    Čičkarić Dragana Z.

    2005-01-01

    Full Text Available This study offers some insight into the significance of water quality control in thermal power plants. In order to maintain high reliability indices in thermal plants and to realize the expected lifetime of these plants, high water quality should be accomplished. Also, the working tools of the analyst in thermal power plants and the types of problems, which help in solving daily tasks, are discussed. The difficulties the analyst might face are indicated. This review considers the implementation of standard control and diagnostic parameters crucial for water quality in all segments of a water-steam system. The subject of this paper was to analyze anion traces in the water-steam cycle, using a modern, highly sensitive instrumental method the method of ion chromatography (1S. Thus, the possibility of monitoring ionic species that can cause corrosion processes in the water-steam system is examined.

  7. AutoSync : Automatic duty-cycle control for synchronous low-power listening

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg; Kusy, Branislav; Jurdak, Raja

    2012-01-01

    Low power listening (LPL) has been widely adopted to save energy in wireless sensor networks. However, LPL is ineffective in adapting to dynamic networks with asymmetric traffic patterns, as it sets a network-wide check interval. As a result, nodes with low data traffic waste significant energy...... resources doing idle listening. This problem is particularly exacerbated in multi-radio networks where majority of data comes through the most reliable radio and the duty cycles of other radios could be reduced. We address this issue in AutoSync, a protocol that combines synchronous LPL with automatic...... experiments. Results show that AutoSync attains a substantial increase in the operational lifetime and mean power consumption over existing protocols in single radio networks and even more in dual radio networks....

  8. Optimization of the oxidant supply system for combined cycle MHD power plants

    Science.gov (United States)

    Juhasz, A. J.

    1982-01-01

    An in-depth study was conducted to determine what, if any, improvements could be made on the oxidant supply system for combined cycle MHD power plants which could be reflected in higher thermal efficiency and a reduction in the cost of electricity, COE. A systematic analysis of air separation process varitions which showed that the specific energy consumption could be minimized when the product stream oxygen concentration is about 70 mole percent was conducted. The use of advanced air compressors, having variable speed and guide vane position control, results in additional power savings. The study also led to the conceptual design of a new air separation process, sized for a 500 MW sub e MHD plant, referred to a internal compression is discussed. In addition to its lower overall energy consumption, potential capital cost savings were identified for air separation plants using this process when constructed in a single large air separation train rather than multiple parallel trains, typical of conventional practice.

  9. High temperature electrolyzer/fuel cell power cycle: Preliminary design considerations

    Science.gov (United States)

    Morehouse, Jeffrey H.

    1987-01-01

    A model of a high temperature electrolyzer/fuel cell, hydrogen/oxygen, thermally regenerative power cycle is developed and used to simulate system performance for varying system parameters. Initial estimates of system efficiency, weight, and volume are provided for a one KWe module assuming specific electrolyzer and fuel cell characteristics, both current and future. Specific interest is placed on examining the system responses to changes in device voltage versus current density operating curves, and the associated optimum operating ranges. The performance of a solar-powered, space based system in low earth orbit is examined in terms of the light-dark periods requiring storage. The storage design tradeoffs between thermal energy, electrical energy, and hydrogen/oxygen mass storage are examined. The current technology module is based on the 1000 C solid oxide electrolyzer cell and the alkaline fuel cell. The Future Technology system examines benefits involved with developing a 1800K electrolyzer operating with an advanced fuel cell.

  10. Nuclear Air-Brayton Combined Cycle Power Conversion Design, Physical Performance Estimation and Economic Assessment

    Science.gov (United States)

    Andreades, Charalampos

    The combination of an increased demand for electricity for economic development in parallel with the widespread push for adoption of renewable energy sources and the trend toward liberalized markets has placed a tremendous amount of stress on generators, system operators, and consumers. Non-guaranteed cost recovery, intermittent capacity, and highly volatile market prices are all part of new electricity grids. In order to try and remediate some of these effects, this dissertation proposes and studies the design and performance, both physical and economic, of a novel power conversion system, the Nuclear Air-Brayton Combined Cycle (NACC). The NACC is a power conversion system that takes a conventional industrial frame type gas turbine, modifies it to accept external nuclear heat at 670°C, while also maintaining its ability to co-fire with natural gas to increase temperature and power output at a very quick ramp rate. The NACC addresses the above issues by allowing the generator to gain extra revenue through the provision of ancillary services in addition to energy payments, the grid operator to have a highly flexible source of capacity to back up intermittent renewable energy sources, and the consumer to possibly see less volatile electricity prices and a reduced probability of black/brown outs. This dissertation is split into six sections that delve into specific design and economic issues related to the NACC. The first section describes the basic design and modifications necessary to create a functional externally heated gas turbine, sets a baseline design based upon the GE 7FB, and estimates its physical performance under nominal conditions. The second section explores the off-nominal performance of the NACC and characterizes its startup and shutdown sequences, along with some of its safety measures. The third section deals with the power ramp rate estimation of the NACC, a key performance parameter in a renewable-heavy grid that needs flexible capacity. The

  11. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G. [Energent Corporation, Santa Ana, CA (United States)

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  12. Optimizing the Team for Required Power During Track-Cycling Team Pursuit.

    Science.gov (United States)

    Heimans, Levi; Dijkshoorn, Wouter R; Hoozemans, Marco J M; de Koning, Jos J

    2017-11-01

    Since the aim of the men's team pursuit in time-trial track cycling is to accomplish a distance of 4000 m as fast as possible, optimizing aerodynamic drag can contribute to achieving this goal. The aim of this study was to determine the drafting effect in second, third, and fourth position during the team pursuit in track cycling as a function of the team members' individual frontal areas in order to minimize the required power. Eight experienced track cyclists of the Dutch national selection performed 39 trials of 3 km in different teams of 4 cyclists at a constant velocity of 15.75 m/s. Frontal projected areas were determined, and together with field-derived drag coefficients for all 4 positions, the relationships between frontal areas of team members and drag fractions were estimated using generalized estimating equations. The frontal area of both the cyclist directly in front of the drafter and the drafter himself turned out to be significant determinants of the drag fraction at the drafter's position (P < .05) for all 3 drafting positions. Predicted required power for individuals in drafting positions differed up to 35 W depending on team composition. For a team, a maximal difference in team efficiency (1.2%) exists by selecting cyclists in a specific sequence. Estimating required power for a specific team composition gives insight into differences in team efficiency for the team pursuit. Furthermore, required power for individual team members ranges substantially depending on team composition.

  13. Application of numerical weather prediction in wind power forecasting: Assessment of the diurnal cycle

    Directory of Open Access Journals (Sweden)

    Tobias Heppelmann

    2017-06-01

    Full Text Available For a secure integration of weather dependent renewable energies in Germany's mixed power supply, precise forecasts of expected wind power are indispensable. These in turn are heavily dependent on numerical weather prediction (NWP. With this relevant area of application, NWP models need to be evaluated concerning new variables such as wind speed at hub heights of wind power plants. This article presents verification results of the deterministic NWP forecasts of the global ICON model, its ICON-EU nest, the COSMO-EU, and the COSMO-DE as well as of the ensemble prediction system COSMO-DE-EPS of the German National Weather Service (DWD, against wind mast observations. The focus is on the diurnal cycle in the Planetary Boundary Layer as wind power forecasts for Germany exhibit pronounced systematic amplitude and phase errors in the morning and evening hours. NWP forecasts with lead times up to 48 hours are examined. All considered NWP models reveal shortcomings concerning the representation of the diurnal cycle. Especially in summertime at onshore locations, when Low-Level Jets form, nocturnal wind speeds at hub height are underestimated. In the COSMO model, stable conditions are not sufficiently reflected in the first part of the night and the vertical mixing after sunrise establishes too late. The verification results of the COSMO-DE-EPS confirm the deficiencies of the deterministic forecasts. The deficiencies are present in all ensemble members and thus indicate potential for improvement not only in the model physics parameterization but also concerning the physical ensemble perturbations.

  14. Network Theory Integrated Life Cycle Assessment for an Electric Power System

    Directory of Open Access Journals (Sweden)

    Heetae Kim

    2015-08-01

    Full Text Available In this study, we allocate Greenhouse gas (GHG emissions of electricity transmission to the consumers. As an allocation basis, we introduce energy distance. Energy distance takes the transmission load on the electricity energy system into account in addition to the amount of electricity consumption. As a case study, we estimate regional GHG emissions of electricity transmission loss in Chile. Life cycle assessment (LCA is used to estimate the total GHG emissions of the Chilean electric power system. The regional GHG emission of transmission loss is calculated from the total GHG emissions. We construct the network model of Chilean electric power grid as an undirected network with 466 nodes and 543 edges holding the topology of the power grid based on the statistical record. We analyze the total annual GHG emissions of the Chilean electricity energy system as 23.07 Mt CO2-eq. and 1.61 Mt CO2-eq. for the transmission loss, respectively. The total energy distance for the electricity transmission accounts for 12,842.10 TWh km based on network analysis. We argue that when the GHG emission of electricity transmission loss is estimated, the electricity transmission load should be separately considered. We propose network theory as a useful complement to LCA analysis for the complex allocation. Energy distance is especially useful on a very large-scale electric power grid such as an intercontinental transmission network.

  15. The effectiveness of combined-cycle power plants hot startups simulating

    Science.gov (United States)

    Radin, Yu. A.; Kontorovich, T. S.; Molchanov, K. A.

    2015-09-01

    Activities aimed at substantiating the maneuverability characteristics of power-generating equipment installed at district heating power plants (DHPP) and especially at combined-cycle power plants (CCPPs) are quite topical for the modern conditions and involve calculations of thermally stressed state and analysis of the cyclic strength of steam path critical elements at different loading rates. Until recently, such problems have been solved in two possible ways: based on the results of tests carried out on operating equipment and using the mathematical models of heavily stressed parts of CCPP equipment. In this article, preference is given to the second way. The results of mathematical modeling represented as time dependences of the temperature state of equipment critical parts were taken as initial data for calculating their thermally stressed state and for analyzing their damageability according to the criterion of the equivalent operating hours. This criterion is an integral indicator characterizing the extent of damage accumulated in equipment parts and can be used for elaborating equipment maintenance programs. A dependence of the equivalent operating hours on the initial temperature of the metal of the high-pressure steam superheater's outlet header, the component imposing the strongest limitations on the power unit loading rate, is obtained. It is shown that the number of equivalent operating hours of the CCPP steam circuit part equipment accumulated during hot startups does not have any essential effect on the equipment service life (heat-recovery steam generators, steam turbine, and steam lines).

  16. Pedaling power and speed production vs. technical factors and track difficulty in bicycle motocross cycling.

    Science.gov (United States)

    Mateo, Manuel; Blasco-Lafarga, Cristina; Zabala, Mikel

    2011-12-01

    Mateo, M, Blasco-Lafarga, C, and Zabala, M. Pedaling power and speed production vs. technical factors and track difficulty in BMX cycling. J Strength Cond Res 25(12): 3248-3256, 2011-This article analyzes whether there is a determined profile in the production of cyclic and acyclic periods in relation to the phases of a bicycle motocross (BMX) race and whether this profile is related to the variables, Difficulty of track and Techniques used. After an initial test for determining maximum pedaling power (Pmax), 9 athletes belonging to the Spanish national team completed 3 series of 3 different types of races: (a) Complete track without pedaling; (b) Track, pedaling only at the gate start; and (c) track with free pedaling. The triple test was carried out over 3 days and on different level tracks: (a) high difficulty (HD), (b) medium difficulty (MD), and (c) low difficulty (LD). Our results show that average peak power applied in the BMX race was 85.21 ± 2.15% Pmax, coming down to 73.02 ± 18.38% at the gate start and to 51.37 ± 15.84% on the first straight. On the other hand, mean power (MP) in the BMX race is 33.79 ± 8.60% MPmax, with statistically significant differences in relation to the difficulty of the track (p track. Acyclic efforts accounted for 86.3%, and cyclic efforts accounted for the remaining 16.7% of the overall performance in the race, with differences in relation to the difficulty of the track (p ≤ 0.003). Both power profile and performance (measured as velocity) are dependent on the phases and techniques of the race and are significantly affected by the level of difficulty of the track. The greater the technical level of the track, the lesser the possibility of developing cyclic power and vice versa.

  17. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, John [TIAX LLC, Lexington, MA (United States); Smutzer, Chad [TIAX LLC, Lexington, MA (United States); Sinha, Jayanti [TIAX LLC, Lexington, MA (United States)

    2017-05-30

    The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies of having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.

  18. Assessment of the Neutronic and Fuel Cycle Performance of the Transatomic Power Molten Salt Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Sean [Transatomic Power Corp., Cambridge, MA (United States); Dewan, Leslie [Transatomic Power Corp., Cambridge, MA (United States); Massie, Mark [Transatomic Power Corp., Cambridge, MA (United States); Davidson, Eva E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    This report presents results from a collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear (GAIN) Nuclear Energy Voucher program. The TAP concept is a molten salt reactor using configurable zirconium hydride moderator rod assemblies to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parameters necessary to simulate the continuously changing physics in this complex system. The implementation of continuous-energy Monte Carlo transport and depletion tools in ChemTriton provide for full-core three-dimensional modeling and simulation. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this concept. Additional analyses of mass feed rates and enrichments, isotopic removals, tritium generation, core power distribution, core vessel helium generation, moderator rod heat deposition, and reactivity coeffcients provide additional information to make informed design decisions. This work demonstrates capabilities of ORNL modeling and simulation tools for neutronic and fuel cycle analysis of molten salt reactor concepts.

  19. Fear and loathing at a combined cycle power plant - ion chromatography in a box

    Energy Technology Data Exchange (ETDEWEB)

    Newton, B.; Doyle, M. [Dionex Corporation, Sunnyvale, CA (United States); Carvalho, L.; Scarth, I. [GE Water and Process Technologies, Mississauga, ON (Canada); Lindau, P.

    2005-06-01

    The use of ion chromatography for monitoring corrosive ions in water has been implemented at several new combined cycle gas-fired power plants. Due to stringent requirements for clean water to prevent corrosion and plugging of turbine components, this methodology is predicted to have a significant impact in extending useful operating lifetimes and to measurably increase the availability of components in contact with water. Ion chromatography, due to its ability to identify individual anion and cation species, to achieve parts-per-trillion detection limits, and to operate on-line, has played a central role in the effectiveness of these water chemistry monitoring programs. Combined cycle power plants are faced with tough choices for water monitoring. The lack of trained chemists to run low level analyses results in uncertainty as to the quality of the water used for steam going to the turbine and in some cases to the generator. This paper presents a report on a recent study of a low cost, hands-off ion chromatography solution to provide on-line monitoring at the water panel for chloride and sulfate ions at 1 part per billion or below. (orig.)

  20. Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power

    Science.gov (United States)

    Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.

    2005-01-01

    A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.

  1. High-power UV-LED degradation: Continuous and cycled working condition influence

    Science.gov (United States)

    Arques-Orobon, F. J.; Nuñez, N.; Vazquez, M.; Segura-Antunez, C.; González-Posadas, V.

    2015-09-01

    High-power (HP) UV-LEDs can replace UV lamps for real-time fluoro-sensing applications by allowing portable and autonomous systems. However, HP UV-LEDs are not a mature technology, and there are still open issues regarding their performance evolution over time. This paper presents a reliability study of 3 W UV-LEDs, with special focus on LED degradation for two working conditions: continuous and cycled (30 s ON and 30 s OFF). Accelerated life tests are developed to evaluate the influence of temperature and electrical working conditions in high-power LEDs degradation, being the predominant failure mechanism the degradation of the package. An analysis that includes dynamic thermal and optical HP UV-LED measurements has been performed. Static thermal and stress simulation analysis with the finite element method (FEM) identifies the causes of package degradation. Accelerated life test results prove that HP UV-LEDs working in cycled condition have a better performance than those working in continuous condition.

  2. Copper hexacyanoferrate battery electrodes with long cycle life and high power

    KAUST Repository

    Wessells, Colin D.

    2011-11-22

    Short-term transients, including those related to wind and solar sources, present challenges to the electrical grid. Stationary energy storage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at low cost are required. Existing energy storage technologies cannot satisfy these requirements. Here we show that crystalline nanoparticles of copper hexacyanoferrate, which has an ultra-low strain open framework structure, can be operated as a battery electrode in inexpensive aqueous electrolytes. After 40,000 deep discharge cycles at a 17g-C rate, 83% of the original capacity of copper hexacyanoferrate is retained. Even at a very high cycling rate of 83g-C, two thirds of its maximum discharge capacity is observed. At modest current densities, round-trip energy efficiencies of 99% can be achieved. The low-cost, scalable, room-temperature co-precipitation synthesis and excellent electrode performance of copper hexacyanoferrate make it attractive for large-scale energy storage systems. © 2011 Macmillan Publishers Limited. All rights reserved.

  3. The Influence of Serial Carbohydrate Mouth Rinsing on Power Output during a Cycle Sprint

    Directory of Open Access Journals (Sweden)

    Shaun M. Phillips, Scott Findlay, Mykolas Kavaliauskas, Marie Clare Grant

    2014-06-01

    Full Text Available The objective of the study was to investigate the influence of serial administration of a carbohydrate (CHO mouth rinse on performance, metabolic and perceptual responses during a cycle sprint. Twelve physically active males (mean (± SD age: 23.1 (3.0 years, height: 1.83 (0.07 m, body mass (BM: 86.3 (13.5 kg completed the following mouth rinse trials in a randomized, counterbalanced, double-blind fashion; 1. 8 x 5 second rinses with a 25 ml CHO (6% w/v maltodextrin solution, 2. 8 x 5 second rinses with a 25 ml placebo (PLA solution. Following mouth rinse administration, participants completed a 30 second sprint on a cycle ergometer against a 0.075 g·kg-1 BM resistance. Eight participants achieved a greater peak power output (PPO in the CHO trial, resulting in a significantly greater PPO compared with PLA (13.51 ± 2.19 vs. 13.20 ± 2.14 W·kg-1, p 0.05. No significant between-trials difference was reported for fatigue index, perceived exertion, arousal and nausea levels, or blood lactate and glucose concentrations. Serial administration of a CHO mouth rinse may significantly improve PPO during a cycle sprint. This improvement appears confined to the first 5 seconds of the sprint, and may come at a greater relative cost for the remainder of the sprint.

  4. Social Life Cycle Assessment of a Concentrated Solar Power Plant in Spain: A Methodological Proposal

    DEFF Research Database (Denmark)

    Corona, Blanca; Bozhilova-Kisheva, Kossara Petrova; Olsen, Stig Irving

    2017-01-01

    Measuring the sustainability of goods and services in a systematic and objective manner has become an issue of paramount importance. Life cycle sustainability assessment (LCSA) is a holistic methodology whose aim is to integrate into a compatible format the analysis of the three pillars of sustai......Measuring the sustainability of goods and services in a systematic and objective manner has become an issue of paramount importance. Life cycle sustainability assessment (LCSA) is a holistic methodology whose aim is to integrate into a compatible format the analysis of the three pillars...... of sustainability, namely, economy, environment, and society. Social life cycle assessment (S-LCA) is a novel methodology still under development, used to cover the social aspects of sustainability within LCSA. The aim of this article is to provide additional discussion on the practical application of S......-LCA by suggesting a new classification and characterization model that builds upon previous methodological developments. The structure of the social analysis has been adapted to maintain coherence with that of standard LCA. The application of this methodology is demonstrated using a case study—the analysis of power...

  5. Biodynamics. Influence of gender, power, and hand position on pelvic motion during seated cycling.

    Science.gov (United States)

    Sauer, Julie L; Potter, James J; Weisshaar, Christine L; Ploeg, Heidi-Lynn; Thelen, Darryl G

    2007-12-01

    An understanding of normal pelvic motion during seated cycling is relevant to saddle design and bicycle fitting. In this study, we investigated the effects of gender, power, and hand position on pelvic motion throughout a pedal stroke. We also investigated whether anthropometric factors could explain any interindividual differences observed. Twelve experienced male and 14 experienced female cyclists participated. Each subject was custom fitted to a stationary bicycle and then rode the bicycle at three power outputs (100, 150, and 200 W), with their hands in the tops and drops position. The kinematics of a triad of motion-capture markers, located on posterior pelvic landmarks, were used to characterize pelvic motion. The largest angular excursions were observed in the nonsagittal planes, with the pelvis rotating internally (approximately 3 degrees ) and rolling laterally ( approximately 2 degrees ) toward the downstroke. These pelvic rotations caused the hip on the downstroke side to translate anteriorly and inferiorly. Compared with males, females exhibited greater average anterior pelvic tilt in the drops hand position (males: 21 +/- 3 degrees ; females: 24 +/- 4 degrees ; P = 0.036). Interindividual differences in pelvic motion could not be independently explained by measures of ischial tuberosity width or hamstring flexibility. However, average anterior pelvic tilt was negatively correlated with lumbar flexibility among the males (r = 0.75; P = 0.024), suggesting that this may be an important factor to consider in bicycle fitting. We observed substantial pelvic motion during seated cycling, with experienced female road cyclists exhibiting greater average anterior tilt than their male counterparts. Pelvic motion seems to arise naturally during seated cycling and should be considered when designing saddles and establishing bicycle-fitting procedures.

  6. Life Cycle Assessment of a HYSOL Concentrated Solar Power Plant: Analyzing the Effect of Geographic Location

    Directory of Open Access Journals (Sweden)

    Blanca Corona

    2016-05-01

    Full Text Available Concentrating Solar Power (CSP technology is developing in order to achieve higher energy efficiency, reduced economic costs, and improved firmness and dispatchability in the generation of power on demand. To this purpose, a research project titled HYSOL has developed a new power plant, consisting of a combined cycle configuration with a 100 MWe steam turbine and an 80 MWe gas-fed turbine with biomethane. Technological developments must be supported by the identification, quantification, and evaluation of the environmental impacts produced. The aim of this paper is to evaluate the environmental performance of a CSP plant based on HYSOL technology using a Life Cycle Assessment (LCA methodology while considering different locations. The scenarios investigated include different geographic locations (Spain, Chile, Kingdom of Saudi Arabia, Mexico, and South Africa, an alternative modelling procedure for biomethane, and the use of natural gas as an alternative fuel. Results indicate that the geographic location has a significant influence on the environmental profile of the HYSOL CSP plant. The results obtained for the HYSOL configuration located in different countries presented significant differences (between 35% and 43%, depending on the category, especially in climate change and water stress categories. The differences are mainly attributable to the local availability of solar and water resources and composition of the national electricity mix. In addition, HYSOL technology performs significantly better when hybridizing with biomethane instead of natural gas. This evidence is particularly relevant in the climate change category, where biomethane hybridization emits 27.9–45.9 kg CO2 eq per MWh (depending on the biomethane modelling scenario and natural gas scenario emits 264 kg CO2 eq/MWh.

  7. Aging precursors and degradation effects of SiC-MOSFET modules under highly accelerated power cycling conditions

    DEFF Research Database (Denmark)

    Luo, Haoze; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    during the test process without removal of silicone gel. The power module is tested in the conditions of ΔTj=60 °C, mean temperature Tjm=145 °C and the maximum Tj=175 °C. By means of device analyzer, the degraded conditions of electrical parameters after power cycling test are fully investigated...

  8. Energy and exergy analysis of the Kalina cycle for use in concentrated solar power plants with direct steam generation

    DEFF Research Database (Denmark)

    Knudsen, Thomas; Clausen, Lasse Røngaard; Haglind, Fredrik

    2014-01-01

    In concentrated solar power plants using direct steam generation, the usage of a thermal storage unit based only on sensible heat may lead to large exergetic losses during charging and discharging, due to a poor matching of the temperature profiles. By the use of the Kalina cycle, in which...... with direct steam generation. The following two scenarios were addressed using energy and exergy analysis: generating power using heat from only the receiver and using only stored heat. For each of these scenarios comparisons were made for mixture concentrations ranging from 0.1 mole fraction of ammonia to 0.......9, and compared to the conventional Rankine cycle. This comparison was then also carried out for various turbine inlet pressures (100 bar to critical pressures). The results suggest that there would be no benefit from using a Kalina cycle instead of a Rankine cycle when generating power from heat taken directly...

  9. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

    2017-01-01

    recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables...... the simultaneousdesign approach the optimum solution was found in 5.04 s, while a decomposed approach found thesame solution in 5.77 h. However, the decomposed approach provided insights on the correlationbetween the fluid and cycle design variables by analyzing all possible solutions. It was shown that thehigh...

  10. Working fluid selection for the Organic Rankine Cycle (ORC) exhaust heat recovery of an internal combustion engine power plant

    Science.gov (United States)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    Organic Rankine cycle technology is capable to efficiently convert low-grade heat into useful mechanical power. In the present investigation such a cycle is used for the recovery of heat from the exhaust gases of a four stroke V18 MAN 51/60DF internal combustion engine power plant operating with natural gas. Design is focused on the selection of the appropriate working fluid of the Rankine cycle in terms of thermodynamic, environmental and safety criteria. 37 candidate fluids have been considered and all Rankine cycles examined were subcritical. The thermodynamic analysis of all fluids has been comparatively undertaken and the effect of key operation conditions such as the evaporation pressure and the superheating temperature was taken into account. By appropriately selecting the working fluid and the Rankine cycle operation conditions the overall plant efficiency was improved by 5.52% and fuel consumption was reduced by 12.69%.

  11. Fundamental-frequency and load-varying thermal cycles effects on lifetime estimation of DFIG power converter

    DEFF Research Database (Denmark)

    Zhang, G.; Zhou, D.; Yang, J.

    2017-01-01

    In respect to a Doubly-Fed Induction Generator (DFIG) system, its corresponding time scale varies from microsecond level of power semiconductor switching to second level of the mechanical response. In order to map annual thermal profile of the power semiconductors, different approaches have been ...... adopted to handle the fundamental-frequency thermal cycles and load-varying thermal cycles. Their effects on lifetime estimation of the power device in the Back-to-Back (BTB) power converter are evaluated.......In respect to a Doubly-Fed Induction Generator (DFIG) system, its corresponding time scale varies from microsecond level of power semiconductor switching to second level of the mechanical response. In order to map annual thermal profile of the power semiconductors, different approaches have been...

  12. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    Directory of Open Access Journals (Sweden)

    Jesper Graa Andreasen

    2017-04-01

    Full Text Available This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt % and low-sulfur (0.5 wt % fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane, toluene, n-pentane, i-pentane and c-pentane. The results of the comparison indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit turbines compared to the steam turbines. When the efficiency of the c-pentane turbine was allowed to be 10% points larger than the steam turbine efficiency, the organic Rankine cycle unit reaches higher net power outputs than the steam Rankine cycle unit at all engine loads for the low-sulfur fuel case. The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power.

  13. Field operation test of Wakamatsu PFBC combined cycle power plant; Wakamatsu PFBC jissho shiken no genkyo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [Center for Coal Utilization, Japan, Tokyo (Japan); Takanishi, K. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    At the Wakamatsu Coal Utilization Research Center, the verification test was conducted of atmospheric pressure fluidized bed boilers and ultra-high temperature turbines. The Wakamatsu PFBC (pressurized fluidized bed combustion) is a combined cycle power generation system combining steam turbine power generation in which the turbine is driven by steam generated from the fluidized bed boiler installed inside the pressure vessel and gas turbine power generation in which high temperature/pressure exhaust gas is used from the boiler, having a total output of 71 MW. The operation started in fiscal 1995, stopped due to damage of the tube of CTF (ceramic tube filter), and is now continuing after the repair. As a result of the test conducted in fiscal 1995, it was confirmed in the two-stage cyclone test that the diameter of ash particle and cyclone efficiency change by kind of coal and amount of limestone and that by coal kind gas turbine blades show different states of abrasion, indicating greater abrasion when there is much SiO2 in ash. As a result of the continued high load operation of CTF, ash blockade inside the tube occurred and tube damage was generated by thermal shock, etc. 5 figs., 4 tabs.

  14. Comparison of power output during ergometer and track cycling in adolescent cyclists.

    Science.gov (United States)

    Nimmerichter, Alfred; Williams, Craig A

    2015-04-01

    The aim of this study is to establish the level of agreement between test performance of young elite cyclists in a laboratory and a track field-based trial. Fourteen adolescent cyclists (age: 14.8 ± 1.1 years; (Equation is included in full-text article.): 63.5 ± 5.6 ml·min(-1)·kg(-1)) performed 3 tests of 10 seconds, 1 minute, and 3 minutes on an air-braked ergometer (Wattbike) and on a 250-m track using their own bikes mounted with mobile power meters (SRM). The agreement between the maximum and mean power output (Pmax and Pmean) measured on the Wattbike and SRM was assessed with the 95% limits of agreement (LoA). Power output was strongly correlated between Wattbike and SRM for all tests (r = 0.94-0.96; p track cycling during all tests. The bias and 95% LoA were 76 ± 78 W (8.8 ± 9.5%; p = 0.003, d = 0.38) for Pmax10s and 82 ± 55 W (10.9 ± 7.9%; p track field-based test using a mobile ergometer. These results might be attributed to the technical ability of the riders and their experience to optimize gearing and cadence to maximize performance. Prediction of field-based testing on the track from laboratory tests should be used with caution.

  15. Power harvesting by electromagnetic coupling from wind-induced limit cycle oscillations

    Science.gov (United States)

    Boccalero, G.; Olivieri, S.; Mazzino, A.; Boragno, C.

    2017-09-01

    Recent developments of low-power microprocessors open to new applications such as wireless sensor networks (WSN) with the consequent problem of autonomous powering. For this purpose, a possible strategy is represented by energy harvesting from wind or other flows exploiting fluid-structure interactions. In this work, we present an updated picture of a flutter-based device characterized by fully passive dynamics and a simple constructive layout, where limit cycle oscillations are undergone by an elastically bounded wing. In this case, the conversion from mechanical to electrical energy is performed by means of an electromagnetic coupling between a pair of coils and magnets. A centimetric-size prototype is shown to harvest energy from low wind velocities (between 2 and 4 m s-1), reaching a power peak of 14 mW, representing a valuable amount for applications related to WSN. A mathematical description of the nonlinear dynamics is then provided by a quasi-steady phenomenological model, revealing satisfactory agreement with the experimental framework within a certain parametric range and representing a useful tool for future optimizations.

  16. Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2015-03-01

    Full Text Available We present a thermo-economic evaluation of binary power plants based on the Organic Rankine Cycle (ORC for geothermal power generation. The focus of this study is to analyse if an efficiency increase by using zeotropic mixtures as working fluid overcompensates additional requirements regarding the major power plant components. The optimization approach is compared to systems with pure media. Based on process simulations, heat exchange equipment is designed and cost estimations are performed. For heat source temperatures between 100 and 180 °C selected zeotropic mixtures lead to an increase in second law efficiency of up to 20.6% compared to pure fluids. Especially for temperatures about 160 °C, mixtures like propane/isobutane, isobutane/isopentane, or R227ea/R245fa show lower electricity generation costs compared to the most efficient pure fluid. In case of a geothermal fluid temperature of 120 °C, R227ea and propane/isobutane are cost-efficient working fluids. The uncertainties regarding fluid properties of zeotropic mixtures, mainly affect the heat exchange surface. However, the influence on the determined economic parameter is marginal. In general, zeotropic mixtures are a promising approach to improve the economics of geothermal ORC systems. Additionally, the use of mixtures increases the spectrum of potential working fluids, which is important in context of present and future legal requirements considering fluorinated refrigerants.

  17. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2014-01-01

    Full Text Available To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  18. Exergetic Analysis of a Novel Solar Cooling System for Combined Cycle Power Plants

    Directory of Open Access Journals (Sweden)

    Francesco Calise

    2016-09-01

    Full Text Available This paper presents a detailed exergetic analysis of a novel high-temperature Solar Assisted Combined Cycle (SACC power plant. The system includes a solar field consisting of innovative high-temperature flat plate evacuated solar thermal collectors, a double stage LiBr-H2O absorption chiller, pumps, heat exchangers, storage tanks, mixers, diverters, controllers and a simple single-pressure Combined Cycle (CC power plant. Here, a high temperature solar cooling system is coupled with a conventional combined cycle, in order to pre-cool gas turbine inlet air in order to enhance system efficiency and electrical capacity. In this paper, the system is analyzed from an exergetic point of view, on the basis of an energy-economic model presented in a recent work, where the obtained main results show that SACC exhibits a higher electrical production and efficiency with respect to the conventional CC. The system performance is evaluated by a dynamic simulation, where detailed simulation models are implemented for all the components included in the system. In addition, for all the components and for the system as whole, energy and exergy balances are implemented in order to calculate the magnitude of the irreversibilities within the system. In fact, exergy analysis is used in order to assess: exergy destructions and exergetic efficiencies. Such parameters are used in order to evaluate the magnitude of the irreversibilities in the system and to identify the sources of such irreversibilities. Exergetic efficiencies and exergy destructions are dynamically calculated for the 1-year operation of the system. Similarly, exergetic results are also integrated on weekly and yearly bases in order to evaluate the corresponding irreversibilities. The results showed that the components of the Joule cycle (combustor, turbine and compressor are the major sources of irreversibilities. System overall exergetic efficiency was around 48%. Average weekly solar collector

  19. Technical and economic assessment of power generation from municipal solid waste incineration on steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Romero Luna, Carlos Manuel; Carrocci, Luiz Roberto; Ferrufino, Gretta Larisa Aurora Arce; Balestieri, Jose Antonio Perrella [Dept. of Energy. UNESP, Sao Paulo State University, Guaratingueta, SP (Brazil)], e-mails: carrocci@feg.unesp.br, perrella@feg.unesp.br

    2010-07-01

    Nowadays, there is a concern in development of environmentally friendly methods for a municipal solid waste (MSW) management and demand for renewable energy sources. The source of waste is increasing, and the capacity and availability Landfill treatment and disposal are coming to be insufficient. In Sao Paulo City, the 10 million inhabitants produce 10,000 t of residential solid waste daily, being that 76% this quantity goes to landfill sites. In order to adopt a new treatment technology for MSW that will promote a solution minimizing this problem, within the order of priorities regarding waste management, the MSW incineration with energy recovery shown as the leading choice on the point of view of efficiency in converting energy. MSW incineration with energy recovery received wide acceptance from various countries including European Union members and the rest of the world in the past 15 years. Incineration has the ability decrease 90 % the volume of waste to be used in landfills, increasing the useful life of existing as well as a reduction in the emission of greenhouse gases. MSW incineration systems have a low global warming potential (GWP). now has become a less important source of dioxins and furans due to the current available technology. MSW incineration with energy recovery could contribute considerably in the energy matrix, thus promote the conservation of non-renewable resources. This paper proposes the assessment the technical and economic feasibility of a steam cycle with conventional steam generator for MSW incineration with energy recovery for power generation in Sao Paulo City. Will be developed a thermoeconomic analysis aiming at the total power generation product of MSW incineration, and the assessment investment cost regarding the total sale of power generated. The study shows that Sao Paulo City has potential for power generation from the MSW incineration, although it has a high cost investment this technology shown as a suitable alternative for

  20. Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction.

    Science.gov (United States)

    Wang, Jianhui; He, Jizhou

    2012-11-01

    We investigate the efficiency at the maximum power output (EMP) of an irreversible Carnot engine performing finite-time cycles between two reservoirs at constant temperatures T(h) and T(c) (friction in two "adiabatic" processes. The EMP is retrieved to be situated between η(C)/2 and η(C)/(2-η(C)), with η(C) = 1-T(c)/T(h) being the Carnot efficiency, whether the internally dissipative friction is considered or not. When dissipations of two "isothermal" and two "adiabatic" processes are symmetric, respectively, and the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation, the Curzon-Ahlborn (CA) efficiency η(CA) = 1-sqrt[T(c)/T(h)] is derived.

  1. A physiological counterpoint to mechanistic estimates of "internal power" during cycling at different pedal rates

    DEFF Research Database (Denmark)

    Hansen, Ernst Albin; Jørgensen, Lars Vincents; Sjøgaard, Gisela

    2004-01-01

    metabolic variables and to perform a physiological evaluation of five different kinematic models for calculating IP in cycling. Results showed that IP was statistically different between the kinematic models applied. IP based on metabolic variables (IP(met)) was 15, 41, and 91 W at 61, 88, and 115 rpm......, respectively, being remarkably close to the kinematic estimate of one model (IP(Willems-COM): 14, 43, and 95 W) and reasonably close to another kinematic estimate (IP(Winter): 8, 29, and 81 W). For all kinematic models there was no significant effect of performing 3-D versus 2-D analyses. IP increased...... significantly with pedal rate - leg movements accounting for the largest fraction. Further, external power (EP) affected IP significantly such that IP was larger at moderate than at low EP at the majority of the pedal rates applied but on average this difference was only 8%....

  2. Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, K. L.

    2001-06-22

    Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

  3. Diagnosis of Combined Cycle Power Plant Based on Thermoeconomic Analysis: A Computer Simulation Study

    Directory of Open Access Journals (Sweden)

    Hoo-Suk Oh

    2017-11-01

    Full Text Available In this study, diagnosis of a 300-MW combined cycle power plant under faulty conditions was performed using a thermoeconomic method called modified productive structure analysis. The malfunction and dysfunction, unit cost of irreversibility and lost cost flow rate for each component were calculated for the cases of pre-fixed malfunction and the reference conditions. A commercial simulating software, GateCycleTM (version 6.1.2, was used to estimate the thermodynamic properties under faulty conditions. The relative malfunction (RMF and the relative difference in the lost cost flow rate between real operation and reference conditions (RDLC were found to be effective indicators for the identification of faulty components. Simulation results revealed that 0.5% degradation in the isentropic efficiency of air compressor, 2% in gas turbine, 2% in steam turbine and 2% degradation in energy loss in heat exchangers can be identified. Multi-fault scenarios that can be detected by the indicators were also considered. Additional lost exergy due to these types of faulty components, that can be detected by RMF or RDLC, is less than 5% of the exergy lost in the components in the normal condition.

  4. Organic Rankine-cycle power systems working fluids study: Topical report No. 2, Toluene

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-02-01

    The US Department of Energy initiated an investigation at Argonne National Laboratory in 1982 to experimentally determine the thermal stability limits and degradation rates of toluene as a function of maximum cycle temperature. Following the design and construction of a dynamic test loop capable of closely simulating the thermodynamic conditions of typical organic Rankine-cycle (ORC) power systems, four test runs, totaling about 3900 h of test time and covering a temperature range of 600-677(degree)F, were completed. Both liquid and noncondensable-vapor (gaseous) samples were drawn periodically and analyzed using capillary-column gas chromatography, gas chromatography/mass spectrometry, and mass spectrometry. A computer program that can predict degradation in an ORC engine was developed. Experimental results indicate that, if oxygen can be excluded from the system, toluene is a stable fluid up to the maximum test temperature; the charge of toluene could be used for several years before replacement became necessary. (Additional data provided by Sundstrand Corp. from tests sponsored by the National Aeronautics and Space Administration indicate that toluene may be used at temperatures up to 750(degree)F.) Degradation products are benign; the main liquid degradation products are bibenzyls, and the main gaseous degradation products are hydrogen and methane. A cold trap to remove gaseous degradation products from the condenser is necessary for extended operation. 21 figs., 22 tabs.

  5. Reliability of Upright and Supine Power Measurements Using an Inertial Load Cycle Ergometer

    Science.gov (United States)

    Wickwire, P. J.; Leach, M.; Ryder, J.; Ploutz-Snyder, R.; Ploutz-Snyder, L.

    2011-01-01

    Practical, reliable, and time efficient methods of measuring muscular power are desirable for both research and applied testing situations. The inertial-load cycling method (ILC; Power/Cycle, Austin, TX) requires subjects to pedal as fast as possible against the inertial load of a flywheel for only 3-5 seconds, which could help reduce the time and effort required for maximal power testing. PURPOSE: 1) To test the intramachine reliability of ILC over 3 separate sessions, 2) to compare postural stance (upright vs. supine) during testing, and 3) to compare the maximal power (Pmax) output measured using ILC to that obtained from traditional isokinetic and leg press testing. METHODS: Subjects (n = 12) were tested on 4 non-consecutive days. The following tests were done on the first day of testing: isometric knee extension, isokinetic knee extension at several speeds, isokinetic power/endurance at 180/sec (Biodex System 4), leg press maximal isometric force, and leg press power/endurance. The other 3 days consisted exclusively of ILC testing. Subjects performed 6 ILC tests in an upright position and 6 ILC tests in a supine position on each day. The starting position was counterbalanced. Mixed-effects linear modeling was used to determine if any differences existed between testing days and between upright and supine for Pmax and revolutions per minute at Pmax (RPMpk). Mixed-modeling was also used to calculate intraclass correlation coefficients (ICC) to determine the reliability of the ILC on each testing day for Pmax and RPMpk (ICCs were calculated separately for upright and supine). gKendall fs Tau a h was used to determine the association between ILC Pmax and isokinetic and leg press data. RESULTS: For Pmax, significant differences were found between days 1 and 2 (upright: p = 0.018; supine: p = 0.014) and between days 1 and 3 (upright: p = 0.001; supine: p = 0.002), but not between days 2 and 3 (upright: p = 0.422; supine: p = 0.501). Pmax ICC values were greater than

  6. High temperature high velocity direct power extraction using an open-cycle oxy-combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2017-09-29

    The implementation of oxy-fuel technology in fossil-fuel power plants may contribute to increased system efficiencies and a reduction of pollutant emissions. One technology that has potential to utilize the temperature of undiluted oxy-combustion flames is open-cycle magnetohydrodynamic (MHD) power generators. These systems can be configured as a topping cycle and provide high enthalpy, electrically conductive flows for direct conversion of electricity. This report presents the design and modeling strategies of a MHD combustor operating at temperatures exceeding 3000 K. Throughout the study, computational fluid dynamics (CFD) models were extensively used as a design and optimization tool. A lab-scale 60 kWth model was designed, manufactured and tested as part of this project. A fully-coupled numerical method was developed in ANSYS FLUENT to characterize the heat transfer in the system. This study revealed that nozzle heat transfer may be predicted through a 40% reduction of the semi-empirical Bartz correlation. Experimental results showed good agreement with the numerical evaluation, with the combustor exhibiting a favorable performance when tested during extended time periods. A transient numerical method was employed to analyze fuel injector geometries for the 60-kW combustor. The ANSYS FLUENT study revealed that counter-swirl inlets achieve a uniform pressure and velocity ratio when the ports of the injector length to diameter ratio (L/D) is 4. An angle of 115 degrees was found to increase distribution efficiency. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent

  7. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Science.gov (United States)

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China. PMID:25383383

  8. An RF energy harvesting power management circuit for appropriate duty-cycled operation

    Science.gov (United States)

    Shirane, Atsushi; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2015-04-01

    In this study, we present an RF energy harvesting power management unit (PMU) for battery-less wireless sensor devices (WSDs). The proposed PMU realizes a duty-cycled operation that is divided into the energy charging time and discharging time. The proposed PMU detects two types of timing, thus, the appropriate timing for the activation can be recognized. The activation of WSDs at the proper timing leads to energy efficient operation and stable wireless communication. The proposed PMU includes a hysteresis comparator (H-CMP) and an RF signal detector (RF-SD) to detect the timings. The proposed RF-SD can operate without the degradation of charge efficiency by reusing the RF energy harvester (RF-EH) and H-CMP. The PMU fabricated in a 180 nm Si CMOS demonstrated the charge operation using the RF signal at 915 MHz and the two types of timing detection with less than 124 nW in the charge phase. Furthermore, in the active phase, the PMU generates a 0.5 V regulated power supply from the charged energy.

  9. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Directory of Open Access Journals (Sweden)

    Huacai Liu

    2014-01-01

    Full Text Available There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  10. A comparative study of biomass integrated gasification combined cycle power systems: Performance analysis.

    Science.gov (United States)

    Zang, Guiyan; Tejasvi, Sharma; Ratner, Albert; Lora, Electo Silva

    2018-02-02

    The Biomass Integrated Gasification Combined Cycle (BIGCC) power system is believed to potentially be a highly efficient way to utilize biomass to generate power. However, there is no comparative study of BIGCC systems that examines all the latest improvements for gasification agents, gas turbine combustion methods, and CO 2 Capture and Storage options. This study examines the impact of recent advancements on BIGCC performance through exergy analysis using Aspen Plus. Results show that the exergy efficiency of these systems is ranged from 22.3% to 37.1%. Furthermore, exergy analysis indicates that the gas turbine with external combustion has relatively high exergy efficiency, and Selexol CO 2 removal method has low exergy destruction. Moreover, the sensitivity analysis shows that the system exergy efficiency is more sensitive to the initial temperature and pressure ratio of the gas turbine, whereas has a relatively weak dependence on the initial temperature and initial pressure of the steam turbine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Failure mechanism analysis of a discrete 650V enhancement mode GaN-on-Si power device with reverse conduction accelerated power cycling test

    DEFF Research Database (Denmark)

    Song, Sungyoung; Munk-Nielsen, Stig; Uhrenfeldt, Christian

    2017-01-01

    A commercial discrete enhancement mode gallium nitride power component employing advanced package technology without conventional bond wire possesses the ability for bidirectional conduction. The gallium nitride power components can provide not only higher forward conductivity but also superior r...... of cycles to failure. In physical failure analysis, delamination of a solder joint between a chip and a copper layer of an aluminum print circuit board is observed with a scanning acoustic microscope....

  12. Preliminary Design and Simulation of a Turbo Expander for Small Rated Power Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available Nowadays, the Organic Rankine Cycle (ORC system, which operates with organic fluids, is one of the leading technologies for “waste energy recovery”. It works as a conventional Rankine Cycle but, as mentioned, instead of steam/water, an organic fluid is used. This change allows it to convert low temperature heat into electric energy where required. Large numbers of studies have been carried out to identify the most suitable fluids, system parameters and the various configurations. In the present market, most ORC systems are designed and manufactured for the recovery of thermal energy from various sources operating at “large power rating” (exhaust gas turbines, internal combustion engines, geothermal sources, large melting furnaces, biomass, solar, etc.; from which it is possible to produce a large amount of electric energy (30 kW ÷ 300 kW. Such applications for small nominal power sources, as well as the exhaust gases of internal combustion engines (car sedan or town, ships, etc. or small heat exchangers, are very limited. The few systems that have been designed and built for small scale applications, have, on the other hand, different types of expander (screw, scroll, etc.. These devices are not adapted for placement in small and restricted places like the interior of a conventional car. The aim of this work is to perform the preliminary design of a turbo-expander that meets diverse system requirements such as low pressure, small size and low mass flow rates. The expander must be adaptable to a small ORC system utilizing gas of a diesel engine or small gas turbine as thermal source to produce 2–10 kW of electricity. The temperature and pressure of the exhaust gases, in this case study (400–600 °C and a pressure of 2 bar, imposes a limit on the use of an organic fluid and on the net power that can be produced. In addition to water, fluids such as CO2, R134a and R245fa have been considered. Once the operating fluids has been chosen

  13. Energetic and exergetic analysis of Rankine cycles for solar power plants with parabolic trough and thermal storage

    Directory of Open Access Journals (Sweden)

    Cenuşă Victor-Eduard

    2016-01-01

    Full Text Available The paper analyzes the “secondary” circuit (for thermodynamic conversion of a Concentrated Solar Power (CSP plant with thermodynamic cycle, whose mirrors field supplies a thermal power, averaged over a sunny day, of about 100 MW heat. We study the case of parabolic trough solar collector using silicone oil in the “primary” circuit, which limits the peak temperature below 400 °C. The “primary” circuit uses thermal storage, allowing a delay between the power generation in rapport with the solar energy capture. We choose a water-steam cycle, type Hirn. For increasing its efficiency, it has regenerative feed water preheating and steam reheating. We compared, energetic and exergetic, two types of cycles, using a numerical model with iterative structure, developed by the authors. The results showed that the simplified design achieves practically the same thermodynamic performances with the advanced one.

  14. Cycle chemistry monitoring system as means of improving the reliability of the equipment at the power plants

    Science.gov (United States)

    Yegoshina, O. V.; Voronov, V. N.; Yarovoy, V. O.; Bolshakova, N. A.

    2017-11-01

    There are many problems in domestic energy at the present that require urgent solutions in the near future. One of these problems - the aging of the main and auxiliary equipment. Wear of equipment is the cause of decrease reliability and efficiency of power plants. Reliability of the equipment are associated with the introduction of cycle chemistry monitoring system. The most damageable equipment’s are boilers (52.2 %), turbines (12.6 %) and heating systems (12.3 %) according to the review of failure rate on the power plants. The most part of the damageability of the boiler is heated surfaces (73.2 %). According to the Russian technical requirements, the monitoring systems are responsible to reduce damageability the boiler heating surfaces and to increase the reliability of the equipment. All power units capacity of over 50 MW are equipped with cycle chemistry monitoring systems in order to maintain water chemistry within operating limits. The main idea of cycle chemistry monitoring systems is to improve water chemistry at power plants. According to the guidelines, cycle chemistry monitoring systems of a single unit depends on its type (drum or once-through boiler) and consists of: 20…50 parameters of on-line chemical analyzers; 20…30 «grab» sample analyses (daily) and about 15…20 on-line monitored operating parameters. The operator of modern power plant uses with many data at different points of steam/water cycle. Operators do not can estimate quality of the cycle chemistry due to the large volume of daily and every shift information and dispersion of data, lack of systematization. In this paper, an algorithm for calculating the quality index developed for improving control the water chemistry of the condensate, feed water and prevent scaling and corrosion in the steam/water cycle.

  15. Muscular and non-muscular contributions to maximum power cycling in children and adults: implications for developmental motor control

    OpenAIRE

    Korff, T.; Hunter, EL; Martin, JC

    2009-01-01

    This article is available open access through the publisher’s website at the link below. During submaximal cycling, children demonstrate a different distribution between muscular and non-muscular (gravitational and motion-dependent) forces when compared with adults. This is partly due to anthropometric differences. In this study, we tested the hypothesis that during maximum power cycling, children would construct the task (in terms of the distribution between muscular and non-muscular peda...

  16. Power cycling test of a 650 V discrete GaN-on-Si power device with a laminated packaging embedding technology

    DEFF Research Database (Denmark)

    Song, Sungyoung; Munk-Nielsen, Stig; Uhrenfeldt, Christian

    2017-01-01

    A GaN-on-Si power device is a strong candidate to replace power components based on silicon in high-end market for low-voltage applications, thanks to its electrical characteristics. To maximize opportunities of the GaN device in field applications, a package technology plays an important role...... in a discrete GaN power device. A few specialized package technologies having very lower stray inductance and higher thermal conductivity have been proposed for discrete GaN-on-Si power devices. Despite their superior performance, there has been little discussion of their reliability. The paper presents a power...... cycling test of a discrete GaN power device employing a laminated embedded packaging technology subjected to 125 degrees Celsius junction temperature swing. Failure modes are described with collected electrical characteristics and measured temperature data under the test. In conclusion, physical...

  17. Parametric optimization design for supercritical CO{sub 2} power cycle using genetic algorithm and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiangfeng; Sun, Zhixin; Dai, Yiping [Institute of Turbomachinery, Xi' an Jiaotong University, No.28 Xianning West Road, Xi' an 710049 (China); Ma, Shaolin [Dongfang Steam Turbine Works, Deyang 618201 (China)

    2010-04-15

    Supercritical CO{sub 2} power cycle shows a high potential to recover low-grade waste heat due to its better temperature glide matching between heat source and working fluid in the heat recovery vapor generator (HRVG). Parametric analysis and exergy analysis are conducted to examine the effects of thermodynamic parameters on the cycle performance and exergy destruction in each component. The thermodynamic parameters of the supercritical CO{sub 2} power cycle is optimized with exergy efficiency as an objective function by means of genetic algorithm (GA) under the given waste heat condition. An artificial neural network (ANN) with the multi-layer feed-forward network type and back-propagation training is used to achieve parametric optimization design rapidly. It is shown that the key thermodynamic parameters, such as turbine inlet pressure, turbine inlet temperature and environment temperature have significant effects on the performance of the supercritical CO{sub 2} power cycle and exergy destruction in each component. It is also shown that the optimum thermodynamic parameters of supercritical CO{sub 2} power cycle can be predicted with good accuracy using artificial neural network under variable waste heat conditions. (author)

  18. Development of a protocol to optimize electric power consumption and life cycle environmental impacts for operation of wastewater treatment plant.

    Science.gov (United States)

    Piao, Wenhua; Kim, Changwon; Cho, Sunja; Kim, Hyosoo; Kim, Minsoo; Kim, Yejin

    2016-12-01

    In wastewater treatment plants (WWTPs), the portion of operating costs related to electric power consumption is increasing. If the electric power consumption decreased, however, it would be difficult to comply with the effluent water quality requirements. A protocol was proposed to minimize the environmental impacts as well as to optimize the electric power consumption under the conditions needed to meet the effluent water quality standards in this study. This protocol was comprised of six phases of procedure and was tested using operating data from S-WWTP to prove its applicability. The 11 major operating variables were categorized into three groups using principal component analysis and K-mean cluster analysis. Life cycle assessment (LCA) was conducted for each group to deduce the optimal operating conditions for each operating state. Then, employing mathematical modeling, six improvement plans to reduce electric power consumption were deduced. The electric power consumptions for suggested plans were estimated using an artificial neural network. This was followed by a second round of LCA conducted on the plans. As a result, a set of optimized improvement plans were derived for each group that were able to optimize the electric power consumption and life cycle environmental impact, at the same time. Based on these test results, the WWTP operating management protocol presented in this study is deemed able to suggest optimal operating conditions under which power consumption can be optimized with minimal life cycle environmental impact, while allowing the plant to meet water quality requirements.

  19. Global sensitivity analysis of computer-aided molecular design problem for the development of novel working fluids for power cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    2016-01-01

    study involving the design of a working fluid for an Organic Ranking Cycle (ORC) design for power generation. Morris Screening is found to be favorable over Monte Carlo based standard regression. Monte Carlo based standard regression cannot be applied, because the current model cannot be sufficiently...... linearized. For Morris Screening techniques the critical temperature, the critical pressure and the acentric factor of the working fluid has been identified as the target properties with the highest sensitivity to the net power output of the cycle....

  20. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Meroni, Andrea; Haglind, Fredrik

    2017-01-01

    %) fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane), toluene, n-pentane, i-pentane and c-pentane. The results of the comparison...... indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit......This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt %) and low-sulfur (0.5 wt...

  1. Power law relationship between cell cycle duration and cell volume in the early embryonic development of Caenorhabditis elegans.

    Science.gov (United States)

    Arata, Yukinobu; Takagi, Hiroaki; Sako, Yasushi; Sawa, Hitoshi

    2014-01-01

    Cell size is a critical factor for cell cycle regulation. In Xenopus embryos after midblastula transition (MBT), the cell cycle duration elongates in a power law relationship with the cell radius squared. This correlation has been explained by the model that cell surface area is a candidate to determine cell cycle duration. However, it remains unknown whether this second power law is conserved in other animal embryos. Here, we found that the relationship between cell cycle duration and cell size in Caenorhabditis elegans embryos exhibited a power law distribution. Interestingly, the powers of the time-size relationship could be grouped into at least three classes: highly size-correlated, moderately size-correlated, and potentially a size-non-correlated class according to C. elegans founder cell lineages (1.2, 0.81, and relationship is conserved in Xenopus and C. elegans, while the absolute powers in C. elegans were different from that in Xenopus. Furthermore, we found that the volume ratio between the nucleus and cell exhibited a power law relationship in the size-correlated classes. The power of the volume relationship was closest to that of the time-size relationship in the highly size-correlated class. This correlation raised the possibility that the time-size relationship, at least in the highly size-correlated class, is explained by the volume ratio of nuclear size and cell size. Thus, our quantitative measurements shed a light on the possibility that early embryonic C. elegans cell cycle duration is coordinated with cell size as a result of geometric constraints between intracellular structures.

  2. Leg general muscle moment and power patterns in able-bodied subjects during recumbent cycle ergometry with ankle immobilization.

    Science.gov (United States)

    Szecsi, J; Straube, A; Fornusek, C

    2014-11-01

    Rehabilitation of persons with pareses commonly uses recumbent pedalling and a rigid pedal boot that fixes the ankle joint from moving. This study was performed to provide general muscle moments (GMM) and joint power data from able-bodied subjects performing recumbent cycling at two workloads. Twenty-six able-bodied subjects pedalled a stationary recumbent tricycle at 60 rpm during passive cycling and at two workloads (low 15 W and high 40 W per leg) while leg kinematics and pedal forces were recorded. GMM and power were calculated using inverse dynamic equations. During the high workload, the hip and knee muscles produced extensor/flexor moments throughout the extensions/flexions phases of the joints. For low workload, a prolonged (crank angle 0-258°) hip extension moment and a shortened range (350-150°) of knee extension moment were observed compared to the corresponding extension phases of each joint. The knee and hip joints generated approximately equal power. At the high workload the hip and knee extensors generated increased power in the propulsion phase. For the first time, this study provides GMM and power patterns for able-bodied subjects performing recumbent cycling with an immobilized ankle. The patterns showed greater similarities to upright cycling with a free ankle, than previously supposed. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. 53 W average power few-cycle fiber laser system generating soft x rays up to the water window.

    Science.gov (United States)

    Rothhardt, Jan; Hädrich, Steffen; Klenke, Arno; Demmler, Stefan; Hoffmann, Armin; Gotschall, Thomas; Eidam, Tino; Krebs, Manuel; Limpert, Jens; Tünnermann, Andreas

    2014-09-01

    We report on a few-cycle laser system delivering sub-8-fs pulses with 353 μJ pulse energy and 25 GW of peak power at up to 150 kHz repetition rate. The corresponding average output power is as high as 53 W, which represents the highest average power obtained from any few-cycle laser architecture so far. The combination of both high average and high peak power provides unique opportunities for applications. We demonstrate high harmonic generation up to the water window and record-high photon flux in the soft x-ray spectral region. This tabletop source of high-photon flux soft x rays will, for example, enable coherent diffractive imaging with sub-10-nm resolution in the near future.

  4. Optimal allocation and effectiveness of the heat exchangers for a power plant with two like-Carnot cycles

    Science.gov (United States)

    Aragón-González, G.; León-Galicia, A.

    2017-01-01

    A stationary power plant with two Carnot-like cycles is optimized. Each cycle has the following irreversibilities: finite rate heat transfer between the working fluid and the external heat sources, internal dissipation of the working fluid, and heat leak between reservoirs; is extended to two or more of this combined model. Using the Bellman’ Principle, we find the optimal recurrence relations for the allocation of the heat exchangers for this power plant. The optimal allocation or effectiveness of the heat exganchers of power plant is determined by two design rules: internal thermal conductance fixed; or areas fixed. The optimal obtained are invariant to the power and efficiency and to the heat transfer law.

  5. Hyperlactemia induction modes affect the lactate minimum power and physiological responses in cycling.

    Science.gov (United States)

    Zagatto, Alessandro M; Padulo, Johnny; Müller, Paulo T G; Miyagi, Willian E; Malta, Elvis S; Papoti, Marcelo

    2014-10-01

    The aim of this study was to verify the influence of hyperlactemia and blood acidosis induction on lactate minimum intensity (LMI). Twenty recreationally trained males who were experienced in cycling (15 cyclists and 5 triathletes) participated in this study. The athletes underwent 3 lactate minimum tests on an electromagnetic cycle ergometer. The hyperlactemia induction methods used were graded exercise test (GXT), Wingate test (WAnT), and 2 consecutive Wingate tests (2 × WAnTs). The LMI at 2 × WAnTs (200.3 ± 25.8 W) was statistically higher than the LMI at GXT (187.3 ± 31.9 W) and WAnT (189.8 ± 26.0 W), with similar findings for blood lactate, oxygen uptake, and pulmonary ventilation at LMI. The venous pH after 2 × WAnTs was lower (7.04 ± 0.24) than in (p ≤ 0.05) the GXT (7.19 ± 0.05) and WAnT (7.19 ± 0.05), whereas the blood lactate response was higher. In addition, similar findings were observed for bicarbonate concentration [HCO3] (2 × WAnTs lower than WAnT; 15.3 ± 2.6 mmol·L and 18.2 ± 2.7 mmol·L1, respectively) (p ≤ 0.05). However, the maximal aerobic power and total time measured during the incremental phase also did not differ. Therefore, we can conclude that the induction mode significantly affects pH, blood lactate, and [HCO3] and consequently they alter the LMI and physiological parameters at LMI.

  6. Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue

    Directory of Open Access Journals (Sweden)

    Faghri Pouran D

    2008-04-01

    Full Text Available Abstract Background The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Methods Six spinal cord injured subjects (2 incomplete, 4 complete between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. Results The main findings of this study were: (a ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. Conclusion An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus

  7. DC-DC power Converter Topology for PEM Fuel Cell Large Stack Operating in Potential Cycling Mode for Embedded Applications

    OpenAIRE

    DE BERNARDINIS, Alexandre; Candusso, Denis; DIAW, Ibrahima; Harel, Fabien

    2012-01-01

    The aim of the research work is to propose a power converter topology for a Proton Exchange Membrane Fuel Cell (PEMFC) operating in potentiostatic mode and which allows applying the Cyclic Voltammetry (CV) technique to a large stack composed of about one hundred cells. In CV mode, the fuel cell behavior is rather particular and the definition of a suitable power converter interface is not trivial. It implies to control the fuel cell potential during the cycling profiles applied, which is not ...

  8. Life cycle assessment of a power tower concentrating solar plant and the impacts of key design alternatives.

    Science.gov (United States)

    Whitaker, Michael B; Heath, Garvin A; Burkhardt, John J; Turchi, Craig S

    2013-06-04

    A hybrid life cycle assessment (LCA) is used to evaluate four sustainability metrics over the life cycle of a power tower concentrating solar power (CSP) facility: greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). The reference design is for a dry-cooled, 106 MW(net) power tower facility located near Tucson, AZ that uses a mixture of mined nitrate salts as the heat transfer fluid and storage medium, a two-tank thermal energy storage system designed for six hours of full load-equivalent storage, and receives auxiliary power from the local electric grid. A thermocline-based storage system, synthetically derived salts, and natural gas auxiliary power are evaluated as design alternatives. Over its life cycle, the reference plant is estimated to have GHG emissions of 37 g CO2eq/kWh, consume 1.4 L/kWh of water and 0.49 MJ/kWh of energy, and have an EPBT of 15 months. Using synthetic salts is estimated to increase GHG emissions by 12%, CED by 7%, and water consumption by 4% compared to mined salts. Natural gas auxiliary power results in greater than 10% decreases in GHG emissions, water consumption, and CED. The thermocline design is most advantageous when coupled with the use of synthetic salts.

  9. Applied studies in advanced boiler technology for Rankine cycle power systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul, F.W.; Negreanu, M.J.

    1978-02-01

    A study is presented on a new rotational boiler design which has improved passive dynamic response and two-phase flow stability characteristics. A survey of small boiler manufacturers in the United States indicated that currently available designs are based on steady-state operating requirements rather than for dynamic performance. Recent work by EPA and ERDA which addressed boiler designs for mobile automotive Rankine cycle power systems showed that boilers of a monotube or multipass tube configuration design could be developed which were physically compact, but still were subject to the two-phase flow instability problem when coupled within an operating power system. The objectives of this work were to evaluate alternative boiler configurations which would improve boiler dynamic response and also have good two-phase liquid-vapor interface flow stability. The major physical design limitation of any boiler is the small external hot gas heat transfer coefficient. Such a low coefficient requires considerable design enhancements to increase the rate of energy transfer to the circulation system fluid. The rotational boiler is a physical design configuration which addresses this problem. The results of an analytic study using several mathematical model formulations showed that a rotational boiler could have a passive response time constant which was approximately one-half the magnitude for an equivalent single pass monotube boiler. An experimental prototype rotational boiler was designed, manufactured and tested, with the experimental results confirming that the experimental passive response time constants were comparable to the estimates from the analytic models. The experimental boiler operating in two-phase flow was found to be stable and responsive to external inputs. A rotational boiler configuration is a good alternative design configuration for small compact vapor generator designs based on fast transient passive response and two-phase flow stability.

  10. An Investigation of the Application of the Gas Generator-Free Turbine Cycle to a Nuclear Powered Aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Alvis, J. H.; Chessman, S. R.

    1957-08-01

    This study has investigated the feasibility of installing a gas generator-free turbine type power plant in the R3Y aircraft, using a circulating fuel reactor as a power source. Two variations of the cycle were considered. The split flow cycle bleeds high temperature, high pressure air from the gas generator directly to the free turbine in the wing. The through flow cycle partially expands the high temperature, high pressure air through the compressor turbine of the gas generator then directs the compressor-turbine exhaust air to the free turbine in the wing. Design parameters of pressure ratio, radiator depth, radiation flow density, and hot gas duct size were optimized to give minimum weight per shaft horsepower of the complete power plant. The weight of a split flow power plant capable of supplying 22,000 shaft horsepower was found to be 116,600 pounds. The weight of a similar through flow power plant was found to be 119,900 pounds. The reactor power required in both cases was 70 megawatts. The nominal gross weight of the R3Y airplane is 175,000 pounds. With pay loads of approximately 20,000 pounds, either nuclear conversion will have a gross weight of 200,000 pounds. It was found that either cycle could be installed in the R3Y aircraft; however, the installation of either would require major structural redesign. The split flow cycle with its smaller hot air ducts required the least amount of redesign. A comparison of existing aircraft engines with a preliminary design of the split flow turbo-components indicated that the compressor and possibly the free turbine could be adapted from current engine components.

  11. Status of power generation experiments in the NASA Lewis closed-cycle MHD facility.

    Science.gov (United States)

    Sovie, R. J.; Nichols, L. D.

    1972-01-01

    In this paper the design and operation of the closed-cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger (preheater), heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The heater can supply 1.1 MW of thermal power to a 2.27 kg/sec gas stream. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths (B = 0.2 T), the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. The Hall voltage and short circuit current decrease sharply with increasing magnetic field strength, however. Comparison of these data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.

  12. The cost of carbon capture and storage for natural gas combined cycle power plants.

    Science.gov (United States)

    Rubin, Edward S; Zhai, Haibo

    2012-03-20

    This paper examines the cost of CO(2) capture and storage (CCS) for natural gas combined cycle (NGCC) power plants. Existing studies employ a broad range of assumptions and lack a consistent costing method. This study takes a more systematic approach to analyze plants with an amine-based postcombustion CCS system with 90% CO(2) capture. We employ sensitivity analyses together with a probabilistic analysis to quantify costs for plants with and without CCS under uncertainty or variability in key parameters. Results for new baseload plants indicate a likely increase in levelized cost of electricity (LCOE) of $20-32/MWh (constant 2007$) or $22-40/MWh in current dollars. A risk premium for plants with CCS increases these ranges to $23-39/MWh and $25-46/MWh, respectively. Based on current cost estimates, our analysis further shows that a policy to encourage CCS at new NGCC plants via an emission tax or carbon price requires (at 95% confidence) a price of at least $125/t CO(2) to ensure NGCC-CCS is cheaper than a plant without CCS. Higher costs are found for nonbaseload plants and CCS retrofits.

  13. Two-Dimensional Neutronic and Fuel Cycle Analysis of the Transatomic Power Molten Salt Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Robertson, Sean [Transatomic Power Corporation, Cambridge, MA (United States); Dewan, Leslie [Transatomic Power Corporation, Cambridge, MA (United States); Massie, Mark [Transatomic Power Corporation, Cambridge, MA (United States)

    2017-01-15

    This status report presents the results from the first phase of the collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear, Nuclear Energy Voucher program. The TAP design is a molten salt reactor using movable moderator rods to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parameters necessary to simulate the continuously changing physics in this complex system. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this design. Additional analyses of time step sizes, mass feed rates and enrichments, and isotopic removals provide additional information to make informed design decisions. This work further demonstrates capabilities of ORNL modeling and simulation tools for analysis of molten salt reactor designs and strongly positions this effort for the upcoming three-dimensional core analysis.

  14. Self-consistent model of nuclear power and nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Adamov, E.O. [Ministry of Russian Federation of Atomic Energy, Moscow (Russian Federation); Ganev, I.K.; Lopatkin, A.V.; Orlov, V.V.; Smirnov, V.S. [Research and Development Institute of Power Engineering, 101000, P.O.B. 788, Moscow (Russian Federation)

    2000-06-01

    Under discussion are such major aspects of the nuclear energy sector as cost effectiveness, nuclear and environmental safety of reactors and nuclear fuel cycle facilities, sustained fuel supply, and proven feasibility of a proliferation-resistant technology. These requirements can be met, for instance, by a two-circuit nuclear facility with an inherently safe fast reactor of the BREST type which is expected to produce electricity at a cost not higher than that at modern LWRs. Fuel supply to such facilities and to a relatively small number of thermal reactors with BR<1, could be provided by fast reactors using depleted uranium as makeup fuel and having a small breeding gain in the core (CBR{approx}1.05) and bottom blanket (full BR{approx}1.1). Use of a high-boiling metallic coolant (lead) affords deterministic nuclear, technical and environmental safety of the plants in design-basis and hypothetical accidents. Introduction of a transmutational NFC is viewed as one of the avenues to global environmental safety, when the equivalent activity of long-lived high-level waste is made lower or close to the activity of the source material going into energy production. With such a balance in place, nuclear power could be regarded, in a sense, as waste-free. (orig.)

  15. Generation of high-power few-cycle lasers via Brillouin-based plasma amplification

    Science.gov (United States)

    Zhang, Z. M.; Zhang, B.; Hong, W.; Deng, Z. G.; Teng, J.; He, S. K.; Zhou, W. M.; Gu, Y. Q.

    2017-11-01

    Strong coupling stimulated Brillouin backscattering (sc-SBS) in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers. Here, we report on a new regime of brillouin-based plasma amplification, producing an amplified pulse with a duration of 5 fs and unfocused intensity of 6 × 1017 W/cm2. The results are obtained from 2D particle-in-cell simulations, using two circularly polarized pump and seed pulse with Gaussian transverse profile, both at an intensity of 2.74 × 1016 W/cm2, counter-propagating in a 0.3nc plasma. The significant compression of amplified seed is achieved as a result of sc-SBS amplification as well as additional compression by the interplay between self-phase modulation and negative group delay dispersion. We show that the amplified seed retains high beam qualities since the filamentation can be prevented due to the fast compression. This scheme may pave the way for few-cycle laser pulses to reach exawatt or even zetawatt regime.

  16. Initial Test Results of a Dual Closed-Brayton-Cycle Power Conversion System

    Science.gov (United States)

    Johnson, Paul K.; Mason, Lee S.

    2007-01-01

    The dual Brayton power conversion system constructed for NASA Glenn Research Center (GRC) was acceptance tested April 2007 at Barber-Nichols, Inc., Arvada, Colorado. This uniquely configured conversion system is built around two modified commercial Capstone C30 microturbines and employs two closed-Brayton-cycle (CBC) converters sharing a common gas inventory and common heat source. Because both CBCs share the gas inventory, behavior of one CBC has an impact on the performance of the other CBC, especially when one CBC is standby or running at a different shaft speed. Testing performed to date includes the CBCs operating at equal and unequal shaft speeds. A test was also conducted where one CBC was capped off and the other was operated as a single CBC converter. The dual Brayton configuration generated 10.6 kWe at 75 krpm and a turbine inlet temperature of 817 K. Single Brayton operation generated 14.8 kWe at 90 krpm and a turbine inlet temperature of 925 K.

  17. Evaluation of a solar-powered organic Rankine cycle using dry organic working fluids

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2015-12-01

    Full Text Available This paper presents a model to evaluate the performance of a solar-powered organic Rankine cycle (ORC. The system was evaluated in Jackson, MS, using five dry organic working fluids, R218, R227ea, R236ea, R236fa, and RC318. The purpose of this study is to investigate how hourly temperature change affects the electricity production and exergy destruction rates of the solar ORC, and to determine the effect of the working fluid on the proposed system. The system was also evaluated in Tucson, AZ, to investigate the effect of average hourly outdoor temperatures on its performance. The potential of the system to reduce primary energy consumption and carbon dioxide emissions is also investigated. A parametric analysis to determine how temperature and pressure of the organic working fluid, the solar collector area, and the turbine efficiency affect the electricity production is performed. Results show that the ORC produces the most electricity during the middle of the day, when the temperatures are the highest and when the solar collectors have the highest efficiency. Also, R-236ea is the working fluid that shows the best performance of the evaluated fluids. An economic analysis was performed to determine the capital cost available for the proposed system.

  18. Full environmental life cycle cost analysis of concentrating solar power technology: contribution of externalities to overall energy costs

    NARCIS (Netherlands)

    Corona, B.; Cerrajero, E.; San Miguel, G.

    2016-01-01

    The aim of this work is to investigate the use of Full Environmental Life Cycle Costing (FeLCC) methodology to evaluate the economic performance of a 50 MW parabolic trough Concentrated Solar Power (CSP) plant operating in hybrid mode with different natural gas inputs (between 0% and 30%). The

  19. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiman, Fahad A. [Mechanical and Aerospace Engineering Department, Carleton University 1125 Colonel By Drive, Ottawa, Ontario (Canada); Dincer, Ibrahim [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, Ontario (Canada); Hamdullahpur, Feridun [Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario (Canada)

    2010-04-15

    The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger. (author)

  20. A comparative life cycle analysis of low power PV lighting products for rural areas in South East Asia

    NARCIS (Netherlands)

    Durlinger, Bart; Durlinger, B.P.J.; Reinders, Angelina H.M.E.; Toxopeus, Marten E.

    2012-01-01

    This paper evaluates the environmental effects of low power PV lighting products, which are increasingly used in rural areas in South East Asia, by means of a life cycle analysis (LCA). The main goals of the project are to determine (1) the environmental impacts, (2) which parts are contributing to

  1. Periovulatory follicular volume and vascularization determined by 3D and power Doppler sonography as pregnancy predictors in intrauterine insemination cycles.

    Science.gov (United States)

    Engels, Virginia; Sanfrutos, Luis; Perez-Medina, Tirso; Alvarez, Pilar; Zapardiel, Ignacio; Godoy-Tundidor, Sonia; Salazar, Francisco J; Troyano, Juan; Bajo-Arenas, Jose M

    2011-06-01

    To evaluate the relationship between volume and vascularization of the periovulatory follicle and subfollicular area measured by three-dimensional power Doppler ultrasound (US), and ovulation and pregnancy in patients undergoing intrauterine insemination (IUI). We studied 79 consecutive cycles of IUI on hCG administration day. We measured the periovulatory follicle and subfollicular area by means of three-dimensional power Doppler US. The stored volumes were processed with the VOCAL image processing software to calculate the volume of the follicle and the following vascular indices: vascularization index (VI), flow index (FI), and vascularization flow index (VFI). The follicular volume was higher in anovulatory cycles (7.7 ± 3.7 cubic centimeters (CC) versus 4.1 ± 2.0 CC; p < 0.001). There was no difference between the follicular volumes in cycles with or without subsequent pregnancy. The vascular indices of the follicle did not differ significantly between ovulatory and anovulatory cycles, and between cycles that did and did not achieve pregnancy. Periovulatory subfollicular VI and VFI were lower in women who became pregnant (VI: 2.9 ± 2.3% versus 5.6 ± 4.6%; p < 0.05, and VFI: 1.1 ± 0.8 versus 2.2 ± 2.2; p < 0.01). High values of follicular volume were associated with anovulatory cycles. Subfollicular VI and VFI might be used as markers of follicular quality and pregnancy predictors. Copyright © 2011 Wiley Periodicals, Inc.

  2. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    Science.gov (United States)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  3. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-12-15

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

  4. On-chip high power porous silicon lithium ion batteries with stable capacity over 10,000 cycles.

    Science.gov (United States)

    Westover, Andrew S; Freudiger, Daniel; Gani, Zarif S; Share, Keith; Oakes, Landon; Carter, Rachel E; Pint, Cary L

    2015-01-07

    We demonstrate the operation of a graphene-passivated on-chip porous silicon material as a high rate lithium battery anode with over 50 X power density, and 100 X energy density improvement compared to identically prepared on-chip supercapacitors. We demonstrate this Faradaic storage behavior to occur at fast charging rates (1-10 mA cm(-2)) where lithium locally intercalates into the nanoporous silicon, preventing the degradation and poor cycling performance attributed to deep storage in the bulk silicon. This device exhibits cycling performance that exceeds 10,000 cycles with capacity above 0.1 mA h cm(-2) without notable capacity fade. This demonstrates a practical route toward high power, high energy, and long lifetime all-silicon on-chip storage systems relevant toward integration into electronics, photovoltaics, and other silicon-based platforms.

  5. Life cycle assessment and evaluation of sustainable product design strategies for combined cycle power plants; Lebenszyklusanalyse und Bestimmung von Einflussfaktoren zur nachhaltigen Produktgestaltung von GuD-Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Parthey, Falko

    2010-03-26

    The growth of the national GDP on a worldwide level and the associated increasing demand for primary energy inevitably result in higher emissions levels. According to recent international scientific studies the energy sector (including electricity generation, industrial activities and traffic) contributes up to 83 % to the worldwide greenhouse gas emissions. Climate change and the projection of its impacts have been acknowledged also on the political level and concise measures are being considered. Since access to electricity and sustainable development are inseparable, the question arises whether and how adequate answers can be given within the coming years. Furthermore, the definite lifetime of the existing power plant fleet will result in a gap of up to 12.000 MWh in 2020, depending on the scenario. One part of the answer lies in the sustainable design of power plants. The main contribu-tion of this work is therefore the life cycle analysis of a combined cycle power plant from of a manufacturer's perspective. The visualisation of the entire product system and the re-sults of the impact assessment facilitate the determination of improvement potential. The system boundaries for this study include all relevant phases of the product life cycle (materials, manufacturing, transport, operation, service and end of life). The life cycle inventory consists of all bills of materials and energy consumption for all components and life cycle phases. The interpretation of the results of the impact assessment showed the expected significant contribution in kg CO{sub 2}e for the emission of the full load operation. Nevertheless, the results for all impact categories over the entire lifecycle are given. Various operation scenarios and configurations can now be analysed based on the elaborated modules, and can now serve as decision support already during product development. The visualisation of impacts of design decisions on the ecological footprint of the product system in

  6. Validity of the RAST for evaluating anaerobic power performance as compared to Wingate test in cycling athletes

    OpenAIRE

    Queiroga,Marcos Roberto; Cavazzotto,Timothy Gustavo; Katayama,Keyla Yukari; Portela,Bruno Sérgio; Tartaruga,Marcus Peikriszwili; Ferreira,Sandra Aires

    2013-01-01

    The validity of the Running-based Anaerobic Sprint Test (RAST) was investigated to evaluate the anaerobic power performance in comparison to Wingate test in cycling athletes. Ten mountain-bike male cyclists (28.0±7.3 years) randomly performed Wingate Test and RAST with two trials each. After several anthropometric measurements, peak power (PP), mean power (MP) and fatigue index (FI) for RAST and Wingate Test were analyzed using Student's paired t-test, Pearson's linear correlation test (r) an...

  7. Preliminary design of an auxiliary power unit for the space shuttle. Volume 5: Selected system cycle performance data

    Science.gov (United States)

    Hamilton, M. L.; Burriss, W. L.

    1972-01-01

    Detailed cycle steady-state performance data are presented for the final auxiliary power unit (APU) system configuration. The selection configuration is a hydrogen-oxygen APU incorporating a recuperator to utilize the exhaust energy and using the cycle hydrogen flow as a means of cooling the component heat loads. The data are given in the form of computer printouts and provide the following: (1) verification of the adequacy of the design to meet the problem statement for steady-state performance; (2) overall system performance data for the vehicle system analyst to determine propellant consumption and hydraulic fluid temperature as a function for varying mission profiles, propellant inlet conditions, etc.; and (3) detailed component performance and cycle state point data to show what is happening in the cycle as a function of the external forcing functions.

  8. Effect of Regenerative Organic Rankine Cycle (RORC on the Performance of Solar Thermal Power in Yogyakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2013-07-01

    Full Text Available This paper presents effect of Regenerative Organic Rankine Cycle (RORC on the performance of solar thermal power in Yogyakarta, Indonesia. Solar thermal power is a plant that uses solar energy as heat source. Indonesia has high humidity level, so that parabolic trough is the most suitable type of solar thermal power technology to be developed, where the design is made with small focal distance. Organic Rankine Cycle (ORC is a Rankine cycle that use organic fluid as working fluid to utilize low temperature heat sources. RORC is used to increase ORC performance. The analysis was done by comparing ORC system with and without regenerator addition. Refrigerant that be used in the analysis is R123. Preliminary data was taken from the solar collector system that has been installed in Yogyakarta. The analysis shows that with 36 m total parabolic length, the resulting solar collector capacity is 63 kW, heat input/evaporator capacity is determined 26.78 kW and turbine power is 3.11 kW for ORC, and 3.38 kW for RORC. ORC thermal efficiency is 11.28% and RORC is 12.26%. Overall electricity efficiency is 4.93% for ORC, and 5.36% for RORC. With 40°C condensing temperature and evaporation at 10 bar saturated condition, efficiency of RORC is higher than ORC. Greater evaporation temperature at the same pressure (10 bar provide greater turbine power and efficiency.

  9. Concept definition study of small Brayton cycle engines for dispersed solar electric power systems

    Science.gov (United States)

    Six, L. D.; Ashe, T. L.; Dobler, F. X.; Elkins, R. T.

    1980-01-01

    Three first-generation Brayton cycle engine types were studied for solar application: a near-term open cycle (configuration A), a near-term closed cycle (configuration B), and a longer-term open cycle (configuration C). A parametric performance analysis was carried out to select engine designs for the three configurations. The interface requirements for the Brayton cycle engine/generator and solar receivers were determined. A technology assessment was then carried out to define production costs, durability, and growth potential for the selected engine types.

  10. Life Cycle Cost Analysis of Three Types of Power Lines in 10 kV Distribution Network

    Directory of Open Access Journals (Sweden)

    Zhenyu Zhu

    2016-10-01

    Full Text Available There are three types of power lines in the 10 kV distribution network in China, i.e., copper power cables, overhead power conductors and aluminum alloy power cables. It is necessary to give a comprehensive evaluation to choose the type of power line in some delicate practical engineering. This paper presents a life cycle cost (LCC-based analysis method for the three types of power lines. An LCC model of the power line in the 10 kV distribution network is established, which considers four parts: investment cost, operation and maintenance cost, failure cost and discard cost. A detailed calculation model for the four parts is presented, and to calculate the failure cost, the Monte Carlo algorithm is employed to simulate the values of expected energy not supplied (EENS. Two practical 10 kV power line projects in Fujian Province in China were analyzed based on the proposed LLC model and corresponding developed software, which has helped the power company select the appropriate power line successfully.

  11. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  12. Assessing the Integrated Computerized Maintenance Management System of O&M Company for Combined Cycle Power Station

    Directory of Open Access Journals (Sweden)

    Rocel D. Gualberto

    2015-12-01

    Full Text Available This study sought to describe and assess the integrated Computerized Maintenance Management System applied by an Operation and Management (O&M company to a Combined Cycle Power Station and come up with possible enhancement activities based on the results of the evaluation. The integrated Computerized Maintenance Management System is an electronic database which provides a powerful tool to deal with mechanical maintenance problems. It is a comprehensive approach that directs the maintenance personnel on what specific activity is to be applied on the equipment. The maintenance program was evaluated in terms of the maintenance organization, maintenance activities, spare parts and procurement, management assessment, program review and record keeping. Key performance indicators such as availability, reliability, efficiency and percentage of breakdown maintenance of the combined cycle power station were evaluated and measured the effectiveness of the maintenance program. The proposed enhancement activities would remediate the identified weak points of the maintenance program.

  13. Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle assessment and dynamic data envelopment analysis approach.

    Science.gov (United States)

    Martín-Gamboa, Mario; Iribarren, Diego; Dufour, Javier

    2018-02-15

    The energy sector is still dominated by the use of fossil resources. In particular, natural gas represents the third most consumed resource, being a significant source of electricity in many countries. Since electricity production in natural gas combined cycle (NGCC) plants provides some benefits with respect to other non-renewable technologies, it is often seen as a transitional solution towards a future low‑carbon power generation system. However, given the environmental profile and operational variability of NGCC power plants, their eco-efficiency assessment is required. In this respect, this article uses a novel combined Life Cycle Assessment (LCA) and dynamic Data Envelopment Analysis (DEA) approach in order to estimate -over the period 2010-2015- the environmental impact efficiencies of 20 NGCC power plants located in Spain. A three-step LCA+DEA method is applied, which involves data acquisition, calculation of environmental impacts through LCA, and the novel estimation of environmental impact efficiency (overall- and term-efficiency scores) through dynamic DEA. Although only 1 out of 20 NGCC power plants is found to be environmentally efficient, all plants show a relatively good environmental performance with overall eco-efficiency scores above 60%. Regarding individual periods, 2011 was -on average- the year with the highest environmental impact efficiency (95%), accounting for 5 efficient NGCC plants. In this respect, a link between high number of operating hours and high environmental impact efficiency is observed. Finally, preliminary environmental benchmarks are presented as an additional outcome in order to further support decision-makers in the path towards eco-efficiency in NGCC power plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S., E-mail: sankha.deepp@gmail.com; Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com [Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical model of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.

  15. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Solonin, M.I.; Polyakov, A.S.; Zakharkin, B.S.; Smelov, V.S.; Nenarokomov, E.A.; Mukhin, I.V. [SSC, RF, A.A. Bochvar ALL-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2000-07-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  16. Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors

    KAUST Repository

    Iloeje, Chukwunwike

    2015-10-01

    © 2015 Elsevier Ltd. The rotary reactor differs from most alternative chemical looping combustion (CLC) reactor designs because it maintains near-thermal equilibrium between the two stages of the redox process by thermally coupling channels undergoing oxidation and reduction. An earlier study showed that this thermal coupling between the oxidation and reduction reactors increases the efficiency by up to 2% points when implemented in a regenerative Brayton cycle. The present study extends this analysis to alternative CLC cycles with the objective of identifying optimal configurations and design tradeoffs. Results show that the increased efficiency from reactor thermal coupling applies only to cycles that are capable of exploiting the increased availability in the reduction reactor exhaust. Thus, in addition to the regenerative cycle, the combined CLC cycle and the combined-regenerative CLC cycle are suitable for integration with the rotary reactor. Parametric studies are used to compare the sensitivity of the different cycle efficiencies to parameters like pressure ratio, turbine inlet temperature, carrier-gas fraction and purge steam generation. One of the key conclusions from this analysis is that while the optimal efficiency for regenerative CLC cycle was the highest of the three (56% at 3. bars, 1200. °C), the combined-regenerative cycle offers a trade-off that combines a reasonably high efficiency (about 54% at 12. bars, 1200. °C) with much lower gas volumetric flow rate and consequently, smaller reactor size. Unlike the other two cycles, the optimal compressor pressure ratio for the regenerative cycle is weakly dependent on the design turbine inlet temperature. For the regenerative and combined regenerative cycles, steam production in the regenerator below 2× fuel flow rate improves exhaust recovery and consequently, the overall system efficiency. Also, given that the fuel side regenerator flow is unbalanced, it is more efficient to generate steam from the

  17. Application of direct contact heat exchangers to geothermal power production cycles. Project review, December 1, 1974--May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, H.R.; Boehm, R.F.; Hansen, A.C.

    1977-01-01

    Work performed on the development of direct contact heat exchanger power cycles for geothermal applications is reviewed. The period covered in the report is from the inception of the project in 1974 through May 31, 1977. Results from a large experimental program on heat exchanger develpment as well as from many analyses of components and cycle performance and economics are given. A number of working fluids and operating conditions have been considered, and no major obstacles for the implementation of the concept have been discovered.

  18. Study on the Characteristics of Expander Power Output Used for Offsetting Pumping Work Consumption in Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Yu-Ting Wu

    2014-07-01

    Full Text Available The circulation pump in an organic Rankine cycle (ORC increases the pressure of the liquid working fluid from low condensing pressure to high evaporating pressure, and the expander utilizes the pressure difference to generate work. A portion of the expander output power is used to offset the consumed pumping work, and the rest of the expander power is exactly the net work produced by the ORC system. Because of the relatively great theoretical pumping work and very low efficiency of the circulation pump reported in previous papers, the characteristics of the expander power used for offsetting the pumping work need serious consideration. In particular, the present work examines those characteristics. It is found that the characteristics of the expander power used for offsetting the pumping work are satisfactory only under the condition that the working fluid absorbs sufficient heat in the evaporator and its specific volume at the evaporator outlet is larger than or equal to a threshold value.

  19. Review of supercritical CO2 power cycle technology and current status of research and development

    Directory of Open Access Journals (Sweden)

    Yoonhan Ahn

    2015-10-01

    Full Text Available The supercritical CO2 (S-CO2 Brayton cycle has recently been gaining a lot of attention for application to next generation nuclear reactors. The advantages of the S-CO2 cycle are high efficiency in the mild turbine inlet temperature region and a small physical footprint with a simple layout, compact turbomachinery, and heat exchangers. Several heat sources including nuclear, fossil fuel, waste heat, and renewable heat sources such as solar thermal or fuel cells are potential application areas of the S-CO2 cycle. In this paper, the current development progress of the S-CO2 cycle is introduced. Moreover, a quick comparison of various S-CO2 layouts is presented in terms of cycle performance.

  20. Work and efficiency of quantum Otto cycles in power-law trapping potentials

    Science.gov (United States)

    Zheng, Yuanjian; Poletti, Dario

    2014-07-01

    We study the performance of a quantum Otto cycle operating in trapping potentials of different shapes. We show that, while both the mean work output and the efficiency of two Otto cycles in different trapping potentials can be made equal, the work probability distribution will still be strongly affected by the difference in structure of the energy levels. To exemplify our results, we study the family of potentials of the form Vt(x)˜x2q. This family of potentials possesses a simple scaling property that allows for analytical insights into the efficiency and work output of the cycle. We perform a comparison of quantum Otto cycles in various physically relevant scenarios and find that in certain instances, the efficiency of the cycle is greater when using potentials with larger values of q, while in other cases, the efficiency is greater with harmonic traps.

  1. Work and efficiency of quantum Otto cycles in power-law trapping potentials.

    Science.gov (United States)

    Zheng, Yuanjian; Poletti, Dario

    2014-07-01

    We study the performance of a quantum Otto cycle operating in trapping potentials of different shapes. We show that, while both the mean work output and the efficiency of two Otto cycles in different trapping potentials can be made equal, the work probability distribution will still be strongly affected by the difference in structure of the energy levels. To exemplify our results, we study the family of potentials of the form V(t)(x) ∼ x(2q). This family of potentials possesses a simple scaling property that allows for analytical insights into the efficiency and work output of the cycle. We perform a comparison of quantum Otto cycles in various physically relevant scenarios and find that in certain instances, the efficiency of the cycle is greater when using potentials with larger values of q, while in other cases, the efficiency is greater with harmonic traps.

  2. Determining Reliability Parameters for a Closed-Cycle Small Combined Heat and Power Plant

    National Research Council Canada - National Science Library

    Vladimir S Vysokomorny; Olga V Vysokomornaya; Maxim V Piskunov

    2016-01-01

      The paper provides numerical values of the reliability parameters for independent power sources within the ambient temperature and output power range corresponding to the operation under the climatic...

  3. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Directory of Open Access Journals (Sweden)

    Lei Qi

    2017-01-01

    Full Text Available We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750–1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5–6 times smaller than those of state-of-the-art molten salt systems.

  4. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Science.gov (United States)

    Lei, Qi; Bader, Roman; Kreider, Peter; Lovegrove, Keith; Lipiński, Wojciech

    2017-11-01

    We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750-1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5-6 times smaller than those of state-of-the-art molten salt systems.

  5. Advanced modeling and simulation of integrated gasification combined cycle power plants with CO{sub 2}-capture

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, Mathias

    2014-04-17

    The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.

  6. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    without corroding the equipment by using suitable additives with the mixture. The purpose of the study reported here was to investigate if there is any benefit of using a Kalina cycle for a direct steam generation, central receiver solar thermal power plant with high live steam temperature (450 C...... direct steam generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables operating the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixtures at high temperatures......Solar thermal power plants have attracted increasing interest in the past few years - with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use...

  7. Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems

    Directory of Open Access Journals (Sweden)

    Raghava Kommalapati

    2017-03-01

    Full Text Available This paper contains an extensive review of life cycle assessment (LCA studies on greenhouse gas emissions (GHG from different material-based photovoltaic (PV and working mechanism-based concentrating solar power (CSP electricity generation systems. Statistical evaluation of the life cycle GHG emissions is conducted to assess the role of different PVs and CSPs in reducing GHG emissions. The widely-used parabolic trough and central receiver CSP electricity generation systems emitted approximately 50% more GHGs than the paraboloidal dish, solar chimney, and solar pond CSP electricity generation systems. The cadmium telluride PVs and solar pond CSPs contributed to minimum life cycle GHGs. Thin-film PVs are also suitable for wider implementation, due to their lower Energy Pay-Back Time (EPBT periods, in addition to lower GHG emission, in comparison with c-Si PVs.

  8. Optimal bidding strategy of battery storage in power markets considering performance based regulation and battery cycle life

    DEFF Research Database (Denmark)

    He, Guannan; Chen, Qixin; Kang, Chongqing

    2016-01-01

    Large-scale battery storage will become an essential part of the future smart grid. This paper investigates the optimal bidding strategy for battery storage in power markets. Battery storage could increase its profitability by providing fast regulation service under a performance-based regulation...... mechanism, which better exploits a battery’s fast ramping capability. However, battery life might be decreased by frequent charge–discharge cycling, especially when providing fast regulation service. It is profitable for battery storage to extend its service life by limiting its operational strategy to some...... degree. Thus, we incorporate a battery cycle life model into a profit maximization model to determine the optimal bids in day-ahead energy, spinning reserve, and regulation markets. Then a decomposed online calculation method to compute cycle life under different operational strategies is proposed...

  9. Basal and stress-induced salivary testosterone variation across the menstrual cycle and linkage to motivation and muscle power.

    Science.gov (United States)

    Cook, C J; Kilduff, L P; Crewther, B T

    2017-12-21

    This study investigated salivary testosterone (sal-T) variation across the menstrual cycle in female athletes, at different competitive levels, and its association with motivation and neuromuscular power. Six elite and 16 non-elite female athletes were monitored on days 7 (D7), 14 (D14), and 21 (D21) across 3 menstrual cycles for basal sal-T concentrations and self-appraised motivation to train and compete. Two further measures were taken on D7, D14, and D21 across 2 menstrual cycles: (1) the sal-T response (delta change) to a physical stress test and (2) peak power (PP) response to a 6-second cycle sprint following a post-activation potentiation (PAP) stimulus. Basal sal-T concentrations increased by 17 ± 27% from D7 to D14 before decreasing by -25 ± 43% on D21 (P 102%) who showed larger menstrual changes. Motivation, sal-T reactivity to stress, and the PP responses to a PAP stimulus also varied by testing day (P menstrual cycle changes in sal-T were more obvious in high-performing female athletes with higher sal-T concentrations. This was accompanied by greater training motivation, a more pronounced sal-T response to a physical stressor and greater neuromuscular power in the elite group. These results support observations that female athletes with higher T are more represented at elite levels of performance. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Reliability metrics extraction for power electronics converter stressed by thermal cycles

    DEFF Research Database (Denmark)

    Ma, Ke; Choi, Uimin; Blaabjerg, Frede

    2017-01-01

    Due to the continuous demands for highly reliable and cost-effective power conversion, the quantified reliability performances of the power electronics converter are becoming emerging needs. The existing reliability modelling approaches for the power electronics converter mainly focuses on the pr...

  11. Life cycle assessment of a HYSOL concentrated solar power plant: Analyzing the effect of geographic location

    NARCIS (Netherlands)

    Corona, B.; Ruiz, Diego; San Miguel, Guillermo

    2016-01-01

    Concentrating Solar Power (CSP) technology is developing in order to achieve higher energy efficiency, reduced economic costs, and improved firmness and dispatchability in the generation of power on demand. To this purpose, a research project titled HYSOL has developed a new power plant, consisting

  12. Life cycle assessment of fossil and biomass power generation chains. An analysis carried out for ALSTOM Power Services

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Ch.

    2008-12-15

    This final report issued by the Technology Assessment Department of the Paul Scherrer Institute (PSI) reports on the results of an analysis carried out on behalf of the Alstom Power Services company. Fossil and biomass chains as well as co-combustion power plants are assessed. The general objective of this analysis is an evaluation of specific as well as overall environmental burdens resulting from these different options for electricity production. The results obtained for fuel chains including hard coal, lignite, wood, natural gas and synthetic natural gas are discussed. An overall comparison is made and the conclusions drawn from the results of the analysis are presented.

  13. Alternative analysis to increase the power in combined-cycle power plants; Analisis de alternativas para el incremento de potencia en plantas termoelectricas de Ciclo Combinado

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco Cruz, Hector; Arriola Medellin, Alejandro M. [Gerencia de Procesos Termicos, Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: hpacheco@iie.org.mx; aarriola@iie.org.mx

    2010-11-15

    The electricity industry traditionally had two thermodynamic cycles for power generation: conventional steam turbine (Rankine cycle) used to supply a base load during the day, and gas turbines (Brayton cycle), for its speed response, normally used to cover peak loads. However, to provide variable peak loads, the gas turbine, as a volumetric machine is affected by the change in air density by changing the combustion temperature. This paper shows the scheme of integration of both systems, that it's known as combined cycle and the different options that would have these power plants, to maintain or increase their power in variable ambient conditions. It analyzes different options, such as: 1. Supplementary fire in the stove. 2. Air cooling intake in the gas turbine (evaporation system or mechanical system). 3. Steam injection in the combustion chamber. [Spanish] La industria electrica tradicionalmente a contado con dos ciclos termodinamicos para generacion electrica: las turbinas convencionales de vapor (ciclo de Rankine) se utilizan para suministrar una carga base durante el dia, y las turbinas de gas (ciclo de Brayton), por su rapidez de respuesta, se utilizan normalmente para cubrir las cargas pico. Sin embargo, para suministrar las cargas variables pico, la turbina a gas, por ser una maquina volumetrica, se ve afectada por el cambio de la densidad del aire de combustion al cambiar la temperatura ambiente. En este trabajo se muestra el esquema de integracion de ambos sistemas, en lo que se conoce como ciclo combinado y las diferentes opciones que tendrian estas plantas de generacion electrica para mantener o incrementar su potencia en condiciones ambiente variable. Para ello se analizan diferentes opciones, tales como: 1.- Combustion suplementaria en el recuperador de calor. 2.- Enfriamiento del aire de admision a la turbina de gas (mediante un sistema de evaporacion o mediante un sistema mecanico). 3.- Inyeccion de vapor a la camara de combustion. Palabras

  14. Torque and power-velocity relationships in cycling: relevance to track sprint performance in world-class cyclists.

    Science.gov (United States)

    Dorel, S; Hautier, C A; Rambaud, O; Rouffet, D; Van Praagh, E; Lacour, J-R; Bourdin, M

    2005-11-01

    The aims of the present study were both to describe anthropometrics and cycling power-velocity characteristics in top-level track sprinters, and to test the hypothesis that these variables would represent interesting predictors of the 200 m track sprint cycling performance. Twelve elite cyclists volunteered to perform a torque-velocity test on a calibrated cycle ergometer, after the measurement of their lean leg volume (LLV) and frontal surface area (A(p)), in order to draw torque- and power-velocity relationships, and to evaluate the maximal power (P(max)), and both the optimal pedalling rate (f(opt)) and torque (T(opt)) at which P (max) is reached. The 200 m performances--i.e. velocity (V200) and pedalling rate (f 200)--were measured during international events (REC) and in the 2002 French Track Cycling Championships (NAT). P(max), f(opt), and T(opt) were respectively 1600 +/- 116 W, 129.8 +/- 4.7 rpm and 118.5 +/- 9.8 N . m. P(max) was strongly correlated with T(opt) (p track cyclists, the optimization of the ratio between P(max) and A(p) represents a key factor of 200 m performance. Concerning the major role also played by f(opt), it is assumed that, considering high values of f 200, sprinters with a high value of optimal pedalling rate (i.e. lower f200-f(opt) difference) could be theoretically in better conditions to maximize their power output during the race and hence performance.

  15. Modelling of organic Rankine cycle power systems in off-design conditions: an experimentally-validated comparative study

    OpenAIRE

    Dickes, Rémi; Dumont, Olivier; Daccord, Rémi; Quoilin, Sylvain; Lemort, Vincent

    2017-01-01

    Because of environmental issues and the depletion of fossil fuels, the world energy sector is undergoing many changes toward increased sustainability. Among the many fields of research and development, power generation from low-grade heat sources is gaining interest and the organic Rankine cycle (ORC) is seen as one of the most promising technologies for such applications. In this paper, it is proposed to perform an experimentally-validated comparison of different modelling methods for the of...

  16. Intergenerational considerations affecting the future of nuclear power: equity as a framework for assessing fuel cycles.

    Science.gov (United States)

    Taebi, Behnam; Kadak, Andrew C

    2010-09-01

    Alternative fuel cycles are being considered in an effort to prolong uranium fuel supplies for thousands of years to come and to manage nuclear waste. These strategies bring with them different benefits and burdens for the present generation and for future generations. In this article, we present a method that provides insight into future fuel cycle alternatives and into the conflicts arising between generations within the framework of intergenerational equity. A set of intersubjective values is drawn from the notion of sustainable development. By operationalizing these values and mapping out their impacts, value criteria are introduced for the assessment of fuel cycles, which are based on the distribution of burdens and benefits between generations. The once-through fuel cycle currently deployed in the United States and three future fuel cycles are subsequently assessed according to these criteria. The four alternatives are then compared in an integrated analysis in which we shed light on the implicit tradeoffs made by decisionmakers when they choose a certain fuel cycle. When choosing a fuel cycle, what are the societal costs and burdens accepted for each generation and how can these factors be justified? This article presents an integrated decision-making method, which considers intergenerational aspects of such decisions; this method could also be applied to other technologies. © 2010 Society for Risk Analysis.

  17. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    Science.gov (United States)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  18. Perifollicular vascularity as a potential variable affecting outcome in stimulated intrauterine insemination treatment cycles: a study using transvaginal power Doppler.

    Science.gov (United States)

    Bhal, P S; Pugh, N D; Gregory, L; O'Brien, S; Shaw, R W

    2001-08-01

    The aim of the present study was to assess any potential relationship between perifollicular vascularity and outcome in an in-vivo environment following human chorionic gonadotrophin (HCG) administration. A total of 182 unselected consecutive patients undergoing stimulated intrauterine insemination (IUI) cycles was recruited where the perifollicular vascularity of follicles > or =16 mm was studied using a subjective grading system and transvaginal power Doppler ultrasonography, 36 h after HCG administration. A total of 601 follicles was studied. The incidence of follicles showing high-grade perifollicular vascularity (3 and 4) was higher than those with low-grade vascularity (1 and 2) (80 versus 20%). Treatment cycles were divided according to uniformity of vascularity grades of follicles > or =16 mm on the day of IUI [55% all high (3/4) grade; 33% mixed (1/2 and 3/4) and 12% all low (1/2) grade]. The mean age and duration of subfertility were significantly higher (P or =16 mm pre/post HCG, serum oestradiol and incidence of ultrashort gonadotrophin-releasing hormone (GnRH) agonist use were all significantly lower (P cycles with uniformly low follicular vascularity grades compared with mixed or uniformly high-grade cycles. However, on subjecting the data to multiple logistic regression analysis, the only independent variables that affected pregnancy rates appeared to be serum oestradiol (OR 1.28, 1.01--1.62) and high-grade follicular vascularity (OR 2.41, 1.08--5.40). These data would suggest that perifollicular vascularity has an important role to play in the outcome of IUI cycles, and that power Doppler has the potential to refine the management of assisted reproduction treatment cycles.

  19. Conceptual design of closed Brayton cycle for coal-fired power generation

    Science.gov (United States)

    Shah, R. P.; Corman, J. C.

    1977-01-01

    The objectives to be realized in developing a closed cycle gas turbine are (1) to exploit high temperature gas turbine technology while maintaining a working fluid which is free from combustion gas contamination, (2) to achieve compact turbo-equipment designs through pressurization of the working fluid, and (3) to obtain relatively simple cycle configurations. The technical/economic performance of a specific closed cycle gas turbine system was evaluated through the development of a conceptual plant and system design. This energy conversion system is designed for electric utility service and to utilize coal directly in an environmentally acceptable manner.

  20. Advanced gas turbine cycles a brief review of power generation thermodynamics

    CERN Document Server

    Horlock, JH

    2003-01-01

    Primarily this book describes the thermodynamics of gas turbine cycles. The search for high gas turbine efficiency has produced many variations on the simple ""open circuit"" plant, involving the use of heat exchangers, reheating and intercooling, water and steam injection, cogeneration and combined cycle plants. These are described fully in the text. A review of recent proposals for a number of novel gas turbine cycles is also included. In the past few years work has been directed towards developing gas turbines which produce less carbon dioxide, or plants from which the CO2 can be d

  1. On feasibility of a closed nuclear power fuel cycle with minimum radioactivity

    Science.gov (United States)

    Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.

    2015-12-01

    Practical implementation of a closed nuclear fuel cycle implies solution of two main tasks. The first task is creation of environmentally acceptable operating conditions of the nuclear fuel cycle considering, first of all, high radioactivity of the involved materials. The second task is creation of effective and economically appropriate conditions of involving fertile isotopes in the fuel cycle. Creation of technologies for management of the high-level radioactivity of spent fuel reliable in terms of radiological protection seems to be the hardest problem.

  2. Experimental study on solar-powered adsorption refrigeration cycle with activated alumina and activated carbon as adsorbent

    Directory of Open Access Journals (Sweden)

    Himsar Ambarita

    2016-03-01

    Full Text Available Typical adsorbent applied in solar-powered adsorption refrigeration cycle is activated carbon. It is known that activated alumina shows a higher adsorption capacity when it is tested in the laboratory using a constant radiation heat flux. In this study, solar-powered adsorption refrigeration cycle with generator filled by different adsorbents has been tested by exposing to solar radiation in Medan city of Indonesia. The generator is heated using a flat-plate type solar collector with a dimension of 0.5 m×0.5 m. Four cases experiments of solar-powered adsorption cycle were carried out, they are with generator filled by 100% activated alumina (named as 100AA, by a mixed of 75% activated alumina and 25% activated carbon (75AA, by a mixed of 25% activated alumina and 75% activated carbon (25AA, and filled by 100% activated carbon. Each case was tested for three days. The temperature and pressure history and the performance have been presented and analyzed. The results show that the average COP of 100AA, 75AA, 25AA, and 100AC is 0.054, 0.056, 0.06, and 0.074, respectively. The main conclusion can be drawn is that for Indonesian condition and flat-plate type solar collector the pair of activated carbon and methanol is the better than activated alumina.

  3. Implications of near-term coal power plant retirement for SO2 and NOX and life cycle GHG emissions.

    Science.gov (United States)

    Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2012-09-18

    Regulations monitoring SO(2), NO(X), mercury, and other metal emissions in the U.S. will likely result in coal plant retirement in the near-term. Life cycle assessment studies have previously estimated the environmental benefits of displacing coal with natural gas for electricity generation, by comparing systems that consist of individual natural gas and coal power plants. However, such system comparisons may not be appropriate to analyze impacts of coal plant retirement in existing power fleets. To meet this limitation, simplified economic dispatch models for PJM, MISO, and ERCOT regions are developed in this study to examine changes in regional power plant dispatch that occur when coal power plants are retired. These models estimate the order in which existing power plants are dispatched to meet electricity demand based on short-run marginal costs, with cheaper plants being dispatched first. Five scenarios of coal plant retirement are considered: retiring top CO(2) emitters, top NO(X) emitters, top SO(2) emitters, small and inefficient plants, and old and inefficient plants. Changes in fuel use, life cycle greenhouse gas emissions (including uncertainty), and SO(2) and NO(X) emissions are estimated. Life cycle GHG emissions were found to decrease by less than 4% in almost all scenarios modeled. In addition, changes in marginal damage costs due to SO(2), and NO(X) emissions are estimated using the county level marginal damage costs reported in the Air Pollution Emissions Experiments and Policy (APEEP) model, which are a proxy for measuring regional impacts of SO(2) and NO(X) emissions. Results suggest that location specific parameters should be considered within environmental policy frameworks targeting coal plant retirement, to account for regional variability in the benefits of reducing the impact of SO(2) and NO(X) emissions.

  4. Validity of the RAST for evaluating anaerobic power performance as compared to Wingate test in cycling athletes

    Directory of Open Access Journals (Sweden)

    Marcos Roberto Queiroga

    2013-12-01

    Full Text Available The validity of the Running-based Anaerobic Sprint Test (RAST was investigated to evaluate the anaerobic power performance in comparison to Wingate test in cycling athletes. Ten mountain-bike male cyclists (28.0±7.3 years randomly performed Wingate Test and RAST with two trials each. After several anthropometric measurements, peak power (PP, mean power (MP and fatigue index (FI for RAST and Wingate Test were analyzed using Student's paired t-test, Pearson's linear correlation test (r and Bland and Altman's plots. Results showed that, with the exception of FI (33.8±4.6% vs. 37.8±7.9%; r=0.172, significant differences were detected between the Wingate and RAST tests with regard to PP and MP. Although there was a strong correlation for PP and MP, or rather, 0.831 and 0.714 respectively, agreement of analysis between Wingate and RAST protocols was low. The above suggested that RAST was not appropriate to evaluate the performance of anaerobic power by Wingate test in cycling athletes.

  5. Analysis of Combined Cycle Power Plants with Chemical Looping Reforming of Natural Gas and Pre-Combustion CO2 Capture

    Directory of Open Access Journals (Sweden)

    Shareq Mohd Nazir

    2018-01-01

    Full Text Available In this paper, a gas-fired combined cycle power plant subjected to a pre-combustion CO2 capture method has been analysed under different design conditions and different heat integration options. The power plant configuration includes the chemical looping reforming (CLR of natural gas (NG, water gas shift (WGS process, CO2 capture and compression, and a hydrogen fuelled combined cycle to produce power. The process is denoted as a CLR-CC process. One of the main parameters that affects the performance of the process is the pressure for the CLR. The process is analysed at different design pressures for the CLR, i.e., 5, 10, 15, 18, 25 and 30 bar. It is observed that the net electrical efficiency increases with an increase in the design pressure in the CLR. Secondly, the type of steam generated from the cooling of process streams also effects the net electrical efficiency of the process. Out of the five different cases including the base case presented in this study, it is observed that the net electrical efficiency of CLR-CCs can be improved to 46.5% (lower heating value of NG basis by producing high-pressure steam through heat recovery from the pre-combustion process streams and sending it to the Heat Recovery Steam Generator in the power plant.

  6. Determining Reliability Parameters for a Closed-Cycle Small Combined Heat and Power Plant

    Directory of Open Access Journals (Sweden)

    Vysokomorny Vladimir S.

    2016-01-01

    Full Text Available The paper provides numerical values of the reliability parameters for independent power sources within the ambient temperature and output power range corresponding to the operation under the climatic conditions of Eastern Siberia and the Far East of the Russian Federation. We have determined the optimal values of the parameters necessary for the reliable operation of small CHP plants (combined heat and power plants providing electricity for isolated facilities.

  7. Determining Reliability Parameters for a Closed-Cycle Small Combined Heat and Power Plant

    Science.gov (United States)

    Vysokomorny, Vladimir S.; Vysokomornaya, Olga V.; Piskunov, Maxim V.

    2016-02-01

    The paper provides numerical values of the reliability parameters for independent power sources within the ambient temperature and output power range corresponding to the operation under the climatic conditions of Eastern Siberia and the Far East of the Russian Federation. We have determined the optimal values of the parameters necessary for the reliable operation of small CHP plants (combined heat and power plants) providing electricity for isolated facilities.

  8. Report on emergency electrical power supply systems for nuclear fuel cycle and reactor facilities security systems

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The report includes information that will be useful to those responsible for the planning, design and implementation of emergency electric power systems for physical security and special nuclear materials accountability systems. Basic considerations for establishing the system requirements for emergency electric power for security and accountability operations are presented. Methods of supplying emergency power that are available at present and methods predicted to be available in the future are discussed. The characteristics of capacity, cost, safety, reliability and environmental and physical facility considerations of emergency electric power techniques are presented. The report includes basic considerations for the development of a system concept and the preparation of a detailed system design.

  9. Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields

    Directory of Open Access Journals (Sweden)

    Yodha Y. Nusiaputra

    2014-07-01

    Full Text Available The costs of the surface infrastructure in mid-enthalpy geothermal power systems, especially in remote areas, could be reduced by using small, modular Organic Rankine Cycle (ORC power plants. Thermal-economic criteria have been devised to standardize ORC plant dimensions for such applications. We designed a modular ORC to utilize various wellhead temperatures (120–170 °C, mass flow rates and ambient temperatures (−10–40 °C. A control strategy was developed using steady-state optimization, in order to maximize net power production at off-design conditions. Optimum component sizes were determined using specific investment cost (SIC minimization and mean cashflow (MCF maximization for three different climate scenarios. Minimizing SIC did not yield significant benefits, but MCF proved to be a much better optimization function.

  10. New isolated gate bipolar transistor two-quadrant chopper power supply for a fast field cycling nuclear magnetic resonance spectrometer

    Science.gov (United States)

    Sousa, D. M.; Marques, G. D.; Sebastião, P. J.; Ribeiro, A. C.

    2003-10-01

    This work, presents, for the first time, an Isolated Gate Bipolar Transistor (IGBT) two-quadrant chopper power supply for a fast field cycling (FFC) nuclear magnetic resonance spectrometer. This power supply was designed to achieve a maximum current of 200 A with good efficiency, low semiconductor losses, low cost, and easy maintenance. Both energy storage circuits and dumping circuits are used to obtain switching times less than 2 ms between field levels in agreement with the FFC technique specifications. The current ripple at high currents is better than 1×10-4 and presents a specific shape which can be used for additional compensation using auxiliary circuits. The implemented power supply was tested and been continuously operating with a home-built FFC solenoidal magnet, associated cooling system, and rf units for fields between 0 and 0.2 T.

  11. Relation between Peak Power Output in Sprint Cycling and Maximum Voluntary Isometric Torque Production.

    Science.gov (United States)

    Kordi, Mehdi; Goodall, Stuart; Barratt, Paul; Rowley, Nicola; Leeder, Jonathan; Howatson, Glyn

    2017-08-01

    From a cycling paradigm, little has been done to understand the relationships between maximal isometric strength of different single joint lower body muscle groups and their relation with, and ability to predict PPO and how they compare to an isometric cycling specific task. The aim of this study was to establish relationships between maximal voluntary torque production from isometric single-joint and cycling specific tasks and assess their ability to predict PPO. Twenty male trained cyclists participated in this study. Peak torque was measured by performing maximum voluntary contractions (MVC) of knee extensors, knee flexors, dorsi flexors and hip extensors whilst instrumented cranks measured isometric peak torque from MVC when participants were in their cycling specific position (ISOCYC). A stepwise regression showed that peak torque of the knee extensors was the only significant predictor of PPO when using SJD and accounted for 47% of the variance. However, when compared to ISOCYC, the only significant predictor of PPO was ISOCYC, which accounted for 77% of the variance. This suggests that peak torque of the knee extensors was the best single-joint predictor of PPO in sprint cycling. Furthermore, a stronger prediction can be made from a task specific isometric task. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. ``Turbo-KWK `99``. Combined-cycle power stations with gas turbines. Technical meeting; Turbo-KWK `99. Kraft-Waerme-Kopplung mit Gasturbinen. Fachtagung

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    This conference report comprises 18 contributions on the technological success of gas turbines in power generation, e.g.: Maximum power generation efficiency of combined cycle systems, flexibility of power generation, reduction of air pollution, hot gas production for drying processes and environment-friendly cold generation in the pharmaceutical and printing industries. The final contribution presents an outlook to the future.

  13. Knowledge is power: Issues of measuring training and performance in cycling.

    Science.gov (United States)

    Passfield, L; Hopker, J G; Jobson, S; Friel, D; Zabala, M

    2017-07-01

    Mobile power meters provide a valid means of measuring cyclists' power output in the field. These field measurements can be performed with very good accuracy and reliability making the power meter a useful tool for monitoring and evaluating training and race demands. This review presents power meter data from a Grand Tour cyclist's training and racing and explores the inherent complications created by its stochastic nature. Simple summary methods cannot reflect a session's variable distribution of power output or indicate its likely metabolic stress. Binning power output data, into training zones for example, provides information on the detail but not the length of efforts within a session. An alternative approach is to track changes in cyclists' modelled training and racing performances. Both critical power and record power profiles have been used for monitoring training-induced changes in this manner. Due to the inadequacy of current methods, the review highlights the need for new methods to be established which quantify the effects of training loads and models their implications for performance.

  14. To Estimation of Efficient Usage of Organic Fuel in the Cycle of Steam Power Installations

    Directory of Open Access Journals (Sweden)

    A. Nesenchuk

    2013-01-01

    Full Text Available Tendencies of power engineering development in the world were shown in this article. There were carried out the thermodynamic Analysis of efficient usage of different types of fuel. This article shows the obtained result, which reflects that low-calorie fuel (from the point of thermodynamics is more efficient to use at steam power stations then high-energy fuel.

  15. Online Junction Temperature Cycle Recording of an IGBT Power Module in a Hybrid Car

    National Research Council Canada - National Science Library

    Denk, Marco; Bakran, Mark-M

    2015-01-01

    ... of the reliability and the lifetime of voltage source inverters used in hybrid-electric powertrains the IGBT power module can be considered as the most lifetime critical component. This is especially true if power modules with conventional linking and packaging technology are used. Those modules are characterized by a bond-wire connection, a direct copper bonded ...

  16. Thermodynamic simulation of CO{sub 2} capture for an IGCC power plant using the calcium looping cycle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. [National Engineering Laboratory for Coal-Burning Pollutant Emission Reduction, Shandong University, Jinan (China); Zhao, C.; Ren, Q. [School of Energy and Environment, Southeast University, Nanjing (China)

    2011-06-15

    A CO{sub 2} capture process for an integrated gasification combined cycle (IGCC) power plant using the calcium looping cycle was proposed. The CO{sub 2} capture process using natural and modified limestone was simulated and investigated with the software package Aspen Plus. It incorporated a fresh feed of sorbent to compensate for the decay in CO{sub 2} capture activity during long-term cycles. The sorbent flow ratios have significant effect on the CO{sub 2} capture efficiency and net efficiency of the CO{sub 2} capture system. The IGCC power plant, using the modified limestone, exhibits higher CO{sub 2} capture efficiency than that using the natural limestone at the same sorbent flow ratios. The system net efficiency using the natural and modified limestones achieves 41.7% and 43.1%, respectively, at the CO{sub 2} capture efficiency of 90% without the effect of sulfation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task I

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal-fired, closed-cycle MHD power generation are reported. This volume contains the following appendices: (A) user's manual for 2-dimensional MHD generator code (2DEM); (B) performance estimates for a nominal 30 MW argon segmented heater; (C) the feedwater cooled Brayton cycle; (D) application of CCMHD in an industrial cogeneration environment; (E) preliminary design for shell and tube primary heat exchanger; and (F) plant efficiency as a function of output power for open and closed cycle MHD power plants. (WHK)

  18. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.

    Science.gov (United States)

    Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan

    2014-08-05

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.

  19. A stochastic process model for life cycle cost analysis of nuclear power plant systems

    NARCIS (Netherlands)

    Van der Weide, J.A.M.; Pandey, M.D.

    2013-01-01

    The paper presents a general stochastic model to analyze the life cycle cost of an engineering system that is affected by minor but repairable failures interrupting the operation and a major failure that would require the replacement or renewal of the failed system. It is commonly observed that the

  20. Design of organic Rankine cycle power systems accounting for expander performance

    DEFF Research Database (Denmark)

    La Seta, Angelo; Andreasen, Jesper Graa; Pierobon, Leonardo

    2015-01-01

    -loaded stages in supersonic flow regimes. This paper proposes a design method where the conventional cycle analysis is combined with calculations of the maximum expander performance using a validated mean-line design tool. The high computational cost of the turbine optimization is tackled building a model which...

  1. A Preliminary Study on Designing and Testing of an Absorption Refrigeration Cycle Powered by Exhaust Gas of Combustion Engine

    Science.gov (United States)

    Napitupulu, F. H.; Daulay, F. A.; Dedy, P. M.; Denis; Jecson

    2017-03-01

    In order to recover the waste heat from the exhaust gas of a combustion engine, an adsorption refrigeration cycle is proposed. This is a preliminary study on design and testing of a prototype of absorption refrigeration cycle powered by an internal combustion engine. The heat source of the cycle is a compression ignition engine which generates 122.36 W of heat in generator of the cycle. The pairs of absorbent and refrigerant are water and ammonia. Here the generator is made of a shell and tube heat exchanger with number of tube and its length are 20 and 0.69 m, respectively. In the experiments the exhaust gas, with a mass flow rate of 0.00016 kg/s, enters the generator at 110°C and leaves it at 72°C. Here, the solution is heated from 30°C to 90°C. In the evaporator, the lowest temperature can be reached is 17.9°C and COP of the system is 0.45. The main conclusion can be drawn here is that the proposed system can be used to recycle the waste heat and produced cooling. However, the COP is still low.

  2. Thermodynamic analysis of a novel compact power generation and waste heat operated absorption, ejector-jet pump refrigeration cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Anil; Kumar, Raj [YMCA University of Science and Technology, Faridabad (India)

    2014-09-15

    An R-152a ejector-jet pump refrigeration cycle and a LiBr-H{sub 2}O absorption refrigeration cycle have been integrated with a renewable energy power generator for making a proposed 'novel compact cogeneration cycle'. The exergy analysis of this proposed cycle leads to a possible performance improvement. Nearly 71.12% of the input exergy is destructed due to irreversibilities in the different components. The useful exergy output is around 7.12%. The exhaust exergy lost to the environment is 21.76%, which is lower than the exhaust energy lost 37.6% of the input energy, while the useful energy output is approximately 19.3%. The refrigerants used and the exhaust gas emissions samples are found to be favourable for reducing the global environmental related problems. The results also show that the coupling of the entrainment ratios of the ejector and jet pump has great effect on the exergy and energy efficiency.

  3. The Effect of Cadence on Shank Muscle Oxygen Consumption and Deoxygenation in Relation to Joint Specific Power and Cycling Kinematics.

    Science.gov (United States)

    Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille

    2017-01-01

    The purpose of the present study was to investigate the effect of cadence on joint specific power and cycling kinematics in the ankle joint in addition to muscle oxygenation and muscle VO2 in the gastrocnemius and tibialis anterior. Thirteen cyclists cycled at a cadence of 60, 70, 80, 90, 100 and 110 rpm at a constant external work rate of 160.1 ± 21.3 W. Increasing cadence led to a decrease in ankle power in the dorsal flexion phase and to an increase in ankle joint angular velocity above 80 rpm. In addition, increasing cadence increased deoxygenation and desaturation for both the gastrocnemius and tibialis anterior muscles. Muscle VO2 increased following increased cadence but only in the tibialis anterior and only at cadences above 80 rpm, thus coinciding with the increase in ankle joint angular velocity. There was no effect of cadence in the gastrocnemius. This study demonstrates that high cadences lead to increased mVO2 in the TA muscles that cannot be explained by power in the dorsal flexion phase.

  4. Solar powered absorption cycle heat pump using phase change materials for energy storage

    Science.gov (United States)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  5. Measuring changes in aerodynamic/rolling resistances by cycle-mounted power meters.

    Science.gov (United States)

    Lim, Allen C; Homestead, Eric P; Edwards, Andrew G; Carver, Todd C; Kram, Rodger; Byrnes, William C

    2011-05-01

    To develop a protocol for isolating changes in aerodynamic and rolling resistances from field-based measures of power and velocity during level bicycling. We assessed the effect of body position (hands on brake hoods vs drops) and tire pressure changes (414 vs 828 kPa) on aerodynamic and rolling resistances by measuring the power (Pext)-versus-speed (V) relationship using commercially available bicycle-mounted power meters. Measurements were obtained using standard road bicycles in calm wind (Aerodynamic resistance per velocity squared (k) was calculated as the slope of a linear plot of tractive resistance (RT=power/velocity) versus velocity squared. Rolling resistance (Rr) was calculated as the intercept of this relationship. Aerodynamic resistance per velocity squared (k) was significantly greater (Paerodynamic and rolling resistances associated with modest changes in body position and substantial changes in tire pressure. © 2011 by the American College of Sports Medicine

  6. Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle

    OpenAIRE

    Wojcik, Jacek D.; Wang, Jihong

    2017-01-01

    The current load balance in the grid is managed mainly through peaking fossil-fuelled power plants that respond passively to the load changes. Intermittency, which comes from renewable energy sources, imposes additional requirements for even more flexible and faster responses from conventional power plants. A major challenge is to keep conventional generation running closest to the design condition with higher load factors and to avoid switching off periods if possible. Thermal energy storage...

  7. Life Cycle Analysis and Thermo-Environomic Optimization of Concentrated Solar Thermal Power Plants

    OpenAIRE

    Kuenlin, Aurélie

    2011-01-01

    Confronted to resources depletion and the global warming, the humanity has to reduce its fossil fuels dependence. The renewable energy is an interesting option to reach this aim. The most powerful one is the solar energy since in few hours, the Earth receives more energy than the humanity consumes in one year. In order to convert this energy to electricity, the concentrated solar power plants (CSP) are more advantageous than photovoltaics (PV) because of the possibility to store the energy. I...

  8. Multifunctional backup electricity supply for NPP auxiliary needs based on combined-cycle power plant with hydrogen overheating

    Directory of Open Access Journals (Sweden)

    V.E. Yurin

    2016-12-01

    The proposed system allows ensuring supply of electricity for covering auxiliary needs of the NPP during more than 72h. Use of the steam turbine plant included in the composition of the combined cycle gas turbine unit is possible for covering auxiliary needs of the NPP in case of failure of gas turbine plants. Steam turbine can be operated due to the generation of additional steam during incineration of hydrogen in oxygen. With appropriate modernization the system allows using decay heat released in the nuclear reactor core. It was established that the proposed option of combining NPP with combined cycle gas turbine unit in combination with hydrogen generating complex allows enhancing reliability of supply of electricity for covering auxiliary needs of the NPP in emergency conditions accompanied with loss of electric power supply.

  9. Stand-alone flat-plate photovoltaic power systems: System sizing and life-cycle costing methodology for Federal agencies

    Science.gov (United States)

    Borden, C. S.; Volkmer, K.; Cochrane, E. H.; Lawson, A. C.

    1984-01-01

    A simple methodology to estimate photovoltaic system size and life-cycle costs in stand-alone applications is presented. It is designed to assist engineers at Government agencies in determining the feasibility of using small stand-alone photovoltaic systems to supply ac or dc power to the load. Photovoltaic system design considerations are presented as well as the equations for sizing the flat-plate array and the battery storage to meet the required load. Cost effectiveness of a candidate photovoltaic system is based on comparison with the life-cycle cost of alternative systems. Examples of alternative systems addressed are batteries, diesel generators, the utility grid, and other renewable energy systems.

  10. Comparison of the technical and economic parameters of different variants of the nuclear fuel cycle reactors of the nuclear power plants

    Science.gov (United States)

    Adamov, E. O.; Rachkov, V. I.; Tolstoukhov, D. A.; Panov, S. A.

    2016-12-01

    The article presents the comparative economic analysis of the variants of implementation of the fuel cycles for fast and thermal reactors. Calculations are carried out for the formed reference conditions by the cost of processing stages of the fuel cycles for the foreign and expert Russian information sources. The comparative data on the resource supply, absolute and specific costs of the fuel cycle variants for the whole life cycle of the thermal power plant projects with the fast and thermal reactors are considered. The conclusions of the efficiency of the fuel cycle variants for the assumed reference conditions of the calculation are made.

  11. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing.

  12. Effects of ethnicity on the relationship between vertical jump and maximal power on a cycle ergometer

    Directory of Open Access Journals (Sweden)

    Rouis Majdi

    2016-06-01

    Full Text Available The aim of this study was to verify the impact of ethnicity on the maximal power-vertical jump relationship. Thirty-one healthy males, sixteen Caucasian (age: 26.3 ± 3.5 years; body height: 179.1 ± 5.5 cm; body mass: 78.1 ± 9.8 kg and fifteen Afro-Caribbean (age: 24.4 ±2.6 years; body height: 178.9 ± 5.5 cm; body mass: 77.1 ± 10.3 kg completed three sessions during which vertical jump height and maximal power of lower limbs were measured. The results showed that the values of vertical jump height and maximal power were higher for Afro-Caribbean participants (62.92 ± 6.7 cm and 14.70 ± 1.75 W∙kg-1 than for Caucasian ones (52.92 ± 4.4 cm and 12.75 ± 1.36 W∙kg-1. Moreover, very high reliability indices were obtained on vertical jump (e.g. 0.95 < ICC < 0.98 and maximal power performance (e.g. 0.75 < ICC < 0.97. However, multiple linear regression analysis showed that, for a given value of maximal power, the Afro-Caribbean participants jumped 8 cm higher than the Caucasians. Together, these results confirmed that ethnicity impacted the maximal power-vertical jump relationship over three sessions. In the current context of cultural diversity, the use of vertical jump performance as a predictor of muscular power should be considered with caution when dealing with populations of different ethnic origins.

  13. Preliminary design of a solar heat receiver for a Brayton cycle space power system

    Science.gov (United States)

    Cameron, H. M.; Mueller, L. A.; Namkoong, D.

    1972-01-01

    The preliminary design of a solar heat receiver for use as a heat source for an earth-orbiting 11-kWe Brayton-cycle engine is described. The result was a cavity heat receiver having the shape of a frustum of a cone. The wall of the cone is formed by 48 heat-transfer tubes, each tube containing pockets of lithium fluoride for storing heat for as much as 38 minutes of fullpower operation in the shade. Doors are provided in order to dump excess heat especially during operation in orbits with full sun exposure. The receiver material is predominantly columbium - 1-percent-zironium (Cb-1Zr) alloy. Full-scale testing of three heat-transfer tubes for more than 2000 hours and 1250 sun-shade cycles verified the design concept.

  14. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  15. Comparison between jumping vs. cycling tests of short-term power in elite male handball players: the effect of age

    OpenAIRE

    Nikolaidis, Pantelis Theodoros; Torres-Luque, Gema; Chtourou, Hamdi; Clemente Suárez, Vicente Javier; Ramírez-Vélez, Robinson; Heller, Jan

    2016-01-01

    Purpose: The aim of the present study was to examine the effect of age on the relationship between jumping and cycling tests of short-term power in team handball (TH) players. Methods: A cross-sectional study was conducted, in which adolescent and adult TH players (n = 96, age 19.6 ± 6.9 yrs, body mass 75.8 ± 14.1 kg, height 1.78 ± 0.10, mean ± standard deviation) performed four jumping tests (i.e., squat jump, countermovement jump, Abalakov jump and a 30-s Bosco test), and two...

  16. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  17. Closed cycle MHD power generation experiments in the NASA Lewis facility

    Science.gov (United States)

    Sovie, R. J.; Nichols, L. D.

    1974-01-01

    Discussion of the performance improvements achieved through some modifications made in the closed cycle MHD facility. These modifications include a redesign of the MHD duct interior, addition of mixing bars, increased electrical isolation, and experimentation with various cesium seed vaporization and injection techniques. Uniform Faraday and Hall voltage profiles were obtained, and the Faraday open circuit voltage varied from 90 to 100% of the ideal uBh.

  18. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation

    Science.gov (United States)

    Heath, Garvin A.; O’Donoughue, Patrick; Arent, Douglas J.; Bazilian, Morgan

    2014-01-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378

  19. Life Cycle Assessment of Producing Electricity in Thailand: A Case Study of Natural Gas Power Plant

    Directory of Open Access Journals (Sweden)

    Usapein Parnuwat

    2017-01-01

    Full Text Available Environmental impacts from natural gas power plant in Thailand was investigated in this study. The objective was to identify the hotspot of environmental impact from electricity production and the allocation of emissions from power plant was studied. All stressors to environment were collected for annual natural gas power plant operation. The allocation of environmental load between electricity and steam was done by WRI/WBCSD method. Based on the annual power plant operation, the highest of environmental impact was fuel combustion, followed by natural gas extraction, and chemical reagent. After allocation, the result found that 1 kWh of electricity generated 0.425 kgCO2eq and 1 ton of steam generated 225 kgCO2eq. When compared based on 1GJ of energy product, the result showed that the environmental impact of electricity is higher than steam product. To improve the environmental performance, it should be focused on the fuel combustion, for example, increasing the efficiency of gas turbine, and using low sulphur content of natural gas. This result can be used as guideline for stakeholder who engage with the environmental impact from power plant; furthermore, it can be useful for policy maker to understand the allocation method between electricity and steam products.

  20. Effects of ethnicity on the relationship between vertical jump and maximal power on a cycle ergometer.

    Science.gov (United States)

    Rouis, Majdi; Coudrat, Laure; Jaafar, Hamdi; Attiogbé, Elvis; Vandewalle, Henry; Driss, Tarak

    2016-06-01

    The aim of this study was to verify the impact of ethnicity on the maximal power-vertical jump relationship. Thirty-one healthy males, sixteen Caucasian (age: 26.3 ± 3.5 years; body height: 179.1 ± 5.5 cm; body mass: 78.1 ± 9.8 kg) and fifteen Afro-Caribbean (age: 24.4 ±2.6 years; body height: 178.9 ± 5.5 cm; body mass: 77.1 ± 10.3 kg) completed three sessions during which vertical jump height and maximal power of lower limbs were measured. The results showed that the values of vertical jump height and maximal power were higher for Afro-Caribbean participants (62.92 ± 6.7 cm and 14.70 ± 1.75 W∙kg-1) than for Caucasian ones (52.92 ± 4.4 cm and 12.75 ± 1.36 W∙kg-1). Moreover, very high reliability indices were obtained on vertical jump (e.g. 0.95 jumped 8 cm higher than the Caucasians. Together, these results confirmed that ethnicity impacted the maximal power-vertical jump relationship over three sessions. In the current context of cultural diversity, the use of vertical jump performance as a predictor of muscular power should be considered with caution when dealing with populations of different ethnic origins.

  1. Nutrition for power sports: middle-distance running, track cycling, rowing, canoeing/kayaking, and swimming.

    Science.gov (United States)

    Stellingwerff, Trent; Maughan, Ronald J; Burke, Louise M

    2011-01-01

    Contemporary training for power sports involves diverse routines that place a wide array of physiological demands on the athlete. This requires a multi-faceted nutritional strategy to support both general training needs--tailored to specific training phases--as well as the acute demands of competition. Elite power sport athletes have high training intensities and volumes for most of the training season, so energy intake must be sufficient to support recovery and adaptation. Low pre-exercise muscle glycogen reduces high-intensity performance, so daily carbohydrate intake must be emphasized throughout training and competition phases. There is strong evidence to suggest that the timing, type, and amount of protein intake influence post-exercise recovery and adaptation. Most power sports feature demanding competition schedules, which require aggressive nutritional recovery strategies to optimize muscle glycogen resynthesis. Various power sports have different optimum body compositions and body weight requirements, but increasing the power-to-weight ratio during the championship season can lead to significant performance benefits for most athletes. Both intra- and extracellular buffering agents may enhance performance, but more research is needed to examine the potential long-term impact of buffering agents on training adaptation. Interactions between training, desired physiological adaptations, competition, and nutrition require an individual approach and should be continuously adjusted and adapted.

  2. Results of closed cycle MHD power generation tests with a helium-cesium working fluid

    Science.gov (United States)

    Sovie, R. J.

    1977-01-01

    The cross-sectional dimensions of the MHD channel in the NASA Lewis closed loop facility have been reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 1.6 x 10 to the 5th N/sq m, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/m. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/m were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/cu m have been obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those reported for the m = 0.2 channel at the last EAM Symposium.

  3. Results of closed cycle MHD power generation test with a helium-cesium working fluid

    Science.gov (United States)

    Sovie, R. J.

    1977-01-01

    The cross sectional dimensions of the MHD channel in the NASA Lewis closed loop facility were reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 160,000 n/M2, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/M. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/M were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/M3 were obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those previously reported for the M = 0.2 channel.

  4. The use of air-bottoming cycle as a heat source for the carbon dioxide capture installation of a coal-fired power unit

    National Research Council Canada - National Science Library

    Chmielniak, Tadeusz; Lepszy, Sebastian; Czaja, Daniel

    2011-01-01

    .... Gas-air systems, referred to as the air bottoming cycle (ABC), are composed of a gas turbine powered by natural gas, air compressor and air turbine coupled to the system by means of a heat exchanger...

  5. Advanced Turbomachinery Components for Supercritical CO2 Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Michael [Gas Technology Inst., Woodland Hills, CA (United States)

    2016-03-31

    Six indirectly heated supercritical CO2 (SCO2 ) Brayton cycles with turbine inlet conditions of 1300°F and 4000 psia with varying plant capacities from 10MWe to 550MWe were analyzed. 550 MWe plant capacity directly heated SCO2 Brayton cycles with turbine inlet conditions of 2500°F and 4000 psia were also analyzed. Turbomachinery configurations and conceptual designs for both indirectly and directly heated cycles were developed. Optimum turbomachinery and generator configurations were selected and the resulting analysis provides validation that the turbomachinery conceptual designs meet efficiency performance targets. Previously identified technology gaps were updated based on these conceptual designs. Material compatibility testing was conducted for materials typically used in turbomachinery housings, turbine disks and blades. Testing was completed for samples in unstressed and stressed conditions. All samples exposed to SCO2 showed some oxidation, the extent of which varied considerably between the alloys tested. Examination of cross sections of the stressed samples found no evidence of cracking due to SCO2 exposure.

  6. Development of hydrothermal power generation plant. Development of binary cycle power generation plant (development of 10 MW-class plant); 1995 nendo nessui riyo hatsuden plant nado kaihatsu binary cycle hatsuden plant no kaihatsu. 10MW kyu plant no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    A 10 MW-class binary cycle power generation plant has been developed using a down hole pump (DHP) which exchanges the hydrothermal energy with secondary medium in the heat exchanger. For constructing the plant at Kuju-machi, Oita Prefecture, site preparation works, foundation of cooling tower, reconstruction of roads, and survey on environmental influences were conducted. To investigate installation and removal methods of DHP, a geothermal water pump-up system, current status of the binary cycle power generating system in the USA was surveyed. In this survey, a trailer mounting handling machine was inspected. Based on the survey results, a simple assembled, easy-installation type handling equipment was designed. In addition, the replacement work for motor connector joint of DHP and the strength of coil end were improved. Construction and method allowing reuse of the motor cable were considered by improving the cable and cable end portion. The air tight soundness of incoloy corrugate sheath was confirmed. Finally, a reproduction system for waste oil of DHP bearing oil was investigated. 106 figs., 52 tabs.

  7. One-dimensional modelling of limit-cycle oscillation and H-mode power scaling

    DEFF Research Database (Denmark)

    Wu, Xingquan; Xu, Guosheng; Wan, Baonian

    2015-01-01

    To understand the connection between the dynamics of microscopic turbulence and the macroscale power scaling in the L-I-H transition in magnetically confined plasmas, a new time-dependent, one-dimensional (in radius) model has been developed. The model investigates the radial force balance equation...... at the edge region of the plasma and applies the quenching effect of turbulence via the E x B flow shear rate exceeding the shear suppression threshold. By slightly ramping up the heating power, the spatio-temporal evolution of turbulence intensity, density and pressure profiles, poloidal flow and E x B flow...... and the turbulence intensity depending on which oscillation of the diamagnetic flow or poloidal flow is dominant. Specifically, by including the effects of boundary conditions of density and temperature, the model results in a linear dependence of the H-mode access power on the density and magnetic field...

  8. Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Pei, Yingying

    2016-01-01

    and regional power grids. Marginal electricity generation technology is pivotal in assessing impacts related to additional consumption of electricity. China covers a large geographical area with regional supply grids; these are arguably equally or less integrated. Meanwhile, it is also a country with internal...... imbalances in regional energy supply and demand. Therefore, we suggest an approach to achieve a geographical subdivision of the Chinese electricity grid, corresponding to the interprovincial regional power grids, namely the North, the Northeast, the East, the Central, the Northwest, and the Southwest China...... Grids, and the China Southern Power Grid. The approach combines information from the Chinese national plans on for capacity changes in both production and distribution grids, and knowledge of resource availability. The results show that nationally, marginal technology is coal-fired electricity...

  9. Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    Science.gov (United States)

    Juhasz, Albert J.; El-Genk, Mohamed S.; Harper, William B., Jr.

    1992-01-01

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  10. Research report for fiscal 1998. Basic research for promoting joint implementation, etc. (conversion of old coal-fired thermoelectric power plants in Poland into combined cycle plants); 1998 nendo chosa hokokusho. Poland sekitan karyoku hatsudensho (kyushiki) combined cycle eno tenkan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A project is discussed for modernization for energy efficiency enhancement and greenhouse gas reduction. The most effective way to reduce greenhouse gas in Poland is to totally replace the existing coal-fired power plants with natural gas combined cycle plants. Under this project, however, natural gas-fired power generation and integrated coal/brown coal gasification combined cycle power generation are both subjected to study. This is because the power plant modernization project is closely related to the fate of coal/brown coal industries which constitute the important industrial department of Poland. As for the earning rate of the project in case of natural gas-fired combined cycle power generation, the rate will be 13.2% even at the Kaweczyn station which is the highest in earning rate, and this fails to satisfy the project conditions. If integrated coal/brown gasification combined cycle power generation is chosen, the rate will be still lower. When the cost for greenhouse gas reduction is taken up, the Konin station exhibits the lowest of 9 dollars/tCO2, and the others 15-17 dollars/tCO2. When coal gas combined cycle is employed, the cost will be 3-4 times higher. (NEDO)

  11. Motor starting a Brayton cycle power conversion system using a static inverter

    Science.gov (United States)

    Curreri, J. S.; Edkin, R. A.; Kruchowy, R.

    1973-01-01

    The power conversion module of a 2- to 15-kWe Brayton engine was motor started using a three-phase, 400-hertz static inverter as the power source. Motor-static tests were conducted for initial gas loop pressures of 10, 14, and 17 N/sq cm (15, 20, and 25 psia) over a range of initial turbine inlet temperatures from 366 to 550 K (200 to 530 F). The data are presented to show the effects of temperature and pressure on the motor-start characteristics of the rotating unit. Electrical characteristics during motoring are also discussed.

  12. Introducing life cycle thinking in product development – A case from Siemens Wind Power

    DEFF Research Database (Denmark)

    Bonou, Alexandra; Olsen, Stig Irving; Hauschild, Michael Zwicky

    2015-01-01

    How can use of LCA improve the environmental sustainability of wind industry products? An analysis of a case study from Siemens Wind Power identifies the knowledge offered by LCA that is relevant to each step of the product development process (PDP). The study illustrates the difference that this......How can use of LCA improve the environmental sustainability of wind industry products? An analysis of a case study from Siemens Wind Power identifies the knowledge offered by LCA that is relevant to each step of the product development process (PDP). The study illustrates the difference...

  13. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    Science.gov (United States)

    Norwood, Zack; Kammen, Daniel

    2012-12-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of 0.25 kWh-1 electricity and 0.03 kWh-1 thermal, for a system with a life cycle global warming potential of ˜80 gCO2eq kWh-1 of electricity and ˜10 gCO2eq kWh-1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of 1.40 m-3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that 0.40-1.90 m-3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

  14. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics

    Science.gov (United States)

    Wu, Feilong; He, Jizhou; Ma, Yongli; Wang, Jianhui

    2014-12-01

    We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures Th and Tc (Otto engine working in the linear-response regime.

  15. Human power output during repeated sprint cycle exercise: the influence of thermal stress

    NARCIS (Netherlands)

    Ball, D.; Burrows, C.; Sargeant, A.J.

    1999-01-01

    Thermal stress is known to impair endurance capacity during moderate prolonged exercise. However, there is relatively little available information concerning the effects of thermal stress on the performance of high-intensity short-duration exercise. The present experiment examined human power output

  16. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    Variation of multiplication fac- tor for elementary cell in the mode of ac- cumulation of 233U. Results of calculation of elementary cell of active core for the variant using fuel containing 10% of power plutonium are presented in figures 2 and 3. According to the data of figure 2, maximum (equilibrium) content of 233U in.

  17. Nuclear Power and Justice between Generations. A Moral Analysis of Fuel Cycles

    NARCIS (Netherlands)

    Taebi, B.

    2010-01-01

    When we produce nuclear power we are depleting a non-renewable resource (uranium) that will eventually not be available to future generations. Furthermore the ensuing nuclear waste needs to be isolated from the biosphere for long periods of time to come. This gives rise to the problem of justice to

  18. Relative importance of pacing strategy and mean power output in 1500-m self-paced cycling

    NARCIS (Netherlands)

    Hettinga, F. J.; de Koning, J. J.; Hulleman, M.; Foster, C.

    Introduction Both mean power output (MPO) and the distribution of the available energy over the race, that is, pacing strategy, are critical factors in performance. The purpose of this study was to determine the relative importance of both pacing strategy and MPO to performance. Methods Six

  19. The extension of Ubungo power plant in Dar es Salaam, Tanzania, to a combined cycle - A prestudy

    Energy Technology Data Exchange (ETDEWEB)

    Grinneland, L.; Oehrstroem, K.

    1996-05-01

    The report deals with the consequences concerning a future extension of Ubungo Power Plant. Today the power plant consists of four gas turbines, two of model General Electric LM6000 and two of model ABB Stal GT10 of which the latter were the ones focused on. In the report four different applications are presented; Simple two pressure system, Two pressure system with reheat, Two pressure system with heat exchange between feedwater and condensate, and single pressure system with an additional evaporating loop. The calculations are divided into three sections; thermodynamic calculations, calculations of the heat exchanger surface areas, and economic calculations. From the thermodynamic calculations the applications with the highest thermal efficiency was selected. The power output increased with about 55% and the thermal efficiency of the complete combined cycle is 48.2%. This is, of course, a theoretical value calculated without consideration to a number of losses that will decrease both the power output and the thermal efficiency. At part load (50% load assumed, i.e. one gas turbine is operating) the thermal efficiency is 46.7%. The economic calculations indicated that the extension is highly worthwhile in an economic point of view; both cases studied have a payback time of less than six years for full load operation, provided that the charging system which is to be imposed by the World Bank has come into force. 18 refs, 33 figs

  20. Closed cycle MHD power generation experiments using a helium-cesium working fluid in the NASA Lewis Facility

    Science.gov (United States)

    Sovie, R. J.

    1976-01-01

    The MHD channel in the NASA Lewis Research Center was redesigned and used in closed cycle power generation experiments with a helium-cesium working fluid. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. Improvements in Hall voltage isolation and seed vaporization techniques have resulted in significant improvements in performance. Typical values obtained with helium are Faraday open circuit voltage 141 V (92% of uBh) at a magnetic field strength of 1.7 T, power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes. Power densities of 0.6 MW/cu m and Hall fields of about 1100 V/m were obtained in the tests with 17 electrodes, representing a factor of 18 improvement over previously reported results. The V-I curves and current distribution data indicate that while near ideal equilibrium performance is obtained under some conditions, no nonequilibrium power has been generated to date.

  1. Theoretical-empirical model of the steam-water cycle of the power unit

    Directory of Open Access Journals (Sweden)

    Grzegorz Szapajko

    2010-06-01

    Full Text Available The diagnostics of the energy conversion systems’ operation is realised as a result of collecting, processing, evaluatingand analysing the measurement signals. The result of the analysis is the determination of the process state. It requires a usageof the thermal processes models. Construction of the analytical model with the auxiliary empirical functions built-in brings satisfyingresults. The paper presents theoretical-empirical model of the steam-water cycle. Worked out mathematical simulation model containspartial models of the turbine, the regenerative heat exchangers and the condenser. Statistical verification of the model is presented.

  2. The Influence of Serial Carbohydrate Mouth Rinsing on Power Output during a Cycle Sprint

    OpenAIRE

    Phillips, Shaun M.; Findlay, Scott; Kavaliauskas, Mykolas; Grant, Marie Clare

    2014-01-01

    The objective of the study was to investigate the influence of serial administration of a carbohydrate (CHO) mouth rinse on performance, metabolic and perceptual responses during a cycle sprint. Twelve physically active males (mean (± SD) age: 23.1 (3.0) years, height: 1.83 (0.07) m, body mass (BM): 86.3 (13.5) kg) completed the following mouth rinse trials in a randomized, counterbalanced, double-blind fashion; 1. 8 x 5 second rinses with a 25 ml CHO (6% w/v maltodextrin) solution, 2. 8 x 5 ...

  3. Sensitivity analysis of parameters affecting carbon footprint of fossil fuel power plants based on life cycle assessment scenarios

    Directory of Open Access Journals (Sweden)

    F. Dalir

    2017-12-01

    Full Text Available In this study a pseudo comprehensive carbon footprint model for fossil fuel power plants is presented. Parameters which their effects are considered in this study include: plant type, fuel type, fuel transmission type, internal consumption of the plant, degradation, site ambient condition, transmission and distribution losses. Investigating internal consumption, degradation and site ambient condition effect on carbon footprint assessment of fossil fuel power plant is the specific feature of the proposed model. To evaluate the model, a sensitivity analysis is performed under different scenarios covering all possible choices for investigated parameters. The results show that carbon footprint of fossil fuel electrical energy that is produced, transmitted and distributed, varies from 321 g CO2 eq/kWh to 980 g CO2 equivalent /kWh. Carbon footprint of combined cycle with natural gas as main fuel is the minimum carbon footprint. Other factors can also cause indicative variation. Fuel type causes a variation of 28%. Ambient condition may change the result up to 13%. Transmission makes the carbon footprint larger by 4%. Internal consumption and degradation influence the result by 2 and 2.5%, respectively. Therefore, to minimize the carbon footprint of fossil fuel electricity, it is recommended to construct natural gas ignited combined cycles in low lands where the temperature is low and relative humidity is high. And the internal consumption is as least as possible and the maintenance and overhaul is as regular as possible.

  4. Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives.

    Science.gov (United States)

    Burkhardt, John J; Heath, Garvin A; Turchi, Craig S

    2011-03-15

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, CA, along four sustainability metrics: life cycle (LC) greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrates salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically derived nitrate salt are evaluated. During its LC, the reference CSP plant is estimated to emit 26 g of CO(2eq) per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJ(eq)/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce LC water consumption by 77% but increase LC GHG emissions and CED by 8%. Synthetic nitrate salts may increase LC GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces LC GHG emissions, most significantly for plants using synthetically derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  5. Performance Expectations of Closed-Brayton-Cycle Heat Exchangers in 100-kWe Nuclear Space Power Systems

    Science.gov (United States)

    Barrett, Michael J.

    2003-01-01

    Performance expectations of closed-Brayton-cycle heat exchangers to be used in 100-kWe nuclear space power systems were forecast. Proposed cycle state points for a system supporting a mission to three of Jupiter s moons required effectiveness values for the heat-source exchanger, recuperator and rejection exchanger (gas cooler) of 0.98,0.95 and 0.97, respectively. Performance parameters such as number of thermal units (Nm), equivalent thermal conductance (UA), and entropy generation numbers (Ns) varied from 11 to 19,23 to 39 kWK, and 0.019 to 0.023 for some standard heat exchanger configurations. Pressure-loss contributions to entropy generation were significant; the largest frictional contribution was 114% of the heat-transfer irreversibility. Using conventional recuperator designs, the 0.95 effectiveness proved difficult to achieve without exceeding other performance targets; a metallic, plate-fin counterflow solution called for 15% more mass and 33% higher pressure-loss than the target values. Two types of gas-coolers showed promise. Single-pass counterflow and multipass cross-counterflow arrangements both met the 0.97 effectiveness requirement. Potential reliability-related advantages of the cross-countefflow design were noted. Cycle modifications, enhanced heat transfer techniques and incorporation of advanced materials were suggested options to reduce system development risk. Carbon-carbon sheeting or foam proved an attractive option to improve overall performance.

  6. Organic Rankine-cycle power systems working fluids study: Topical report No. 1: Fluorinol 85. [85 mole % trofluoroethanol in water

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.L.; Demirgian, J.C.; Cole, R.L.

    1986-09-01

    An investigation to experimentally determine the thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures was initiated in 1982. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h, covering a temperature range of 525-600/sup 0/F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period of time, up to a maximum cycle temperature of 550/sup 0/F. However, 506-h data at 575/sup 0/F show initiation of significant degradation. The 770-h data at 600/sup 0/F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Devices to remove the hydrofluoric acid and prevent extreme temperature excursions are necessary for any ORC system using Fluorinol 85 as a working fluid.

  7. NOx, Soot, and Fuel Consumption Predictions under Transient Operating Cycle for Common Rail High Power Density Diesel Engines

    Directory of Open Access Journals (Sweden)

    N. H. Walke

    2016-01-01

    Full Text Available Diesel engine is presently facing the challenge of controlling NOx and soot emissions on transient cycles, to meet stricter emission norms and to control emissions during field operations. Development of a simulation tool for NOx and soot emissions prediction on transient operating cycles has become the most important objective, which can significantly reduce the experimentation time and cost required for tuning these emissions. Hence, in this work, a 0D comprehensive predictive model has been formulated with selection and coupling of appropriate combustion and emissions models to engine cycle models. Selected combustion and emissions models are further modified to improve their prediction accuracy in the full operating zone. Responses of the combustion and emissions models have been validated for load and “start of injection” changes. Model predicted transient fuel consumption, air handling system parameters, and NOx and soot emissions are in good agreement with measured data on a turbocharged high power density common rail engine for the “nonroad transient cycle” (NRTC. It can be concluded that 0D models can be used for prediction of transient emissions on modern engines. How the formulated approach can also be extended to transient emissions prediction for other applications and fuels is also discussed.

  8. Effects of isokinetic training of the knee extensors on isometric strength and peak power output during cycling.

    Science.gov (United States)

    Mannion, A F; Jakeman, P M; Willan, P L

    1992-01-01

    Isokinetic training of right and left quadriceps femoris was undertaken three times per week for 16 weeks. One group of subjects (n = 13) trained at an angular velocity of 4.19 rad.s-1 and a second group (n = 10) at 1.05 rad.s-1. A control group (n = 10) performed no training. Maximal voluntary contraction (MVC) of the quadriceps, and peak pedal velocity nu p,peak) and peak power output (Wpeak) during all-out cycling (against loads equivalent to 9, 10, 11, 12, 13 and 14% MVC) were assessed before and after training. The two training groups did not differ significantly from each other in their training response to any of the performance variables (P > 0.05). No significant difference in MVC was observed for any group after the 16-week period (P = 0.167). The post-training increases in average Wpeak (7%) and nu p,peak (6%) during the cycle tests were each significantly different from the control group response (P = 0.018 and P = 0.008, respectively). It is concluded that 16 weeks of isokinetic strength training of the knee extensors is able to significantly improve nu p, peak and Wpeak during spring cycling, an activity which demands considerable involvement of the trained muscle group but with its own distinct pattern of coordination.

  9. Assessment of endometrial and ovarian characteristics using three dimensional power Doppler ultrasound to predict response in frozen embryo transfer cycles.

    Science.gov (United States)

    Zácková, Tamara; Järvelä, Ilkka Y; Tapanainen, Juha S; Feyereisl, Jaroslav

    2009-12-25

    To evaluate whether endometrial or ovarian parameters as measured using 3D power Doppler ultrasound would predict the outcome in frozen embryo transfer (FET) cycles. Thirty women with no known gynecological pathology undergoing FET were recruited. The FET was carried out in the natural menstrual cycle 3-4 days after the first positive LH test result. Blood samples for hormonal analysis were collected, and three-dimensional (3D) ultrasonographic examination was performed on the day of the FET and repeated with analysis of the total hCG one week later. The demographic, clinical, and embryological characteristics were similar between the pregnant (15/30) and nonpregnant groups (15/30). There were no differences between the groups in endometrial/subendometrial thickness, volume, or vascularization index (VI). The endometrial triple-line pattern was more often present in the pregnant group on the day of the FET (93.3% vs. 40.0%, 95% CI 25.5-81.2%). No differences in the ovaries were observed on the day of the FET. At the second visit, the triple-line pattern was still more often present in those patients who had conceived (91.7% vs. 42.9%, 95% CI 18.5-79.1%), and their corpus luteum was more active as judged by the rise in 17-hydroxyprogesterone and estradiol levels. No differences were observed in the dominant ovarian vasculature. According to our results, measurement of power Doppler indices using 3D ultrasound on the day of the FET does not provide any additional information concerning the outcome of the cycle. The existence of the triple-line pattern on the day of the FET seems to be a prognostic sign of a prosperous outcome after FET. The dominant ovary in the pregnant group seems to be already activated one week after the FET.

  10. High-power closed-cycle 4He cryostat with top-loading sample exchange

    Science.gov (United States)

    Piegsa, F. M.; van den Brandt, B.; Kirch, K.

    2017-10-01

    We report on the development of a versatile cryogen-free laboratory cryostat based upon a commercial pulse tube cryocooler. It provides enough cooling power for continuous recondensation of circulating 4He gas at a condensation pressure of approximately 250 mbar. Moreover, the cryostat allows for exchange of different cryostat-inserts as well as fast and easy ;wet; top-loading of samples directly into the 1 K pot with a turn-over time of less than 75 min. Starting from room temperature and using a 4He cryostat-insert, a base temperature of 1.0 K is reached within approximately seven hours and a cooling power of 250 mW is established at 1.24 K.

  11. Social Life Cycle Assessment of a Concentrated Solar Power Plant in Spain: A Methodological Proposal

    DEFF Research Database (Denmark)

    Corona, Blanca; Bozhilova-Kisheva, Kossara Petrova; Olsen, Stig Irving

    2017-01-01

    -LCA by suggesting a new classification and characterization model that builds upon previous methodological developments. The structure of the social analysis has been adapted to maintain coherence with that of standard LCA. The application of this methodology is demonstrated using a case study—the analysis of power...... a social performance indicator that builds on performance reference points, an activity variable, and a numeric scale with positive and negative values. The social performance indicator obtained (+0.42 over a range of –2 to +2) shows that the deployment of the solar power plant increases the social welfare...... of Spain, especially in the impact categories of socioeconomic sustainability and fairness of relationships, whose results were 1.38 and 0.29, respectively....

  12. Life cycle management for power transformers in the Eskom distribution network - case study

    OpenAIRE

    2014-01-01

    M.Ing. (Engineering Management) Electricity is a crucial key component in every day life influencing the economy, safety; health, productivity and comfort just to name a few. The benefits and importance of electricity can be easily taken for granted by the consumer. Towards the end of 2007, South Africa suffered numerous power outages and that lead to the implementation of load shedding by Eskom, the electricity utility in South Africa, in order to manage the shortage of electricity. Elect...

  13. Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power

    Science.gov (United States)

    2010-03-05

    Nucleonics Week, March 5, 2009, p. 1. 15 Nuclear Engineering International, November 2005, p. 37. 16 Uranium Information Centre, The Economics of...Nuclear Power, Briefing Paper 8, January 2006, p. 3. 17 “U.S. Utility Operating Costs, 2008,” Nucleonics Week, December 24, 2009. 18 CRS Report...Point (NY) Submitted 9/30/08 Areva EPR 1 Licensing suspended 12/1/09 Total Units 29 Sources: NRC, Nucleonics Week, Nuclear News, Nuclear Energy

  14. Modeling of the working cycle of the pressure-powered pump

    Directory of Open Access Journals (Sweden)

    Kolendić Petar I.

    2015-01-01

    Full Text Available This paper presents an analysis of working parameters of the pressure-powered pump. Mathematical models for determining the pump filling and discharge periods were developed and statistically compared to experimental results. The statistical parameters of the final correlation between here presented mathematical model and experimental results are in the acceptable range. Pump characteristics are presented in the common manner: in the form of the pump head vs. capacity diagram.

  15. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    OpenAIRE

    Bing Hu; Xianbiao Bu; Weibin Ma

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with incr...

  16. Fiscal 1980 Sunshine Project research report. Development of hydrothermal power plant. Development of binary cycle power plant (Research on heat cycle, heat medium, material and heat medium turbine); 1980 nendo nessui riyo hatsuden plant no kaihatsu seika hokokusho. Binary cycle hatsuden plant no kaihatsu (netsu cycle oyobi netsubaitai no kenkyu, zairyo no kenkyu narabini netsubaitai turbine no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This report summarizes the fiscal 1980 research result on each element of the next 10MW class geothermal binary cycle power plant, following last year. In the research on heat cycle and heat medium, measurement was made on the liquid density, vapor density, liquid specific heat, vapor specific heat and thermal conductivity of 8 heat media to prepare the precise pressure enthalpy chart. The thermal stability of each medium was also measured under a flow condition. The heat cycle of each medium was calculated in a hydrothermal temperature range of 120-160 degrees C for evaluation of its output. In the research on material, field corrosion test and laboratory simulation were made on 3 kinds of heat exchanger martials for acidic hot water to study the corrosion behavior of welding members. In the research on heat medium turbine, study was made on sealing characteristics such as differential pressure, flow rate and friction of sealing oil for oil film seal and mechanical seal as shaft seal devices of heat medium turbines for the 10MW class geothermal plant. (NEDO)

  17. Status of power generation experiments in the NASA Lewis closed cycle MHD facility

    Science.gov (United States)

    Sovie, R. J.; Nichols, L. D.

    1971-01-01

    The design and operation of the closed cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger, heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths, the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. Comparison of this data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.

  18. Model predictive control system and method for integrated gasification combined cycle power generation

    Science.gov (United States)

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  19. Life cycle cost of biomass power plant: Monte Carlo simulation of investment

    Directory of Open Access Journals (Sweden)

    Odavić Petrana

    2017-01-01

    Full Text Available Assessment of life cycle cost is considered as an important instrument for designing and evaluating success of every project. The aim of this work is to determine the precise impact of the investment costs and future operating and maintenance costs of CHP biomass plant. By using the Monte Carlo simulation are determined variations in the settings and the possible impact on the investment risk. The results show that the investment is justified, thanks to the positive outcome of the net present value (NPV, internal rate of return (IRR and the payback period. The greatest impact on the variability of annual profits have operating costs, which have the highest coefficient of variation of 6.44% and the largest share. Variability of net present value of 4% is acceptable, and the investment is considered as stable.

  20. Identification of hazards in non-nuclear power plants. [Public health hazards of fossil-fuel, combined cycle, combustion turbine, and geothermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roman, W.S.; Israel, W.J.; Sacramo, R.F.

    1978-07-01

    Public health and safety hazards have been identified for five types of power plants: coal-fired, oil-fired steam turbine, combined cycle, combustion (gas) turbine, and geothermal. The results of the analysis show that air pollutants are the major hazard that affects the health and safety of the general public. A total of ninety plant hazards were identified for the five plant types. Each of these hazards were rated in six categories as to their affect on the general public. The criteria used in the analysis were: area/population exposed; duration; mitigation; quantity to toxicity ratio; nature of health effects; and public attitude. Even though ninety hazards were identified for the five plants analyzed, the large majority of hazards were similar for each plant. Highest ratings were given to the products of the combustion cycle or to hydrogen sulfide emissions from geothermal plants. Water pollution, cooling tower effects and noise received relatively low ratings. The highest rated of the infrequent or hypothetical hazards were those associated with potential fires, explosions, and chlorine releases at the plant. Hazards associated with major cooling water releases, water pollution and missiles received the lowest ratings. Since the results of the study clearly show that air pollutants are currently considered the most severe hazard, additional effort must be made to further understand the complex interactions of pollutants with man and his environment. Of particular importance is the determination of dose-response relationships for long term, low level exposure to air pollutants. (EDB)

  1. Advanced cycle efficiency: Generating 40% more power from the nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, Romney B.; Leung, Laurence

    2010-09-15

    The introduction of supercritical water (SCW) nuclear power plants (NPPs) would improve the overall plant efficiency significantly compared to currently deployed systems. This improvement is attributed to the increase in plant operating conditions. In addition, the implementation of the reheat-channel option into the CANDU SCW NPPs would further enhance the efficiency. Overall, the combination of higher operating conditions and reheat-channel option would lead to overall plant efficiency of about 50% for the CANDU SCW NPPs, compared to 33--35% for currently deployed systems. This represents a whopping 40% improvement in efficiency.

  2. Impact of Total Ionizing Dose Radiation Testing and Long-Term Thermal Cycling on the Operation of CMF20120D Silicon Carbide Power MOSFET

    Science.gov (United States)

    Patterson, Richard L.; Scheidegger, Robert J.; Lauenstein, Jean-Marie; Casey, Megan; Scheick, Leif; Hammoud, Ahmad

    2013-01-01

    Power systems designed for use in NASA space missions are required to work reliably under harsh conditions including radiation, thermal cycling, and extreme temperature exposures. Silicon carbide devices show great promise for use in future power electronics systems, but information pertaining to performance of the devices in the space environment is very scarce. A silicon carbide N-channel enhancement-mode power MOSFET called the CMF20120 is of interest for use in space environments. Samples of the device were exposed to radiation followed by long-term thermal cycling to address their reliability for use in space applications. The results of the experimental work are presentd and discussed.

  3. Investigation of CO{sub 2} Recovery System Design in Supercritical Carbon Dioxide Power Cycle for Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Seok; Jung, Hwa-Young; Ahn, Yoonhan; Cho, Seong Kuk; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    These are mainly possible because the S-CO{sub 2} Brayton cycle has lower compressing work than other Brayton cycles due to its high density and low compressibility near the critical point. These attributes make easier to achieve higher turbine inlet temperature. Furthermore, the coolant chemistry control and component cooling systems are relatively simple for the S-CO{sub 2} cycle unlike the steam Rankine cycle, and therefore the total plant footprint can be greatly reduced further. However, certain amount of leakage flow is inevitable in the rotating turbo-machinery since the S-CO{sub 2} power cycle is a highly pressurized system. A computational model of critical flow in turbo-machinery seal is essential to predict the leakage flow and calculate the required total mass of working fluid in S-CO{sub 2} power system. Before designing a computational model of critical flow in turbo-machinery seal, this paper will identify what the issues are in predicting leakage flow and how these issues can be successfully addressed. Also, suitability of this solution in a large scale S-CO{sub 2} power cycle will be discussed, because this solution is for the small scale. S-CO{sub 2} power cycle has gained interest especially for the SFR application as an alternative to the conventional steam Rankine cycle, since S-CO{sub 2} power cycle can provide better performance and enhance safety. This paper discussed what the problem in leakage flow is and how to deal with this problem at present. High cavity pressure causing instability of gas foil bearing and large windage losses can be reduced by booster pump used to scavenge the gas in the rotor cavity. Also, labyrinth seals can be another good solution to decrease the rotor cavity pressure. Additionally, difference between large and small scale S-CO{sub 2} power cycle in turbo-machinery leakage is addressed. It is shown that optimization of CO{sub 2} recovery system design is more important to large scale S-CO{sub 2} power cycle. For

  4. Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Tim [Southwest Research Inst., San Antonio, TX (United States); Beck, Griffin [Southwest Research Inst., San Antonio, TX (United States); Bennett, Jeffrey [Southwest Research Inst., San Antonio, TX (United States); Hoopes, Kevin [Southwest Research Inst., San Antonio, TX (United States); Miller, Larry [Southwest Research Inst., San Antonio, TX (United States)

    2016-06-29

    This project objective is to develop a high-temperature design upgrade for an existing primary surface heat exchanger so that the redesigned hardware is capable of operation in CO2 at temperatures up to 1,510°F (821°C) and pressure differentials up to 130 psi (9 bar). The heat exchanger is proposed for use as a recuperator in an advanced low-pressure oxy-fuel Brayton cycle that is predicted to achieve over 50% thermodynamic efficiency, although the heat exchanger could also be used in other high-temperature, low-differential pressure cycles. This report describes the progress to date, which includes continuing work performed to select and test new candidate materials for the recuperator redesign, final mechanical and thermal performance analysis results of various redesign concepts, and the preliminary design of a test loop for the redesigned recuperator including a budgetary estimate for detailed test loop design, procurement, and test operation. A materials search was performed in order to investigate high-temperature properties of many candidate materials, including high-temperature strength and nickel content. These properties were used to rank the candidate materials, resulting in a reduced list of nine materials for corrosion testing. Multiple test rigs were considered and analyzed for short-term corrosion testing and Thermal Gravimetric Analysis (TGA) was selected as the most cost-effective option for evaluating corrosion resistance of the candidate materials. In addition, tantalum, niobium, and chromium coatings were identified as potential options for increased corrosion resistance. The test results show that many materials exhibit relatively low weight gain rates, and that niobium and tantalum coatings may improve corrosion resistance for many materials, while chromium coatings appear to oxidize and debond quickly. Metallurgical analysis of alloys was also performed, showing evidence of intergranular attack in 282 that may cause long

  5. Solid-tumor mortality in the vicinity of uranium cycle facilities and nuclear power plants in Spain.

    Science.gov (United States)

    López-Abente, G; Aragonés, N; Pollán, M

    2001-07-01

    To ascertain solid tumor mortality in towns near Spain's four nuclear power plants and four nuclear fuel facilities from 1975 to 1993, we conducted a mortality study based on 12,245 cancer deaths in 283 towns situated within a 30-km radius of the above installations. As nonexposed areas, we used 275 towns lying within a 50- to 100-km radius of each installation, matched by population size and sociodemographic characteristics (income level, proportion of active population engaged in farming, proportion of unemployed, percentage of illiteracy, and province). Using log-linear models, we examined relative risk for each area and trends in risk with increasing proximity to an installation. The results reveal a pattern of solid-tumor mortality in the vicinity of uranium cycle facilities, basically characterized by excess lung [relative risk (RR) 1.12, 95% confidence interval (CI), 1.02-1.25] and renal cancer mortality (RR 1.37, 95% CI, 1.07-1.76). Besides the effects of natural radiation, these results could well be evincing the influence on public health exerted by the environmental impact of mining. No such well-defined pattern appeared in the vicinity of nuclear power plants. Monitoring of cancer incidence and mortality is recommended in areas surrounding nuclear fuel facilities and nuclear power plants, and more specific studies are called for in areas adjacent to installations that have been fully operational for longer periods. In this regard, it is important to use dosimetric information in all future studies.

  6. Multi-objective optimization of an advanced combined cycle power plant including CO{sub 2} separation options

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Marechal, Francois; Burer, Meinrad; Favrat, Daniel [Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland). Laboratory for Industrial Energy Systems

    2006-12-15

    This paper illustrates a methodology developed to facilitate the analysis of complex systems characterized by a large number of technical, economical and environmental parameters. Thermo-economic modeling of a natural gas combined cycle including CO{sub 2} separation options has been coupled within a multi-objective evolutionary algorithm to characterize the economic and environmental performances of such complex systems within various contexts. The method has been applied to a case of power generation in Germany. The optimum options for system integration under different boundary conditions are revealed by the Pareto Optimal Frontiers. Results show the influence of the configuration and technical parameters on the electrical efficiencies of the Pareto optimal plants and their sub-systems. The results provide information on the relationship between power generation cost and CO{sub 2} emissions, and allow sensitivity analyses of important economical parameters like natural gas and electricity prices. Such a tool is of interest for power generation technology suppliers, for utility owners or for project investors, and for policy makers in the context of CO{sub 2} mitigation schemes including emission trading. (author)

  7. Proactive pressure relief system management of life cycle and ageing in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kolenc, J. [Farris Engineering, Edmonton, Alberta (Canada); Ferrar, S. [Farris Engineering, Brantford, Ontario (Canada)

    2011-07-01

    The last major power nuclear station built in North America was built when the Altair Company introduced the first microcomputer sparking the PC frenzy. It is safe to assume that there have been a great many changes since 1977 on both accounts. As the world's aging nuclear plants continue to be challenged with maintenance and replacement issues (obsolescence), as well making improvements within their facilities, proper pressure relief system management looms as a growing concern. This problem grows more acute as new engineering best practices are promulgated across industries and regulatory standards become more rigorous with much stricter enforcements. Unlike most pieces of operating equipment in a nuclear facility, pressure relief devices demand an extra level of consideration; as they form the 'last line of defense'. Combine the on-going obsolescence issue, with today's ever increasing demands for overall plant and public safety; pressure relief safety management will require increasing 'proactive' efforts to ensure safe facilities. This paper has been written to address some global pressure relief system management issues with respect the worlds aging nuclear facilities. This paper reflects findings we have discovered while conducting engineering pressure relief system audits on various nuclear power stations. It should be noted that these finding are not atypical of similar findings in pressure relief systems in the hydrocarbon processing world. (author)

  8. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  9. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-31

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  10. Life-cycle assessment for power generation from agricultural biogas; Oekobilanz der Stromgewinnung aus landwirtschaftlichem Biogas

    Energy Technology Data Exchange (ETDEWEB)

    Edelmann, W.; Schleiss, K.; Engeli, H.; Baier, U.

    2001-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of life-cycle assessments (LCA) made of two types of digester construction - concrete and steel - with the goal of analysing the possibilities of labelling such plants with the Swiss 'Naturemade Star' eco-label. In the study, different combinations of parameters were calculated for different substrates and combinations of them. The calculation of sensitivities allows, according to the authors, an accurate discussion of those parameters important in the context of this LCA. They conclude that the production of electricity from biogas is environmentally safer than electricity generated by conventional means. The report describes the plants and discusses the various input materials, infrastructure elements, transport and disposal questions as well as the emissions produced from the eco-balance point of view. The results of the LCA and the consequences for certification and labelling of the electricity produced in such plant are discussed. An appendix provides details on energy measurements, examples of energy balances and the damage that can be caused by ammonia emissions.

  11. Investigations on the application of zeotropic fluid mixtures in the organic rankine cycle for the geothermal power generation; Untersuchung zum Einsatz von zeotropen Fluidgemischen im Organic Rankine Cycle fuer die geothermische Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, Florian

    2013-04-01

    The organic rankine cycle is a thermodynamic cycle process which uses an organic fluid working fluid instead of water in comparison to the commercial rankine process. The organic rankine cycle facilitates sufficiently high pressures at moderate temperatures. The organic rankine cycle significantly expands the technically possible and economically feasible ranges of application of such heat and power processes. The geothermal power is a very attractive field of application. Thermal water with a temperature of nearly 100 Celsius can be used for the power generation by means of the organic rankine cycle. Especially zeotropic mixtures are interesting as a working fluid. This is due to a non-isothermal phase change to a temperature glide which adapts very well to the temperature progress of the heat source. The author of the book under consideration reports on the application of different mixtures in the organic rankine cycle. The evaluation is based on a thermodynamic analysis and considers also toxicological, ecologic, technical as well as economic aspects.

  12. Comparative analysis of gas and coal-fired power generation in ultra-low emission condition using life cycle assessment (LCA)

    Science.gov (United States)

    Yin, Libao; Liao, Yanfen; Liu, Guicai; Liu, Zhichao; Yu, Zhaosheng; Guo, Shaode; Ma, Xiaoqian

    2017-05-01

    Energy consumption and pollutant emission of natural gas combined cycle power-generation (NGCC), liquefied natural gas combined cycle power-generation (LNGCC), natural gas combined heat and power generation (CHP) and ultra-supercritical power generation with ultra-low gas emission (USC) were analyzed using life cycle assessment method, pointing out the development opportunity and superiority of gas power generation in the period of coal-fired unit ultra-low emission transformation. The results show that CO2 emission followed the order: USC>LNGCC>NGCC>CHP the resource depletion coefficient of coal-fired power generation was lower than that of gas power generation, and the coal-fired power generation should be the main part of power generation in China; based on sensitivity analysis, improving the generating efficiency or shortening the transportation distance could effectively improve energy saving and emission reduction, especially for the coal-fired units, and improving the generating efficiency had a great significance for achieving the ultra-low gas emission.

  13. Application of Biomass from Palm Oil Mill for Organic Rankine Cycle to Generate Power in North Sumatera Indonesia

    Science.gov (United States)

    Nur, T. B.; Pane, Z.; Amin, M. N.

    2017-03-01

    Due to increasing oil and gas demand with the depletion of fossil resources in the current situation make efficient energy systems and alternative energy conversion processes are urgently needed. With the great potential of resources in Indonesia, make biomass has been considered as one of major potential fuel and renewable resource for the near future. In this paper, the potential of palm oil mill waste as a bioenergy source has been investigated. An organic Rankine cycle (ORC) small scale power plant has been preliminary designed to generate electricity. The working fluid candidates for the ORC plant based on the heat source temperature domains have been investigated. The ORC system with a regenerator has higher thermal efficiency than the basic ORC system. The study demonstrates the technical feasibility of ORC solutions in terms of resources optimizations and reducing of greenhouse gas emissions.

  14. Intermediate-Frequency Oscillation Behavior of One-Cycle Controlled SEPIC Power Factor Correction Converter via Floquet Multiplier Sensitivity Analysis

    Science.gov (United States)

    Zhang, Hao; Dong, Shuai; Zhang, Yuan; He, Bo

    In this paper, we investigate the intermediate-frequency oscillation in a SEPIC power-factor-correction (PFC) converter under one-cycle control. The converter operates in continuous conduction mode (CCM). A systematic method is proposed to analyze the bifurcation behavior and explain the inherent physical mechanism of the intermediate-frequency oscillation. Based on the nonlinear averaged model, the approximate analytical expressions of the nominal periodic equilibrium state are calculated with the help of Galerkin approach. Then, the stability of the system is judged by the Floquet theory and the Floquet multiplier movement of the monodromy matrix is analyzed to reveal the underlying mechanism of the intermediate-frequency oscillation behavior. In addition, Floquet multiplier sensitivity is proposed to facilitate the selection of key parameters with respect to system stability so as to guide the optimal design of the system. Finally, PSpice circuit experiments are performed to verify the above theoretical and numerical ones.

  15. Worker dose under high-power operation of the J-PARC 3 GeV Rapid Cycling Synchrotron

    Directory of Open Access Journals (Sweden)

    Yamamoto Kazami

    2017-01-01

    Full Text Available The J-PARC 3 GeV Rapid Cycling Synchrotron (RCS delivers a 1-MW, high-intensity beam to facilities downstream. In such high-intensity accelerators, the operational beam intensity is limited to keep worker exposure to the residual dose within acceptable tolerances. Therefore, we continue to pursue accelerator commissioning that reduces beam loss. In order to achieve further high-intensity operation, the J-PARC accelerator system has been drastically upgraded over the past two years. As a result, it was found that beam loss decreased, whereas output power increased; the residual doses were kept at the same level or decreased in RCS. A malfunction of a collimator occurred in April 2016, and we replaced it to a spare duct in a hurry. The broken collimator was higher activated, but exposure to workers was kept within the acceptable level.

  16. Interim storage of power reactor spent nuclear fuel (SNF) and its potential application to SNF separations and closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Salomon, E-mail: slevy112@aol.com

    2009-10-15

    Interim, centralized, engineered (dry cask) storage facilities for USA light water power reactor spent nuclear fuel (SNF) should be implemented to complement and to offer much needed flexibility while the Nuclear Regulatory Commission is funded to complete its evaluation of the Yucca Mountain License and to subject it to public hearings. The interim sites should use the credo reproduced in Table 1 [Bunn, M., 2001. Interim Storage of Spent Nuclear Fuel. Harvard University and University of Tokyo] and involve both the industry and government. The sites will help settle the 50 pending lawsuits against the government and the $11 billion of potential additional liabilities for SNF delay damages if Yucca Mountain does not being operation in 2020 [DOE, 2008a. Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Stations (December)]. Under the developing consensus to proceed with closed fuel cycles, it will be necessary to develop SNF separation facilities with stringent requirements upon separation processes and upon generation of only highly resistant waste forms. The location of such facilities at the interim storage sites would offer great benefits to those sites and assure their long term viability by returning them to their original status. The switch from once-through to closed fuel cycle will require extensive time and development work as illustrated in 'The Path to Sustainable Nuclear Energy' [DOE, 2005. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles. DOE (September)]. A carefully crafted long term program, funded for at least 5 years, managed by a strong joint government-industry team, and subjected to regular independent reviews should be considered to assure the program stability and success. The new uncertainty about Yucca Mountain role raises two key issues: (a) what to do with the weapons and other high level government

  17. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  18. Less is more: standard warm-up causes fatigue and less warm-up permits greater cycling power output.

    Science.gov (United States)

    Tomaras, Elias K; MacIntosh, Brian R

    2011-07-01

    The traditional warm-up (WU) used by athletes to prepare for a sprint track cycling event involves a general WU followed by a series of brief sprints lasting ≥ 50 min in total. A WU of this duration and intensity could cause significant fatigue and impair subsequent performance. The purpose of this research was to compare a traditional WU with an experimental WU and examine the consequences of traditional and experimental WU on the 30-s Wingate test and electrically elicited twitch contractions. The traditional WU began with 20 min of cycling with a gradual intensity increase from 60% to 95% of maximal heart rate; then four sprints were performed at 8-min intervals. The experimental WU was shorter with less high-intensity exercise: intensity increased from 60% to 70% of maximal heart rate over 15 min; then just one sprint was performed. The Wingate test was conducted with a 1-min lead-in at 80% of optimal cadence followed by a Wingate test at optimal cadence. Peak active twitch torque was significantly lower after the traditional than experimental WU (86.5 ± 3.3% vs. 94.6 ± 2.4%, P track cyclist's WU results in significant fatigue, which corresponds with impaired peak power output. A shorter and lower-intensity WU permits a better performance.

  19. System Mass Variation and Entropy Generation in 100k We Closed-Brayton-Cycle Space Power Systems

    Science.gov (United States)

    Barrett, Michael J.; Reid, Bryan M.

    2004-01-01

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.

  20. System Mass Variation and Entropy Generation in 100-kWe Closed-Brayton-Cycle Space Power Systems

    Science.gov (United States)

    Barrett, Michael J.; Reid, Bryan M.

    2004-01-01

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.